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Beyond Technical Aspects: How Do Community
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Abstract—Code smells are poor implementation choices applied by developers during software evolution that often lead to critical
flaws or failure. Much in the same way, community smells reflect the presence of organizational and socio-technical issues within a
software community that may lead to additional project costs. Recent empirical studies provide evidence that community smells are
often—if not always—connected to circumstances such as code smells. In this paper we look deeper into this connection by
conducting a mixed-methods empirical study of 117 releases from 9 open-source systems. The qualitative and quantitative sides of our
mixed-methods study were run in parallel and assume a mutually-confirmative connotation. On the one hand, we survey 162
developers of the 9 considered systems to investigate whether developers perceive relationship between community smells and the
code smells found in those projects. On the other hand, we perform a fine-grained analysis into the 117 releases of our dataset to
measure the extent to which community smells impact code smell intensity (i.e., criticality). We then propose a code smell intensity
prediction model that relies on both technical and community-related aspects. The results of both sides of our mixed-methods study
lead to one conclusion: community-related factors contribute to the intensity of code smells. This conclusion supports the joint use of
community and code smells detection as a mechanism for the joint management of technical and social problems around software
development communities.

Index Terms—Code smells, organizational structure, community smells, mixed-methods study
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1 INTRODUCTION

Software engineering is, by nature, a “social” activity that
involves organizations, developers, and stakeholders who
are responsible for leading to the definition of a software
product that meets the expected requirements [1]. The social
interactions among the involved actors can represent the key
to success but can also be a critical issue possibly causing
additional project costs from an organizational and socio-
technical perspective [1], [2].

In the recent past, the research community devoted effort
to understanding so-called social debt [3], which refers to the
presence of non-cohesive development communities whose
members have communication or coordination issues that
make them unable to tackle a certain development problem
and that can lead to unforeseen project cost. One of the
recent advances in this research field is represented by
the definition of community smells, which were defined by
Tamburri et al. [2], [4] as a set of socio-technical charac-
teristics (e.g., high formality) and patterns (e.g., repeated
condescending behavior, or rage-quitting), which may lead
to the emergence of social debt. From a more actionable
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and analytical perspective, community smells are nothing
more than motifs over a graph [5]; motifs are recurrent
and statistically significant sub-graphs or patterns over a
graph detectable using either the structural properties and
fashions of the graph or the graph salient features and
characteristics (e.g., colors in the case of a colored graph).
For example, the organizational silo effect [4] is a recurring
network sub-structure featuring highly decoupled commu-
nity structures.

In turn, community smells are often connected to cir-
cumstances such as technical debt [6], i.e., the implementa-
tion of a poor implementation solution that will make the
maintainability of the source code harder.

In this paper we aim at empirically exploring the re-
lation between social and technical debt, by investigating
the connection between two noticeable symptoms behind
such types of debt: community and code smells. The latter
refer to poor implementation decisions [7] that may lead to a
decrease of maintainability [8] and an increase of the overall
project costs [9].

We conjecture that the presence of community smells can
influence the persistence of code smells, as the circumstances
reflected by community smells (e.g., lack of communication or
coordination between team members) may lead the code to be
less maintainable, making code smells worse and worse over
time.

Our empirical investigation features a convergence
mixed-methods approach [10], [11], [12] (see Figure 1) where
quantitative and qualitative research are run in parallel over
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Fig. 1. Convergence Mixed-Methods, qualitative and quantitative inquiry
converge towards a confirmed theory [10], [11], [12].

the same dataset with the goal of converging towards the-
oretical saturation. As mentioned, the theoretical saturation
in question is to be achieved via mixed-methods conver-
gence; our assumption is therefore that, if both qualitative
and quantitative data lead to the same conclusions, then our
theory is saturated. Conversely, any disagreement between
the two theories would lead us to an improved version
of our initial theory that code and community smells are
somehow connected.

Following this research method, our qualitative investi-
gation features a survey of 162 original developers of 117
releases belonging to 9 APACHE and ECLIPSE systems in
order to answer the research question below:

• RQ1: What concerns affect the developers’ decision to elimi-
nate or preserve code smells?

In other words, we aim at eliciting possible reasons for mak-
ing developers decide whether to remove code smells; the
purpose of this study is understanding whether community-
related issues might influence developer decisions to retain
or remove a code smell. This study is motivated by the
fact that developers, even if they perceive code smells as
implementation problems, are not inclined to remove them
by performing refactoring operations [13], [14], [15], [16],
[17]. The survey findings confirmed our initial hypothesis,
as over 80% of practitioners explicitly mention that avoiding
community problems (e.g., repeated disagreements) is the
reason why code smells are not refactored. This means that
it is more convenient to keep a technical smell than deal with a
community smell. Thus, the survey findings highlighted that
the persistence of code smells not only depends on technical
factors studied by past literature [8], [18], [19], but also on
the other fish of the sea, i.e., additional aspects related to the
social debt occurring in software communities that have not
been studied yet.

In parallel with the qualitative inquiry, we quantita-
tively evaluate to what extent the community-related factors
measured over the 9 projects in our dataset impact code
smell intensity [20], [21], i.e., an estimation of the severity of
a code smell:

• RQ2: To what extent can community smells explain the
increase of code smell intensity?

• RQ3: Does a community-aware code smell intensity predic-
tion model improve the performance of models that do not
consider this information?

We present a novel code smell intensity prediction model
that explicitly considers community-related factors when
predicting the future intensity of code smells, with the
aim of providing developers and project managers with a
practical technique that would allow them to preventively

take actions that preserve the maintainability of the source
code (e.g., refactoring of the team composition). To this aim,
we systematically investigate the relationship between all
the automatically detectable community smells [3], [4], i.e.,
Organizational Silo, Black Cloud, Lone Wolf, and Bottleneck,
and five code smells, i.e., Long Method [7], Feature Envy [7],
Blob [22], Spaghetti Code [22], and Misplaced Class. All these
code smells turned out to be relevant from the developers’
perspective in our survey study. As a result, we found
that a code smell intensity prediction model built using
community smells is able to more accurately predict the
future intensity of code smells than a model that does not
explicitly consider the status of software communities. The
accuracy of the devised prediction model is also confirmed
by ten industrial project managers, who were surveyed to
qualitatively assess the latent relation between the commu-
nity and code smells considered by our model.

Contributions and Implications. In summary, the origi-
nal research contributions of this article are:

• A large survey study involving 162 practitioners aimed
at analysing the reasons why code smells are not refac-
tored;

• As a side effect of the survey study, we reveal the
existence of 4 previously unknown community smells;

• A large-scale quantitative study where we assess the
impact of community-related information on the per-
formance of a code smell intensity prediction model.

• A comprehensive replication package, containing
anonymised qualitative and quantitative data used in
our study [23].

Our study has relevant implications for researchers,
practitioners, and tool vendors:

1) Our findings represent a call for community-aware soft-
ware evolution techniques, that explicitly consider
community-related factors to recommend practitioners
how to evolve their code. Thus, both researchers and
tool vendors should take into account those aspects
when developing new tools;

2) Practitioners should carefully monitor the evolution of
software communities, and, emergence of community
smells. If needed, practitioners should take preventive
actions;

3) Our study promotes a comprehensive research approach
for software maintenance and evolution: indeed, we
show that the circumstances occurring within the devel-
opment community directly affect the way developers
act in the source code. Thus, our study encourages
researchers to take into account community-related
aspects when studying the underlying dynamics of
software evolution.

Structure of the paper. Section 2 introduces the termi-
nology we use in the paper, while Sections 3 and 4 outline
our research design and results for our research questions.
Section 5 outlines a theoretical convergence between the two
sides of our study, while 6 address the threats to validity
we detected and addressed. Section 7 outlines related work.
Finally, Section 8 concludes the paper.
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TABLE 1 Software Projects in Our Dataset
System #Commits #Dev. #Classes KLOCs
Apache Mahout 3,054 55 800–813 202–204
Apache Cassandra 2,026 128 546–586 102–111
Apache Lucene 3,784 62 5,187–5,506 131–142
Apache Cayenne 3,472 21 2,727–2,854 518–542
Apache Pig 2,432 24 824–826 351–372
Apache Jackrabbit 2,924 22 842–872 473–527
Apache Jena 1,489 38 646–663 187–231
Eclipse CDT 5,961 31 1,404–1,415 189–249
Eclipse CFX 2,276 21 651–655 98–106
Overall 32,889 436 546–5,506 98–542

2 TERMINOLOGY

Our study aims at understanding the role of community
smells as factors contributing to the persistence of code
smells. The aforementioned concepts are defined as follows.

A software development community is a specific type of so-
cial network upon which certain properties hold constantly
(e.g., informal communication across electronic channels of
open-source projects) [24], [25]. Across such development,
social networks and their many possible properties (e.g.,
informality, goals, membership selection, intercommunica-
tion protocols), communities can develop conditions that
potentially lead to socio-technical problems. Such conditions
have been defined as community smells [2], [4] in analogy to
code smells. The analogy signifies that, on the one hand,
community smells do identify unlikable circumstances (e.g.,
the lack of communication across different modules of a
software system), but, on the other hand, these conditions
do not necessarily stop or void the organizational behavior
across the community. Rather, they prove detrimental and
cause additional project cost in several possible ways (e.g.,
recurrent delays in communication, wrongful knowledge
sharing) [4]. Finally, with the term project, we identify the
goal or shared practice that the community maintains as its
central endeavor, e.g., the Apache Spark community holds
the delivery of the Apache Spark product as its key project.
Specifically to the context of a project, on the one hand social
debt indicates the accumulated effect of problematic organi-
zational conditions (e.g., community smells); on the other
hand, technical debt [26], notably refers to the additional
project cost connected to problematic technical conditions,
represented in our study by code smells [7], namely poor de-
sign or implementation solutions applied by programmers
during the development of a software product.

3 SURVEYING SOFTWARE DEVELOPERS

The goal of this study is to elicit possible reasons making
developers decide whether to remove code smells, with the
purpose of understanding if any community-related issue
(e.g., a community smell) might influence their decisions.
The specific research question targeted with the qualitative
study is the following:

• RQ1: What concerns affect the developers’ decision to elimi-
nate or preserve code smells?

3.1 Context of the Study
The context of the study is represented by 117 major releases
of 9 large open-source projects belonging to two software

ecosystems, i.e., APACHE and ECLIPSE. Table 1 reports the
list of systems in the dataset along with their (i) number
of commits in the observed time period, (ii) number of
developers, and (iii) size as minimum-maximum number
of classes and KLOCs in the considered time period. The
selection of these systems was driven by our willingness to
analyse projects presenting different (a) codebase size, (b)
longevity, (c) activity, and (d) population. Starting from the
list of projects for the two ecosystems, we randomly selected
9 of them having a number of classes higher than 500, with
a change history at least 5 years long, having at least 1,000
commits, and with a number of contributors higher than 20.
We used reference sampling thresholds from literature [27],
[28], as they allowed us to focus on large and very active
projects having a notable amount of contributors: this is
essential to observe the presence of both community smells
(very small communities are likely to have less organiza-
tional issues) and code smells (small systems contain less
code smell instances [8]).

