
A Survey on Software Coupling Relations and Tools

Enrico Fregnan∗

University of Zurich, Switzerland

Tobias Baum

Leibniz Universität Hannover, Germany

Fabio Palomba and Alberto Bacchelli
University of Zurich, Switzerland

Abstract

Context: Coupling relations reflect the dependencies between software enti-

ties and can be used to assess the quality of a program. For this reason, a

vast amount of them has been developed, together with tools to compute their

related metrics. However, this makes the coupling measures suitable for a given

application challenging to find.

Goals: The first objective of this work is to provide a classification of the

different kinds of coupling relations, together with the metrics to measure them.

The second consists in presenting an overview of the tools proposed until now

by the software engineering academic community to extract these metrics.

Method: This work constitutes a systematic literature review in software en-

gineering. To retrieve the referenced publications, publicly available scientific

research databases were used. These sources were queried using keywords in-

herent to software coupling. We included publications from the period 2002 to

2017 and highly cited earlier publications. A snowballing technique was used to

∗Corresponding author
Email addresses: fregnan@ifi.uzh.ch (Enrico Fregnan),

tobias.baum@inf.uni-hannover.de (Tobias Baum), palomba@ifi.uzh.ch,
bacchelli@ifi.uzh.ch (Fabio Palomba and Alberto Bacchelli)

Preprint submitted to Information and Software Technology November 25, 2018



retrieve further related material.

Results: Four groups of coupling relations were found: structural, dynamic,

semantic and logical. A fifth set of coupling relations includes approaches too re-

cent to be considered an independent group and measures developed for specific

environments. The investigation also retrieved tools that extract the metrics

belonging to each coupling group.

Conclusion: This study shows the directions followed by the research on soft-

ware coupling: e.g., developing metrics for specific environments. Concerning

the metric tools, three trends have emerged in recent years: use of visualization

techniques, extensibility and scalability. Finally, some coupling metrics appli-

cations were presented (e.g., code smell detection), indicating possible future

research directions.
Keywords: Software Engineering; Coupling relations; Software metrics

2010 MSC: 00-01, 99-00

1. Introduction

Software development is a complex task that requires careful planning and a

high amount of time and energy [1]. Furthermore, maintainability [2, 3] and re-

liability [4] are important qualities that software should possess. To assess these

properties, software complexity measures (coupling and cohesion) were intro-5

duced [5, 6]. As defined by Robbes et al. [7], coupling measures the amount of

dependency between entities in a software. Over the years, different coupling

measures have been proposed. Starting from structural metrics developed for

procedural languages [5], new approaches were introduced to measure different

relations in object-oriented environments [8]. Nonetheless, the central impor-10

tance of these metrics for software engineering encouraged researchers to give

birth to even more coupling measures in the attempt to evaluate further con-

nections between software entities [9]. Excluding the already existing structural

coupling, three new groups of coupling relations were created: dynamic, se-

2



mantic, and logical coupling. Dynamic coupling analyzes the run-time relations15

among different software entities [10]. Semantic coupling exploits the semantic

relations among different elements in the source code using information retrieval

techniques [11]. Finally, logical coupling approaches work by finding relations

among system parts that are frequently changed together [12].

Due to the flourishing of this research field, a vast amount of original coupling20

measures have been proposed. However, all these different approaches can make

it difficult for a software engineer to find the proper coupling relations to test the

quality of the software on which he or she is working on. Some coupling relations

can be applied only to particular groups of programming languages such as

the object-oriented ones. Other metrics reveal themselves useful in specific25

situations: for example, evolutionary coupling is particularly helpful to highlight

software changes. For these reasons, this work aims to provide a taxonomy of

the coupling relations proposed so far, categorizing them in different groups and

highlighting the commonalities and differences among them. Special attention

has been given to the various trends that emerged in this field so far, highlighting30

the motivations behind the construction of new coupling relations. We argue

that this study constitutes a good overview of software coupling relations and

a starting point for further research in this field. Furthermore, we compare

different tools developed by researchers to extract these relations in terms of

output and required input information. The goal of this second part of our35

literature review is complementary to the first one. We argue that a researcher,

having identified the coupling metrics of interest, may also be interested in

which tools he/she may use to extract them. To the best of our knowledge, this

constitutes a new contribution to the existing literature.

Other systematic reviews on coupling relations have been done by Kirbas40

et al. [12] and Nicolaescu et al. [13]. However, they have a different aim: Kirbas

et al. limit their review to the field of logical coupling, while Nicolaescu et al.

organize it in chronological order. The work of Kirbas et al. uses a measure-

ment theory perspective to analyze logical coupling measures. This approach

is reflected in the research questions identified in the study: questions like "Do45

3



existing studies use a sound empirical relation system?" or "Do existing studies

define measurement methods and procedures?" show the authors’ focus on eval-

uating how well logical coupling is currently captured by the different measures

proposed. However, such an approach is not easily applicable to the broader

perspective of our review. We consider logical coupling measures only as a sub-50

group of all the proposed coupling ones. Our review’s goal is to give a general

classification of all the possible coupling measures introduced in the software

engineering field and not to analyze in details the properties of a specific sub-

group. For this reason, the focus on logical coupling is limited to an overview

of the different measures introduced to assess it.55

Nicolaescu et al. propose an analysis of the main trends of coupling metrics

for object-oriented systems, considering both the fundamental research done in

the field and new directions that have been explored in recent years. Although

their work constitutes an extraordinary attempt to present an overview of this

complex research area, they report the different proposed coupling metrics in60

chronological order instead of dividing them into groups. In fact, Nicolaescu

et al. analyzed 26 research papers dividing them in three time periods: fun-

damental works (1990-1999), advanced approaches (2000-2010) and recent di-

rections (2011-2015). On the contrary, in our work the main focus is to give

a conceptual subdivision of the different coupling relations. In fact, our main65

concern is not the period in which the considered metrics have been proposed

(although, if possible, we keep a chronological order for clarity), but the different

rationales behind them, which gave birth to their classification.

2. Research questions

Coupling relations have fundamental importance in software development70

since they are useful in activities such as, among others, maintenance and pro-

gram comprehension [7]. For this reason, researchers explored links between

software entities in the attempt to capture different characteristics of software

to ensure its quality [9]. Nonetheless, a systematic classification of these dif-

4



ferent techniques is still missing. Therefore, in this work we first answer the75

following research question:

RQ1 Which different coupling relations have been proposed by the

software engineering research community?

The goal of RQ1 is to produce a taxonomy of the existing coupling rela-

tions, describing their core points together with the novelty that they introduce.

Furthermore, the differences between them will be presented. Then, we will in-

vestigate different metric tools based on the relations found in RQ1 with their80

outcome and input information. For this reason, our next research question is

the following:

RQ2 Which tools to extract coupling metrics have been developed by

the software engineering research community?

RQ2 aims to retrieve the tools that the software engineering research commu-

nity has developed to extract different coupling relations. We will classify them

based on the taxonomy produced by answering RQ1. Moreover, their different85

inputs and outputs will be highlighted, together with their limitations: e.g., the

programming languages to which they are restricted.

3. Research strategy

In our investigation, we followed the guidelines given by Kitchenham [14].

Figure 1 shows the steps of our research strategy. To address RQ1, we con-90

ducted an initial query to evaluate the goodness of our approach. Based on the

papers retrieved, in particular, the work by Bavota et al. [9], we refined our

query including terms specific for each coupling group. Moreover, we checked

for alternative spellings and synonyms. The terms identified were:

• Structural coupling95

• Dynamic coupling

5



Figure 1: Methodology steps

• (Semantic or Conceptual) coupling

• (Logical or evolutionary or change) coupling

Finally, to investigate our first research question (RQ1) we combined using

boolean operators all terms identified to create the following search string:100

(Software AND coupling) OR (coupling AND object-oriented) OR

(software AND coupling AND ((logical OR evolutionary OR change)

OR (semantic OR conceptual) OR dynamic OR structural))

We included the word “software” to reduce the number of results from re-

search fields other than software engineering. However, this was not neces-

sary when we used terms proper to the computer science area such as “object-

oriented”. The same procedure was applied to develop a search string for our

second research question (RQ2).105

(Coupling AND tool) AND (metrics OR (logical OR evolutionary

OR change) OR (semantic OR conceptual) OR dynamic OR struc-

tural)

These two research strings were used to investigate the following resources:

6



• IEEE Xplore Digital Library1

• ACM Digital Library2

• SpringerLink3

• ScienceDirect4
110

Table 1 shows the size of the papers set retrieved at each step of our investiga-

tion. ScienceDirect and SpringerLink returned a number of results too vast for

an accurate analysis (more than 200’000 results). To restrict this set, we filtered

the journals to the ones on computer science and software/software engineer-

ing and then we applied our queries to each of them (complete list available in115

Appendix A). In SpringerLink, we excluded the “preview-only” content.

Table 1: Data sources and search results
Source Total results retrieved5 Initial selection Final selection

IEEE Xplore Digital Library 10391 + 1639 69 65

ACM Digital Library 2838 + 1120 +13 +13

ScienceDirect 2887 + 2014 +9 +8

SpringerLink Digital Library 3733 + 2967 +2 +2

Total 93 88

The retrieved papers were evaluated based on a set of exclusion and inclusion

criteria. The exclusion criteria were:

• Articles that do not focus on software coupling relations and/or tools.

• Articles that were not written in English.120

• Articles whose full text is not available.

1IEEE, http://ieeexplore.ieee.org/Xplore/home.jsp
2ACM, https://dl.acm.org/
3SpringerLink, https://link.springer.com
4ScienceDirect, http://www.sciencedirect.com
5We reported the number of results obtained with the first query and the number of results

obtained with the second one. We did not compute their sum since the two queries presented

overlapping results.

7



• Not peer-reviewed articles, e.g., Ph.D. or M.Sc. thesis

To assess the quality of the retrieved research material, in other words, if the pa-

pers identified by our queries contained information useful to answer our research

questions (respecting the first criterion), the following three-step procedure was125

applied. In the first step, the papers’ titles and abstracts were carefully read to

exclude the ones clearly irrelevant to the focus of our research. The second step

consisted in skimming the whole text of the material left after the first selection

to assure that it contained information related to coupling relations, measures

and/or tools to extract them. Finally, the third step was an accurate reading130

through the whole text to ensure that this information was effectively helpful to

address the two research questions: for the tools, we checked that their input,

output and limitations were described.

At the same time, we applied the following inclusion criteria:

• Year of publication: only papers published between 2002 and 2017 were135

accepted;

OR

• Number of citations: only papers referenced by more than 100 other pub-

lications were accepted;

The two criteria do not have to be valid simultaneously: they are connected140

with the logical operator OR. Therefore, a paper is selected if it meets at least

one of the two criteria. The first criterion was selected to include recent publi-

cations on the topic. We included in our work only papers published in the last

15 years at the moment on which this research is conducted: from January 2002

to December 2017. However, we argue that this criterion may have excluded145

fundamental papers on coupling. Although they have been published before

2002, their contribution could be fundamental to obtain insights on trends and

characteristics of more recent metrics. For this reason, we introduced the second

criterion to augment the first one. We selected 100 citations as threshold be-

cause we were interested in the analysis of solid and well-established resources150

8



on the topic of interest. The number of citations have been attested using

Google Scholar to have a verification system independent from the single data

source. However, we recognize the potential limits of this approach: a paper

with a high number of citations is not necessarily an important paper on the

subject. To mitigate this problem, we complemented this research strategy with155

a snowballing technique [15]. We applied forward and backward snowballing on

all the papers included in our final selection set until saturation was reached.

The purpose of using the snowballing technique was to compensate for funda-

mental material that may have been left out by our previously mentioned search

queries.160

Table 2: Total of papers retrieved

Final set Snowballing Total

88 48 136

As a further check on the goodness of the retrieved material and its correct

use, we contacted authors of other similar works on coupling or studies published

in 2016 and 2017. We reached 16 authors and received 5 answers. We asked

them to check if their papers were cited correctly and suggest us any other

published work relevant for our review. However, we did not discover any new165

source that was not already included in the set of papers found by means of our

search process.

4. RQ1: Coupling relations

In this section different existing coupling relations and techniques will be

presented, based on the result obtained investigating our first research question.170

As stated by Briand et al. “Coupling refers to the degree on interdependence

among the components of a software system” [16]. A component can be a module

of the system or a smaller entity such as a class or an object. Moreover, coupling

can indicate a relation between two components but also a property of an entity

compared to all the other related entities in the system: e.g., CCBC (Conceptual175

9



Coupling Between Classes) and CoCC (Conceptual Coupling of a Class) [17].

Bavota et al. identified four different measures of coupling [9]:

• Structural coupling

• Dynamic coupling

• Semantic coupling180

• Logical coupling

Structural coupling exploits the static relations in the source code: it focuses

on finding patterns such as called methods, relations among classes (inheritance

and friendship) and accessed variables. Dynamic coupling also reflects calls

between classes and methods but it does that at run-time, instead of looking at185

the static code. Semantic coupling relies on Information Retrieval techniques

to find relations in the code lexicon, while logical coupling intends to assess

the entities that are frequently changed together, and therefore share a link,

using historical information. Finally, other approaches try to combine these

groups of relations in a complementary way or present coupling measures for190

domain-specific programming languages. Figure 2 shows an overview of the

coupling relation taxonomy that we have constructed in our review. The goal

of this first part of our work is to present the evolution of the coupling relations

and metrics proposed, while keeping intact the categories presented by Bavota

et al. [9].195

4.1. Structural coupling

Structural coupling relations exploit static connections among software enti-

ties (modules, objects or classes). Measures to assess them have been initially

developed for procedural languages, but, later, extended to the object-oriented

paradigm. Furthermore, some structural coupling relations have been proposed200

specifically for object-oriented languages. In general, it is possible to divide

them into two broad groups: procedural programming coupling measures and

object-oriented coupling measures [18].

10



Coupling relations

Structural coupling

Procedural languages coupling

Content coupling

Common coupling

Control coupling

External coupling

Stamp coupling

Data coupling

Object-oriented languages coupling

Interaction coupling

Content coupling

Common coupling

Control coupling

External coupling

Stamp coupling

Data coupling

Component coupling

Hidden coupling

Scattered coupling

Specified coupling

Inheritance coupling

Modification coupling

Refinement coupling

Extension coupling

Dynamic coupling
Import coupling

Export coupling

Semantic coupling

Logical coupling

Figure 2: Coupling relation taxonomy

11



Myers divided the coupling for procedural programming languages in 6 dif-

ferent levels, reported in Table 3 ordered from the worst to the best in terms205

of consequences on the maintainability and quality of the software [19]. These

coupling levels have been extended by Offutt et al. to include global and bidi-

rectional coupling measures, previously left uncovered [5]. Although it has been

originally introduced for procedural languages, this subdivision remains valid

also for object-oriented ones.210

In 1981, Henry and Kafura proposed an information-flow technique to con-

struct different measures for a software system [21]. Their idea constitutes an in-

teresting approach to compute coupling relations. In particular, the information

flow metrics can recognize content coupling and common coupling. The authors

argue that content coupling is equivalent to their direct local flows. Common215

coupling is equivalent to the global flow measure. Henry and Kafura developed

two metrics fan-in and fan-out. fan-in counts the number of local flows to the

considered procedure together with the number of data structures read by the

procedure. fan-out measures the quantity of local flows from a selected proce-

dure plus the number of data structures on which the procedure writes. At a220

later time, Allen et al. proposed to measure coupling metrics using the links

and information obtainable building the system graph of a software [22, 23].

