
Mining Version Histories for
Detecting Code Smells

Fabio Palomba1, Gabriele Bavota2, Massimiliano Di Penta2,
Rocco Oliveto3, Denys Poshyvanyk4, Andrea De Lucia1

1University of Salerno, Fisciano (SA), Italy
2University of Sannio, Benevento, Italy
3University of Molise, Pesche (IS), Italy

4The College of William and Mary, Williamsburg, VA, USA

fpalomba@unisa.it, gbavota@unisannio.it, dipenta@unisannio.it,
rocco.oliveto@unimol.it, denys@cs.wm.edu, adelucia@unisa.it

Abstract—Code smells are symptoms of poor design and implementation choices that may hinder code comprehension, and possibly
increase change- and fault-proneness. While most of the detection techniques just rely on structural information, many code smells
are intrinsically characterized by how code elements change over time. In this paper, we propose HIST (Historical Information for
Smell deTection), an approach exploiting change history information to detect instances of five different code smells, namely Divergent
Change, Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy. We evaluate HIST in two empirical studies. The first, conducted
on twenty open source projects, aimed at assessing the accuracy of HIST in detecting instances of the code smells mentioned above.
The results indicate that the precision of HIST ranges between 72% and 86%, and its recall ranges between 58% and 100%. Also,
results of the first study indicate that HIST is able to identify code smells that cannot be identified by competitive approaches solely
based on code analysis of a single system’s snapshot. Then, we conducted a second study aimed at investigating to what extent
the code smells detected by HIST (and by competitive code analysis techniques) reflect developers’ perception of poor design and
implementation choices. We involved twelve developers of four open source projects that recognized more than 75% of the code smell
instances identified by HIST as actual design/implementation problems.

Index Terms—Code Smells, Mining Software Repositories, Empirical Studies.

F

1 INTRODUCTION

Code smells have been defined by Fowler [14] as symp-
toms of poor design and implementation choices. In
some cases, such symptoms may originate from activities
performed by developers while in a hurry, e.g., imple-
menting urgent patches or simply making suboptimal
choices. In other cases, smells come from some recurring,
poor design solutions, also known as anti-patterns [9].
For example a Blob is a large and complex class that
centralizes the behavior of a portion of a system and
only uses other classes as data holders. Blob classes can
rapidly grow out of control, making it harder and harder
for developers to understand them, to fix bugs, and to
add new features.

Previous studies have found that smells hinder com-
prehension [1], and possibly increase change- and fault-
proneness [23], [24]. In summary, smells need to be care-
fully detected and monitored and, whenever necessary,
refactoring actions should be planned and performed to
deal with them.

This paper is an extension of “Detecting Bad Smells in Source Code Using
Change History Information” that appeared in the Proceedings of the
28th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2013), Palo Alto, California, pp. 268-278, 2013 [39].

There exist a number of approaches for detecting
smells in source code to alert developers of their pres-
ence [30], [33], [48]. These approaches rely on structural
information extracted from source code, for example, by
means of constraints defined on some source code met-
rics. For instance, according to some existing approaches,
such as DECOR [33], LongMethod or LargeClass smells are
based on the size of the source code component in terms
of LOC, whereas other smells like ComplexClass are based
on the McCabe cyclomatic complexity [32]. Other smells,
such as Blob, might use more complex rules.

Although existing approaches exhibit good detection
accuracy, they still might not be adequate for detecting
many of the smells described by Fowler [14]. In partic-
ular, there are some smells that, rather than being char-
acterized by source code metrics or other information
extracted from source code snapshots, are intrinsically
characterized by how source code changes over time. For ex-
ample, a Parallel Inheritance means that two or more class
hierarchies evolve by adding code to both classes at the
same time. Also, there are smells that are traditionally
detected using structural information, where historical
information can aid in capturing complementary, addi-
tionally useful properties. For example, a Feature Envy

may manifest itself when a method of a class tends to
change more frequently with methods of other classes
rather than with those of the same class.

Based on such considerations, we propose an ap-
proach, named HIST (Historical Information for Smell
deTection), to detect smells based on change history
information mined from versioning systems, and, specif-
ically, by analyzing co-changes occurring between source
code artifacts. HIST is aimed at detecting five smells
from Fowler [14] and Brown [9] catalogues1. Three of
them—Divergent Change, Shotgun Surgery, and Parallel
Inheritance—are symptoms that can be intrinsically ob-
served from the project’s history even if a single project
snapshot detection approach has been proposed for the
detection of Divergent Change and Shotgun Surgery [42].
For the remaining two—Blob and Feature Envy—there ex-
ist several single project snapshot detection approaches
[33], [48]. However, as explained for the Feature Envy,
those smells can also be characterized and possibly
detected using source code change history.

In the past, historical information has been used in the
context of smell analysis for the purpose of assessing
to what extent smells remained in the system for a
substantial amount of time [29], [44]. Also, Gîrba et
al. [17] exploited formal concept analysis for detecting
co-change patterns, that can be used to detect some
smells. However, to the best of our knowledge, the use
of historical information for smell detection remains a
premiere of this paper.

We have evaluated HIST in two empirical studies. The
first, conducted on twenty Java projects, aimed at evalu-
ating HIST detection accuracy in terms of precision and
recall against a manually-produced oracle. Furthermore,
wherever possible, we compared HIST with results pro-
duced by approaches that detect smells by analyzing a
single project snapshot, such as JDeodorant [13], [48] (for
the Feature Envy smell) and our re-implementations of
the DECOR’s [33] detection rules (for the Blob smell) and
of the approach by Rao et al. [42] (for Divergent Change
and Shotgun Surgery). The results of our study indicate
that HIST’s precision is between 72% and 86%, and its
recall is between 58% and 100%. When comparing HIST
to alternative approaches, we observe that HIST tends
to provide better detection accuracy, especially in terms
of recall, since it is able to identify smells that other
approaches omit. Also, for some smells, we observe a
strong complementarity of the approaches based on a
single snapshot analysis with respect to HIST, suggesting
that even better performances can be achieved by com-
bining these two complementary sources of information.

Despite the good results achieved in the previous
study, it is important to point out that a smell de-
tection technique is actually useful only if it identifies
code design problems that are recognized as such by
software developers. For this reason we conducted a
second study—involving twelve developers of four open

1. Definition of these five smells are provided in Section 2.

Versioning
system

versioning
system
address

input

fine-grained
changes

Change history
extractor

Code Smells
detector

Developer

Class A

Class A

affected
components

Detection
algorithm

Fig. 1. HIST: The proposed code smell detection process.

source systems—and aimed at investigating to what
extent the smells detected by HIST (and by the com-
petitive single snapshot techniques) reflect developers’
perception of poor design and implementation choices.
Results of this second study highlight that over 75% of
the smell instances identified by HIST are considered
as design/implementation problems by developers, that
generally suggest refactoring actions to remove them.

Summarizing, the contributions of this paper are:
1) HIST, a novel approach to identify smells in source

code by relying on change history information.
2) A study on 20 systems aimed at assessing the

detection accuracy of HIST and of state-of-the-art
smell detection techniques (based on the analysis
of a single snapshot) against a manually-produced
oracle.

3) A study with twelve developers of four open
source systems aimed at understanding to what
extent the smells identified by HIST and by
state-of-the-art techniques actually represent de-
sign/implementation problems from a developer’s
point of view.

4) A comprehensive replication package [40], including
(i) the manually built oracles for the 20 systems, and
(ii) the raw data of all our experimentations.

Paper structure. Section 2 presents the proposed ap-
proach HIST. Section 3 describes the design and the
results of the first case study aimed at evaluating the
HIST detection accuracy. The design and the results of
the second study are presented in Section 4, while Sec-
tion 5 discusses the threats that could affect the validity
of our empirical evaluation. Section 7 summarizes our
observations and outlines directions for future work,
after a discussion on the related literature (Section 6).

2 HIST OVERVIEW

The key idea behind HIST is to identify classes affected
by smells via change history information derived from
version control systems. Fig. 1 overviews the main steps
behind the proposed approach. Firstly, HIST extracts
information needed to detect smells from the versioning

TABLE 1
Code smells detected by HIST

Code Smell Brief Description
Divergent Change A class is changed in different ways for different reasons

Shotgun Surgery A change to the affected class (i.e., to one of its fields/methods) triggers many little changes to several
other classes

Parallel Inheritance Every time you make a subclass of one class, you also have to make a subclass of another

Blob A class implementing several responsibilities, having a large number of attributes, operations, and
dependencies with data classes

Feature Envy A method is more interested in another class than the one it is actually in

system through a component called Change history extrac-
tor. This information—together with a specific detection
algorithm for a particular smell—is then provided as an
input to the Code smell detector for computing the list of
code components (i.e., methods/classes) affected by the
smells characterized in the specific detection algorithm.

The Code smell detector uses different detection heuris-
tics for identifying target smells. In this paper, we have
instantiated HIST for detecting the five smells summa-
rized in Table 1:
• Divergent Change: this smell occurs when a class

is changed in different ways for different reasons.
The example reported by Fowler in his book on
refactoring [14] helps understanding this smell: If
you look at a class and say, “Well, I will have to change
these three methods every time I get a new database; I
have to change these four methods every time there is a
new financial instrument”, you likely have a situation in
which two classes are better than one [14]. Thus, this
type of smell clearly triggers Extract Class refactor-
ing opportunities2. Indeed, the goal of Extract Class
refactoring is to split a class implementing differ-
ent responsibilities into separated classes, each one
grouping together methods and attributes related
to a specific responsibility. The aim is to (i) obtain
smaller classes that are easier to comprehend and
thus to maintain and (ii) better isolate the change.

• Shotgun Surgery: a class is affected by this smell
when a change to this class (i.e., to one of its
fields/methods) triggers many little changes to sev-
eral other classes [14]. The presence of a Shot-
gun Surgery smell can be removed through a
Move Method/Field refactoring. In other words, the
method/field causing the smell is moved towards
the class in which its changes trigger more modifi-
cations.

• Parallel Inheritance: this smell occurs when “every
time you make a subclass of one class, you also have
to make a subclass of another” [14]. This could be
symptom of design problems in the class hierarchy
that can be solved by redistributing responsibilities
among the classes through different refactoring op-
erations, e.g., Extract Subclass.

• Blob: a class implementing several responsibilities,

2. Further details about refactoring operations existing in the litera-
ture can be found in the refactoring catalog available at
http://refactoring.com/catalog/

having a large number of attributes, operations, and
dependencies with data classes [9]. The obvious
way to remove this smell is to use Extract Class
refactoring.

• Feature Envy: as defined by Fowler [14], this smell
occurs when “a method is more interested in another
class than the one it is actually in”. For instance, there
can be a method that frequently invokes accessor
methods of another class to use its data. This smell
can be removed via Move Method refactoring opera-
tions.

Our choice of instantiating the proposed approach on
these smells is not random, but driven by the need to
have a benchmark including smells that can be naturally
identified using change history information and smells
that do not necessarily require this type of information.
The first three smells, namely Divergent Change, Shot-
gun Surgery, and Parallel Inheritance, are by definition
historical smells, that is, their definition inherently sug-
gests that they can be detected using revision history.
Instead, the last two smells (Blob and Feature Envy) can
be detected relying solely on structural information, and
several approaches based on static source code analysis
of a single system’s snapshot have been proposed for
detecting those smells [33], [48].

The following subsections detail how HIST extracts
change history information from versioning systems and
then uses it for detecting the above smells.

2.1 Change History Extraction

The first operation performed by the Change history
extractor is to mine the versioning system log, reporting
the entire change history of the system under analysis.
This can be done for a range of versioning systems,
such as SVN, CVS, or git. However, the logs extracted
through this operation report code changes at file level
of granularity. Such a granularity level is not sufficient
to detect most of the smells defined in the literature.
In fact, many of them describe method-level behavior
(see, for instance, Feature Envy or Divergent Change)3. In
order to extract fine-grained changes, the Change history
extractor includes a code analyzer component that is

3. Note that some versioning systems allow to obtain line diffs of the
changes performed in a commit. However, the mapping between the
changed lines and the impacted code components (e.g., which methods
are impacted by the change) is not provided.

developed in the context of the MARKOS European
project4. We use this component to capture changes at
method level granularity. In particular, for each pair of
subsequent source code snapshots extracted from the
versioning system, the code analyzer (i) checks out the
two snapshots in two separate folders and (ii) compares
the source code of these two snapshots, producing the
set of changes performed between them. The set of
changes includes: (i) added/removed/moved/renamed
classes, (ii) added/removed class attributes, (iii)
added/removed/moved/renamed methods, (iv)
changes applied to all the method signatures (i.e.,
visibility change, return type change, parameter added,
parameter removed, parameter type change, method
rename), and (v) changes applied to all the method
bodies.

The code analyzer parses source code by relying on
the srcML toolkit [12]. To distinguish cases where a
method/class was removed and a new one added from
cases when a method/class was moved (and possibly
its source code changed), the MARKOS code analyzer
uses heuristics that map methods/classes with different
names if their source code is similar based on a metric
fingerprint similar to the one used in metric-based clone
detection [31]. For example, each method is associated
with a twelve digits fingerprint containing the following
information: LOCs, number of statements, number of
if statements, number of while statements, number of
case statements, number of return statements, number of
specifiers, number of parameters, number of thrown ex-
ceptions, number of declared local variables, number of
method invocations, and number of used class attributes
(i.e., instance variables). The accuracy of such heuristics
has been evaluated at two different levels of granularity:
• Method level, by manually checking 100 methods

reported as moved by the MARKOS code analyzer.
Results showed that 89 of them were actually moved
methods.

• Class level, by manually checking 100 classes re-
ported as moved by the MARKOS code analyzer.
Results showed that 98 of them were actually moved
classes.

Typical cases of false positives were those in which a
method/class was removed from a class/package and a
very similar one—in terms of fingerprint—was added to
another class/package.

2.2 Code Smells Detection

The set of fine-grained changes computed by the Change
history extractor is provided as an input to the Code
Smell detector, that identifies the list of code components
(if any) affected by specific smells. While the exploited
underlying information is the same for all target smells
(i.e., the change history information), HIST uses custom
detection heuristics for each smell. Note that, since HIST

4. www.markosproject.eu verified on September 2014

relies on the analysis of change history information, it is
possible that a class/method that behaved as affected by
a smell in the past does not exist in the current version
of the system, e.g., because it has been refactored by
the developers. Thus, once HIST identifies a component
that is affected by a smell, HIST checks the presence
of this component in the current version of the system
under analysis before presenting the results to the user.
If the component does not exist anymore, HIST removes
it from the list of components affected by smells.

In the following we describe the heuristics we devised
for detecting the different kinds of smells described
above, while the process for calibrating the heuristic
parameters is described in Section 3.1.4.

2.2.1 Divergent Change Detection

Given the definition of this smell provided by Fowler
[14], our conjecture is that classes affected by Divergent
Change present different sets of methods each one containing
methods changing together but independently from methods
in the other sets. The Code Smell detector mines asso-
ciation rules [3] for detecting subsets of methods in
the same class that often change together. Association
rule discovery is an unsupervised learning technique
used for local pattern detection highlighting attribute
value conditions that occur together in a given dataset
[3]. In HIST, the dataset is composed of a sequence of
change sets—e.g., methods—that have been committed
(changed) together in a version control repository [55].
An association rule, Mleft ⇒ Mright, between two dis-
joint method sets implies that, if a change occurs in each
mi ∈Mleft, then another change should happen in each
mj ∈ Mright within the same change set. The strength
of an association rule is determined by its support and
confidence [3]:

Support =
|Mleft ∪Mright|

T

Confidence =
|Mleft ∪Mright|
|Mleft|

where T is the total number of change sets extracted
from the repository. In this paper, we perform associa-
tion rule mining using a well-known algorithm, namely
Apriori [3]. Note that, minimum Support and Confidence
to consider an association rule as valid can be set in the
Apriori algorithm. Once HIST detects these change rules
between methods of the same class, it identifies classes
affected by Divergent Change as those containing at least
two sets of methods with the following characteristics:

1) The cardinality of the set is at least γ;
2) All methods in the set change together, as detected

by the association rules; and
3) Each method in the set does not change with meth-

ods in other sets as detected by the association rules.

