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Abstract. As Artificial Intelligence (AI) becomes integral to modern
software systems, the software engineering (SE) research community has
been actively developing methods, tools, and frameworks to address soft-
ware quality assurance of AI-enabled systems across critical dimensions
such as robustness, ethics, security, and sustainability. These contribu-
tions are designed to tackle the complexity of AI systems, such as their
probabilistic nature, data dependencies, and societal impact, ensuring
they meet the standards of modern software engineering. These advances
have, in turn, inspired educators to introduce Software Engineering for
Artificial Intelligence (SE4AI) courses aimed at preparing the next gen-
eration of software engineers, with notable success examples already re-
ported in the literature. In this experience report, we contribute to the
field of SE4AI education by sharing lessons learned in designing and
teaching a course that addresses the unique characteristics of AI-enabled
systems. Drawing on insights gathered over four iterations of the course,
we discuss how students perceive and apply key software engineering con-
cepts, the challenges they encounter with tools and techniques, and how
project-based learning bridges the gap between theoretical knowledge
and real-world application. Furthermore, we address the broader educa-
tional challenges, such as interdisciplinary barriers and the integration
of rapidly evolving AI technologies, and provide recommendations to en-
hance SE4AI education. By reflecting on these experiences, we aim to
offer insights and strategies for improving the teaching of SE4AI topics.

Keywords: Software Engineering for Artificial Intelligence · Experience
Report · Software Engineering Education.

1 Introduction

The rapid growth of Artificial Intelligence (AI) has transformed industries and
everyday applications, becoming integral to sectors like healthcare and finance
by enhancing efficiency, decision-making, and innovation [41,38,29,27].
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This widespread adoption of AI has introduced unique challenges for software
engineering, prompting the Software Engineering (SE) research community to
establish a dedicated field known as Software Engineering for Artificial Intelli-
gence (SE4AI). SE4AI focuses on extending traditional SE practices to meet the
demands of AI-driven systems. Bosch et al. [8] described AI engineering as inte-
grating specialized technologies and processes essential for building AI-enabled
systems, while Martínez-Fernández et al. [24] characterized these systems as
architectures combining both traditional software components and AI-specific
elements. Sculley et al. [34] noted that AI components often constitute only a
small part of such systems, which are supported by conventional software that
enables and manages AI functionalities.

AI-enabled systems face challenges beyond those of traditional software projects,
particularly in ensuring quality across dimensions such as robustness, scalability,
ethics, and risk management [8]. These challenges arise from the inherent char-
acteristics of AI-enabled systems, including their probabilistic behavior, reliance
on large-scale data, and significant societal impact [25]. Systematic processes and
practices are essential for addressing these issues and for ensuring that software
meets predefined quality standards. These standards cover both functional at-
tributes, such as correctness, and non-functional ones, such as security, fairness,
transparency, and environmental sustainability.

The growing need for advanced practices in AI-enabled systems has moti-
vated educators to develop SE4AI courses that prepare the next generation of
software engineers. These courses aim to equip students with the skills to de-
velop, evaluate, and maintain systems integrating AI, while tackling the distinct
challenges these systems present. Inspired by notable examples in the literature
[20,22], this experience report contributes to the field of SE4AI education by
sharing preliminary insights from designing and teaching a course focused on the
attributes of AI-enabled systems. We discuss how students perceive and apply
key concepts, the challenges they encounter with tools and techniques, and how
project-based learning bridges the gap between theoretical understanding and
real-world application. Furthermore, we address broader educational challenges,
such as interdisciplinary barriers and the need to integrate rapidly evolving AI
technologies. By reflecting on these experiences, we aim at offering recommenda-
tions for advancing SE4AI education and supporting future research and practice
in preparing software engineers for the complexities of AI-enabled systems.

2 Related Works

For decades, the primary focus of software engineering research and education
related to artificial intelligence has been on leveraging AI techniques to address
SE challenges, often referred to as Artificial Intelligence for Software Engineer-
ing (AI4SE) [26]. This area includes, for instance, the use of AI approaches to
predict and manage software defects [18,7], generate test cases [3,4,9], detect
and refactor source code design flaws [2,5,23], or optimize software development
processes [39,40,37]. Educational courses aligned with this focus are now widely
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diffused, with many examples discussed in experience reports and educational
articles describing how to emphasize the application of AI methods in traditional
software engineering contexts[14,15,36].