The strength of this approach is that it can be applied to many software de-

sign abstractions and to all kinds of programming languages (procedural and

object-oriented).225

The flourishing of the object-oriented paradigm brought the researchers to

propose metrics and relations to cover its new aspects. Coupling relations for

object-oriented systems have been investigated in the work done by Eder et al. in

1994. The authors identified three groups of coupling relations [24]: interaction,

component and inheritance coupling. Their classification is shown in Table 4.230

A fundamental structural coupling metric for object-oriented software is

CBO (Coupling Between Object) [25], which belongs to the interaction cou-

pling subgroup [24]. CBO reflects the degree to which an object acts upon

another, excluding the parent-child relation. It constitutes one of the core cou-

12



Table 3: Structural coupling relations for procedural languages

Level Description

Content coupling Refers to two modules of which one directly accesses

the contents of the other: e.g., module A modifies a

statement or branches to a local label of module B.

Common coupling Happens when two modules have access to the same

global data: for example, both modules can read and

write the same global record. Schach points out that

if the access to the data is read-only, then this can

not be considered common coupling [20].

Control coupling Happens when a module explicitly controls the logic

of another. However, this does not happen if the first

module passes only data.

External coupling Happens when two modules exchange information

using an external element such as a file.

Stamp coupling Exists between two modules if one of them passes

a data structure as an argument to the second one,

but the called module does not operate on all the

components of the data structure.

Data coupling Exists among two modules if the arguments that they

pass to each other are all homogeneous data items:

simple arguments or data structures in which all el-

ements are used by the calling module [20].

13



Table 4: Structural coupling relations for object-oriented languages

Level Description Applicability Subdivision

Interaction coupling Defined as the invocations

among different methods

and their sharing of

variables

Methods and

Classes

Content coupling

Common coupling

External coupling

Control coupling

Stamp coupling

Data coupling

Component coupling A class A is related to

another class B if and only

if A is referenced in B: this

happens when A is the

domain of an instance or

local variable, a method’s

parameter or a parameter

of a method called inside a

method of B

Classes Hidden coupling

Scattered coupling

Specified coupling

Inheritance coupling Relates two classes if one

of them is a subclass of the

other

Classes Modification

coupling

Refinement

coupling

Extension coupling

14



pling metrics and it has been further refined and applied in different other235

domains. Chidamber and Kemerer also defined RFC (Response For a Class), a

coupling measure related to CBO [26, 27] that measures the total communica-

tion potential. These two metrics were further analyzed by Briand et al. [28] and

formalized to remove possible sources of ambiguities. Moreover, Briand et al.

introduced CBO′ to include the ancestor classes in the metric computation, pre-240

viously left excluded [25]. Other important metrics that they considered were

Message Passing Coupling (MPC) and Data Abstraction Coupling (DAC), orig-

inally defined by Li and Henry [29]. Briand et al. further refined DAC in DAC′,

a metric that counts the number of classes used as types of attributes. Finally,

other important structural coupling measures are efferent and afferent coupling245

(Ce and Ca [30]), Coupling Factor (COF) [31, 32] and Information-flow-based

coupling (ICP) [33]. Li defined two new coupling metrics to complement Chi-

damber and Kemerer’s metrics suite: CTA (Coupling Through Abstract data

type) and CTM (Coupling Through Message passing) [34]. Similarly to the

DAC′ [28] metric, CTA measures the relation between two classes created when250

one of them uses the other in its data declaration. CTM (Coupling Through

Message passing) measures the number of messages sent by a considered class to

the other classes in the system, excluding the ones sent to objects used locally

by the methods of the class. MPC, RFC and CBO were also modified to be ap-

plied to program slices [35], creating the new metrics SMPC, SRFC and SCBO.255

The method-level metrics proposed by Briand et al. have been adapted to a

finer granularity by English et al. to distinguish the different types of constructs

with which they might be related [36]. A specific focus has been given to the

friendship relation.

To take into account indirect coupling relations and the strength of coupling260

between two classes, Li developed a new metric [37]. Indirect coupling has also

been considered by Yang et al. [38, 39] (creating also a tool, Indirect Coupling

Detector) and later by Almugrin et al. [40].

New measures have been introduced to allow an evaluation of the level

of object-orientation of a program to estimate the possibility that an object-265

15



oriented fault happens. For this purpose, Tang et al. proposed new coupling

metrics [41]: IC (Inheritance Coupling) and CBM (Coupling Between Meth-

ods). Gui and Scott focused instead on metrics specific for component reusabil-

ity [42], defining measures for the direct coupling among two classes (CoupD),

the transitive coupling among two classes (CoupT) and the total coupling of a270

software system (WTCoup).

An interesting approach is the one proposed by Aloysius and Arockiam,

where a comprehensive coupling metric, CWCBO (Cognitive Weighted Coupling

Between Objects), is defined to give an overall measure of different degrees of

coupling [43]. This metric considers different kinds of coupling measures such275

as data coupling, control coupling, global coupling and interface coupling and

applies to them a weighting factor. Using a comparative study, the authors

supported their claim that CWCBO is a better indicator than CBO to measure

the complexity of a class since it takes into consideration different coupling

levels.280

4.2. Dynamic coupling

Dynamic coupling rules were introduced to address problems left not com-

pletely answered by previous static coupling measures: e.g., dynamic binding

and polymorphism [10]. In fact, these metrics lose precision when dealing with

intensive use of inheritance and dynamic binding. Furthermore, they aim to285

evaluate software quality looking not only at the source code complexity, but

also at its operational environment [44]. Further research confirmed that these

metrics provide additional information to the structural metrics [45]. Dynamic

coupling approaches can be further divided according to the coupling direction,

import or export coupling, and their mapping level, object or class-level ori-290

ented [46]. Coupling direction captures the difference between a sending entity

and a receiving entity [46, 10]. Considering the messages exchanged between

entities, the distinction is:

• Import coupling: focus on the messages sent from an entity

16



• Export coupling: focus on the messages received by an entity295

The mapping level reflects the applicability domain of dynamic coupling rules:

object-level or class-level coupling. Moreover, Arisholm et al. proposed three

different approaches to evaluate the strength of a coupling relation: the number

of messages, the number of distinct method invocations and the number of dis-

tinct classes. The first one refers to the quantity of distinct messages exchanged300

between two entities. The other two represent the amount of methods called

and classes used, respectively, by a method in an object. The classification of

these metrics, as given by Arisholm [46], is summarized in Table 5.

Table 5: Dynamic Coupling Relations Summary [46]

Direction Mapping Strength Name

Import Coupling Object-level Dynamic messages IC_OD

Distinct Methods IC_OM

Distinct Classes IC_OC

Class-level Dynamic messages IC_CD

Distinct Methods IC_CM

Distinct Classes IC_CC

Export Coupling Object-level Dynamic messages EC_OD

Distinct Methods EC_OM

Distinct Classes EC_OC

Class-level Dynamic messages EC_CD

Distinct Methods EC_CM

Distinct Classes EC_CC

The direction of coupling was taken into account also by Mitchell and Power:

their idea was to expand the previously defined CBO metric [44]. The authors305

presented two new coupling relations, both divided to account for internal and

external coupling. The first one, Run-time coupling between objects (R) (ex-

ternal or internal) counts the number of accesses made by/to a class divided

by the total number of accesses. The second one, run-time import (or export)

17



degree of coupling (RD), gives the strength of the coupling relation computed310

as the number of classes that access (or are accessed by) a selected class. In

further research, Mitchell and Power, in their attempt to verify if CBO can be

used efficaciously as a dynamic metric, defined two new coupling measures [47]:

Run-time Coupling Between Objects (RCBO) counts the amount of classes that

a specific class accesses at run-time. The second one, the Number of object class315

clusters (Noc), counts the number of clusters obtained considering a class in the

system and studying the distribution of unique accesses per object.

Work at object-level was also done by Yacoub et al. [48]. The authors pro-

posed two dynamic coupling metrics that operate on the export and import

side, respectively. The former one, Export Object Coupling (EOC) measures320

the percentage of messages sent from an object to the other, compared with the

total amount of messages exchanged in the complete execution. Import Object

Coupling (IOC) works in the opposite way, reflecting the number of messages

that an object receives from another. From EOC, Yacoub et al. defined OQFS

(Object reQuest For Service) as the sum of the EOC among a selected object325

and all the other objects in the design. IOC was instead developed into OPFS

(Object resPonse For Service), defined as the sum of IOC between the given ob-

ject and all the other objects in the application during the execution of a specific

scenario. These values affect the maintainability, understandability, reusability

and the errors distribution in the code. Zaidman and Demeyer refined OQFS to330

work at class-level, introducing CQFS (Class reQuest For Service) [49]. CQFS

counts all the methods that a given class calls during the application execution.

Every method is counted once: calling the same method more than one time

does not increase the count.

Hassoun et al. propose a general relation, called DCM (Dynamic Coupling335

Metric) to formalize the idea of dynamic coupling [50]. Their metric works at

object-level and it can be used to analyze the coupling of a selected object or a

system during the program execution.

Dynamic coupling metrics require analysis conducted at run-time, but the

impact of the metrics is higher if they are computed at early stages of the340

18



development. To address this issue, pseudo-dynamic coupling metrics were pro-

posed: static metrics that consider the expected usage profile (derived from

UML graphs during the design phase) [51]. Referring to Chidamber and Ke-

merer’s CBO, the pseudo-dynamic CBO metric was defined as the value of the

static CBO multiplied by the value of the operational profile. It presents a345

strong correlation with the dynamic CBO metric. A similar static approach

to compute dynamic metrics has been proposed by Liu and Milanova [52]. A

different approach calculates dynamic metrics from the system use case maps

and the interactions between different scenarios [53].

An interesting evolution of the metrics defined by Arisholm [46] has been350

introduced by Abualese et al. to evaluate the importance of a class in the un-

derstanding process that a developer has to face when approaching code written

by a different person [54].

4.3. Semantic coupling

Classes can not only be structurally related to each other but also conceptu-355

ally. Based on this idea, semantic coupling uses information from comments and

identifiers to identify relations among software entities [11]. The technique pro-

posed by Poshyvanyk and Marcus relies on Latent Semantic Indexing (LSI) [55]:

a machine learning model developed to analyze relations between words and

documents. To investigate coupling aspects left unaddressed by the previous360

metrics, the authors created four progressive coupling relations, each of them

based on the previous one: CCM (Conceptual Coupling Between Methods),

CCMC (Conceptual Coupling Between a Method and a Class), CCBC (Con-

ceptual Coupling Between two Classes), also called CSBC (Conceptual Similar-

ity Between two Classes) and CoCC (Conceptual Coupling of a Class) [11, 17].365

Poshyvanyk and Marcus also considered the idea to exclude weak coupling links

in the computation of the metrics defining a new metric called CSMCm. From

it, they also recomputed CSBC and CoCC accordingly, producing the two new

metrics CSBCm and CoCCm. Újházi et al. have further improved this approach

with a new metric called CCBO (Conceptual Coupling Between Object classes),370

19



which does not merely take the maximum but identifies a threshold to distin-

guish between a strong and weak semantic coupling [56].

All the aforementioned semantic coupling measures use LSI to create an

initial semantic corpus for the analysis. Gethers and Poshyvanyk proposed

a coupling approach based on a different technique: Relational Topic Model375

(RTM), a model that can find connections between documents based on the

context [57]. The authors introduced a measure called Relational Topic-based

Coupling (RTC). This metric individuates new aspects of coupling between

classes compared to the metrics based on LSI, such as CoCC. Furthermore, a

fundamental benefit of this model is that it does not need any previous knowl-380

edge about the links between classes.

Revelle et al. extended semantic coupling relations to work at feature level,

aiming to identify which parts of a system are linked to a specific function [59,

58]. In fact, a feature represents the implementation of a functionality de-

scribed in the requirements. Since features can be represented by structured385

information (source code and related artifacts) and unstructured information

(textual information), two different metrics were proposed: SFC (Structural

Feature Coupling) and TFC (Textual Feature Coupling). Furthermore, the

authors introduced HFC (Hybrid Feature Coupling) to consider together the

complementary information captured by SFC and TFC.390

Semantic coupling has been combined with evolutionary coupling [60] or

domain-based relations [61]. Domain-based coupling individuates relations among

domain variables, functions and User Interface Components (UIC) [62, 63] and

has been applied to fields such as code clone detection with promising re-

sults [64]. Gethers et al. defined CSE (Conceptual Similarity between Enti-395

ties) and CSED (Conceptual Similarity between two UICs) to perform impact

analysis in hybrid software systems [61]. Moreover, semantic and domain-based

coupling relations have been checked to assure their orthogonality. This analysis

confirmed that these relations capture different aspects of the analyzed system

and, therefore, they can be efficaciously combined. Based on CBE, Kagdi et al.400

defined CSEMC and CSEBC [65]. Furthermore, semantic coupling has been

20



combined with structural coupling to create a metric that takes into account

both aspects at the same time [66]. The authors defined four coupling met-

rics, each of them based on the previous one (in a fashion similar to the one

used by Poshyvanyk et al. [17]): MPC (Method Pair Coupling), HCMC (Hybrid405

Coupling between Method and a Class), HCCC (Hybrid Coupling between two

classes) and SSCM (Coupling of a class in an object-oriented system). Moreover,

they positively performed an evaluation to confirm that these metrics identify

aspects not covered by structural and semantic coupling relations alone.

4.4. Logical coupling410

Logical coupling (sometimes also called evolutionary or change coupling)

works by finding similar change patterns in the release history: it aims to in-

vestigate “the sequential dependencies such as if module A is changed in one

release, module B is changed in the next release” [67]. This approach has been

further developed to be applied at class level in the research conducted by Gall415

et al. [68], with the aim to identify classes that share a common change behavior.

The authors proposed a distinction between internal and external links: internal

coupling happens between classes in the same module, while external coupling

involves classes contained in different modules. Their approach works using data

extracted from the CVS (Concurrent Versions System) release history. Fur-420

ther research focused on a finer-grained analysis of system evolution, compared

to the description obtained using CVS. Robbes et al. [7] argued that this method

is imprecise because it employs the commits as basic analysis blocks. For this

reason, they defined coupling metrics to work using information collected dur-

ing software development through a tool that saves all the changes made to a425

system in development together with the exact time at which they were made.

Alali et al. proposed to further extend these metrics analyzing the contribution

of age and pattern distance measures [69]. Age is defined as the period of time

between the appearance of the specific evolutionary coupling relation and its

disappearance. Pattern distance represents the tree distance between two files430

in a program. Another interesting approach is the one proposed by D’Ambros

21



et al. [70]. They introduced two weighted change coupling measures EWSOC

(Exponentially Weighted Sum of Coupling) and LWSOC (Linearly Weighted

Sum of Coupling). They both emphasize recent changes over past ones, but the

latter penalizes them less than the former.435

4.5. Recent or isolated trends

Outside this classification, other coupling relations have been proposed.

They are novel techniques, still too recent to be considered a proper subgroup

of metrics, or relations developed for specific domains.

A first novel relation is interaction coupling. Interaction coupling aims to440

group artifacts that are likely to implement the same task. Zou et al. [71] worked

on the task interaction history, defining the strength of the relation between two

entities as the number of times they are accessed together. Although interac-

tion coupling may be considered similar to logical coupling, the former requires

information from the task interaction histories and involves not only artifacts445

that are changed together, but also entities that are viewed in the same por-

tion of time. Interaction coupling and logical coupling have been combined by

Bantelay et al. to predict future interactions [72].