As for code smell types, we investigated:
1) Long Method: a method that implements more than one

function, being therefore poorly cohesive [7];
2) Feature Envy: a method which is more interested in a

class other than the one it actually is in, and that should
be moved toward the envied class [7];

3) Blob Class: a class usually characterised by a high num-
ber of lines of code, low cohesion, and that monopolises
most of the systems’s processing [22];

4) Spaghetti Code: a class without a well-defined structure,
usually declaring many long methods [22];

5) Misplaced Class: a class that has more relationships with
a different package than with its own package [9];

The choice of focusing on these smells was driven by the
desire to understand how “eliminate or preserve” decisions
are made for different types of code smells (e.g., highly
complex classes like Blob or source code violating OOP
principles like Feature Envy) having different granularities
(e.g., method-level smells like Long Method or class-level like
Blob).

3.2 Detecting Code Smells

The first step to answer RQ1 is concerned with the auto-
matic detection of the code smells considered. To this aim,
we relied on DECOR [29]. The tool uses a set of rules, called
“rule cards”1, describing the intrinsic characteristics that a
class has when affected by a certain smell type. For instance,
the approach marks a class as a Blob instance when it has an
LCOM5 (Lack of Cohesion Of Methods) [30] higher than
20, a number of methods and attributes higher than 20,
a name that contains a suffix in the set {Process, Control,
Command, Manage, Drive, System}, and it has an one-to-many
association with data classes.

Among the code smell detection tools available in the
literature [31], [32], [33], [34], [35], [36], we selected DECOR
because it has been employed in previous investigations on
code smells demonstrating good performance in terms of
precision, recall, and scalability [18], [37], [38], [39], [40],

1. http://www.ptidej.net/research/designsmells/
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[41], [42]. Overall, DECOR identified 4,267 code smell in-
stances over the 117 considered releases, i.e., a mean of ≈36
instances per release. A report of the distribution of each
code smell type is available in our online appendix [23].

To verify that the tool was actually suitable for this study,
we also validated the performance of DECOR on two of the
systems in the dataset, i.e., CASSANDRA and LUCENE. In
particular, we compared the recommendations provided by
the tool with a publicly available oracle reporting the actual
code smell instances affecting the systems [43]. As a result,
we found that the average precision of the tool was 79%,
with a recall of 86%. Based on these results, we can claim
that the selected code smell detector has a performance
similar the one declared in previous studies [29], being
sufficiently accurate for conducting our study.

3.3 RQ1. Survey Design & Data Analysis
The goal of the survey was twofold: (i) to help practitioners
by highlighting the code smells in their code, and (ii) to elicit
the data we needed by questioning them on each detected
code smell, asking for comments and explanations over that
smell, as well as an elaboration over the reasons why the
smell was not addressed yet.

We opt for a limited, cognitively simple set of ques-
tions, to promote responses by reducing the amount and
cognitive complexity of questions posed while increasing
the developers’ immediate benefit (in our case, by raising
awareness over a code problem) [44], [45]. The following
list of mandatory questions was selected for our inquiry:

1) Were you aware of this code smell?
2) Can you think of any technical root causes for the smell?
3) What are the reasons or risks that lead you to decide whether

or not to refactor the smell?
To survey developers that actually have knowledge on

social and technical circumstances around a smelly file, we
decided to focus on the developers that worked on a smelly
class the most (in terms of commits). Thus, we contacted
472 developers that worked with one distinct smelly class
instance in any of the releases we considered. It is worth
noting that we excluded developers that worked with more
than one smelly class. The rationale here is that developers
who worked on several smelly classes might potentially
not really be focused on the history of one specific smelly
class, e.g., they might have confused situations appearing
in the context of another smelly class with those of the
class we were targeting. To avoid any possible bias, we
preferred to be conservative and exclude them from the
target population of our survey: all in all, we discarded 168
developers.

Being aware of ethical issues commonly associated with
empirical software engineering studies, such as confidential-
ity and beneficence, we adhered to the inquiry guidelines
of Singer and Vinson [46]. As such, we prepared an intro-
ductory text and clarified the anonymity of their responses.
To bootstrap the survey, we used bulk-emailing and email
auto-compose tools, posing care in not spamming any
participant—every single developer was never contacted
more than once. As a result, 162 developers responded out
of the 472 contacted ones, for a response rate of 34,32%—that
is almost twice than what has been achieved by previous

papers (e.g., [41], [47], [48]). In our opinion, there are three
aspects that have contributed to this relatively high response
rate: (1) we contacted developers that committed the highest
number of changes to a smelly class: this means that we
only targeted developers who were expert of the considered
classes and that might have been more interested in gath-
ering further information on the class they were mainly in
charge of; (2) looking at the overall number of commits,
we noticed that the involved developers are among the
most active in the project; and (3) the time and amount of
information required from developers were limited, in order
to encourage them to reply to our e-mails.

It is worth highlighting that, given the methodology
followed to recruit survey participants, we did not collect
detailed information on the profiles of our interviewees.
For instance, we did not collect data on their programming
experience. However, this does not represent a threat in our
case. Indeed, we were interested in surveying developers
that actually worked on code smell instances, so that we
could ask the reasons why they did not refactor them: in
this sense, as far as they concretely worked on code smells,
it is fine for the type of questions we posed. At the same
time, while developers experience may have played a role in
the answers they provided, looking at the overall number of
commits, the involved developers are among the most active
in the considered projects: thus, we could assume that they
are among the most expert ones for the considered projects.

Concerning data analysis, given the exploratory nature
of RQ1, we applied Straussian Grounded Theory [49] as
follows: (i) microanalysis—we labelled survey responses,
applying a single label per every piece of text divided
by standard text separators (comma, semicolon, full-stop,
etc.); (ii) categorisation—we clustered labels which were se-
mantically similar or identical, i.e., applying the semantic
similarity principle [50], a direct consequence of this step
is the renaming of labels to reflect categories of labels; (iii)
categories saturation, i.e., elaboration of core-categories—this
step entails continued addition of labels to other or new
core-categories until no uncategorised label remained; (iv)
taxonomy building—we represented the tree of categories
and labels to visualise the grounded-theory extracted from
our survey responses. Indeed, our choice for Straussian
Grounded-Theory is more appropriate for explorative con-
texts since it does not assume the presence of any previous
theory to be tested over the data but rather it adopts a
constructivist theory-proving approach wherefore a theory
is directly and purely generated from the data. This not
withstanding, to increase inter-rater reliability, two authors
independently coded the dataset, subsequently evaluating
coding agreement, via the Krippendorff’s alpha Krα [51].
Agreement measures to 0.87, considerably higher than the
0.80 standard reference score [52] for Krα.

3.4 RQ1. Analysis of the Results

Over 80% of the practitioners admitted being aware of the
problems we discovered, sometimes also highlighting that
the problems were indeed well-known across the community.
It is important to note that, although a complementary
“unknown” category was present, it was never applied,
since developers were always aware or well aware of the
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TABLE 2 Community Smells from our survey, an overview.
Community Smell Definition #

Prima Donna [2], [4] Repeated condescending behavior, superiority, constant disagreement, uncooperativeness by one or few members. 7
Black Cloud [2], [4] Swarming of email or other communication around a new design or refactoring exercise - overly complex and disagreeing

repeated communication obfuscates actual truth.
15

organizational Silo [2], [4] Siloed areas of the development community that do not communicate, except through one or two of their respective members. 1
Lone Wolf [2], [4] Defiant contributor who apply changes in the source code without considering the opinions of her peers. 1
Bottleneck [2], [4] One member interposes herself into every interaction across sub-communities 1

Dissensus new Developers cannot reach consensus w.r.t. the patch to be applied - same condition recurs for other patches in other very
complex areas of the code

6

Class Cognition new The affected class, if refactored, would be made significantly more complex to discourage further intervention and introducing
a massive overhead to newcomers and other less-experienced contributors

3

Dispersion new A fix in the code causes a previously existing group or modularised collaboration structure in the community to split up or
rework their collaboration because functionality becomes re-arranged elsewhere

2

Code Red new This smell identifies an area of code (a class + immediately related ones) which is so complex, dense, and dependent on 1-2
maintainers who are the only ones that can refactor it

2
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or preserve code 
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Fig. 2. A Grounded-Theory of Concerns Affecting the Developers’ De-
cision to Eliminate or Preserve Code Smells, edges on the leaves
represent concept frequency counts.

problems we highlighted. This latter, however, could be
due to a confirmation bias—respondents might have felt
uncomfortable admitting that they were not well aware
of problems in their code. The output of our data analy-
sis process, summarizing the evidence from the developer
survey, is shown in Figure 2. Generally speaking, develop-
ers highlighted the presence of some well-known factors
that lead them to avoid refactoring. For instance, the fear
of introducing defects while modifying the structure of
a system as well as the lack of automated solutions to
perform refactoring have been frequently reported by our
interviewees. This indicates the presence of important tech-
nical “barriers” that do not allow developers to promptly
improve the quality of source code. At the same time, our

participants pointed out some interesting observations that
confirm our hypotheses on the role of community smells
and, more in general, community-related aspects on the
persistence of code smells. In particular, our findings reveal
not only that previously known community smells represent
an important factor in the refactoring decisional process,
but also that there are further community smells that were
unknown up to now but that influence the way developers
act on code smells. Table 2 provides an overview of the
smells we observed.

In the following subsections we discuss our findings, fo-
cusing on: (a) the community smells that were re-confirmed,
meaning that they were previously reported in industry and
are re-appearing in open-source as well; (b) newly-emerging
community smells, meaning the smells that were never
previously observed in industry; (c) other aspects and the-
oretical underpinnings around community- and technical-
related factors.

3.4.1 Re-Confirmed Community Smells
The first finding that emerged from the survey analysis

is that community smells [4], i.e., symptoms of the presence
of social issues within a software development community,
represent one important factor leading developers to not
spend time in eliminating code smells: 80% of practitioners
explicitly mentioned that avoiding community problems
(e.g., repeated disagreements) and other social “smells” [4],
is the reason why code smells are not addressed, meaning
that it is more convenient to keep a technical smell than
dealing with a community smell. More specifically, we could
confirm the recurrence of five previously known community
smells such as Black Cloud (mentioned 15 times), Prima
Donna (2), Organizational Silo (1), Lone Wolf (1), and Bottleneck
(1). The participants reported that increasingly confusing
information sharing and communication is one of the most
prominent reasons why they avoid refactoring (i.e., the
Black Cloud smell). Furthermore, repeated uncooperative,
condescending, or even defiant behavior with respect to
technical or organizational arrangements in a community
by a single member (the Prima Donna effect) can motivate
them to prefer avoiding any type of restructuring for the
fear of introducing additional chaos in the community.

