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Abstract

Context. Code smells are suboptimal design or implementation choices made
by programmers during the development of a software system that possibly lead
to low code maintainability and higher maintenance costs.

Objective. Previous research mainly studied the characteristics of code smell
instances affecting a source code file, while only few studies analyzed the magni-
tude and effects of smell co-occurrence, i.e., the co-occurrence of different types
of smells on the same code component. This paper aims at studying in details
this phenomenon.

Method. We analyzed 13 code smell types detected in 395 releases of 30
software systems to firstly assess the extent to which code smells co-occur, and
then we analyze (i) which code smells co-occur together, and (ii) how and why
they are introduced and removed by developers.

Results. 59% of smelly classes are affected by more than one smell, and in
particular there are six pairs of smell types (e.g., Message Chains and Spaghetti
Code) that frequently co-occur. Furthermore, we observed that method-level
code smells may be the root cause for the introduction of class-level smells.
Finally, code smell co-occurrences are generally removed together as a conse-
quence of other maintenance activities causing the deletion of the affected code
components (with a consequent removal of the code smell instances) as well as
the result of a major restructuring or scheduled refactoring actions.

Conclusions. Based on our findings, we argue that more research aimed at
designing co-occurrence-aware code smell detectors and refactoring approaches
is needed.

Keywords: Code Smells Co-Occurrences, Empirical Study, Mining Software
Repositories
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1. Introduction

Software systems are continuously evolved to introduce new features, to
adapt them to varying execution and usage contexts, or to correct defects [1].
In such a scenario, and especially when time-to-market is crucial or when there
are other stringent deadlines, developers are required to make design decisions
and to implement changes in the shortest time possible [2, 3, 4]. As a direct
consequence, developers do not always have the chance to apply changes that
preserve the system design quality, possibly leading to the introduction of design
defects, also known as technical debt [5, 6, 7]. Among the different types of
technical debt, one of the many issues involving the source code is the presence
of code smells, i.e., symptoms of poor design and implementation choices [8, 9].

The negative impact of code smells on non-functional attributes has been
widely analyzed by previous work. For instance, Khomh et al. [10] empirically
investigated the extent to which the presence of code smells makes classes more
change- and fault-prone, finding statistically significant correlations between
these phenomena. Other studies investigated the relevance of the problem for
developers [11], when and why code smells are introduced [12, 13], their longevity
[14, 15, 16, 17, 18], and their impact on maintainability properties [19, 20, 21, 22].

Also, the research community devised automatic detectors able to identify
instances of code smells in the source code. Most of such techniques rely on
the analysis of the structural properties of the source code (e.g., method calls)
to define heuristics aimed at alerting developers of the presence of a code smell
[23, 24, 25, 26]. More recently, the use of historical and textual information has
also been proposed as an alternative to standard detectors [27, 28].

Most of the research summarized above focused on studying the effects of
a single code smell instance affecting a code component, while very few studies
investigated problems occurring when several different types of smell instances
affect the same component. Indeed, the interaction of code smells has been only
recently the object of empirical studies that demonstrated some of the potential
risks of code smells co-occurrence. In particular, Yamashita and Moonen [22]
showed that the interaction of code smells consistently inhibits the ability of
developers to maintain code. More importantly, Palomba et al. [29] showed
that classes affected by more than one smell are up to 350% more change-prone
and 100% more fault-prone than classes affected by a single smell instance. A
possible reason—as reported by Abbes et al. [30]—is that the co-occurrence
of code smells strongly hinder the developers’ ability to understand the source
code.

Although these studies empirically showed the harmfulness of code smell
interactions, there is a noticeable lack of knowledge about (i) the magnitude of
the observed phenomenon, i.e., how frequently code smells co-occur; (ii) how the
phenomenon manifests, i.e., which code smells tend to co-occur more frequently;
and (iii) the likely reasons of the co-occurrences, i.e., how and why developers
introduce and remove code smell co-occurrences. These pieces of information
are of a paramount importance to correctly understand the phenomenon and
devise methodologies aimed to effectively deal with the problem.
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To this aim, this paper presents a large-scale empirical study aimed at quan-
tifying the diffuseness of the problem in terms of how frequently code smells
occur together, and the underlying dynamics leading developers to the intro-
duction and removal of multiple types of code smell instances in the same code
component.

The study considers 13 code smell types from the catalogs by Fowler [9] and
Brown et al. [8], and has been conducted across 395 releases belonging to 30
open source software systems. To the best of our knowledge, this is the largest
study aimed at characterizing the phenomenon of code smell co-occurrences.

Our results provide evidence on the high diffuseness of code smell co-occurrences;
we observed that almost 59% of smelly classes contain more than one type of
code smell instances. Specifically, we identified frequent co-occurrences between
six code smell pairs, i.e., Message Chains–Spaghetti Code, Message Chains–
Complex Class, Message Chains–Blob, Message Chains–Refused Bequest, Long
Method–Spaghetti Code, and Long Method–Feature Envy.

Moreover, when analyzing how code smell co-occurrences are introduced, we
found that often code smells affecting a single method (e.g., Message Chains)
represent the trigger for class-level code smells introduction, thus being the
triggering event for the “infection” of the entire class. Finally, we characterize
how co-occurrences are removed, finding that in most cases the code smells af-
fecting the same code component disappear all together. We complement our
quantitative analysis with qualitative examples aimed at providing the motiva-
tions behind the introduction and removal of code smell co-occurrences. From
this analysis, we learned that code smells are generally removed together as a
consequence of maintenance and evolution activities.

Our findings have implications for both researchers and practitioners. For
researchers, the observed co-occurrences of code smells and the temporal se-
quence in which they appear in the affected class represent information poten-
tially useful to build co-occurrence-aware code smell detectors and refactoring
recommenders. Such tools could be able to proactively recommend refactorings
not only related to the smell being detected, but also warn for consequences
of other smells that can co-occur with it. For example, a class affected by the
Message Chains smell is more likely to also become a Complex Class in the fu-
ture. For practitioners, knowing how code smells co-occur can help in reasoning
about code design principles that, once violated, can lead to the introduction of
several code smells, all triggered by the same violation. Also, being aware that
(i) the introduction of a code smell instance is likely to trigger the introduction
of other smells and (ii) classes affected by several code smells have a higher
change- and fault-proneness as compared to classes affected by a single instance
[29], highlights the risk to pay very high technical-debt interests as a conse-
quence of an apparently minor compromise in terms of good design practices,
thus stressing even more the need for high-quality code.

