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Abstract. The rapid adoption of Machine Learning (ML) technologies has introduced new challenges
for code quality. Code smells, i.e., suboptimal design and implementation choices applied when develop-
ing source code, represent a particularly prevalent problem. While software engineering (SE) practices
are often recommended to improve maintainability, their actual impact on code smells in ML projects
remains unclear. In this paper, we present an evidence-based empirical study of 566 real-world Python
ML projects from the NICHE dataset, labeled according to adherence to eight established SE practices.
Using static analysis and statistical testing, we assess the relationship between these practices and the
presence of ten Python-specific code smells. Our results show that projects adopting SE practices ex-
hibit significantly fewer code smells. In particular, Continuous Integration is negatively correlated with
the Complex Container Comprehension smell. These findings highlight the importance of engineering
discipline in managing code quality in ML development.

Keywords: Quality Metrics · Software Maintenance Effort · Empirical Software Engineering.

1 Introduction

The adoption of Machine Learning (ML) technologies has grown rapidly across industries, enabling data-
driven automation and decision-making. While this growth has led to major technological advancements, it
has also introduced new challenges in software quality assurance. In particular, ML projects often exhibit
maintainability and evolvability issues, due to a combination of fast-paced prototyping, experimentation-
driven development, and limited use of mature software engineering (SE) practices. Among these issues,
code smells, i.e., suboptimal design and implementation choices that complicate maintenance and evolution,
are notably prevalent [9]. Sculley et al. [21] highlighted that ML systems are susceptible to technical debt,
including code smells, due to their inherent complexity and lack of traditional software safeguards. This
observation has since been echoed in studies emphasizing the scarcity of quality assurance tools tailored to
the peculiarities of ML pipelines [14].

To help assess and guide the engineering rigor of software repositories, Munaiah et al. [17] introduced
a framework consisting of eight SE practices, ranging from the use of Continuous Integration and Unit
Testing to the presence of documentation and licensing information. This framework, designed to be agnostic
of specific programming languages or application domains, serves as a proxy to characterize a project’s
engineering quality. Although originally proposed for general software, a natural yet underexplored question
arises: to what extent are these practices related to the emergence (or mitigation) of code smells in ML
projects?

In this paper, we apply evidence-based research to investigate the impact that these software engineering
practices may have on the presence and distribution of code smells in real-world ML projects. Drawing from
566 real-world ML repositories in the NICHE dataset [28], we quantitatively analyze the relationship between
the presence of code smells and adherence to the SE practices identified by Munaiah et al. We use the PySmell
tool [4] to detect ten Python-specific code smells and investigate their distribution across three project size
strata (Small, Medium, Large) defined by Lines of Code percentiles. Our analysis combines descriptive
statistics, non-parametric tests, and correlation analysis to uncover statistically significant associations.

Our findings report that projects adhering to the SE practices in Munaiah’s framework exhibit signifi-
cantly fewer code smells. Among the practices, the adoption of Continuous Integration tools is negatively
correlated with the presence of the Complex Container Comprehension smell. These results suggest action-
able implications for both researchers and practitioners. For practitioners, especially ML developers, the
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evidence supports the adoption of SE practices as a way to mitigate code quality issues. For researchers, our
study provides a validated methodology for operationalizing engineering quality in ML projects and opens
new directions for quality-focused tooling in data-centric development workflows.

2 Related Work

This section summarizes the most relevant literature regarding code smell in traditional and ML Projects.
Over the years, numerous studies have examined code smells, primarily focusing on Java from various

perspectives [25,13,8,30,2]. Tufano et al. [24] investigated the introduction and removal of code smells in Java
projects, discovering that code smells are usually introduced during the initial stages of development and
are often removed when files are deleted. Giordano et al. [12] explored the relationship between reusability
mechanisms and code smells over time, finding a statistical relation between adopting reusability mechanisms
and the reduction of code smell severity.

A study that bridges the gap between code smells in Java and other programming languages was con-
ducted by Vavrová and Zaytsev [27], who statistically compared smells between Java and Python projects.
Their findings revealed Python methods are generally longer than Java methods, and code smells related to
sub-optimal use of classes are rarely detected. Giordano et al. [10] corroborated these results by examining ML
projects from the NICHE dataset, noting the infrequent detection of code smells related to object-oriented
practices.