A smaller number of developers also reported how the
presence of sub-teams that do not communicate with each
other (the Organizational Silo) or the absence of commu-
nication with one of the members who prefer working
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independently from the others (the Lone Wolf ) can explain
their refactoring decisions. Finally, the absence of flexibility
in the community—indicated by the presence of a member
that tries to interpose herself into every formal communica-
tions (the Bottleneck)—make that developers are not always
aware of the design decisions made by other people in
the community and, for this reason, they sometimes avoid
restructuring to not introduce defects and/or worsening the
overall program comprehensibility.

An interesting example of the discussion made so far
is presented in the quotation below, where a developer
commented on an instance of Long Method that was not
refactored:

“We are aware that this code is problematic, but we have
neither time and tools to correctly perform a splitting.
Furthermore, we have two subteams working on it, and
the communication with the other subteam is not good.”

Besides explaining that the lack of tools and time are
important factors in the decisional process, the developer
clearly pointed out the presence of an Organizational Silo that
involves two sub-teams that cannot properly communicate
with each other. As a consequence, the developer preferred
to avoid any type of pervasive modification which may have
led to introduce additional problems. All in all, the results
presented and discussed so far can already confirm our
conjecture: community smells can influence the persistence
of code smells.

3.4.2 Newly-Emerging Community Smells
Besides the five known community smells, our data

indicates the existence of 4 previously unknown community
smells recurring at least twice in two different projects,
and reported by two different developers. For example, we
discovered in 3 different projects that developers repeatedly
manifested a previously unknown Dissensus community
smell, namely, inability to achieve consensus on how to
proceed despite repeated attempts at it—as a consequence,
the code smell was kept as-is. For instance, a developer
reported that:

“Yes, we know this problem. But every time we talk
about it, we are not able to find a common solution.”

Note that this smell is not completely unknown in orga-
nizational literature: indeed Bergman et al. [53] indicate that
social conflict is associated with reduced productivity and
inability to reach consensus.

Our results also indicate that in all projects targeted by
our survey, practitioners often did not refactor code smells
since refactoring would cause a previously unknown Class
Cognition community smell, namely, that refactoring would
cause the modular structure and refactored classes to be
more difficult to understand and contribute to [54], e.g., for
newcomers. This is the case of a developer who analyzed a
Feature Envy instance reporting:

“Generally I try not to perform re-organization of the
code that implies the modification of the location of
code components. This because (i) other developers could
waste time and effort in understanding the new environ-
ment of the method, and (ii) I cannot simply identify a
suitable new location for the code.”

Thus, she indicated that the re-location of the method
could have caused comprehensibility issues to other de-
velopers. The two smells discussed above were intuitively,
but precisely described by 6 and 3 distinct developers. In
addition, we revealed the existence of the Code-red commu-
nity smell, that denotes the existence of extremely complex
classes that can be managed by 1-2 people at most. As
an example, one of the participants who analyzed a Blob
instance explicitly reported that:

“Totally un-understandable code is difficult to touch. I
modified this class only for fixing a potential bug, but
generally only 1 or 2 devs can substantially modify it.”

Finally, we found the Dispersion community smell, which
concerns a fix or refactoring that caused a previously ex-
isting group of modularised collaboration to fragment and
work haphazardly because of functionality rearrangements.
In contrast to the Class Cognition community smell, this
smell has nothing to do with code understandability [55]
to newcomers, but rather it refers to making normal mainte-
nance activities in the community more difficult to carry out
and coordinate. To better explain the nature of this smell, let
us consider the following quote from one of our surveyed
developers:

“If the algorithm implemented in the method would be
split, then the developers working on that code would
become crazy since they are able to work pretty well on
the existing code.”

In this case, the developer was analyzing a Long Method
instance but they did not proceed with an Extract Method
refactoring in order to avoid the risk of other team members
losing their knowledge on the algorithm implemented in the
method, threatening its future reliability.

In conclusion, we can observe how all the newly emerg-
ing smells are socio-technical, i.e., blend together social
and technical aspects, which confirms the need for fur-
ther quantitative analysis and exploration of the mutual
relation between code and community smells. It is worth
mentioning that developers were not made aware of the
notion of community smells and spontaneously, intuitively
expressed the repeated community characteristics causing
or relating to code smells—this intuition, feeling of unease,
is by definition the indication of a community smell [4].

3.4.3 Additional Aspects Influencing Refactoring Decisions
While most of the developers directly pointed out com-

munity smells as one of the main reasons leading them
to avoid refactoring of code smells, some participants also
indicated the existence of additional aspects that impact on
their refactoring decisions. Specifically, our data indicates
that one of the most common reasons to avoid refactoring is
the fear of (i) wasting time or (ii) the technical consequences
of this action. Specifically, 7 developers pointed out the risks
to introduce new defects while performing refactoring, thus
confirming the findings by Kim et al. [56], who reported
that developers do not think of refactoring as a behavior-
preserving activity and, as a consequence, it may introduce
new defects in the codebase. At the same time, 6 developers
identified the lack of trust in the refactoring tools as the main
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cause to not remove code smells - this is, again, in line with
previous findings in the field [56], [57]. Interestingly, one
developer reported that a co-occurring aspect to consider
when removing a code smell is whether the class also
contains a clone: in this case, the refactoring would be much
more costly as other code clones should be checked for the
presence of the smell and eventually refactored.

Still in the context of technical factors, ≈ 10% of the
respondents elaborated on the perceived technical media-
tors for unresolved code smells, pointing to well-known
architectural reflection phenomena, such as architecture ero-
sion or architecture drift [58]. They also pointed out that a
high number of dependencies toward other classes can be
an important reason to avoid a refactoring action.

Furthermore, developers are often scared of one key
contingency, that is, modifying classes which are subject of
both code and community smells—refactoring these classes
is avoided or limited to conservative-fix only. Finally, our data
also indicates that developers devised a new maintenance
device to address classes which carry a strong indication of
code and community smells, besides re-organisation and re-
modularisation. On the one hand, community smells exist
at the boundary of people and code, i.e., they are patterns
which include both a people and a code component. On
the other hand, developers reportedly used organizational
commenting within code, that is, including maintenance and
evolution instructions in source code comments such that,
for example, newcomers can contribute knowing what to
touch and what not to modify at all.

In conclusion, our main results from the analysis of
the additional factors influencing the persistence of code
smells show that (i) fault-proneness, (ii) lack of tools, (iii)
co-occurrence of code clones, and (iv) coupling of a class
are the main technical factors explaining the willingness of
developers to perform refactoring.

3.5 Summary of Findings

In summary, the main output of our qualitative analysis
revealed that the decision on whether to refactor a code
smells is dependent on a number of different factors. It is
indeed not only dependent on community or technical fac-
tors, but rather their combination better fits the developers’
willingness or ability to maintain code smells. This seems
to indicate that community-aware code smell prioritisation
approaches could better pinpoint to developers which code
smells can be more easily removed, thus providing a more
practical solution to deal with them.

The results also provide a clear indication that com-
munity and code smells are influenced by each other.
We adopted the Timeliness::Social-Then-Technical code to re-
sponses of developers saying that they did not address a
code smell because it would cause a community smell—
the community smell is then the effect of the code smell.
Conversely, the opposite is true for the Timeliness::Technical-
Then-Social code. Through content analysis we observed
that, for over 70% of the reported code smells, the decision
not to refactor was due to a potential community smell,
i.e., Timeliness::Social-Then-Technical. This evidence seems
to indicate a dimension of intentionality for code smells
themselves—oftentimes it is more convenient to keep code
smells rather than addressing community smells. This result

is particularly important, as it suggests the need for practical
solutions aiming at anticipating situations that might become
critical for persistence in the next future.

Summary for RQ1. Our evidence shows that community
smells, together with other technical factors, influence
the maintenance decisions for code smells. At the same
time, we observed that in several cases it is more con-
venient to keep code smells rather than addressing com-
munity smells. These findings suggest the need for (1)
community-aware approaches for assessing the refactora-
bility of code smells and (2) automated ways to anticipate
critical situations that may lead developers to not refactor
a code smell at all.

4 COMMUNITY VS. CODE SMELLS

In parallel to addressing RQ1, our goal was to study the rela-
tionship between community and code smells quantitatively,
with the purpose of understanding to what extent commu-
nity smells can be exploited to diagnose the persistence of
code smells. Therefore, this side of the study addresses the
following research questions:

• RQ2: To what extent can community smells explain the
increasing of code smell intensity?

• RQ3: Does a community-aware code smell intensity pre-
diction model outperform models that do not consider this
information?

In RQ2, we perform a fine-grained measurement of
the extent to which code smell intensity can be explained
by the presence of community smells, while in RQ3 we
study the feasibility of an automated solution that supports
developers when diagnosing future code smell intensity
by explicitly taking into account the status of the software
community. With fine-grained, we indicate the feature of
our study of mapping code and community smells at the
level of software artifacts and the actual people working
on them; more specifically, every community smell was
reported as relevant for our study (and the preparation of
the statistical model) if and only if it reflected on code-
smelly software code artifacts. This is the finest-grained
approach possible since it looks at the community structure
and technical structure around software at its most fine-
grained level. A more coarse-grained approach could have
considered the organizational structure as a whole, e.g., by
correlating its organizational characteristics/smells and its
technical outputs.

The choice of devising a community-aware code smell
intensity prediction model aimed at predicting the future
intensity of a code smell instance comes from some obser-
vations:

• As shown in the context of RQ1, developers tend to
prefer keeping a code smell in the source code rather
than dealing with a community smell. Thus, one might
think that a code smell that co-occurs with a community
smell may not be taken into account by a developer.
While this may be true, the role of prediction models
is that of anticipating situations where the co-occurrence
might lead to more serious maintainability issues. For
example, suppose in a certain release Ri, a code smell
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has a low intensity and that a prediction model predicts
the intensity of this smell to increase in the subsequent
release Ri+1 because the features of the model related to
community smells. In this case, a project manager may
immediately take action, trying to fix the community-
related issues with the aim of preventing the smell to
increase in its intensity.

• As shown by recent papers [59], [60], the perception
of code smells heavily depends on their intensity. We
argue that approaches able to precisely indicate the
future severity of code smell instances might allow
developers to (i) understand the possible criticism of
the software being developed that may arise in the
short-term future and (ii) deal with or simply monitor
evolution of the code smells [19].

• In the past, we have shown that the intensity of code
smells has a strong impact on fault-proneness [8] and
can be actually used to identify parts of source code
that are likely to be defective [61]: thus, intensity predic-
tion models can help developers assess when a certain
refactoring or other program transformations must be
applied to not incur possible additional maintainability
and/or reliability problems.

• Intensity can be used as a means for selecting the code
smell instances that need to be more urgently fixed. As
not all the smells are or can be removed, an approach
able to rank them based on their severity might be
worthwhile to allow developers selecting the instances
on which to focus more, or even those that are more
relevant to manage because of the co-occurrence of a
community smell.

For all the reasons reported above, we believe that the
definition of a community-aware code smell intensity pre-
diction model can be one of the most practical approaches
that developers and project managers can use to diagnose
the future persistence of code smells and eventually take
decisions on which instances should be refactored.