Structure of the paper. Section 2 describes the study objectives and design,
while Section 3 reports the achieved results. Section 4 discusses the threats
possibly affecting the validity of our experiment. In Section 5 we summarize
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the related literature, while Section 6 concludes the paper.

2. Empirical Study Definition and Design

Table 1: Systems involved in the study.

System Description #Releases Classes Methods KLOCs
ArgoUML UML Modeling Tool 16 777-1,415 6,618-10,450 147-249
Ant Build System 22 83-813 769-8,540 20-204
aTunes Player and Audio Manager 31 141-655 1,175-5,109 20-106
Cassandra Database Management System 13 305-586 1,857-5,730 70-111
Derby Relational Database Management System 9 1,440-1,929 20,517-28,119 558-734
Eclipse Core Integrated Development Environment 29 744-1,181 9,006-18,234 167-441
Elastic Search RESTful Search and Analytics Engine 8 1,651-2,265 10,944-17,095 192-316
FreeMind Mind-mapping Tool 16 25-509 341-4,499 4-103
Hadoop Tool for Distributed Computing 9 129-278 1,089-2,595 23-57
HSQLDB HyperSQL Database Engine 17 54-444 876-8,808 26-260
Hbase Distributed Database System 8 160-699 1,523-8148 49-271
Hibernate Java Persistence Framework 11 5-5 15-18 0.4-0.5
Hive Data Warehouse Software Facilitates 8 407-1,115 3,725-9,572 64-204
Incubating Codebase 6 249-317 2,529-3,312 117-136
Ivy Dependency Manager 11 278-349 2,816-3,775 43-58
Lucene Search Manager 6 1,762-2,246 13,487-17,021 333-466
JEdit Text Editor 23 228-520 1,073-5,411 39-166
JHotDraw Java GUI Framework 16 159-679 1,473-6,687 18-135
JFreeChart Java Chart Library 23 86-775 703-8,746 15-231
JBoss Java Webserver 18 2,313-4,809 19,901-37,835 434-868
JVlt Vocabulary Learning Tool 15 164-221 1,358-1,714 18-29
jSL Java Service Launcher 15 5-10 26-43 0.5-1
Karaf Standalone Container 5 247-470 1,371-2,678 30-56
Nutch Web-search Software 7 183-259 1,131-1,937 33-51
Pig Large Dataset Analyzer 8 258-922 1,755-7,619 34-184
Qpid Messaging Tool 5 966-922 9,048-9,777 89-193
Sax XML Parser 6 19-38 119-374 3-11
Struts MVC Framework 7 619-1,002 4,059-7,506 69-152
Wicket Java Application Framework 9 794-825 6,693-6,900 174-179
Xerces XML Parser 16 162-736 1,790-7,342 62-201
Total - 395 5-4,809 15-37,835 0.4-868

The goal of the study is to analyze (i) to what extent code smells co-occur
in software systems, (ii) which types of code smells tend to co-occur more fre-
quently, and (iii) how such co-occurrences are introduced and removed by the
developers. It is worth noting that with “how” we refer to the temporal relation-
ships between the introduction and the removal of the different smell instances
affecting the same code component, e.g., the introduction of a smell instance
of type A triggers a subsequent introduction of a smell instance of type B. The
study perspective is of researchers interested in understanding how code smell
co-occurrences appear and disappear in large software projects, as well as of
practitioners, who are interested in knowing the magnitude of the phenomenon.

More specifically, the study aims at answering the following research ques-
tions:

• RQ0: To what extent do code smells co-occur? This research question
aimed at assessing the extent to which software systems contain classes
affected by more types of code smell instances. Such a quantification is
needed to obtain an indication of the magnitude of the phenomenon we
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are studying. For example, if just few classes are affected by more than
one type of code smell instances, answering the other research questions
might be of little interest.

• RQ1: How often a code smell type co-occurs with another code smell type?
In this research question we aimed at analyzing the types of code smells
that co-occur more frequently. The results of such a research question can
be used, for example, to suggest appropriate refactoring operations when
multiple types of smell occur in the same code component.

• RQ2: How are code smell co-occurrences introduced? The research ques-
tion aimed at investigating the way new types of code smells are intro-
duced in classes already affected by at least one code smell instance. We
answered this research question by mining the common introduction pat-
terns, i.e., analyzing the sequence of code smells introduction. This will
aid to understand whether one smell type temporally causes the other, or
vice versa.

• RQ3: How are code smell co-occurrences removed? With this research
question we were interested in the analysis of how smell co-occurrences
are removed from a software system. Specifically, we mined the frequent
common removal patterns, i.e., the sequence where code smells are re-
moved from an affected class.

Table 2: Code smells considered in the context of the study.

Name Description
Blob (BL) A large class implementing different responsibilities and

centralizing most of the system processing.
Class Data Should Be Private (CDSBP) A class exposing its fields, violating the principle of data

hiding.
Complex Class (CC) A class having at least one method having a high cyclomatic

complexity.
Feature Envy (FE) A method is more interested in a class other than the one

it actually is in.
Inappropriate Intimacy (II) Two classes exhibiting a very high coupling between them.
Lazy Class (LC) A class having very small dimension, few methods and low

complexity.
Long Method (LM) A method that is unduly long in terms of lines of code.
Long Parameter List (LPL) A method having a long list of parameters, some of which

avoidable.
Message Chain (MC) A long chain of method invocations is performed to imple-

ment a class functionality.
Middle Man (MM) A class delegates to other classes most of the methods it

implements.
Refused Bequest (RB) A class redefining most of the inherited methods, thus sig-

naling a wrong hierarchy.
Spaghetti Code (SC) A class implementing complex methods interacting between

them, with no parameters, using global variables.
Speculative Generality (SG) A class declared as abstract having very few children classes

using its methods.
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2.1. Context Selection

The context of the study consisted of (i) software systems and (ii) code
smells. As for the former, we considered 395 releases of 30 open source software
systems belonging to two different ecosystems, i.e., the Apache Software
Foundation and the Eclipse Development Framework. Table 1 summa-
rizes the scope and the characteristics of the subject systems in terms of number
of public releases and size (i.e., number of classes, methods, and KLOC).

As for the code smell types, we took into account 13 design flaws from
the catalogs by Fowler [9] and Brown et al. [8]. In Table 2 we report the
set of code smells analyzed together with a short description. We focused our
attention on a mixed set of code smells. For instance, we considered Blob classes,
i.e., low-cohesive classes having a large number of methods and dependencies
with data classes [9], but also other smells indicating violations of the Object-
Oriented programming principles such as the Feature Envy, a method having
more dependencies with another class with respect to the one it is actually in.