Similarly, Tang et al. [23] inspected 26 ML projects written in Python, highlighting that duplicated code
is one of the most frequent smells. Van Oort et al. [18] extended the previous study by examining 74 ML
projects, reaching similar conclusions. Cardozo et al. [3] further confirmed these findings by investigating 29
Reinforcement Learning (RL) projects, emphasizing the emergence of code smells for these systems.

Our study complements the existing body of literature. While previous work analyzes the diffusion of
code smells in ML projects, we statistically investigated whether the software engineering practices proposed
by Munaiah [17] are related to code smells.

3 Study Design

The goal of this evidence-based study is to quantitatively assess the extent to which software engineering
practices, as defined by the framework of Munaiah et al. [17], correlate with the presence and distribution of
code smells in real-world Python-based ML projects. The purpose is to statistically investigate the correlation
between such practices and the presence of code smells. The quality focus of this study is on the software
engineering practices of Munaiah et al. as measurable indicators of project quality. The perspective is for
both practitioners and researchers: From the practitioners’ standpoint, particularly ML developers, the study
provides actionable evidence on how adopting certain software engineering practices is related to structural
code issues in ML projects. From the researchers, the study contributes to the empirical software engineering
community by validating and operationalizing the framework of Munaiah et al. [17] in a large-scale setting.

Based on our goal, we formulated the following research questions:

ü RQ1. To what extent software engineering practices impact code smells distribution in ML projects?

RQ1 aims to analyze the relation from a statistical viewpoint in terms of distribution between projects
“not-well-engineered” and “well-engineered”.

ü RQ2. Are software engineering practices correlated to code smell presence in ML projects?

RQ2 aims to statistically analyze whether and how software engineering practices are related to code smell
variations in ML projects.

Our empirical research had statistical connotations i.e., we approached our research questions using
statistical tests. The research method follows the guidelines of Wohlin et al. [29] and the ACM/SIGSOFT
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Fig. 1: Overview of the Research Method.

Table 1: Descriptive statistics of the NICHE projects.
Stars LOC Commits

Min 100 234 100
1st Q. 211.2 4,022 218.2
Median 538.5 9,303 419.5
Mean 1991.3 24,672 1,241.3
3rd Qu. 1,641.0 22,308 1,065.8
Max 76,838 699,513 90,927

Empirical Standards.1 Specifically, we used “General Standard”, “Data Science”, and “Repository Mining”
guidelines. First, we cloned projects from NICHE [28], a dataset composed of 572 ML projects labeled as
“well-engineered” and “not-well-engineered” according to eight software engineering practices; second, we
identified code smells instances by running PySmell [4] i.e., a static smell analyzer; then, we combined smell-
related information with data provided from NICHE and split dataset calculating the LOC percentile, and
lastly, we divided projects “well-engineered” and “not-well-engineered” and applied statistical tests to respond
of our research questions. Figure 1 describes the research method applied. All data, materials, and scripts
are publicly available in our online appendix [11].

3.1 Dataset Description and Pre-Processing

The careful selection of a representative and reliable dataset is essential to ensure the validity and gener-
alizability of empirical findings. In this study, we rely on the NICHE dataset [28], which offers a curated
collection of machine learning projects. This dataset was selected based on two primary considerations.

First, NICHE comprises only active and widely-used repositories, thereby minimizing the inclusion of
personal or abandoned projects. Specifically, it includes 572 open-source projects, collectively accounting for
13,964,565 commits. Each project satisfies a set of inclusion criteria: a minimum of 100 GitHub stars, at least
100 commits, and a last commit date later than May 1st, 2020. To further refine the dataset and eliminate
potential toy projects, we excluded six repositories containing fewer than 100 lines of code.

Second, all projects in NICHE have been manually classified as either “well-engineered” or “not-well-
engineered”, based on the framework defined by Munaiah et al. [17] i.e., Unit Testing, Architecture, Docu-
mentation, Issues, Continuous Integration, History, Community, and License. A project is considered “well-
engineered” when the majority of these practices are observed. This manual labeling process enables a
principled comparison of engineering quality across projects, grounded in clearly defined dimensions.