In recent years, there has been a notable shift toward studying the application
of software engineering principles and practices in the development of Artificial
Intelligence-enabled systems, often termed Software Engineering for Artificial
Intelligence (SE4AI) [24]. This paradigm has the opposite goal of AI4SE, namely
that of addressing the engineering challenges posed by AI components, such as
managing data and model quality, handling model evolution, and ensuring scal-
ability and robustness in production systems. The SE4AI research community
has grown rapidly, producing significant contributions to software quality assur-
ance aspects of AI-enabled systems. A notable example is represented by the
technical debt research field, where researchers attempted to study solutions to
deal with AI debt, i.e., issues arising from the peculiar component and activities
of AI-enabled systems, such as data dependencies, model versioning, and the
maintenance of continuously evolving pipelines, making them harder to scale
and manage over time. The seminal work by Sculley et al. [34] highlighted how
these challenges differ from traditional software engineering debt, emphasizing
risks like entanglement, undeclared consumers, and system-level anti-patterns
that may impact other non-functional attributes of AI-enabled systems, includ-
ing security and privacy [32]. Other rapidly growing research areas include ethics
& fairness [13] and verification & validation [33]. In these areas, researchers have
developed methodologies and tools to (i) detect and mitigate biases in AI mod-
els [12,31,17], (ii) support the robustness of AI-enabled systems to deal with
non-deterministic nature of AI models [1,11,21].

The challenges of engineering AI-enabled systems have led to an even more
pressing need to educate the next generation of software engineers with special-
ized knowledge and skills to address these complexities. In response to this need,
many institutions have begun offering courses specifically focused on SE4AI—
this was also fostered by the availability of books and teaching resources that em-
phasize the intersection of SE and AI engineering, like Smith’s “Machine Learn-
ing Systems” [35], Hulten’s “Building Intelligent Systems” [19], and Burkov’s
“Machine Learning Engineering” [10]. Among the most well-established courses
on the matter, a notable case if the one of the “Software Engineering for AI-
enabled Systems” course taught by Prof. Kästner at Carnegie Mellon University
(CMU) [20]. The course combines theoretical foundations with practical assign-
ments, leveraging real-world scenarios to teach students about AI system require-
ments, testing, deployment, and quality assurance practices. Similarly, Lanubile
et al. [22] reported on teaching MLOps through project-based learning, empha-
sizing the importance of hands-on approaches to teach the complexities of AI
system development and operations.

The course object of this experience report is inspired by the Kästner’s course
and indeed shares similar learning objectives. Specifically, it aims to (1) illus-
trate the engineering challenges in building production systems with machine
learning (ML) components, beyond model creation; and (2) compare the roles,
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goals, and challenges faced by software engineers and data scientists in devel-
oping AI-enabled systems. While grounded in the foundational structure of the
CMU’s course, our course varies some aspects to (i) address the rapidly changing
landscape of AI and (ii) adapt itself to the structure of our Master’s degree:

Teaching Material. The topics of the course have been evolved to reflect re-
cent advances in AI engineering. For instance, the course includes topics such
as the analysis of Large Language Models, advances in fairness engineering,
and considerations for ML sustainability. These additions are informed by the
latest research in SE4AI, including insights from our own research projects
on these themes, and periodically updated to provide students with a fresh
research perspectives on the fast-growing topics of the course.

Hands-on Education. While the CMU course emphasizes assignments to build
hands-on experience, our course adopts a semester-long team project to stim-
ulate practical learning. This divergence was mainly due to the need of adopt-
ing a similar educational approach as other courses available in our Master’s
degree—the recommended guidelines are to let students engage with real-world
challenges which, in our case, implies the application of SE4AI methods across
the lifecycle of a project, from conception to evaluation, thereby fostering col-
laboration and problem-solving skills.