Although several other smells have been defined in the literature [8, 9], we
selected this subset of smells because (i) they relate to different types of design
issues, and (ii) they are the smells that have been more extensively studied in
the past [11, 22, 31].

It is important to note that both the source code and the information about
code smell instances of the software projects considered in this study come from
a publicly available dataset that we built in a previous work [29]1. Specifically,
the dataset contains 40,888 manually validated instances of the 13 code smells
analyzed in the study across the 395 releases of the 30 subject systems. More
in detail, the construction of the dataset consisted of three steps.

In the first place, a simple tool that discarded the classes/methods that
surely do not contain code smells was developed with the aim of easing the
manual validation phase by excluding the analysis of those code elements that
are clearly non-smelly. Specifically, for each code smell considered, the tool ana-
lyzed the metric profile of classes/methods and outputs a list of code elements to
further analyze manually. For instance, when analyzing the Class Data Should
Be Private, we filter out all the classes having no public attributes because they
cannot be affected by the considered smell. For sake of completeness, we report
the list of rules adopted in the filtering phase in our online appendix [33]. Once
concluded the first phase, two Master students (i.e., the inspectors) individu-
ally analyzed and classified the code elements of each system as true positive or
false positive for a given smell. The output consisted of a list of smells identi-
fied by each inspector. In the second step, the produced oracles were compared,
and the inspectors discussed the differences, i.e., smell instances identified by
one inspector but not by the other. All the instances positively classified by
both the inspectors have been considered as actual smells. As for the others,
the inspectors opened a discussion to resolve the disagreement and taking a

1The dataset used in this paper is not the same as the one we built when introducing the
Landfill platform [32].
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shared decision. The final output consisted of a unique list of smells that we
used to answer our research questions. It is important to note that we relied
on a manually-built dataset, because existing code smell detectors generally try
to find a good compromise between the precision and the completeness of the
recommendations, which lead to output a number of false positive instances as
well as to miss some true negatives. A manual validation, instead, is supposed
to be more accurate. The list of code smell instances affecting each release of
the analyzed systems is available in our online appendix [33].

2.2. Data Analysis

To answer our preliminary research question (RQ0) we computed the num-
ber of code smells affecting each class. Then, we reported the percentage of
classes affected by one or more types of code smell instances.

As for RQ1, we investigated how often the presence of a code smell of a given
type (e.g., a Feature Envy) in a source code class implies the presence of another
code smell of a different type (e.g., a Blob). Specifically, for each code smell
type csi we computed the percentage of times its presence in a class/method co-
occurs with the presence of another code smell type csj . Formally, for each pair
of code smell types csi and csj we computed the percentage of co-occurrences
of csi and csj using the following formula:

co-occurrencescsi,j =
|csi ∧ csj |
|csi|

, with i 6= j

where |csi ∧ csj | is the number of co-occurrences of csi and csj and |csi| is
the number of occurrences of csi. Note that co-occurrencescsi,j differs from
co-occurrencescsj,i since the formula’s denominator changes from |csi| to |csj |.

To answer RQ2, we mined the releases of the subject systems looking for
temporal relationships between the introduction of two or more instances of
different code smell types in subsequent versions of the same class. In particular,
we analyzed the percentage of times a code smell type (e.g., Long Method) is
introduced temporally after another code smell type (e.g., Spaghetti Code) using
the following formula:

introduction patterncsi,j =
|csi →intro csj |
|csi ∧ csj |

, with i 6= j

where |csi →intro csj | is the number of times a smell instance of type csi was
introduced in a previous release with respect to a smell instance of type csj
and |csi ∧ csj | is the total number of times instances of types csi and csj ap-
peared in the same class over the analyzed releases. Note that also in this case
introduction patterncsi,j differs from introduction patterncsj,i since the formula’s

numerator changes from |csi →intro csj | to |csj →intro csi|. Following this pro-
cedure, we were able to track the history of each code smell co-occurrence in
our dataset and describe the common introduction patterns.
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Finally, to answer RQ3 we conducted a complementary analysis to the one
presented in RQ2. In particular, we analyzed the percentage of times a code
smell type (e.g., Long Method) is removed before another code smell type (e.g.,
Blob) from a class in which they co-occur. In this case, we used the following
formula:

removal patterncsi,j =
|csi →rem csj |
|csi ∧ csj |

, with i 6= j

where |csi →rem csj | is the number of times a smell instance of type csi was
removed in a previous release with respect to a smell instance of type csj and
|csi∧csj | is the total number of times instances of types csi and csj appeared in
the same class over the considered releases. So, we analyzed whether there exists
a sequence of changes aimed at removing code smell co-occurrences. We call
such sequences common removal patterns. It is worth noting that we considered
a code smell instance as removed if the dataset reports the presence of the smell
in a release ri and its absence in a subsequent release ri+1. For this reason,
we only observed whether a code smell was not present anymore in the release
ri+1, i.e., we did not know if that code smell instance was removed because of
a specific refactoring operation performed by developers.

Finally, to statistically investigate the significance of the identified introduc-
tion (RQ2) and removal (RQ3) patterns, we adopted the Granger causality test
[34] to determine whether one time series is useful in forecasting another. In
other words, we tested whether the presence of a code smell type csi can be used
to “predict” the future introduction of another code smell type csj . Note that
in this study we used the Granger test instead of association rule discovery [35],
because we are interested in assessing the statistical significance of the temporal
consequence of different kinds of smells, rather than of just smell co-occurrences.
Since we performed multiple Granger tests between different smell types, we ad-
justed p-values using the Holm’s correction procedure [36]. In particular, the
more hypotheses we check the higher the probability of a Type I error (i.e.,
false positive). The Holm’s method aims at controlling the probability that one
or more Type I errors will occur by adjusting the rejection criteria of each of
the individual hypotheses. The procedure firstly sorts the p-values resulting
from n tests in ascending order of values, multiplying the smallest p-value by
n, the next by n− 1, and so on. Then, each resulting p-value is then compared
with the desired significance level (e.g., 0.05) to determine whether or not it is
statistically significant.

3. Analysis of the Results

This section discusses the achieved results with the goal of answering the four
formulated research questions. Specifically, we will present the findings for RQ0

in Section 3.1, while the results for RQ1, RQ2, and RQ3 are presented together
in Section 3.2 to facilitate discussion of the results and avoid redundancies.
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Table 3: RQ0: Percentage of smelly classes affected by one, two, and three code smell instances
simultaneously.