TABLE 2
Characteristics of the software systems used in the study.

Project Period #Classes KLOC
Apache Ant Jan 2000-Jan 2013 44-1,224 8-220
Apache Tomcat Mar 2006-Jan 2013 828-1,548 254-350
jEdit Sep 2001-July 2010 279-544 85-175
Android API (framework-opt-telephony) Aug 2011-Jan 2013 218-225 73-78
Android API (frameworks-base) Oct 2008-Jan 2013 1,698-3,710 534-1,043
Android API (frameworks-support) Feb 2011-Nov 2012 199-256 58-61
Android API (sdk) Oct 2008-Jan 2013 132-315 14-82
Android API (tool-base) Nov 2012-Jan 2013 471-714 80-134
Apache Commons Lang Jul 2002-Oct 2013 30-242 14-165
Apache Cassandra Mar 2009-Oct 2013 313-1,008 115-935
Apache Commons Codec Apr 2004-Jul 2013 23-107 4-25
Apache Derby Aug 2008-Oct 2013 1,298-2,847 159-179
Eclipse Core Jun 2001-Sep 2013 824-1,232 120-174
Apache James Mime4j Jun 2005-Sep 2013 106-269 91-532
Google Guava Sep 2009-Oct 2013 65-457 4-35
Aardvark Nov 2010-Jan 2013 16-157 13-25
And Engine Mar 2010-Jun 2013 215-613 14-24
Apache Commons IO Jan 2002-Oct 2013 13-200 3-56
Apache Commons Logging Aug 2001-Oct 2013 5-65 1-54
Mongo DB Jan 2009-Oct 2013 13-27 10-25

2.2.2 Shotgun Surgery Detection
In order to define a detection strategy for this smell,
we exploited the following conjecture: a class affected
by Shotgun Surgery contains at least one method changing
together with several other methods contained in other classes.
Also in this case, the Code Smell detector uses association
rules for detecting methods—in this case methods from
different classes—often changing together. Hence, a class
is identified as affected by a Shotgun Surgery smell if it
contains at least one method that changes with methods
present in more than δ different classes.

2.2.3 Parallel Inheritance Detection
Two classes are affected by Parallel Inheritance smell if
“every time you make a subclass of one class, you also have
to make a subclass of the other” [14]. Thus, the Code Smell
detector identifies pairs of classes for which the addition
of a subclass for one class implies the addition of a
subclass for the other class using generated association
rules. These pairs of classes are candidates to be affected
by the Parallel Inheritance smell.

2.2.4 Blob Detection
A Blob is a class that centralizes most of the system’s
behavior and has dependencies towards data classes [9].
Thus, our conjecture is that despite the kind of change
developers have to perform in a software system, if a Blob
class is present, it is very likely that something will need to
be changed in it. Given this conjecture, Blobs are identified
as classes modified (in any way) in more than α%
of commits involving at least another class. This last
condition is used to better reflect the nature of Blob
classes that are expected to change despite the type of
change being applied, i.e., the set of modified classes.

2.2.5 Feature Envy Detection
Our goal here is to identify methods placed in the wrong
class or, in other words, methods having an envied class

which they should be moved into. Thus, our conjecture
is that a method affected by feature envy changes more often
with the envied class than with the class it is actually in.
Given this conjecture, HIST identifies methods affected
by this smell as those involved in commits with methods
of another class of the system β% more than in commits
with methods of their class.

3 EVALUATING THE ACCURACY OF HIST
The goal of the study is to evaluate HIST, with the pur-
pose of analyzing its effectiveness in detecting smells in
software systems. The quality focus is on the detection ac-
curacy and completeness as compared to the approaches
based on the analysis of a single project snapshot, while
the perspective is of researchers, who want to evaluate
the effectiveness of historical information in identifying
smells for building better recommenders for developers.

3.1 Study Design

This section provides details about the design and plan-
ning of the study aimed at assessing HIST’s effectiveness
and comparing it with alternative approaches.

3.1.1 Context Selection
The context of the study consists of twenty software
projects. Table 2 reports the characteristics of the an-
alyzed systems, namely the software history that we
investigated, and the size range (in terms of KLOC and
of classes). Among the analyzed projects we have:
• Nine projects belonging to the Apache ecosys-

tem5: ANT, TOMCAT, COMMONS LANG, CASSAN-
DRA, COMMONS CODEC, DERBY, JAMES MIME4J,
COMMONS IO, and COMMONS LOGGING.

5. http://www.apache.org/ verified on September 2014

TABLE 3
Snapshots considered for the smell detection.

Project git snapshot Date Classes KLOC
Apache Ant da641025 Jun 2006 846 173
Apache Tomcat 398ca7ee Jun 2010 1,284 336
jEdit feb608el Aug 2005 316 101
Android API (framework-opt-telephony) b3a03455 Feb 2012 223 75
Android API (frameworks-base) b4ff35df Nov 2011 2,766 770
Android API (frameworks-support) 0f6f72e1 Jun 2012 246 59
Android API (sdk) 6feca9ac Nov 2011 268 54
Android API (tool-base) cfebaa9b Dec 2012 532 119
Apache Commons Lang 4af8bf41 Jul 2009 233 76
Apache Cassandra 4f9e551 Sep 2011 826 117
Apache Commons Codec c6c8ae7a Jul 2007 103 23
Apache Derby 562a9252 Jun 2006 1,746 166
Eclipse Core 0eb04df7 Dec 2004 1,190 162
Apache James Mime4j f4ad2176 Mar 2009 250 280
Google Guava e8959ed0 Aug 2012 153 16
Aardvark ff98d508 Jun 2012 103 25
And Engine f25236e4 Oct 2011 596 20
Apache Commons IO c8cb451c Oct 2010 108 27
Apache Commons Logging d821ed3e May 2005 61 23
Mongo DB b67c0c43 Oct 2011 22 25

• Five projects belonging to the Android APIs6:
FRAMEWORK-OPT-TELEPHONY, FRAMEWORKS-
BASE, FRAMEWORKS-SUPPORT, SDK, and TOOL-
BASE. Each of these projects is responsible for
implementing parts of the Android APIs. For
example, framework-opt-telephony provides APIs
for developers of Android apps allowing them to
access services such as texting.

• Six open source projects from elsewhere: JEDIT7,
ECLIPSE CORE8, GOOGLE GUAVA9, AARDVARK10,
AND ENGINE11, and MONGO DB12.

Note that our choice of the subject systems is not ran-
dom, but guided by specific requirements of our under-
lying infrastructure. Specifically, the selected systems:

1) are written in Java, since the MARKOS code ana-
lyzer is currently able to parse just systems written
in this programming language;

2) have their entire development histories tracked in a
versioning system;

3) have different development history lengths (we start
with a minimum of three months for TOOL-BASE up
to 13 years for APACHE ANT); and

4) have different sizes (we go from a minimum of 25
KLOCs for COMMONS CODEC up to 1,043 KLOCs
for FRAMEWORK-BASE).

3.1.2 Research Questions
Our study aims at addressing the following two research
questions:

6. https://android.googlesource.com/ verified on September 2014
7. http://www.jedit.org/ verified on September 2014
8. http://www.eclipse.org/eclipse/platform-core/ verified on

September 2014
9. https://code.google.com/p/guava-libraries/ verified on Septem-

ber 2014
10. http://karmatics.com/aardvark/ verified on September 2014
11. http://www.andengine.org/ verified on September 2014
12. http://www.mongodb.org/ verified on September 2014

• RQ1: How does HIST perform in detecting code smells?
This research question aims at quantifying the accu-
racy of HIST in detecting instances of the five smells
described in Section 2, namely Divergent Change,
Shotgun Surgery, Parallel Inheritance, Blob, and Feature
Envy.

• RQ2: How does HIST compare to the smell detection
techniques based on the analysis of a single project
snapshot? This research question aims at comparing
the accuracy of HIST in detecting the five smells
above with the accuracy achieved by applying a
more conventional approach based on the analysis
of a single project snapshot. The results of this
comparison will provide insights into the usefulness
of historical information while detecting smells.

3.1.3 Study Procedure, Data Analysis and Metrics
In order to answer RQ1 we simulated the use of HIST
in a realistic usage scenario. In particular, we split the
history of the twenty subject systems into two equal
parts, and ran our tool on all snapshots of the first part.
For instance, given the history of APACHE ANT going
from January 2000 to January 2013, we selected a system
snapshot s from June 2006. Then, HIST analyzed all
snapshots from January 2000 to June 2006 in order to
detect smell instances on the selected snapshot s. This
was done aiming at simulating a developer performing
smell detection on an evolving software system. On the
one hand, considering some early snapshot in the project
history, there could have been the risk of performing
smell detection on a software system still exhibiting
some ongoing, unstable design decisions. On the other
hand, by considering snapshots occurring later in the
project history (e.g., the last available release) there could
have been the risk of simulating some unrealistic sce-
nario, i.e., in which developers put effort in improving
the design of a software system when its development

TABLE 4
Code smell instances in the manually defined oracle.

Project Divergent Shotgun Parallel Blob Feature
Change Surgery Inheritance Envy

Apache Ant 0 0 7 8 8
Apache Tomcat 5 1 9 5 3
jEdit 4 1 3 5 10
Android API (framework-opt-telephony) 0 0 0 13 0
Android API (frameworks-base) 3 1 3 18 17
Android API (frameworks-support) 1 1 0 5 0
Android API (sdk) 1 0 9 10 3
Android API (tool-base) 0 0 0 0 0
Apache Commons Lang 1 0 6 3 1
Apache Cassandra 3 0 3 2 28
Apache Commons Codec 0 0 0 1 0
Apache Derby 0 0 0 9 0
Eclipse Core 1 1 8 4 3
Apache James Mime4j 1 0 0 0 9
Google Guava 0 0 0 1 2
Aardvark 0 1 0 1 0
And Engine 0 0 0 0 1
Apache Commons IO 1 0 1 2 1
Apache Commons Logging 2 0 2 2 0
Mongo DB 1 0 0 3 0
Overall 24 6 51 92 86

is almost absent. Table 3 reports the list of selected
snapshots, together with their characteristics.

To evaluate the detection accuracy of HIST, we need an
oracle reporting the instances of smells in the considered
systems’ snapshots. Unfortunately, there are no anno-
tated sets of such smells available in literature. Thus, we
had to manually build our own oracle. A Master’s stu-
dent from the University of Salerno manually identified
instances of the five considered smells in each of the
systems’ snapshots. Starting from the definition of the
five smells reported in literature (see Table 1), the student
manually analyzed the source code of each snapshot,
looking for instances of those smells. Clearly, for smells
having an intrinsic historical nature, he analyzed the
changes performed by developers on different code com-
ponents. This process took four weeks of work. Then,
a second Master’s student (still from the University of
Salerno) validated the produced oracle, to verify that all
affected code components identified by the first student
were correct. Only six of the smells identified by the first
student were classified as false positives by the second
student. After a discussion performed between the two
students, two of these six smells were classified as false
positives (and thus removed from the oracle). Note that,
while this does not ensure that the defined oracle is
complete (i.e., it includes all affected components in the
systems), it increases our degree of confidence on the
correctness of the identified smell instances. To avoid
any bias in the experiment, students were not aware of
the experimental goals and of specific algorithms used
by HIST for identifying smells. The number of code smell
instances in our oracle is shown in Table 4 for each
of the twenty subject systems. As we can see Parallel
Inheritance, Blob, and Feature Envy code smells are quite
diffused, presenting more than 50 instances each. A high
number (24) of Divergent Change instances is also present
in our oracle, while the Shotgun Surgery smell seems to
be poorly diffused across open source projects, with just
six instances identified.

Once we defined the oracle and obtained the set
of smells detected by HIST on each of the systems’

snapshots, we evaluated its detection accuracy by using
two widely-adopted Information Retrieval (IR) metrics,
namely recall and precision [5]:

recall =
|correct ∩ detected|

|correct|
%

precision =
|correct ∩ detected|

|detected|
%

where correct and detected represent the set of true
positive smells (those manually identified) and the set
of smells detected by HIST, respectively. As an aggre-
gate indicator of precision and recall, we report the F-
measure, defined as the harmonic mean of precision and
recall:

F -measure = 2 ∗ precision ∗ recall
precision+ recall

%

Turning to RQ2, we executed smell detection techniques
based on the analysis of a single snapshot on the same
systems’ snapshots previously selected when answering
RQ1. To the best of our knowledge, there is not a single
approach detecting all the smells that we considered in
our study. For this reason, depending on the specific
smell being detected, we considered different competi-
tive techniques to compare our approach against. As for
the Blob, we compared HIST with DECOR, the detection
technique proposed by Moha et al. [33]. Specifically, we
implemented the detection rules used by DECOR for
the detection of Blob. Such rules are available online13.
For the Feature Envy we considered JDeodorant as a
competitive technique [48], which is a publicly avail-
able Eclipse plug-in14. The approach implemented in
JDeodorant analyzes all methods for a given system, and
forms a set of candidate target classes where a method
should be moved into. This set is obtained by examining
the entities (i.e., attributes and methods) that a method
accesses from the other classes.

As for Divergent Change and Shotgun Surgery, we com-
pared HIST against our implementation of the approach
proposed by Rao and Raddy [42] that is purely based on
structural information. This technique starts by building
an n×n matrix (where n is the number of classes in the
system under analysis), named Design Change Propa-
gation Probability (DCPP). A generic entry Aij in DCPP
represents the probability that a change in the class i
triggers a change to the class j. Such a probability is
given by the cdegree [43], i.e., an indicator of the number
of dependencies that class i has with a class j (note that
cdegree is not symmetric, i.e., Aij 6= Aji). Once the DCPP
matrix is built, a Divergent Change instance is detected if a
column in the matrix (i.e., a class) has several (more than
λ) non-zero values (i.e., the class has dependencies with
several classes). The conjecture is that if a class depends
on several other classes, it is likely that it implements

13. http://www.ptidej.net/research/designsmells/grammar/Blob.
txt

14. http://www.jdeodorant.com/ verified on September 2014

251 3 5 7 9 11 13 15 17 19 21 23

80

0

10

20

30

40

50

60

70

α

F-
M
ea
su
re

(a)

1005 15 25 35 45 55 65 75 85

80

0

10

20

30

40

50

60

70

β

F-
M
ea
su
re

(b)

101 2 3 4 5 6 7 8 9

80

0

10

20

30

40

50

60

70

γ

F-
M
ea
su
re

(c)

101 2 3 4 5 6 7 8 9

80

0

10

20

30

40

50

60

70

δ

F-
M
ea
su
re

(d)

Fig. 2. Parameters calibration for HIST (Blob) α (a), HIST (Feature Envy) β (b), HIST (Divergent Change) γ (c), and
HIST (Shotgun Surgery) δ (d).

different responsibilities divergently changing during
time. Regarding the detection of the Shotgun Surgery,
instances of such a smell are identified when a row in the
matrix (i.e., a class) contains several (more than η) non-
zero values (i.e., several classes have dependencies with
the class). The conjecture is that changes to this class will
trigger changes in classes depending on it. From now on
we will refer to this technique as DCPP.