4.1 Context of the Study

The software systems and the code smells involved in the
context of this second study are the ones used for answering
RQ1. In addition, in this study we considered 4 of the
community smells defined by Tamburri et al. [4], namely:

1) Organizational Silo Effect: siloed areas of the developer
community that essentially do not communicate, except
through one or two of their respective members;

2) Black-cloud Effect: information overload due to lack of
structured communication or cooperation governance;

3) Lone-wolf Effect: unsanctioned or defiant contributors
who carry out their work irrespective or regardless of
their peers, their decisions and communication;

4) Bottleneck or “Radio-silence” Effect: an instance of the
“unique boundary spanner” [62] problem from social-
networks analysis: one member interposes herself into
every formal interaction across two or more sub-
communities with little or no flexibility to introduce
other parallel channels;

The choice of these community smells come from
the results of previous literature which theorises the co-

occurrence with or the causality between code smells/prob-
lems and all four effects we seek for [2], [63], [4].

Conversely, the community smells we identified in the
parallel qualitative study (see rows 3–6 of Table 2), were
not known yet during the setup of the quantitative study
and are not considered; what is more, they are an original
contribution of this study and are currently under opera-
tionalisation. Similarly, we could not consider the prima-
donna smell because of the lack of approaches and/or tools
actually able to identify its presence.

4.2 Detecting Community Smells
In order to detect community smells, we exploit the
CODEFACE4SMELLS tool, a fork of CODEFACE [64]
designed to identify developers’ communities. Starting
from the developer networks built by CODEFACE, we
detect instances of the considered smells according to the
following formalizations.

Organizational Silo. Let Gm = (Vm, Em) be the com-
munication graph of a project and Gc = (Vc, Ec) its collabo-
ration graph. The set of Organizational Silo pairs S is defined
as the set of developers that do not directly or indirectly
communicate with each other, more formally:

{(v1, v2)|v1, v2 ∈ Vc, (v1, v2) 6∈ E∗
m}

where E∗
m is the transitive closure of Em. With transitive

closure we indicate the transitive closure of a graph. More
specifically, given a directed graph, the operation finds out
if a vertex j is reachable from another vertex i for all vertex
pairs (i, j) in the given graph. With reachable we mean that
there is a path from vertex i to j. The reach-ability matrix is
called transitive closure of a graph.

Similarly, the set of lone wolf pairs L is defined as
the set of collaborators that do not directly or indirectly
communicate with each other, more formally:

{(v1, v2)|v1, v2 ∈ Vc, (v1, v2) ∈ Ec, (v1, v2) 6∈ E∗
m}

It follows that, by definition, L ⊆ S, meaning that lone-
wolves are a subset, or a specific instance of organisational
silo effect.

Black-Cloud and Lone wolf. Detection of the Black
cloud and Lone wolf smells starts with the detection of ver-
tex clusters as already implemented in CODEFACE. More
specifically, let P = {p1, . . . , pk} be a mutually exclusive
and completely exhaustive partition of Vm induced by the
clustering algorithm. From the partition, black cloud is the
set of pairs of developers C that connect otherwise isolated
sub-communities, more formally:

{(v1, v2)|v1, v2 ∈ Vm, (v1, v2) ∈ Em,∀i, j(((v1 ∈ pi ∧ v2 ∈
pj)⇒ i 6= j) ∧ ∀vx, vy((vx ∈ pi ∧ vy ∈ pj ∧ (vx, vy) ∈

Em)⇒ vx = v1 ∧ vy = v2))}
Bottleneck. Finally, the bottleneck set B is the set of

developers interposing themselves into every interaction
across two or more sub communities. More formally:

{v|v ∈ Vm,∃i(v ∈ pi ∧ ∀vx(vx ∈ pi ⇒ v = vx))} ∪ {v|v ∈
Vm,∃vx, i, j(v ∈ pi ∧ vx ∈ pj ∧ (v, vx) ∈ Em ∧ ∀vy, vz((vy ∈

pi ∧ vz ∈ pj ∧ (vy, vz) ∈ Em)⇒ vy = v)}
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Meaning that developers can interpose themselves into
interactions if either they are the only member of their
cluster (left-hand side of the expression above) or they
communicate with a member of the different cluster, and
they are the only member of their cluster communicating
with this different cluster (right-hand side of the expression
above); both these instances are united to form the set of
Bottleneck effects existing in a developer social network.

It is important to point out that the detection techniques
described were also evaluated in order to assess their ac-
tual ability to identify community smells. Specifically, we
ran CODEFACE4SMELLS on 60 open-source projects and,
through a survey study, we asked the original developers of
such systems whether the results given by the tool actually
reflect the presence of issues within the community. As a
result, we discovered that the recommendations of the tool
highlight real community-related problems. Furthermore, it
should be noted that the effectiveness of the operationalisa-
tions above rely on the proven effectiveness of the approach
by Joblin. et al. [64], building upon the “Order Statistics
Local Optimization Method” (OSLOM) [65] featured inside
CODEFACE, which was never previously applied before
on developer networks. Further details of the operational-
isation and evaluation are discussed in the accompanying
technical report [66].

It should be also noted that the projects considered
for the scope and context of this study were a selected
subset of the 60 projects with which we evaluated the
CODEFACE4SMELLS tool; therefore, the smells we detected
constitute actual and validated occurrences. For the sake of
completeness, we provide the full technical report of how
the tool was evaluated2.

4.3 RQ2. Factors that Intensify Code Smells

To answer RQ2 and properly assess the role of community
smells in the variation of intensity of code smells, we
defined a model relating a set of independent variables
(formed by both community smells and other control fac-
tors) to a dependent variable (that is, the intensity of code
smells). The following subsections describe them further.

4.3.1 Dependent Variable
The variable of interest is code smell intensity. In the first
place, to compute the code intensity value, we consider
how much the value of a chosen metric exceeds a given
threshold [67]. The conjecture is that the higher the distance
between the actual code metric value and the corresponding
fixed threshold value, the higher the intensity of the code
smell. In our case, the code smell detector classifies a code
entity (i.e., a method, a class, or a package) as smelly
analysing whether code metrics used by the detector exceed
the predefined threshold defined in the corresponding rule
card [29]. In the second place, the actual measurement
was done as suggested by previous work [20], [68]: (i)
we computed the differences between actual metric values
and reported thresholds; (ii) we normalised the obtained
difference scores in [0; 1], and (iii) we measured the final
intensity as the mean of those normalised scores. Note that

2. https://tinyurl.com/CodeFace4Smells

we are aware that the mean operator might be biased by
the presence of outliers [69]: however, experimental tests—
further described in Section 6—showed that our results
would not change if the aggregation would have been
done using the median. Subsequently, we converted the
floating-point double value in a nominal value in the set
{NULL, LOW,MEDIUM,HIGH}: if a class is non-smelly
(i.e., the detector does not detect any code smell instance),
its intensity is NULL, while if the class is smelly (intensity
> 0), then the code smell intensity is categorised as LOW,
MEDIUM, or HIGH. To assign the intensity to one of these
classes, we analysed the distribution of the intensity values
for a given project. Thus, if a code smell intensity is lower
than the first quartile of the distribution it has been assigned
to LOW; if it is between the first and third quartile, it has
been assigned to MEDIUM; if it is higher than the third
quartile, its corresponding class is HIGH. Our choice of
using quartiles to discriminate the levels of smelliness of
code components is given by the fact that quartiles represent
classical methods for measuring the skewness of data as is
in our case; we simply chose to map each quartile to an
individual class (low, etc.) thus making our research design
void of any misinterpretation from a statistical perspective.
Note that since our study focuses on five different code
smells (see Section 3.1), we computed and analysed the
intensity for each smell independently.

4.3.2 Independent Variables

We aim at understanding the impact of community smells
on the intensity of code smells. Thus, based on the output of
CODEFACE4SMELLS, we analysed whether a certain class Ci
has been modified by developers involved in a community
smell in a time between the releases Rj−1 and Rj . Thus, we
computed four boolean values representing the involvement
of such class in any of the four community smells consid-
ered. These metrics represent the principal factors that we
wanted to analyse.

4.3.3 Non-Community-related Control Variables

While the results of our parallel study highlighted that
community smells might affect the way developers treat
code smells, it is important to remark that other factors
related to the structure of source code (e.g., number of lines
of code) as well as the development process (e.g., number of
commits performed on a class) might be the primary source
of information to understand code smell intensity. For this
reason, we defined a list of technical factors having the role
to control confounding effects when evaluating the role of
community smells. Specifically, for each class we computed
the following metrics:

Lines of Code. LOC of a class is widely recognised as a
potential confounding factor of phenomena occurring on a
certain code entity [70], [71]. Thus, we compute the LOC of
each class Ci in a release Rj .

Coupling Between Object Classes. The number of ex-
ternal dependencies of a class might represent an important
factor that influences the persistence of code smells [29]: it
is worth noting that the practitioners’ answers to the survey
(see Section 3.4) confirm the relevance of coupling. In our
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context, we compute the CBO metric [72] of a class Ci in a
release Rj .

Total Commits. A potential confounding factor might be
the number of commits performed on a class Ci: here, the
conjecture is that the higher the number of times the class
changes the higher its proneness to deteriorate over time
[48]. Hence, we compute the number of commits modifying
Ci up to the release Rj .

Class Change Process. The way a class Ci changes
between releases Rj−1 and Rj might impact its size and
complexity [73], [74], thus possibly increasing the intensity
of code smells. For this reason, we measured (i) number
of lines of code added or modified in the class between
Rj−1 and Rj (a.k.a., code churn) and (ii) number of commits
performed on the class between Rj−1 and Rj .

Developer-related Factors. Besides structural and pro-
cess metrics, also who touches a class Ci might influence
the intensity of code smells [75], [76]. For this reason,
we computed the number of developers who committed
changes to Ci between Rj−1 and Rj . Next, we computed
two metrics measuring the experience of these developers.
The first metric is commit tenure [48]: it computes the general
experience within the same ecosystem as the number of
months since the developer’s first event on any APACHE
(for APACHE PROJECTS) or ECLIPSE (for ECLIPSE PROJECTS)
repositories; the second one is project tenure [48] and mea-
sures the experience of a developer on the project of interest
as the number of months since her first event on the project
repository. Finally, metrics for developers that committed
changes to Ci between Rj−1 and Rj are aggregated by
computing medians. As this decision influences our research
design, it constitutes a threat to validity which encourages
further replication of this study, e.g., considering more struc-
tured metrics that address the activity of the developer —
for example, it might be better to re-define the reputation/-
experience of the developer as the “success rate” prior to
committing the report under consideration (see Hooimeijer
et al. [77]).

Maintainability Measures. Previous work showed that
classes affected by problems in the past are more likely to
be problematic in the future [78], [79]. Hence, we measured
(i) code smell persistence, i.e., number of previous releases
(up to the release Rj) in which the class Ci has been affected
by a certain smell type and (ii) the value of the code smell
intensity in the previous release Rj−1.