Category # %
Classes affected by one smell 16,765 41%
Classes affected by two smells 12,675 31%
Classes affected by three smells 11,448 28%

3.1. RQ0: Diffuseness of code smell co-occurrences

Table 3 reports the code smell co-occurrences we found in our dataset. Note
that we found only classes affected by one to three different types of code smells
simultaneously.

Overall, the results in Table 3 highlight that the phenomenon is not negligi-
ble. Indeed, while 41% of the smelly classes are affected by a single code smell
instance, the remaining 59% of the smelly classes in our dataset are affected
by two or three different types of code smell instances. Specifically, 31% of the
smelly classes are affected by two smells, while a co-occurrence of three smells
was found in 28% of the smelly classes. The results are consistent among all the
studied systems. Specifically, we did not find a high variability in the percent-
ages reported above: the standard deviation is ≈5%, ≈3%, and ≈3% for classes
affected by one, two, and three smells, respectively.

As a more general consideration, if we consider recent findings on the harm-
fulness of code smell co-occurrences [29], i.e., classes affected by more than one
smell are up to 350% more change-prone and 100% more fault-prone than classes
affected by a single smell instance, our results reveal that there is a high risk of
appearance of code smell co-occurrences that might considerably worsen soft-
ware systems maintainability. One interesting example of smells co-occurrence
was found in the Apache Struts project, an open source framework for the
development of Java EE web applications. Specifically, in version 2.2.3 a Long
Method instance was introduced in the method parseStandardAction belong-
ing to the class jasper.compiler.JspDocumentParser. Such a method was
introduced in that version and its main responsibility is the parsing of HTTP

requests made on the Web server. In the subsequent version (i.e., 2.2.3.1) two
other smells appeared in the same class. In particular, the class became a Blob
due to the implementation of new methods aimed at deploying a Web applica-
tion and resulting in a reduction of the class cohesion (one of the characteristics
of Blob classes). In addition, the number of dependencies with other classes
of the system increased sensibly, also because of the introduction of a Feature
Envy instance affecting the method startElement.

Interestingly, during the history of the system this class was involved in sev-
eral bug-fixing activities, as reported in the project issue tracker2. For instance,
when committing a change to this class in the repository, a developer posted
the commit message shown below:

2http://tinyurl.com/hcjqygc
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“Class impossible to touch!
This code will never be fine!”

This example seems to confirm that developers experience some difficulties
when modifying classes affected by several code smells, as highlighted in previous
work by Yamashita and Moonen [22].

On the one hand, our results reinforce the need for a deep investigation into
the factors leading to the introduction and removal of co-occurring smells. On
the other hand, they highlight the importance of (i) empirical studies aimed at
analyzing the effects of the interaction of smells [21, 22, 30] and (ii) devising
interaction-aware code smell detectors and prioritizers: in particular, knowing
which code smells tend to co-occur can be a further piece of information (e.g.,
besides the classic code quality metrics used by existing detection tools [25, 37])
that can be used not only to identify code smells (e.g., knowing that a class is
affected by the Message Chain smell increases its likelihood of being affected
by other smells), but also to predict and warn developers about the future
introduction of other smell types, before they even appear in the system.

Finding 1. The phenomenon of code smell co-occurrence is highly
diffused. In a dataset containing 40,888 instances of 13 different code
smells identified across the 395 releases of 30 software systems, we
observed that 24,124 of the smelly classes (59%) are affected by more
than one type of code smell.

3.2. RQ1−3: Understanding the lifecycle of code smell co-occurrences

Tables 4, 5 and 6 report the results of the analysis carried out to answer RQ1,
RQ2 and RQ3, respectively. Specifically, Table 4 reports the co-occurrences
of the 13 analyzed code smell types in the 395 subject software releases. To
facilitate the reading of the table, we reported in bold face the code smell type
pairs co-occurring in at least 10% of cases (percentages in Table 4 are computed
following the process described in Section 2).

Table 5 reports, for each pair of frequently co-occurring smell types found
in the context of RQ1 (columns “A” and “B” in Table 5), (i) the percentage of
times the code smell type “A” has been introduced before the code smell type
“B” (column “A → B”), (ii) the percentage of times the code smell type “B”
has been introduced before the code smell types “A” (column “B → A”), and
(iii) the percentage of times the code smells have been introduced in the same
release.

Finally, Table 6 reports, for each pair of frequently co-occurring smell types,
(i) the percentage of times the code smell type “A” has been removed before the
code smell type “B” (column “A → B”), (ii) the percentage of times the code
smell type “B” has been removed before the code smell types “A” (column “B

10



Table 4: RQ1: Co-occurrences of code smells in the 395 analyzed releases of the studied
projects. Absolute numbers reported in parenthesis.

i/j
CDSBP CC FE BL II LC LM LPL MC MM RB SC SG
(3,526) (2,073) (2,409) (1,663) (1,220) (1,061) (14,802) (4,100) (130) (250) (2,479) (3,875) (3,330)

CDSBP
0%

14%
0%

1%
0%

5% 3%
0% 0% 0% 0% 0%

(3,526) (493) (48) (176) (106)
CC

0%
3% 2% 1%

0%
7% 3% 2%

0% 0%
1%

0%
(2,073) (62) (41) (21) (145) (62) (41) (21)
FE 20% 3% 6% 2%

0%
18% 1%

0% 0%
3% 3%

0%
(2,409) (493) (62) (149) (49) (433) (24) (72) (72)
BL

0%
3% 9%

0% 0%
5% 3% 1%

0% 0%
1%

0%
(1,663) (41) (149) (83) (50) (17) (17)
II 4% 2% 4%

0% 0%
8% 3% 1%

0%
1% 1%

0%
(1,220) (48) (21) (49) (98) (37) (12) (12) (12)
LC

0% 0% 0% 0% 0%
1% 1%

0% 0% 0% 0% 0%
(1,061) (11) (11)
LM 1% 1% 3% 1%

0% 0% 0% 0% 0% 0%
1%

0%
(14,802) (176) (145) (433) (83) (148)
LPL 3% 2%

0%
1% 1%

0% 0% 0% 0%
1% 1%

0%
(4,100) (106) (62) (50) (37) (41) (41)
MC

0%
32%

0%
13% 9%

0% 0% 0% 0%
35% 17%

0%
(130) (41) (17) (12) (46) (22)
MM

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
(250)
RB

0% 0%
3%

0% 0% 0% 0%
1% 2%

0% 0% 0%
(2,479) (72) (41) (46)
SC

0%
1% 2%

0% 0% 0%
38% 1%

0% 0% 0% 0%
(3,875) (21) (72) (148) (41)
SG

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
(3,330)

In bold the co-occurrences > 10%

Table 5: RQ2: Common patterns in the introduction of code smell co-occurrences.