Concerning the Parallel Inheritance smell, we are not
aware of publicly available techniques in the literature
to detect it. Thus, in order to have a meaningful baseline
for HIST, we implemented a detection algorithm based
on the analysis of a single project snapshot. Note that
this analysis was not intended to provide evidence that
HIST is the best method for detecting Parallel Inheritance
instances. Instead, the goal was to conduct an investi-
gation into the actual effectiveness of historical informa-
tion while detecting smells as compared to information
extracted from a single project snapshot.

We detect classes affected by Parallel Inheritance as
pairs of classes having (i) both a superclass and/or a
subclass (i.e., both belonging to a class hierarchy), and
(ii) the same prefix in the class name. This detection
algorithm (from now on coined as PICA) directly comes
from the Fowler’s definition of Parallel Inheritance: “You
can recognize this smell because the prefixes of the class names
in one hierarchy are the same as the prefixes in another
hierarchy” [14].

To compare the performances of HIST against the
competitive techniques described above, we used recall,
precision, and F-measure. Moreover, to analyze the com-
plementarity of static code information and historical
information when performing smell detection, we com-
puted the following overlap metrics:

correctHIST∩SS =
|correctHIST ∩ correctSS |
|correctHIST ∪ correctSS |

%

correctHIST\SS =
|correctHIST \ correctSS |
|correctHIST ∪ correctSS |

%

correctSS\HIST =
|correctSS \ correctHIST |
|correctHIST ∪ correctSS |

%

where correctHIST and correctSS represent the sets of
correct smells detected by HIST and the competitive

technique, respectively. correctHIST∩SS measures the
overlap between the set of true smells detected by both
techniques, and correctHIST\SS (correctSS\HIST) mea-
sures the true smells detected by HIST (SS) only and
missed by SS (HIST). The latter metric provides an indi-
cation on how a smell detection strategy contributes to
enriching the set of correct smells identified by another
method.

3.1.4 Calibrating HIST and the Competitive Approaches

While for JDeodorant and DECOR parameter tuning has
already been empirically investigated by their respective
authors, we needed to calibrate parameters for HIST
and DCPP as well. Indeed, in the work presenting the
DCPP approach no best values for its parameters were
recommended [42]. We performed this calibration on
a software system which was not used in our experi-
mentation, i.e., APACHE XERCES15. Also on this system,
we asked two Master’s students to manually identify
instances of the five considered smells in order to build
an oracle. The procedure adopted by the students was
exactly the same described before and used to build the
study oracle. Then, we evaluated the F-measure value
obtained by the detection approaches using different
settings.

Results of the calibration are reported in Fig. 2 for
the HIST parameters α, β, γ, and δ, and in Fig. 3 for
the DCPP λ and the DCPP η parameters. As for the
confidence and support, the calibration was not different
from what was done in other work using association
rule discovery [55], [10], [53], [19]. In particular, we tried
all combinations of confidence and support obtained by
varying the confidence between 0.60 and 0.90 by steps
of 0.05, and the support between 0.004 and 0.04 by
steps of 0.004, and searching for the one ensuring the
best F-measure value on XERCES. Table 5 summarizes
the calibration process, reporting the values for each
parameter that we experimented with and the values
that achieved the best results (that is the one that we
used in answering the research questions).

15. http://xerces.apache.org/ verified on September 2014

TABLE 5
Calibration of the parameters required by the different detection techniques used in the study.

Technique Parameter Experimented Values Best Value
HIST (Assoc. Rules) Support From 0.004 to 0.04 by steps of 0.004 0.008
HIST (Assoc. Rules) Confidence From 0.60 to 0.90 by steps of 0.05 0.70
HIST (Blob) α From 1% to 25% by steps of 1% 8%
HIST (Feature Envy) β From 5% to 100% by steps of 5% 80%
HIST (Divergent Change) γ From 1 to 10 by steps of 1 3
HIST (Shotgun Surgery) δ From 1 to 10 by steps of 1 3
DCPP (Divergent Change) λ From 1 to 10 by steps of 1 3
DCPP (Shotgun Surgery) η From 1 to 10 by steps of 1 4

TABLE 6
Divergent Change - HIST accuracy as compared to the single snapshot technique.

Project
#Smell HIST Single Snapshot technique

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure
Apache Ant 0 0 0 0 - - - 1 0 1 - - -
Apache Tomcat 5 6 3 3 50% 60% 55% 0 0 0 N/A N/A N/A
jEdit 4 3 3 0 100% 75% 86% 1 1 0 100% 25% 40%
Android API (framework-opt-telephony) 0 0 0 0 - - - 0 0 0 - - -
Android API (frameworks-base) 3 3 3 0 100% 100% 100% 0 0 0 N/A N/A N/A
Android API (frameworks-support) 1 1 1 0 100% 100% 100% 2 0 2 0% 0% 0%
Android API (sdk) 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A
Android API (tool-base) 0 1 0 1 - - - 0 0 0 - - -
Apache Commons Lang 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A
Apache Cassandra 3 2 2 0 100% 67% 80% 7 1 6 14% 34% 20%
Apache Commons Codec 0 0 0 0 - - - 0 0 0 - - -
Apache Derby 0 0 0 0 - - - 0 0 0 - - -
Eclipse Core 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A
Apache James Mime4j 1 1 1 0 100% 100% 100% 1 1 0 100% 100% 100%
Google Guava 0 0 0 0 - - - 0 0 0 - - -
Aardvark 0 1 0 1 - - - 0 0 0 - - -
And Engine 0 0 0 0 - - - 14 0 14 - - -
Apache Commons IO 1 1 1 0 100% 100% 100% 3 0 3 0% 0% 0%
Apache Commons Logging 2 2 2 0 100% 100% 100% 0 0 0 N/A N/A N/A
Mongo DB 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A
Overall 24 25 20 5 80% 83% 82% 29 3 26 10% 13% 11%

101 2 3 4 5 6 7 8 9

80

0

10

20

30

40

50

60

70

λ

F-
M
ea
su
re

(a)

101 2 3 4 5 6 7 8 9

80

0

10

20

30

40

50

60

70

η

F-
M
ea
su
re

(b)

Fig. 3. Parameters’ calibration for DCPP-Divergent
Change λ (a), and DCPP-Shotgun Surgery η (b).

3.1.5 Replication Package
The raw data and working data sets used in our study
are publicly available in a replication package [40] where
we provide: (i) links to the Git repositories from which
we extracted historical information; (ii) complete infor-
mation on the change history in all the subject systems;
(iii) the oracle used for each system; and (iv) the list
of smells identified by HIST and by the competitive
approaches.

3.2 Analysis of the Results
This section reports the results aimed at answering the
two research questions formulated in Section 3.1.2. Note

that to avoid redundancies, we report the results for
both research questions together, discussing each smell
separately.

Tables 6, 7, 8, 9, and 10 report the results—in terms of
recall, precision, and F-measure—achieved by HIST and
approaches based on the analysis of a single snapshot
on the twenty subject systems. In addition, each table
also reports (i) the number of smell instances present in
each system (column “#Smell Instances”), (ii) the number
of smell instances identified by each approach (column
“Identified”), (iii) the number of true positive instances
identified by each approach (column “TP”), and (iv) the
number of false positive instances identified by each
approach (column “FP”). Note that each table shows the
results for one of the five smells considered in our study
and in particular: Table 6 for Divergent Change, Table 7
for Shotgun Surgery, Table 8 for Parallel Inheritance, Table
9 for Blob, and Table 10 for Feature Envy.

As explained in Section 3.1.3 for Divergent Change
and Shotgun Surgery we compared HIST against DCCP
approach proposed by Rao and Raddy [42], while for
Parallel Inheritance we used an alternative approach that
we developed (PICA). Finally, for Blob and Feature Envy
we used DECOR rules [33] and the JDeodorant tool [13],
respectively.

When no instances of a particular smell were present
in the oracle (i.e., zero in the column “#Smell Instances”),
it was not possible to compute the recall (that is, division

TABLE 7
Shotgun Surgery - HIST accuracy compared to the single snapshot techniques.

Project
#Smell HIST Single snapshot echnique

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure
Apache Ant 0 0 0 0 - - - 4 0 4 - - -
Apache Tomcat 1 1 1 0 100% 100% 100% 13 0 13 0% 0% 0%
jEdit 1 1 1 0 100% 100% 100% 3 0 3 0% 0% 0%
Android API (framework-opt-telephony) 0 1 0 1 - - - 3 0 3 - - -
Android API (frameworks-base) 1 1 1 0 100% 100% 100% 1 0 1 0% 0% 0%
Android API (frameworks-support) 1 1 1 0 100% 100% 100% 2 0 2 0% 0% 0%
Android API (sdk) 0 0 0 0 - - - 0 0 0 - - -
Android API (tool-base) 0 0 0 0 - - - 0 0 0 - - -
Apache Commons Lang 0 0 0 0 - - - 0 0 0 - - -
Apache Cassandra 0 0 0 0 - - - 0 0 0 - - -
Apache Commons Codec 0 0 0 0 - - - 0 0 0 - - -
Apache Derby 0 0 0 0 - - - 0 0 0 - - -
Eclipse Core 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A
Apache James Mime4j 0 0 0 0 - - - 0 0 0 - - -
Google Guava 0 0 0 0 - - - 0 0 0 - - -
Aardvark 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A
And Engine 0 0 0 0 - - - 0 0 0 - - -
Apache Commons IO 0 0 0 0 - - - 0 0 0 - - -
Apache Commons Logging 0 0 0 0 - - - 0 0 0 - - -
Mongo DB 0 0 0 0 - - - 0 0 0 - - -
Overall 6 7 6 1 86% 100% 92% 26 0 26 0% 0% 0%

 addNewItem(int,int)
 setCurrentItem(int)
 setCurrentItem(int,boolean)
 getCurrentItem()
 setCurrentItemInternal(int,boolean,boolean)
 setCurrentItemInternal(int,boolean,boolean,int)
 populate()
 populate(int)
 setPageMargin(int)
 getPageMargin()
 setPageMarginDrawable(Drawable)
 setPageMarginDrawable(int)
 calculatePageOffsets(ItemInfo,int,ItemInfo)
 distanceInfluenceForSnapDuration(float)
 smoothScrollTo(int,int)
 smoothScrollTo(int,int,int)
 initViewPager()
 onDetachedFromWindow()
 setScrollState()
 setAdapter(PagerAdapter)
 removeNonDecorViews()
 getAdapter()
 setOnAdapterChangeListener(OnAdapterChangeListener)
 getOffscreenPageLimit()
 setOffscreenPageLimit(int)
 setOnPageChangeListener(OnPageChangeListener)
 setInternalPageChangeListener(OnPageChangeListener)
 verifyDrawable(Drawable)
 drawableStateChanged()
 dataSetChanged()

...
ViewPager

Fig. 4. One of the identified Divergent Change instances:
the class ViewPager from ANDROID FRAMEWORKS-
SUPPORT.

by zero), while the precision would be zero if at least one
false positive is detected (independently of the number
of false positives). In these cases a “-” is indicated in the
corresponding project row. Similarly, when an approach
did not retrieve any instances of a particular smell, it was
not possible to compute precision, while recall would
be zero if at least one false positive is retrieved. In this
case a “N/A” is included in the project row. However, to
have an accurate estimation of the performances of the

experimented techniques, we also report in each table the
results achieved by considering all systems as a single
dataset (rows “Overall”). In such a dataset, it never
happens that recall or precision cannot be computed for
the reasons described above. Thus, all true positives and
all false positives identified by each technique are taken
into account in the computation of the overall recall,
precision, and F-measure.

Finally, Table 11 reports the overlap and differences
between HIST and the techniques based on code analysis
of a single snapshot: column “HIST ∩ SS Tech.” reports
the number (#) and percentage (%) of smells correctly
identified by both HIST and the competitive technique;
column “HIST \ SS Tech.” reports the number and
percentage of smells correctly identified by HIST but not
by the competitive technique; column “SS Tech. \ HIST”
reports the number and percentage of smells correctly
identified by the competitive technique but not by HIST.
In the following, we discuss the results for each kind of
smell.

3.2.1 Divergent Change
We identified 24 instances of Divergent Change in the
twenty systems (see Table 6). The results clearly indicate
that the use of historical information allows to outper-
form DCCP (i.e., the approach based on the analysis of
a single snapshot). Specifically, the F-measure achieved
by HIST on the overall dataset is 82% (83% of recall and
80% of precision) against 10% (13% of recall and 11% of
precision) achieved by DCCP. This is an expected result,
since the Divergent Change is by definition a “historical
smell” (see Section 2), and thus we expected difficulties
in capturing this kind of smell by just relying on the
analysis of a single system’s snapshot.

One of the Divergent Change instances captured by
HIST is depicted in Fig. 4 and related to the ViewPager
class from the ANDROID FRAMEWORKS-SUPPORT project.
ViewPager allows users of Android apps to flip left and
right through pages of data. In this class, HIST identified

org.apache.coyote

org.apache.catalina.connector

MapperListener

org.apache.catalina.core

StandardServer

StandardWrapper

org.apache.catalina.deploy

NamingResources

org.apache.ha.session

BackupManager

DeltaManager

DeltaSession

org.apache.catalina.manager

ManagerServlet

org.apache.catalina.mbeans

MBeanFactory

MBeanUtils

org.apache.catalina.realm

RealmBase

org.apache.catalina.websocket

WsOutbound

org.apache.coyote.http11

AbstractHttp11
Processor

Http11Apr
Processor

Http11Nio
Processor

Http11
Processor

org.apache.jasper

EmbeddedServletOptions

org.apache.naming

NamingContext

SelectorContext

org.apache.naming.resources

BaseDirContext

ProxyDirContext

org.apache.tomcat.util.http

Parameters

org.apache.tomcat.util.net

AprEndpoint

Poller

org.apache.tomcat.websocket

WsFrame

48 104

86
61

89

73

63

49
84

64

54 35

5245

31

50

43

50
47

4436

43

42

38

37
org.apache.catalina.startup

Catalina

ContextConfig

HostConfig

36

org.apache.catalina.session

JDBCStore

34

org.apache.catalina.loader

WebappLoader

org.apache.tomcat.util.modeler

Registry

34

32

...
isAsync
...

...
AsyncStateMachine

100

34

Fig. 5. One of the identified Shotgun Surgery instances: the AsyncStateMachine.isAsync method from APACHE
TOMCAT.

three sets of methods divergently changing during the
project’s history (see Section 2.2.1 for details on how
these sets were identified). The three sets are highlighted
in Fig. 4 by using different shades of gray. Starting
from the top of the Fig. 4, the first set groups together
methods somewhat related to the management of the
items to be displayed in the View (e.g., menu, buttons,
etc). The middle set gathers methods allowing to manage
the View layout (i.e., setting margins, page offsets, etc.),
while the set at the bottom of Fig. 6 is mainly related to
the View configuration (e.g., init the page viewer, define
the change listeners, etc). Thus, the three identified sets
of methods, not only change independently one from
the other, but also seem to represent quite independent
responsibilities implemented in the ViewPager class. Of
course, no speculations can be made on the need for
refactoring of this class, since developers having high
experience on the system are needed to evaluate both
pros and cons. Our second study presented in Section 4
aims at answering exactly this question.

