
Crowdsourcing User Reviews to Support the Evolution of Mobile Apps

Fabio Palomba1, Mario Linares-Vásquez2, Gabriele Bavota3, Rocco Oliveto4

Massimiliano Di Penta5, Denys Poshyvanyk6, Andrea De Lucia7

1Delft University of Technology, The Netherlands, 2Universidad de los Andes, Colombia
3Università della Svizzera italiana (USI), Lugano, Switzerland, 4University of Molise, Pesche (IS), Italy

5University of Sannio, Italy, 6The College of William and Mary, USA, 7University of Salerno, Italy

Abstract

In recent software development and distribution scenarios, app stores are playing a major role, especially for mobile apps.
On one hand, app stores allow continuous releases of app updates. On the other hand, they have become the premier
point of interaction between app providers and users. After installing/updating apps, users can post reviews and provide
ratings, expressing their level of satisfaction with apps, and possibly pointing out bugs or desired features. In this paper
we empirically investigate—by performing a study on the evolution of 100 open source Android apps and by surveying
73 developers—to what extent app developers take user reviews into account, and whether addressing them contributes
to apps’ success in terms of ratings. In order to perform the study, as well as to provide a monitoring mechanism for
developers and project managers, we devised an approach, named CRISTAL, for tracing informative crowd reviews
onto source code changes, and for monitoring the extent to which developers accommodate crowd requests and follow-up
user reactions as reflected in their ratings. The results of our study indicate that (i) on average, half of the informative
reviews are addressed, and over 75% of the interviewed developers claimed to take them into account often or very often,
and that (ii) developers implementing user reviews are rewarded in terms of significantly increased user ratings.

Keywords: Mobile app evolution, User reviews, Mining app stores, Empirical Study

1. Introduction

Online app stores are promoting and supporting a more
dynamic way of distributing software directly to users with
release periods shorter than in the case of traditional soft-
ware systems. For instance, periodically planned releases
that follow an established road map have been replaced by
continuous releases that become available for an upgrade
with a cadence of few weeks, if not days [63]. This phe-
nomenon is particularly evident for—though not limited
to—mobile apps, where releases are managed through on-
line app stores, such as the Apple App Store [2], Google
Play Market [28], or Windows Phone App Store [57]. The
pressure for continuous delivery of apps is a constant in the
mobile economy, in which users are demanding new and
better features from the apps, and the ratings/reviews pro-
vided by the users are a strong mechanism to promote the
apps in the market.

The distribution of updates—related to the introduc-
tion of new features and to bug fixes—through app online
stores is accompanied by a mechanism that allows users
to rate releases using scores (i.e., star ratings) and text
reviews. The former (i.e., the score) is usually expressed
as a choice of one to five stars, and the latter (i.e., the
review) is a free text description that does not have a pre-
defined structure and is used to describe informally bugs
and desired features. The review is also used to describe

impressions, positions, comparisons, and attitudes toward
the apps [9, 32, 38, 66, 71]. Therefore, online store re-
views are free and fast crowd feedback mechanisms that
can be used by developers as a backlog for the develop-
ment process. Also, given this easy online access to app-
store-review mechanisms, thousands of these informative
reviews can describe various issues exhibited by the apps
in certain combinations of devices, screen sizes, operating
systems, and network conditions that may not necessarily
be reproducible during regular development/testing activ-
ities.

Consequently, by analyzing ratings and reviews, de-
velopment teams are encouraged to improve their apps,
for example by fixing bugs or by adding commonly re-
quested features. According to a Gartner report’s rec-
ommendation [40], given the complexity of mobile test-
ing “development teams should monitor app store reviews
to identify issues that are difficult to catch during test-
ing, and to clarify issues that cause problems on the users’
side”. Moreover, useful app reviews reflect crowd-based
needs and are a valuable source of comments, bug reports,
feature requests, and informal user experience feedback
[8, 9, 25, 38, 41, 48, 58, 60, 61, 66]. However, because of
this easy access to the app stores and lack of control over
the reviews’ content, relying on crowdsourced reviews for
planning releases may not be widely used by mobile de-
velopers because (i) a large amount of reviews need to be

Preprint submitted to Elsevier November 15, 2017

analyzed, and (ii) some of these reviews may not provide
tangible benefits to the developers [9].

In this paper we investigate to what extent app devel-
opment teams can leverage crowdsourcing mechanisms for
planning future changes, and how these changes impact
user satisfaction as measured by follow-up ratings. Specif-
ically, we present (i) a mining study conducted on 100
Android open source apps in which we linked user re-
views to source code changes, and analyzed the impact
of implementing those user reviews in terms of app suc-
cess (i.e., ratings); and (ii) an online survey featuring 73
responses from mobile app developers, aimed at investi-
gating whether they rely on user reviews, what kind of re-
quirements developers try to elicit from user reviews, and
whether they observe benefits in doing that. The survey
does not aim at obtaining a different, subjective measure
of success. Instead, it helps understanding to what extent
developers actually rely on user reviews to improve their
apps.

To support our study and to provide developers
and project managers with an automated mechanism
to monitor whether and how user reviews have been
implemented, we have developed an approach named
CRISTAL (Crowdsourcing RevIews to SupporT App
evoLution) able to identify traceability links between in-
coming app reviews and source code changes likely ad-
dressing them, and use such links to analyze the impact of
crowd reviews on the development process. Although ap-
proaches for recovering traceability links between require-
ments and source code [1, 51] or even between development
mailing lists and code [4] exist, such approaches are not di-
rectly applicable in our context because of specific charac-
teristics of user reviews in mobile markets. First, as shown
by Chen et al. [9], not all the reviews can be considered
as useful and/or informative. Also, there is a vocabulary
mismatch between user reviews and source code or issues
reported in issue trackers. Unlike issue reports and emails,
reviews do not refer to implementation details; moreover,
because of the GUI-driven nature of mobile apps and the
user interaction based on user gestures, user reviews in-
clude mobile-specific GUI terms. In order to address these
challenges, CRISTAL includes a multi-step reviews-to-
code-changes traceability recovery approach that firstly
identifies informative comments among reviews (based on
a recent approach by Chen et al. [9]), and then traces
crowd reviews onto commit notes and issue reports by
leveraging a set of heuristics specifically designed for this
traceability task.

In summary, the paper makes the following contribu-
tions:

1. CRISTAL’s novel reviews-to-code-changes trace-
ability recovery approach. Albeit being inspired by
classic Information Retrieval (IR) based traceabil-
ity recovery approaches (e.g., [1, 18, 26, 51, 65]),
CRISTAL combines these techniques with some
specific heuristics to deal with (i) diversity and noise

in crowd reviews, and (ii) inherent abstraction mis-
match between reviews and developers’ source code
lexicon.

2. CRISTAL’s monitoring mechanism. After linking
reviews to changes, the premier goal of CRISTAL is
to enable developers tracking how many reviews have
been addressed, and analyzing the ratings to assess
users’ reaction to these changes. More specifically,
the ability to monitor the extent to which user re-
views have been addressed over the projects’ evo-
lution history can be used as a support for release
planning activities.

3. Results of an empirical study conducted on 100 An-
droid apps. The study leverages CRISTAL to pro-
vide quantitative evidence on (i) how development
teams follow suggestions contained in informative
reviews, and (ii) how users react to those changes.
The results of the study demonstrate that on aver-
age 49% of the informative reviews are implemented
by developers in the new app release and this results
in a substantial reward in terms of an increase in
the app’s rating. It should be noted that the value
of responding to a user review of a mobile app has
never been explored. Our analysis of app reviews and
responses from 10,713 top apps in the Google Play
Store shows that developers of frequently-reviewed
apps never respond to reviews. However, we observe
that there are positive effects to responding to re-
views (users change their rating 38.7% of the time
following a developer response) with a median rat-
ing increase of 20%.

4. Results of a survey conducted with 73 Android de-
velopers and aimed at investigating the developers’
perception of user reviews, to what extent they ad-
dress them and whether they observe any tangible
benefits from such an activity. The achieved results
show that developers (i) strongly rely on user re-
views when planning the new release of their apps,
(ii) mainly look in user reviews for bugs experienced
by their users or for suggestions for new features,
and (iii) confirm the positive effect of implementing
change requests embedded in the user reviews on the
app’s ratings.

5. A comprehensive replication package [69] that
includes all the materials used in our studies.

Paper structure. Section 2 describes CRISTAL, while
Section 3 reports results of a study aimed at evaluating
CRISTAL’s accuracy. Section 4 defines and reports the
design and planning of our empirical investigation, con-
ducted by mining 100 Android apps with CRISTAL, and
by surveying 73 Android developers. The study results
are reported and discussed in Section 5, while threats that

2

could affect the validity of the reported results are dis-
cussed in Section 6. Section 7 discusses the related litera-
ture on app store user reviews mining. Finally, Section 8
concludes the paper.

2. CRISTAL: Linking User Reviews to Source
Code Changes

In this section we present CRISTAL, an approach for
automatically linking user reviews to source code changes,
together with its evaluation in terms of the accuracy of the
generated links.

2.1. Overview of the Approach

CRISTAL aims at helping developers to keep track
of the informative reviews that have been considered
(i.e., implemented) while working on a new app release.
CRISTAL follows a three-step process for extracting links
between reviews for a release rk−1 of an app and com-
mits/issues generated while working on a release rk (Fig-
ure 1). Note that rk indicates the ID of the next release of
an app, on which developers are working, while rk−1 is the
previously issued release, whose reviews can be possibly be
used as input when working on rk.

The first step aims at collecting user reviews posted
for the app release rk−1. These reviews are collected from
the app store (Google Play in our case). After that, we
prune out non-informative reviews, i.e., reviews express-
ing a positive or negative judgment without explaining the
reason. In other words, we remove reviews such as “this
app is terrible” or “ great app!”. Instead, we keep informa-
tive reviews, i.e., reviews clearly explaining the reasons for
negative scores (e.g., the app crashes when sharing photos,
or “there is a lag in the user interface”) or positive ones
(e.g.,“thanks for adding the new feature for geo-localizing
photos!”, or “The battery drain issue has been solved, the
app now works great!”). To this aim, we rely on a re-
implementation of the AR-Miner classifier [9].

In the second step, for each of the collected informative
reviews irj , the Issue Extractor and the Commit Ex-
tractor (Figure 1) collect the issues and the commits,
potentially driven by irj . Issues opened after the irj date,
i.e., the date in which the review was posted, and closed
before the rk release date are considered to be potentially
linked to irj . Also, commits performed after irj date and
before the rk release date are considered to be potentially
linked to irj .

Finally, in the third step each review irj and the is-
sues/commits collected for it in the previous step, are pro-
vided to the Link Identifier, which identifies candidate
traceability links between irj and issues/commits by us-
ing a customized approach based on Information Retrieval
techniques [5]. The set of links retrieved for each informa-
tive review is stored in a database grouping together all
links related to release rk. This information is leveraged by
the Monitoring Component, which creates reports for

managers/developers and shows statistics on the reviews
that have been implemented. In the following subsections,
we provide the details behind each of these major steps.

2.1.1. Collecting Reviews

CRISTAL requires the release dates for rk−1 and rk
to retrieve links between reviews posted by users for the
app’s release rk−1 and the commits/issues generated while
working on release rk. These dates, together with the
URLs of the app’s versioning system and the issue tracker,
are the only inputs required by CRISTAL. Note that
CRISTAL can identify links between reviews and com-
mits/issues even if rk has not been issued yet. This sce-
nario might occur when a manager/developer wants to
check the implementation status of user reviews received
on rk−1 before releasing rk. In this case, the current date
is used instead of the rk’s release date. More precisely, if
the date of rk is given as input, then we are able to find
links only between a review and the commits contained in
the range rk−1 and rk. However, if the date of rk is not
specified, then we are able to find links occurring also on
future releases of the app.

CRISTAL downloads the user reviews posted the day
after rk−1 has been released until the day before rk has
been released. These reviews are those likely related to re-
lease rk−1. We use the term likely, since nothing prevents
users from leaving a review referring to a previous app re-
lease (e.g., rk−2) while the release rk−1 maybe available
(i.e., the user did not upgrade to the last available release
yet). This problem arises because the current version of
Google Play does not allow the user to associate a review
with the release of an app that she is reviewing. Note that
we consider both negative (i.e., with low ratings) as well
as positive (i.e., with high ratings) user reviews. Indeed,
while user complaints are generally described in negative
reviews, positive reviews could also provide valuable feed-
back to developers, such as suggestions for new features to
be implemented in future releases.

While the reviews retrieved for the release rk−1 may
contain useful feedback for developers working on the app
release rk, as shown by Chen et al. [9], only some re-
views contain information that can directly help develop-
ers improve their apps (35.1% on average [9]). Thus, most
reviews posted by the crowd are simply non-informative
for app developers, i.e., they do not contain any useful
information for improving the app. Such reviews mostly
contain (i) pure user emotional expressions (e.g., “this is
a c****y app”), (ii) very general/unclear comments (e.g.,
“the app does not work on my phone”), and (iii) ques-
tions/inquiries (e.g., “how does the app work?”). Thus,
they are unlikely to be linkable to any commit/issue. For
this reason, CRISTAL relies on AR-Miner [9] to filter
out those non-informative reviews. AR-Miner uses the
Expectation Maximization for Naive Bayes (EMNB) [64],
a semi-supervised learning algorithm, to classify reviews
as informative and non-informative. In their evaluation,
Chen et al. [9] showed that AR-Miner achieved an accu-

3

<<Loop: for each review>>
Issue

Tracker

Extract reviews
for release rk-1

AR-Miner
Chen et al.
ICSE 2014

Issue
Extractor

Commit
Extractor

Versioning
System

reviews for rk-1

informative
reviews for rk-1

issues opened
after the review
date and closed
before rk release

commits
performed after the

review date and
before rk release

Link
Identifier

ReLink
Wu et al.
FSE 2011

All Links for
review rk

Links identified
for the review
under analysis

Monitoring
Component

CRISTAL's
report

Figure 1: CRISTAL overview: solid arrows represent information flow, while dotted arrows represent dependencies.

racy between 76% and 88% in classifying informative/non-
informative reviews. Since the original implementation
of AR-Miner is currently not available, we have re-
implemented its informative/non-informative review clas-
sifier by relying on the Weka library [33], and trained it on
11,157 manually classified reviews coming from 20 mobile
applications of the Google Play Store. Specifically, given
the title and the corpus of each of the 11,157 user reviews,
the first two authors of this paper manually mark a review
as informative or non-informative. Once the training set
have been built, we used the EMNB machine learner [64]
(as done in the original paper by Chen et al. [9]) in order to
classify new reviews. It should be noted that these reviews
from the training set were not included in the evaluation of
CRISTAL (Section 3) and in our empirical study (Section
4 and Section 5).