The usefulness of general coupling relations led the researchers to tailor them

to domain-specific applications: e.g., knowledge-based systems. Kramer and450

Kaindl proposed the Degree of Coupling of Frame (DCpF) metric to measure

the number of slots in a frame connected to other slots in different frames by

a rule [73]. Coupling measures have also been developed for Web Ontology

Language to evaluate the complexity of the system [74]. Table 6 summarizes

the metrics proposed for this application. Furthermore, coupling metrics have455

been modified to be applied to Agent-oriented software development. Jordan

and Collier proposed a reformulation of the CBO metric as coupling between

abstractions, defining Coupling Between Elements (CBE) [75]: two elements

are coupled if any direct dependencies exist between any of their parts. If an

element accesses or modifies the implementation details of another one, this460

leads to a dependency.

22



Table 6: Web Ontology coupling metrics

Metric Description Ref

NEC (Number of external

classes)

Number of other classes outside

the selected ontology

[74]

REC (References to External

Classes)

Counts the number of references

to external classes considering a

selected ontology

[74]

RI (Referenced Includes) Computes the number of

includes used in an ontology

[74]

CBE-in (Coupling Between

Entities)

Considers the class to be in the

property domain

[76, 77]

CBE-out (Coupling Between

Entities)

Considers the class to be in the

property range

[76, 77]

SC (Self-Coupling) Captures the properties with a

class contemporary in the

property range and domain

[76, 77]

23



Coupling relations have also been adapted for Aspect-Oriented (AO) soft-

ware, where the basic entities are aspects and classes, to assess its reusability

and maintainability [78]. Sant’Anna et al. [78] and Ceccato and Tonella [79] (fur-

ther improved by Shen and Zhao [80] with the addition of other seven metrics)465

proposed an initial set of metrics to measure aspect-oriented coupling relations.

An example is CBC (Coupling Between Components) [78], a general measure

of coupling that accounts for different relations between classes and aspects in

AO programs. However, these metrics have been criticized by the software

engineering community for not taking into account finer dimensions of class-470

aspect coupling and their lack of empirical validation. Moreover, their adoption

was disregarded by the software developers [81]. For this reason, Burrows et al.

aimed to asses the quality of these metrics and, if necessary, how they might

be improved. The authors defined a new AOP coupling measure called Base-

Aspect Coupling (BAC) that quantifies the strength of the link between the475

base and the aspect code. In the same year, Bernardi and Lucca proposed a

further set of coupling metrics based on their classification of aspects’ interac-

tions [82]. They proposed a metric for coupling due to interactions altering the

static structure (CLSS), to interactions altering the control flow (CLCF) and to

interactions altering the state of an object (CLSO). Finally, they considered all480

these interactions together in the metric CLA (Coupling Level of an Aspect).

New metrics were proposed by Bennett and Mitropoulos to address the prob-

lem of aspect interference [83]: an aspect that causes unexpected changes to

the flow of a class or a method. The authors argued that previously proposed

AO coupling metrics did not cover all the interaction necessary to describe485

potential aspect interference. To solve this issue, two new metrics were intro-

duced: IP (Interference Potential) and ICP (Interference Causality Potential).

Furthermore, these two metrics have been combined in a new one, TIP (Total

Interference Potential) [84]. At the same time, attempts have been made to

create a comprehensive framework, independent from the language considered,490

to define AO coupling measures [85, 86, 87].

Moreover, specific coupling metrics have also been developed for Service-

24



Oriented Architectures (SOA) [88, 89, 90, 91, 92, 93, 94, 95]. A SOA is an ar-

chitectural model to combine different services in one platform. It can be formed

by a combination of technologies, products, APIs and various other components495

and is not related to a particular programming language [96]. Among the metrics

proposed, we report ASSD (Average Service State Dependency), ASPD (Aver-

age Service Persistent Dependency), ARSD (Average Required Service Depen-

dency) [88], SOCI (Service Operational Coupling Index), ISCI (Inter-Service

Coupling Index) [89] and ASOU (Average Service Operation Coupling) [93].500

ASSD and ASPD compute the average of the services’ states and persistent state

dependencies, respectively. A persistent state dependency happens between ser-

vices that share a state, which all of them can use and update. Finally, ARSD

measures the average number of services to which each service in the system pro-

vides its functionalities. SOCI (Service Operational Coupling Index) and ISCI505

(Inter-Service Coupling Index) measure the dependence of a service on other

services and on messages, respectively. The former was adapted by the object-

oriented metric RFC, the latter from the CBO metric. ISCI can be considered

as the opposite of ARSD [88]. To measure the dependency based on messages,

a new metric was formulated: SMCI (Service Message Coupling Index). Even510

if it may seem to have a dynamic nature, it is computed statically from the

information model of the domain. Finally, ASOU computes the coupling of a

service as the sum of its synchronous and asynchronous invocations divided by

the total number of services in the domain. Karhikeyan and Geetha identified

five types of dependencies that influence the coupling of a Service-Oriented sys-515

tem: direct, indirect, state, IO and delayed message dependency [94]. They

developed a metric for each of them and proposed a fuzzy model to evaluate the

overall coupling of a system.

The discussed coupling metrics for SOA are all static. Based on the promis-

ing results obtained by dynamic coupling in object-oriented systems, Quynh and520

Thang introduced a set of dynamic metrics for Service-Oriented systems [91]:

CBS (Coupling Between Services), which has been derived from CBO, IMS (In-

stability Metric for Service), DC2S (Degree of Coupling between 2 Services) and

25



DCSS (Degree of Coupling within a given Set of Services).

Semantic coupling relations have also been further developed to deal with525

Service-Oriented Architecture (SOA). New metrics needed to be created since

the ones proposed by Poshyvanyk et al. [17] could not be applied in this domain:

comments and identifier names are not accessible for services and, furthermore,

the required concepts can also be obtained using business level artifacts [97].

For these reasons, Kazemi et al. developed three coupling metrics [97]: CCO530

(Conceptual Coupling between Operations), CDSO (Conceptual Dependency of

a Service to an Operation) and CCS (Conceptual Coupling of a Service).

An interesting application of coupling measures is to assess the information

security of object-oriented designs [98]. To this purpose, a new metric CCC

(Critical Classes Coupling) has been defined. CCC computes the degree of in-535

terconnection among classes and classified attributes in a given software design.

Moreover, it is based on design graphs (e.g., UML). However, to extract security

information these graphs need to be annotated using tools such as UMLsec [99]

or SPARK’s annotations [100].

Finally, coupling measures have been defined for Computational Science and540

Engineering (CSE) applications [101] and real-time application design [102]. In

the context of real-time application design, Ahmed and Shoaib defined a set of

metrics (e.g., MEF, Message Exchange Factor) to evaluate the system in its early

development phases [102]. Kamble et al. investigated coupling in Computational

Science and Engineering (CSE) software [101] to perform software integration.545

They claimed that this domain is different from others due to the complex

algorithms and functions involved.

5. RQ2: Developed tools

Different tools have been proposed to extract the measures discussed in

Section 4. Based on the previous classification, the aim is to identify how they550

work, the information that they require and their advantages and disadvantages.

Table 7 shows a summary of the tools that we have considered divided based

26



on the kind of metrics that they extract (structural, dynamic, semantic, logical

coupling or relations belonging to smaller groups). For each tool its input and

output are reported, together with its limitations: mainly its restriction to a555

particular programming language (or set of languages).

Some tools are stand-alone kits that simply extract a set of metrics: e.g.,

CCMETRICS [104]. However, during our analysis, two trends emerged clearly:

the use of visualization techniques to improve users’ understanding and the focus

on extensibility. Moreover, in tools developed for dynamic coupling metrics, due560

to the significant amount of data that needs to be analyzed, researchers focused

on scalability to improve the tools’ performance.

5.1. Extensibility

A problem of metric tools proposed by the software engineering community565

is that the majority of them can not be extended to support new metrics or

languages [132]. For this reason, some metrics tools focused on extensibility

with the specific intent to support future metrics. Examples can be found in

QScope [105], which provides an explicit mechanism to include new metrics

and a framework to develop and test them, OOMeter [111] and AMT [106].570

This last tool takes a further step towards extensibility, being expandable not

only with new metrics but with new languages too. To achieve an implemen-

tation independent from the programming language analyzed it takes as input

a representation of the source code using XML. However, this representation

should be created from the source code using a parser. For this reason, at the575

time of the publication of their research, Kayarvizhy and Kanmani’s tool AMT

only supports Java and C#. A similar approach has also been implemented in

WebMetrics [107]. The tool implements an architecture that includes an inter-

mediate level of abstraction between the code and the metrics computation: the

code is processed to extract a list of relations, which are analyzed in a second580

step to compute the desired metrics. This allows an easier implementation of

new measures in the tool since the developer does not need to know how the

27



Table 7: Coupling Tools Analyzed
Coupling Tool Input Output Limitations Ref

Structural coupling ckjm Java files or JAR files CBO (Coupling Between Objects) Restricted to Java applications [103]

RFC (Response For a Class) and Ca (Afferent coupling)

CCMETRICS Source code DAC (Data Abstraction Coupling) Restricted to object-oriented [104]

MPC (Message Passing Coupling) languages

QScope XML database of CBO and RFC [105]

the program representation and their graphical visualization

AMT Source code CBO, CBO′, RFC, MPC, DAC and DAC′ Restricted to Java and C# [106]

(At the time on which

Kayarvizhy and Kanmani published)

WebMetrics Source code CBO and RFC Supports C, C++, Java and Smalltalk [107] [108] [109]

Fan-in and Fan-out

DependencyViewer Java files or Ca (afferent coupling) and Ce (efferent coupling) Limited to Java applications [110]

JAR archives

OOMeter Source code (Java or C#) CBO (Coupling Between Objects) Restricted to Java and C# [111]

or UML diagrams (in XMI) (can be exported in XML, Microsoft Excel, html etc.) Only supports UML in XMI format

CLUSTERCHANGES CodeFlow changeset Clusters of diff-regions (visualized a tree graph) Restricted to C# [112]

SCPA UMLsec or SPARK graphs CCC Specific for assessing security [113]

(generated with the tool) (using UMLsec or SPARK’s annotations)

GMN tool UML diagrams (in XMI format) DAC, DAC′ [114]

Briand et al.’s metric suite [16]

NASS and DCC

AEA tool Java source code NOC, DIT Restricted to Java [115]

JMCT Java source files CBO, RFC (refer to table in [116]) Restricted to Java [116]

JCAT Java source files PCC, ECC, GCC, ICC Restricted to Java [117]

JCTIViz Java source files CBO, CTI Restricted to Java [118]

Indirect Coupling Eclipse IDE use-def indirect coupling Eclipse plug-in [38]

Detector

Dynamic coupling JDissect Running Java program Dynamic coupling measures [10] Restricted to Java [10]

SSS tool6 Running Java program Total Dynamic Messages (TDM) Restricted to Java applications [119]

Distinct Class Couples (DCC)

Distinct Method Couples (DMC)

DMA Jar files EC_CC, EC_CM and EC_CD Restricted to Java applications [120]

IC_CC, IC_CM and IC_CD

DynaMetrics Running program Set of static and dynamic measures [121] Restricted to Java/C++ [121]

Semantic coupling IRC2M Source code CoCC and CoCCm Restricted to C++ programs [11]

CSBC and CSBCm

FLAT3 Source code TFC Eclipse plug-in [58]

Feature-Method Mapping SFC

Logical coupling ROSE CVS data Locations for further changes [122]

Warnings about probable missing changes

Evolution Radar CVS data Graphical visualization of coupling

between modules and files [123] [124] [125]

YMNC tool CVS data List of files changed together with the selected one [126]

Hanakawa’s tool Java source code Module coupling measure Module coupling is [127]

and CVS data Logical coupling measure restricted to Java

(graphic visualization of them)

Other couplings OWL-VisMod Ontologies code Graphical visualization of Restricted to OWL language [128]

CBE-in and CBE-out relations

AJATO Source code and CBC (Coupling Between Components) Restricted to Aspect-Oriented [129] [130]

Concern map (XML) and Design Warnings applications

Rules (XML)

AJMetrics AspectJ files and Java files CAM, CAA, CAI and Restricted to Aspect-Oriented [80] [131]

CAE, CIM, CFA software

and a suite of structural coupling metrics

CT tool AspectJ source code CAE, CIM, CMC, CFA Restricted to AspectJ [79]

SSP tool UML diagrams SOCI, ISCI and SMCI Restricted to SOA [89]

28



parser operates, but only the generated intermediate relations.

5.2. Visualization techniques585

Applying visualization techniques to metric tools constitutes another impor-

tant trend in research. The goal is not only to extract a set of software metrics

but to support and improve the users’ understanding. A step in this direction

has been made by DependencyViewer [110] and OOMeter [111] in 2005. Both

of them can show the metrics extracted using simple graphs: e.g., Dependen-590

cyViewer reports the metrics computed for a package as a column graph.

In the field of logical coupling metrics, Evolution Radar [123, 124, 125] (2006)

and the tool proposed by Hanakawa [127] (2007) implemented a visualization

technique. D’Ambros et al. [124] argue that visualization techniques give im-

mediateness to the user. Evolution Radar shows as output the coupling links595

existing between a selected module and the other system’ modules. The vi-

sualization interface uses the distance between the center (where the selected

module is located) as a measure of the strength of the coupling relation: the

closer a module is to the center, the stronger is the link. Furthermore, due to

the interactivity of this approach, it is possible to see more information related600

to the selected entity such as the author, timestamp, comments, lines added

and removed and its source code and the logical coupling among entities over

time. Hanakawa’s visualization tool presents two maps: a module coupling

map and a logical coupling one. Both of them can be shown at the same time.

JCTIViz [118] (2008) uses a polymetric view to display software metrics. Each605

class or interface is represented with a node: the dimensions of the node (height,

width and depth) represents the value of a metric. In particular, the node depth

represents the CBO value. A different approach considers the creation of tools

as plug-ins for existing IDEs. EPOSpix [133] exploits this idea showing related

classes in Eclipse with a pixel map. eROSE [134] is an Eclipse plug-in that610

6When the tool’s name is not explicitly stated in the referenced research, we will call it

with the initial letters of the authors’ surnames

29



computes logical coupling to suggest related changes to the developer.

Visualization techniques have been applied also by Garcia et al. to coupling

relations among OWL ontologies [76, 128]. Their tool, OWL-VisMod, requires

as input the ontology’s code and it shows the coupling CBE-in/out relations

among the classes. Classes are displayed using a radial layout, where the selected615

class occupies the center. On the right and left side are displayed the classes

coupled by a CBE-out or a CBE-in relation, respectively. An edge link couples

classes and its color indicates the direction of the coupling relation.

5.3. Scalability and Dynamic coupling620

Different ways exist to collect dynamic metrics: using run-time information

or relying on simulating the execution behavior of a system using interaction

diagrams, such as UML or Real-time Object Oriented Modeling (ROOM) lan-

guage [135].

A first tool to find dynamic relations, proposed by Arisholm, is JDissect [46].625

The tool works in two phases: in the first one, it gathers information from a

running program, while in the second step the collected data are analyzed.