Industry Integration. Guest lectures from partner companies provide stu-
dents with practical insights into SE4AI challenges. These lectures are com-
plemented by case studies and experience reports. For instance, one of the case
studies discussed in the course is the one by Beede et al. [6], who evaluated
the deployment of a deep learning system for diabetic retinopathy detection
in clinical settings, showing issues and challenges that motivate the need for
software engineering instruments in AI-enabled system development.

3 The Software Engineering for Artificial Intelligence
Course

- Software
Engineering for
Artificial Intelligence

- Course Projects: 
Goals and
Challenges

Introduction Model Engineering From Model to System

- Data and Feature Engineering

- Supervised Machine Learning
and Advanced Supervised Machine
Learning
- Transfer Learning, Transformers, and
Large Language Models I and II

Mid Term Questionnaire

Tools: Python, Jupyter Notebooks,
Pandas, Numpy, Tensorflow, Scikit-
learn, Keras 

- Requirements Engineering for AI-
enabled Systems I and II

- Software Architectures and
Deployment of AI-enabled
Systems I and II

Lab Session 1
Software Architectures and
Deployment of AI-enabled
Systems: GenAI Agents

In Person
Lectures

Additional
Activities

Quality Assurance
- AI-Enabled Systems in
Operation: MLOps

- Data and Model Quality,
Technical Debt 

Tools: MLFlow,  Kubeflow,
TensorFlow Extended

- Model Validation and Testing

- Model Testing and Testing in
Production

Mid Term Questionnaire

Responsible AI
- Transparency, Accountability,
and Explainability

- Ethics, Fairness, and
Transparency I and II

Tools: AIF360, CodeCarbon,
Lime, Shap

- Safety, Security and Privacy

- Sustainability of AI-Enabled
Systems

Lab Session 2
Measuring and Mitigating bias
in ML models: hands-on

Mid Term Questionnaire

Fig. 1. Design and Timeline of the “Software Engineering for Artificial Intelligence”
Course.
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The course we base our experience on is entitled “Software Engineering for Ar-
tificial Intelligence” and is taught at the University of Salerno. It is designed for
Master’s students who have prior knowledge in functional and object-oriented
programming, software engineering, and the fundamentals of artificial intelli-
gence, obtained during their Bachelor’s studies.

The course is part of the “Software Engineering and IT Management” curricu-
lum within the Master’s Degree in Computer Science, and provides 48 hours of
instruction (6 ECTS). The course aims to introduce students to end-to-end ML
engineering, encompassing key phases from requirements gathering to verifica-
tion, validation, and deployment. Now, in its fourth edition, the course is taught
in English by a main lecturer and supported by multiple teaching assistants.

The teaching methods include: (1) in-person lectures, delivered by the main
lecturer; (2) laboratory sessions, supervised by teaching assistants, focusing on
hands-on practical work; (3) individual study assignments, where students in-
dependently explore specific topics and participate in discussions through a
flipped-classroom approach; and (4) classwork activities, where students ana-
lyze case studies and reason about the application of SE practices introduced
during lectures. Figure 1 provides a summary of the course design, including a
timeline that illustrates how the course topics are delivered over time and how
they interweave with the course’s additional activities.

More specifically, the course is structured into five main parts: (1) ‘Introduc-
tion to SE4AI’ ; (2) ‘Model Engineering’, (3) ‘From Model to System Engineer-
ing’, (4) ‘Quality Assurance’, and (5) ‘Responsible AI’.

(1) Introduction to SE4AI. Students are introduced to the foundational con-
cepts of SE4AI. Frontal lectures focus on comparing AI-enabled systems to tra-
ditional software systems. Additionally, this part provides an overview of key
AI techniques underlying contemporary software systems, including data and
feature engineering, search-based algorithms, and supervised learning.

(2) Model Engineering. The second part of the course focuses on building ro-
bust AI systems through model engineering. It begins with an overview of ML
pipelines, emphasizing the critical roles of data preparation and feature engi-
neering. Students then explore supervised ML, covering key concepts in model
training, validation, and testing. The module progresses to advanced techniques
such as deep learning and ensemble methods, followed by an in-depth look at
transfer learning, transformers, and Large Language Models. Practical skills are
developed using state-of-the-art tools including TensorFlow, Scikit-learn,
and Keras.