Table 2 presents the eight-dimensional metrics defined by the Munaiah framework et al. [17]. As shown,
the framework encompasses attributes that pertain to both the product and the development process. Within

1Available at: https://github.com/acmsigsoft/EmpiricalStandards

https://github.com/acmsigsoft/EmpiricalStandards


4 Giammaria Giordano, Antonio Della Porta, Filomena Ferrucci, and Fabio Palomba

Table 2: Description of the Software Engineering Practices Proposed by Munaiah et al.
Attribute Description
Architecture Defines the internal structure of the project by outlining its components and how they

interact with other parts of the system.
Community Indicates the presence of a broad and active group of contributors responsible for main-

taining and evolving the repository.
Continuous Integration Refers to the adoption of CI mechanisms to ensure a stable and reliable codebase

throughout development and release.
Documentation Includes technical documentation and supplementary resources that support under-

standing and maintenance activities.
History Reflects the continuity of maintenance over time, highlighting frequent developer con-

tributions and long-term viability.
Issues Describes how requirement tracking and project management are handled directly

through GitHub Issues, improving traceability.
License Specifies the terms and conditions for reuse by explicitly declaring a software license in

the repository.
Unit Testing Indicates the presence of unit tests aimed at verifying the correctness of individual

software components.

Table 3: Statistics of Projects Well Engineered.
Stars LOC Commits

Small

Min 100 234 102
1st Q. 166.5 1,704 171
Median 336 2,724 276
Mean 978.2 2,679 635
3rd Q. 875 3,583 517
Max 12,388 4,683 13,542

Medium

Min 100 4,689 102
1st Q. 175 6,560 252.5
Median 352 8,192 424
Mean 1,203 8,230 701.9
3rd Q. 911 9,726 861.5
Max 18,087 11,685 3,938

Large

Min 105 11,711 105
1st Q. 373.5 17,509 439.8
Median 1,133 25,618 959
Mean 3,204.5 51,952 2,442.6
3rd Q. 3,702 45,550 1,905.8
Max 76,838 699,513 90,927

the scope of the NICHE dataset [28], the authors manually assessed the presence of these attributes. However,
in most instances, they did not provide quantitative values. Instead, the attributes were often represented
using descriptive string values. For example, for the attribute “Issues”, rather than reporting a specific number
of issues, the authors used qualitative descriptors such as “Do reply to issues last time but not recently”.

Considering this, as will be discussed in the following sections, it was not feasible to incorporate all
metrics proposed by Munaiah et al. in our analysis.

Table 1 provides the statistical description of the attributes “Stars”, “LOC”, and “Commits” of the re-
maining 566 projects. As it is possible to see from the table, the distribution of the dataset shows a median
of 538 Stars, 9,303 LOC, and 419 Commits. The statistical analysis reveals significant variability in project
metrics, suggesting a high level of development activity. Furthermore, we observed substantial variation in
LOCs. According to Zhou et al. [15], this aspect is a confounding factor in analyzing code-related metrics. To
enhance our understanding of the NICHE dataset, we first segmented it into three groups —small, medium,
and large— based on percentile calculations. Subsequently, we divided these groups further by sorting each
according to the values in the “Engineered” column.
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Table 4: Statistics of Projects Not Well Engineered.
Stars LOC Commits

Small

Min 111 238 100
1st Q. 210 1,259 118.5
Median 443 1,652 162
Mean 1,348 2,080 247.2
3rd Q. 897 2,913 276
Max 16,987 4,647 1,681

Medium

Min 100 4,687 105
1st Q. 177.5 5,614 178.5
Median 318 7,481 327
Mean 895.4 7,708 375.6
3rd Q. 1,496.8 9,369 420.2
Max 3,944 11,672 1479

Large

Min 136 12,756 133
1st Q. 251.5 19,040 222.5
Median 596 27,017 365
Mean 3,831.3 62,085 776
3rd Q. 1,793.5 73,721 915
Max 64,439 268,628 4,914

Small: This group consists of projects where the number of lines of code falls below the 30th percentile. It
includes 107 “well-engineered” projects and 59 “not-well-engineered”, each less than 4,683 LOCs.