2.1.2. Extracting Issues and Commits

The set of reviews classified as informative by AR-
Miner is then further analyzed by CRISTAL for link-
ing to commits/issues. For each informative review irj ,
CRISTAL extracts candidate issues and commits that
can be potentially linked to it. Specifically, the Issue Ex-
tractor mines the issue tracker of the app of interest,
extracting all the issues opened after the irj was posted,
and closed before the rk release date (or before the current
date). For each issue satisfying these constraints, the Is-
sue Extractor collects (i) the title, (ii) the description,
(iii) the name of the person who opened it, (iv) the times-
tamps of the issue opening/closing, and (v) all comments
(including timestamp and author) left on the issue. Our
current implementation supports Jira [3] and Bugzilla [24]
issue trackers.

The Commits Extractor mines the change log of
the versioning system hosting the app of interest by se-
lecting all the commits performed after irj was posted
and before the rk release date (or before the current date).
For each commit satisfying such constraints, the Commits
Extractor collects (i) the timestamp, (ii) the set of files
involved, (iii) the author, and (iv) the commit message.
Our current implementation of the Commits Extrac-
tor works on SVN, CVS, and Git. Finally, the set of
issues/commits extracted during this step are provided,
together with the referred review irj , to the Link Iden-
tifier for detecting traceability links (see Figure 1).

2.1.3. Detecting Links

The Link Identifier component is responsible for es-
tablishing traceability links between each informative re-
view irj and the set of issues/commits selected as can-
didates to be linked by the Issue Extractor and the
Commit Extractor. Although our main goal is to link
reviews to changes (and, therefore, to commits), we also
identify links to issues (that are, in turn, linked to com-
mits) because in this way we can leverage their textual
content, often richer than those of commit messages. Es-
tablishing links between reviews and issues or commits re-
quires, in addition to using IR-based techniques, some ap-
propriate adaptations keeping in mind requirements of the
specific context (i.e., mobile apps and user reviews) such
as: (i) discarding words that do not help to identify apps’
features, (ii) considering GUI level terms (e.g., reviews
have words window, screen, activity that refer to Android
GUIs rendered by Android Activities) when performing
the linking, and (iii) considering the length (i.e., verbosity)
difference between reviews and issues/changes. The detec-
tion process consists of several key steps explained below.

4

Step 1. Linking Informative Reviews and Issues.
The linking between irj and issues consists of the following
steps:

• Text normalization . The text in the review and
the text in the issue title and body, consisting of its
description, are normalized by performing identifier
splitting for CamelCase and underscore (we also kept
the original identifiers), stop words removal, and
stemming (using the Porter stemmer [73]). We built
an ad-hoc stop word list composed of (i) common
English words, (ii) Java keywords, and (iii) words
that are very common in user reviews, and, thus,
are not highly discriminating. To identify the latter
words, we consider the normalized entropy [15] of a
given term t in user reviews using the formula shown
in Equation 1:

Et = −
∑
r∈Rt

p(t|r) · logµ p(t|r) (1)

where Rt is the set of app reviews containing the
term t, µ is the number of reviews on which the
terms entropy is computed, and p(t|r) represents the
probability that the random variable (term) t is in
the state (review) r. Such probability is computed
as the ratio between the number of occurrences of
the term t in the review r over the total number
of occurrences of the term t in all the considered
reviews. Et is in the range [0, 1] and the higher
the value, the lower the discriminating power of the
term. To estimate a suitable threshold for identify-
ing terms having a high entropy, we computed the
entropy of all the terms present in the reviews of
a set of 1,000 Android apps considered in a previ-
ous study [6]. This resulted in entropy values for
13,549 different terms. Given Q3 the third quartile
of the distribution of Et for such 13,549 terms, we
included in the stop word list terms having Et > Q3

(i.e., terms having a very high entropy), for a total
of 3,405 terms. Examples of terms falling in our stop
word list are work (very common in sentences such
as does not work—Ework = 0.93), fix, and please
(e.g., please fix—Efix = 0.81, Eplease = 0.84), etc.
Instead, terms like upload (Eupload = 0.24) and re-
boots (Ereboots = 0.36) are not part of our stop word
list, since showing a low entropy (high discriminat-
ing power) and likely describing features of specific
apps. Including the entropy-based stop words into
the stop words list helped us to improve the com-
pleteness of the identified links (i.e., recall) by +4%
and the precision by +2%. The resulting stop word
list can be found in our replication package [69].

• Textual similarity computation . We use the
asymmetric Dice similarity coefficient [5] to compute
a textual similarity between a review irj and an issue

report isi (represented as a single document contain-
ing the issue title and short description) using the
formula reported in the Equation 2:

simtxt(irj , isi) =
|Wirj ∩Wisi |

min(|Wirj |, |Wisi |)
(2)

where Wk is the set of words contained in the docu-
ment k and the min function that aims at normaliz-
ing the similarity score with respect to the number of
words contained in the shortest document (i.e., the
one containing less words) between the review and
the issue. The asymmetric Dice similarity ranges in
the interval [0, 1]. We used the asymmetric Dice co-
efficient instead of other similarity measures, such
as the cosine similarity or the Jaccard similarity co-
efficient [39], because in most cases user reviews are
notably shorter than issue descriptions and, as a con-
sequence, their vocabulary is fairly limited. Specif-
ically, the use of asymmetric Dice similarity helps
matching a review against the issue covering most of
its words. A similar approach has been applied in
the past for matching help requests of junior devel-
opers (newcomers) with discussion corpora of senior
open source developers [7].

• Promoting GUI-related terms. Very often, users
describe problems experienced during the apps’ us-
age by referring to components instantiated in the
apps’ GUI (e.g., when clicking on the start button
nothing happens). Thus, we conjecture that if a
review irj and an issue report isi have common
words from the apps’ GUI, it is more likely that
isi is related (i.e., due) to irj and thus, a trace-
ability link between these two should be established.
Thus, while retrieving links for an Android app ak
we build an ak’s GUI terms list containing words
shown in the ak’s GUI (e.g., buttons’ labels, string
literals). Such words are extracted by parsing the
strings.xml file, found in Android apps, which is
used to encode the string literals used within the
GUI components. Note that the presence of a term
t in the ak’s GUI terms list has a priority over its
presence in the stop word list, i.e., t is not discarded
if present in both lists. Once the ak’s GUI terms
list has been populated, GUI-based terms shared be-
tween a review irj and an issue report isi are re-
warded as:

GUIbonus(irj , isi) =
|GUIW (irj) ∩GUIW (isi)|

|Wirj ∪Wisi |
(3)

where GUIW (k) are the GUI-based terms present in
the document k and Wk represents the set of words
present in the document k. The GUIbonus(irj , isi)
is added to the textual similarity between two

5

documents, obtaining the final similarity used in
CRISTAL and shown in Equation 4:

sim(irj , isi) = 0.5 · simtxt(irj , isi)+

+0.5 ·GUIbonus(irj , isi)
(4)

Note that both GUIbonus(irj , isi) and the textual
similarity range in the interval [0, 1]. Thus, the over-
all similarity is also defined in [0, 1]. In our initial
experiments, we evaluated CRISTAL without using
the GUIbonus, thus purely relying on the textual sim-
ilarity between irj and isi. During the evaluation of
links found by CRISTAL, we noticed that the noise
contained in the text did not allow the approach to
correctly detect some links. We also observed that
the terms belonging to the GUI of the application
are often reported by users to manifest problems oc-
curred during their use. Indeed, when we defined
the GUIbonus, we found that it helped obtaining ad-
ditional improvement in terms of recall and precision
up to 1% and 5%, respectively.

• Threshold-based selection . Pairs of (review, is-
sue) having a similarity higher than a threshold λ
are considered to be linked by CRISTAL. The way
this threshold has been calibrated is described in Sec-
tion 3.1.

Step 2. Linking Informative Reviews and Com-
mits. The process of linking each informative review irj
to a set of commits Cj is quite similar to the one defined
for the issues. However, in this case, the corpus of tex-
tual commits is composed of (i) the commit note itself,
and (ii) words extracted from the names of modified files
(without extension and by splitting compound names fol-
lowing camel case convention). Basically, we have inte-
grated the text from commit notes with words that are
contained in names of classes being changed (excluding
inner classes). This additional text better describes what
has been changed in the system, and can potentially match
words in the review especially if the commit note is too
short and if the names of the classes being changed match
domain terms, which are also referred from within the re-
views. We chose not to consider the whole corpus of the
source code changes related to commits, because it can po-
tentially bring more noise than useful information for our
matching purposes. In fact, we experimented with four dif-
ferent corpora: (a) commit notes only, (b) commit notes
plus words from file names, (c) commit notes plus corpus
from the source code changes, and (d) commit notes plus
words from file names and the result of the unix diff be-
tween the modified files pre/post commit. The option (b)
turned out to be the one exhibiting highest recovery pre-
cision. In particular, the difference in favor between (b)
and (a) was +11% in terms of recall and +15% in terms of
precision, between (b) and (c) it was +37% for recall and

+32% for precision, and between (b) and (d) it was +4%
for recall and +6% for precision.
Step 3. Linking Issues and Commits. When all
the links between each informative review irj and is-
sues/commits have been established, CRISTAL tries to
enrich the set of retrieved links by linking issues and com-
mits. If irj has been linked to an issue isi and the issue
isi is linked to a set of commits C ′i, then we can link irj
also to all commits in C ′i. To link issues to commits we use
(and complement) two existing approaches. The first one
is the regular expression-based approach by Fischer et al.
[23] and a re-implementation of the ReLink approach pro-
posed by Wu et al. [82]. ReLink considers the following
constraints when linking a commit to an issue: (i) match-
ing the committer/authors with issue tracking contributor
name/email; (ii) the time interval between the commit and
the last comment posted by the same author/contributor
on the issue tracker must be less than seven days; and (iii)
Vector Space Model (VSM) [5] cosine similarity between
the commit note and the last comment referred to above,
which is greater than 0.7. ReLink has been shown to link
issues to commits with high accuracy (89% for precision
and 78% for recall) [82]. For further details on ReLink
calibration refer to the original work by Wu et al. [82].
Step 4. Filtering Links. Finally, a filtering step is per-
formed by the Link Identifier to remove spurious links,
related to reviews that have been addressed already. As ex-
plained before, the current version of Google Play does not
associate a review with an app release that the reviewer is
using, thus allowing users to post reviews related to issues,
which could have been already addressed in the past. To
mitigate this problem, we also extract changes and issues
before rk−1 release date (using the Issue Extractor and
the Commit Extractor), and use the Link Identifier
for tracing a review to changes already addressed in rk−1.
If a review is linked to past changes, all links related to it
are discarded by the Link Identifier.

2.1.4. Monitoring Crowdsourced Reviews with CRISTAL

Once CRISTAL builds traceability links between re-
views and commits, the Monitoring Component can
be used to track whether developers implement the crowd-
sourced reviews. First, the links can be used during the
development of rk release to allow project managers keep
track on which requests have (not) been implemented.
Indeed, the Monitoring Component creates a report
containing (i) the list of informative reviews (not) im-
plemented for a given date, and (ii) the review cover-
age, providing an indication of the proportion of informa-
tive reviews that are linked to at least one commit/issue.
Specifically, given the set of informative reviews IRk−1
posted after release k − 1, and the subset of these re-
views for which exists a traceability link towards a change
(TIRk−1 ⊆ IRk−1), the review coverage is computed as
TIRk−1/IRk−1; a review coverage equals to 1 means that
all the informative reviews in rk−1 were linked to an issue
or a commit. Second, the Monitoring Component can

6

Table 1: Apps considered when evaluating CRISTAL accuracy.

App KLOC
Reviews

Commits Issues
(Informative)

AFWall+ 1.2.7 20 161 (53) 181 30
AntennaPod 0.9.8.0 33 528 (112) 1,006 21
Camera 3.0 47 1,120 (299) 2,356 30
FrostWire 1.2.1 1,508 743 (230) 1,197 182
Hex 7.4 33 346 (119) 1,296 155
K-9 Mail 3.1 116 546 (174) 3,196 30
ownCloud 1.4.1 29 306 (85) 803 149
Twidere 2.9 114 541 (157) 723 23
Wifi Fixer 1.0.2.1 45 860 (253) 1,009 34
XBMC Remote 0.8.8 93 540 (167) 744 28
Overall 2,038 5,691 (1,649) 12,307 682

be leveraged after release rk has been issued. In this case,
besides providing all information described above, it also
includes the gain/loss in terms of average rating with re-
spect to rk−1 in the generated report. This last piece of
information is the most important output of CRISTAL,
because it can provide project managers with important
indications on the work being done while addressing rk−1’s
reviews.

3. Evaluating the Linking Accuracy of CRISTAL

As a preliminary step before understanding how devel-
opers can use CRISTAL in practice, we need to evaluate
its accuracy in the identification of traceability links be-
tween user reviews and commits or issues. To this aim, we
perform an assessment of CRISTAL using the develop-
ment history and user reviews of ten open source Android
apps listed in Table 1. For each app, the table reports the
analyzed release, the size in KLOCs, the number of reviews
for the considered release (and the number of informative
reviews as detected by AR-Miner, in parenthesis), com-
mits, and issues. The selection of the ten apps was mainly
driven by the need to consider open source Android apps
published on the Google Play market with versioning sys-
tem and issue tracker publicly accessible. In the second
place, we picked Android apps diversifying the selection in
terms of app category (e.g., multimedia, communication),
size, and the number of issues and commits (see Table 1).