(3) From Model to System. The third part of the course addresses the tran-
sition from ML models to full-fledged and engineered AI-enabled systems, ex-
ploring the diverse shapes of SE4AI practices. It begins with requirements
engineering, focusing on when to adopt ML, how to define functional and
non-functional requirements, and how to set meaningful measurement goals.
Students also learn techniques for gathering requirements. The module then
explores the architectural design of AI-enabled systems, discussing common
patterns like client-server, multi-tier, service-oriented, microservices, and data-
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flow architectures. A laboratory session on Generative AI agents further en-
riches this part by examining current trends and system integration challenges
in modern AI applications.

(4) Quality Assurance The fourth part of the course centers on the qual-
ity of AI-enabled systems. Students are first introduced to MLOps practices,
covering essential topics such as model versioning, pipeline management, and
infrastructure deployment. Tools such as MLFlow, Kubeflow, and Ten-
sorFlow Extended are introduced to facilitate these practices. The module
covers data and model quality, as well as challenges like concept and data drift.
Topics also include managing technical debt, validating and testing models,
and strategies for testing in production. A case study offers students hands-on
insight into cutting-edge research and practices in production-level AI system
testing.

(5) Responsible AI The final module focuses on the ethical, legal, and soci-
etal implications of AI. It begins with an overview of transparency, account-
ability, and regulatory considerations, concluding with methods for achieving
explainability in AI models. Students are introduced to fairness in ML, in-
cluding techniques for detecting and mitigating bias through pre-processing,
in-processing, and post-processing approaches, through a laboratory session.
The section draws on recent research and real-world applications. Topics also
include safety, security, and privacy, highlighting threats like adversarial at-
tacks and techniques for robust system design. The module concludes with a
discussion on the sustainability of AI-enabled systems, covering environmental
impact and long-term maintainability insights from current research. Students
use tools such as AIF360, Lime, Shap, and CodeCarbon to assess, monitor,
and improve these quality attributes over time.

The course includes three individual mid-term questionnaires designed to
assess students’ comprehension of the material covered up to that point, as
illustrated in Figure 1. Each questionnaire consists of closed-ended questions
focused on specific concepts discussed during the lectures. These assessments
serve both as a tool to gauge students’ understanding and as a component in
determining their final evaluation.

In addition to the lectures and individual mid-term questionnaires, students
are required to work on a team project, choosing between two project types. The
first option involves developing a prototype of an AI-enabled system using the
methods introduced in the course. The second option focuses on conducting a
quality assurance analysis of an existing AI-enabled system, emphasizing specific
properties such as fairness, robustness, or explainability. Student groups can
range from 1 to 4 participants, depending on the scope of the project, which is
preliminarily validated by the lecturer.

Finally, students are assessed through two components. At first, a project
discussion, lasting 30 minutes: students present their team project (10 minutes)
and engage in a discussion with the lecturer and teaching assistants (20 minutes)
about the validity, limitations, and challenges encountered. The project discus-
sion aims to evaluate students’ abilities in engineering AI-enabled systems, as
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well as their capacity to effectively communicate the key methodological ap-
proaches and results achieved in their projects. Secondly, an oral examination,
typically lasting from 45 to 60 minutes: students are tested on the theoretical
and practical topics covered during the course.

The course attracts approximately 50 students every year. Over the four
editions, we collected data on participants’ background knowledge across various
topics in AI and SE. Participation in the questionnaire was voluntary, and up to
today, we have collected 91 answers to the background survey. This data was used
to inform and fine-tune the course content, addressing gaps in knowledge where
needed or adapting to students’ advanced understanding in specific areas. During
these years, 56% of participants had a Software Engineering background, while
22% of students came from the Data Science and Machine Learning domain.
A small number of participants came from the Security or Cloud Computing
domain, while the others were enrolled in the course through other types of
university programs (e.g., Ph.D. students). The survey’s design, along with the
anonymized aggregated responses, can be found in our online appendix [30].