Medium: The second group includes projects whose LOCs fall between the 30th and 60th percentiles. This
category includes 127 “well-engineered” projects and 44 projects “not-well-engineered” with LOCs between
4,683 and 11,685.

Large: The final group comprises projects that exceed the 60th percentile in terms of LOCs. It includes 202
“well-engineered” projects and 27 “not-well-engineered” projects. This group includes projects with more
than 11,685 LOCs.

Table 3 and Table 4 provide a statistical description for projects labeled “well-engineered” and “not-well-
engineered”, respectively.

As the final step, we select from the practices proposed by Munaiah et al. [17] the most closely related
to production code i.e., we considered for this study the adoption of CI practices. It is important to note
that we neglected the other factors due to their influential impact on the source code. However, to give
more robustness to our analysis, we also extracted the exact number of members of the Community (a.k.a.
Contributors) using PyDriller [22]. Lastly, we decided to discard the “History” attribute and instead use the
number of commits, as the former offers only a string value (e.g., “Evidence of sustained commit activity”).
In contrast, the latter provides a precise, quantitative measure of the project’s development activity.

3.2 Data Extraction

After cloning projects, we ran a static analyzer, namely PySmell [4], to identify smells. We selected this
tool for two reasons. First, PySmell can detect ten instances of smells, some of which are derived from
Fowler’s original catalog [9] (e.g., God Class), while others are specifically tailored for Python projects (e.g.,
Complex Container Comprehension). Second, PySmell is considered state-of-the-art in detecting code smells
in Python projects, showing an average of 87%, 92%, and 89% of precision, recall, and F-Measure, respec-
tively, and it was used in previous studies for similar purposes [10,26,4]. We first divided projects according
to section 3.1; second, we ran PySmell over the experimental objects, calculating the smell distribution.

3.3 RQ1. Analyzing Code Smell Distribution

To address RQ1, we examined the distribution of code smells in projects classified as “not-well-engineered”
and “well-engineered” based on their specific percentiles. We utilized non-parametric statistical tests to
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determine if the distribution of each smell varied significantly between these two groups. Specifically, we
employed the Mann-Whitney test [16], a non-parametric version of the Wilcoxon rank-sum test. We chose
it due to the sample size and the non-normal distribution of the data [7]. We also applied Cliff’s Delta
(δ) [5] to measure the effect size of the observed differences. This test is particularly useful for evaluating
the extent to which the distribution of smells differs between groups according to their percentile. Before
conducting these statistical tests, we normalized the frequency of detected smells using the MIN-MAX
strategy in the range [0-1] [20], ensuring a uniform scale for analysis.

The results were considered statistically significant at α = 0.05. We formulated the following null hy-
pothesis:

H0: There are no statistically significant differences in terms of frequencies of Smell Si of the Group j

between projects “well-engineered” and “not-well-engineered”
Where Si ∈ {list of smells detectable by PySmell} and j ∈ {Small, Medium, Large}.

3.4 RQ2. Analyzing correlation between Software Engineering Practices and Code Smells

To address RQ2, we built a statistical model to analyze if and how software engineering practices are related
to the emergence of smell. In the following, we reported this study’s interesting independent, dependent, and
control variables and the statistical test applied.

Independent Variables. Our goal is to understand how software engineering practices relate to the emer-
gence of code smells. To this end, we focused on the software engineering practices that characterize a
“well-engineered” project according to Munaiah et al. [17]. It is important to note that these dimensions
are already included in the NICHE dataset [28]. As discussed in Section 3.1, we excluded Architecture, Doc-
umentation, History, Issues, License, and Unit Testing from our analysis. As a result, our set of independent
variables includes Continuous Integration and Number of Contributors.

Response Variable. We considered the set of code smells detectable by PySmell as a response variable i.e.,
Large Class, Long Parameter List, Long Method, Long Scope Chaining, Long Base Class List, Long Lambda
Function, Long Ternary Conditional Expression, Long Message Chain, Complex Container Comprehension,
Multiply-Nested.
Table 5 shows the smells detectable by PySmell with their description.