Going back to the quantitative results, DCCP was

able to detect only three correct occurrences of Divergent
Change and one of them was also captured by HIST.
The instances missed by HIST (and identified by DCCP)
affect the RE class of JEDIT and the CassandraServer
class of APACHE CASSANDRA. Both of these classes do
not have enough change history data about divergent
changes to be captured by HIST. This clearly high-
lights the main limitation of HIST that requires suffi-
cient amount of historical information to infer useful
association rules. Given these observations, the overlap
between the smells detected by HIST and DCCP results
reported in Table 11 is quite expected: among the sets
of smells correctly detected by two techniques, there is
just a 4% overlap, HIST is the only one retrieving 87%
of the smells, while DCCP is the one detecting only two
smells described above and missed by HIST (9%). Thus,
the complementarity between HIST and DCCP is rather
low.

3.2.2 Shotgun Surgery

Shotgun Surgery is the smell with the lowest number
of instances in the subject systems, i.e., with only six
systems affected for a total of six instances (one per
system). HIST was able to detect all the instances of
this smell (100% recall) with 86% precision outperform-
ing DCCP (i.e., the competitive approach). Specifically,
DCCP was not able to detect any of the six instances
of this smell present in the subject systems. Thus, no
meaningful observations can be made in terms of over-
lap metrics. This result highlights the fact that it is quite
difficult to identify characteristics of such a smell by
solely analysing a single system’s snapshot, as the smell
is intrinsically defined in terms of a change triggering
many other changes [14].

It is also worthwhile to discuss an example of Shotgun
Surgery we identified in APACHE TOMCAT and repre-
sented by the method isAsync implemented in the class
AsyncStateMachine. HIST identified association rules
between this method and 48 methods in the system,
belonging to 31 different classes. This means that, when-
ever the isAsync method is modified, also these 48
methods, generally, undergo a change. Fig. 5 shows all
31 classes involved: each arrow going from the isAsync
method to one of these 31 classes is labeled with the
number of times isAsync co-changed with methods of
that class in the analyzed time period. Note that the
total number of changes performed in the analyzed time
period to isAsync is 110. For instance, isAsync co-
changed 104 (95%) times with two methods contained
in the Poller class. What is also very surprising about
this instance of Shotgun Surgery is that it triggers changes
in over 19 different packages of the software system.
This clearly highlights the fact that such smell could be
very detrimental in software evolution and maintenance
context.

As for the only false positive instance identified by
HIST, it concerns the method dispose from the class
GsmDataConnectionTracker of the FRAMEWORK-
OPT-TELEPHONY Android APIs (see Table 7). HIST
identified association rules between this method and
three other methods in the system, and in particular:
CdmaDataConnectionTracker.dispose(),
SMSDispatcher.handleSendComplete(), and
GsmCallTracker.dump(). However, this behavior
was not considered as “smelly” by the students
building the oracle because: (i) differently from what
discussed for the isAsync method, the triggered
changes in this case are spread just across three classes,
and (ii) even if the four involved methods tend to
change together, they are correctly placed into different
classes splitting well the system’s responsibilities.
For instance, while the two dispose methods
contained in classes GsmDataConnectionTracker
and CdmaDataConnectionTracker are both in charge
of cleaning up a data connection, the two protocols
they manage are different (i.e., GSM vs CDMA). Thus,

even if they co-change during time, there is no apparent
reason for placing them in the same class with the only
goal of isolating the change (poorly spread in this case).
Indeed, as a side effect, this refactoring operation could
create a class managing heterogeneous responsibilities
(i.e., a Blob class).

3.2.3 Parallel Inheritance

Among the 51 instances of the Parallel Inheritance smell,
HIST was able to correctly identify 35 of them (recall
69%) with a price to pay of 13 false positives, resulting in
a precision of 73%. By using the competitive technique
(i.e., PICA) we were able to retrieve 25 correct instances
of the smell (recall of 49%) while also retrieving 473 false
positives (precision of 5%). One of the Parallel Inheritance
instances detected by HIST and missed by PICA is
depicted in Fig. 6. The pair of classes affected by the
smell is CompletitionOnQualifiedNameReference
and SelectionOnQualifiedNameReference from
ECLIPSE JDT. As shown in Fig. 6, these two classes
have been committed together on 27 June 2008 in the
same package and since then, the hierarchies having
them as top superclasses evolved in parallel. Indeed,
the first subclass (QualifiedNameReference) has
been added to both superclasses on 3 September 2008
followed by the second subclass (NameReference) on
25 September 2008. Note that while the name of the
subclasses added to the two superclasses is the same,
we are talking about two different subclasses. Indeed,
as show in Fig. 6, these subclasses are from different
packages. For instance, the NameReference subclass of
CompletitionOnQualifiedNameReference is from
the org.eclipse.jdt.internal.codeassist
package, while the corresponding subclass of
SelectionOnQualifiedNameReference is from
the org.eclipse.jdt.internal.compiler.ast
package.

Looking at the overlap metrics reported in Table
11, we can see an overlap of 50% among the set
of smells correctly identified by the two techniques,
while 38% of the correct instances are retrieved only
by HIST and the remaining 12% are identified only
by PICA. For example, an instance of Parallel Inheri-
tance detected by PICA and missed by HIST is the one
affecting the pair of classes Broken2OperationEnum
and Broken5OperationEnum belonging to APACHE
COMMONS LANG. In this case, while the two hierarchies
co-evolved synchronously, the (too high) thresholds used
for the support and confidence of the association rule
mining algorithm used in HIST did not allow capturing
this specific instance (and thus, to identify the smell).
Obviously, this instance could have been detected when
using lower values for support and confidence, however,
this would naturally result in drastically decreasing pre-
cision while somewhat increasing recall values.

TABLE 8
Parallel Inheritance - HIST accuracy as compared to the single snapshot techniques.

Project
#Smell HIST Single snapshot technique

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure
Apache Ant 7 8 5 3 63% 71% 67% 52 4 48 8% 57% 14%
Apache Tomcat 9 10 6 4 60% 67% 63% 61 4 57 7% 44% 12%
jEdit 3 0 0 0 N/A N/A N/A 15 3 12 20% 100% 33%
Android API (framework-opt-telephony) 0 0 0 0 - - - 9 0 9 - - -
Android API (frameworks-base) 3 1 0 1 0% 0% 0% 111 0 111 0% 0% 0%
Android API (frameworks-support) 0 0 0 0 - - - 9 0 9 - - -
Android API (sdk) 9 12 8 4 67% 89% 76% 59 3 56 5% 33% 12%
Android API (tool-base) 0 0 0 0 - - - 0 0 0 - - -
Apache Commons Lang 6 6 6 0 100% 100% 100% 6 6 0 100% 100% 100%
Apache Cassandra 3 1 1 0 100% 34% 50% 35 1 34 3% 34% 5%
Apache Commons Codec 0 0 0 0 - - - 3 0 3 - - -
Apache Derby 0 0 0 0 - - - 53 0 53 - - -
Eclipse Core 8 8 7 1 88% 88% 88% 31 2 29 6% 25% 10%
Apache James Mime4j 0 0 0 0 - - - 10 0 10 - - -
Google Guava 0 0 0 0 - - - 0 0 0 - - -
Aardvark 0 0 0 0 - - - 0 0 0 - - -
And Engine 0 0 0 0 - - - 60 0 60 - - -
Apache Commons IO 1 1 1 0 100% 100% 100% 8 1 7 13% 100% 22%
Apache Commons Logging 2 1 1 0 100% 50% 67% 3 1 2 34% 50% 40%
Mongo DB 0 0 0 0 - - - 0 0 0 - - -
Overall 51 48 35 13 73% 69% 71% 525 25 500 5% 49% 9%

TABLE 9
Blob - HIST accuracy as compared to DECOR.

Project
#Smell HIST DECOR

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure
Apache Ant 8 10 6 4 60% 75% 67% 10 3 7 30% 38% 33%
Apache Tomcat 5 1 1 0 100% 20% 33% 6 4 2 67% 80% 73%
jEdit 5 3 2 1 67% 40% 50% 5 3 2 60% 60% 60%
Android API (framework-opt-telephony) 13 10 10 0 100% 77% 87% 10 7 3 70% 54% 61%
Android API (frameworks-base) 18 13 9 4 70% 50% 58% 14 9 5 65% 50% 57%
Android API (frameworks-support) 5 7 5 2 71% 100% 83% 8 3 5 38% 60% 49%
Android API (sdk) 10 7 6 1 86% 60% 71% 7 2 5 29% 20% 24%
Android API (tool-base) 0 0 0 0 - - - 0 0 0 - - -
Apache Commons Lang 3 2 2 0 100% 67% 80% 0 0 0 N/A N/A N/A
Apache Cassandra 2 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A
Apache Commons Codec 1 2 1 1 50% 100% 67% 0 0 0 N/A N/A N/A
Apache Derby 9 0 0 0 N/A N/A N/A 7 4 3 57% 44% 50%
Eclipse Core 4 3 2 1 67% 50% 57% 4 2 2 50% 50% 50%
Apache James Mime4j 0 3 0 3 - - - 0 0 0 - - -
Google Guava 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A
Aardvark 1 1 1 0 100% 100% 100% 1 1 0 100% 100% 100%
And Engine 0 0 0 0 - - - 0 0 0 - - -
Apache Commons IO 2 3 2 1 67% 100% 80% 0 0 0 N/A N/A N/A
Apache Commons Logging 2 3 2 1 67% 100% 80% 2 2 0 100% 100% 100%
Mongo DB 3 5 3 2 60% 100% 75% 0 0 0 N/A N/A N/A
Overall 92 74 53 21 72% 58% 64% 74 40 34 54% 43% 48%

3.2.4 Blob

As for detecting the Blobs, HIST was able to achieve a
precision of 72% and a recall of 58% (F-measure=64%),
while DECOR was able to achieve a precision of 54%
and a recall of 43% (F-measure=48%). In more details,
HIST achieved better precision values on 13 systems (on
average, +45%), DECOR on two systems (on average,
+45%), while on one system there was a tie. Thus, for
most of the systems containing Blob instances (13 out
of 16) HIST requires less effort to developers looking
for instances of Blobs due to the lower number of false
positives that will be inspected and discarded. Also,
HIST ensured better recall on nine out of the 16 systems
containing at least one Blob class, and a tie has been
reached on five other systems. On the contrary, HIST
was outperformed by DECOR on Apache Tomcat and
jEdit (see Table 9). However, on the overall dataset,
HIST was able to correctly identify 53 of the 92 existing
Blobs, against the 40 identified by DECOR. Thus, as also
indicated by the F-measure value computed over the

whole dataset, the overall performance of HIST is better
than that one of DECOR (64% against 48%). Noticeably,
the two approaches seem to be highly complementary.
This is highlighted by the overlap results in Table 11.
Among the sets of smells correctly identified by the two
techniques, there is an overlap of just 16%. Specifically,
HIST is able to detect 51% of smells that are ignored by
DECOR, and the latter retrieves 33% of correct smells
that are not identified by HIST. Similarly to the results
for the Parallel Inheritance smell, this finding highlights
the possibility of building better detection techniques
by combining single-snapshot code analysis and change
history information.

An example of Blob correctly identified by HIST and
missed by DECOR is the class ELParser from APACHE
TOMCAT, that underwent changes in 178 out of the
1,976 commits occurred in the analyzed time period.
ELParser is not retrieved by DECOR because this class
has a one-to-one relationship with data classes, while
a one-to-many relationship is required by the DECOR

org.eclipse.jdt.internal.codeassist

CompletitionOn
QualifiedNameReference

SelectionOn
QualifiedNameReference

org.eclipse.jdt.internal.codeassist

QualifiedNameReference

org.eclipse.jdt.internal.codeassist

QualifiedNameReference

org.eclipse.jdt.internal.compiler.ast

org.eclipse.jdt.internal.codeassist

CompletitionOn
QualifiedNameReference

SelectionOn
QualifiedNameReference

org.eclipse.jdt.internal.codeassist

Commit
performed on

03 Sept. 2008:

Addition of the
first subclass

The two classes
affected by

Parallel
Inheritance

Committed
together on:

27 June 2008

org.eclipse.jdt.internal.codeassist

CompletitionOn
QualifiedNameReference

SelectionOn
QualifiedNameReference

org.eclipse.jdt.internal.codeassist

QualifiedNameReference

org.eclipse.jdt.internal.codeassist

QualifiedNameReference

org.eclipse.jdt.internal.compiler.ast

Commit
performed on

25 Sept. 2008:

Addition of the
second subclass

NameReference

org.eclipse.jdt.internal.codeassist

NameReference

org.eclipse.jdt.internal.compiler.ast

Fig. 6. An identified Parallel Inheritance instance: the pair of classes CompletitionOnQualifiedNameReference
and SelectionOnQualifiedNameReference from ECLIPSE JDT.

detection rule. Instead, a Blob retrieved by DECOR and
missed by HIST is the class StandardContext of
APACHE TOMCAT. While this class exhibits all the struc-
tural characteristics of a Blob (thus allowing DECOR to
detect it), it was not involved in any of the commits (i.e.,
it was just added and never modified), hence making the
detection impossible for HIST.

3.2.5 Feature Envy
For the Feature Envy smell, we found instances of this
smell in twelve out of the twenty systems, for a total
of 86 affected methods. HIST was able to identify 66
of them (recall of 77%) against the 61 identified by
JDeodorant (recall of 71%). Also, the precision obtained
by HIST is higher than the one achieved by JDeodorant
(78% against 65%). However, it is important to point
out that JDeodorant is a refactoring tool and, as such, it
identifies Feature Envy smells in software systems with
the sole purpose of suggesting move method refactoring
opportunities. Thus, the tool reports the presence of Fea-
ture Envy smells only if the move method refactoring is
possible, by checking some preconditions ensuring that
a program’s behavior does not change after applying
the suggested refactoring operation [48]. An example of

considered preconditions is that the envied class does not
contain a method having the same signature as the moved
method [48]. To perform a fair comparison (especially in
terms of recall), we filtered the Feature Envy instances
retrieved by HIST by using the same set of preconditions
defined by JDeodorant [48]. This resulted in the removal
of three correct instances, as well as three false positives
previously retrieved by HIST, thus decreasing the recall
from 78% to 74% and increasing the precision from 78%
to 80%. Still, HIST achieves better recall and precision
values as compared to JDeodorant.

It is interesting to observe that the overlap data re-
ported in Table 11 highlights, also in this case, some
complementarity between historical and single snapshot
techniques, with 54% of correct smell instances identified
by both techniques (overlap), 27% identified only by
HIST, and 19% only by JDeodorant.

An example of correct smell instance
identified by HIST only is the method
buildInputMethodListLocked implemented in
the class InputMethodManagerService of the
Android framework-base API. For this method, HIST
identified WindowManagerService as the envied
class, since there are just three commits in which

TABLE 10
Feature Envy - HIST accuracy as compared to JDeodorant.