A B A → B B → A A == B
Message Chains Spaghetti Code 69% 11% 20%
Message Chains Complex Class 64% 26% 10%
Message Chains Blob 53% 22% 25%
Message Chains Refused Bequest 12% 10% 78%
Long Method Spaghetti Code 82% 4% 14%
Long Method Feature Envy 34% 26% 40%

→ A”), and (iii) the percentage of times the smells were removed in the same
version.

As it is possible to see in Table 4, there exist few pairs of code smell types
frequently co-occurring. Among these, the Message Chains smell is the one
that tend to co-occur more with other code smell types, and in particular with
Complex Class (i.e., 32% of classes affected by Message Chains are also affected
by Complex Class), Refused Bequest (35%), Spaghetti Code (17%), and Blob
(13%). The Message Chains smell appears when the invocation of a method
results in a subsequent long chain of other method invocations. In the context
of our study, we found several cases in which such smelly methods were part of
complex/long classes.

Concerning the relationship between Message Chains and Complex Class,
we observed that complex methods belonging to the Complex Class are often
the ones responsible for triggering long chains of method calls.
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Table 6: RQ3: Common patterns in the removal code smell co-occurrences.

A B A → B B → A A == B
Message Chains Spaghetti Code 7% 10% 83%
Message Chains Complex Class 11% 14% 75%
Message Chains Blob 5% 6% 89%
Message Chains Refused Bequest 14% 20% 66%
Long Method Spaghetti Code 23% 4% 73%
Long Method Feature Envy 33% 6% 61%

A clear example involves the Apache Ant 1.8 project. The class FTP

belonging to the package ant.taskdefs.optional implements a basic FTP
client that can send, receive, list, and delete files, and create directories. The
class is affected by the Complex Class smell, and indeed its McCabe’s cyclomatic
complexity [38] is 64. At the same time, the method accountForIncludedDir

is affected by a Message Chain smell because it recursively invokes four different
methods belonging to different classes, thus triggering a long chain of calls.

Looking at Table 5, we can observe that in 69% of the cases a Message Chains
smell is introduced before a Spaghetti Code instance. This may indicate that the
introduction of a Message Chains increases the complexity of a class, which will
be subsequently affected by a Spaghetti Code smell. To verify this conjecture,
we firstly analyzed the number of releases occurring between the introduction
of the first and of the second smell, finding that the Spaghetti Code instance
is generally introduced in the subsequent release after Message Chains smell
is introduced. For example, the class ant.taskdefs.optional.FTP mentioned
above was affected by the Message Chains smell in the version 1.7, while in
the version 1.8 the class was affected by the Spaghetti Code smell. During
these two versions, the McCabe metric increased from 33 to 64, and the method
that experienced more changes was accountForIncludedDir (i.e., the method
affected by the Message Chains). This result seems to confirm previous finding
by D’Ambros et al. [31] about the harmfulness of the Message Chains smell.

The results of the Granger causality test are shown in Table 7, which reports
the adjusted p-values obtained by the test when testing the hypotheses: (i) code
smell type “A” triggers the introduction of code smell “B” (column “A → B”),
and (ii) code smell type “B” triggers the introduction of code smell “A” (column
“B → A”). As it is possible to see, the causality between the introduction of
Message Chains and Complex Class instances is confirmed also by the statistical
test. Other cases confirmed by statistical tests are Message Chains → Spaghetti
Code and Message Chains → Blob.

The existence of relationships between Message Chains and Blob, and be-
tween Message Chains and Spaghetti Code seems to delineate a clear trend in
the results. Indeed, similarly to what observed for the Complex Class, in most
of the cases a Message Chains instance is introduced before a smell involving
the entire class (see Table 5). This may indicate that design issues occurring in
methods could degenerate in code smells involving the whole class. A relevant
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Table 7: RQ2: Granger Causality Test Results (adjusted p-values). Statistically significant
p-values are reported in bold face.

A B A → B B → A
Message Chains Spaghetti Code <0.001 1.00
Message Chains Complex Class <0.001 1.00
Message Chains Blob 0.009 1.00
Message Chains Refused Bequest 1.00 1.00
Long Method Spaghetti Code <0.001 1.00
Long Method Feature Envy 1.00 1.00

Table 8: RQ3: Granger Causality Test Results (adjusted p-values). Statistically significant
p-values are reported in bold face.

A B A → B B → A
Message Chains Spaghetti Code 1.00 1.00
Message Chains Complex Class 1.00 1.00
Message Chains Blob 1.00 1.00
Message Chains Refused Bequest 1.00 1.00
Long Method Spaghetti Code 1.00 1.00
Long Method Feature Envy 1.00 1.00

example concerns the class utils.regex.RegexParser of the Apache Xerces
project. In the version 1.4.1 a Message Chains instance was introduced in the
method processStar. From that moment, the class underwent 14 changes that
lead to the introduction of a Blob instance.

The discussion is different when analyzing the relationship between Message
Chain and the Refused Bequest code smells. Classes affected by a Refused
Bequest override most of the methods they inherit from their superclass(es).
By analyzing some of the co-occurrences present in our dataset, we found that
classes affected by Refused Bequest implement a higher number of methods with
respect to non-smelly classes (14 vs 6). As a consequence such classes have a
higher probability to contain methods affected by Message Chains. Basically, it
seems that this result does not imply a causality relationship. This is somehow
confirmed by the results achieved when analyzing the introduction and removal
patterns (see Tables 5 and 6): Message Chains and Refused Bequest instances
are generally introduced and removed together.

Indeed, the Granger test (Tables 7 and 8) does not show a temporal re-
lationship between these smells (i.e., one does not temporally correlate with
the introduction/removal of the other). An example is represented by the class
bsh.BshClassManager of the JEdit project. In version 4.4.1, 14 of the 17
inherited methods of this class have been overridden, thus refusing the bequest
of the parent ClassManagerImpl.

In the same version, in the (overridden) method loadSourceClass a Message
Chains instance was introduced because of a long chain of method invocations
needed to monitor and handle certain Java version-dependent classes.
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Other co-occurrences we found were quite expected. For instance, the one
related to the Spaghetti Code and the Long Method code smells. By definition,
a Spaghetti Code is a class implementing several complex methods interacting
between them, with no parameters and using global variables [9]. Given the
well-known relationship between size (method length) and complexity, it is rea-
sonable to think that the complex methods present in a class affected by the
Spaghetti Code smell are Long Method instances too. Analyzing the way the two
smells are introduced (see Table 5), we found that in most cases Long Method
instances precede the introduction of Spaghetti Code instances. This is perfectly
in line with the definition of the Spaghetti Code smell. The likely introduction of
a Spaghetti Code as a consequence of the introduction of a Long Method instance
is confirmed by the Granger causality test.