Table 5: List of Code Smells Detectable by PySmell and the Related Description
Smell Description
Large Class A class that is excessively large
Long Parameter List A method or function with an extensive parameter list
Long Method A method that is excessively long
Long Scope Chaining A method or function with multiple levels of nesting
Long Base Class List A class definition with an excessive number of base classes
Long Lambda Function A lambda function that is excessively long in terms of character count
Long Ternary Conditional Expres-
sion

A ternary conditional expression that is excessively long

Long Message Chain An expression that accesses an object through an extensive chain of attributes or methods
using the dot operator

Complex Container Comprehen-
sion

A container comprehension that is too complex is one that includes multiple nested compre-
hensions or conditions

Multiply-Nested A container, such as a dictionary or list, with multiple levels of nesting.

Control Variable. Code smells can depend on variables unrelated to the independent variables. To mitigate
potential threats to conclusions, we selected three control variables recognized as reliable estimators of code
quality: Lines of Code (LOC), Number of Commits, and Number of Stars [19]. These control variables are
already available in the NICHE dataset [28]. We limited our analysis to these metrics because there are
no validated tools in the literature for extracting additional metrics. To ensure the validity of our findings,
we manually assessed the potential for multi-collinearity between the variables in our study, and did not
identify any multi-collinearity between variables.
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Statistical Model. To assess possible correlation between independent, control, and the dependent vari-
ables, we employed the Kendall tau (τ) rank correlation coefficient [1]. Compared to other correlation
metrics such as Spearman or Pearson, the Kendall tau coefficient provides several benefits: 1) It does
not presume any particular type of relationship between variables, meaning a linear relationship is not
required; 2) It does not necessitate that the data adhere to a normal distribution; 3) It does not require
that values be equidistant; 4) It is highly robust against outliers; 5) The test can be used for a small
sample size. It is important to note that Kendall’s tau values are generally lower than other rank corre-
lation coefficients, such as Spearman’s, and cannot be directly compared. Given the lack of standardized
interpretation, we followed Cohen’s guidelines [6]: values between 0.1 and 0.3 indicate a weak correlation,
0.3 to 0.5 moderate, and above 0.5 high correlation. Statistical significance was assessed using two-sided
p-values.

4 Analysis and Discussion of the Results

In this section, we report the results of our study and discuss the implications of our findings.

4.1 On the Distribution of Code Smells in ML projects

Fig. 2: Diffusion of Smells in Well and Not Well Engineered Projects.

Table 6: Results of The Mann-Whitney-Wilcoxon and Cliff Delta Tests
Small Medium Large

Code Smell Mann-Whitney-Wilcoxon Cliff Delta Mann-Whitney-Wilcoxon Cliff Delta Mann-Whitney-Wilcoxon Cliff Delta
Complex Container Comprehension 1.538e-08 -0.50 Large 3.031e-10 -0.63 Large 8.385e-07 -0.58 Large

Complex Lambda Expression 2.704e-05 -0.36 Medium 1.616e-07 -0.51 Large 2.386e-10 -0.74 Large
Large Class 7.225e-09 -0.52 Large 7.615e-13 -0.71 Large 9.542e-09 -0.68 Large

Long Base Class List 4.386e-08 -0.49 Large 2.535e-13 -0.73 Large 1.016e-08 -0.68 Large
Long Message Chain 3.965e-11 -0.60 Large 4.313e-12 -0.70 Large 4.462e-09 -0.69 Large

Long Method 2.773e-11 -0.60 Large 3.571e-12 -0.70 Large 4.298e-09 -0.70 Large
Long Parameter List 2.773e-11 -0.60 Large 3.571e-12 -0.70 Large 4.298e-09 -0.69 Large
Long Scope Chaining 0.0001423 -0.32 Small 4.805e-08 -0.53 Large 1.862e-09 -0.71 Large

Long Ternary Conditional Expression 0.0005 -0.29 Small 1.197e-10 -0.64 Large 1.981e-09 -0.71 Large
Multiply Nested Container 3.664e-12 -0.63 Large 1.602e-12 -0.71 Large 5.079e-08 -0.64 Large