However, its first limitation consists in its restriction to Java applications, due

to its connection with the JVM (Java Virtual Machine). In fact, this tool uses

the JVM interfaces to collect dynamic information. For what concerns the630

input required, JDissect needs a running Java program to extract the dynamic

coupling relations in it. Another tool to extract dynamic coupling metrics is

DynaMetrics, proposed by Singh and Singh [121]. It can compute both dynamic

and static metrics, analyzing the data collected at run-time (specifically, event

log files).635

Extracting a significant amount of data from the execution of a program

may require a vast amount of time and resources. To mitigate this problem, in

2015 Sarvari et al. proposed to parallelize this process using Hadoop MapRe-

duce [119]. Hadoop MapReduce needs the XML file of the program to be exe-

cuted. For this reason, the authors utilized JP2 [136]: an open source tool that640

creates CTT XML files from a running Java program. Furthermore, Hadoop

30



MapReduce can be used both locally and on the cloud: a cloud-based approach

further helps in dealing with large quantities of data. For this reason, in 2017

Dogra et al. [120] proposed DMA (Dynamic Metric Analysis), a tool based on

Platform as a Service (PaaS). Like Sarvari et al.’s tool, DMA relies on JP2645

but adapts it to be streamed to the cloud. In this way, it allows the user to

have a real-time analysis of the coupling metrics during the program execution.

Sarvari et al.’s tool returns three dynamic coupling measures: TDM (Total Dy-

namic Messages), DCC (Distinct Class Coupling) and DMC (Distinct Method

Couples). The authors introduced this nomenclature for the first time in the650

software engineering research field. However, these metrics are the same as the

ones developed earlier by Arisholm et al. [10]: TDM corresponds to IC_CD (or

EC_CD, depending on the considered direction of the relation), DCC is equal

to IC_CC (or EC_CC) and DMC is the same as IC_CM (or EC_CM).

Another approach is to collect dynamic coupling data from the UML dia-655

grams of the program [46]. On the one hand, since these diagrams are usually

done in the early design phase, the main advantage of this approach resides in

the possibility of using dynamic relations to take design decisions. On the other

hand, the coupling measures collected tend to be underestimated due to the im-

possibility to distinguish the different messages in the set of possible messages660

in the system using UML. Unfortunately, our systematic review did not find

any examples of tools that implemented this approach to extract dynamic met-

rics. Tools such as OOMeter [111] and the tool proposed by Girgis et al. [114]

extract coupling metrics from design diagrams, but they are restricted to struc-

tural metrics.665

6. Discussion

A vast quantity of coupling metrics and relations has been proposed for

different paradigms and applications, starting with procedural languages and,

later, object-oriented ones. Due to their importance in assessing the software

7at different granularity levels

31



Table 8: Coupling Metrics Summary
Coupling group Metric Tool(s) Metric Ref Tool ref

Structural coupling fan-in, fan-out WebMetrics [21] [107] [109]

CBO ckjm, QScope, AMT, WebMetrics, OOMeter, DynaMetrics [8] [25] [103], [105], [106], [107] [109], [111], [121]

RFC ckjm, QScope, AMT, WebMetrics [8] [25] [103], [105], [106], [107] [109]

CBO′ AMT [28] [106]

MPC, DAC CCMETRICS, AMT [29] [28] [104], [106]

DAC′ AMT [28] [106]

SMPC, SRFC, SCBO no tool [35]

Ca ckjm, DependencyViewer, DynaMetrics [30] [103], [110], [121]

Ce DepencencyViewer, DynaMetrics [30] [110], [121]

COF no tool [32] [31]

ICP no tool [33]

NAS no tool [137]

CTA, CTM no tool [34]

IC, CBM no tool [41]

CWCBO no tool [43]

CCC SCPA [98] [113]

RMC, RIC no tool [138]

MPEC, MPIC, AFM no tool [139]

PLC no tool [140]

CIC, CNIC, MC, CC, AMC no tool [141]

CoupD, CoupT, WTCoup no tool [42]

Dynamic coupling IC and EC7 DMA, JDissect [46] [10] [142] [120], [10]

R, RD no tool [44]

RCBO DynaMetrics [47] [121]

Noc no tool [47]

EOC, IOC, OQFS, OPFS DynaMetrics [48] [121]

CQFS DynaMetrics [49] [121]

DCM no tool [50] [143]

TDM, DCC, DMC SSS tool [119] [119]

EUC, EIUC no tool [54]

ICV no tool [53]

Semantic coupling CCM, CCMC, CSMC no tool [11] [17]

CSBC (CCBC), CoCC IRC2M [11] [17] [11]

CSBCm (CCBCm), CoCCm IRC2M [11] [17] [11]

CCBO no tool [56]

RTC no tool [57]

SFC, TFC FLAT3 [58] [58]

SFC′, HFC no tool [58] [58]

CSE, CSED no tool [61]

CSEMC, CSEBC no tool [65]

Logical coupling LC ROSE, Evolution Radar, YMNC tool and Hanakawa’s tool [67] [67] [7] [122], [123] [124], [126], [127]

CC, TC no tool [7]

IC no tool [7] [71]

NOCC, SOC, EWSOC, LWSOC no tool [70]

Semantic + structural coupling MPC, HCMC, HCCC, SSCM no tool [66]

32



Table 9: Other Coupling Metrics Summary
Applicability field Metric Tool(s) Metric Ref Tool ref

Knowledge-based Systems DCpF no tool [73]

Web Ontology Language NEC, REC, RI no tool [74]

CBE-in, CBE-out OWL-VisMod [76] [128]

SC, iSC, iCBE-in, iCBE-out no tool [76]

aspect-oriented Software CBC AJATO [78] [129] [130]

CFA, CIM, CMC, CAE AJMetrics, CT tool [79] [80] [79]

CAM, CAA, CAI, RFM, RFP AJMetrics [80] [80]

BAC no tool [81]

IP, ICP no tool [83] [84]

TIP no tool [84]

CoAT, CoPT, CoAR, CoOI, CoI, CoHA no tool [87]

CLSS, CLCF, CLSO, CLA no tool [82]

Agent Orientation Paradigm CBE no tool [75]

Service-Oriented Architecture ASSD, ASPD, ARSD no tool [88]

SOCI, ISCI, SMCI SSP tool [89] [89]

WISCE, WESICE, WESOCE, ESICSI, EESIOC, SIIEC, SPARF, SPURF no tool [95]

ASOU no tool [93]

CBS, IMS, DC2S, DCSS no tool [91]

CCO, CDSO, CCS no tool [97]

DD, IDDT, IDDSD, IDD, SD, IOD, DMsgD no tool [94]

Remote-component-based Systems CCOF no tool [144]

Real-time application design MEF no tool [102]

quality and analyzing programs’ features, coupling relations were proposed to670

investigate aspects left uncovered by previous research and to be applied to

specific application domains.

Our research showed how CBO (Coupling Between Objects), proposed by

Chidamber and Kemerer as part of their metrics suite [25], became a funda-

mental coupling metric used as base for further metrics and refinements by675

other researchers: examples can be found in CBO′ [28], CWCBO [43] and CBE

(Coupling Between Elements) [75]. Moreover, our investigation revealed that

sometimes the researchers encountered difficulties in retrieving previously pro-

posed metrics. Analyzing the material collected in our review, we noticed incon-

sistencies in the metrics names: e.g., afferent and efferent coupling have been680

proposed as Ca and Ce by Martin [30], but later referred by Singh and Singh

[121] as AFC and EC. This is only a formal issue, but different nomenclatures

for referring to the same metric may undermine the coherence of the research

corpus in this field. The problem of formally defining the metrics and validate

them led to the creation of many frameworks: e.g., the one defined by Tempero685

and Ralph [145].

33



Software metrics should undergo a theoretical and empirical validation when

they are introduced. Our investigation revealed that coupling metrics are eval-

uated referring to the properties defined by Kitchenham et al. [146], Weyuker

[147] and Briand et al. [28]. Metrics such as CTA and CTM [34], CWCBO690

[43] and CCBC [11] have been validated using this process. However, we no-

ticed that a vast number of metrics have been proposed without undergoing

a theoretical evaluation: for instance, based on properties like Representation

condition [146]. Many studies performed only an empirical evaluation. Using

a set of test cases, the goal of the studies was to assess that the newly pro-695

posed metric achieves better performance than a previous one as an indicator

for a specific application: e.g., fault prediction. Moreover, a common trend

is to apply correlation analysis techniques (Spearman correlation or Principal

Component Analysis) to verify the orthogonality of a new metric compared to

previously presented ones. More emphasis has been given by the researchers on700

this second aspect of the evaluation. The theoretical evaluation does not seem

to be considered as fundamental as the empirical one since the latter contributes

to highlight the novelty of the metric. Thus, we suggest novel metrics to employ

both a theoretical and empirical validation/correlation analysis.

Table 8 shows a summary of the metrics retrieved in our systematic litera-705

ture review. They are grouped based on the category of coupling relations to

which they belong. Furthermore, they are associated with the tools that can be

used to extract them (if any). While for the structural, dynamic and semantic

coupling relations a set of metrics has been defined, for the logical coupling re-

lations no strict metric definitions seem to exist. In the table, we referred to the710

classification given by Robbes et al. [7], but their definitions allow different in-

terpretations of the same metric. Further efforts should be devoted to provide

a consistent formal definition of logical coupling metrics. Table 9 contains an

overview of the metrics belonging to the Other coupling approaches group. They

are grouped based on the field of applicability (e.g., Aspect-Oriented software).715

As in the previous table, the tools that can be used to extract them (if retrieved

in our systematic review) are reported.

34



Our analysis of the coupling metric tools proposed by the researchers re-

vealed two interesting trends: the progressive use of visualization techniques as

a means to show the information to the user and the focus on making easily ex-720

tendible tools. Visualization techniques, used in tools such as Evolution Radar

[124] or OWL-VisMod [128], help the user to have a better understanding of

the considered software properties. Usually, this approach allows changing the

considered entity interactively. D’Ambros et al. stated that the idea of recur-

ring to visualization is based on the following motives: “it provides effective725

ways to break down the complexity of information” and “it has been shown to

be a successful means to study the evolution of software systems” [124]. As the

second trend, easily expandable tools want to overcome the problem of having

metric tools that work only on a specific programming language (or groups of

languages). Researchers proposed modular designs in which new metrics can be730

implemented without the need to understand the whole tool implementation.

Examples can be found in tools such as AMT [106] and WebMetrics [107].

Tahir and MacDonell stated that dynamic metrics could be collected using

a run-time analysis or executable modules and interaction diagrams (UML or

ROOM) [135]. Although both of these approaches have been analyzed in the735

literature, in our review we did not find any tool that implemented a methodol-

ogy based on interaction graphs. This could be caused by the lack of precision

that dynamic coupling metrics computed during the design phase are likely to

have, which may have discouraged further research attempts in this direction.

However, it is also necessary to highlight that this may be caused by the lim-740

ited scope of our review, as given by our procedure and especially the choice to

restrict the analysis to academic-developed tools. Also the semantic coupling

area suffers from a lack of tools to extract its correlated metrics: IRC2M [17]

and FLAT3 [58] are the only ones retrieved in our systematic review. This can

be explained by the fact that semantic coupling relations have been investigated745

only by a restricted group of researchers.

Coupling relations can be used to cluster related code changes, helping devel-

opers in the process of reviewing and modifying their software. Logical coupling

35



is particularly suited for this task, due to its intrinsic nature: logical coupling

relations were introduced to find similar change patterns in the code release his-750

tory [67]. An example can be found in ROSE [122], which gives suggestions to

the user regarding which portions of code are likely to have to be changed with

the current one. However, also structural or semantic coupling relations can be

effectively used with this intent. CLUSTERCHANGES [112] uses data coupling

to cluster code diff-regions that influence each other and, therefore, should be755

inspected together when modifying one of them. On the contrary, we argue

that dynamic coupling metrics are unsuitable for this task since they reflect

run-time relations among software elements which can not be easily collected

when dealing with code changes. An interesting way to approach the problem

of grouping related code changes is given by the evolutionary coupling relations760

proposed by Zou et al. [71]. Information on which entities have been accessed

together during the development phase may constitute a sound basis on which

grouping together portions of code: in fact, these are likely to implement the

same functionality.

7. Coupling Relations: A Research Roadmap765

While the research community heavily investigated ways to measure coupling

relations, we believe that future research directions should and will be devoted

to the application of such coupling metrics as well as the definition of effec-

tive combinations of metrics that would allow a better estimation of the actual

coupling of software classes. This section aims at reporting a (non-exhaustive)770

roadmap for further research in the field.

Applications. There are plenty of opportunities to use coupling metrics

to support other software maintenance and evolution tasks. For instance, their

use in the context of code review may represent an effective method to improve

the way developers detect defective source code. Specifically, change-based code775

review constitutes an important trend in software development and improving

the existing techniques may lead to a significant contribution to software en-

36



gineering [148, 149, 150]. Coupling relations may be applied to analyze the

code contained in different changes and, consequently, cluster similar changes

together. Baum et al. proposed an ordering theory for code changes based on the780

relations that they share with each other [148]. In particular, they conducted a

survey among developers to evaluate which relations were considered important.

Among all of them, they mentioned the similarity relation. We argue that logi-

cal and semantic coupling relations may be applied as practical implementation

of this relation. Still in the context of code review, coupling metrics might be785

exploited in conjunction with just-in-time defect prediction [151]: we envision

the introduction of coupling-related information on top of the recommendations

provided by defect prediction models, so that developers might be informed on

the classes having relations with a defective file and possibly assess the risk of

defect propagation over these classes.790

Another promising research field in Software Engineering is Code Smell de-

tection [152, 153, 154]. Recent works started to exploit it by using machine

learning techniques [155, 156] and to classify the severity of a code smell issue

[157]. While some structural and logical coupling metrics have already been

used as features of these models, there is still room for improvement: as shown795

by our survey, the role of many complementary coupling metrics can be explored

to improve the (not always good [158]) performance of currently available code

smell prediction models. Still in the same area, the application of conceptual

coupling metrics have been explored by Palomba et al. [159, 160]. The authors

also suggested that the exploration of a combination between structural and800

conceptual metrics may lead to promising results. This is something that is still

unknown and that might lead to new research directions on how to combine

the output of different metrics. At the same time, it remains unclear what is

the value of other coupling metrics in the context of code smell detection: for

example, to the best of our knowledge, implications of using dynamic coupling805

metrics to detect code smells are still to be evaluated. This seems to be a natu-

ral fit for the identification of Message Chain instances [161], given its intrinsic

dynamic nature: in fact, it occurs when a long chain of method invocations is

37



required for the operations of a class [162].

Finally, coupling relations have found a major field of application in Change810

Prediction, a research area dealing with identifying the classes that are more

prone to be modified in the future [163]. Most works rely on the use of struc-

tural coupling metrics (among others) as indicators of these classes [164]. A

recent study conducted by Elish and Al-Rahman Al-Khiaty evaluates a set of

evolution metrics for change prediction purposes [165]. The authors reported815

that these metrics measure different dimensions than the classical Chidamber

and Kemerer’s metrics suite [25] and that their combination improved the ac-

curacy of their prediction model. Based on the promising results of their work,

we argue that the application of logical coupling or conceptual coupling metrics

to this context may be worthy. This metric may be combined with structural820

or dynamic ones and tested to see if the performance of a model that takes into

account these different aspects increases: we expect so from the moment that

recent studies [163, 166] showed how an improved description of the change pre-

diction phenomenon, done through the addition of orthogonal information, can

dramatically increase the overall ability of prediction models in discriminating825

the classes that are more likely to change in the future.