Finally, another interesting case of co-occurrence is the one between the
Feature Envy and the Long Method code smells. Long Method instances are
generally composed of several code statements. In such methods, the likelihood
to have dependencies toward other classes may be higher than the one of other
non-smelly methods. Therefore, Long Method instances may also be involved
in the Feature Envy smell. In this case, Table 5 shows that 34% of the co-
occurrences started with the introduction of a Long Method instance. This
seems to indicate that developers working on long methods are more likely to
add statements in which external classes are invoked, thus increasing the chances
of introducing a Feature Envy. However, the results of the Granger test do not
support such a conclusion (see Table 7).

When considering the way the smells are removed (Table 6), we observed
that in almost all the cases (83%) the code smells co-occurrence was resolved
by removing all the smells at the same time. This frequent pattern may indi-
cate that the code smells removal could be a consequence of other maintenance
activities causing the deletion of the affected code components (with a conse-
quent removal of the code smell instances), as well as the result of a major
restructuring or scheduled refactoring actions [17, 15].

For example, the ant.taskdefs.optional.FTP class was completely re-
structured in the version 1.8.3 because of several changes to the way the FTP
client was implemented, as documented in the release notes3. This resulted in
the removal of all its smell instances.

The miss of significant temporal relationships for what concerns the removal
of these co-occurring code smell types is also confirmed when analyzing the sta-
tistical causality test (see Table 8).

3http://tinyurl.com/hdej8xx
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Figure 1: Absolute number of code smell instances in the analyzed systems.

Finding 2. We found six code smell pairs frequently co-occurring. In
most cases, code smells affecting source code methods correlate with
the introduction of other smells affecting the entire class. Finally, we
found that code smell co-occurrences are generally removed together
as a consequence of maintenance activities causing the deletion of the
affected code components (with a consequent removal of the code smell
instances) as well as the result of a major restructuring or scheduled
refactoring actions.

4. Threats to Validity

Threats to construct validity are related to the relationship between theory
and observation. In the context of this study, they are mainly due to imprecision-
s/errors in the performed measurements. The code smell instances considered
in this study have been previously manually validated, thus providing a high
confidence in the reported findings [29]. However, we cannot exclude that the
oracle we used misses some smells, or else includes some false positives.

Threats to internal validity concern factors internal to our study design that
could have affected our conclusions. In particular, while we can claim—using
Granger’s causality test—a statistical causality between the introduction of a
smell and another on the same code component, we cannot tell whether, indeed,
one smell caused the other or, instead, other phenomena related to the project
evolution caused the introduction of both smells. We partially back-up such a
threat by conducting some qualitative analysis.

Threats related to the relationship between the treatment and the outcome
(conclusion validity) are related to our analysis method.

As also done in other papers related to code smells co-occurrence [39, 40],
the analysis has been conducted at release level. Another threat in this category
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might be related to the high diffuseness of instances of a certain code smell type.
Indeed, frequent co-occurrences between the considered smells might simply be
the results of the high diffuseness of one smell type (e.g., Message Chains),
possibly indicating no causation in the observed relationships. Fig. 1 shows box
plots depicting the distribution of code smell instances for each type present in
the dataset [29]. Due to space limitations, we only report the overall diffuseness
of code smells in the 30 studied systems. As it is possible to notice, all the code
smells are almost equally distributed and, therefore, the observed co-occurrences
should not be just the result of the high diffuseness of single code smell types.
Moreover, one of the smells more involved in co-occurrences (i.e., the Message
Chains) is also one of the less widespread. To further strengthen our conclu-
sion validity, we have complemented the reported quantitative analysis with a
qualitative discussion of some interesting cases.

Finally, regarding the generalization of our findings (external validity) this
is, to the best of our knowledge, the largest study—in terms of number of
software releases (395) and considered code smell types (13)—concerning the
analysis of code smell co-occurrence. However, we are aware that we limited
our attention only to Java systems. Also, although the 13 code smell types are
well representative of the types of smells investigated in past literature on smell
evolution (and as said this set is larger than any previous study in this area), we
cannot exclude co-occurrence phenomena with smells that were not considered
in our work. For this reason, the generalizability of our results is clearly limited
to the 13 smell types we considered. Further studies aiming at replicating our
study on systems written in other programming languages are therefore highly
desirable.

5. Related Work

The research community has extensively studied the code smell phenomenon
under different perspectives. Several papers focused on how to detect and pri-
oritize code smells [25, 37, 28, 23, 26], while others analyzed how code smells
are diffused [17, 15], how they are introduced [13, 12], what is their impact on
non-functional attributes of source code [31, 30, 10, 41], and how developers
perceive and work on classes affected by code smells [11, 22, 21, 20].

Due to the nature of this study, in the following we focus on the works inves-
tigating the characteristics of code smells. A complete overview of automated
techniques for smell detection is available in a recent survey by Fernandes et al.
[42].

Several studies considered the way the code smells evolve during the evolu-
tion of a system. The study by Chatzigeorgiou and Manakos [15] showed that
(i) the number of instances of code smells increases during time; and (ii) devel-
opers are reluctant to perform refactoring operations in order to remove them.
On the same line, the results reported by Peters and Zaidman [17] show that
developers are often aware of the presence of code smells in the source code, but
they do not invest time in performing refactoring activities aimed at removing
them. A partial reason to this behavior is given by Arcoverde et al. [14], who
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studied the longevity of code smells showing as they often survive for a long time
in the source code. The authors point to the will of avoiding changes to API
as one of the main reason behind this result [14]. Palomba et al. [43] studied
the evolution of code smells detected using different types of information, i.e.,
structural and textual, finding the design problems detected using textual-based
tools tend to be more maintained and refactored than the ones detected using
structural-based tools.

Recently, Tufano et al. [13] investigated when code smells are introduced by
developers, and the circumstances and reasons behind their introduction. They
showed that most of the times code artifacts are affected by smells since their
creation, and developers introduce them not only when they are implementing
new features or enhancing existing ones, but also, in some cases, during refac-
toring operations. To the best of our knowledge the empirical study reported in
this paper is the first one investigating the diffuseness and the lifecycle of code
smell co-occurrences.