We formulated the following research question, which
has the preliminary purpose to evaluate CRISTAL ’s abil-
ities in liking user reviews onto issues/commits:

• RQ1: How accurate is CRISTAL in identi-
fying links between informative reviews and is-
sues/commits?

3.1. Study Procedure

While evaluating the traceability recovery precision
simply requires a (manual) validation of the links extracted
by the approach, the evaluation of the recall is more chal-
lenging because the knowledge of all the links between

Table 2: Agreement in the Definition of the Oracles.

App E1 ∪ E2 E1 ∩ E2 Agreement
AFWall+ 15 11 73%
AntennaPod 6 4 67%
Camera 11 9 82%
FrostWire 3 3 100%
Hex 24 19 79%
K-9 Mail 9 6 67%
ownCloud 23 13 57%
Twidere 13 11 85%
Wifi Fixer 16 9 57%
XBMC Remote 57 38 67%
Overall 177 123 69%

user reviews and subsequent issues and commits is needed.
Therefore, to assess CRISTAL in terms of precision and
recall, we followed a three-step process: (i) for each of the
considered apps, we manually created an oracle reporting
the traceability links between reviews and issues/commits;
(ii) we ran CRISTAL on the same set of apps to automat-
ically identify links between reviews and issues/commits;
and (iii) we compared the links automatically identified by
CRISTAL with the ones identified via manual inspection
to assess the recall and precision of our approach.

To manually create the set of labeled traceability
links between user reviews and commits for each app,
we independently inspected reviews, issues, and commit
logs/messages, in pairs (i.e., two evaluators were assigned
to each app), with the aim of identifying traceability links
between reviews and issues/commits. In total, six of the
authors were involved as evaluators and, for each app to
analyze, each of them was provided with the app’s source
code and three spreadsheets: (i) the first reporting all
user reviews for the app of interest, with the possibility
of ordering them by score and review date, (ii) the sec-
ond containing all the issues, characterized by title, body,
comments, and date, and (iii) the third reporting for each
commit performed by developers its date, commit mes-
sage, and the list of involved files. Given the number of
reviews/issues/commits involved (see Table 1), this pro-
cess required approximately five weeks of work. This is
actually the main reason why the accuracy assessment of
CRISTAL was done on a relatively limited set of apps.
After having completed this task, the produced oracles
were compared, and all involved authors discussed the dif-
ferences, i.e., a link present in the oracle produced by one
evaluator, but not in the oracle produced by the other.

To limit the evaluation bias, we made sure that at least
one of the inspectors for each pair did not know the de-
tails of the approach. Also, the oracle was produced before
running CRISTAL, hence none of the inspectors knew the
potential links identified by CRISTAL. Table 2 summa-
rizes the agreement for each app considered in the study,
reporting the union of links retrieved by two evaluators
(E1 ∪ E2), their intersection (E1 ∩ E2), and the level of

7

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

Threshold

0.7

Figure 2: Results of the calibration performed for the λ threshold.

agreement computed as Jaccard similarity coefficient [39],
i.e., link intersection over link union. As we can see, while
there is not always full agreement on the links to consider,
the overall agreement of 69% is quite high and, combined
with the open discussion performed by the evaluators to
solve conflicts, it ensures high quality of the resulting ora-
cle (finally composed of 141 links).

After building the unified oracle for each app, we used
well-established metrics to evaluate the recovery accuracy
of CRISTAL, namely recall and precision [5], reported in
Equations 5 and 6:

Recall =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

In particular, TP represents the number of true posi-
tive links detected by CRISTAL, FP the number of links
wrongly identified by the approach, and FN the number
of correct links that are not identified by the approach.
Also, since there is a natural trade-off between recall and
precision, we assess the overall accuracy of CRISTAL by
using the harmonic mean of precision and recall, known as
the F-measure [5]:

FMeasure = 2 · precision · recall
precision+ recall

(7)

3.1.1. Calibration of the ranked list cutting threshold

As explained in Section 2.1.3, the presence of a link be-
tween a user review and an issue or commit is determined
by cutting the ranked list of candidate links, and consid-
ering only links for which the similarity (between a review
and an issue or a commit) is greater than a threshold λ.
To calibrate such a threshold, we have (i) taken 10 apps
different from those considered in this study including a
total of 165 traceability links between commits/issues and

Table 3: RQ1: recall, precision, and F-measure achieved by
CRISTAL, when considering issues only.

App #Links (Oracle) #TP #FP precision recall F-measure
AFWall+ 5 4 2 67% 80% 73%
AntennaPod 0 0 0 - - -
Camera 3 3 0 100% 100% 100%
FrostWire 0 0 0 - - -
Hex 7 6 3 67% 86% 75%
K-9 Mail 3 2 0 100% 67% 80%
ownCloud 7 6 2 75% 86% 80%
Twidere 4 3 2 60% 75% 67%
Wifi Fixer 5 3 1 75% 60% 67%
XBMC Remote 9 4 3 57% 44% 50%
Overall 43 31 13 70% 72% 71%

Table 4: RQ1: recall, precision, and F-measure achieved by
CRISTAL, when considering commits only.

App #Links (Oracle) #TP #FP precision recall F-measure
AFWall+ 10 7 0 100% 70% 82%
AntennaPod 3 2 1 67% 67% 67%
Camera 6 5 1 83% 83% 83%
FrostWire 2 1 0 100% 50% 67%
Hex 13 9 1 90% 69% 78%
K-9 Mail 4 3 2 60% 75% 67%
ownCloud 7 6 3 67% 86% 75%
Twidere 9 6 1 86% 67% 75%
Wifi Fixer 6 5 4 56% 83% 67%
XBMC Remote 38 28 5 85% 74% 79%
Overall 98 72 18 80% 73% 77%

user reviews, (ii) built an oracle by following the same
protocol determined above, and (ii) computed precision,
recall and F-Measure for different values of λ. Specifically,
we experimented with values of λ ranging between 0.1 and
1.0 with a step of 0.1. The list of apps considered in the
calibration process is available in our replication package
[69]. The results of our calibration are reported in Figure
2: The best F-Measure was achieved with λ = 0.6. This
is the λ value that we will exploit in the rest of this work,
including the study described in Section 4.

3.2. Analysis of the Results

Tables 3 and 4 report (i) the size of the oracle (col-
umn #Links), (ii) the number of true and false positive
links retrieved by CRISTAL (column #TP and #FP, re-
spectively), (iii) precision, recall, and F-measure achieved
by CRISTAL when tracing user reviews onto issues and
commits, respectively. Overall results, considering issue
reports and commit notes altogether are reported in Ta-
ble 5. Note that, for the ten considered apps, we never
obtained a candidate traceability link between a review
and a commit performed before the review was posted (see
Section 2.1.3).

On the one hand, when considering the results obtained
by CRISTAL for links between user reviews and issues
(Table 3), we observed that its overall F-measure is 71%,
with the precision of 70% and a recall of 72%. It is im-
portant to point out that in two of the considered apps,
i.e., AntennaPod and FrostWire, we did not find any
traceability link and, for this reason, we can not compute
the accuracy metrics. In such cases, CRISTAL did not
output any false positive link. On the other hand, when

8

Table 5: RQ1: recall, precision, and F-measure achieved by
CRISTAL, when considering both commits and issues.

App #Links (Oracle) #TP #FP precision recall F-measure
AFWall+ 15 11 2 85% 73% 79%
AntennaPod 3 2 1 67% 67% 67%
Camera 9 8 1 89% 89% 89%
FrostWire 2 1 0 100% 50% 67%
Hex 20 15 4 79% 75% 77%
K-9 Mail 7 5 2 72% 71% 71%
ownCloud 14 12 5 71% 86% 78%
Twidere 13 9 3 75% 69% 72%
Wifi Fixer 11 8 5 62% 73% 67%
XBMC Remote 47 32 8 80% 68% 74%
Overall 141 103 31 77% 73% 75%

considering the accuracy of our approach in retrieving links
between user reviews and commits (Table 4), we can ob-
serve that CRISTAL achieves a higher overall precision,
i.e., 80%, while its recall reaches 73% (F-measure=77%).
In summary, it is interesting to notice how, in the end,
the results are better when tracing user reviews onto com-
mit notes, rather than when tracing onto issue reports.
Although such a difference may or may not generalize
to other apps, it has an important implication: indeed,
CRISTAL can be applied also in the absence of an issue
tracker, a scenario that is quite frequent in practice, since
mobile developers often rely only on reviews for problem
reporting.

When the links found by our approach considering both
issues and commits are combined, the results continue to
be relatively positive (see Table 5), showing an overall pre-
cision of 77% and a recall of 73% (F-measure=75%). Also,
the precision achieved by CRISTAL is never lower than
60%. A manual analysis of false positive links identified by
CRISTAL highlighted that those were mostly due to pairs
of reviews and commits that, even exhibiting quite high
textual similarity, did not represent cases where app de-
velopers were implementing user comments. For instance,
consider the following review left by a user for the XBMC
Remote app (open source remote control for XBMC home
theaters):

Rating: ? ? ? ? ? - April 25, 2014
App works great.
I did have a few null pointer exceptions but
they were only for the videos I had no meta-
data for.

CRISTAL links this review to a commit modifying
classes VideoClient and VideoManager and having
as commit note: Handle empty playlists correctly: Do
not throw NullPointerExceptions and IndexOutOf-
BoundExceptions when retrieving an empty playlist.
While the user was reporting a problem with videos with-
out metadata, the commit actually aimed at fixing a bug
with empty playlists. However, the high number of shared
terms (i.e.,“null”, “pointer”, “exception”, “video”) lead to
a high similarity between the review and the commit, with
the consequent identification of a false positive link. In-
deed, most of the other terms present in the review (i.e., all

but metadata) were part of our stop word list. For nine out
of ten apps the recall is above 60%, reaching peaks close
to 90% for two of them. On the negative side, the lowest
recall value is achieved on FrostWire, where the 50%
recall value is simply due to the fact that just one out of
the two correct links is retrieved by CRISTAL. We man-
ually analyzed the false negatives, i.e., links present in our
oracle and missed by CRISTAL, to understand their rea-
sons. We noticed that the missing links were mainly due
to a vocabulary mismatch between the reviews and the
commits/issues to which they were linked. For instance,
the following review was left by a FrostWire’s user:

Rating: ? - October 7, 2013
Stopped working
Doesn’t download any song. Needs to be fixed.

FrostWire is an open source BitTorrent client avail-
able for several platforms and the user is complaining
about problems experienced with downloading songs. In
our oracle, the review above is linked to a commit per-
formed to fix such a problem. However, the terms be-
ing used in the commit note, as well as the words con-
tained in the names of the modified files, are different
from those used in the review. Indeed, CRISTAL links
this review to a commit performed by a developer while
working on the app release 1.2.2, and dealing with the
addition of a download log (i.e., the download history of
a user) to the FrostWire app. The linking was found
because the commit, having as description “Added down-
load actions log”, involved several other code files, such
as StopDownloadMenuAction.java, which share with the
review the words “stop” and “download”. Since the other
review’s words (all but song) are present in the stop word
list adopted by CRISTAL, the Dice similarity between the
review and the commit appears to be high, thus leading to
a false positive link. In summary, as any other approach
based on textual similarity matching, CRISTAL may fail
whenever the presence of common words does not imply
similar meaning of the review and the commit note. The
usage and evaluation of more sophisticated similarity tech-
niques, e.g., Latent Semantic Indenxing [19], is part of our
future agenda.

Answer to RQ1. Despite few cases discussed above,
CRISTAL exhibits high accuracy in retrieving links be-
tween crowd reviews and issues/commits, with an overall
precision of 77% and recall of 73%. The traceability to-
wards commit notes has a higher performance, reaching
an overall precision of 80% while keeping recall at 73%.

4. Empirical Study Design

The goal of this study is to investigate (i) to what ex-
tent developers use crowdsourced reviews for planning and
performing changes to be implemented in the next releases,
and (ii) possible gains (if any) for the app’s success as re-
flected in improved ratings/reviews. The perspective is of

9

Table 6: Characteristics of the apps considered in the study.

Category #Apps
#Reviews

#Classes #Commits #Issues
(Informative)

Arcade 2 103 (25) 2,631 972 28
Books and Reference 4 226 (82) 2,982 1,021 53
Brain and Puzzle 4 778 (255) 487 2,817 61
Comics 2 254 (73) 356 1,477 15
Communication 15 1,417 (430) 21,710 51,921 260
Education 2 919 (277) 891 2,881 31
Entertainment 6 822 (248) 1,971 3,818 184
Finance 5 1,621 (492) 910 8,172 43
Lifestyle 2 1,110 (327) 398 3,741 21
Media and Video 6 452 (121) 2309 3,572 93
Music and Audio 4 1,284 (388) 988 5,566 55
News and Magazines 3 755 (220) 872 2,917 38
Personalization 5 1,440 (492) 915 5,981 78
Photography 3 965 (299) 595 6,216 49
Productivity 14 2,981 (923) 17,634 23,817 239
Social 5 1,984 (612) 1,119 16,982 70
Tools 10 1,192 (364) 8,578 10,274 167
Travel 8 921 (164) 829 1,663 113
Total 100 19,224 (5,792) 66,175 153,808 1,598

researchers who are interested in investigating how and
why monitoring app store ratings and reviews is worth-
while to build recommendation systems able to suggest
fixing issues that cause user dissatisfaction. The context
of this study consists of:

1. Change history data and user reviews from 100
Android apps belonging to 18 different categories
present on the Google Play Store, including the ten
apps considered in the CRISTAL’s accuracy assess-
ment. We exploit these apps in the context of a min-
ing study aimed at providing quantitative insights
about the goals of the study.

2. 73 professional developers (hereinafter referred to as
“participants”) providing their opinions about the
goals of the study. These developers have been in-
volved in a survey aimed at gathering qualitative
insights about the goals of the study.

The collected working data set is released as a part of our
replication package [69].

4.1. Research Questions and Study Procedure

This study aims at empirically analyzing the effect of
using app store reviews (for planning and implementing
future changes) on the apps’ success (in terms of increase of
the user rating on the Google Play market). As explained
in Section 2.1.4, this represents a possible application of
CRISTAL. Specifically, we address the following research
questions:

• RQ2: To what extent do developers fulfill reviews
when working on a new app release?