Coupling relations and metrics have been applied in many different contexts,

of which the ones cited above (e.g., code review, code smells detection or change

prediction) constitute just a small part. Depending on the application consid-

ered, combining two or more groups of coupling metrics may be worthwhile: the830

existing techniques could increase their performance. An example may be found

in the research conducted by Palomba et al. to identify code smells with concep-

tual coupling metrics, where the authors argue that the possible combination

of these metrics with others belonging to different groups (e.g., structural or

conceptual) may lead to a further performance increase [159].835

Combination. During our investigation, we noticed very few attempts to

integrate previously proposed coupling metrics in an ensemble metric, i.e., a

method able to combine the information coming from different sources. In our

38



opinion, this represents an important research direction that might be worth to

investigate to come up with more powerful solutions for measuring coupling re-840

lations. As an example, consider the application of machine learning approaches

in this context: coupling metrics computed using different data sources (e.g.,

structural vs conceptual coupling) might be nicely adopted as features of a

regressor able to estimate a combined form of coupling that may provide de-

velopers with a comprehensive view of the phenomenon, thus facilitating her845

ability to take informed decisions. At the same time, we envision a combination

of those metrics through the use of search-based algorithms: a clear opportu-

nity is represented by the possibility to apply them for refactoring purposes

(e.g., to improve software re-modularisation by means of aggregate measures

that optimize the locations of classes).850

Furthermore, our work classifies new approaches or coupling metrics for spe-

cific domains in a generic group called “recent or isolated trends” (section 4.5).

The knowledge on those metrics is still poor and the way they can effectively

complement existing measures is still unknown. This represents an opportunity

for future research, as researchers are called to investigate further how these855

emerging metrics can be combined with the set of metrics for which way more

information is available.

8. Conclusion

This work presented a systematic review of the coupling relations and metrics

proposed until now by the software engineering research community. In the860

first part of our research, we analyzed the trends that emerged over time in

the software coupling area. We developed a taxonomy, as complete as possible

within the limitations of our approach, of these relations in the attempt to give

a systematic classification of over thirty years of research in the field. Based

on previous works, such as the one done by Bavota et al. [9], we divided the865

coupling relations into four main groups: structural, dynamic, semantic and

logical. Furthermore, we included a fifth group of coupling metrics not listed

39



with the previous ones, since they constitute new trends still in development

or coupling metrics developed for a particular field of applicability (such as

knowledge-based systems or aspect-oriented applications).870

In the second part of our investigation, we presented the tools developed

by the research community to extract (and sometimes even visualize) coupling

relations. The tools retrieved have been summarized in Table 7 maintaining the

structure used to answer our first research question: dividing the tools based on

the coupling group of metrics that they extract. For each tool, we highlighted875

the input that it needs and the output that it produces, together with its possi-

ble limitations: e.g., a restriction to a particular programming language. More-

over, we analyzed three main trends noticed in the academic-proposed tools:

application of visualization techniques, extensibility, and scalability (applied to

dynamic coupling metrics). We proposed a discussion on our findings and a880

roadmap for future work. The complexity of this research field sometimes led

to discrepancies among the introduced coupling metrics. As guidance for future

work we highlighted interesting applications of the presented coupling relations

and metrics (change clustering, code review, code smells detection and change

prediction), reporting the groups of coupling metrics already applied in these885

fields together with the ones that are yet to be explored and that may constitute

the starting point for future work. Furthermore, we discussed the possibility to

combine existing coupling metrics to create ensemble metrics, able to combine

information from different sources.

List of primary studies890

- A. Offutt, M. Harrold, P. Kolte, A software metric system for module

coupling, Journal of Systems and Software 20 (1993) 295–308.

- J. B. N. Fenton, Software Metrics: A rigorous and practical approach,

2014.

- R. Robbes, D. Pollet, M. Lanza, Logical Coupling Based on Fine-Grained895

Change Information, 15th Working Conference on Reverse Engineering, WCRE

40



’08 (2008) 42–46.

- S. Chidamber, C. Kemerer, Towards a metrics suite for object oriented

design, Conference Proceedings on Object-oriented programming systems, lan-

guages, and applications (OOPSLA ’91) (1991) 197–211.900

- G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, A. De Lucia,

An Empirical Study Of The Developers’ Perception Of Software Coupling, Pro-

ceedings of the 2013 International Conference on Software Engineering (ICSE

’13) (2013) 692701.

- E. Arisholm, L. Briand, A. Foyen, Dynamic Coupling Measurement For905

Object –oriented Software, IEEE Transactions on Software Engineering 30 (8)

(2004) 491–506.

- D. Poshyvanyk, A. Marcus, The Conceptual Coupling Metrics for Object

–Oriented Systems, ICSM ’06 Proceedings of the 22nd IEEE International Con-

ference on Software Maintenance (2006) 469–478.910

- S. Kirbas, T. Hall, A. Sen, Evolutionary coupling measurement: Making

sense of the current chaos, Science of Computer Programming 135 (2017) 4–19.

- A. Nicolaescu, H. Lichter, Y. Xu, Evolution of Object Oriented Coupling

Metrics: A sampling of 25 years of research, IEEE/ACM 2nd International

Workshop on Software Architecture and Metrics (SAM) (2015) 48–54.915

- L. Briand, P. Devanbu, W. Melo, An Investigation into Coupling Mea-

sures for C++, Proceeding of the 1997 International Conference on Software

Engineering (1997) 412–421.

- D. Poshyvanyk, A. Marcus, R. Ferenc, T. Gyimóthy, Using information

retrieval based coupling measures for impact analysis, Empirical Software En-920

gineering 14 (1) (2009) 5–32.

- J. Alghamdi, Measuring Software Coupling, in: Proceedings of the 6th

WSEAS International Conference on Software Engineering, Parallel and Dis-

tributed Systems, SEPADS’07, World Scientific and Engineering Academy and

Society (WSEAS), Stevens Point, Wisconsin, USA, 2007.925

41



- G. Myers, Reliable software through composite design, Mason and Lip-

scomb, 1975.

- S. Schach, Object-Oriented and Classical Software Engineering, 8th edition,

McGraw-Hill, 2011.

- S. Henry, D. Kafura, Software Structure Metrics Based on Information930

Flow, IEEE Transactions on Software Engineering SE–7 (5) (1981) 510–518.

- E. Allen, T. Khoshgoftaar, Y. Chen, Measuring coupling and cohesion of

software modules: an information-theory approach, Proceedings of the 7th Inter-

national Software Metrics Symposium, 2011. METRICS 2001 (2001) 124–134.

- E. B. Allen, S. Gottipati, R. Govindarajan, Measuring size, complexity935

and coupling of hypergraph abstractions of software: An information theory

approach, Software Quality Journal 15 (2) (2007) 179–212

- J. Eder, G. Kappel, M. Schrefl, Coupling and Cohesion in Object –Oriented

Systems, 1992.

- S. Chidamber, C. Kemerer, A metrics suite for object oriented design, IEEE940

Transactions on Software Engineering 20 (6) (1994) 476–493.

- M. Hitz, B. Montazeri, Measuring Coupling and Cohesion In Object –Ori-

ented Systems, Proceedings of International Symposium on Applied Corporate

Computing 35 (1995) 25–27.

- L. Briand, S. Morasca, V. R. Basili, Property-based software engineering945

measurement, IEEE Transactions on Software Engineering 22 (1) (1996) 68–86.

- L. Briand, J. Daly, J. Wust, A unified framework for coupling measure-

ment in object-oriented systems, IEEE Transactions on Software Engineering

25 (1999) 91–121.

- W. Li, S. Henry, Object-Oriented Metrics that Predict Maintainability,950

Journal of Systems and Software 23 (1993) 111–122.

- R. Martin, Object oriented design quality metrics: an analysis of depen-

dencies, vol. 2, 2006.

42



- F. Abreu, R. Esteves, M. Goulla̋o, Toward the Design Quality Evaluation

of Object–Oriented Software, 1995.955

- F. Abreu, R. Carapuça, Object-Oriented Software Engineering: Measuring

and Controlling the Development Process, in: Proceedings of the 4th Interna-

tional Conference on Software Quality, 1994.

- Y. Lee, B. Liang, S. Wu, F. Wang, Measuring the Coupling and Cohesion

of an Object-Oriented Program Based On Information Flow, in: Proceedings of960

the International Conference on Software Quality, 1995.

- W. Li, Another Metric Suite for Object-oriented Programming, Journal of

System and Software 44 (2) (1998) 155–162.

- J. Rilling, W. J. Meng, O. Ormandjieva, Context driven slicing based

coupling measures, in: 20th IEEE International Conference on Software Main-965

tenance,2004. Proceedings., 2004.

- M. English, J. Buckley, T. Cahill, Fine-Grained Software Metrics in Prac-

tice, in: First International Symposium on Empirical Software Engineering and

Measurement (ESEM 2007), ISSN 1949–3770, 295–304,

doi:10.1109/ESEM.2007.32, 2007.970

- H. Li, A Novel Coupling Metric for Object-Oriented Software Systems, in:

2008 IEEE International Symposium on Knowledge Acquisition and Modeling

Workshop, 609–612, doi:10.1109/KAMW.2008.4810562, 2008.

- H. Y. Yang, E. Tempero, R. Berrigan, Detecting indirect coupling, in:

2005 Australian Software Engineering Conference, ISSN 1530–0803, 212–221,975

doi:10.1109/ASWEC.2005.22, 2005.

- H. Y. Yang, E. Tempero, Indirect Coupling As a Criteria for Modularity, in:

First International Workshop on Assessment of Contemporary Modularization

Techniques (ACoM ’07), 10–10, doi:10.1109/ACOM.2007.5, 2007.

- S. Almugrin, W. Albattah, A. Melton, Using indirect coupling metrics to980

predict package maintainability and testability, Journal of Systems and Software

121 (2016) 298–310, ISSN 0164–1212,

43



doi: https://doi.org/10.1060 1016/j.jss.2016.02.024,

URL http://www.sciencedirect.com/science/article/pii/S016412121600056X.

- M. Tang, M. Kao, M. Chen, An empirical study on object-oriented met-985

rics, in: Proceedings Sixth International Software Metrics Symposium (Cat.

No.PR00403), 242–249, 1999.

- G. Gui, P. D. Scott, New Coupling and Cohesion Metrics for Evaluation

of Software Component Reusability, in: 2008 The 9th International Conference

for Young Computer Scientists, 1181–1186, doi:10.1109/ICYCS.2008.270, 2008.990

- A. Aloysius, L. Arockiam, Coupling Complexity Metric: A Cognitive Ap-

proach, International Journal of Information Technology and Computer Science

4 (2012) 29–35.

- A. Mitchell, J. Power, An empirical investigation into the dimensions of run-

time coupling in Java programs, Proceedings of the 3rd international symposium995

on Principles and practice of programming in Java (2004) 9–14.

- R. Geetika, P. Singh, Dynamic Coupling Metrics for Object Oriented Soft-

ware Systems: A Survey, SIGSOFT Softw. Eng. Notes 39 (2) (2014) 1–8, ISSN

0163–5948, doi:10.1145/2579281.2579296,

URL http://doi.acm.org/10.1145/2579281.2579296.1000

- E. Arisholm, Dynamic coupling measures for object-oriented software, Pro-

ceeding of the 8th IEEE Symposium on Software Metrics (2002) 33–42.

-V. Dixit, R. Vishwkarma, Comparison of class-level versus object–level

static and dynamic coupling and cohesion measures in object oriented program-

ming, 11th International Conference on Wireless and Optical Com1munication1005

Networks (WOCN) (2014) 1–5.

-H. Abualese, P. Sumari, T. Al-Rousan, M. R. Al-Mousa, Utility classes

detection metrics for execution trace analysis, in: 2017 8th International Con-

ference on Information Technology (ICIT), 469–474,

doi:10.1109/ICITECH.2017.8080044, 2017.1010

- A. Mitchell, J. Power, Using object-level run-time metrics to study cou-

pling between objects, Proceedings of the 2005 ACM symposium on Applied

44



computing (SAC ’05) (2005) 1456–1452.

- S. Yacoub, H. Ammar, T. Robinson, Dynamic metrics for object oriented

design, Proceedings of the 6th Software Metrics Symposium (1999) 50–61.1015

-A. Zaidman, S. Demeyer, Analyzing large event traces with the help of

coupling metrics, in: Proceedings of the Fourth International Workshop on OO

Reengineering, 2004.

- Y. Hassoun, R. Johnson, S. Counsell, A dynamic runtime coupling for meta-

level architectures, Proceedings of the 8th European Conference on Software1020

Maintenance and Reengineering, CSMR 2004 (2004) 339–346.

- R. Gunnalan, M. Shereshevsky, H. H. Ammar, Pseudo dynamic met-

rics[software metrics], in: The 3rd ACS/IEEE International Conference on Com-

puter Systems and Applications, 2005., ISSN 2161-5322, 117–,

doi:10.1109/AICCSA.2005.1387106, 2005.1025

- Y. Liu, A. Milanova, Static Analysis for Dynamic Coupling Measures,

in: Proceedings of the 2006 Conference of the Center for Advanced Studies

on Collaborative Research, CASCON ’06, IBM Corp., Riverton, NJ, USA,

doi:10.1145/1188966.1188980, URL http://dx.doi.org/10.1145/1188966.1188980,

2006.1030

- J. Cleland-Huang, C. Chang, H. Kim, A. Balakrishnan, D. Nassar, H.

Ammar, A. Mili, Requirements-based dynamic metrics in object-oriented sys-

tems, 5th IEEE International Symposium on Requirements Engineering (2001)

212–219.

- B. Újházi, R. Ferenc, D. Poshyvanyk, T. Gyimóthy, New conceptual cou-1035

pling and cohesion metrics for object-oriented systems, 10th IEEE Interna-

tional Working Conference on Source Code Analysis and Manipulation 1120

(SCAM’10) (2010) 33–42.

- M. Gethers, D. Poshyvanyk, Using Relational Topic Models to capture

coupling among classes in object-oriented software systems, 10th IEEE Inter-1040

national Working Conference on Software Maintenance (ICSM) (2010) 1–10.

45



- M. Revelle, M. Gethers, D. Poshyvanyk, Using structural and textual in-

formation to capture feature coupling in object-oriented software, Empirical

Software Engineering 16 (2011) 773–811.1045

- D. Poshyvanyk, Y. Guéhéneuc, A. Marcus, G. Antoniol, V. Rajlich, Feature

Location Using Probabilistic Ranking of Methods Based on Execution Scenar-

ios and Information Retrieval, IEEE Transactions on Software Engineering 33

(2007) 420–432.

- H. Kagdi, M. Gethers, D. Poshyvanyk, M. L. Collard, Blending Concep-1050

tual and Evolutionary Couplings to Support Change Impact Analysis in Source

Code, in: 2010 17th Working Conference on Reverse Engineering, 1135 ISSN

2375-5369, 119–128, doi:10.1109/WCRE.2010.21, 2010.

- M. Gethers, A. Aryani, D. Poshyvanyk, Combining Conceptual and Domain-

Based Couplings to Detect Database and Code Dependencies, IEEE 12th In-1055

ternational Working Conference on Source Code Analysis and Manipulation

(SCAM) (2012) 144–153.