The research community has been also active in investigating the impact
of code smells on maintenance activities. Sjoberg et al. [20] investigated the
impact of twelve code smells on the maintainability of software systems, finding
that smells do not always constitute a problem, and that often class size impacts
maintainability more than the presence of smells.

Lozano et al. [16] proposed the use of change history information to better
understand the relationship between code smells and design principle violations,
in order to assess the causes for which a code smell appears. Deligiannis et al.
[44] also performed a controlled experiment showing that the presence of Blob
smell negatively affects the maintainability of source code. Also, the authors
highlight an influence played by these smells in the way developers apply the
inheritance mechanism.

Recently, Palomba et al. [11] investigated how the developers perceive code
smells, showing that smells characterized by long and complex code are those
perceived more by developers as relevant problems.

A consistent body of research on code smells is represented by studies ana-
lyzing the relationships between design flaws and code maintainability. In this
context, Khomh et al. [10] showed that the presence of code smells increases
the code change proneness. Also, they showed that the code components af-
fected by code smells have a higher fault-proneness with respect to components
not affected by any smell [45]. These results were confirmed by Palomba et al.
[29], however they found that refactoring code smells does not always help in
reducing the change- and fault-proneness of classes. Gatrell and Counsell [41]
conducted an empirical study aimed at quantifying the effect of refactoring on
change- and fault-proneness of classes. Their study revealed that classes sub-
ject to refactoring have a lower change- and fault-proneness, independently of
whether during the observation period classes were subject to refactoring or
not. Li et al. [46] empirically evaluated the correlation between the presence
of code smells and the probability that the class exhibits faults. They studied
the post-release evolution process showing that many code smells are positively
correlated with the class faults-proneness. Olbrich et al. [47] conducted a study
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on the Blob and Brain Class code smells, reporting that these code smells were
changed less frequently and had a fewer number of defects with respect to the
other classes.

D’Ambros et al. [31] also studied the correlation between the Feature Envy
and Shotgun Surgery smells and the defects in a system, reporting no consistent
correlation between them.

All the studies mentioned above have been performed by considering single
smell instances occurring in a code component, without explicitly considering
code smell co-occurrences.

To overcome this limitation, Abbes et al. [30] studied the impact of two
types of code smells, namely Blob and Spaghetti Code, on program compre-
hension. Their results show that the presence of a code smell in a class does
not have an important impact on the developers’ ability to comprehend the
code. Instead, a combination of more code smells affecting the same code com-
ponents strongly decreases the developers’ ability to deal with comprehension
tasks. The interaction between different smell instances affecting the same code
components has also been studied by Yamashita et al. [21, 22], who confirmed
that developers experience more difficulties in working on classes affected by
more than one code smell. Yamashita et al. [48] also presented a replicated
study where they analyzed the problem of code smell interaction in both open
and industrial systems, finding that the relation between smells vary depending
on the type of system taken into account. Our study is complementary to the
ones above, since it investigates how code smell co-occurrences are introduced
and removed by developers.

As for studies investigating which types of code smells tend to co-occur
together in production code, Anubhuti et al. [40] studied the co-occurrences of
7 code smell types in two large open source projects, Chromium and Mozilla.
They evaluated the percentage of smells co-occurring over the change history of
such projects, finding that often traditional code smells (i.e., Feature Envy and
Data Clumps) co-exist together with code duplication. Unlike this work, we
studied a larger number of systems (i.e., 30 instead of 2) and a larger number
of code smells types (i.e., 13 instead of 7).

Arcelli Fontana et al. [39] studied the phenomenon of code smell co-occurrence
by counting the percentage of smells appearing in the same class during the his-
tory of the software projects. By relying on the Qualitas Corpus [49] dataset,
Arcelli Fontana et al. found that only in a small percentage of cases (i.e., 3% of
average) a Brain Method co-occur with other smells as Dispersed Coupling and
Message Chains. Our study has been carried out considering a larger number
of smells, and highlight several other co-occurrences between code smells.

Palomba et al. [50] applied association rule discovery to identify frequent
co-occurrences between 13 smell types, finding six code smell pairs that fre-
quently appear together in open-source software systems. Besides analyzing
the co-occurrences between smells, the proposed study provides insights on (i)
the extent of the code smell co-occurrence phenomenon and (ii) how such co-
occurrences are introduced and removed by developers. Therefore, our study
is complementary to the work by Palomba et al. [50], as it provides a deeper
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investigation into the phenomenon.
Lozano et al. [51] reported a preliminary analysis of the co-occurrences

between four code smells in three systems. They evaluated whether specific
smells tend to co-occur together and whether they are removed in the same
moment. While this investigation represents the closest study with respect
to the work reported in this paper, we believe that our analysis goes beyond
previous research for two main reasons: in the first place, we consider a large
number of code smells having different characteristics on a much larger set of
software systems and evolution history (30 vs 3).

On the other hand, our study provides a comprehensive overview of the
co-occurrence phenomenon, by providing hints about (i) the diffuseness of the
phenomenon, (ii) the co-introduction of smells, (iii) the co-removal, and (iv)
more importantly, studying the Granger’s causality between the introduction
and removal events.

In a closely related area of research, Tufano et al. [12] conducted an em-
pirical investigation of the co-occurrence between test [52] and code smells in
the context of a more general investigation into the nature of test smells. The
results showed that some test and production smells are generally related, as in
the case of Assertion Roulette and Spaghetti Code [12].

6. Conclusion

Code smells are symptoms of poor design or implementation choices. As a
form of technical debt, code smells can negatively affect code maintainability
[10]. Despite the effort devoted by the research community in investigating
the code smells phenomenon, few studies targeted the problem of code smell
co-occurrences.

In this paper we presented a large-scale empirical investigation into the na-
ture of code smell co-occurrences, by providing evidence on (i) the extent to
which code smells co-occur, (ii) the types of code smells that often co-occur,
and (iii) how code smells co-occurrences are introduced and removed by devel-
opers.

Our study provided four main findings:

• The phenomenon of code smell co-occurrences is highly spread.
We observed that 59% of the smelly classes are affected by more than one
code smell. Therefore, we can claim that the phenomenon is worth of
studying and needs to be further investigated in future research.

• There are six code smell types frequently co-occurring together.
We discovered six strong relationships between the considered smells. In
particular, we observed that the Message Chains is the smell more fre-
quently involved in classes affected by multiple design issues. Indeed, the
smell is frequently associated with Spaghetti Code, Complex Class, Blob,
and Refused Bequest, highlighting the likelihood of the smell to appear
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together with smells characterized by complex and long code. Moreover,
our study revealed other two frequent co-occurrences, i.e., Long Method–
Spaghetti Code and Long Method–Feature Envy. These relationships were
quite expected because of the nature of the involved smells.