• RQ3: What is the effect of a crowd review
mechanism (for planning and implementing future
changes) on the app success?

The goal of first research question is to empirically
identify whether app developers take into account infor-
mative reviews when working on a new app release. We

pursue this goal by mining data from the 100 studied An-
droid apps with the support of CRISTAL, and by survey-
ing the 73 apps developers involved as participants. On
the other hand, by addressing RQ3 we aim at empirically
verifying the benefit (if any) of such crowdsourcing activ-
ity, in this case measured in terms of app scores. Again,
we rely on both app history mining and answers provided
by the surveyed developers.

4.2. Context Selection

This section describes the context of both our mining
study and of the survey.

4.2.1. Mining 100 Android Apps using CRISTAL

Table 6 provides information about the subject apps of
our study by reporting, for each category, (i) the number
of apps analyzed from the category (column #Apps), (ii)
the total number of reviews of the apps in the category
(and in parenthesis the number of informative reviews as
detected by AR-Miner), (iii) the total number of classes
of the apps (column #Classes), (iv) the size of the change
history in terms of commits (column #Commits), and (v)
the number of issues on the issue trackers of the apps in
the category (column #Issues). Such set of apps has been
selected taking into account different factors. In order to
collect them, we developed a crawler able to download free
Android apps. It has been executed over the Google Play
Store for one week and, in the end, the crawler collected
2,149 apps. From this initial set, we discarded all the
apps having (i) a number of commits fewer than the first
quartile of the distribution of commits for all the apps (i.e.,
100 commits), (ii) or a number of user reviews lower than
the first quartile of the distribution of reviews for all the
apps (i.e., 50 reviews). In addition, we only considered
apps for which a history composed of multiple releases
were accessible. That is, when analyzing reviews for a
release rk−1, there must be at least one subsequent release
rk in which reviews raised for rk−1 have been possibly
addressed. These filters are needed since we are interested
in collecting and analyzing the apps which have a good
amount of both commits and user reviews. Indeed, having
a small number of them may result in the application of
our approach in a scenario that does not reflect a real use
case. This filtering process led to the 100 apps considered
in this study.

4.2.2. Surveying Android App Developers

We sent invitations to developers of 7,097 Android apps
that we used in a previous work [45] and of the 100 apps
considered in our study. To identify them, we mined the
Google play market’s webpages of the 7,197 apps to ex-
tract the email addresses of the related developers. This
was possible thanks to the Contact Developer field present
in each webpage presenting an app on the market. We au-
tomatically removed all duplicated e-mail addresses due to
multiple apps developed by the same developer(s). Also,

10

Table 7: Breakout of the Involved Developers across App Categories.
Category #Developers
Arcade 3
Books and Reference 4
Brain and Puzzle 1
Comics 2
Communication 8
Education 5
Entertainment 4
Finance 2
Health and fitness 3
Libraries and demo 1
Lifestyle 1
Media and Video 3
Medical 1
Music and Audio 3
News and Magazines 8
Personalization 1
Photography 1
Productivity 9
Racing 1
Shopping 1
Social 2
Tools 1
Transportation 6
Travel 1
Weather 1

we manually pruned out addresses related to customer sup-
port contact points (e.g.,ask@, support@, etc). In the end,
we obtained a list of 2,567 developers to contact. Each de-
veloper received an email with instructions on how to par-
ticipate in our study and a link to the website hosting our
survey (details of how data was collected are reported in
Section 4.3.2). After the survey deadline (one month) ex-
pired, we collected 73 responses in total, with respondents
spread over a large variety of app categories as shown in
Table 7. Five of respondents were involved in the develop-
ment of four of the 100 apps considered in this study, i.e.,
Bankdroid, CatLog, GnuCash, and MicDroid.

4.3. Data Collection and Analysis

In the following we report the data collection and anal-
ysis process performed in the mining study and in the sur-
vey conducted with apps’ developers.

4.3.1. Mining 100 Android Apps using CRISTAL

To address RQ2, we used the CRISTAL’s Monitor-
ing Component (Section 2.1.4) to identify the review cov-
erage (i.e., the percentage of informative reviews that are
linked to at least one issue/commit) in the 100 apps we
considered. Indeed, if a review is covered (i.e., it is linked
to at least one issue/commit), it is likely that it has been
taken into account by developers trying to fix the problem
raised by a user in her review. Note that when comput-
ing the review coverage we only considered informative re-
views as detected by AR-Miner, because non-informative
reviews do not provide improvement suggestions for apps.

Before applying CRISTAL to measure reviews cover-
age, we need to quantify the instances when classifying
user reviews as covered or not covered. For each infor-
mative review irj , CRISTAL classifies it as covered if it