Moreover, we also considered the presence of code
clones and fault-proneness. As for the former, we employed
the DECKARD tool [80], a technique able to identify Type-
3 clones: based on the output of the tool, we marked the
class as affected or not by a clone. It is important to note
that we selected this tool since it is publicly available and
has high detection accuracy [80]. As for the fault-proneness,
we have been interested in measuring what will be the
fault proneness of Ci in a subsequent release: to tackle
this problem, we adopted the hybrid bug prediction model
devised by Di Nucci et al. [75]. It is able to provide an
indication about the fault-proneness of classes based on a
mixture of product, process, and developer-based metrics.
Also in this case, the choice of using this model is instigated
by its high accuracy [75]. We also empirically assessed the

performance of these two approaches on a subset of projects
in our dataset, showing that the levels of accuracy reported
by the original authors still hold in our context: more details
on this assessment are reported in Section 6.

4.3.4 Community-related Control Variables
Finally, we also considered as possible confounding factors
aspects related to the community structure, as represented
by the intersection of a communication network (Comm-
Net; stemming from mailinglist data) and a collaboration
network (CollNet; stemming from co-commit relationships
among developers). Specifically, we controlled for:

Truck-Factor. Originally formulated as “The number of
people on your team who have to be hit with a truck
before the project is in serious trouble”3 and established
in software engineering literature as well [81], [82], [83].
We operationalise truck-factor based on core and periph-
eral community structures identified by CODEFACE, as the
degree of ability of the community to remain connected
without its core part. Further details on how core and
periphery members are determined can be found in the
work of Joblin et al. [64].

Socio-Technical Congruence. Paraphrased from previ-
ous work [84] as “the state in which a software development
organisation harbors sufficient coordination capabilities to
meet the coordination demands of the technical products
under development” and operationalised in this study as
the number of development collaborations that do commu-
nicate over the total number of collaboration links present
in the collaboration network.

Core-Periphery Ratio. This ratio has been confirmed
to regulate communities [64]. We operationalise it as the
ratio between the median centrality of periphery members
and the median centrality of the core members. In other
words, we considered the importance of core developers
with respect to periphery ones.

Turnover. This quantity reflects the amount of people
who migrate from the community across subsequent 3-
month time-windows of our analysis [85], [86], [87]:

TO(CommNet,CollNet) = Leaving
(Populus+Size) / 2 ∗ 100%

where, CommNet and CollNet are conjuncted using a
1-Elementary Symmetric Sum between adjacency matrices
[88], i.e., (Vm∪Vc, Em∪Ec) in the notation above. Variables
in the formula above are as follows: (1) Leaving is the num-
ber of members who left the project in the analysed window;
(2) Populus is the total number of members who populated
the community in the previous analysis window; (3) Size
is the total number of members populating the community
in the currently analysed window. Similar formulations of
turnover exist [48], [89] but we chose the formulation above
since it matches the definition of turnover and, by the way
in which CODEFACE computes the formula variables, our
formulation accounts for both core and periphery member
turnover; this differentiation is previously absent in liter-
ature and the easiest to operationalise with our available
tooling, e.g., CODEFACE determines Populus for both core

3. http://www.agileadvice.com/2005/05/15/agilemanagement/
truck-factor/
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and periphery communities, combining both into one after
a normalisation based on amount of contribution.

Smelly-Quitters. This ratio reflects the amount of people
P who were part of a community smell CX for two subse-
quent time windows T1 and T2 but then left the community
for the remaining time windows (T2+y where y > 0) in the
available range of data for the total set of community smells
found, i.e., C. More formally:

P =
∑
P (CX)
C

The quantity in question is tailored from the social-
networks analysis metrics also used for Social Network
Disorder measurement [90], [91].

4.3.5 Data Analysis
To answer our research question, we build a classification
model and evaluate the extent to which community smells
are relevant by quantifying information gain [92] provided
by each independent variable in explaining the dependent
variable. We opted for this technique because it is able to
quantify the actual gain provided by a certain feature to the
performance of the model. The same would not be possi-
ble with other techniques like, for instance, the Wrapper
technique [93]—which is among the most popular ways to
assess feature selection [94], [75], [95].

We exploited the Gain Ratio Feature Evaluation algorithm
[92] integrated in the WEKA framework [96], that ranks the
independent variables in descending order based on the
information gain provided. To statistically verify the ranks
provided by the algorithm, we adopted the Scott-Knott test
[97]. This test is widely used as a multiple comparison
method in the context of analysis of variance [98] because
it is able to overcome a common limitation of alternative
multiple-comparisons statistical tests (e.g., the Friedman test
[99]), namely the fact that such tests enable the possibility
for one or more treatments to be classified in more than
one group, thus making it hard for the experimenter to
really distinguish the real groups to which the means should
belong [100]. In particular, the test makes use of a clustering
algorithm where, starting from the whole group of observed
mean effects, it divides, and keeps dividing the sub-groups
in such a way that the intersection of any two groups formed
in that manner is empty. In other words, it is able to cluster
the different ranks obtained into statistically distinct groups,
making more sound and easier the interpretation of results.
For these reasons, this test is highly recommended and
particularly suitable in our context. It is worth noting that
the selection of this test was driven by our specific need to
perform statistical comparisons over multiple datasets. In
this regard, the use of more popular statistical techniques
like, for instance, Wilcoxon [101] or Cliff’s Delta [102] is
not recommended because they might lead to inappropriate
interpretation of the results or even wrong application of
statistical tests [103].

4.4 RQ3. Evaluating a Community-aware Code Smell
Intensity Prediction Model
As a final step of our study, we evaluated to what extent
software developers can benefit from the usage of commu-
nity smell-related information when evaluating the future

intensity of code smells, in order to improve the scheduling
of refactoring operations. To this aim, we took advantage
of the results of RQ2 to build a code smell intensity pre-
diction model for each code smell considered in the study.
Specifically, starting from the output of the Gain Ratio Feature
Evaluation algorithm [92], to avoid model over-fitting [104]
we firstly considered as relevant only the metrics providing
information gain higher than 0.10 as suggested by previous
work [92]. Then, we built three prediction models: (i) based
on technical metrics, (ii) based on technical metrics and
community smells, and (iii) based on technical metrics,
community smells and the other community-related metrics
presented in Section 4.3.4. We selected these models since
we could (i) quantify how much the addition of only com-
munity smell information into a model considering techni-
cal metrics improves its performance and (ii) test whether
the addition of further metrics characterising the software
community is actually needed or the information provided
by community smells is already enough to capture relevant
community-related aspects.

As for the classifier, the related literature [105], [106]
recommended the use of the Multinomial Regression tech-
nique [107], as it is among the most reliable ones. However,
other machine learning algorithms might still perform better
in the context of code smell intensity prediction. Thus, to
select the most appropriate classifier we experimented with
seven different classifiers that have different characteristics
and make different assumptions on the underlying data, i.e.,
ADTree, Decision Table Majority, Logistic Regression, Multilayer
Perceptron, Multinomial Regression, Support Vector Machine,
and Naive Bayes. We selected these approaches because they
were previously used in the context of code smell prediction
[108]. Specifically, we compared their performance using the
same validation strategy and evaluation metrics reported
later in this section. As a result, we could actually confirm
the superiority of Multinomial Regression, which achieved an
AUC-ROC 8% higher with respect to Support Vector Machine,
namely the classifier which performed the best after Multi-
nomial Regression. A complete report of this comparison is
available in our online appendix [23].

We measured the performance of the prediction models
by applying an inter-release validation procedure, i.e., we
train the prediction models using the data of release Rj−1

and test it on the data of release Rj . In this way, we simulate
a real-case scenario where a prediction model is updated
as soon as new information is available. To quantify the
performance, we use the F-Measure [109], and the Area
Under the Receiver Operation Characteristic curve (AUC-
ROC), i.e., the overall ability of the model to discriminate
between true and false positive instances. We also report
the Matthews Correlation Coefficient (MCC) [110] and the
Brier score [111]. MCC represents the degree of correlation
between the independent variables adopted by the model
and the dependent variable: the closer MCC is to 1 the
higher the accuracy of the model. The Brier score measures
the distance between the probabilities predicted by a model
and the actual outcome. Higher performance is obtained
when the score is close to 0. All scores are produced as
percentages in Table 4. To quantify whether and how much
the performance of the community-aware models improves
with respect to prediction models that do not consider
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TABLE 3 RQ2 - Results after Information Gain Analysis. Metrics contributing more than the threshold of 0.10 are
highlighted in bold, while community smells are reported in italic.

Long Method Feature Envy Blob Spaghetti Code Misplaced Class

Metric Gain Scott-Knott Metric Gain Scott-Knott Metric Gain Scott-Knott Metric Gain Scott-Knott Metric Gain Scott-Knott

LOC 0.83 92 CBO 0.87 85 Period Commits 0.74 91 LOC 0.77 85 Organizational Silo 0.85 91
Churn 0.68 81 Previous Intensity 0.79 82 Previous Intensity 0.72 81 Churn 0.73 80 ST-Congruence 0.76 90
Previous Intensity 0.68 84 Churn 0.76 78 ST-Congruence 0.72 79 Previous Intensity 0.71 77 Previous Intensity 0.61 77
Period-Commits 0.67 82 Lone Wolf 0.59 76 CBO 0.69 72 Period Commits 0.65 71 Black-Cloud 0.55 75
CS-Persistence 0.55 78 ST-Congruence 0.56 71 Churn 0.65 75 Lone Wolf 0.56 66 CBO 0.45 61
Black-Cloud 0.55 70 LOC 0.55 70 Project Tenure 0.65 65 CS-Persistence 0.45 63 Committers 0.35 59
Clones 0.46 67 Clones 0.53 64 LOC 0.57 59 Ratio Core-Periphery 0.38 60 Period Commits 0.33 55
Organizational Silo 0.27 63 Project Tenure 0.39 53 Organizational Silo 0.45 57 Organizational Silo 0.24 56 Ratio Core-Periphery 0.32 51
ST-Congruence 0.18 59 Truck Factor 0.23 41 Truck Factor 0.38 51 Project Tenure 0.23 45 Truck Factor 0.24 45
Turnover 0.17 43 Period Commits 0.15 16 Bottleneck 0.34 50 Smelly Quitters 0.22 44 Smelly Quitters 0.17 42
Commit Tenure 0.15 35 Smelly Quitters 0.12 13 Clones 0.27 44 CBO 0.13 41 CS-Persistence 0.14 33
Ratio Core-Periphery 0.12 27 Committers 0.12 11 Committers 0.24 41 Total Commits 0.12 34 Churn 0.12 31
CBO 0.12 23 Bottleneck 0.09 8 Turnover 0.23 33 Bottleneck 0.12 31 Project Tenure 0.12 24
Fault-proneness 0.12 14 Organizational Silo 0.08 7 Smelly Quitters 0.16 27 Committers 0.09 5 Bottleneck 0.09 11
Lone Wolf 0.09 8 Fault-proneness 0.05 4 Fault-proneness 0.14 19 Truck Factor 0.08 4 Total Commits 0.08 8
Total Commits 0.08 8 Turnover 0.05 4 Ratio Core-Periphery 0.09 9 Commit Tenure 0.08 4 Clones 0.08 8
Bottleneck 0.07 6 Ratio Core-Periphery 0.04 2 Black Cloud 0.04 5 Fault-proneness 0.07 3 Lone Wolf 0.07 5
Committers 0.07 4 Total Commits 0.03 2 Lone Wolf 0.03 3 Clones 0.06 2 Turnover 0.07 3
Truck Factor 0.05 2 CS-Persistence 0.03 2 CS-Persistence 0.03 2 Turnover 0.05 1 LOC 0.02 1
Smelly Quitters 0.04 2 Black Cloud 0.02 1 Total Commits 0.01 1 Black Cloud 0.04 1 Commit Tenure 0.02 0
Project Tenure 0.02 1 Commit Tenure 0.01 0 Commit Tenure 0.01 1 ST-Congruence 0.03 1 Fault-proneness 0.01 0

community-related factors as predictors, we built baseline
code smell intensity prediction models that use as predictors
only the relevant variables that do not measure community
aspects. We also statistically verified the performance of the
models built by applying the Scott-Knott [97] test on the
AUC-ROC achieved by the experimental models.