• Method-level code smells may be the cause of class-level code
smells. Analyzing the patterns which introduced code smells, we found
that often the presence of method-level smells (e.g., Message Chains) “in-
duces” code smells affecting the entire class. This may be due to the
fact that method-level smells increase the complexity of a class, making
developers more prone to apply sub-optimal design choices in the whole
class.

• Co-occurring code smells tend to disappear together. When min-
ing the frequent removal patterns, we observed that smells co-occurrences
are generally removed together as a consequence of other maintenance
activities causing the deletion of the affected code components (with a
consequent removal of the code smell instances) as well as the result of a
major restructuring or scheduled refactoring actions [17].

Our findings have several implications for the research community:

1. Co-occurrence-aware code smell detector. The frequent co-occurrence
between smells might represent an important source of information in the
context of code smell detection. Indeed, co-occurrence information (e.g.,
monitoring together the symptoms characterizing a frequent code smell
pair) might be exploited to build more accurate code smell detectors able
to identify the location and/or the severity of design problems affecting a
class.

2. Leveraging temporal analysis to predict code smell introduction.
The use of co-occurrence information can provide important benefits when
predicting the future appearance of code smells, as the symptoms of a cer-
tain smell can effectively forecast the introduction of another smell. Thus,
the research community might investigate the extent to which the intro-
duction of code smells can be predicted using co-occurrence information.

3. More attention to method-level code smells. As highlighted in
our study, design problems occurring at method-level can be the cause
of infection for an entire class. As a consequence, we believe that the
research community should investigate more the definition of appropriate
method-level monitoring tools as well as method-level code smell detectors.
Furthermore, our results might possibly indicate that refactoring opera-
tions performed on methods can avoid the introduction of coarse-grained
code smells. Thus, the research community should pay more attention
to refactoring techniques and tools able to work at method-level: indeed,
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while some method-level techniques have been proposed over the years
[53], they mainly focus on the identification of refactoring opportunities
for code smells like Feature Envy [37, 54, 55], thus not specifically tar-
geting code smells found as more dangerous in the context of code smell
co-occurrences (e.g., Message Chains).

These findings represent the main input for our future research agenda.
Specifically, we plan to design new code smell detectors able to suggest appro-
priate refactoring operations in presence of smell co-occurrences. Furthermore,
we plan to further understand the phenomenon of code smell co-occurrences by
analyzing the impact on maintainability given by the introduction of a second
smell in a class that is already smelly.
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signatures of antipatterns: An approach based on b-splines,” in Proceed-
ings of the 14th Conference on Software Maintenance and Reengineering,
R. Capilla, R. Ferenc, and J. C. Dueas, Eds. IEEE Computer Society
Press, March 2010.

[27] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, “Mining version histories for detecting code smells,” Software
Engineering, IEEE Transactions on, vol. 41, no. 5, pp. 462–489, May 2015.

[28] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and A. Zaidman,
“A textual-based technique for smell detection,” in 2016 IEEE 24th Inter-
national Conference on Program Comprehension (ICPC), May 2016, pp.
1–10.

23



[29] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A. De Lu-
cia, “On the diffuseness and the impact on maintainability of code smells: A
large scale empirical study,” Empirical Software Engineering, p. to appear,
2017.

[30] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empiri-
cal study of the impact of two antipatterns, blob and spaghetti code, on
program comprehension,” in Proceedings of the 2011 15th European Con-
ference on Software Maintenance and Reengineering, ser. CSMR ’11. IEEE
Computer Society, 2011, pp. 181–190.

[31] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact of design flaws
on software defects,” in Quality Software (QSIC), 2010 10th International
Conference on, July 2010, pp. 23–31.

[32] F. Palomba, D. D. Nucci, M. Tufano, G. Bavota, R. Oliveto, D. Poshy-
vanyk, and A. De Lucia, “Landfill: An open dataset of code smells with
public evaluation,” in 12th IEEE/ACM Working Conference on Mining
Software Repositories, MSR 2015, Florence, Italy, May 16-17, 2015, 2015,
pp. 482–485.

[33] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “A large-scale empirical study on the lifecycle of code
smell co-occurrences - online appendix,” 2017. [Online]. Available:
http://www.mediafire.com/file/mzyr95cgmrbym19/dataset.zip

[34] C. W. J. Granger, “Investigating causal relations by econometric models
and cross-spectral methods,” Econometrica, vol. 37, no. 3, pp. 424–438,
1969.

[35] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Data Engi-
neering, 1995. Proceedings of the Eleventh International Conference on.
IEEE, 1995, pp. 3–14.

[36] S. Holm, “A simple sequentially rejective Bonferroni test procedure,” Scan-
dinavian Journal on Statistics, vol. 6, pp. 65–70, 1979.

[37] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method refac-
toring opportunities,” IEEE Transactions on Software Engineering, vol. 35,
no. 3, pp. 347–367, 2009.

[38] T. McCabe, “A complexity measure,” Software Engineering, IEEE Trans-
actions on, vol. SE-2, no. 4, pp. 308–320, Dec 1976.

[39] F. A. Fontana, V. Ferme, and M. Zanoni, “Towards assessing software
architecture quality by exploiting code smell relations,” in Software Archi-
tecture and Metrics (SAM), 2015 IEEE/ACM 2nd International Workshop
on, May 2015, pp. 1–7.

24



[40] A. Garg, M. Gupta, G. Bansal, B. Mishra, and V. Bajpai, Do Bad Smells
Follow Some Pattern? Singapore: Springer Singapore, 2016, pp. 39–46.

[41] M. Gatrell and S. Counsell, “The effect of refactoring on change and fault-
proneness in commercial c# software,” Science of Computer Programming,
vol. 102, no. 0, pp. 44 – 56, 2015.

[42] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, “A review-
based comparative study of bad smell detection tools,” in Proceedings of the
20th International Conference on Evaluation and Assessment in Software
Engineering, ser. EASE ’16. New York, NY, USA: ACM, 2016, pp. 18:1–
18:12. [Online]. Available: http://doi.acm.org/10.1145/2915970.2915984

[43] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia, “The
scent of a smell: An extensive comparison between textual and structural
smells,” Transactions on Software Engineering, 2017.

[44] I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis, and M. Shepperd,
“A controlled experiment investigation of an object-oriented design
heuristic for maintainability,” Journal of Systems and Software,
vol. 72, no. 2, pp. 129 – 143, 2004. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0164121203002401

[45] F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An exploratory study of
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