Project
#Smell HIST JDeodorant

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure
Apache Ant 8 9 6 3 67% 75% 71% 13 2 11 15% 25% 19%
Apache Tomcat 3 1 1 0 100% 33% 50% 3 2 1 67% 67% 67%
jEdit 10 10 8 2 100% 100% 100% 3 3 0 100% 27% 43%
Android API (framework-opt-telephony) 0 0 0 0 - - - 0 0 0 - - -
Android API (frameworks-base) 17 24 15 9 63% 88% 73% 16 16 0 100% 94% 96%
Android API (frameworks-support) 0 0 0 0 - - - 0 0 0 - - -
Android API (sdk) 3 1 1 0 100% 33% 50% 0 0 0 N/A N/A N/A
Android API (tool-base) 0 0 0 0 - - - 0 0 0 - - -
Apache Commons Lang 1 2 1 1 50% 100% 67% 2 1 1 50% 100% 67%
Apache Cassandra 28 28 28 0 100% 100% 100% 28 28 0 100% 100% 100%
Apache Commons Codec 0 1 0 1 - - - 0 0 0 - - -
Apache Derby 0 0 0 0 - - - 0 0 0 - - -
Eclipse Core 3 5 3 2 60% 100% 75% 0 0 0 N/A N/A N/A
Apache James Mime4j 9 0 0 0 N/A N/A N/A 11 9 2 82% 100% 90%
Google Guava 2 2 2 0 100% 100% 100% 3 0 3 0% 0% 0%
Aardvark 0 0 0 0 - - - 0 0 0 - - -
And Engine 1 2 1 1 50% 100% 67% 0 0 0 N/A N/A N/A
Apache Commons IO 1 0 0 0 N/A N/A N/A 6 0 6 0% 0% 0%
Apache Commons Logging 0 0 0 0 - - - 8 0 8 - - -
Mongo DB 0 0 0 0 - - - 1 0 1 - - -
Overall 86 85 66 19 78% 77% 77% 94 61 33 65% 71% 68%

TABLE 11
Overlap between HIST and Single Snapshot (SS)
techniques. For Blob the SS Tech. is DECOR, for

Feature Envy it is JDeodorant.

Code Smell HIST∩SS Tech. HIST\SS Tech. SS Tech.\HIST
% # % # %

Divergent Change 1 4% 19 87% 2 9%
Shotgun Surgery 0 0% 6 100% 0 0%
Parallel Inheritance 20 50% 15 38% 5 12%
Blob 13 16% 40 51% 27 33%
Feature Envy 44 54% 22 27% 17 19%

the method buildInputMethodListLocked is co-
changed with methods of its class, against the 16
commits in which it is co-changed together with
methods belonging to the envied class. Instead,
JDeodorant was the only technique able to correctly
identify the Feature Envy smell present in APACHE ANT
and affecting the method isRebuildRequired of class
WebsphereDeploymentTool. In this case, the envied
class is Project, and HIST was not able to identify it
due to the limited number of observed co-changes.

Summary for RQ1. HIST provided acceptable perfor-
mances in detecting all smells considered in our study
(F-measure between 64% to 92%). While this result was
quite expected on smells which intrinsically require the
use of historical information for their detection, it is
promising to observe that HIST provided good per-
formances also when detecting Blob and Feature Envy
smells.

Summary for RQ2. HIST was able to outperform
single snapshot techniques and tools in terms of re-
call, precision, and F-measure. While such a result is
somewhat expected for “intrinsically historical” smells,
i.e., for (Divergent Change, Shotgun Surgery, and Parallel
Inheritance), noticeably HIST is also able to perform well
for detecting other smells (i.e., Blob and Feature Envy),
provided that historical information is available. Last,
but not least, for Blob and Feature Envy, our findings

suggest that techniques based on code analysis of a sin-
gle snapshot are complementary to HIST and these two
families of approaches can be integrated to potentially
improve performance even further.

4 DEVELOPERS’ PERCEPTION OF SMELLS

Despite having achieved good results in terms of de-
tection capability, it is also important to point out that
a smell detection technique is actually useful only if
it identifies code design problems that are recognized
as relevant problems by developers. For this reason, we
performed a second study aimed at investigating to
what extent the smells detected by HIST (and by the
competitive techniques) reflect developers’ perception of
poor design and implementation choices and, in this case
(i) what is their perceived severity of the problem, and
(ii) if they consider as necessary a refactoring operation
aimed at removing the smell. The design of this second
study was based on the results obtained in the first study.
Specifically:
• For purely historical smells (i.e., Divergent Change,

Parallel Inheritance, and Shotgun Surgery) we consider
only instances that are identified by HIST. Indeed,
the results discussed in Section 3 demonstrate low
complementarity between HIST and the competitive
techniques for detecting these smells, with HIST
playing the major role.

• For the structural smells (i.e., Blob and Feature Envy)
we consider instances identified (i) only by HIST
(onlyHIST group), (ii) only by the competitive tech-
nique (onlyDECOR for Blobs and onlyJD for Feature
Envy), and (iii) by both techniques (both group).
Indeed, the results achieved for these two smells
show that historical and structural information can
both be good alternatives for identifying smells.
Thus, it is interesting to understand which of the
above mentioned groups contains smells that are
recognized as actual problems by developers.

4.1 Study Design
In the following, we report the design and planning of
the study, by detailing the context selection, the research
questions, the data collection process, as well as the
analysis method.

4.1.1 Context Selection
A needed requirement for this study is, of course, soft-
ware developers. In order to recruit participants, we sent
invitations to active developers of ten of the twenty sys-
tems considered in our first study. In particular, we just
considered systems exhibiting instances of at least three
of the code smells investigated in this paper. The active
developers have been identified by analyzing the sys-
tems’ commit history16. In total, we invited 109 develop-
ers receiving responses from twelve of them: two devel-
opers from APACHE ANT, two from ECLIPSE, two from
ANDROID SDK, and six from ANDROID FRAMEWORKS-
BASE. Note that, even if the number of respondents ap-
pears to be low (11% of response rate), we are inline with
the suggested minimum response rate for the survey
studies defined below 20% [6].

4.1.2 Research Questions
This study (Study II) aims at addressing the following
two research questions:
• RQ3: Are the historical code smells identified by HIST

recognized as design problems by developers? This re-
search question focuses its attention on the Diver-
gent Change, Parallel Inheritance, and Shotgun Surgery
smells. HIST is the first technique able to effec-
tively identify instances of these smells. Thus, it is
worthwhile to know if the instances of the smells
it identifies really represent design problems for
developers.

• RQ4: Which detection technique aimed at identifying
structural code smells better reflects developers’ percep-
tion of design problems? This research question aims
at investigating how developers working on the
four open-source systems perceive the presence of
structural code smells identified by different detec-
tion techniques. In particular, we focus on smells
identified by HIST only, by the techniques based on
code analysis of a single snapshot only, and by both.

We answer both research questions through a survey
questionnaire that participants filled-in online.

4.1.3 Survey Questionnaire Design
We designed a survey aimed at collecting developers’
opinions needed to answer two of our research ques-
tions. Specifically, given the subject system Si, the fol-
lowing process was performed:

1) Smell Instances Selection. The smell instances to
consider in our study were selected as follows:

16. We considered developers that performed at least one commit in
the last two years.

• For each purely historical smell cj (i.e., Divergent
Change, Parallel Inheritance, and Shotgun Surgery)
having at least one instance in Si detected by
HIST, we randomly selected one instance or took
the only one available. Note that we refer to the
“instance” as code component(s) affected by the
smell. For example, it could be a single class
affected by the Divergent Change smell, as well as
a pair of classes affected by the Parallel Inheritance
smell.

• For each structural smell cj (i.e., Blob and Fea-
ture Envy) having at least one instance in Si

we randomly selected (i) one instance detected
only by HIST (if any), (ii) one instance detected
only by the competitive technique—i.e., DECOR
or JDeodorant—(if any), and (iii) one instance
detected by both techniques (if any).

Note that this study excluded entities affected by
more than one smell instance (e.g., a method af-
fected by both Shotgun Surgery and Feature Envy).
The smells selected on each system are summarized
in Table 12. As it can be seen, we were not able to get
the same number of instances for all the smells and
for all the groups of structural smells. However, we
were able to cover all smells and groups of smells
(i.e., onlyHIST, onlyDECOR/JD, both) with at least
one smell instance.

2) Defining Survey Questions. For each selected smell
instance, study participants had to look at the source
code and answer the following questions:
• In your opinion, does this code component17 ex-

hibit any design and/or implementation prob-
lem?

• If YES, please explain what are, in your opinion,
the problems affecting the code component.

• If YES, please rate the severity of the design
and/or implementation problem by assigning a
score on the following five-points Likert scale [37]:
1 (very low), 2 (low), 3 (medium), 4 (high), 5 (very
high).

• In your opinion, does this class need to be refac-
tored?

• if YES, how would you refactor this class?
On the one side, for questions related to purely
historical smell instances detected by HIST, we also
added hints on the change history of the code
component (i.e., the same information exploited by
HIST to detect that smell instance). This was needed
to provide participants with information related to
the historical behavior of the involved code compo-
nents. Indeed, it is impossible to spot a problem as
a Parallel Inheritance without knowing the number
of times the addition of a subclass to a class Ci also
resulted in the addition of a subclass to a class Cj .
On the other side, for structural smells, no metrics

17. Depending on the smell object of the question, a code component
could be a method, a class, or a pair of classes.

TABLE 12
Smell Instances Selected for each System.

System Divergent Parallel Shotgun Blob Feature Envy
Change Inheritance Surgery onlyHIST onlyDECOR both onlyHIST onlyJD both

Apache Ant - 1 - 1 1 1 1 1 -
Eclipse 1 1 1 1 1 - 1 - -
Android sdk 1 1 - 1 1 1 1 - -
Apache frameworks-base - 1 1 1 1 - 1 1 1
Overall 2 4 2 4 4 2 4 2 1

were shown for instances identified by HIST as well
as by the competitive techniques.

The questionnaires included six tasks18 for APACHE
ANT, ECLIPSE JDT, and ANDROID SDK, and seven tasks
for APACHE FRAMEWORKS-BASE.

Besides the above described survey, we also asked
participants to fill-in a brief pre-questionnaire in order
to assess their background. In particular, we asked:
• How many years of experience do you have in

programming?
• How many years of experience do you have in

industry?
• Rate your programming skills from 1=very low to

5=very high.
Note that all the questions in the survey, as well as

the background questions prefacing the survey, were
designed to make sure that the survey could be com-
pleted within approximately 60 minutes. This is why
we limited (i) the number of tasks and (ii) the number
of questions in the background section, since a higher
number could have resulted in a higher dropout rate
before even starting the main survey.

4.1.4 Data Collection
To automatically collect the answers, the survey and
background questions were hosted on a Web application,
eSurveyPro19. Developers were given 40 days to respond
to the survey. Note that the Web application allowed de-
velopers to complete a questionnaire in multiple rounds,
e.g., to answer the first two questions in one session
and finish the rest sometime later. At the end of the
response period (i.e., of the 40 days), we collected devel-
opers’ answers in a spreadsheet in order to perform data
analysis. As explained before, in the end we collected 12
complete questionnaires (two developers from APACHE
ANT, two from ECLIPSE, two from ANDROID SKD, and
six from ANDROID FRAMEWORKS-BASE). Note that the
developers of the four systems were invited to evaluate
only the smells identified from the system that they were
working on. Indeed, we are interested in gathering only
data coming from original developers having sufficient
knowledge of the analyzed source code components.
Also, developers were not aware of the types of code
smell investigated in our study.

18. By “task” we refer to the set of questions provided to a partici-
pant for each of the evaluated smell instances.

19. http://www.esurveyspro.com verified on September 2014.

0

5

10

15

20

25

30

35

programming
experience

industrial
experience

ye
ar
s

very
low

low

medium

high

very
high

programming
skills

Fig. 7. Experience of the involved developers.

4.1.5 Analysis Method
To answer RQ3 we computed, for each type of historical
smell:

1) The percentage of cases where the smell has been
perceived by the participants. By perceived, we mean
cases where participants answered yes to the ques-
tion: “In your opinion, does this code component
exhibit any design or coding problem?”

2) The percentage of times the smell has been identified
by the participants. The term identified indicates
cases where besides perceiving the smell, partic-
ipants were also able to identify the exact smell
affecting the analyzed code components, by describ-
ing it when answering to the question “If yes, please
explain what are, in your opinion, the problems
affecting the code component”. We consider a smell
as identified only if the design problems described
by the participant are clearly traceable onto the
definition of the smell affecting the code component.
For example, given the following smell description
for the Feature Envy smell: “a method making too many
calls to methods of another class to obtain data and/or
functionality”, examples of “correct” descriptions of
the problem are “the method is too coupled with the
Ci class”, or “the method invokes too many methods
of the Ci class” where Ci is the class envied by the
method. On the other hand, an answer like “the
method performs too many calls” is not considered as
sufficient to mark the smell as identified.

3) Descriptive statistics of answers provided by the
participants to the question “please rate the severity

of the coding problem”. Note that for this point
we just considered answers provided by developers
that correctly identified the code smell.

4) The percentage of participants that answered yes to
the question “does this class need to be refactored?”.
For participants answering “yes”, we also report
their responses to the question “how would you
refactor this class?”.

By performing this analysis for each historical code
smell we should be able to verify if the instances of his-
torical smells detected by HIST represent actual design
problems for original developers.

As for RQ4, we perform the same exact analysis for
each structural smell as described above for the historical
smells. In addition, we compared the answers provided
by participants for smell instances falling into three
different categories (i.e., onlyHIST, onlyDECOR/onlyJD,
and both). Given the limited number of data points, this
comparison is limited to descriptive statistics only, since
we could not perform any statistical tests.

4.1.6 Replication Package
All the data used in our second study are publicly
available [40]. Specifically, we provide: (i) the text of the
email sent to the developers; (ii) the raw data for the
answers (anonymized) provided by the developers.

4.2 Analysis of the Results
Before discussing the results of our two research ques-
tions, it is worthwhile to comment on the experience
of the developers involved in our study. Fig. 7 reports
the boxplots of the distribution of answers provided
by developers to questions related to their experience
in the background section. Twelve developers claimed
a programming experience ranging between 5 to 35
years (mean=18.5, median=17.5), industrial experience
ranging between 1 to 24 years (mean=12.7, median=12).
Most of them rated their programming skills as high.
Thus, all twelve participants had some sort of indus-
trial experience and, most importantly, several years of
programming experience.

4.2.1 Are the historical code smells identified by HIST
recognized as design problems by developers?
Fig. 8 reports the percentage of developers that correctly
identified the smell present in the code component. As
explained in the design, we computed both the percent-
age of developers that perceived and identified the smell20.
However, in the context of this research question all
developers who perceived the smell were also able to
identify it. In addition, Fig. 9 reports the percentage of
developers assigning each of the five levels of severity
(going from very low to very high) to the identified de-
sign/implementation problems. Finally, Table 13 reports

20. Note that the percentage of identified smells is a subset of the
perceived one (see Section 4.1.3).

90

80

70

60

50

40

30

20

10

0

100

%
 o

f d
ev

el
op

er
s

100

Divergent Change Shotgun Surgery Parallel Inheritance

100

67

100

50 50

100

50

Eclipse
JDT

Android
SDK

Android
frameworks base

Apache
Ant

Fig. 8. RQ3: percentage of identified smell instances.

the percentage of developers that suggested refactoring
operations for the identified smells. Their answers on
how to refactor the smells are discussed in the text.

Starting from the Divergent Change instances identi-
fied by HIST, Fig. 8 shows that developers generally
recognized them as a design/implementation problems.
Indeed, the two ECLIPSE JDT developers, the two AN-
DROID SDK developers, and four out of the six involved
ANDROID FRAMEWORKS-BASE developers were able to
perceive and identify the presence of a Divergent Change
instance in the analyzed code components. Most of these
developers pointed out low cohesion of the class as
the root cause for the identified design problem. Low
cohesion of classes is clearly a symptom of a Divergent
Change smell. Indeed, classes having low cohesion tend
to implement different responsibilities, that are likely
to be changing divergently during time. Interesting is
the refactoring suggested by one of the developers of
ANDROID FRAMEWORKS-BASE recognizing this smell in
the PackageManagerService class:

Make a new separate helper class for talking to the
phone’s file system.