4 Experience Design and Report

This section presents the lessons learned from our four-year experience delivering
the “Software Engineering for Artificial Intelligence” course at the University of
Salerno, Italy. We outline the primary focus areas of our analysis and provide
an account of the insights gained over the years.

4.1 Primary Focus Areas of Our Experience Report

This experience report is centered on the aspects of AI-enabled systems, as
taught and applied in our course. The following focus areas highlight the key
dimensions of our report, emphasizing the lessons learned in addressing specific
challenges of AI-enabled systems.

F1. Students’ Perception of Course Topics. We analyze students’ percep-
tions of the topics covered in the course, focusing on their relevance to real-
world AI engineering tasks. In particular, we concentrate on how students value
the introduction of concepts such as technical debt, security, fairness, explain-
ability, and verification & validation in the context of AI-enabled systems and
whether they find these concepts practically useful in their projects. Through
the analysis of feedback and project outcomes, we identify areas where stu-
dents feel confident and areas where additional support or alternative teaching
methods may be required.

F2. Challenges in Understanding Concepts and Tools. As further discussed
in this paper, certain topics and tools introduced during the course posed sig-
nificant challenges for students. These include advanced testing techniques for
AI-enabled systems, methods to identify and mitigate AI debt, and tools for
monitoring fairness and robustness. This focus area examines these difficulties
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and discusses approaches to help students overcome them. This focus area also
explores the role of hands-on activities, case studies, and real-world examples
in helping students bridge the gap between theoretical knowledge and practical
application.

F3. Challenges in SE4AI Projects. The project component of the course
serves as a testing ground for applying the methods taught to AI-enabled
systems. We discuss the obstacles students encountered, such as integrating
best practices into iterative ML development cycles, managing trade-offs be-
tween quality attributes (e.g., accuracy vs fairness), and using tools for moni-
toring and maintaining model attributes over time. In addition, we explore the
socio-technical dynamics that arise during team-based projects, including how
students collaborate to address conflicting priorities between software quality
attributes and AI-specific goals.

F4. Educational Challenges in Teaching AI-enabled Systems. According
to our experience, teaching on aspects as quality, robustness, ethics, security,
and sustainability for AI-enabled systems introduces unique challenges, particu-
larly given the rapidly evolving nature of AI technologies. This section explores
issues such as keeping course content aligned with state-of-the-art practices,
providing practical examples for abstract concepts, and ensuring students un-
derstand how traditional software practices apply in the context of AI.

To address these four focus areas, we systematically collected and analyzed
student data across the four years the course has been offered. Specifically, we
gathered demographic and academic background information for each cohort. In
addition, at the end of each course edition, we conducted a survey to capture
students’ perceptions of the course, with a particular emphasis on the practical
applicability of the topics, tools, and methods covered. The survey included both
closed-ended and open-ended questions, and participation was not mandatory.
Closed-ended questions use Likert-scale responses [28] to assess various aspects,
such as (1) the complexity of the course, (2) the usefulness of the tools and
methods taught, (3) the satisfaction with specific themes, (4) the usefulness of
the hands-on and case study activities, and (5) the perceived practical appli-
cability of the tools and methods studied in the course. Open-ended questions
provide students the opportunity to elaborate on areas for improvement and
share detailed reflections on their learning experiences, challenges encountered,
and overall perception of the practicality of the course. The survey structure is
accessible in our online appendix [30].

We analyzed the collected data using established research methods, treat-
ing our experience similarly to other survey-based studies conducted in the field
[16]. Likert-scale responses from closed-ended questions were analyzed through
descriptive statistics to identify patterns and trends in students’ feedback. Re-
sponses to open-ended questions were examined using content analysis research
methods, enabling the identification of recurring themes and insights into stu-
dents’ experiences. The most significant open-ended student sentences were ex-
tracted and represented through the symbol × . In total, we collected 59 survey
participants over the years. For the sake of space limitations, our experience



Teaching Software Engineering for Artificial Intelligence 9

report treats the four course’s editions in an aggregated manner (as opposed to
reporting year-by-year trends); nonetheless, we plan to further elaborate on the
evolution of the course as part of our future research agenda. The results of these
data analysis procedures informed our discussion of focus areas F1, F2, and F3.
As for F4, insights were derived from periodic retrospective meetings between
the main lecturer and the teaching assistants, complemented by direct feedback
collected from students who previously completed the course.