Table 8: Confusion matrix of reviews classified by CRISTAL as cov-
ered/not covered.

````````````Oracle
CRISTAL

covered not covered

covered 51 23
not covered 7 5,610

is able to identify a link between irj and at least one is-
sue/commit, otherwise the review is classified as not cov-
ered. Also in this case, we need an oracle, i.e., the set of
reviews covered to compute the classification accuracy of
CRISTAL. For this reason, we evaluated CRISTAL on
the same set of ten apps used to answer RQ1 as in our
previous study. The results are analyzed through the con-
fusion matrix produced by CRISTAL classification and
computing Type I and Type II errors. A Type I error
occurs when CRISTAL incorrectly classifies a covered re-
view as not covered, while a Type II error occurs when
CRISTAL wrongly classifies a not covered review as cov-
ered. Note that, unlike the review coverage computation,
when assessing the CRISTAL classification accuracy we
also consider reviews that AR-Miner classified as non-
informative. This was needed to take into account possible
informative reviews wrongly discarded by CRISTAL that
are actually linked to at least one issue/commit. Indeed,
three reviews classified as non-informative and discarded
by CRISTAL are actually present in the manually built
oracle, i.e., they are covered.

The confusion matrix reported in Table 8 shows that
(i) the number of reviews that are covered (i.e., linked
to at least one commit/issue) in the oracle (74) and that
are classified as such by CRISTAL are 51, (ii) the num-
ber of reviews that are covered in the oracle and that are
classified as not covered by CRISTAL (i.e., Type I er-
rors) is 23, (iii) the number of reviews that are not cov-
ered in the oracle (5,617) and that are classified as such
by CRISTAL are 5,610, and (iv) the number of reviews
that are not covered in the oracle and that are classified
as covered by CRISTAL (i.e., Type II errors) is 7. Thus,
out of 5,691 reviews, 5,661 were correctly classified. How-
ever, while the percentage of Type II errors is very low
(<0.01%), when applying CRISTAL to identify covered
reviews we must consider that we may miss around 31% of
true positive links (i.e., the percentage of correctly classi-
fied covered reviews is 69%).

To address RQ2, we correlated the review coverage
of 100 apps with the increment/decrement of the over-
all rating of the apps between the previous release, i.e.,
the one to which the reviews were referring to, and the
current release, i.e., the one (not) implementing the re-
views. To have a reliable overall rating for both releases,
we ensure that all 100 apps had at least 100 reviews for
each of the two releases we studied. After having col-
lected all the data, we computed the Spearman rank cor-
relation [83] between the review coverage of apps and the

11



increment/decrement of the average rating (from now on
avgRatchange) assigned by users to the current release with
respect to the previous release. The Spearman rank cor-
relation is a non-parametric measure of statistical depen-
dence between the ranking of two variables, represented in
our case by the review coverage and by the avgRatchange.
We interpret the correlation coefficient according to the
guidelines by Cohen et al. [11]: no correlation when
0 ≤ |ρ| < 0.1, small correlation when 0.1 ≤ |ρ| < 0.3,
medium correlation when 0.3 ≤ |ρ| < 0.5, and strong cor-
relation when 0.5 ≤ |ρ| ≤ 1. We also grouped the 100
apps based on the percentage of informative reviews they
implemented (i.e., the coverage level) to better observe
any possible correlation. In particular, given Quart1 and
Quart3 the first and the third quartile of the distribution
of coverage level for all the apps, we grouped them into
the following three sets: high coverage level (coverage level
> Quart3), medium coverage level (Quart3 ≥ coverage
level > Quart1), and low coverage level (coverage level
≤ Quart1).

We also analyzed the boxplots of the distribution of
avgRatchange by grouping the apps into the three cate-
gories described above (i.e., high coverage level, medium
coverage level, and low coverage level). In addition to
the boxplots, we performed a pairwise comparison of
avgRatchange for the three groups of apps by using the
Mann-Whitney test [12], a non-parametric test of the null
hypothesis that it is equally likely that a randomly selected
value from one distribution (in our case, the distribution
of avgRatchange for a specific category of apps) will be
less than or greater than a randomly selected value from
a second distribution. We reject the null hypothesis for
α < 0.05. Since we performed multiple tests, we adjusted
our p-values using the Holm’s correction procedure [35].
This procedure sorts the p-values resulting from n tests in
ascending order, multiplying the smallest by n, the next by
n− 1, and so on. We also estimated the magnitude of the
difference between the avgRatchange for different groups of
apps by using the Cliff’s Delta (d) [30], a non-parametric
effect size measure. We follow guidelines by Cliff [30] to
interpret the effect size values: negligible for |d| < 0.14,
small for 0.14 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474
and large for |d| ≥ 0.474.

4.3.2. Surveying Android App Developers

We designed a survey aimed at collecting developers’
opinions needed to answer our research questions. The
study questions are reported in Table 9. For each question,
the table specifies whether it is expected a Boolean answer
(Yes or No), an open answer, or an answer on a specific
scale.

The first five questions (Q1-Q5) aim at gathering in-
formation about the background of the developers par-
ticipating in our study. We focus on their experience in
mobile development (i.e., number of years of experience,
used mobile platforms, and number of apps developed) and
on the success of their development activity (i.e., number

Table 9: Survey questionnaire filled in by the study participants.

Question Answer

Questions about the developer’s background

1. How many years of experience do you have in mobile
development?

Open answer

2. On which mobile platforms have you developed? (e.g.,
Android, iOS, BlackBerry, etc.)

Open answer

3. How many apps have you developed? Open answer

4. How many times have been downloaded your apps? Open answer

5. What is the average rating assigned by users to your
apps?

1 | 2 | 3 | 4 | 5

RQ2-related questions

6. How frequently do you use the information (i.e., feed-
backs, requests, etc.) in user reviews to gather/define
requirements for a new release of your app?

Very often|Often|Sometimes|Rarely|Never

7. If answer to Q6 6= Never, what kind of information do
you look for in user reviews?

Open answer

8. If answer to Q6 6= Never, how do you determine
whether or not a review has to be taken into account?

Open answer

9. From your experience, which percentage of the user
reviews contains useful information for planning the next
development steps for your app?

< 25% | 25% to 50% | 50% to 75% |> 75%

RQ3-related questions

10. Please describe an example of change applied to your
app as a consequence of considering user reviews that, in
your understanding, helped to improve the app’s quality.

Open answer

11. In your experience, did you observe an increase of
your app ratings likely due to user requests you imple-
mented?

YES | NO

of downloads and average rating assigned by the users to
their apps).

Then, we asked developers about their opinion on the
crowdsourcing of requirements from user reviews (RQ2-
related questions). We first asked developers how fre-
quently they use information from user reviews to gather
and define requirements while working on the next release
of their app (Q6). Then, to all respondents but those
answering “Never” to Q6, we further asked which spe-
cific information they look for in user reviews (Q7), and
how they identify the useful reviews among all those left
by users (Q8). Question nine (Q9) asks about the per-
centage of the reviews that developers consider useful for
evolving their apps. We decided to include such a question
to gather insights aimed at confirming/contradicting data
reported in the literature showing that on average only
∼35% of reviews are informative [9].

To address RQ3, we asked developers to provide exam-
ples of actual changes, crowdsourced from user reviews,
that in their opinion helped to improve the app’s overall
quality (Q10). Finally, we asked to what extent they ob-
served an increase of their app ratings as a consequence of
addressing requests present in user reviews (Q11).

The survey was distributed using the eSurveyPro1

Web-based tool. We asked the participants to complete
the survey in a period no longer than 30 days (note that
eSurveyPro allows one to complete the survey in multi-
ple rounds, saving a partially completed survey). After 30

1http://www.esurveyspro.com

12



Q1: years of 
experience 

in mobile development

0
1
2
3
4
5
6
7
8
9

10

Q2: platforms participants had 
development experience

Andr iOS Wind Other

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

100%

33%

5% 7%

Q3: number of apps 
developed

0
20
40
60
80

100
120
140
160
180
200

Q4: number downloads 
for their apps

0
5,000

10,000

100,000.....

250,000.....

50,000,000.....

...

...
30,000

.

Q5: average rating for 
their apps

0

1

2

3

4

5

Figure 3: Developers’ background.

Table 10: Number of Answers per Question.

Question #Participants %Participants
Q1 73 100%
Q2 73 100%
Q3 73 100%
Q4 73 100%
Q5 73 100%
Q6 73 100%
Q7 73 100%
Q8 40 55%
Q9 73 100%
Q10 43 59%
Q11 73 100%

days, we collected developers’ answers in a spreadsheet in
order to perform data analysis. As previously said, we re-
ceived 73 questionnaires out of the 2,567 invitations made.
Note that none of our open questions were compulsory to
avoid high abandonment rate. We report in Table 10 the
number of answers collected for each question.

We firstly analyzed the answers provided to the ques-
tions related to the developers’ background (questions
from 1 to 5 in Table 9) by using descriptive statistics and
box plots.

The results of this analysis provided us with informa-
tion about the context in which our study has been per-
formed. Then, we answered our research questions by re-
porting the percentage of developers answering each of the
possible nominal values for Q6 and Q11. For the open
questions, we first categorized them using an open coding
process [54, 13]. The categorization was performed by two
authors, one of which performed a first coding, and the
other performed a second coding replicating the activity
performed by the first one. Cases of inconsistent/diverging
classification were discussed in order to converge to a
common categorization and/or if needed split/merge cat-
egories.
Participants’ Background. Figure 3 summarizes the
background information about the 73 study participants.
They claimed, on average, 4.8 years of experience in mo-

bile software development (median=5), with a minimum
of one year and a maximum of nine (see Figure 3-Q1).
By construction, all of them worked on the Android plat-
form, one-third on iOS, and a small percentage on Win-
dows Mobile (5%) and on other platforms (7%) like Sym-
bian, Maemo, and Palm Pilot (see Figure 3-Q2). The
involved developers implemented, on average, a relatively
high number of mobile apps (18, median=12), with a max-
imum of 200 and a minimum of one (Figure 3-Q3). Their
apps have been downloaded between 250 and over 50 mil-
lions times, with a median of 30,000. The average rat-
ing assigned to such apps is quite high (mean=3.75, me-
dian=4) indicating a good success in the apps’ stores. It is
worth noting that the average rating of the analyzed apps
is similar to the average rating of 5,848 free and 5,848 paid
apps analyzed previously by Bavota et al. [6].

Overall, the experience of the 73 respondents is quite
high, both in terms of years working on mobile platforms
(especially considering that they represent a relatively re-
cent technology), as well as in terms of the number of
developed apps. Also, their apps have been downloaded
thousands of times (Figure 3-Q4) and most of them also
received good user ratings (median four stars, see Figure 3-
Q5).

5. Study Results

This section answers RQ2 and RQ3 by discussing the
results achieved in both our mining study performed on
100 Android apps, and the survey involving 73 professional
app developers.

5.1. RQ2: To what extent do developers fulfill reviews
when working on a new app release?

Figure 4 reports the percentage of informative reviews
implemented by the developers of the considered 100 apps.
Among these 100 apps, only two reviews were traced to a
previously performed commit, i.e., they were likely to be
related to something already fixed, and thus discarded by
the Link Identifier. In particular, the x-axis represents

13



Apps

1.0
Co

ve
ra

ge

Figure 4: RQ2: review coverage of the 100 apps. A coverage (y-axis)
equals to 1.0 means that all the informative reviews were considered
in the analyzed release.

the 100 apps (i.e., each bar represents one app) while the
y-axis reports their coverage level (i.e., the percentage of
informative reviews that they implemented). The results
suggest that most of the developers carefully take into ac-
count user reviews when working on the new release of
their app. On one hand, among the 100 apps, on av-
erage 49% of the informative reviews (of which 64% are
negative) are implemented by developers in the new app
release. Moreover, 28 apps implemented suggestions from
more than 74% of parts of the informative reviews. On the
other hand, we also found 27 apps implementing less than
25% of informative user reviews. Overall, we observed a
first quartile of 18%, a median of 50% and a third quartile
of 73%. As examples of interesting cases, we found that
developers of the SMS Backup+ app considered 61 in-
formative reviews received in release 1.5.0 by covering all
of them in release 1.5.1; and Autostarts’ developers im-
plemented only five informative reviews out of 24 received
for the release 1.0.9.1.

For what concerns results of the survey, the par-
ticipants confirmed to strongly rely on user reviews to
gather/define requirements for the new releases of their
apps (Q6). Indeed, 49% very often exploit the informa-
tion in user reviews, 38% often, 11% sometimes, and 1%
rarely. None of the respondents answered never to Q6.
These results represent a first indication of the importance
of user reviews for mobile app developers, and enforce and
support our previous findings.

Concerning Q7, i.e., what type of information the de-
velopers look for in user reviews, we categorized the devel-
opers’ open answers based on their content. For example,
an answer reporting “Mostly for errors” clearly indicates
that the developer looks for “Bugs reporting” information
in the user reviews. Table 11 reports the results of such
a categorization. The answers suggest that developers are
interested in a very specific set of information (only five
categories defined across the 73 answers). Their main fo-
cus is toward information concerning bug reporting (75% of
respondents) and suggestions for new features (68%). The
provided open answers highlighted very interesting prac-
tices followed by developers when looking for these types

Table 11: Q7: Information developers look for in user reviews.
Kind Of Information #Participants %Participants
Generic (functional) bug reporting 55 75%
Generic suggestions for new features 50 68%
Energy consumption issues 8 11%
Suggestions for GUI Improvement 6 8%
Positive feedback 1 1%

of information. Three respondents explained that bug re-
porting information is much more useful when the app is
new and just uploaded in the app store. Subsequently,
suggestions for new features become more useful. A rep-
resentative answer explaining this concept is reported in
the following:

It depends on the maturity of the app. At the
beginning we look a lot for strange behaviors of
the app described in user reviews. When the
app becomes stable, we mainly look for sugges-
tions to further improve it (e.g., new features,
changes in the UI to make it more usable).

This insight can be taken into account to develop rec-
ommendation systems aimed at automatically prioritizing
requirements embedded in the app user reviews (as done,
at least in part by AR-Miner [9]).

While the importance of addressing user reviews will
also be the focus of Q11 (and in general, of RQ3), some
developers already highlighted the positive impact on
the customer satisfaction of implementing features recom-
mended by the users while answering Q7:

Very useful are suggestions for new features,
they improve the customer satisfaction. Also
bug fix requests help us!

One developer also explicitly highlighted the strong
role that features suggested by the users of her apps play
during release planning activities:

I look for bugs and suggestions for new fea-
tures. New features suggested by users often
influence my release planning.

Finally, it is interesting to report one last answer re-
lated to bugs reporting and suggestions for new features
and highlighting how often, it is hard for developers to
gather useful feedbacks from their users:

I look for suggestions for new features. Bugs
reporting is more difficult because often the
users simply write that the app “doesn’t work”.

This supports the need for recommendation systems
automatically inferring requirements (including bug fix re-
quests) as the one recently proposed by Panichella et al.
[71].

A lower percentage of respondents (11%) indicated that
they look at user reviews for recommendations on how to

14



Table 12: Q8: Criteria considered to identify useful reviews.
Criterion #Participants %Participants
Constructiveness, discard emotional reviews 12 32%
Usefulness [Generic] 7 18%
Level of detail 5 12%
Complexity of the required change 5 12%
Criticality of the change 4 10%
None [Consider all reviews] 3 8%
Score of the review 2 5%
Target audience 2 5%

improve the app’s GUI (e.g., “bugs related to the GUI ”,
“GUI suggestions”). Six of them (8%) claimed their in-