Meaningfulness of the results. While the analysis of the
performance of the machine learning models provided us
with insights on the extent to which they are properly able to
classify the future intensity of code smells, we also verified
whether the results provided by the models are actually
meaningful in practice. To this aim, we conducted a further
qualitative analysis in which we involved ten industrial
project managers with an experience ranging between 5
and 18 years. With the aim of increasing the generalisability
of our findings we checked that none of the participants
of the first survey have participated in the second survey.
We involved project managers because they are expected to
have a stronger knowledge of the entire development teams
they manage and the artifacts they produce, as opposed
to developers that might have a deep knowledge only of
their development team. We invited them by e-mail and
we asked them to fill-in a brief survey composed of 4
questions, one for each community smell considered. In
particular, we adopted a vignette-based approach [112],
where participants were asked to reason about possible
scenarios occurring in a real context rather than answering
direct questions about the relationships between community
and code smells: the rationale behind the use of such an
approach is that participants might not be aware of the
formal definitions of community and code smells, thus a
reasoning based on scenarios might facilitate the survey
comprehension. Note that this approach has already been
successfully applied in the context of software engineering
[113]. In our case, each question started with a scenario
presenting the situations in which a community is affected
by one of the community smells analysed. All the scenar-
ios are reported in our online appendix [23]. For sake of
understandability of the methodology, we report herein the
case of Organizational Silo. In particular, we presented the
following scenario:

“Suppose your development team is working on the

definition of a web-based application for the scheduling
of resources. During the development, you recognize
the existence of independent sub-teams that do not
communicate with each other except through one or two
of their respective members”.

The participants were firstly invited to answer a prelim-
inary question:

“Do you think this situation can lead to the introduction
of code smells, i.e., poor implementation choices, in the
source code?”

If the answer was “yes”, we proposed them a set of sce-
narios describing the typical symptoms of the code smells
considered in this paper. For instance, we presented the
following scenario in case of the Blob code smell:

“A poorly cohesive large class that centralises the behav-
ior of the system, and that is usually characterised by a
large number of unrelated attributes and methods and
by dependencies with classes acting as data holders”.

Then, we asked them to indicate the likelihood that each
scenario might arise in combination with the community
issue. In other words, they were required to answer to the
following question:

“Do you think this situation can appear in combination
with the organizational scenario previously proposed?”

The participants were allowed to answer using a five-
point Likert scale [114] ranging between “Very unlikely” to
“Very likely”, and rated a total of ten scenarios: in particular,
besides the scenarios related to the five code smells con-
sidered in this study, we also provided a set of scenarios
describing five code smells from the catalog by Fowler
[7] that we did not take into account, i.e., Long Parameter
List, Data Clumps, Primitive Obsession, Refused Bequest, and
Parallel Inheritance Hierarchies. This was done with the aim of
limiting confirmation biases. It is important to note that the
additional smells proposed do not share any characteristics
with those studied in this paper, thus being suitable as a
baseline. We expected the participants to indicate that the
code smells we studied (e.g., Long Method) are more likely to
emerge in the presence of the related community smell, than
the baseline code smell (e.g., Data Clumps) in the presence of
the same community smell.
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Finally, the project managers had the opportunity to
leave a comment on each scenario evaluated. Once we
had collected the participants’ feedback, we verified that
the results of the prediction models were in line with the
opinions of project managers, thus assessing the extent to
which the devised prediction model outputs meaningful
recommendations. Specifically, we computed the number of
times the managers highlighted relations similar to those
produced by the code smell intensity prediction model,
i.e., whether both the model and managers related the
presence of a certain community smell to the emergence of
a certain code smell. The counting process was manually
conducted by the first two authors of this paper in a joint
meeting where they inspected each survey and verified the
concordance between a manager’s answer and the relations
discovered by the machine learning model.

4.5 Analysis of the Results

For sake of clarity and to avoid redundancies we discuss
the results for RQ2 (see Table 3) and RQ3 (see Tables 4 and
5) together. Table 3 reports for each code smell the ordering
of features according to the results of the information gain
algorithm, along with the likelihood that a certain feature
was ranked at the top by the Scott-Knott test (a likelihood
of 80% means that in 80% of the datasets the gain provided
by the feature was statistically higher than others). Looking
at the results, we can observe that for all the code smells but
Misplaced Class technical control factors such as LOC, CBO,
Code Churn, and number of commits between two releases
are the ones that more closely influence the code smell
intensity. These results were quite expected, since previous
work has shown there exist technical aspects of source code
(e.g., LOC) that “naturally” influence the evolution of code
smells [115], [116]. At the same time, also the previous
intensity of a code smell plays an important role when
explaining the future intensity: likely, this is a reflection
of the fact that developers generally tend to not refactor
code smells and, when they do, the refactoring is most of
the times not effective [13], thus increasing the intensity of
smells over time.

Other technical factors have a relevant role only when
considering some code smell types: for example, the fault-
proneness seems to have a relationship only with Long
Method and Blob intensity, while it has marginal values in
all the other cases.

Turning the attention to the independent variables that
we wanted to assess, in the first place we observed that com-
munity smells represent relevant features for all the consid-
ered code smells, confirming the results achieved when sur-
veying developers. It is worth noting that the community-
related control factors (e.g., socio-technical congruence) are
often not able to explain the dependent variable better than
community smells, meaning that our independent variables
are generally more powerful “predictors” than such control
factors. For instance, the organizational Silo provides a
higher entropy reduction (0.27) than socio-technical congru-
ence (0.18) when considering the Long Method smell. In
the second place, it is important to note that different com-
munity smells are related to different code smells, meaning
that circumstances occurring within a software community

somehow influence the persistence of code smells. In the
case of Long Method, such circumstances are related to
non-structured or even missing communications between
developers, as highlighted by the fact that community
smells like Black Cloud and organizational Silo are highly
influential. For Feature Envy and Spaghetti Code instances,
we noticed that the Lone Wolf community smell provides
an important contribution in explaining their intensity: this
means that the presence of developers working regardless
of their co-committing developers has an impact of the
evolution of both methods and classes of a software system.
The same happens with Blob, where the organizational Silo
and Bottleneck are highly relevant, suggesting that missing
communications or lack of flexibility do not allow an effec-
tive management of Blob instances. Finally, in the case of
Misplaced Class we found that the existence of siloed areas
of a community is the most important factor characterizing
its intensity, thus indicating once again that community
issues might have a notable influence on technical aspects
of the source code.

These observations are confirmed by the survey with
project managers, whose results are reported in Table 5. In
the first place, we notice that project managers considered
as meaningful most of the relationships between commu-
nity and code smells that were ranked at the top by the
information gain analysis (see Table 3), while they did not
confirm three community-code smell pairs, i.e., Spaghetti
Code-Organizational Silo, Spaghetti Code-Bottleneck and
Misplaced Class-Black Cloud. This result might be due to
a lack of awareness of community or code smells [59],
however further analyses aimed at investigating the pres-
ence/absence of such relationships are needed. In terms of
control, we see that the managers are much more inclined
to select the links between the code smells we have focused
upon rather than other code smells. This strengthens our
confidence that the relations suggested by the prediction
model correspond to perceptions of the practitioners. In-
deed, they generally agreed with the associations between
community and code smells extracted from the information
gain analysis. It is worth mentioning one of the comments
left by a project manager when evaluating the relationship
between Blob and Organizational Silo:

“The creation of extremely complex and poorly cohesive
classes in the presence of non-communicating sub-teams
is quite common because in such a scenario developers
do not share information with each other about the ideal
structure to implement, therefore creating classes that
perform a lot of different things”.

Summary for RQ2. We conclude that community smells
significantly influence the intensity of all the code smells
considered in this study, being even more important than
other community-related metrics (e.g., socio-technical
congruence). Nevertheless, we observed that technical
factors still give the major explanation of the variation
of code smell intensity.

As further evidence of the relationship between commu-
nity and code smells, when considering the performance
achieved by the investigated prediction models (see Table
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TABLE 4 RQ3 - Performance of Code Smell Intensity Prediction Models Built With and Without Community-related Factors
- all numbers are percentages. Grey rows indicate the most performing models based on AUC-ROC values.

Model Long Method Feature Envy Blob Spaghetti Code Misplaced Class Long Method Feature Envy Blob Spaghetti Code Misplaced Class
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Cassandra Cayenne
Basic + Comm.-Smells + Comm.-Factors 71 68 73 28 66 69 68 78 36 64 72 74 81 31 77 71 76 75 38 63 74 73 83 28 61 70 69 73 28 74 69 66 73 26 71 73 73 82 30 75 69 69 67 40 74 74 70 82 23 67
Basic + Comm.-Smells 70 68 72 29 63 66 66 77 37 59 70 71 78 33 68 70 70 73 38 60 72 71 79 30 58 70 68 73 31 72 67 70 71 27 69 73 73 82 30 75 66 67 64 40 71 71 68 79 25 65
Basic 68 66 71 29 45 62 62 75 40 51 64 64 68 39 50 67 62 67 39 61 63 63 59 40 52 69 67 71 37 62 62 69 68 39 61 64 65 73 35 63 63 63 62 40 66 61 60 58 34 58

Jackrabbit Jena
Basic + Comm.-Smells + Comm.-Factors 69 66 74 32 69 71 67 79 32 82 69 78 75 31 76 71 75 74 36 65 75 70 75 28 77 71 72 72 30 71 69 68 78 37 81 71 75 79 36 77 71 76 68 34 78 78 77 76 21 75
Basic + Comm.-Smells 70 72 72 31 68 67 68 75 39 77 70 72 74 39 76 68 73 68 35 75 75 69 72 28 71 69 65 73 33 67 69 66 77 29 79 68 71 74 34 74 69 72 71 38 63 73 67 69 29 75
Basic 68 64 71 36 66 63 64 73 28 56 68 63 70 39 59 65 68 66 42 61 61 65 63 35 62 67 69 72 33 61 63 68 71 43 59 68 63 66 39 61 67 67 66 39 55 64 64 59 37 61