1

6

11

16

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50

Technical Debt, Validation, and Testing (count) MLOps: Theory and Practice (count)
Ethics and Fairness  (count) Security and Privacy (count)

Interpretability and Explainabily (count) Sustainability (count)

Perceived Usefulness of Courses' Topics - AI Quality

Fig. 2. Students’ perceived usefulness of topics during the course.

4.2 Insights and Implications from Our Experience

According to the data acquired over the four editions of the course and our
own retrospective, this section discusses the main lessons learned for each of the
primary focus area.
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F1 - Students’ Perception of the topics. Figure 2 shows students’ per-
ceived usefulness of topics discussed during the course, rated on a scale from
1 (least useful) to 5 (most useful). Many participants valued the introduction
of non-functional quality aspects such as fairness and explainability while also
pushing for greater concreteness and connections to real-world applications. For
instance, one participant emphasized the importance of approaching the subject
matter from a highly practical perspective. Several students highlighted that a
sense of concreteness in how the subject is presented is essential for fully under-
standing its concepts and usefulness. This feedback suggests a potential shift in
teaching topics, moving toward in-person lectures that focus less on standalone
theoretical definitions and more on integrating these definitions into concrete,
practical examples.

� F1.1 - Lesson Learned

Non-functional requirements such as fairness, explainability, and sustain-
ability are essential in AI-enabled system development but often challeng-
ing for students to grasp in isolation. Embedding these topics in practical,
real-world scenarios—through case studies or applied assignments—can im-
prove student engagement and conceptual retention across diverse SE4AI
contexts.

Concerning less appreciated topics, our analysis revealed that technical debt
and MLOps emerged as areas with significant room for improvement, with
MLOps being particularly variable in students’ perceptions. This variability did
not derive from a lack of interest; on the contrary, MLOps was among the most
frequently discussed topics in open-ended questions. The feedback indicated that
students considered it one of the most interesting and promising areas but felt
that more time is needed to understand its relevance and applicability fully. In
particular, advanced topics like technical debt and MLOps require an under-
standing of the long-term evolution of AI-enabled systems, which may not be
fully conveyed within the constraints of a two-month course. This likely high-
lights the need for alternative teaching strategies, e.g., longitudinal case studies
or follow-up courses, to provide deeper engagement with these advanced topics.

� F1.2 - Lesson Learned

Topics like MLOps and technical debt demand systems-level thinking and
familiarity with long-term software evolution. Educators should consider
spreading these concepts across multiple modules or courses, or supporting
them with longitudinal case studies, to reinforce their practical relevance
and complexity.

F2 - Bridging Conceptual Gaps with Practical Tools.
Students emphasized difficulties with some advanced topics and tools in-

troduced during the course. They specifically highlighted the need for a more
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gradual introduction and additional focus on complex concepts or tools, such as
generative adversarial networks (GANs), MLOps, or TensorFlow. This may stem
from the diverse range of technologies introduced, which often assume a techni-
cal machine learning background that should not be taken for granted. As one
student commented: × “...furthermore, I would dedicate more time and effort
to recent topics such as MLOps, GANs, etc., as these are interesting but need
more laboratory sessions...”, which confirms the importance of hands-on prac-
tice in the teaching process and highlights the potential for implementing active
learning approaches, such as flipped classrooms and lab sessions, to address the
more challenging aspects and enhance students’ understanding and application
of these concepts.

� F2 - Lesson Learned

Advanced tools common in AI engineering—such as TensorFlow or SHAP—can
pose a steep learning curve, especially for students without strong ML back-
grounds. Gradually introducing tools in problem-driven contexts, supported
by hands-on labs, helps reduce overload and builds practical confidence.