In addressing the first research question, we first analyzed smell diffusion in absolute terms. Figure 2
illustrates the smell diffusion for “not-well-engineered” and “well-engineered” projects. From this figure, two
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key observations can be made. First, both groups exhibit the same top four smell frequencies. Second, we
observed that “well-engineered” projects have a slightly higher propensity to be affected by the Multiply
Nested Container smell (30% for “well-engineered” projects and 29% for “not-well-engineered projects”).
These results align with previous findings by Zhang et al. [31], which identified Multiply Nested Container
smell as the most frequent in Python code. This result could suggest that the framework of Muniah et al.
[17] is not enough to capture the complexity of ML systems, and, in turn, suggests that other factors (e.g.,
the number of stars or LOC) could be more relevant indicators for code smells.

Table 6 presents the results of the Mann-Whitney and Cliff’s Delta tests. This comparison examines the
distributions of “not-well-engineered” projects and “well-engineered” projects. Additionally, the results were
organized based on their percentiles. The comparison shows significant differences in code smell distribution
between the two categories. In many cases (e.g., Complex Container Comprehension), extremely low p-values
confirm strong statistical significance. Cliff’s Delta also indicates a large effect size across all project sizes,
suggesting a link between software engineering practices and reduced code smells. To conclude, we rejected
the null hypothesis H0, i.e., we identified statistical differences between code smell distributions between
“well-engineered” and “not-well-engineered” projects.

¤ Key findings of RQ1.

RQ1 indicates that code smell diffusion is broadly similar across “well-engineered” and “not-well-
engineered” projects, with Multiply Nested Container being the most frequent in both groups. However,
projects following SE practices are statistically associated with a lower overall presence of code smells.

Table 7: Results of the Kendall Correlation Coefficients for Projects Well-Engineered.
Dependent Variable Continuous Integration Community Stars Lines of Code Commits

Complex Container Comprehension -0.137** 0.076 0.051 0.306*** 0.048
Complex Lambda Expression 0.047 0.066 0.106* 0.276* 0.068

Large Class -0.062 0.136* 0.136* 0.331*** 0.103*
Long Base Class List -0.079 0.115* 0.135* 0.289** 0.077
Long Message Chain -0.071 0.079 0.113* 0.360*** 0.105*

Long Method -0.078 0.104* 0.120* 0.368*** 0.109*
Long Parameter List -0.078 0.104* 0.120* 0.368*** 0.109*
Long Scope Chaining -0.037 0.056 0.098 0.303*** 0.039

Long Ternary Conditional Expression -0.040 0.020 0.104* 0.244* 0.005
Multiply Nested Container -0.087 0.030 0.025 0.330*** 0.050

4.2 On the correlation between Software Engineering Practices and Code Smells

Table 7 presents the results of the Kendall Correlation test for “well-engineered”, large-sized projects. Due
to space constraints, the other analyses can be found in our replication package [11]

Looking at the table, several key observations can be made. Firstly, there is a strong correlation between
LOCs and all code smells. This result is expected, as an increase in LOC aligns with the definitions of code
smells related to the LOC, such as Large Class and Long Method. The results indicate that as LOCs increase,
the likelihood of code smells also increases significantly.

Examining the independent variables, our findings indicate a statistically significant negative correlation
between CI tools and the Complex Container Comprehension smell. This suggests that CI tools could help
maintain code quality by reducing the incidence of certain code smells. Community is positively related to
Large Class, Long Base Class List, Long Method, and Long Parameters List, suggesting that the probability
of certain code smells increases when the number of contributors increases.

Control variables such as stars, LOC, and commits exhibit a positive correlation with code smells. For
example, projects with more stars tend to show smells like Large Class and Long Message Chain, possibly
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due to their larger size and more extensive evolution. This trend is reinforced by the positive correlation with
commits, suggesting that frequent maintenance activities may contribute to smell proliferation over time.

¤ Key findings of RQ2.

RQ2 results show a positive correlation between control variables (Stars, LOCs, Commits) and code
smells, suggesting that larger or more active projects are more prone to smell accumulation. We also
found that a larger contributor base correlates with certain smells (e.g., Large Class), while CI tool usage
is negatively associated with smells like Complex Container Comprehension.

5 Take-away Messages

Our results allowed us to formulate multiple reflections and implications.