terest for user reviews indicating problems related to the
energy consumption of the app, while one developer ex-
plained the central role the user reviews play for her emo-
tional support:

I look mainly for positive feedback, to recharge
myself emotionally.

Question Q8 investigates how developers determine
whether or not a user review must be taken into account
while working on the next release of their app. As previ-
ously observed, the insights gathered from answers to Q8
might be used to support the automatic prioritization of
user reviews and/or to automatically discard useless re-
views [9]. Note that, as reported in Table 10, only 40 out
of the 73 interviewed developers answered this question.
As previously done for Q7, also in this case we catego-
rized the open answers provided by respondents, in order
to get an overview of the criteria they followed to discern
useful from useless reviews. Table 12 reports the results
of such a classification.

Most of the developers who provided an answer to Q8
take into account the constructiveness of the review to
judge if considering or not its content for the apps evolu-
tion. Note that two different types of answers fall into this
category: Those explicitly talking about the constructive-
ness of the reviews, as well as those indicating long reviews
as the ones to take into account. We interpret long reviews
as those unlikely to contain poor emotional contents (e.g.,
“Hate this app”). An example of provided answer is the
following one:

When it does not convey information about
app usability or functionality (e.g., awesome,
crappy etc.), I would not bother looking at it.
“The app is slow...”, “cannot do...”, etc. are
useful comments.

By the constructiveness of the review, such as
the situation in which the bug occur, or con-
crete suggestions for new features. I cannot do
anything for reviews like “Does not work!”).

The second category of answers we got was targeted
as “Usefulness [Generic]”. Here we include all answers
that simply refer to the usefulness of the review without

Table 13: Percentage of useful reviews from developers’ point of view.

Percentage #Participants %Participants
< 25% 55 75%
25% to 50% 16 22%
50% to 75% 2 3%
> 75% 0 0%

providing any insight on how they interpret/judge the re-
view’s usefulness: e.g., “Looking at the content searching
for something interesting”, “It depends on the content of
the message in the review”.

Five developers (12%) reported the level of detail of the
review as the main criterion they use to assess its useful-
ness: e.g., “Clarity in exposing a thought is a good start-
ing point”, “how detailed is the review”, “If the message
is clear and well explains the problem a user has”.

Five respondents focused, instead, their attention on
the complexity of the required change. While, unfortu-
nately, none of them explicitly stated if they look for com-
plex or for simple changes, from the provided answers it
seems that the more complex the change recommended in
the review, the lower the likelihood that it will be taken
into account by the developers: e.g., “Time and cost re-
quired for implementing the change”.

Four respondents indicated the criticality of the re-
view’s content as a proxy for its importance. When talking
about the criticality of a review ri, we really refer to the
number of reviews sharing the same concerns/containing
the same recommendations of ri, e.g., “If there are a lots
of requests about the same topic”.

Three respondents claimed to consider all reviews as
important (i.e., no criteria used to identify the useful
ones). Surprisingly, only two referred to the review’s score
as an indicator of the urgency of implementing the changes
required in the review:

Generally I spend most of time on negative re-
views. Those are the ones on which I focus to
improve my app.

Finally, two developers try to implement requests in re-
views likely coming from their target audience: “I estimate
if the reviewer is part of the target audience”.

Table 13 summarizes the answers provided to Q9, ask-
ing an opinion on the percentage of user reviews that actu-
ally contain useful information. Most of the participants
agreed on the small percentage of useful user reviews: 55
of them (75%) believe that less than 25% of user reviews
contain useful information, 16 (22%) between 25% and
50%, two (3%) between 50% and 75%, while no one kept
the > 75% option. These results (i) highlight the need
for recommendation systems able to automatically detect
informative reviews (as the AR-Miner tool by Chen et al.
[9]), and (ii) support findings in the literature showing as
only ∼ 35% of reviews contain useful information [9] (in

15



-0.5 +1.00.0 +0.5

High

Medium

Low

Change in app’s average rating 

N
eg

at
iv

e 
re

vi
ew

s 
im

pl
em

en
te

d

Figure 5: RQ3: Boxplots of avgRatchange for apps having different
coverage levels. The red dot indicates the mean.

our mining study we found 29% of informative reviews
among the analyzed 5,691).

Answer to RQ2. Results obtained by mining 100 An-
droid apps using CRISTAL show that in most cases devel-
opers carefully take into account user reviews when work-
ing on the new release of their app. Indeed, on average
49% of the informative suggestions contained in user re-
views are implemented by developers in the new app re-
lease. The survey respondents confirmed such findings,
claiming that they often rely on the information in user
reviews when planning a new release of their app (49%
very often, 38% often). They mainly look in user reviews
for bug reporting (75%) and suggestions for new features
(68%). Also, they identify useful reviews by searching for
the constructive and detailed ones (44%), containing more
than just emotional expressions. The vast majority of the
survey respondents (75%) indicate that just a small per-
centage of user reviews is informative (< 25%).

5.2. RQ3: What is the effect of a crowd review mechanism
(for planning and implementing future changes) on
the app success?

When analyzing the change of the app’s rating (64
of the 100 analyzed apps increased their rating between
a release and the subsequent observed one), we found
a strong positive Spearman’s rank correlation (ρ =0.59,
p-value<0.01) between the apps’ coverage level and the
change of average score between the old and the new app
release (avgRatchange). This indicates that the higher the
coverage level, the higher the avgRatchange, i.e., apps im-
plementing more informative reviews increase more their
average score in their new release. Figure 5 shows the
avgRatchange distributions for apps with low, medium, and
high coverage level. Figure 5 confirms that apps imple-
menting a higher percentage of reviews are rewarded by
their users with a higher positive avgRatchange. Indeed,
apps implementing low percentage of reviews obtain, on
average, a -0.21 avgRatchange, i.e., their average rating for
the new release is lower than for the previous one. Instead,
apps having a medium and a high coverage level achieve,
on average, a 0.20 and a 0.33 avgRatchange, respectively.

Table 14: RQ3: avgRatchange for apps having different coverage
levels: Mann-Whitney test (adj. p-value) and Cliff’s Delta (d).

Test adj. p-value d
high level vs medium level <0.001 0.82 (Large)
high level vs low level <0.001 0.91 (Large)
medium level vs low level 0.047 0.24 (Small)

Table 14 reports the results of the Mann-Whitney test
(adjusted p-value) and the Cliff’s d effect size. We com-
pared each set of apps (grouped by coverage level) with
all other sets having a lower coverage level (e.g., high level
vs. the others). Table 14 shows that apps implementing
a higher number of reviews always exhibit a statistically
significantly higher increment of their average score than
apps having a lower percentage of reviews implemented
(p-value always < 0.05). The Cliff’s d is always large, ex-
cept for the comparison between apps having a medium
level and those having low level, where the effect size is
medium.

Thus, the quantitative analysis performed to answer
RQ3 provides us with empirical evidence that developers
of Android apps implementing a higher percentage of in-
formative user reviews are rewarded by users with higher
ratings for their new release. Although we are aware that
this is not sufficient to claim causation, we performed a
qualitative analysis to (at least in part) find a rationale
for the relation that we quantitatively observed.

The most direct way to find some practical evidence
for our findings is analyzing comments left on Google Play
by the same user for the two releases considered in our
study for each of the 100 apps (i.e., previous and cur-
rent releases). Specifically, we checked whether there were
cases in which (i) a user complained about some issues
experienced in release rk−1 of an app, hence grading the
app with a low score, (ii) developers performed a change
to solve the issue in release rk, and (iii) the same user
positively reviewed release rk, hence acknowledging the
fixes. In our study, we found 29 such cases. While this
number might appear low, it must be clear that it may
or may not happen that users positively (re)comment on
an app after their complaints were addressed. Having said
that, it is interesting to note that in all of the 29 cases
the score given by the user on the previous release (rk−1)
increased in the new (fixed) release (rk). The average in-
crement was of 3.7 stars (median=4). For instance, a user
of AnySoftKeyboard complained about release 74 of
such an app, grading it with a one-star score: “you cannot
change the print location with the left and right arrows,
a normal delete button is missing, the back space button
for delete is not friendly”. After the app was updated in
release 75, the same user assigned a five-star score: “Love
the keyboard, fixed the problems”. Another example is a
user of Tinfoil for Facebook, assigning a two-star score
to release 4.3, and after upgrading release 4.4 assigning a
five-stars score, commenting that “the update fixed all my
gripes, great app”. On the other hand, we found eight

16



cases in which (i) a user experienced an issue in release
rk−1 of an app, grading the app with a low score, (ii) de-
velopers did not perform changes in order to fix such an
issue, and (iii) the same user negatively reviewed release
rk, hence pointing out the missed issue resolution. An in-
teresting case involves a user of FBReader, who assigned
a two-star score to release 1.7.3 complaining that “the app
is crashing when I try to scroll to previous page. Please
rectify it ASAP. I will improve my rating”. In the next
release of the app, the same user did not modify the rat-
ing and she commented that “I tried to update the app to
see improvements... Nevermind, I’m removing it from my
phone”. As a final highlight, it is interesting to report the
increase/decrease in an average rating obtained by the two
apps cited in the context of RQ3. SMS Backup+, im-
plementing 100% of the 61 informative reviews for release
1.5.0 received an increase of +0.86 in the overall score for
the release 1.5.1. Instead, the Autostarts app, imple-
menting only 20% of the 24 negative reviews received on
release 1.0.9.1, obtained a decrease of -0.79 on its overall
score for the release 1.0.9.2.

The answers provided by the survey’s participants to
Q10 and Q11 confirm the importance of considering user
reviews while evolving mobile apps. When answering Q10,
developers described examples of useful reviews that they
actually implemented in their apps. The reported answers
go from very small and cosmetic changes (e.g., “I modified
some icons”) to much more complex fixes/additions to the
apps, including:

• Bug fixes:

– We were able to spot a bug that prevented
iPhone’s users to access the photo library ;

– I reworked a workaround for an android bug (re-
lated to multi-touch input) thanks to feedbacks
from reviews. The problem only manifested on
some models, and so I was not aware of the
problem;

– Once we had a bug that was only visible while
using the app on the Samsung S4. This device
was not part of the ones we used for testing.
We were able to fix it thanks to the information
in the review made by users of the S4 ;

– Fixed a bug that only occurred in a certain GPS
location.

Interestingly, the last three examples highlight the
difficulties experienced by developers during the test-
ing of their apps due to (i) the wide variety of mobile
devices available on the market, and (ii) the different
environments in which their apps will be used (the
latter problem is typical of any real software system),
and (iii) the Android API bug proneness [45, 6].

• Improvements to the GUI:

– I fixed some graphical problems occurring on old
devices;

– Completely reimplemented the GUI.

• Implementations of new features:

– In one of my apps one of the most selling fea-
ture was a user’s suggestion;

– I integrated social features in my app (Facebook,
Twitter) since required in several user reviews.

The first answer highlights the high potential of sug-
gestions contained in user reviews to increase the
app’s success while the second one shows the influ-
ence that a high number of user requests can have
on the release planning of mobile apps.

• Improvements of non-functional require-
ments:

– I implemented a new UI to fix energy problems;

– I improved the app’s usability.

Both answers highlight the need for tools support-
ing the design of GUIs with non-functional require-
ments (i.e., quality attributes) considerations such
as energy consumption [46] and usability.

Finally, 90% of the surveyed developers (i.e., 66 out
of 73) observed an increase of their app ratings as a con-
sequence of user requests they implement (Q11). This
supports our RQ3’s finding from the mining study: De-
velopers of apps implementing user reviews are rewarded
in terms of ratings.

Answer to RQ3. Developers of Android apps implement-
ing user reviews are rewarded in terms of ratings. Also, our
qualitative analysis supports, at least in part, our quanti-
tative findings: the surveyed developers confirmed that the
small set of informative reviews represents a very precious
source of information, leading to fixing of bugs difficult to
catch during testing activities, implementing new success-
ful features, and improving non-functional requirements.
The vast majority of the respondents (90%) believes that
implementing requests from user reviews has a positive ef-
fect on the app’s success (as assessed by the user ratings).

6. Threats to Validity

Regarding construct validity (relationship between the-
ory and observation), one threat is due to how we built
the oracle needed for assessing CRISTAL’s traceability
precision and recall. Although the evaluators are the au-
thors of this paper, we limited the bias by (i) employing
in each pair one author who did not know all the details
of the approach beforehand, (ii) building the oracle before
producing (and knowing) the traces, and (iii) following a
clearly-defined evaluation procedure. Such a procedure is

17



also intended to mitigate imprecision and incompleteness
in the oracle, although cannot completely avoid it.

The CRISTAL approach itself could suffer from in-
trinsic imprecisions of other approaches that it relies upon,
such as AR-Miner [9] and ReLink [82], for which we re-
ported performances from the original work. While there
may be additional opportunities for increasing linking ac-
curacy by relying on automatically generated commit mes-
sages [14, 44], however, this is outside the scope of this
paper; hence, we leave this exploration for future work.

Threats to internal validity concern internal factors
that could have influenced our observations, especially for
the relationship between the coverage of reviews and the
increase of the ratings. Clearly, a rating increase could be
due to many other possible factors [6, 45, 79], such as a
very important feature added in the new release, regard-
less of the feedback. However, this paper aims at providing
a quantitative correlation (as it was also done in previous
work, where the use of fault- and change- prone APIs was
related to apps’ lack of success [6, 45]), rather than show-
ing a cause-effect relationship. Also, we found some clear
evidence of “rewarding” by mining and discussing cases
where the same user positively reviewed the new release
of the app after providing a lower score on a buggy one.
Finally, answers collected in the conducted survey helped
in further corroborating our findings.

Our findings showed that on average 49% of informa-
tive reviews are implemented by developers. Clearly, we
cannot exclude that a change implemented in an app (e.g.,
a new feature) that we were able to link to an app’s review
(i.e., the new feature was recommended in the review) was
already planned by the app’s developers, independently
from what was suggested in the review. In other words,
we cannot claim a direct relationship between the requests
made in users’ reviews and the changes implemented in the
app, even when we are able to identify traceability links
between reviews and changes.

As for external validity (i.e., the generalizability
of our findings), the accuracy and completeness of
CRISTAL (RQ1) has been evaluated on ten apps, due
to the need for manually building the oracle. Neverthe-
less, we found links for a total of 5,691 reviews (1,649
were classified as informative) towards 12,307 commits and
682 issues. Clearly, the traceability performance we ob-
served could substantially vary for other apps. This is
because, as described in Section 2, CRISTAL relies on
the presence of consistent lexicon either between user re-
views and terms used in the source code, in commit mes-
sages or, at least, between user reviews and terms used to
name app’s widgets. For some apps, there can be a strong
mismatch between user reviews and source code/commit
messages/widget terms, therefore negatively affecting the
traceability accuracy.

As for the main study (RQ2 and RQ3) the evalua-
tion is much larger (100 apps) and diversified enough in
terms of apps’ size and categories. While we could not