F3 - Challenges in SE4AI Projects. One of the challenges revealed was
the course’s project-based nature. The feedback analysis revealed that integrat-
ing specific practices into a software project can be challenging and not easily
intuitive in interactive machine learning development cycles. This may indicate
that there is a need to give particular space to the project activity so that each
student can learn and transpose the concepts to what they are working on,
whose contexts were disparate, from medical applications to smart agriculture
models. Concerning technical tools and methods, students’ comments align with
discussions in the other focus areas, as these tools are frequently revealed to be
challenging for students to understand and apply in a short time. Despite this,
students perceived their tutors as highly actively supporting them during the
project and did not deem it too complex. This indicates that certain technical
tools pose specific challenges, compensated by easier challenges in other SE4AI
areas.

� F3.1 - Lesson Learned

Integrating SE practices into AI-enabled systems is not always intuitive for
students, particularly in iterative ML workflows. SE4AI educators should
allocate dedicated space within project work for students to contextualize
concepts and explore quality trade-offs relevant to their domain.

As highlighted in Section 3, the SE4AI course brings together participants
from diverse knowledge areas, such as Software Engineering, Security, or Data
Science and Machine Learning. This diversity has revealed broader socio-technical
challenges, including differing team dynamics stemming from varied perspectives
on project needs. These insights highlight the importance of providing both
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technical and organizational support to help students navigate the complexities
of collaborative activities in AI engineering. More importantly, it seems that
project-based education may effectively simulate real-world conditions, offering
students a valuable experience that prepares them for interdisciplinary collabo-
ration in professional environments.

� F3.2 - Lesson Learned

SE4AI projects often bring together students from diverse backgrounds
(e.g., software engineering, ML, cloud). These perspectives can lead to valu-
able, real-world-style team dynamics, but may also cause misalignments. Ed-
ucators should actively support interdisciplinary collaboration with coach-
ing or reflective checkpoints.

F4 - Educational Challenges in Teaching SE4AI. Upon collection of the
students’ feedback and our retrospective, we could identify several challenges for
educators related to the teaching of engineering practices for AI-enabled systems.

Keeping the Course Up to Date. One of the primary challenges encoun-
tered in our experience is maintaining course content that reflects state-of-
the-art practices. The rapid advances in AI, especially given by the rise of
Large Language Models and Foundation Models, require continuous updates
to the course design. While regular updates are a common requirement for most
courses, this challenge is especially pronounced in the context of SE4AI. This
applies not only to the topics themselves but also to the training required for
teaching novel tools and frameworks effectively.
In our case, we implemented a collaborative approach by creating a shared
channel where the lecturer and teaching assistants could exchange research ar-
ticles, tutorials, and other resources. These materials are then analyzed during
multiple ad-hoc meetings held prior to the course’s start. The objective of these
sessions is to evaluate how disruptive techniques and tools can be seamlessly
integrated into the course. While this strategy has been sometimes effective, it
also highlights a significant challenge: finding the right balance between breadth
and depth in course content. Covering too many topics superficially risks over-
whelming students and diluting their understanding, while focusing too deeply
on a few areas can leave critical knowledge gaps.
Our experience suggests that the core lectures should focus on well-established
and widely applicable methods, avoiding the frequent introduction of topics
that are still rapidly evolving. Simultaneously, the exploration of the latest
technologies can be reserved for classwork sessions or industry talks, where
students can engage with cutting-edge topics through practical case studies.
This approach allows students to cultivate curiosity and deepen their knowledge
independently, without disrupting the overall course structure.
At the same time, we really see the potential added value of collaborative ef-
forts among educators in sharing teaching materials and best practices. Such
collaboration could significantly reduce the burden on individual instructors
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to independently track every development in this fast-evolving field. We hope
this experience report may open a broader discussion among SE4AI educators,
encouraging the development of shared resources to support the community.

� F4.1 - Lesson Learned

SE4AI content evolves rapidly, making it difficult to maintain both breadth
and depth. A recommended strategy is to focus core lectures on foun-
dational methods, while reserving rapidly evolving topics for exploratory
sessions (e.g., case studies, guest lectures, or flipped classrooms).