- A. Aryani, I. Peake, M. Hamilton, Domain-based change propagation anal-

ysis: An enterprise system case study, IEEE International Conference on Soft-

ware Maintenance (ICSM) (2010) 1–9.1060

- A. Aryani, F. Perin, M. Lungu, A. Mahmood, O. Nierstrasz, Can we predict

depencencies using domain information?, 18th Working Conference on Reverse

Engineering (WCRE) (2011) 55–64.

- M. Rahman, A. Aryani, C. Roy, F. Perin, On the relationships between

domain-based coupling and code clones: an exploratory study, Proceedings of1065

the 2013 International Conference on Software Engineering (2013) 1265–1268.

- H. Kagdi, M. Gethers, D. Poshyvanyk, Integrating conceptual and logical

couplings for change impact analysis in software, Empirical Software Engineer-

ing 18 (5) (2013) 933–969.

- M. Alenezi, K. Magel, Empirical Evaluation of a New Coupling Metric:1070

Combining Structural and Semantic Coupling, International Journal of Comput-

46



ers and Applications 36 (1) (2014) 34–44, doi:10.2316/Journal.202.2014.1.202-

3902,

URL https://www.tandfonline.com/doi/abs/10.2316/Journal.202.2014.1.202-3902.

- H. Gall, K. Hajek, M. Jazayeri, Detection of Logical Coupling Based on1075

Product Release History, Proceedings of the International Conference on Soft-

ware Maintenance, 1998 (1998) 190–198.

- H. Gall, M. Jazayeri, J. Krajewski, CVS Release History Data For Detecting

Logical Couplings, Proceedings of the 6th International Workshop on Principles

of Software Evolution (2003) 13–23.1080

- A. Alali, B. Bartman, C. Newman, J. Maletic, A Preliminary Investigation

of Using Age and Distance Measures in Detection of Evolutionary Couplings,

10th IEEE Working Conference on Mining Software Repositories (MSR) (2013)

169–172.

- M. D’Ambros, M. Lanza, R. Robbes, On the Relationship Between Change1085

Coupling and Software Defects, in: 2009 16th Working Conference on Reverse

Engineering, ISSN 1095-1350, 135–144, doi:10.1109/WCRE.2009.19, 2009.

- L. Zou, M. Godfrey, A. Hassan, Detecting Interaction Coupling from Task

Interaction Histories, 15th IEEE Internation Conference on Program Compre-

hension, ICPC ’07 (2007) 135–144.1090

- F. Bantelay, M. B. Zanjani, H. Kagdi, Comparing and combining evolution-

ary couplings from interactions and commits, in: 2013 20th Working Conference

on Reverse Engineering (WCRE), ISSN 1095–1350, 311–320,

doi:10.1109/WCRE.2013.6671306, 2013.

- S. Kramer, H. Kaindl, Coupling and cohesion metrics for knowledge-based1095

systems using frames and rules, ACM Transactions on Software Engineering

and Methodology 13 (2004) 332–358.

-A. Orme, H. Tao, L. Etzkorn, Coupling metrics for ontology –based system,

IEEE Software 23 (2006) 102–108.

- H. Jordan, R. Collier, Evaluating Agent-Oriented Programs: Towards1100

47



Multi-paradigm Metrics, International Workshop on Programming Multi Agent

Systems (2010) 63–78.

- J. Garcia, F. Garcia, R. Theron, Visualizing Semantic Coupling among

Entities in an OWL Ontology, Ontology, Conceptualization and Epistemology

for Information Systems, Software Engineering and Service Science, ONTOSE1105

2010 (2010) 90–106.

- J. García, F. García, R. Therón, Defining Coupling Metrics among Classes

in an OWL Ontology, in: N. García-Pedrajas, F. Herrera, C. Fyfe, J. M. Benítez,

M. Ali (Eds.), Trends in Applied Intelligent Systems, Springer Berlin Heidelberg,

Berlin, Heidelberg, ISBN 978-3-642-13025-0, 12–17, 1195 2010.1110

- C. Sant’Anna, A. Garcia, C. Chavez, C. Lucena, A. von Staa, On the Reuse

and Maintenance of Aspect-Oriented Software: An Assessment Framework, in:

Proceedings of Brazilian Symposium on Software Engineering, 19–34, 2003.

- M. Ceccato, P. Tonella, Measuring the Effects of Software Aspectization,

2004.1115

- H. Shen, J. Zhao, An evaluation of coupling metrics for aspect-oriented

software, Tech. Rep., 2007.

- R. Burrows, F. C. Ferrari, A. Garcia, F. Taiani, An empirical evalua-

tion of coupling metrics on aspect-oriented programs, Proceedings of the 2010

ICSE Workshop on Emerging Trends in Software Metrics (WETSoM ’10) (2010)1120

53–58.

- M. L. Bernardi, G. A. D. Lucca, A metric model for aspects’ coupling, in:

WETSoM, 2010.

- B. Bennett, F. Mitropoulos, New metrics for assessing aspect coupling, in:

SoutheastCon 2016, 1–8, 2016.1125

- B. T. Bennett, Using hierarchical agglomerative clustering to locate poten-

tial aspect interference, in: SoutheastCon 2017, 1–8, 2017.

- J. Zhao, Measuring Coupling in Aspect-Oriented Systems, in: Information

Processing Society of Japan (IPSJ), 14–16, 2004.

48



- T. Tonelli Bartolomei, A. Garcia, C. Sant’Anna, E. Figueiredo, Towards a1130

Unified Coupling Framework for Measuring Aspect-Oriented Programs, in: 3rd

InternationalWorkshop on Software Quality Assurance (SOQUA), ACM Press,

ACM Press, New York, NY, USA, ISBN 1-59593-584-3, 46–53,

doi:http://doi.acm.org/10.1145/1188895.1188907, 2006.

- A. Kumar, R. Kumar, P. S. Grover, Generalized Coupling Measure for1135

Aspect-oriented Systems, SIGSOFT Softw. Eng. Notes 34 (3) (2009) 1–6, ISSN

0163-5948, doi:10.1145/1527202.1527209,

URL http://doi.acm. org/10.1145/1527202.1527209.

- K. Qian, J. Liu, F. Tsui, Decoupling Metrics for Services Composition, in:

5th IEEE/ACIS International Conference on Computer and Information Science1140

and 1st IEEE/ACIS International Workshop on Component-Based Software

Engineering,Software Architecture and Reuse (ICIS-COMSAR’06), 44–47, 2006.

- R. Sindhgatta, B. Sengupta, K. Ponnalagu, Measuring the Quality of Ser-

vice Oriented Design, Springer Berlin Heidelberg, Berlin, Heidelberg, 485–499,

2009.1145

- A. A. M. Elhag, R. Mohamad, Metrics for evaluating the quality of service

oriented design, in: 2014 8th. Malaysian Software Engineering Conference 1235

(MySEC), 154–159, doi:10.1109/MySec.2014.6986006, 2014.

- P. Quynh, H. Thang, Dynamic Coupling Metrics for Service –Oriented

Software, International Journal of Computer, Electrical, Automation, Control1150

and Information Engineering 3 (2009) 795–800.

- X. Wang, Metrics for Evaluating Coupling and Service Granularity in Ser-

vice Oriented Architecture, in: 2009 International Conference on In-formation

Engineering and Computer Science, ISSN 2156-7379, 1–4,

doi: 10.1109/ICIECS.2009.5362767, 2009.1155

- S. Alahmari, E. Zaluska, D. C. D. Roure, A Metrics Framework for Eval-

uating SOA Service Granularity, in: 2011 IEEE International Conference on

Services Computing, 512–519, doi:10.1109/SCC.2011.98, 2011.

49



- T. Karhikeyan, J. Geetha, A metrics suite and fuzzy model for measur-

ing coupling in Service Oriented Architecture, in: 2012 International Con-1160

ference on Recent Advances in Computing and Software Systems, 254–259,

doi:10.1109/RACSS.2012.6212677, 2012.

- M. Perepletchikov, C. Ryan, K. Frampton, Z. Tari, Coupling Metrics for

Predicting Maintainability in Service-Oriented Designs, in: 2007 Australian

Software Engineering Conference (ASWEC’07), ISSN 1530-0803, 329–340, doi:10.1109/ASWEC.2007.17,1165

2007.

- A. Kazemi, A. Azizkandi, A. Rostampour, H. Haghihi, P. Jamshidi, F.

Shams, Measuring the Conceptual Coupling of Services Using Latent Semantic

Indexing, IEEE International Conference on Service Computing 1260 (SCC)

(2011) 504–511.1170

- B. Alshammari, C. Fidge, D. Corney, Security Metrics for Object-Oriented

Designs, 21st Australian Software Engineering Conference (ASWEC) (2010)

55–64.

- S. Kamble, X. Jin, N. Niu, M. Simon, A Novel Coupling Pattern in Com-

putational Science and Engineering Software, in: 2017 IEEE/ACM 12th In-1175

ternational Workshop on Software Engineering for Science (SE4Science), 9–12,

doi:10.1109/SE4Science.2017.10, 2017.

M. Ahmed, M. Shoaib, Novel Design Metrics to Measure Real Time Envi-

ronment Application Design, Journal of American Science 7 (2011) 222.

- D. Spinellis, Tool writing: a forgotten art? (software tools), IEEE Software1180

22 (4) (2005) 9–11.

- S. Husein, A. Oxley, A Coupling and Cohesion Metrics Suite for Object-

Oriented Software, in: Proceedings of the 2009 International Conference on

Computer Technology and Development - Volume 01, ICCTD ’09, IEEE Com-

puter Society, Washington, DC, USA, ISBN 978-0-7695-3892-1, 421–425, 2009.1185

- M. Eichberg, D. Germanus, M. Mezini, L. Mrokon, T. Schafer, QScope: an

open, extensible framework for measuring software projects, in: Conference on

50



Software Maintenance and Reengineering (CSMR’06), 10 pp.–122, 2006.

- N. Kayarvizhy, S. Kanmani, An Automated Tool for Computing Object1190

Oriented Metrics Using XML, Springer Berlin Heidelberg, Berlin, Heidelberg,

69–79, 2011.

- M. Scotto, A. Sillitti, G. Succi, T. Vernazza, A Relational Approach to Soft-

ware Metrics, in: Proceedings of the 2004 ACM Symposium on Applied Com-

puting, SAC ’04, ACM, New York, NY, USA, ISBN 1- 58113-812-1, 1536–1540,1195

doi:10.1145/967900.968207,

URL http://doi.acm.org/10.1145/967900.968207, 2004.

- M. Scotto, A. Sillitti, G. Succi, T. Vernazza, Non-invasive Product Metrics

Collection: An Architecture, in: Proceedings of the 2004 Workshop on Quan-

titative Techniques for Software Agile Process, QUTE-SWAP ’04, ACM, New1200

York, NY, USA, 76–78, doi:10.1145/1151433.1151444,

URL http://doi.acm.org/10.1145/1151433.1151444, 2004.

- M. Scotto, A. Sillitti, G. Succi, T. Vernazza, A non-invasive approach

to product metrics collection, Journal of Systems Architecture 52 (11) (2006)

668–675, agile Methodologies for Software Production.1205

- M. Wilhelm, S. Diehl, Dependency Viewer - A Tool for Visualizing Pack-

age Design Quality Metrics, in: 3rd IEEE International Workshop on Visual-

izing Software for Understanding and Analysis, 1–2, doi: 1305 10.1109/VIS-

SOF.2005.1684321, 2005.

- J. Alghamdi, R. Rufai, S. Khan, OOMeter: A Software Quality Assurance1210

Tool, in: Ninth European Conference on Software Maintenance and Reengineer-

ing, ISSN 1534-5351, 190–191, doi:10.1109/CSMR.2005.44, 2005.

- B. Alshammari, C. Fidge, D. Corney, An Automated Tool for Assessing

Security-Critical Designs and Programs, in: WIAR 2012; National Workshop

on Information Assurance Research, 1–10, 2012.1215

- M. R. Girgis, T. M. Mahmoud, R. R. Nour, UML class diagram met-

rics tool, in: 2009 International Conference on Computer Engineering Systems,

423–428, doi:10.1109/ICCES.2009.5383226, 2009.

51



- J. Alghamdi, M. Elish, M. Ahmed, A tool for measuring inheritance cou-

pling in object-oriented systems, Information Sciences 140 (3) (2002) 217–227,1220

ISSN 0020-0255, doi:https://doi.org/10.1016/S0020-0255(01)00172-4,

URL http://www.sciencedirect.com/science/article/pii/S0020025501001724, soft-

ware Engineering: Systems and Tools.

- V. Bidve, P. Sarasu, Tool for Measuring Coupling in Object- Oriented Java

Software 8 (2016) 812–820.1225

- J. Offutt, A. Abdurazik, S. R. Schach, Quantitatively measuring object ori-

ented couplings, Software Quality Journal 16 (4) (2008) 489–512, ISSN 1573–1367,

doi:10.1007/s11219-008-9051-x, URL https://doi.org/10.1007/s11219-008-9051-

x.

- P. Rosner, S. Viswanathan, Visualization of Coupling and Programming to1230

Interface for Object-Oriented Systems, in: 2008 12th International Conference

Information Visualisation, ISSN 1550-6037, 575–581, 1335

doi:10.1109/IV.2008.96, 2008.

- S. Sarvari, P. Singh, G. Sikka, Efficient and Scalable Collection of Dy-

namic Metrics Using MapReduce, Asia-Pacific Software Engineering Conference1235

(APSEC), 2015 (2015) 127–134.

- A. Dogra, H. Singh, P. Singh, Execution Trace Streaming Based Real Time

Collection of Dynamic Metrics Using PaaS, 8th Workshop on Emerging Trends

in Software Metrics (WETSoM) (2017) 43–48.

- P. Singh, H. Singh, DynaMetrics: a runtime metric-based analysis tool for1240

object-oriented software systems, ACM SIGSOFT Software Engineering Notes

33 (2008) 1–6.

- T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller, Mining Version His-

tories to Guide Software Changes, in: Proceedings of the 26th International

Conference on Software Engineering, ICSE ’04, IEEE Computer Society, Wash-1245

ington, DC, USA, ISBN 0-7695-2163-0, 563–572, 2004.

52



- M. D’Ambros, M. Lanza, Reverse Engineering with Logical Coupling,

in: 2006 13th Working Conference on Reverse Engineering, ISSN 1095-1350,

189–198, doi:10.1109/WCRE.2006.51, 2006.

- M. D’Ambros, M. Lanza, M. Lungu, Visualizing Co-Change Information1250

with the Evolution Radar, IEEE Transactions on Software Engineering 35 (2009)

720–735.

- M. D’Ambros, M. Lanza, M. Lungu, The Evolution Radar: Visualizing

Integrated Logical Coupling Information, in: Proceedings of the 2006 Interna-

tional Workshop on Mining Software Repositories, MSR ’06, ACM, New York,1255

NY, USA, ISBN 1-59593-397-2, 26–32, doi:10.1145/1137983.1137992,

URL http://doi.acm.org/10.1145/1137983.1137992, 2006.

- A. Ying, G. Murphy, R. Ng, M. Chu-Carroll, Predicting Source Code

Changes by Mining Change History, IEEE Transcription Software Engineering

30 (9) (2004) 574–586, ISSN 0098-5589, doi:10.1109/TSE.2004.52.1260

- N. Hanakawa, Visualization for Software Evolution Based on Logical Cou-

pling and Module Coupling, in: 14th Asia-Pacific Software Engineering 1365

Conference (APSEC’07), ISSN 1530-1362, 214–221,

doi:10.1109/ASPEC.2007.36, 2007.