CI Tools as Health Monitors. Our findings show a statistically significant negative correlation be-
tween the use of CI tools and the Complex Container Comprehension smell. This suggests that CI
pipelines—especially when augmented with static analysis or quality gates—can play a role in proac-
tively detecting and limiting code smells. Rather than merely automating builds and tests, CI may act as
a structural safeguard, promoting consistent coding practices and early detection of complexity issues.

� CI tools can serve as real-time health monitors of code structure, helping prevent the accumulation of
code smells during development.

More Contributors, More Complexity. We observed a consistent positive correlation between the num-
ber of contributors and several code smells, including Large Class, Long Method, and Long Parameter
List. While community involvement is crucial in open-source ML projects, it can inadvertently increase
structural complexity when coordination and coding conventions are lacking. Onboarding new developers
without sufficient architectural guidance or automated checks may lead to divergence in coding styles and
design decisions, amplifying the risk of technical debt.

� Increasing the number of contributors can elevate structural complexity; scalable contributor strategies
must include quality safeguards.

Engineering Practices and Quality. Beyond CI and community size, our results show that ML projects
labeled as “well-engineered” exhibit significantly fewer code smells across all size strata. This reinforces
the value of applying general software engineering practices even in data-driven or experimental ML envi-
ronments. Although not all individual practices could be quantitatively analyzed, the aggregate evidence
supports their collective importance.

� A disciplined engineering approach contributes to better code quality in ML projects, even in fast-paced
or research-oriented contexts.

Other Risk Factors. Control variables like LOC, number of stars, and number of commits were all pos-
itively correlated with smell presence. This is expected—larger and more active projects have more op-
portunity for smells to emerge—but it also implies that code quality monitoring should scale with project
growth. Popularity (e.g., GitHub stars) does not imply structural cleanliness and may even mask accumu-
lating technical debt.

� Highly active or popular projects require proportionate investment in quality assurance to prevent degra-
dation over time.

Overall, our findings highlight the value of integrating software engineering practices into ML develop-
ment. For practitioners, they offer evidence-based motivation to adopt CI and manage contributors effectively.
For researchers and tool builders, they suggest directions for developing quality assurance solutions tailored
to ML workflows. Future work may extend these insights across languages and domains to better align ML
development with engineering discipline.
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6 Threats to Validity

Some factors may have influenced our results. To address potential construct validity threats, we relied on
the NICHE dataset, which includes only active and popular ML projects hosted on GitHub and provides a
classification of engineering practices. While our use of PySmell for code smell detection introduces some lim-
itations in terms of precision and recall, it remains a state-of-the-art tool for analyzing Python code and has
been validated in prior work. In addition, still referring to the NICHE dataset, we used a binary classification
where a project is considered well-engineered if the majority of the software engineering practices defined
by Munaiah et al. [17] are fulfilled. While this approach is consistent with previous work, we acknowledge
that it introduces a simplification: a project meeting just over half the criteria is treated the same as one
meeting all, and differently from one falling just below the threshold. We highlight this as a limitation and an
opportunity for future work to explore more granular scoring. Regarding internal validity, we mitigated the
influence of confounding variables by controlling for project size (LOC), popularity (stars), and development
activity (commits), which are known to correlate with code quality. In terms of external validity, our results
are based on Python-based ML projects and may not generalize to other ecosystems. However, the dataset
includes a wide range of projects in terms of size and complexity, and we plan to extend the analysis to other
programming languages. Lastly, to preserve conclusion validity, we adopted robust statistical techniques,
including non-parametric testing and Kendall’s tau correlation, and verified the absence of multicollinearity
among variables to ensure reliable interpretations.

7 Conclusion and Future Work

We investigated the relationship between software engineering practices and code smells in 566 Python-based
ML projects from the NICHE dataset. Our analysis shows that projects adhering to established engineering
practices, particularly Continuous Integration, tend to exhibit fewer code smells. Conversely, a higher number
of contributors is associated with increased smell presence.

These findings highlight the importance of disciplined engineering and contributor management in main-
taining code quality in ML projects. As future work, we aim to extend our analysis to other programming
languages and explore practitioners’ perceptions of code smells.
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