Accounting for Domain Specificity. The diversity of domains where AI is
applied introduces additional complexities, as the quality assurance require-
ments of systems like medical diagnostics, recommendation engines, and au-
tonomous vehicles vary significantly. Understanding these differences is essen-
tial for students to grasp how engineering practices must be adapted to meet
domain-specific challenges. In our case, we incorporated diverse case studies and
industry talks to provide students with real-world examples of how such prac-
tices are applied in different contexts. For instance, classwork sessions might
explore fairness in medical AI applications or robustness in autonomous sys-
tems. While generally satisfactory, the results of these sessions revealed a key
limitation: students often understood the general idea of tailoring practices based
on context but struggled to provide concrete, tailored solutions for engineering
AI-enabled systems. This gap suggests a need for more immersive and interac-
tive learning methods to bridge the divide between theoretical understanding
and real-world application.
In this respect, we are considering enhancing learning by integrating game-
based strategies. For instance, by designing interactive scenarios or simulations,
students could actively experiment with applying SE practices across various
domains, exploring trade-offs, and crafting solutions themselves. Such an ap-
proach could not only foster active learning and critical thinking but also allow
students to engage directly with diverse challenges in a controlled yet dynamic
environment. We see this as an opportunity for further research and innovation
in SE4AI education. The design and evaluation of effective game-based learning
tools tailored to SE4AI could significantly enhance students’ ability to connect
theory to practice.

� F4.2 - Lesson Learned

Quality assurance challenges vary significantly across AI domains (e.g.,
healthcare vs. recommendation systems). Using varied case studies is help-
ful, but immersive techniques such as domain simulations or game-based
learning can deepen student understanding of domain-specific trade-offs.

Cultural Barriers and Educational Boundaries. Teaching SE4AI presents
unique challenges due to its interdisciplinary nature, the cognitive shift required
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for students, and the incorporation of ethical and societal considerations. A key
difficulty lies in the inherent interdisciplinarity: many topics, such as MLOps,
rely on foundational knowledge from areas like software architecture, cloud
infrastructure, and data engineering. A single course cannot comprehensively
cover these domains, requiring a coordinated educational effort across multiple
courses and disciplines. For example, a software architecture course might ad-
dress containerization and microservices, while a data engineering course could
cover pipeline design and data quality, both crucial for MLOps. Viewing SE4AI
education as part of a broader learning network allows each course to contribute
to building the necessary skills. In our case, coordination across different re-
search groups posed a challenge, though improved collaboration among SE4AI
educators may help address this issue.
Another major barrier involves guiding students through the shift from tradi-
tional software engineering principles to those needed for AI-enabled systems.
Unlike conventional systems, AI-enabled systems are probabilistic, data-driven,
and less deterministic, which often creates a cognitive gap for students. Bridg-
ing this gap requires emphasizing AI-specific characteristics while showing how
traditional practices, such as modularity and monitoring, remain relevant. Ex-
plicitly contrasting these paradigms and using hands-on activities can help ease
the transition.
Finally, integrating ethical and societal dimensions adds further complexity.
Topics like fairness, transparency, and environmental impact push students
to think beyond technical implementation and consider broader consequences.
Real-world failures and their repercussions can make these themes more re-
latable and impactful. We have observed increasing interest among students
in pursuing ethical SE practices in their thesis work, reflecting the engaging
nature of this educational approach.

� F4.3 - Lesson Learned

The interdisciplinary nature of SE4AI—spanning software engineering,
ethics, ML, and systems design—creates both pedagogical and curricular
challenges. Coordination across courses, combined with contrastive exam-
ples and societal case studies, can help students bridge conceptual gaps
and recognize the broader impact of AI-enabled systems.

5 Conclusion

This experience report presents preliminary insights from our four-year Master’s
course, “Software Engineering for Artificial Intelligence”. The course introduces
students to end-to-end ML engineering, covering key phases from requirements
to verification, validation, and deployment, with a focus on the challenges and
practices relevant to AI-enabled systems.

We discuss lessons learned across four focus areas, highlighting key challenges
in teaching software engineering for AI. These initial findings offer insights for
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future research and educational efforts, which we plan to further refine and
extend to better support the next generation of SE/AI engineers.
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