Lucene Mahout
Basic + Comm.-Smells + Comm.-Factors 71 73 74 27 78 68 66 73 32 71 71 73 76 38 73 70 70 77 39 81 78 74 79 26 62 72 73 73 30 76 66 73 74 29 79 68 74 82 34 91 70 71 67 38 78 75 73 77 27 87
Basic + Comm.-Smells 71 71 73 30 76 66 66 74 35 67 70 68 75 34 71 69 71 76 39 80 75 71 73 28 61 71 69 71 32 73 63 71 74 33 77 65 72 79 36 86 69 70 67 38 74 74 72 77 28 81
Basic 70 63 71 37 56 59 66 75 36 66 63 58 73 31 58 64 71 71 41 60 62 62 59 30 55 67 64 70 37 62 60 63 68 42 58 61 61 72 44 61 65 64 69 37 55 60 58 60 33 59

Pig CDT
Basic + Comm.-Smells + Comm.-Factors 71 72 73 30 67 65 68 76 30 79 69 69 82 30 79 69 65 68 34 77 72 71 78 27 81 72 70 71 33 75 69 70 72 31 79 72 70 77 29 76 71 63 67 41 84 77 72 78 25 70
Basic + Comm.-Smells 69 71 72 31 65 64 66 76 31 74 68 68 79 32 77 67 63 71 35 63 70 71 76 27 78 71 68 71 33 72 68 70 74 31 75 70 67 74 31 73 69 69 66 39 83 74 68 72 26 70
Basic 68 68 71 31 62 62 63 71 33 64 66 59 70 36 61 62 61 72 43 59 61 60 64 34 62 68 65 70 34 65 61 68 75 35 55 65 56 71 42 59 68 70 63 38 62 60 56 60 33 56

CFX Overall
Basic + Comm.-Smells + Comm.-Factors 73 73 73 31 79 67 76 73 29 77 73 68 80 30 83 71 62 71 41 87 76 73 77 28 81 71 70 73 30 73 65 69 75 31 75 71 73 79 33 81 71 70 70 38 76 76 73 78 26 72
Basic + Comm.-Smells 71 71 72 32 75 66 75 73 29 75 73 67 80 30 81 70 72 69 41 86 75 72 77 29 78 70 69 73 31 71 64 66 74 32 73 69 68 74 33 78 68 67 67 39 71 75 73 76 27 68
Basic 67 70 71 36 71 60 71 70 31 66 64 62 68 31 61 66 72 62 41 59 62 65 63 36 61 68 67 71 34 61 61 66 72 36 58 65 61 70 36 63 65 66 66 40 61 62 61 61 35 59

TABLE 5 RQ3 - Each cell contains how many project man-
agers indicated the relation between the code and commu-
nity smell as very unlikely, unlikely, neither unlikely nor
likely, likely, or very likely. Relationships between commu-
nity and code smells expected according to the prediction
model are reported in bold; those with the grey background
have been confirmed by the survey.

Org. Black Lone Bottleneck
Silo Cloud Wolf

Long Method -,-,-,2,8 -,-,-,3,7 9,1,-,-,- 10,-,-,-,-
Feature Envy 9,1,-,-,- 10,-,-,-,- -,1,-,4,5 10,-,-,-,-
Blob -,-,-,-,10 8,2,-,-,- 10,-,-,-,- -,-,-,-,10
Spaghetti Code 9,1,-,-,- 10,-,-,-,- -,-,1,1,8 9,1,-,-,-
Misplaced Class -,-,1,2,7 10,-,-,-,- 9,1,-,-,- 9,1,-,-,-
Long Parameter List 10,-,-,-,- 6,3,-,1,- 10,-,-,-,- 10,-,-,-,-
Data Clumps 10,-,-,-,- 10,-,-,-,- 10,-,-,-,- 10,-,-,-,-
Primitive Obsession 10,-,-,-,- 10,-,-,-,- 10,-,-,-,- 10,-,-,-,-
Refused Bequest 10,-,-,-,- 10,-,-,-,- 9,1,-,-,- 6,2,1,1,-
Parallel Inheritance Hierarchies 7,2,1,-,- 10,-,-,-,- 10,-,-,-,- 10,-,-,-,-

4), we observe that the “Basic + Comm.-Smells” model, i.e.,
the one containing both technical factors and community
smells, achieves higher performance than the model built
without community-related factors when considering all the
code smells. For instance, the models including community
smell information have an overall AUC-ROC 2%, 4%, 3%,
3%, and 11% higher that the baseline models when consid-
ering Long Method, Feature Envy, Blob, Spaghetti Code, and
Misplaced Class, respectively. Thus, our results suggest that
the presence of community smells is a factor to take into ac-
count when predicting the future persistence of code smells.
It is worth noting that the addition of other community-
related factors (rows labeled with “Basic + Comm.-Smells +
Comm.-Factors” in Table 4) provides a limited boosting of
the performance (on average, 2.4% in terms of AUC-ROC):
this result seems to confirm that community smells are
more important than other community-related factors when
diagnosing the causes for the persistence of code smells.

The results are (i) consistent over all the individual
systems in our dataset and (ii) statistically significant, since
the Scott-Knott rank systematically reports “Basic + Comm.-
Smells + Comm.-Factors” before “Basic + Comm.-Smells”
and “Basic” (see column “SK-ESD” in Table 4). It is impor-
tant to note that even if sometimes the difference between
the “Basic + Comm.-Smells + Comm.-Factors” and “Basic
+ Comm.-Smells” models is relatively small, we can still
observe that, despite the presence of community-related
factors, community smells still help improving the perfor-

mance of the model. This means that there is always a gain
in considering such smells. From a practical perspective, the
results tell us that explicitly considering community smells
enables a developer to better evaluate how the persistence
status of code smells will be in the future release, possibly
applying preventive actions aimed at improving the quality
of both code and community alike.

Summary for RQ3. We observe that the addition of com-
munity smells as independent variable of a code smell in-
tensity prediction model enables an improvement of the
prediction capabilities. Furthermore, a model including
information related to both community smells and other
community-related factors improves the accuracy of the
prediction of the future intensity of code smells even
more. Thus, we conclude that organizational information
should be taken into account when analysing technical
problems possibly occurring in the source code.

5 THEORETICAL CONVERGENCE

Recall that the aim of our study was understanding the role
of community smells as factors contributing to the persistence
of code smells. In the following we outline the convergence
of the theories generated by both qualitative and quantita-
tive inquiry over the scope of the research design previously
outlined. The convergence in question is outlined using the
theoretical lemmas that our data leads to and finally, the
theoretical convergence that both sides lead to.

From a qualitative perspective, our data shows that
open-source developers have a tendency to indeed develop
community smells which were previously only reported
in closed-source. Furthermore, those reported community
smells are repeated causes for keeping code smells such as
they are, out of fear of tampering with a delicate community
structure.

Lemma 1. Together with technical factors, community
smells influence the developers’ decisions not to elimi-
nate code smells.

Furthermore, from a quantitative perspective, statistical
modeling indicates that community smells are among fac-
tors intensifying the severity of code smells and contributing
to prediction of code smell intensity. Community smells are
less important than technical factors but more important
than other community-related metrics.
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Lemma 2. Together with technical factors, community
smells influence the intensity of code smells.

The theory that both sides of our study converge to-
wards, is strikingly simple but of considerable importance:

Theoretical Convergence. Community Smells Influ-
ence Code Smells’ Severity.

The impact that this convergence leads to is indeed
considerable since the above conclusion indicates at least
that: (a) community smells are a force to be reckoned with
in terms of software maintenance and evolution; (b) com-
munity smells are a variable to consider when calculating
and managing technical debt. Further research is needed to
understand and scope the impact and implications of the
above conclusion.

6 THREATS TO VALIDITY

A number of threats might have affected our study. This
section discusses how we addressed them.

6.1 Threats to construct validity

Threats to construct validity concern the relationship be-
tween theory and observation. In our study, they are mainly
due to the measurements we have performed. In the first
place, we classified code smell intensity in three levels of
severity plus one indicating the absence of smells following
the guidelines provided in previous work [20], [68]. Specif-
ically, we computed the final severity as the mean of the
normalized scores representing the difference between the
actual value of a certain metric and its predefined threshold.
We are aware that our observations might be biased by the
fact that the mean operator can be affected by outliers. To
verify this aspect and understand the extent whether the
mean represented a meaningful indicator, we completely
re-ran our study computing the final intensity using the
median operator rather than the mean. As a result, we did
not observe differences with respect to the results reported
in Section 4. While a complete report of this additional
analysis is available in our online appendix [23], we can
conclude that in our case the use of the mean operator did
not influence our findings. At the same time, we are aware
that the intensity computation process is quite complex and
for this reason we are planning a sensitivity study to further
evaluate the way code smell intensity is set.

Furthermore, in RQ2 we relied on DECKARD [80] and
the hybrid bug prediction model built by Di Nucci et al. [75]
to compute code clones and fault-proneness, respectively. In
this regard, while those approaches have been extensively
empirically evaluated by the corresponding authors, it is
also important to note that they might still have output a
number of false positive information that might have biased
the measurements we have done in the context of our work.
To account for this aspect, we assessed the performance of
the two approaches targeting the systems in our dataset. We
could not perform a comprehensive evaluation because of
the lack of publicly available datasets reporting defects and

clones present in all the considered systems (the definition
of such datasets would have required specialized method-
ologies that go out of the scope of this paper). In particular,
we performed the following steps:

• In the case of the DCBM defect prediction model,
we could test its performance on two of the systems
included in the study, i.e., LUCENE and PIG. Indeed, the
study conducted by Di Nucci et al. [75] comprises these
two systems and therefore a ground truth reporting the
actual defects contained in their releases is available.
Starting from the publicly available raw data, we ran
the model and evaluated its F-Measure and AUC-ROC.
The results indicated that on LUCENE the F-Measure
was 83%, while the AUC-ROC reached 79%; in the
case of PIG, instead, the F-Measure was 86% and the
AUC-ROC was 78%. Note that the percentages were
computed considering the median values obtained by
running the model over all the considered releases. Of
course, we cannot ensure that such performance holds
for all the systems considered, however our additional
analysis makes us confident of the fact that this ap-
proach can be effectively adopted in our context. It is
important to remark that our results are in line with
those reported by Di Nucci et al. [75], but they are not
the same. This is due to the slightly different validation
strategy: while they trained and tested the model using
a 3-months sliding window, we needed to perform a
release-by-release strategy. This implied training and
testing the model on different time windows. We see
some additional value in this way to proceed: we could
not only confirm previous results, but as a side con-
tribution we provide evidence that the findings by Di
Nucci et al. [75] hold with a different validation strategy.