directly apply diversity or other sampling metrics in our

work [52, 62], since the metrics are not directly available
for our Android dataset, we aimed at diversifying the set of
studied apps as much as possible. Still, our results might
not generalize to other open source apps and, even more,
to commercial apps.

Another threat to the external validity is that the sam-
ple of surveyed developers may not be statistically repre-
sentative of the Android developers community. However,
as showed in Figure 3, our sample of 73 participants is
diverse in terms of programming experience.

7. Related Work

In this section we describe previous work on analyz-
ing crowdsourced requirements in mobile apps for build-
ing traceability links between informal documentation and
source code. The differences between CRISTAL and the
related work are summarized in Table 15. A comprehen-
sive overview of crowd-sourcing approaches in software en-
gineering is available elsewhere [50].

7.1. Analyzing Crowdsourced Requirements In Apps

Although CRISTAL is the first approach aimed at an-
alyzing and monitoring the impact of crowdsourced re-
quirements in the development of mobile apps, previous
work has analyzed the topics and content of app store re-
views [9, 25, 32, 38, 43, 66], the correlation between rat-
ings, price, and downloads [34], and the correlation be-
tween reviews and ratings [66]. McIlroy et al. [56] reported
a case study in which they observed increasing ratings for
the apps where developers systematically answer to user
reviews. Our empirical investigation is complementary to
this work since it reports that the implementation of fea-
ture requested by the users have positive effects in terms of
ratings. The same authors also defined an approach able
to automatically labeling the types of issues raised by the
users in the user reviews [55].

Iacob and Harrison [38] provided empirical evidence of
the extent users of mobile apps rely on app store reviews
to describe feature requests, and the topics that represent
the requests. Among 3,279 reviews manually analyzed, 763
(23%) expressed feature requests. While CRISTAL also
requires a labeled set, it uses a semi-supervised learning-
based approach to classify reviews as informative and non-
informative [9] instead of relying on linguistic rules.

Martin et al. [53] mined 3,187 releases of mobile apps
in order to study the characteristics of the most impacting
releases from users’ perspective. They found that 40% of
target releases impacted performance in the Google store,
while 55% of them impacted performance in the Windows
store. Moreover, they observed that more release notes
that include more features descriptions than bug fixes can
increase the chance for a release to be impacting, and to
improve the final rating assigned by users.

Ruiz et al. [76] conducted an empirical study with
10,000 mobile apps in order to investigate whether the

18



Table 15: Summary of the related work. For each paper we report (i) the supported task (Extract Topics, Studying Rating, Identify
Informative Reviews, Rank Reviews, Detect Inconsistencies, Extract Feature Requests, Linking, Monitoring, Recommendation, Reviews
Categorization); (ii) the approach (Topic Models, Static Analysis, Qualitative Analysis, STatistical Analysis, Frequent Itemsets Mining,
Linguistic Rules, Semi Supervised Learning, Mining Software Repositories, Lightweight Textual Analysis, Information Retrieval, Natural
Language Processing, SEntiment Analysis); (iii) documentation used as the source of the analysis/link; documentation used as the target
of the link (Api Elements, Source Code Elements, Source Code Changes); (iv) and repository of the documents used as source (Google
Play, Apple App Store, BlackBerry app story, Stack Overlfow, GitHub, Eclipse Project, Lucene Project, Jira Issue Trackers of Open Source
Projects, Mailing Lists).

Approach Task Approach #Docs used as source Target Repository
Ciurumelea et al. [10] RC LTA+IR 7,754 app store reviews – GP
Maalej et al. [49] RC STA+NLP 32,210 app store reviews – GP
Panichella et al. [71] RC NLP+SEA 7,696 app store reviews – GP
Di Sorbo et al. [20] RC NLP+SEA 7,696 app store reviews – GP
Palomba et al. [67] EFR+L NLP 44,683 app store reviews SCE GP
Villaroel et al. [80] RR NLP 1,763 app store reviews – GP
Chen et al. [9] ET+IIR+RR STA+TM 691,097 app store reviews – GP
Fu et al. [25] DI+QA+FT STA+TM 13 Million app store reviews – GP
Harman et al. [34] SR STA 300 apps – BB
Iacob and Harrison [38] EFR+ET LR+TM 136,998 app store reviews – GP
Martin et al. [53] EFR+ET LR+TM 8,000 app store reviews – GP
Guzman and Maalej [32] EFR+ET LR+TM+SEA 32,210 app store reviews – GP+AAS
Panichella et al. [71] EFR+ET SSL+LTA+LR 32,210 app store reviews – GP+AAS
Khalid et al. [43] ET QA 6,390 app store reviews – AAS
Pagano and Maalej [66] EFR FIM+SA 1,126,453 app store reviews – AAS
Galvis and Winbladh [8] ET TP+SA 2,651 app store reviews – GP
McIlroy et al. [56] M MSR 10,713 mobile apps – GP
McIlroy et al. [55] RC TM 601,221 app store reviews – GP
Ruiz et al. [76] DI MSR 10,000 mobile apps – GP
Khalid et al. [42] M MSR 10,000 mobile apps – GP
Bacchelli et al. [4] L LTA+IR 101,149 emails SCE ML
Panichella et al. [70] L LTA+IR 18,046 emails + 30,486 bug reports SCE EP+LP
Parnin et al. [72] L LTA 307,774 discussions AE SO
Rigby and Robillard [75] L LTA 188 answer posts AE SO
Subramanian et al. [77] L SA 4000 code snippets SCE SO+GH
Thung et al. [78] R MSR 507 feature requests AE JITOSP
CRISTAL IIR+L+M SSL+LTA 19,224 app store reviews SCC GP

rating system used by mobile app stores is able to capture
the changing user satisfaction levels, finding that such sys-
tem is not dynamic enough to capture the user satisfac-
tion. Khalid et al. [42] examined the relationship between
the app ratings and the static analysis warnings collected
using FindBugs. They found that specific categories of
warnings, such as Bad Practice, Internationalization, and
Performance are significantly more related to low-rated
apps.

Previous work have also focused on categorizing re-
views. Similarly to Iacob and Harrison [38], Pagano and
Maalej [66] analyzed reviews in the Apple App Store and
found that about 33% of the reviews were related to re-
quirements and user experience. In addition, they also
found that reviews related to recommendations, helpful-
ness, and feature information are accompanied by higher
ratings; while reviews with lower ratings express dissua-
sion, dispraise, and are mostly bug reports. The results
of our second study (Section 5.2) are complementary to
the work by Pagano and Maalej [66], as we analyzed the
impact of crowdsourcing requirements on the apps’ suc-

cess. Chen et al. [9] proposed an approach (i.e.,AR-
Miner) for filtering and ranking informative reviews au-
tomatically. Informative reviews are identified by using
a semi-supervised learning-based approach. Then the re-
views are grouped into topics to measure the importance
of each group of informative reviews. On average, 35%
of the reviews were labeled as informative by AR-Miner.
CRISTAL relies on AR-Miner for detecting informative
reviews (see Figure 1). Khalid et al. [43] conducted a qual-
itative study on 6,390 user reviews of free iOS apps and
qualitatively classified them into 12 kinds of complaints.
Their study suggested that over 45% of the complaints are
related to problems developers can address, and that they
can be useful to prioritize quality assurance tasks.

Sentiment analysis is also a trend in analysis of user
reviews. For instance, Guzman and Maalej [32] proposed
an automatic approach for filtering, aggregating, and an-
alyzing user reviews by using natural language processing
techniques in order to identify fine-grained app features
in the reviews. Such reviews are then accompanied with a
general score given by the analysis of user sentiments about

19



the identified features. Panichella et al. [71] presented a
taxonomy to classify app reviews into categories that are
relevant for software maintenance and evolution. They
used an approach that combines (i) natural language pro-
cessing, (ii) textual analysis, and (iii) sentiment analysis
for the automatic classification of app reviews, with a pre-
cision of 75% and a recall of 74%, into the categories iden-
tified. Also Maalej et al. [49] defined a set of probabilistic
techniques based on review metadata, text classification,
natural language processing, and sentiment analysis for the
automatic classification of app reviews. They found that
the combination of text classification and natural language
processing techniques is particularly efficient when classi-
fying reviews. Ciurumelea et al. [10] firstly proposed a
low-level taxonomy describing categories of problems usu-
ally appearing in mobile apps (e.g., performance or battery
drains), and then they built an approach, based on Infor-
mation Retrieval techniques, able to classify user reviews
according to the defined taxonomy. Another work ana-
lyzing sentiments and opinions is SUR-Miner by Gu and
Kim [31] that summarizes sentiments and opinions and
clusters them in five categories: aspect evaluation, bug
reports, feature requests, praise and others. In the same
category, Di Sorbo et al. [20] devised an approach able
to summarize user reviews in order to generate a struc-
tured agenda of software changes developers should apply
on their applications. CRISTAL does not use sentiment
analysis, however, future work will be devoted to prior-
itizing/categorizing user reviews by including sentiment
analysis in the CRISTAL pipeline.

Other approaches related to user reviews/apps descrip-
tion mining are more concerned on extracting representa-
tive topics and keywords from the reviews/descriptions.
For example, Vu et al. proposed MARK [81], a tool
which extracts representative keywords from user reviews
that can be used by developers for filtering reviews. Car-
reno and Winbladh [8] used the Aspect and Sentiment
Unification Model to extract the main topics in app store
reviews and the sentences representative of those topics.
The main difference between CRISTAL and the ASUM-
based approach is that CRISTAL’s goal is to link reviews
to changes instead of extracting main topics from app store
reviews. In addition, Gorla et al. [29] proposed a model
aimed at validating whether the implemented behavior of
Android apps matches the advertised behavior in the app’
description. Fu et al. [25] analyzed reviews at three differ-
ent levels: (i) inconsistency of comments, (ii) reasons for
liking or disliking an app, and (iii) user preferences and
concerns. Given a sample of 50,000 reviews, they found
that 0.9% were inconsistent with the ratings. Moreover,
reasons for problematic apps are mainly related to func-
tional features, performance issues, cost and compatibility.
Villarroel et al. [80] devised an approach to classify the
user reviews on the basis of the information they contain
(i.e., useless, suggestion for new features, bugs reporting).
Palomba et al. [67] presented a technique able to link rele-
vant user feedback extracted from user reviews onto source

code elements. The studies by Linares-Vásquez et al. [45],
Bavota et al. [6], and Tian et al. [79] analyzed ratings and
user reviews to identify factors impacting the success of
Android apps.

Finally, it is worth mentioning the existence of sev-
eral commercial tools, such as Apteligent2, App Annie3,
and App Figures4 which offer analytics systems which
support the decision activities of app developers. These
commercial tools for “app analytics” collect real-time data
from real usages in terms of devices, crashes at runtime,
downloads, and app performance measures (e.g., network
latency, app load time), however, no commercial tool
is able to (i) automatically categorize informative/non-
informative reviews, (ii) monitor reviews implementation,
or (iii) link reviews to changes as CRISTAL does.

7.2. Linking Informal Documentation to Source Code

Several approaches have been proposed for tracing in-
formal documentation (i.e., feature descriptions, emails,
forums, etc.) onto source code or other artifacts [4, 17, 21,
47, 70, 72, 74, 84]. Bacchelli et al. [4] used lightweight tex-
tual grep-based analysis and IR techniques to link emails
to source code elements. Parnin et al. [72] built traceabil-
ity links between Stack Overflow (SO) threads (i.e., ques-
tions and answers) and API classes to measure the cover-
age of APIs in SO discussions. Linares-Vásquez et al. [47]
linked Stack Overflow questions to Android APIs to iden-
tify how developers react to API changes. Zhang and Hou
[84] identified problematic APIs by analyzing negative sen-
tences in forum discussions. Panichella et al. [70] proposed
an heuristic-based approach for linking methods descrip-
tion in informal documentation such as emails or bug de-
scriptions to API elements. The approach includes the fol-
lowing steps: (i) identifying fully-qualified class names in
the text of emails/bug reports, (ii) extracting paragraphs
from the text, and (iii) tracing such paragraphs to specific
methods of the classes, computing the textual similarity
between the paragraphs and method signatures. Gethers
et al. [27] used Relational Topic Models (RTM) for linking
source code to high level artifacts (HLA) and measuring to
what extent the topics in HLAs have been covered in the
source code. Differently from the approaches mentioned
above, CRISTAL is based on textual analysis rather than
on more sophisticated API-matching or techniques such
as RTM because (i) user reviews are at a different level
of abstraction than SO discussion or development emails,
and (ii) a rather small corpus of reviews and commit notes
may not be sufficient for effectively applying techniques
like RTM. Rigby and Robillard [75] identified salient (i.e.,
essential) API elements in informal documentation by us-
ing island grammars [59] and code contexts [16]. Subrama-
nian et al. [77] extracted and analyzed incomplete ASTs

2https://www.apteligent.com
3https://www.appannie.com
4https://appfigures.com

20



from code snippets in API documentation to identify API
types and methods referenced in the snippets.

Thung et al. [78] mined historical changes to rec-
ommend methods that are relevant to incoming fea-
ture requests. Instead of using oracles or island gram-
mars for linking informal documentation to source code,
CRISTAL uses bug reports and commit notes as a bridge
between reviews and source code changes. Also, although
the purpose of CRISTAL is not to recommend API ele-
ments that are relevant to incoming crowdsourced require-
ments, it traces user reviews to source code changes in or-
der to monitor whether those requirements are considered
and implemented by the developers.

7.3. Crowdsourcing Requirements

Crowdsourcing mechanisms have been previously used
not only in the context of mobile development, but also
for requirements engineering. Dumitru et al. [22] pro-
posed a recommender which is able to suggest product
features for a specific domain; the recommendations are
based on common variants and cross-category features per
domain mined from product descriptions contained in pub-
licly available online specifications. Huffman et al. [37]
presented a method for semi-automatically recovering do-
main specific pre-requirements information from mental
models of diverse stakeholders of a system; therefore, the
stakeholders’ understanding of generic systems or domains
(e.g., a generic word processor) can be used for recovering
traceability links or measuring the obsolescence of a sys-
tem. Hu and Liu [36] proposed an approach for mining
user reviews (posted in online shopping websites) and ex-
tracting features on which the customers have expressed
positive and negative opinions.

7.4. Limitations of the existing work. Why is
CRISTAL needed?

As summarized above, there is a large body of work
aimed at (i) mining user reviews from app stores, and (ii)
linking informal textual documentation to source code.
Also, recently—though after CRISTAL was firstly pub-
lished [68]— McIlroy et al. [56] have analyzed whether
addressing user reviews increases app ratings by manually
categorizing user reviews and mining changes to ratings
and reviews. In this paper we analyze not only whether
addressing user reviews increases app ratings, but also
the thoughts and experiences of 73 mobile app develop-
ers concerning user reviews, what do they look for on re-
views, what is the volume of informative reviews, among
other interesting questions (See section 4.3.2). Moreover,
to the best of our knowledge, there is no approach aimed
at tracing links (i) between a user review and a change
addressing it; and (ii) towards a new user review where
the user’s rating is possibly changed in view of the im-
plemented changes. CRISTAL was designed to cover the
aforementioned functionality, which is not even available
in the commercial tools for app analytics.

8. Conclusion and Future Work

This paper presents an in-depth analysis into what ex-
tent app development teams can exploit crowdsourcing
mechanisms for planning future changes and how these
changes impact user satisfaction as measured by follow-
up ratings. We devised an approach, named CRISTAL,
aimed at detecting traceability links between app store
reviews and code changes likely addressing them. Using
such links it is possible to determine which informative
reviews are addressed and what is the effect of a crowd
review mechanism (for planning and implementing future
changes) on the app success. Data collected by mining 100
mobile apps and their respective reviews showed that (i)
on average, apps’ developers implement 49% of informa-
tive user reviews while working on the new app release,
and (ii) user reviews really matter for the app’s success,
because fulfilling a high percentage of informative reviews
is usually followed by an increase in the ratings for the
new release of that app. In addition, a survey performed
with 73 apps developers confirmed that developers con-
sider user reviews while evolving their apps, and in par-
ticular those with details about bugs or new features. In