- J. Garcia, F. Garcia, R. Therón, Modelling Relationships among Classes1265

as Semantic Coupling in OWL Ontologies, 2011.

- E. Figueiredo, A. Garcia, C. Sant’Anna, U. Kulesza, C. Lucena, Assess-

ing aspect-oriented artifacts: Towards a tool-supported quantitative method,

in: Proc. of the 9th ECOOP Workshop on Quantitative Approaches in OO

Software, 2005.1270

- E. Figueiredo, A. Garcia, C. Lucena, AJATO: an AspectJ Assessment

Tool, Proceedings of European Conference on Object Oriented Programming

(ECOOP Demo).

- J. Zhao, S. Zhang, H. Shen, An Empirical Study of Maintainability in

Aspect-Oriented System Evolution Using Coupling Metrics, in: 2008 2nd IFIP/IEEE1275

International Symposium on Theoretical Aspects of SoftwareEngineering(TASE),

53



vol. 00, 233–236, doi:10.1109/TASE.2008.17,

doi.ieeecomputersociety.org/10.1109/TASE.2008.17, 2008.

- A. S. Núñez-Varela, H. G. Pérez-González, F. E. Martínez-Pérez, J. Cuevas-

Tello, Building a User Oriented Application for Generic Source Code Met-1280

rics Extraction from a Metrics Framework, in: 2016 4th International Con-

ference in Software Engineering Research and Innovation (CONISOFT), 27–32,

doi:10.1109/CONISOFT.2016.13, 2016.

- P.Weißgerber, L. V. Klenze, M. Burch, S. Diehl, Exploring Evolutionary

Coupling in Eclipse, 2005.1285

- T. Zimmermann, V. Dallmeier, K. Halachev, A. Zeller, eROSE: guiding

programmers in eclipse, in: OOPSLA Companion, 2005.

- A. Tahir, S. MacDonell, A systematic mapping study on dynamic metrics

and software quality, 28th IEEE International Conference on Software Mainte-

nance (ICSM) (2012) 326–335.1290

- R. Harrison, S. Counsell, R. Nithi, Coupling metrics for object-oriented de-

sign, in: Proceedings Fifth International Software Metrics Symposium. Metrics

(Cat. No.98TB100262), 150–157, doi:10.1109/METRIC. 1998.731240, 1998.

- P. Joshi, R. K. Joshi, Microscopic coupling metrics for refactoring, in: Con-

ference on Software Maintenance and Reengineering (CSMR’06), ISSN 1534–5351,1295

8 pp.–152, doi:10.1109/CSMR.2006.32, 2006.

- M. English, T. Cahill, J. Buckley, Construct specific coupling measure-

ment for C++ software, Computer Languages, Systems and Structures 38 (4)

(2012) 300–319, ISSN 1477-8424, doi:https://doi.org/10.1016/j.cl.2012.06.002,

URL http://www.sciencedirect.com/science/article/ pii/S1477842412000243.1300

- A. Tripathi, D. S. Kushwaha, A metric for package level coupling, CSI

Transactions on ICT 2 (4) (2015) 217–233, ISSN 2277-9086, doi:10.1007/s40012-

015-0061-0, URL https://doi.org/10.1007/s40012-015-0061-0.

- C. Rajaraman, M. R. Lyu, Some Coupling Measures for C++ Programs,

in: Proc. TOOLS USA 92 Conference, 225–234, 1992.1305

54



- Y. Hassoun, S. Counsell, R. Johnson, Dynamic coupling metric: proof of

concept, IEE Proceedings - Software 152 (6) (2005) 273–279, ISSN 1462-5970,

doi:10.1049/ip-sen:20045067.

- H. Washizaki, T. Nakagawa, Y. Saito, Y. Fukazawa, A Coupling-based

Complexity Metric for Remote Component-based Software Systems Toward1310

Maintainability Estimation, in: 2006 13th Asia Pacific Software Engineering

Conference (APSEC’06), ISSN 1530-1362, 79–86,

doi:10.1109/ APSEC.2006.3, 2006.

- E. Tempero, P. Ralph, A Model for Defining Coupling Metrics, in: 23rd

Asia-Pacific Software Engineering Conference (APSEC), ISSN 1530-1362, 145–152,1315

doi:10.1109/APSEC.2016.030, 2016.

- S. Eski, F. Buzluca, An Empirical Study on Object-Oriented Metrics and

Software Evolution in Order to Reduce Testing Costs by Predicting Change-

Prone Classes, in: 2011 IEEE Fourth International Conference on Software

Testing, Verification and Validation Workshops, 566–571, 2011.1320

- M. O. Elish, M. Al-Rahman Al-Khiaty, A suite of metrics for quantifying

historical changes to predict future change–prone classes in object –oriented

software, in: J. Softw.: Evol. and Proc., 407–437, 2013.

References

[1] M. M. Lehman, Programs, life cycles, and laws of software evolution,1325

Proceedings of the IEEE 68 (9) (1980) 1060–1076.

[2] D. Coleman, B. Lowther, P. Oman, The application of software maintain-

ability models in industrial software systems, Journal of Systems and Soft-

ware 29 (1) (1995) 3 – 16, ISSN 0164-1212, doi:https://doi.org/10.1016/

0164-1212(94)00125-7, URL http://www.sciencedirect.com/science/1330

article/pii/0164121294001257, oregon Metric Workshop.

[3] M. Riaz, E. Mendes, E. Tempero, A Systematic Review of Software

Maintainability Prediction and Metrics, in: Proceedings of the 2009 3rd

55

http://dx.doi.org/https://doi.org/10.1016/0164-1212(94)00125-7
http://dx.doi.org/https://doi.org/10.1016/0164-1212(94)00125-7
http://dx.doi.org/https://doi.org/10.1016/0164-1212(94)00125-7
http://www.sciencedirect.com/science/article/pii/0164121294001257
http://www.sciencedirect.com/science/article/pii/0164121294001257
http://www.sciencedirect.com/science/article/pii/0164121294001257


International Symposium on Empirical Software Engineering and Mea-

surement, ESEM ’09, IEEE Computer Society, Washington, DC, USA,1335

ISBN 978-1-4244-4842-5, 367–377, doi:10.1109/ESEM.2009.5314233, URL

http://dx.doi.org/10.1109/ESEM.2009.5314233, 2009.

[4] A. L. Goel, Software Reliability Models: Assumptions, Limitations, and

Applicability, IEEE Transactions on Software Engineering SE-11 (12)

(1985) 1411–1423, ISSN 0098-5589, doi:10.1109/TSE.1985.232177.1340

[5] A. Offutt, M. Harrold, P. Kolte, A software metric system for module

coupling, Journal of Systems and Software 20 (1993) 295–308.

[6] J. B. N. Fenton, Software Metrics: A rigorous and practical approach,

2014.

[7] R. Robbes, D. Pollet, M. Lanza, Logical Coupling Based on Fine-Grained1345

Change Information, 15th Working Conference on Reverse Engineering,

WCRE ’08 (2008) 42–46.

[8] S. Chidamber, C. Kemerer, Towards a metrics suite for object oriented

design, Conference Proceedings on Object-oriented programming systems,

languages, and applications (OOPSLA ’91) (1991) 197–211.1350

[9] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, A. De Lucia,

An Empirical Study Of The Developers’ Perception Of Software Coupling,

Proceedings of the 2013 International Conference on Software Engineering

(ICSE ’13) (2013) 692–701.

[10] E. Arisholm, L. Briand, A. Foyen, Dynamic Coupling Measurement For1355

Object-oriented Software, IEEE Transactions on Software Engineering

30 (8) (2004) 491–506.

[11] D. Poshyvanyk, A. Marcus, The Conceptual Coupling Metrics for Object-

Oriented Systems, ICSM ’06 Proceedings of the 22nd IEEE International

Conference on Software Maintenance (2006) 469–478.1360

56

http://dx.doi.org/10.1109/ESEM.2009.5314233
http://dx.doi.org/10.1109/ESEM.2009.5314233
http://dx.doi.org/10.1109/TSE.1985.232177


[12] S. Kirbas, T. Hall, A. Sen, Evolutionary coupling measurement: Making

sense of the current chaos, Science of Computer Programming 135 (2017)

4–19.

[13] A. Nicolaescu, H. Lichter, Y. Xu, Evolution of Object Oriented Coupling

Metrics: A sampling of 25 years of research, IEEE/ACM 2nd International1365

Workshop on Software Architecture and Metrics (SAM) (2015) 48–54.

[14] B. Kitchenham, Procedures for Performing Systematic Reviews, 2004.

[15] C. Wohlin, Guidelines for Snowballing In Systematic Literature Studies

and a Replication In Software Engineering, Proceedings of the 18th Inter-

national Conference on Evaluation and Assessment in Software Engineer-1370

ing (EASE 14) (2014) 38:1–38:10.

[16] L. Briand, P. Devanbu, W. Melo, An Investigation into Coupling Measures

for C++, Proceeding of the 1997 International Conference on Software

Engineering (1997) 412–421.

[17] D. Poshyvanyk, A. Marcus, R. Ferenc, T. Gyimóthy, Using information1375

retrieval based coupling measures for impact analysis, Empirical Software

Engineering 14 (1) (2009) 5–32.

[18] J. Alghamdi, Measuring Software Coupling, in: Proceedings of the

6th WSEAS International Conference on Software Engineering, Parallel

and Distributed Systems, SEPADS’07, World Scientific and Engineering1380

Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, ISBN

978-960-8457-59-1, 6–12, URL http://dl.acm.org/citation.cfm?id=

1353801.1353803, 2007.

[19] G. Myers, Reliable software through composite design, Mason and Lip-

scomb, 1975.1385

[20] S. Schach, Object-Oriented and Classical Software Engineering, 8th edi-

tion, McGraw-Hill, 2011.

57

http://dl.acm.org/citation.cfm?id=1353801.1353803
http://dl.acm.org/citation.cfm?id=1353801.1353803
http://dl.acm.org/citation.cfm?id=1353801.1353803


[21] S. Henry, D. Kafura, Software Structure Metrics Based on Information

Flow, IEEE Transactions on Software Engineering SE-7 (5) (1981) 510–

518.1390

[22] E. Allen, T. Khoshgoftaar, Y. Chen, Measuring coupling and cohesion of

software modules: an information-theory approach, Proceedings of the 7th

International Software Metrics Symposium, 2011. METRICS 2001 (2001)

124–134.

[23] E. B. Allen, S. Gottipati, R. Govindarajan, Measuring size, complexity,1395

and coupling of hypergraph abstractions of software: An information-

theory approach, Software Quality Journal 15 (2) (2007) 179–212, ISSN

1573-1367, doi:10.1007/s11219-006-9010-3, URL https://doi.org/10.

1007/s11219-006-9010-3.

[24] J. Eder, G. Kappel, M. Schrefl, Coupling and Cohesion in Object-Oriented1400

Systems, 1992.

[25] S. Chidamber, C. Kemerer, A metrics suite for object oriented design,

IEEE Transactions on Software Engineering 20 (6) (1994) 476 – 493.

[26] M. Hitz, B. Montazeri, Measuring Coupling and Cohesion In Object-

Oriented Systems, Proceedings of International Symposium on Applied1405

Corporate Computing 35 (1995) 25–27.

[27] L. Briand, S. Morasca, V. R. Basili, Property-based software engineering

measurement, IEEE Transactions on Software Engineering 22 (1) (1996)

68–86, ISSN 0098-5589.

[28] L. Briand, J. Daly, J. Wust, A unified framework for coupling measure-1410

ment in object-oriented systems, IEEE Transactions on Software Engi-

neering 25 (1999) 91–121.

[29] W. Li, S. Henry, Object-Oriented Metrics that Predict Maintainability,

Journal of Systems and Software 23 (1993) 111–122.

58

http://dx.doi.org/10.1007/s11219-006-9010-3
https://doi.org/10.1007/s11219-006-9010-3
https://doi.org/10.1007/s11219-006-9010-3
https://doi.org/10.1007/s11219-006-9010-3


[30] R. Martin, Object oriented design quality metrics: an analysis of depen-1415

dencies, vol. 2, 2006.

[31] F. Abreu, R. Esteves, M. Goula̋o, Toward the Design Quality Evaluation

of Object-Oriented Software, 1995.

[32] F. Abreau, R. Carapuça, Object-Oriented Software Engineering: Measur-

ing and Controlling the Development Process, in: Proceedings of the 4th1420

International Conference on Software Quality, 1994.

[33] Y. Lee, B. Liang, S. Wu, F. Wang, Measuring the Coupling and Cohesion

of an Object-Oriented Program Based On Information Flow, in: Proceed-

ings of the International Conference on Software Quality, 1995.

[34] W. Li, Another Metric Suite for Object-oriented Programming, Journal1425

of System and Software 44 (2) (1998) 155–162, ISSN 0164-1212.

[35] J. Rilling, W. J. Meng, O. Ormandjieva, Context driven slicing based cou-

pling measures, in: 20th IEEE International Conference on Software Main-

tenance, 2004. Proceedings., ISSN 1063-6773, 532–, doi:10.1109/ICSM.

2004.1357874, 2004.1430

[36] M. English, J. Buckley, T. Cahill, Fine-Grained Software Metrics in Prac-

tice, in: First International Symposium on Empirical Software Engi-

neering and Measurement (ESEM 2007), ISSN 1949-3770, 295–304, doi:

10.1109/ESEM.2007.32, 2007.

[37] H. Li, A Novel Coupling Metric for Object-Oriented Software Systems,1435

in: 2008 IEEE International Symposium on Knowledge Acquisition and

Modeling Workshop, 609–612, doi:10.1109/KAMW.2008.4810562, 2008.

[38] H. Y. Yang, E. Tempero, R. Berrigan, Detecting indirect coupling, in:

2005 Australian Software Engineering Conference, ISSN 1530-0803, 212–

221, doi:10.1109/ASWEC.2005.22, 2005.1440

59

http://dx.doi.org/10.1109/ICSM.2004.1357874
http://dx.doi.org/10.1109/ICSM.2004.1357874
http://dx.doi.org/10.1109/ICSM.2004.1357874
http://dx.doi.org/10.1109/ESEM.2007.32
http://dx.doi.org/10.1109/ESEM.2007.32
http://dx.doi.org/10.1109/ESEM.2007.32
http://dx.doi.org/10.1109/KAMW.2008.4810562
http://dx.doi.org/10.1109/ASWEC.2005.22


[39] H. Y. Yang, E. Tempero, Indirect Coupling As a Criteria for Modularity,

in: First International Workshop on Assessment of Contemporary Mod-

ularization Techniques (ACoM ’07), 10–10, doi:10.1109/ACOM.2007.5,

2007.

[40] S. Almugrin, W. Albattah, A. Melton, Using indirect coupling metrics to1445

predict package maintainability and testability, Journal of Systems and

Software 121 (2016) 298 – 310, ISSN 0164-1212, doi:https://doi.org/10.

1016/j.jss.2016.02.024, URL http://www.sciencedirect.com/science/

article/pii/S016412121600056X.

[41] M. Tang, M. Kao, M. Chen, An empirical study on object-oriented met-1450

rics, in: Proceedings Sixth International Software Metrics Symposium

(Cat. No.PR00403), 242–249, 1999.

[42] G. Gui, P. D. Scott, New Coupling and Cohesion Metrics for Evaluation

of Software Component Reusability, in: 2008 The 9th International Con-

ference for Young Computer Scientists, 1181–1186, doi:10.1109/ICYCS.1455

2008.270, 2008.