• With respect to DECKARD, we assessed its precision4

on the same set of systems considered for the defect
prediction model, i.e., LUCENE and PIG. Specifically, we
ran the tool over each release and manually evaluated
whether its output could be considered valid or not.
To avoid any sort of bias, we asked to an external
industrial developer having more than 10 years of ex-
perience in Java programming to evaluate the precision
of DECKARD for us: the task required approximately
16 work hours, as the tool output was composed of 587
candidate clones. As a result, 439 of the candidates were
correctly identified by DECKARD, leading to a precision
of 75%. Also in this case, we believe that the tool has a
performance reasonably high to be used in our context.

Finally, to identify code smells we relied on DECOR.
Our choice was mainly driven by the fact that this tool can
identify all the smells considered in our study. Furthermore,
it has a good performance, thus allowing us to effectively
detect code smell instances. As a further proof of that, we
empirically re-assessed its accuracy on two systems of our
dataset, finding that its precision and recall are around 79%
and 86%, respectively.

6.2 Threats to internal validity

4. We could not assess the recall because of the lack of an oracle.
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Threats to internal validity concern factors that might
have influenced our results. The first survey (RQ1) was
designed to investigate which are factors that influence the
persistence of code smells without explicitly asking devel-
opers’ opinions on social aspects of software communities:
this was a conscious design choice aimed at avoiding pos-
sible biases (e.g., developer might not have spontaneously
highlighted community-related factors) and allowing devel-
opers to express their opinions freely. Moreover, to avoid
errors or misclassification of the developers’ answers, the
Straussian Grounded Theory [49] process was firstly con-
ducted by two of the authors of this paper independently;
then, disagreements were solved in order to find a common
solution. Furthermore, we are making all the data freely and
openly available [23] to further encourage replication of our
work.

At the same time, the survey did not include a specific
question on whether a developer considered the proposed
smell as an actual implementation problem; thus, it is pos-
sible that the decision to not refactor some of the instances
was just driven by their lack of perception. However, we
tried to keep the survey as short and quick as possible in
order to stimulate developers to answer. For this reason,
we limited it to the essential questions needed to address
our research question. At the same time, it is important to
note that the developers were free to say that the piece of
code was not affected by any smell: while this did not avoid
potential confirmation biases, the fact that some developers
explicitly reported the absence of an actual implementation
problem in the analysed code (this happened 3 times) par-
tially indicate that the involved developers were not biased
when answering the survey.

Still in the context of RQ1, we only invited developers
who worked on single smelly classes rather than involving
those who worked on several smell instances because of our
willingness to survey participants having a deep knowledge
on both technical and social dynamics behind that classes.
As a consequence of this choice, we excluded 168 developers
out of the total 640. However, it is worth recognizing that (i)
developers who worked with multiple smelly classes might
have had a better knowledge of the overall software system
design and (ii) code smells appearing in different classes
might have been linked to higher-level design or community
problems. Thus, replications of our study targeting this
potential threat are desirable.

Furthermore, to evaluate the effectiveness of the code
smell intensity prediction model, we used an inter-release
validation procedure while an n-fold (e.g., 10-fold) valida-
tion could be applied on each release independently and
then average/median operations could be used to interpret
the overall performance of the model on a certain project.
While this strategy could be theoretically implemented, the
results would not be comparable with those reported in our
paper. Indeed, on the one hand we would have a set of
independent classifications that are time-independent; on
the other hand, an evaluation done explicitly exploiting
temporal relations, i.e., a time-dependent analysis. Thus,
even if we would have done this analysis, it would have
not increased at all the confidence of the results, but rather
created confusion. Given the nature of our analysis and the
need to perform a time-sensitive analysis, we believe that

our validation strategy is the best option in our case.

6.3 Threats to conclusion validity
Threats to conclusion validity concern the relation be-

tween treatment and outcome. In RQ2, to avoid a wrong
interpretation of the results due to the missing analysis
of well-known factors influencing code smell intensity, we
exploited a number of control factors that take into account
both social and technical aspects of software development.
Moreover, we adopted an appropriate statistical tests such
as the Scott-Knott one [97] to confirm our observations.
Furthermore, we have adopted the well known F-measure
which has been known to spark debates concerning its
appropriateness in specific contexts (e.g., see Powers [117])
- in this respect, it is worth noting that we computed other
threshold-independent evaluation metrics with the aim of
providing a wider overview of the considered prediction
models.

6.4 Threats to external validity
As for the generalisability of the results, we have

performed a large-scale empirical analysis involving 117
releases of 9 projects. However, we are aware that we
limited our analysis to projects written in Java and only
belonging to open-source communities. Further replications
of our study in different settings are part of our future
research agenda. In RQ3 we performed a survey with
ten project managers: we are aware of the threats given
by the limited number of subjects, however we invited
participants having a strong level of experience and with
a deep knowledge of the development teams they manage
and the artifacts they produced. Nonetheless, we plan to
extend the study by surveying more managers — although
this does not warrant confirmatory or explanatory results, it
would grant us more generalisability, e.g., by sampling the
population randomly and/or embedding a Delphi study
connotation (i.e., progressing with surveying to achieve
saturation in agreement).

7 RELATED WORK

In the past, the software evolution research community
mainly focused on technical aspects of software, by (i)
understanding the factors making technical products easier
to maintain [8], [17], [19], [118], [119], [120], [121], [122],
[123], [124] or (ii) devising techniques to support developers
during different evolutionary tasks [29], [41], [42], [125]. In
particular, Cunningham [126] introduced the technical debt
metaphor, which refers to programming practices that lead
to the introduction of bad implementation solutions that
decrease source code quality and will turn into additional
costs during software evolution. One noticeable symptom
of technical debt is the presence of code smells [7], i.e., bad
programming practices that lead to less maintainable source
code. Such circumstances have been studied extensively
over the years, even most recently [127], [128], [20], [129]
— these studies also include statistical modelling for code
smells prediction [130], [131]. What is still missing, is a
statistical model which comprises both technical and organ-
isational factors as well; in that respect, the contributions
reported in this paper are completely novel.
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On the community perspective beyond the technical
aspects highlighted above, software communities have been
mainly studied from an evolutionary perspective [132],
[133], [134], while few investigations targeted the relation-
ships between community-related information and evolu-
tion of technical products. Indeed, most of previous liter-
ature focused on social debt, i.e., unforeseen project cost
connected to a suboptimal development community [3]. For
instance, Tamburri et al. [2] defined a set of community
smells, a set of socio-technical characteristics (e.g., high for-
mality) and patterns (e.g., recurrent condescending behavior,
or rage-quitting), which may lead to the emergence of social
debt. One of the typical community smells they found is
the Organizational Silo Effect, which arises when a software
community presents siloed areas that essentially do not
communicate, except through one or two of their respec-
tive members: as a consequence, the development activities
might be delayed due to lack of communication between de-
velopers. Furthermore, Tamburri et al. [135] defined YOSHI,
an automated approach to monitor the health status of open-
source communities and that might potentially be used to
control for the emergence of community smells.

Besides the studies on social debt, a number of em-
pirical analyses have been carried out on the so-called
socio-technical congruence [136], i.e., the alignment between
coordination requirements extracted from technical depen-
dencies among tasks and the actual coordination activities
performed by the developers. While studies in this category
had the intention to investigate the relationship between
social and technical sides of software communities (e.g.,
studying how the collaboration among developers influence
their productivity [137] or the number of build failures
[138]), they did not address the co-existence and compound-
ing effects between community and code smells, combining
community-related quality factors both from a qualitative
and quantitative perspective such as we do in this paper.
In this respect, our work is unique. As a final note, it
is worth highlighting that we preliminarily assessed how
community smells influence code smells [139] by surveying
developers on such a relation. Our results indicated that
community-related factors were intuitively perceived by
most developers as causes of the persistence of code smells.
In this paper, we build upon this line by providing a large-
scale analysis of the relation between community and code
smells, and devising and evaluating a community-aware
code smell intensity prediction model.

8 CONCLUSION

The organisational and technical structures of software are
deeply interconnected [138]. We conjecture that the debts
existing in both structures, namely, social and technical debt
may be connected just as deeply. In this paper, we start
exploring this relation from the manifestations of both social
and technical debt, namely, code and community smells.
While previous work offered evidence that these two phe-
nomena occurring in software engineering may be correlated
[4], in this paper we reported a mixed-method empirical
convergence evaluation aimed at providing evidence of this
relation.

On the one hand, in a practitioner survey we observed
that community-related issues (as indicated by the presence
of community smells) are actually perceived as indicators of
the persistence of code smells, thus indicating the existence
of other aspects that impact the maintainability of technical
implementation flaws.

On the other hand, in parallel, we experimented quanti-
tatively over the same dataset to observe a series of implicit
variables in the survey that lead to better predictions of code
smells, as part of a complex causal relationship linking the
social and technical debt phenomena. In response, we de-
signed a prediction model to predict code smell intensity us-
ing community smells and several other known community-
related factors from the state of the art. We found that the
higher the granularity of the code smell, the larger the gain
provided by this new prediction model. Such a model offers
a valuable tool for predicting and managing both social
and technical debt jointly, during software maintenance and
refactoring.

In terms of industrial impact, the observations keyed in
this work offer valuable insights into understanding and
managing the joint interactions between social and technical
debt at an industrial scale, for example, in terms of the
need to better understand the social counterpart to every
technical debt item or designing more precise strategies on
how to address both at the same time. In this respect, one
interesting future direction could be to replicate this study in
a proprietary software setting instead of open-source envi-
ronment, and highlight similarities and differences with the
theory empirically evaluated in the scope of this manuscript.

Our future research agenda also includes a deeper anal-
ysis of how different feature relevance mechanisms (e.g., the
Gini index available with the Random Forest classifier [107])
impact the interpretation of the most important features of
the devised model as well as how the model works in a
cross-project setting [140]. Moreover, we aim at replicating
our study while targeting the new community smells that
emerged from our survey study, i.e., Dissensus, Class Cog-
nition, Dispersion, and Code Red. To this aim, we will first
need to define novel detection techniques: while we cannot
speculate too much on this point without having empirical
data, we hypothesize that some smells can be identified us-
ing natural language processing and/or structural analysis.
For instance, the Dissensus smell arises when developers are
not able to reach a consensus with respect to the patch to be
applied: likely, in this case the conversations among devel-
opers will report contrasting opinions that can be identified
using opinion mining techniques or contrasting sentiment
detectable using sentiment analysis [141]. In this regard, it is
worth remarking that recent findings on sentiment analysis
[142], [143] revealed that existing tools are not always suit-
able for software engineering purposes, thus suggesting that
the ability of detecting community smells may depend on
the advances of other research fields. At the same time, Code
Red—which is the smell arising when only 1-2 maintainers
can refactor the source code—may be structurally identifi-
able looking at the developers’ collaboration network and
applying heuristics to discriminate how many developers
over the history of a class applied refactoring operations
on it. A similar reasoning may be done for the detection
of the Dispersion smell, where historical information on
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the collaborations among developers might be exploited
in a prediction model aimed at predicting the effect of a
refactoring on the community structure of a project. Other
smells like Class Cognition or Prima Donna require instead
more analyses aimed at understanding the characteristics
behind them that would allow their automatic detection.
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