addition, the participants claimed that they observed a
correlation between suggested changes in user reviews and
an improvement in user ratings.

Both survey and mining-based study with
CRISTAL confirm the importance of crowdsourcing
user reviews for mobile developers, and the benefit of con-
sidering the user reviews. CRISTAL is the first step to
help mobile developers to monitor user reviews and their
implementation. Combining CRISTAL with approaches
existing in the literature to categorize and prioritize users’
reviews (e.g., as in the work of Villarroel et al. [80]) can
provide developers with a complete platform supporting
the release planning of mobile apps.

While a lot has been already done by researchers to
support mobile apps’ developers in building successful
apps, we believe more is yet to come. Two promising
research directions that we plan to pursue are (i) the au-
tomatic identification of the killer features that a specific
type of app (e.g., a GPS navigator) must implement to suc-
ceed in the market, and (ii) the automatic creation of test
cases able to reproduce bugs reported in users’ reviews.

Acknowledgments

This work is supported in part by the NSF CCF-
1525902, CCF-1253837 and CCF-1218129 grants. Any
opinions, findings, and conclusions expressed herein are
the authors’ and do not necessarily reflect those of the
sponsors.

References

[1] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E. 2002. Recovering traceability links between code

21



and documentation. IEEE Transactions on Software Engineer-
ing 28, 10, 970–983.

[2] Apple. 2016. Apple app store. https://itunes.apple.com/.
[3] Atlassian. 2016. Jira. https://www.atlassian.com/software/

jira.
[4] Bacchelli, A., Lanza, M., and Robbes, R. 2010. Linking

e-mails and source code artifacts. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering -
Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010.
375–384.

[5] Baeza-Yates, R. and Ribeiro-Neto, B. 1999. Modern Infor-
mation Retrieval. Addison-Wesley.

[6] Bavota, G., Linares-Vásquez, M., Bernal-Cárdenas, C.,
Penta, M. D., Oliveto, R., and Poshyvanyk, D. 2015. The
impact of API change- and fault-proneness on the user ratings of
android apps. IEEE Trans. Software Eng. 41, 4, 384–407.

[7] Canfora, G., Di Penta, M., Oliveto, R., and Panichella, S.
2012. Who is going to mentor newcomers in open source projects?
In 20th ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC, USA
- November 11 - 16, 2012. ACM, 44.

[8] Carreno, L. V. G. and Winbladh, K. 2013. Analysis of
user comments: An approach for software requirements evolu-
tion. In 35th International Conference on Software Engineering
(ICSE’13). 582–591.

[9] Chen, N., Lin, J., Hoi, S., Xiao, X., and Zhang, B. 2014. AR-
Miner: Mining informative reviews for developers from mobile
app marketplace. In 36th International Conference on Software
Engineering (ICSE’14). 767–778.

[10] Ciurumelea, A., Schaufelbühl, A., Panichella, S., and
Gall, H. C. 2017. Analyzing reviews and code of mobile apps
for better release planning. In Software Analysis, Evolution and
Reengineering (SANER), 2017 IEEE 24th International Confer-
ence on. IEEE, 91–102.

[11] Cohen, J. 1988. Statistical power analysis for the behavioral
sciences 2nd Ed. Lawrence Earlbaum Associates.

[12] Conover, W. J. 1998. Practical Nonparametric Statistics 3rd
Edition Ed. Wiley.

[13] Corbin, J. and Strauss, A. 1990. Grounded theory research:
Procedures, canons, and evaluative criteria. Qualitative Sociol-
ogy 13, 1, 3–21.

[14] Cortés-Coy, L., Linares-Vásquez, M., Aponte, J., and
Poshyvanyk, D. 2014. On automatically generating commit mes-
sages via summarization of source code changes. In Source Code
Analysis and Manipulation (SCAM), 2014 IEEE 14th Interna-
tional Working Conference on. IEEE, 275–284.

[15] Cover, T. and Thomas, J. 1991. Elements of Information
Theory. Wiley-Interscience.

[16] Dagenais, B. and Robillard, M. 2012. Recovering traceability
links between an API and its learning resources. In 34th Interna-
tional Conference on Software Engineering (ICSE’12). 47–57.

[17] Dasgupta, T., Grechanik, M., Moritz, E., Dit, B., and
Poshyvanyk, D. 2013. Enhancing software traceability by au-
tomatically expanding corpora with relevant documentation. In
Software Maintenance (ICSM), 2013 29th IEEE International
Conference on. 320–329.

[18] De Lucia, A., Marcus, A., Oliveto, R., and Poshyvanyk,
D. 2012. Information retrieval methods for automated traceability
recovery. Vol. 9781447122395. Springer-Verlag London Ltd, 71–98.

[19] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R. 1990. Indexing by latent semantic
analysis. Journal of the American Society for Information Sci-
ence 41, 6, 391–407.

[20] Di Sorbo, A., Panichella, S., Alexandru, C. V., Shima-
gaki, J., Visaggio, C. A., Canfora, G., and Gall, H. C. 2016.
What would users change in my app? summarizing app reviews
for recommending software changes. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. FSE 2016. ACM, New York, NY, USA,
499–510.

[21] Dit, B., Moritz, E., Linares-Vásquez, M., and Poshyvanyk,
D. 2013. Supporting and accelerating reproducible research in
software maintenance using tracelab component library. In Soft-
ware Maintenance (ICSM), 2013 29th IEEE International Con-
ference on. IEEE, 330–339.

[22] Dumitru, H., Gibiec, M., Hariri, N., Cleland-Huang, J.,
Mobasher, B., Castro-Herrera, C., and Mirakhordi, M.
2011. On-demand feature recommendations derived from mining
public product descriptions. In 33rd IEEE/ACM International
Conference on Software Engineering (ICSE’11). 181–190.

[23] Fischer, M., Pinzger, M., and Gall, H. 2003. Populating
a release history database from version control and bug tracking
systems. In 19th International Conference on Software Main-
tenance (ICSM 2003), 22-26 September 2003, Amsterdam, The
Netherlands. 23–.

[24] Foundation, M. 2016. Bugzilla. https://www.bugzilla.org.
[25] Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J., and Sadeh,

N. 2013. Why people hate your app: Making sense of user feedback
in a mobile app store. In 19th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. 1276–1284.

[26] Gethers, M., Oliveto, R., Poshyvanyk, D., and Lucia,
A. D. 2011a. On integrating orthogonal information retrieval
methods to improve traceability recovery. In Software Mainte-
nance (ICSM), 2011 27th IEEE International Conference on.
133–142.

[27] Gethers, M., Savage, T., Di Penta, M., Oliveto, R., Poshy-
vanyk, D., and De Lucia, A. 2011b. Codetopics: Which topic
am i coding now? In 33rd IEEE/ACM International Confer-
ence on Software Engineering (ICSE’11),Formal Research Tool
Demonstration. 1034–1036.

[28] Google. 2016. Google play market. https://play.google.com.
[29] Gorla, A., Tavecchia, I., Gross, F., and Zeller, A. 2014.

Checking app behavior against app descriptions. In International
Conference on Software Engineering (ICSE’14).

[30] Grissom, R. and Kim, J. 2005. Effect sizes for research: A
broad practical approach 2nd Edition Ed. Lawrence Earlbaum
Associates.

[31] Gu, X. and Kim, S. 2015. What parts of your apps are loved
by users? In 30th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2015). to appear.

[32] Guzman, E. and Maalej, W. 2014. How do users like this
feature? a fine grained sentiment analysis of app reviews. In Re-
quirements Engineering Conference (RE), 2014 IEEE 22nd In-
ternational. 153–162.

[33] Hall, M., Frank, R., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. 2009. The WEKA data mining soft-
ware: an update. SIGKDD Explorations 11, 1, 10–18.

[34] Harman, M., Jia, Y., and Zhang, Y. 2012. App store mining
and analysis: MSR for app stores. In 9th IEEE Working Con-
ference of Mining Software Repositories, MSR 2012, June 2-3,
2012, Zurich, Switzerland. IEEE, 108–111.

[35] Holm, S. 1979. A simple sequentially rejective Bonferroni test
procedure. Scandinavian Journal on Statistics 6, 65–70.

[36] Hu, M. and Liu, B. 2004. Mining and summarizing customer
reviews. In 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 168–177.

[37] Huffman-Hayes, J., Antoniol, G., and Guéhéneuc, Y. 2008.
Prereqir: Recovering pre-requirements via cluster analysis. In
Working Conference on Reverse Engineering (WCRE’08).

[38] Iacob, C. and Harrison, R. 2013. Retrieving and analyzing
mobile apps feature requests from online reviews. In 10th Working
Conference on Mining Software Repositories (MSR’13). 41–44.

[39] Jaccard, P. 1901. Etude comparative de la distribution florale
dans une portion des alpes et des jura. Bulletin de la Société
Vaudoise des Sciences Naturelles 37.

[40] Jones, N. 2013. Seven best practices for optimizing mobile
testing efforts. Tech. Rep. G00248240, Gartner. February.

[41] Khalid, H., Nagappan, M., and Hassan, A. 2015a. Examining
the relationship between findbugs warnings and end user ratings:
A case study on 10,000 android apps. Software, IEEE PP, 99,
1–1.

22



[42] Khalid, H., Nagappan, M., and Hassan, A. 2015b. Examining
the relationship between findbugs warnings and end user ratings:
A case study on 10,000 android apps. IEEE Software PP, 99, 1–1.

[43] Khalid, H., Shihab, E., Nagappan, M., and Hassan, A. E.
2014. What do mobile App users complain about? a study on free
iOS Apps. IEEE Software 2-3, 103–134.

[44] Le, T.-D., Linares-Vasquez, M., Lo, D., and Poshyvanyk,
D. 2015. Rclinker: Automated linking of issue reports and com-
mits leveraging rich contextual information. In Program Compre-
hension (ICPC), 2015 IEEE 23rd International Conference on.
36–47.

[45] Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C.,
Di Penta, M., Oliveto, R., and Poshyvanyk, D. 2013. API
change and fault proneness: a threat to the success of Android
apps. In Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, ESEC/FSE’13, Saint Petersburg,
Russian Federation, August 18-26, 2013. ACM, 477–487.

[46] Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C.,
Oliveto, R., Di Penta, M., and Poshyvanyk, D. 2015a.
Optimizing energy consumption of guis in android apps: A
multi-objective approach. In 10th Joint Meeting of the Euro-
pean Software Engineering Conference and the 23rd ACM SIG-
SOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’15). 143–154.

[47] Linares-Vásquez, M., Bavota, G., Di Penta, M., Oliveto,
R., and Poshyvanyk, D. 2014. How do api changes trigger stack
overflow discussions? a study on the android sdk. In Proceedings of
the 22Nd International Conference on Program Comprehension.
ICPC 2014. ACM, New York, NY, USA, 83–94.

[48] Linares-Vásquez, M., Vendome, C., Luo, Q., and Poshy-
vanyk, D. 2015b. How developers detect and fix performance bot-
tlenecks in android apps. In 31st IEEE International Conference
on Software Maintenance and Evolution (ICSME’15). 352–361.

[49] Maalej, W., Kurtanović, Z., Nabil, H., and Stanik, C. 2016.
On the automatic classification of app reviews. Requir. Eng. 21, 3,
311–331.

[50] Mao, K., Capra, L., Harman, M., and Jia, Y. 2015. A survey
of the use of crowdsourcing in software engineering. Research
Note.

[51] Marcus, A. and Maletic, J. I. 2003. Recovering
documentation-to-source-code traceability links using latent se-
mantic indexing. In Proceedings of 25th International Conference
on Software Engineering. Portland, Oregon, USA, 125–135.

[52] Martin, W., Harman, M., Jia, Y., Sarro, F., and Zhang,
Y. 2015. The app sampling problem for app store mining. In
Proceedings of the 12th Working Conference on Mining Software
Repositories. MSR ’15. IEEE Press, Piscataway, NJ, USA, 123–
133.

[53] Martin, W., Sarro, F., and Harman, M. 2016. Causal im-
pact analysis applied to app releases in google play and windows
phone store. In Proceedings of the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, FSE’16, Seattle, USA,
2016.

[54] Maxwell, J. A. 1996. Qualitative research design : an inter-
active approach. Sage Publications Thousand Oaks, Calif.

[55] McIlroy, S., Ali, N., Khalid, H., and E. Hassan, A. 2016.
Analyzing and automatically labelling the types of user issues that
are raised in mobile app reviews. Empirical Software Engineer-
ing 21, 3, 1067–1106.

[56] McIlroy, S., Shang, W., Ali, N., and Hassan, A. 2015. Is it
worth responding to reviews? a case study of the top free apps in
the google play store. In IEEE Software.

[57] Microsoft. 2016. Windows phone app store. http://www.

windowsphone.com/en-us/store/.
[58] Mojica Ruiz, I., Nagappan, M., Adams, B., Berger, T., Di-

enst, S., and Hassan, A. 2014. Impact of ad libraries on ratings
of android mobile apps. Software, IEEE 31, 6, 86–92.

[59] Moonen, L. 2001. Generating robust parsers using island gram-
mars. In 8th IEEE Working Conference on Reverse Engineering

(WCRE). 13–22.
[60] Moran, K., Linares-Vásquez, M., Bernal-Cárdenas, C.,

and Poshyvanyk, D. 2015. Auto-completing bug reports for an-
droid applications. In FSE’15. 673–686.

[61] Moran, K., Linares-Vásquez, M., Bernal-Cárdenas, C.,
Vendome, C., and Poshyvanyk, D. 2016. Automatically dis-
covering, reporting and reproducing android application crashes.
In ICST’16.

[62] Nagappan, M., Zimmermann, T., and Bird, C. 2013. Di-
versity in software engineering research. In Joint Meeting of the
European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-
26, 2013. 466–476.

[63] Nayebi, M., Adams, B., and Ruhe, G. 2016. Release practices
in mobile apps — users and developers perception. In Proceedings
of the 23rd IEEE International Conference on Software Analysis,
Evolution, and Reengineering (SANER). Osaka, Japan, 552–562.

[64] Nigam, K., McCallum, A., Thurn, S., and Mitchell, T.
2000. Text classification from labeled and unlabeled documents
using EM. Machine Learning 39, 2-3, 103–134.

[65] Oliveto, R., Gethers, M., Poshyvanyk, D., and De Lucia,
A. 2010. On the equivalence of information retrieval methods
for automated traceability link recovery. In Proceedings of the
18th International Conference on Program Comprehension. IEEE
Press, Braga, Portugal.

[66] Pagano, D. and Maalej, W. 2013. User feedback in the app-
store: An empirical study. In 21st IEEE International Require-
ments Engineering Conference. 125–134.

[67] Palomba, F., Salza, P., Ciurumelea, A., Panichella, S.,
Gall, H., Ferrucci, F., and De Lucia, A. 2017. Recommend-
ing and localizing change requests for mobile apps based on user
reviews. In Proceedings of the IEEE/ACM International Con-
ference on Software Engineering , ICSE17, Buenos Aires, Ar-
gentina, 2017.

[68] Palomba, F., Vásquez, M. L., Bavota, G., Oliveto, R.,
Penta, M. D., Poshyvanyk, D., and Lucia, A. D. 2015. User
reviews matter! tracking crowdsourced reviews to support evo-
lution of successful apps. In 31st IEEE International Conference
on Software Maintenance and Evolution (ICSME 2015), Bremen,
Germany, 2015. IEEE, 291–300.

[69] Palomba, G., Linares-Vásquez, M., Bavota, G., Oliveto,
R., Di Penta, M., Poshyvanyk, D., and De Lucia, A. 2016.
Online appendix of: Crowdsourcing user reviews to support the
evolution of mobile apps. http://www.cs.wm.edu/semeru/data/

JSS-Cristal. Tech. rep. http://www.cs.wm.edu/semeru/data/

JSS-Cristal.
[70] Panichella, S., Aponte, J., Di Penta, M., Marcus, A., and

Canfora, G. 2012. Mining source code descriptions from devel-
oper communications. In IEEE 20th International Conference on
Program Comprehension (ICPC’12). 63–72.

[71] Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C. A.,
Canfora, G., and Gall, H. 2015. How can i improve my app?
classifying user reviews for software maintenance and evolution.
In 31st IEEE International Conference on Software Maintenance
and Evolution (ICSME 2015), Bremen, Germany, 2015. IEEE,
281–290.

[72] Parnin, C., Treude, C., Grammel, L., and Storey, M.-A.
2012. Crowd documentation: Exploring the coverage and dynam-
ics of API discussions on stack overflow. Tech. Rep. GIT-CS-12-05,
Georgia Tech.

[73] Porter, M. F. 1980. An algorithm for suffix stripping. Pro-
gram 14, 3, 130–137.

[74] Poshyvanyk, D. and Marcus, D. 2007. Combining formal
concept analysis with information retrieval for concept location in
source code. In Proc. of 15th IEEE ICPC. IEEE CS Press, Banff,
Alberta, Canada, 37–48.

[75] Rigby, P. C. and Robillard, M. P. 2013. Discovering essential
code elements in informal documentation. In 35th International
Conference on Software Engineering, ICSE ’13, San Francisco,
CA, USA, May 18-26, 2013. IEEE / ACM, 832–841.

23



[76] Ruiz, M., Nagappan, M., Adams, B., Berger, T., Dienst,
S., and Hassan, A. 2015. An examination of the current rating
system used in mobile app stores. In IEEE Software.

[77] Subramanian, S., Inozemtseva, L., and Holmes, R. 2014.
Live API documentation. In 36th International Conference on
Software Engineering (ICSE’14).

[78] Thung, F., Shaowei, W., Lo, D., and Lawall, L. 2013. Auto-
matic recommendation of API methods from feature requests. In
28th International Conference on Automated Software Engineer-
ing (ASE’13). 11–15.

[79] Tian, Y., Nagappan, M., Lo, D., and Hassan, A. E. 2015.
What are the characteristics of high-rated apps? a case study on
free android applications. In 31st IEEE International Conference
on Software Maintenance and Evolution (ICSME 2015). 301–310.

[80] Villarroel, L., Bavota, G., Russo, B., Oliveto, R., and
Di Penta, M. 2016. Release planning of mobile apps based on
user reviews. In Proceedings of the 38th International Conference

on Software Engineering. ICSE ’16. ACM, New York, NY, USA,
14–24.

[81] Vu, P. M., Nguyen, T. T., Pham, H. V., and Nguyen, T. T.
2015. Mining user opinions in mobile app reviews: A keyword-
based approach. CoRR abs/1505.04657.

[82] Wu, R., Zhang, H., Kim, S., and Cheung, S.-C. 2011. ReLink:
recovering links between bugs and changes. In SIGSOFT/FSE’11
19th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-19) and ESEC’11: 13rd European Software
Engineering Conference (ESEC-13), Szeged, Hungary, September
5-9, 2011. ACM, 15–25.

[83] Zar, J. H. 1972. Significance testing of the spearman rank
correlation coefficient. Journal of the American Statistical Asso-
ciation 67, 339, pp. 578–580.

[84] Zhang, Y. and Hou, D. 2013. Extracting problematic API
features from forum discussions. In 21st International Conference
on Program Comprehension (ICPC’13). 141–151.

24