In other words, the developer is suggesting performing
an Extract Class refactoring aimed at removing one
responsibility from the PackageManagerService, and
in particular the management of the phone file system.
Concerning the severity of the problem as assessed by
the developers identifying the smell, Fig. 9 shows that
25% of them rate the severity as medium, 50% as high,
and 25% as very high. Also, all of them agreed on the
need to refactor the classes affected by Divergent Change.

As for the Shotgun Surgery smell, we have instances
of this smell just in two out of the four subject sys-
tems (i.e., ECLIPSE JDT and ANDROID FRAMEWORKS-
BASE). The two involved ECLIPSE JDT developers rec-
ognized presence of this smell, explaining how the
high (and spread) coupling of some of the methods con-

very
low high very

high
Divergent
Change

Parallel
Inheritance

Shotgun
Surgery

low medium

10
20
30
40
50
60
70
80
90
100

%
de
ve
lo
pe
rs

very
low high very

high
low medium very

low high very
high

low medium

Fig. 9. RQ3: severity assigned by developers to the iden-
tified instances of poorly historical smells detected by
HIST.

tained in the MethodLocator class could represent a de-
sign/implementation problem. Indeed, the basic ingredient
for the appearance of a Shotgun Surgery smell is to have
methods depending on several other classes, like the
isAsync method showed in Fig. 5 in the context of our
first study.

Three of the ANDROID FRAMEWORK-BASE develop-
ers (50%) identified the presence of a Shotgun Surgery
instance in the Handler class as an implementa-
tion/design problem. One of them pointed out that:

Handler is tightly coupled to a few other classes:
Message, MessageQueue and Looper. Each class has
knowledge about members of the other classes. From
a strict Object Oriented Programming perspective
this is not optimal.

However, the developer explained that from his point of
view in this case the class affected by the smell should
not be refactored, because:

At first glance the coupling looks like a problem,
but these classes are best viewed as one unit. If
you accept that perspective, the design problem
just isn’t there. There may also be performance
benefits of accessing members in the other classes
directly. For example, mLooper.mQueue instead of
mLooper.getQueue(). It makes sense to trade design
for performance for a class at the very core of the
message loop.

This example shows exactly what a smell is all about:
it is a symptom in the code that may (or may not)
indicate a design problem. Also, the example highlights
the importance of this evaluation. Indeed, a smell de-
tection tool should be able to point out smell instances
representing an implementation/design problem that
software developers are interested in refactoring. Note
that the developer above is the only one who did not rec-
ognize the need to refactor Handler class. Concerning
the severity of the identified Shotgun Surgery instances,
70% of developers assessed the severity as high, 15%
to very high, and the remaining 15% to medium. Thus,
the instances of Shotgun Surgery identified by HIST are
mostly recognized as serious problems by the developers
of these subject systems.

TABLE 13
RQ3: percentage of developers in favor of refactoring the

class among those correctly identifying the smells.

Code Smell % in favor
Divergent Change 100%
Parallel Inheritance 100%
Shotgun Surgery 75%

The Parallel Inheritance smell affects three of the subject
systems (see Fig. 8). This smell was the one among
the least perceived (and identified) by developers. Still,
one of the two involved developers of ECLIPSE JDT
and APACHE ANT systems as well as both the devel-
opers of ANDROID SDK recognized its presence, talking
about problems in the design hierarchy. All four develop-
ers recognizing the smell, assessed its severity as high
and suggested to refactor it by moving responsibilities
across the hierarchies. This could be done by applying
move method refactoring as well as pull up/push down
method/field refactorings.

Summary for RQ3. Developers recognized most of the
instances of historical smells identified by HIST as de-
sign/implementation problems. Indeed, they recognized
71% of the evaluated smell instances (17 out of 24) as
such. Also, developers mostly assessed the severity of
the problems caused by the presence of the historical
smells as high, manifesting the willingness to refactor
affected classes in 100% of cases in the presence of
Divergent Change and Parallel Inheritance instances and
in 75% of cases in the presence of Shotgun Surgery
instances. Thus, we conclude that the historical code smells
identified by HIST are recognized as actual design problems
by developers in most of the cases.

4.2.2 Which detection technique aimed at identifying
structural code smells better reflects developers’ percep-
tion of design problems?
Starting from the Blob smell, Fig. 10 reports the percent-
age of developers who perceived (the striped columns)
and identified (the filled columns) the Blob instances
belonging to the onlyHIST, onlyDECOR, and both groups.
Also, the left part of Fig. 11 reports the percentage of
developers assigning each of the five severity levels
(going from very low to very high) to the identified Blobs.
Finally, the top part of Table 14 reports the percentage of
developers that suggested a refactoring for the identified
Blobs.

We have instances of Blobs identified only by HIST
on all four subject systems. Among the twelve in-
volved developers, only one developer of ANDROID
FRAMEWORKS-BASE did not recognize the evaluated
Blob instance belonging to the onlyHIST group. The
remaining eleven developers (92%) clearly described the
problem affecting the analyzed class. For example, an
ECLIPSE JDT developer, referring to the analyzed class
SourceMapper, wrote: “this is a well known Blob in
Eclipse”; an Android frameworks-base developer explained,

90

80

70

60

50

40

30

20

10

0

100

%
 o

f d
ev

el
op

er
s

Android
framework base

Apache
Ant

Eclipse
JDT

Android
sdk

onlyHIST onlyDECOR both

100

50

100 100

84

67

100 100 100 100 100

Fig. 10. RQ4: percentage of perceived and identified Blob
instances.

evaluating the class WindowManagerService: “it is
a very large and complex class”. The eleven developers
recognizing the Blob instances also evaluated the sever-
ity of the problem as high (18%) or very high (82%)—
see left part of Fig. 11—manifesting the willingness to
refactor such classes in 100% of cases (see Table 14).
Most of the developers suggested to perform an Ex-
tract Class refactoring to remove the smell (e.g., “make
the class easier to comprehend by splitting its responsibil-
ities into different classes”, from an Android frameworks-
base developer). Thus, the Blob instances detected by
HIST and missed by the competitive technique (i.e.,
DECOR) have been mostly recognized by developers as
design/implementation problems. Also, the developers
recognized the high severity of the issue caused by the
presence of the smell, manifesting the willingness to
refactor such classes.

As for the Blob instances detected by DECOR and
missed by HIST, nine out of the twelve developers (75%)
recognized them as design/implementation problems. In
addition, one of the Apache Ant developers perceived
the smell but failed to identify it21 (see Fig. 10). Concern-
ing the severity assessed for the Blob instances identified
in the onlyDECOR group, Fig. 11 shows that 34% of
developers selected a low severity, 22% medium, 22% high,
and 22% very high. Also, 78% of developers recognized
the need to refactor those Blob instances.

The third group of Blob instances to analyze is the
one grouping together Blobs detected by both HIST and
DECOR (both groups). We have instances of these Blobs
only in APACHE ANT and ANDROID SDK. Interestingly,
all developers recognized the Blob instances belonging
to the both group, even if the severity assigned to them
is lower than the severity assigned to the instances

21. The developer described problems in a method manipulating jar
files.

10
20
30
40
50
60
70
80
90
100

%
de

ve
lo

pe
rs

very
low high very

high
Blob

low medium very
low high very

high
Feature Envy

low medium

onlyHIST onlyDECOR/onlyJD both

Fig. 11. RQ4: severity assigned by developers to the
identified instances of poorly historical smells detected
by HIST (onlyHIST), by the competitive technique (only-
DECOR or onlyJD), and by both.

TABLE 14
RQ4: percentage of developers in favor of refactoring the

class among those correctly identifying the smells.

Code Smell Detected by % in favor

Blob
onlyHIST 100%
onlyDECOR 78%
both 100%

Feature Envy
onlyHIST 100%
onlyJD 100%
both 100%

belonging to the onlyHIST group (see Fig. 11). This result
is quite surprising. Indeed, one would expect a very
high severity for smells identified by both detection
techniques. Still, the assessed severity is medium (25%),
high (25%), or very high (50%). Moreover, in 100% of the
cases developers agreed on the importance of refactoring
the Blob instances belonging to the both group.

Summarizing, the Blob instances detected by both
techniques are the ones that are mostly recognized by
developers (100% of the developers), followed by the
ones detected by HIST only (95%) and those detected
by DECOR only (75%). The instances recognized as more
severe problems are those identified by HIST only (82%
very high), followed by those detected by both techniques
(50% very high), and those detected by DECOR only (22%
very high). Finally, all the developers agreed on refactor-
ing the Blob instances detected by both techniques as well
as those detected by HIST only, while 78% of developers
agreed on refactoring the onlyDECOR instances.

Thus, when comparing HIST to DECOR, the Blob
instances detected by DECOR only are (i) identified
by fewer developers, (ii) evaluated with a much lower
severity level, and (iii) recognized as less likely refac-
toring opportunities by developers. Still, the fact that
75% of developers recognized the smells points out to
the conclusion that complementing HIST with structural
information (e.g., DECOR) could be a worthwhile direc-
tion in order to identify currently missed Blob instances.

90

80

70

60

50

40

30

20

10

0

100

%
 o

f d
ev

el
op

er
s

Android
framework base

Apache
Ant

Eclipse
JDT

Android
sdk

onlyHIST onlyJD both

100

50

100

50

67

50

27

100 100

Fig. 12. RQ4: percentage of perceived and identified
Feature Envy instances.

This result confirms the results of our first study, further
highlighting complementarity of the two techniques.

Turning the attention on the Feature Envy smell, Fig. 12
shows the percentage of developers who perceived (the
striped columns) and identified (the filled columns) the
Feature Envy instances belonging to the onlyHIST, onlyJD,
and both groups. As before, Fig. 11 (right part) reports
the severity assigned by developers to the identified
smell instances, while Table 14 reports the percentage
of developers that would like to refactoring the smell.

The Feature Envy instances falling in the onlyHIST
group (black columns in Fig. 12) have been recog-
nized as design/implementation problems by nine out
of twelve (75%) involved developers. In particular, all
the developers of APACHE ANT, ANDROID SDK, and
ECLIPSE JDT identified the smell instances, while only
three of the six ANDROID FRAMEWORK BASE develop-
ers recognized the problem. Developers recognizing the
problem generally described the issue explaining that
the analyzed method has high coupling with another
class (i.e., the envied class). For example, while ana-
lyzing the ECLIPSE JDT method generateCode from
class AND_AND_Expression, one of the developers ex-
plained that “generateCode is a very complex method and it
is highly coupled with the CodeStream class”. CodeStream
is exactly the class identified by HIST as the envied class
for the generateCode method.

Concerning the severity assigned to the smell by the
nine developers identifying it, 67% rated it as high,
while 33% as medium (see Fig. 11). Moreover, all nine
developers suggested to refactor this smell (see Table 14)
proposing a Move Method toward the envied class, or an
Extract Method followed by a Move Method.

As for the Feature Envy instances identified by
JDeodorant only, we have instances of them just on

APACHE ANT and ANDROID FRAMEWORK BASE. On
APACHE ANT both developers perceived a problem
in the analyzed Feature Envy instance (i.e., the RUN
method from the ClearCase class), but only one cor-
rectly identified the smell. On the ANDROID FRAME-
WORK BASE, among the six involved developers three
identified a Feature Envy in the method under analysis
(i.e., executeLoad from the FrameLoader class). Thus,
four out of the eight evaluators (50%) identified the
Feature Envy instances in the onlyJD group. All of them
assessed the severity of the spotted instances of the smell
as medium, manifesting some readiness to refactor them.

Finally, the only instance falling in the both group
belongs to the ANDROID SDK system. This instance has
been identified by both involved developers, that as-
sessed its severity as high, and suggested a Move Method
refactoring to solve the problem. This confirms, in part,
what we observed for the Blob smell: when both HIST
and the techniques based on a single snapshot analysis
detect a code smell, all involved developers identify the
smell and suggest appropriate refactoring operation.

Summarizing, the Feature Envy instances detected by
both techniques are the most recognized by developers
(100% of developers), followed by the ones detected by
HIST only (75%) and those detected by JDeodorant only
(38%). Also, the instances recognized as more severe
problems are those detected by both techniques (100%
high), followed by those detected by HIST only (67%
high), and those detected by JDeodorant only (100%
medium). Despite these differences, all the developers
identifying the Feature Envy instances falling in the three
different groups (i.e., onlyHIST, onlyJD, and both) sug-
gested to refactor them.

Summary for RQ4. The smells that perfectly reflect
the developers’ perception of design problems are those
identified by both HIST and techniques based on code
analysis of a single snapshot —100% of the involved
developers for both Blob and Feature Envy instances.
However, the smells identified by HIST only are highly
recognized as design problems by developers—95% of
participants for Blob instances and 75% for Feature Envy
instances. Also, smells belonging to the onlyHIST group
are more frequently recognized as problems by devel-
opers than those solely identified by the competitive
technique. In summary, this study confirms that there
is a potential to combine historical and structural infor-
mation to achieve a better smell detection.

5 THREATS TO VALIDITY

This section discusses the threats that could affect the
validity of the HIST evaluation.

5.1 Construct Validity
Threats to construct validity concern relationships be-
tween theory and observation. This threat is generally
due to imprecision in the measurements performed in
the study. In the context of Study I, this is mainly due

to how the oracle was built (see Section 3.1.3). It is
important to remark that to mitigate the bias for such
a task, the students who defined the oracle were not
aware of how HIST actually works. However, we cannot
exclude that such manual analysis could have poten-
tially missed some smells, or else identified some false
positives. Another threat is due to the baselines—i.e.,
competitive approaches—against which we compared
HIST. While for Blob, Feature Envy, Divergent Change,
and Shotgun Surgery we compared HIST against existing
techniques/tools, this was not possible for the Parallel
Inheritance smell, for which we had to define an alter-
native static detection technique, that may or may not
be the most suitable ones among those based solely
on structural information. Last, but not least, note that
although we implemented the DECOR rules (for the
Blob detection) and the approach by Rao et al. [42] (for
Divergent Change and Shotgun Surgery) ourselves, these
are precisely defined by the authors.

As for Study II, threats to construct validity are mainly
related to how we measured the developers’ perception
of smells. As explained in Section 4.1.3, we asked de-
velopers to tell us whether they perceived a problem
in the code shown to them. In addition, we asked
them to explain what kind of problem they perceived
to understand whether or not they actually identify the
smell affecting the code component as the design and/or
implementation problem. Finally, for the severity we
used a Likert scale [37] that permits the comparison of
responses from multiple respondents. We are aware that
questionnaires could only reflect a subjective perception
of the problem, and might not fully capture the extent
to which the smell instances identified by HIST and
by the competitive techniques are actually perceived by
developers.

5.2 Internal Validity
Threats to internal validity concern factors that could have
influenced our results. In both studies, a possible threat
is represented by the calibration of the HIST parameters,
as well as of those of the alternative static approaches.
We performed the calibration of these parameters on one
project (Xerces) not used in our study, by computing
F-measures for different possible values of such param-
eters (see Section 3.1.4).

A factor that could have affected the results of Study
II is also the response rate: while appearing not very
high (11%), it is inline what it is normally expected in
survey studies (i.e., below 20% [6]). Note also that we
just targeted for this study original developers of the
four open source systems, without taking into account
the possibility of involving students or people with no
experience on the object systems. Still, we cannot ensure
that the involved developers had a good knowledge of
the specific code components used in our surveys. An
alternative design would have been to invite only devel-
opers actually involved in the development of the spe-
cific code components evaluated in our survey. However,

(i) the different code components present in our survey
are evolved and maintained by different developers, and
(ii) this would have resulted in a much lower number
of developers invited, having as a consequence a very
likely drop in the number of participants in our study.

Also, we tried to keep the questionnaire as short as
possible to have more developers answering our survey.
For instance, we did not include any questions on non-
smelly code entities as sanity check in our survey. Thus,
we cannot exclude that participants always indicated
that the analyzed code components contained a de-
sign/implementation problem and the problem was a
serious one. However, this holds for the smell instances
identified by HIST as well as for those identified by the
competitive techniques.

Still in the context of Study II, it must be clear that
even if developers recognized most of the code smell
instances identified by HIST and declared that they
wanted to refactor them, this does not always mean that
it is possible to take proper refactoring actions aimed
at removing those smells. Indeed, some systems—e.g.,
Eclipse JDT—contain classes that naturally tend to
become smelly. For example, parsers (largely present in
the Eclipse JDT) are often affected by the Blob code
smell [7], and are difficult to remove without taking
important (and expensive) refactoring actions.

5.3 External Validity
Threats to external validity concern the generalization
of the results. HIST only deals with five smells, while
there might be many more left uncovered [9], [14].
However, as explained in Section 2 we focused on (i)
three smells—Divergent Change, Shotgun Surgery, and
Parallel Inheritance—that are clearly related to how source
code elements evolve over time, rather than to their
structural characteristics, and (ii) two smells—Blob and
Feature Envy—whose characteristics can be captured, at
least in part, by observing source code changes over
time. However, we cannot exclude that there could be
other smells that can be modeled similarly.

As for the first study, we conducted it on twenty Java
projects ensuring a good generalization of our findings.
We evaluated HIST and the competitive techniques on a
specific system’s snapshot selected by splitting the his-
tory of each object system in two equal parts. Thus, the
achieved results, and in particular our main finding in
the context of RQ2 (i.e., HIST was able to outperform single
snapshot techniques and tools in terms of recall, precision, and
F-measure), might be influenced by the specific selected
snapshot. To mitigate such a threat, we replicated Study
I on ten snapshots representing ten different releases
of a single system, namely APACHE CASSANDRA. In
particular, we considered CASSANDRA’s releases from
0.5 to 1.122. Note that we just performed this analysis on

22. We discarded the first four releases (i.e., from release 0.1 to
release 0.4) since change-history information for these four releases
was not present in the versioning system.

●

●

●●

●●

●●0
20

40
60

80
10
0

Divergent
Change

HIST SS

Shotgun
Surgery

HIST SS

Parallel
Inheritance

HIST SS

Blob

HIST SS

Feature
Envy

HIST SS

F-
M
ea
su
re

Fig. 13. HIST vs single-snapshot competitive techniques
(SS): F-Measure achieved for each smell type on the ten
Cassandra releases.

a single system since it required the manual definition
of ten new oracles (i.e., one for each release) reporting
the smell instances present in each release. The ora-
cle definition was performed by two Master’s students
(one of which was also involved in the definition of
the 20 oracles exploited in Study I) by adopting the
same procedure described in Section 3.1.3. We run HIST
and the competitive techniques on the ten snapshots
representing the ten releases. Such snapshots have been
identified by exploiting the git tagging mechanism. The
results achieved are high consistent when comparing
HIST and the competitive techniques. Figure 13 reports
the boxplots of the F-Measure achieved by HIST and
by the competitive techniques on the ten CASSANDRA
releases for each of the five considered code smells. The
achieved results can be summarized as follows:
• Divergent Change: HIST achieves a higher F-Measure

with respect to the competitive technique (i.e.,
DCPP) in nine out of the ten considered releases
(all but CASSANDRA 0.5).

• Shotgun Surgery: HIST achieves a higher F-Measure
with respect to the competitive technique (i.e.,
DCPP) in nine out of the ten considered releases
(all but CASSANDRA 0.5). In CASSANDRA 0.5, a tie
is reached, since no instances of the Shotgun Surgery
smell are present, and both detection techniques do
not retrieve any false positive.

• Parallel Inheritance: HIST achieves a higher F-
Measure with respect to the competitive technique
(i.e., PICA) in all ten considered releases.

• Feature Envy: HIST achieves a higher F-Measure
with respect to the competitive technique (i.e.,
JDeodorant) in six out of the ten considered releases,
JDeodorant works better on two releases (the first
two, CASSANDRA 0.5 and 0.6), while a tie is reached
on the remaining two releases.

• Blob: HIST outperforms the competitive technique
(i.e., DECOR) in all ten considered releases.

Interestingly, when the competitive techniques outper-

form HIST, the releases involved are the 0.5 (in case of
Divergent Change, Shotgun Surgery, and Feature Envy)
and the 0.6 (in case of Feature Envy), representing the
first two considered releases. Thus, we can conclude that
a shorter change history penalizes HIST as compared
to the competitive techniques. Such a limitation is typ-
ical of all approaches exploiting historical information
to derive recurring patterns. Despite that, the overall
results achieved on the release-snapshots confirm our
main finding reported while answering RQ2: HIST out-
performs the competitive detection techniques based on
code analysis of a single system snapshot. The interested
reader can find detailed results about this analysis in our
replication package [40].

Despite the effort we put in extending our evaluation
to a high number of systems, it could be worthwhile
to replicate the evaluation on other projects having dif-
ferent evolution histories or different architectures (e.g.,
plugin-based architecture). Also, the number of code
smell instances present in our oracle was quite low for
the Shotgun Surgery smell (six instances). However, while
this means evaluating the HIST performances on a small
number of “true positive” instances, it is worth noting
that achieving high precision levels is even harder when
the number of correct instances in the oracle is low.
Indeed, it is easier to identify a high number of false
positives when the true positives in the oracle are very
few. Despite this, HIST achieved an average precision of
86% for such a smell.

Concerning Study II, external validity threats can be
related to the set of chosen objects and to the pool of
the participants to the study. Concerning the chosen
objects, we are aware that our study is based on smell
instances detected in four Java systems only, and that
further studies are needed to confirm our results. In this
study we had to constrain our analysis to a limited set
of smell instances, because the task to be performed by
each respondent had to be reasonably small (to ensure a
decent response rate).

6 RELATED WORK

This section analyzes the literature related to (i) the
identification of code smells in source code; and (ii)
the analysis of the evolution of code smells in existing
software systems.

6.1 Methods and Tools to Detect Bad Smells
All the techniques for detecting code smells in source
code have their roots in the definition of code design de-
fects and heuristics for identifying those that are outlined
in well-known books: [9], [14], [45], [50]. The first by
Webster [50] describes pitfalls in Object-Oriented (OO)
development going from the management of a project
through the implementation choices, up to the quality
insurance policies. The second by Riel [45] defines more
than 60 guidelines to rate the integrity of a software
design. Fowler [14] defines 22 code smells together with

refactoring operations to remove them from the system.
Finally, Brown et al. [9] describe 40 anti-patterns together
with heuristics for detecting them in code.

Starting from the information reported in these books,
several techniques have been proposed to detect design
defects in source code. Travassos et al. [47] define manual
inspection rules (called “reading techniques”) aimed at
identifying design defects that may negatively impact
the design of object-oriented systems.

Simon et al. [46] provide a metric-based visualiza-
tion tool able to discover design defects representing
refactoring opportunities. For example, to identify Blobs,
each class is analyzed to verify the structural relation-
ships (i.e., method calls and attribute accesses) among
its methods. If it is possible to identify different sets
of cohesive attributes and methods in a class, then an
Extract Class refactoring opportunity is identified.

van Emden and Moonen [49] present jCOSMO, a
code smell browser that detects and visualizes smells
in Java source code. They focus their attention on two
code smells related to Java programming language, i.e.,
instanceof and typecast. The first occurs when there is a
concentration of instanceof operators in the same block
of code making the code difficult to understand. As for
the typecast code smell, it appears when an object is
explicitly converted from one class type into another,
possibly performing illegal casting which results in a
runtime error.

Kamiya et al. [21] introduced the tool CCFinder in
order to identify clones in source code. In particular,
they used a syntactic-based approach where the pro-
gram is divided in lexemes and the token sequences
are compared in order to find matches between two
subsequences. However, such approach appear to be
ineffective in cases where duplicated code suffers from
several modifications during its evolution. To mitigate
such a problem, Jiang et al. [18] introduced DECKARD,
a technique able to identify clones using a mix of
tree-based and syntactic-based approaches. They first
translate the source code into syntax tree, and then
complement it with the syntactic information in form of
vectors that are subsequently clustered. To detect clones,
heuristic rules are applied on the clusters.

Marinescu [30] proposed a mechanism called “de-
tection strategies” for formulating metric-based rules
that capture deviations from good design principles and
heuristics. Such strategies are based on identifying symp-
toms characterizing smells and metrics for measuring
such symptoms, and then by defining rules based on
thresholds on such metrics. Then, Lanza and Marinescu
[26] describe how to exploit quality metrics to identify
“disharmony patterns” in code by defining a set of
thresholds based on the measurement of the exploited
metrics in real software systems. The detection strategies
are formulated in different steps. First, the symptoms
that characterize a particular smell are defined. Second,
a proper set of metrics measuring these symptoms is
identified. Having this information, the next step is to

define thresholds to classify the class as affected (or not)
by the defined symptoms. Finally, AND/OR operators
are used to correlate the symptoms, leading to the final
rule for detecting the smells.

Munro [35] presented a metric-based detection tech-
nique able to identify instances of two smells, namely
Lazy Class and Temporary Field, in source code. In partic-
ular, a set of thresholds is applied to the measurement
of some structural metrics to identify those smells. For
example, to retrieve Lazy Class, three metrics are used:
Number of Methods (NOM), LOC, Weight Methods per
Class (WMC), and Coupling Between Objects (CBO).

Khomh et al. [25] proposed an approach based on
Bayesian belief networks to specify and detect smells
in programs. The main novelty of that approach is
represented by the fact that it provides a likelihood that
a code component is affected by a smell, instead of a
boolean value like previous techniques. This is also one
of the main characteristics of the approach based on
quality metrics and B-splines proposed by Oliveto et al.
[36] for identifying instances of Blobs in source code.

Tsantalis et al. [48] presented JDeodorant, a tool for
detecting Feature Envy smells with the aim of suggesting
move method refactoring opportunities. In particular, for
each method of the system, their approach forms a set
of candidate target classes where a method should be
moved. This set is obtained by examining the entities
(i.e., attributes and methods) that a method accesses
from the other classes. In its current version JDeodor-
ant23 is also able to detect other three code smells (i.e.,
State Checking, Long Method, and God Classes).

Moha et al. [33] introduced DECOR, a technique
for specifying and detecting code and design smells.
DECOR uses a Domain-Specific Language (DSL) for
specifying smells using high-level abstractions. Four de-
sign smells are identified by DECOR, namely Blob, Swiss
Army Knife, Functional Decomposition, and Spaghetti Code.

Kessentini et al. [22] presented a technique to de-
tect design defects by following the assumption that
what significantly diverges from good design practices
is likely to represent a design problem. The advantage of
their approach is that it does not look for specific code
smells (as most of approaches, including HIST, do) but
for design problems in fwnweL. Also, in the reported
evaluation [22] the approach was able to achieve a 95%
precision in identifying design defects.

Boussaa et al. [8] proposed the use of competitive
coevolutionary search to the code-smells detection prob-
lem. In particular, two populations evolve simultane-
ously: the first generates detection rules with the aim
of detecting the highest possible proportion of code
smells, whereas the second population generates smells
that are currently not detected by the rules of the other
population.

Ligu et al. [28] introduced the identification of Re-
fused Bequest code smell using a combination of static

23. http://www.jdeodorant.com/ verified on February 2014

source code analysis and dynamic unit test execution.
Their approach aims at discovering classes that really
wants to support the interface of the superclass [14]. In
order to understand what are the methods really called
on subclass instances, they intentionally override these
methods introducing an error in the new implementa-
tion (e.g., division by zero). If there are classes in the
system invoking the method, then a failure will occur.
Otherwise, the method is never called and an instance
of Refused Bequest is found.

All the approaches mentioned so far exploit informa-
tion extracted from source code—e.g., quality metrics—
to detect code smells. Differently, HIST, the approach de-
scribed in this paper, exploits change-history information
extracted from versioning systems for the identification
of code smells in source code. From this point of view,
the two most related approaches are those by Ratiu et al.
[44] and by Gîrba et al. [17].

Ratiu et al. [44] describe an approach for detecting
smells based on evolutionary information of problematic
code components (as detected by code analysis) over
their life-time. The aim is to measure persistence of the
problem and related maintenance effort spent on the
suspected components. This work is the closest to HIST
since it discusses the role of historical information for
smell detection. However, Ratiu et al. did not explicitly
use historical information for detecting smells (as done
by HIST), but they only performed multiple code analy-
sis measurements of design problems during the history
of code components. Historical information have also
been used by Lozano et al. [29] to assess the impact of
code smells on software maintenance.

Gîrba et al. [17] exploited formal concept analysis
(FCA) for detecting co-change patterns. In other words,
they identified code components that change in the same
way and in the same time. The authors explain how
the proposed technique could be applied for detecting
instances of Shotgun Surgery and Parallel Inheritance.
However, the performances of their approach for the
detection of these two smells are not reported. It is
worth noting that while the basic idea behind the work
by Gîrba et al. is similar to the one behind HIST, our
approach exploits a totally different underlying mecha-
nism (i.e., association rules vs FCA) providing additional
information on the degree to which code components co-
change during time (i.e., support and confidence). Also,
while the approach by Gîrba et al. performs a change
analysis at release level (i.e., the changes to each code
component are detected each time a release is issued),
HIST relies on finer-grained information extracting the
changes at commit level.

Historical information has been also exploited by Ouni
et al. [38] in the context of a multi-objective optimization-
based approach aimed at identifying the best sequence
of refactoring operations that minimizes the number of
bad-smells in a system under analysis while maximizing
the consistence with the development history. While we
share with Ouni et al. the use of historical information

to improve the internal quality of software, HIST is a
smell detector also focused on historical smells, while the
approach by Ouni et al. is a refactoring recommendation
system.

Finally, it is worthwhile to mention that co-change
analysis has been used in the past for other purposes,
for example by Ying et al. [53], Zimmermann et al.
[54], [55], Gall et al. [15], and Kagdi [16], [19], [20]
for identifying logical change couplings, and by Adams
et al. [2], Mulder et al. [34], and Canfora et al. [10]
for the identification of crosscutting concerns. Although
the underlying technique is similar—i.e., based on the
identification of code elements that co-change—for our
purpose (smell detection) appropriate rules are needed,
and as explained in Section 2, a fine-grained analysis,
identifying co-changes at method-level, is often required.

6.2 Empirical Studies on Bad Smells

Code code smells have also been widely studied in
order to investigate their evolution and their effect on
maintenance activities.

As far as the evolution of code smells is concerned,
Chatzigeorgiou and Manakos [11] demonstrated that the
number of code smells increases during the evolution
of the system and that the developers are reluctant to
perform activities aimed at their removal. Also Peters
and Zaidman [41] obtained similar results showing how,
even if the developers are aware about the presence of
code smells, they do not care to perform refactoring ac-
tivities to remove them from the system. The reasons of
this behavior are explained by Arcoverde et al. [4], who
reported a survey in order to understand the longevity
of code smells and showed that code smells often remain
in source code for a long time and the main reason to
postpone their removal through refactoring activities is
to avoid API modifications [4].

As for the studies aimed at analyzing evolution of
code smells, there are several empirical studies targeted
at investigating their impact on maintenance properties,
such as comprehensibility and change- or fault- prone-
ness. Abbes et al. [1] investigated how two types of
code smells—Blob and Spaghetti Code–impact program
comprehension. The results demonstrate that, while the
presence of a code smell does not decrease significantly
the developers’ performance, a combination of more
code smells in the same class is able to destabilize the
developers and, consequently, reduce their performance.
Also Yamashita and Moonen [52] studied the interac-
tion of different code smells, obtaining similar results.
Indeed, they showed that the maintenance problems
are strictly related to the presence of more code smells
in the same file. At the same time, they studied the
impact of code smells on maintainability characteristics
[51]. In particular, they were the first to investigate
the key maintainability factors that are relevant for the
developers and then identify which code smells related
to these maintainability problems.

Regarding to change- and fault-proneness, Khomh et
al. [23], [24] demonstrated how code smells make the
source code much more change prone [23] and fault-
prone [24] with respect to the other files. Moreover, they
provided evidence that code involved in code smells
is more fault-prone than the other files in the system.
Khomh et al. also demonstrated that there are some code
smells—such as Message Chains—where the phenomenon
is amplified [24].

The correlation between the presence of code smells
and the probability that the class has errors has also
been empirically evaluated by Li and Shatnawi [27].
They studied the post-release system evolution process
demonstrating that there are many code smells posi-
tively correlated with class errors.

All these studies provide evidence that code smells
have negative effects on maintenance properties such as
understandability. However, it is still unclear whether
developers would actually consider code smells as ac-
tual symptoms of suboptimal design/implementation
choices. In other words, there seems to be a gap between
the theory and the practice. Our second study partially
bridged this gap, providing empirical evidence on the
extent to which code smells identified by HIST and by
techniques based on the analysis of a single snapshot
are perceived by original developers as actual design or
implementation problems.

7 CONCLUSION AND FUTURE WORK

We presented HIST, an approach aimed at detecting
five different code bad smells by exploiting co-changes
extracted from versioning systems. We identified five
smells for which historical analysis can be helpful in
the detection process: Divergent Change, Shotgun Surgery,
Parallel Inheritance, Blob, and Feature Envy. For each smell
we defined a historical detector, using association rule
discovery [3] or analyzing the set of classes/methods
co-changed with the suspected smell.

We evaluated HIST through two empirical studies. In
the first study, we assessed its recall and precision over a
manually-built oracle of smells identified in twenty Java
open source projects, and compared it with alternative
smell detection approaches based on the analysis of a
single project snapshot. The results of our study indicate
that HIST exhibits a precision between 72% and 86%,
and a recall between 58% and 100%. For “intrinsically
historical” smells—such as Divergent Change, Shotgun
Surgery, Parallel Inheritance—HIST clearly outperforms
approaches based on the analysis of a single snapshot,
and generally performs as well these latter (if not better)
for Blob and Feature Envy smells. Besides the better
detection accuracy (in terms of precision and recall),
HIST has a further advantage: it highlights smells that
are subject to frequent changes, and therefore be possibly
more problematic for the maintainer. In other words, a
Blob detected based on structural information might not
be necessarily a problem if it rarely (or never) changes,

whereas it is worthwhile to bring to the attention of
the developer those changing very frequently, hence
identified by HIST. Finally, it is important to remark that
in several cases the sets of smells detected by HIST and
by techniques analyzing a single system’s snapshot are
quite complementary, suggesting that better techniques
can be built by combining them.

In a second study, we involved twelve original de-
velopers of four open source systems to understand
to what extent smell instances identified by HIST
and by the competitive techniques are felt as de-
sign/implementation problems by developers. The re-
sults achieved indicated that over 75% of smell instances
identified by HIST are also recognized by developers
as actual design/implementation problems. In addition,
this study showed that smell instances identified by
both HIST and the single-snapshot techniques are the
ones that perfectly match developers’ perception of
design/implementation problems. This result, together
with the high complementarity between HIST and some
of the competitive techniques observed in our first study,
triggers our future research agenda, aimed at developing
a hybrid smell detection approach, obtained by com-
bining static code analysis with analysis of co-changes.
Also, we are planning on investigating the applicability
of HIST to other types of smells. Finally, we would like
to perform a deeper investigation into the characteristics
causing a smell instance to represent/not represent a
problem for developers.

ACKNOWLEDGMENT

The authors would like to thank Dario Di Nucci, Michele
Tufano, and Filomena Carnevale for their help in defin-
ing the oracle used in the HIST evaluation. We would
also like to thank all the open-source developers who
responded to our survey. Gabriele Bavota and Massim-
iliano Di Penta are partially funded by the EU FP7-ICT-
2011-8 project Markos, contract no. 317743. Denys Poshy-
vanyk was partially supported by the CCF-1253837 and
CCF-1218129 grants. Any opinions, findings, and con-
clusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

REFERENCES

[1] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An
empirical study of the impact of two antipatterns, blob and
spaghetti code, on program comprehension,” in 15th European
Conference on Software Maintenance and Reengineering, CSMR 2011,
1-4 March 2011, Oldenburg, Germany. IEEE Computer Society,
2011, pp. 181–190.

[2] B. Adams, Z. M. Jiang, and A. E. Hassan, “Identifying crosscutting
concerns using historical code changes,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010. ACM, 2010,
pp. 305–314.

[3] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining association
rules between sets of items in large databases,” in Proceedings of
the 1993 ACM SIGMOD International Conference on Management of
Data, 1993, pp. 207–216.

[4] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the
longevity of code smells: preliminary results of an explanatory
survey,” in Proceedings of the International Workshop on Refactoring
Tools. ACM, 2011, pp. 33–36.

[5] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[6] Y. Baruch, “Response rate in academic studies a comparative
analysis,” Human Relations, pp. 52(4):421–438, 1999.

[7] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto,
“Automating extract class refactoring: an improved
method and its evaluation,” Empirical Software Engineering,
vol. 19, no. 6, pp. 1617–1664, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10664-013-9256-x

[8] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh, and
S. Ben Chikha, “Competitive coevolutionary code-smells detec-
tion,” in Search Based Software Engineering, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013, vol. 8084,
pp. 50–65.

[9] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III,
and T. J. Mowbray, Anti Patterns: Refactoring Software, Architectures,
and Projects in Crisis, 1st ed. John Wiley and Sons, March 1998.

[10] G. Canfora, L. Cerulo, and M. Di Penta, “On the use of line co-
change for identifying crosscutting concern code,” in 22nd IEEE
International Conference on Software Maintenance (ICSM 2006), 24-27
September 2006, Philadelphia, Pennsylvania, USA. IEEE Computer
Society, 2006, pp. 213–222.

[11] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution
of bad smells in object-oriented code,” in International Confer-
ence on the Quality of Information and Communications Technology
(QUATIC). IEEE, 2010, pp. 106–115.

[12] M. L. Collard, H. H. Kagdi, and J. I. Maletic, “An xml-based
lightweight c++ fact extractor,” in 11th International Workshop on
Program Comprehension (IWPC 2003), May 10-11, 2003, Portland,
Oregon, USA. IEEE Computer Society, 2003, pp. 134–143.

[13] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou,
“JDeodorant: identification and application of extract class refac-
torings,” in Proceedings of the 33rd International Conference on
Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May
21-28, 2011. ACM, 2011, pp. 1037–1039.

[14] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley, 1999.

[15] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling
based on product release history,” in Proceedings of 14th IEEE
International Conference on Software Maintenance, 1998, pp. 190–198.

[16] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated
impact analysis for managing software changes,” in Proceedings of
the 34th IEEE/ACM International Conference on Software Engineering
(ICSE’12), 2012, pp. 430–440.

[17] T. Gîrba, S. Ducasse, A. Kuhn, R. Marinescu, and R. Daniel,
“Using concept analysis to detect co-change patterns,” in Ninth
International Workshop on Principles of Software Evolution: In Con-
junction with the 6th ESEC/FSE Joint Meeting, ser. IWPSE ’07.
ACM, 2007, pp. 83–89.

[18] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable
and accurate tree-based detection of code clones,” in Proceedings
of the International Conference on Software Engineering, 2010.

[19] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Collard, “Blending
conceptual and evolutionary couplings to support change impact
analysis in source code,” in Reverse Engineering (WCRE), 2010 17th
Working Conference on, 2010, pp. 119–128.

[20] H. Kagdi, M. Gethers, and D. Poshyvanyk, “Integrating
conceptual and logical couplings for change impact analysis
in software,” Empirical Software Engineering, vol. 18, no. 5, pp.
933–969, 2013. [Online]. Available: http://dx.doi.org/10.1007/
s10664-012-9233-9

[21] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguis-
tic token-based code clone detection system for large scale source
code,” Software Engineering, IEEE Transactions on, vol. 28, no. 7,
pp. 654–670, Jul 2002.

[22] M. Kessentini, S. Vaucher, and H. Sahraoui, “Deviance from per-
fection is a better criterion than closeness to evil when identifying
risky code,” in Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’10. ACM, 2010, pp.
113–122.

[23] F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An exploratory
study of the impact of code smells on software change-
proneness,” in 16th Working Conference on Reverse Engineering,

WCRE 2009, 13-16 October 2009, Lille, France. IEEE Computer
Society, 2009, pp. 75–84.

[24] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change-
and fault-proneness,” Empirical Software Engineering, vol. 17, no. 3,
pp. 243–275, 2012.

[25] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A
bayesian approach for the detection of code and design smells,”
in Proceedings of the 9th International Conference on Quality Software.
Hong Kong, China: IEEE CS Press, 2009, pp. 305–314.

[26] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice:
Using Software Metrics to Characterize, Evaluate, and Improve the
Design of Object-Oriented Systems. Springer, 2006.

[27] W. Li and R. Shatnawi, “An empirical study of the bad smells and
class error probability in the post-release object-oriented system
evolution,” Journal of Systems and Software, pp. 1120–1128, 2007.

[28] E. Ligu, A. Chatzigeorgiou, T. Chaikalis, and N. Ygeionomakis,
“Identification of refused bequest code smells,” in Proceedings of
the 29th IEEE International Conference on Software Maintenance, 2013.

[29] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Assessing the
impact of bad smells using historical information,” in Ninth inter-
national workshop on Principles of software evolution: in conjunction
with the 6th ESEC/FSE joint meeting, ser. IWPSE ’07. New York,
NY, USA: ACM, 2007, pp. 31–34.

[30] R. Marinescu, “Detection strategies: Metrics-based rules for de-
tecting design flaws,” in 20th International Conference on Software
Maintenance (ICSM 2004), 11-17 September 2004, Chicago, IL, USA.
IEEE Computer Society, 2004, pp. 350–359.

[31] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the au-
tomatic detection of function clones in a software system using
metrics,” in 1996 International Conference on Software Maintenance
(ICSM ’96), 4-8 November 1996, Monterey, CA, USA, Proceedings.
IEEE Computer Society, 1996, pp. 244–.

[32] T. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, pp. 308–320, 1976.

[33] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur, “Decor:
A method for the specification and detection of code and design
smells,” IEEE Transactions on Software Engineering, vol. 36, no. 1,
pp. 20–36, 2010.

[34] F. Mulder and A. Zaidman, “Identifying cross-cutting concerns
using software repository mining,” in 10th International Workshop
on Principles on Software Evolution (EVOL/IWPSE 2010), 2010, pp.
23–32.

[35] M. J. Munro, “Product metrics for automatic identification of “bad
smell" design problems in java source-code,” in Proceedings of the
11th International Software Metrics Symposium. IEEE Computer
Society Press, September 2005.

[36] R. Oliveto, F. Khomh, G. Antoniol, and Y.-G. Guéhéneuc, “Numer-
ical signatures of antipatterns: An approach based on b-splines,”
in Proceedings of the 14th Conference on Software Maintenance and
Reengineering, R. Capilla, R. Ferenc, and J. C. Dueas, Eds. IEEE
Computer Society Press, March 2010.

[37] A. N. Oppenheim, Questionnaire Design, Interviewing and Attitude
Measurement. London: Pinter, 1992.

[38] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “The
use of development history in software refactoring using a multi-
objective evolutionary algorithm,” in Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO
’13. ACM, 2013, pp. 1461–1468.

[39] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “Detecting bad smells in source code using
change history information,” in Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference on, Nov 2013,
pp. 268–278.

[40] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk,
and A. De Lucia, “HIST: replication package
http://dx.doi.org/10.6084/m9.figshare.1157374,” 2014.

[41] R. Peters and A. Zaidman, “Evaluating the lifespan of code
smells using software repository mining,” in Proceedings of
the 2012 16th European Conference on Software Maintenance
and Reengineering, ser. CSMR ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 411–416. [Online]. Available:
http://dx.doi.org/10.1109/CSMR.2012.79

[42] A. Rao and K. Raddy, “Detecting bad smells in object oriented
design using design change propagation probability matrix,” in

Proceedings of the International MultiConference of Engineers and
Computer Scientists, 2008, pp. 1001–1007.

[43] A. Rao and D. Ram, “Software design versioning using propa-
gation probability matrix,” in in Proceedings of Third International
Conference on Computer Applications, Yangon, Myanmar, 2005, 2005.

[44] D. Ratiu, S. Ducasse, T. Gîrba, and R. Marinescu, “Using history
information to improve design flaws detection,” in 8th European
Conference on Software Maintenance and Reengineering (CSMR 2004),
24-26 March 2004, Tampere, Finland, Proceeding. IEEE Computer
Society, 2004, pp. 223–232.

[45] A. J. Riel, Object-Oriented Design Heuristics. Addison-Wesley, 1996.
[46] F. Simon, F. Steinbr, and C. Lewerentz, “Metrics based refactor-

ing,” in Proceedings of 5th European Conference on Software Mainte-
nance and Reengineering. Lisbon, Portugal: IEEE CS Press, 2001,
pp. 30–38.

[47] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili, “Detecting
defects in object-oriented designs: using reading techniques to
increase software quality,” in Proceedings of the 14th Conference on
Object-Oriented Programming, Systems, Languages, and Applications.
ACM Press, 1999, pp. 47–56.

[48] N. Tsantalis and A. Chatzigeorgiou, “Identification of move
method refactoring opportunities,” IEEE Transactions on Software
Engineering, vol. 35, no. 3, pp. 347–367, 2009.

[49] E. van Emden and L. Moonen, “Java quality assurance by detect-
ing code smells,” in Proceedings of the 9th Working Conference on
Reverse Engineering (WCRE’02). IEEE CS Press, Oct. 2002.

[50] B. F. Webster, Pitfalls of Object Oriented Development, 1st ed. M &
T Books, February 1995.

[51] A. Yamashita and L. Moonen, “Do code smells reflect important
maintainability aspects?” in International Conference on Software
Maintenance (ICSM). IEEE, 2012, pp. 306–315.

[52] ——, “Exploring the impact of inter-smell relations on software
maintainability: An empirical study,” in International Conference on
Software Engineering (ICSE). IEEE, 2013, pp. 682–691.

[53] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll,
“Predicting source code changes by mining change history,” IEEE
Transactions on Software Engineering, vol. 30, no. 9, pp. 574–586,
2004.

[54] T. Zimmermann, A. Zeller, P. Weißgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE Transactions on
Software Engineering (TSE), vol. 31, no. 6, pp. 429–445, 2005.

[55] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in ICSE ’04: Pro-
ceedings of the 26th International Conference on Software Engineering,
2004, pp. 563–572.