[43] A. Aloysius, L. Arockiam, Coupling Complexity Metric: A Cognitive Ap-

proach, International Journal of Information Technology and Computer

Science 4 (2012) 29–35.

[44] A. Mitchell, J. Power, An empirical investigation into the dimensions of1460

run-time coupling in Java programs, Proceedings of the 3rd international

symposium on Principles and practice of programming in Java (2004) 9–

14.

[45] R. Geetika, P. Singh, Dynamic Coupling Metrics for Object Oriented Soft-

ware Systems: A Survey, SIGSOFT Softw. Eng. Notes 39 (2) (2014) 1–1465

8, ISSN 0163-5948, doi:10.1145/2579281.2579296, URL http://doi.acm.

org/10.1145/2579281.2579296.

60

http://dx.doi.org/10.1109/ACOM.2007.5
http://dx.doi.org/https://doi.org/10.1016/j.jss.2016.02.024
http://dx.doi.org/https://doi.org/10.1016/j.jss.2016.02.024
http://dx.doi.org/https://doi.org/10.1016/j.jss.2016.02.024
http://www.sciencedirect.com/science/article/pii/S016412121600056X
http://www.sciencedirect.com/science/article/pii/S016412121600056X
http://www.sciencedirect.com/science/article/pii/S016412121600056X
http://dx.doi.org/10.1109/ICYCS.2008.270
http://dx.doi.org/10.1109/ICYCS.2008.270
http://dx.doi.org/10.1109/ICYCS.2008.270
http://dx.doi.org/10.1145/2579281.2579296
http://doi.acm.org/10.1145/2579281.2579296
http://doi.acm.org/10.1145/2579281.2579296
http://doi.acm.org/10.1145/2579281.2579296


[46] E. Arisholm, Dynamic coupling measures for object-oriented software,

Proceeding of the 8th IEEE Symposium on Software Metrics (2002) 33–42.

[47] A. Mitchell, J. Power, Using object-level run-time metrics to study cou-1470

pling between objects, Proceedings of the 2005 ACM symposium on Ap-

plied computing (SAC ’05) (2005) 1456–1452.

[48] S. Yacoub, H. Ammar, T. Robinson, Dynamic metrics for object oriented

design, Proceedings of the 6th Software Metrics Symposium (1999) 50–61.

[49] A. Zaidman, S. Demeyer, Analyzing large event traces with the help of1475

coupling metrics, in: Proceedings of the Fourth International Workshop

on OO Reengineering, 2004.

[50] Y. Hassoun, R. Johnson, S. Counsell, A dynamic runtime coupling for

meta-level architectures, Proceedings of the 8th European Conference on

Software Maintenance and Reengineering, CSMR 2004 (2004) 339–346.1480

[51] R. Gunnalan, M. Shereshevsky, H. H. Ammar, Pseudo dynamic metrics

[software metrics], in: The 3rd ACS/IEEE International Conference on-

Computer Systems and Applications, 2005., ISSN 2161-5322, 117–, doi:

10.1109/AICCSA.2005.1387106, 2005.

[52] Y. Liu, A. Milanova, Static Analysis for Dynamic Coupling Measures,1485

in: Proceedings of the 2006 Conference of the Center for Advanced Stud-

ies on Collaborative Research, CASCON ’06, IBM Corp., Riverton, NJ,

USA, doi:10.1145/1188966.1188980, URL http://dx.doi.org/10.1145/

1188966.1188980, 2006.

[53] J. Cleland-Huang, C. Chang, H. Kim, A. Balakrishnan, D. Nassar, H. Am-1490

mar, A. Mili, Requirements-based dynamic metrics in object-oriented sys-

tems, 5th IEEE International Symposium on Requirements Engineering

(2001) 212–219.

[54] H. Abualese, P. Sumari, T. Al-Rousan, M. R. Al-Mousa, Utility classes

detection metrics for execution trace analysis, in: 2017 8th Interna-1495

61

http://dx.doi.org/10.1109/AICCSA.2005.1387106
http://dx.doi.org/10.1109/AICCSA.2005.1387106
http://dx.doi.org/10.1109/AICCSA.2005.1387106
http://dx.doi.org/10.1145/1188966.1188980
http://dx.doi.org/10.1145/1188966.1188980
http://dx.doi.org/10.1145/1188966.1188980
http://dx.doi.org/10.1145/1188966.1188980


tional Conference on Information Technology (ICIT), 469–474, doi:10.

1109/ICITECH.2017.8080044, 2017.

[55] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, R. Harshman, In-

dexing by Latent Semantic Analysis, Journal of the American Society for

Information Science 41 (1990) 391–407.1500

[56] B. Újházi, R. Ferenc, D. Poshyvanyk, T. Gyimóthy, New conceptual cou-

pling and cohesion metrics for object-oriented systems, 10th IEEE Inter-

national Working Conference on Source Code Analysis and Manipulation

(SCAM’10) (2010) 33–42.

[57] M. Gethers, D. Poshyvanyk, Using Relational Topic Models to capture1505

coupling among classes in object-oriented software systems, 10th IEEE In-

ternational Working Conference on Software Maintenance (ICSM) (2010)

1–10.

[58] M. Revelle, M. Gethers, D. Poshyvanyk, Using structural and textual

information to capture feature coupling in object-oriented software, Em-1510

pirical Software Engineering 16 (2011) 773–811.

[59] D. Poshyvanyk, Y. Guéhéneuc, A. Marcus, G. Antoniol, V. Rajlich, Fea-

ture Location Using Probabilistic Ranking of Methods Based on Execu-

tion Scenarios and Information Retrieval, IEEE Transactions on Software

Engineering 33 (2007) 420–432.1515

[60] H. Kagdi, M. Gethers, D. Poshyvanyk, M. L. Collard, Blending Concep-

tual and Evolutionary Couplings to Support Change Impact Analysis in

Source Code, in: 2010 17th Working Conference on Reverse Engineering,

ISSN 2375-5369, 119–128, doi:10.1109/WCRE.2010.21, 2010.

[61] M. Gethers, A. Aryani, D. Poshyvanyk, Combining Conceptual and1520

Domain-Based Couplings to Detect Database and Code Dependencies,

IEEE 12th International Working Conference on Source Code Analysis

and Manipulation (SCAM) (2012) 144–153.

62

http://dx.doi.org/10.1109/ICITECH.2017.8080044
http://dx.doi.org/10.1109/ICITECH.2017.8080044
http://dx.doi.org/10.1109/ICITECH.2017.8080044
http://dx.doi.org/10.1109/WCRE.2010.21


[62] A. Aryani, I. Peake, M. Hamilton, Domain-based change propagation anal-

ysis: An enterprise system case study, IEEE International Conference on1525

Software Maintenance (ICSM) (2010) 1–9.

[63] A. Aryani, F. Perin, M. Lungu, A. Mahmood, O. Nierstrasz, Can we pre-

dict depencencies using domain information?, 18th Working Conference

on Reverse Engineering (WCRE) (2011) 55–64.

[64] M. Rahman, A. Aryani, C. Roy, F. Perin, On the relationships between1530

domain-based coupling and code clones: an exploratory study, Proceed-

ings of the 2013 International Conference on Software Engineering (2013)

1265–1268.

[65] H. Kagdi, M. Gethers, D. Poshyvanyk, Integrating conceptual and logi-

cal couplings for change impact analysis in software, Empirical Software1535

Engineering 18 (5) (2013) 933–969.

[66] M. Alenezi, K. Magel, Empirical Evaluation of a New Coupling Met-

ric: Combining Structural and Semantic Coupling, International Jour-

nal of Computers and Applications 36 (1) (2014) 34–44, doi:10.2316/

Journal.202.2014.1.202-3902, URL https://www.tandfonline.com/doi/1540

abs/10.2316/Journal.202.2014.1.202-3902.

[67] H. Gall, K. Hajek, M. Jazayeri, Detection of Logical Coupling Based on

Product Release History, Proceedings of the International Conference on

Software Maintenance, 1998 (1998) 190–198.

[68] H. Gall, M. Jazayeri, J. Krajewski, CVS Release History Data For Detect-1545

ing Logical Couplings, Proceedings of the 6th International Workshop on

Principles of Software Evolution (2003) 13–23.

[69] A. Alali, B. Bartman, C. Newman, J. Maletic, A Preliminary Investigation

of Using Age and Distance Measures in Detection of Evolutionary Cou-

plings, 10th IEEE Working Conference on Mining Software Repositories1550

(MSR) (2013) 169–172.

63

http://dx.doi.org/10.2316/Journal.202.2014.1.202-3902
http://dx.doi.org/10.2316/Journal.202.2014.1.202-3902
http://dx.doi.org/10.2316/Journal.202.2014.1.202-3902
https://www.tandfonline.com/doi/abs/10.2316/Journal.202.2014.1.202-3902
https://www.tandfonline.com/doi/abs/10.2316/Journal.202.2014.1.202-3902
https://www.tandfonline.com/doi/abs/10.2316/Journal.202.2014.1.202-3902


[70] M. D’Ambros, M. Lanza, R. Robbes, On the Relationship Between Change

Coupling and Software Defects, in: 2009 16th Working Conference on

Reverse Engineering, ISSN 1095-1350, 135–144, doi:10.1109/WCRE.2009.

19, 2009.1555

[71] L. Zou, M. Godfrey, A. Hassan, Detecting Interaction Coupling from

Task Interaction Histories, 15th IEEE Internation Conference on Program

Comprehension, ICPC ’07 (2007) 135–144.

[72] F. Bantelay, M. B. Zanjani, H. Kagdi, Comparing and combining evolu-

tionary couplings from interactions and commits, in: 2013 20th Working1560

Conference on Reverse Engineering (WCRE), ISSN 1095-1350, 311–320,

doi:10.1109/WCRE.2013.6671306, 2013.

[73] S. Kramer, H. Kaindl, Coupling and cohesion metrics for knowledge-based

systems using frames and rules, ACM Transactions on Software Engineer-

ing and Methodology 13 (2004) 332–358.1565

[74] A. Orme, H. Tao, L. Etzkorn, Coupling metrics for ontology-based system,

IEEE Software 23 (2006) 102–108.

[75] H. Jordan, R. Collier, Evaluating Agent-Oriented Programs: Towards

Multi-paradigm Metrics, International Workshop on Programming Multi-

Agent Systems (2010) 63–78.1570

[76] J. Garcia, F. Garcia, R. Theron, Visualizing Semantic Coupling among

Entities in an OWL Ontology, Ontology, Conceptualization and Episte-

mology for Information Systems, Software Engineering and Service Sci-

ence, ONTOSE 2010 (2010) 90–106.

[77] J. García, F. García, R. Therón, Defining Coupling Metrics among Classes1575

in an OWL Ontology, in: N. García-Pedrajas, F. Herrera, C. Fyfe, J. M.

Benítez, M. Ali (Eds.), Trends in Applied Intelligent Systems, Springer

Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-642-13025-0, 12–17,

2010.

64

http://dx.doi.org/10.1109/WCRE.2009.19
http://dx.doi.org/10.1109/WCRE.2009.19
http://dx.doi.org/10.1109/WCRE.2009.19
http://dx.doi.org/10.1109/WCRE.2013.6671306


[78] C. Sant’Anna, A. Garcia, C. Chavez, C. Lucena, A. von Staa, On the1580

Reuse and Maintenance of Aspect-Oriented Software: An Assessment

Framework, in: Proceedings of Brazilian Symposium on Software Engi-

neering, 19–34, 2003.

[79] M. Ceccato, P. Tonella, Measuring the Effects of Software Aspectization,

2004.1585

[80] H. Shen, J. Zhao, An evaluation of coupling metrics for aspect-oriented

software, Tech. Rep., 2007.

[81] R. Burrows, F. C. Ferrari, A. Garcia, F. Taiani, An empirical evaluation

of coupling metrics on aspect-oriented programs, Proceedings of the 2010

ICSE Workshop on Emerging Trends in Software Metrics (WETSoM ’10)1590

(2010) 53–58.

[82] M. L. Bernardi, G. A. D. Lucca, A metric model for aspects’ coupling, in:

WETSoM, 2010.

[83] B. Bennett, F. Mitropoulos, New metrics for assessing aspect coupling,

in: SoutheastCon 2016, 1–8, 2016.1595

[84] B. T. Bennett, Using hierarchical agglomerative clustering to locate po-

tential aspect interference, in: SoutheastCon 2017, 1–8, 2017.

[85] J. Zhao, Measuring Coupling in Aspect-Oriented Systems, in: Information

Processing Society of Japan (IPSJ), 14–16, 2004.

[86] T. Tonelli Bartolomei, A. Garcia, C. Sant’Anna, E. Figueiredo, Towards1600

a Unified Coupling Framework for Measuring Aspect-Oriented Programs,

in: 3rd International Workshop on Software Quality Assurance (SOQUA),

ACM Press, ACM Press, New York, NY, USA, ISBN 1-59593-584-3,

46–53, doi:http://doi.acm.org/10.1145/1188895.1188907, 2006.

[87] A. Kumar, R. Kumar, P. S. Grover, Generalized Coupling Measure for1605

Aspect-oriented Systems, SIGSOFT Softw. Eng. Notes 34 (3) (2009) 1–

65

http://dx.doi.org/http://doi.acm.org/10.1145/1188895.1188907


6, ISSN 0163-5948, doi:10.1145/1527202.1527209, URL http://doi.acm.

org/10.1145/1527202.1527209.

[88] K. Qian, J. Liu, F. Tsui, Decoupling Metrics for Services Composi-

tion, in: 5th IEEE/ACIS International Conference on Computer and1610

Information Science and 1st IEEE/ACIS International Workshop on

Component-Based Software Engineering,Software Architecture and Reuse

(ICIS-COMSAR’06), 44–47, 2006.

[89] R. Sindhgatta, B. Sengupta, K. Ponnalagu, Measuring the Quality of

Service Oriented Design, Springer Berlin Heidelberg, Berlin, Heidelberg,1615

485–499, 2009.

[90] A. A. M. Elhag, R. Mohamad, Metrics for evaluating the quality of service-

oriented design, in: 2014 8th. Malaysian Software Engineering Conference

(MySEC), 154–159, doi:10.1109/MySec.2014.6986006, 2014.

[91] P. Quynh, H. Thang, Dynamic Coupling Metrics for Service –Oriented1620

Software, International Journal of Computer, Electrical, Automation,

Control and Information Engineering 3 (2009) 795 – 800.

[92] X. Wang, Metrics for Evaluating Coupling and Service Granularity in

Service Oriented Architecture, in: 2009 International Conference on In-

formation Engineering and Computer Science, ISSN 2156-7379, 1–4, doi:1625

10.1109/ICIECS.2009.5362767, 2009.

[93] S. Alahmari, E. Zaluska, D. C. D. Roure, A Metrics Framework for Eval-

uating SOA Service Granularity, in: 2011 IEEE International Conference

on Services Computing, 512–519, doi:10.1109/SCC.2011.98, 2011.

[94] T. Karhikeyan, J. Geetha, A metrics suite and fuzzy model for measuring1630

coupling in Service Oriented Architecture, in: 2012 International Confer-

ence on Recent Advances in Computing and Software Systems, 254–259,

doi:10.1109/RACSS.2012.6212677, 2012.

66

http://dx.doi.org/10.1145/1527202.1527209
http://doi.acm.org/10.1145/1527202.1527209
http://doi.acm.org/10.1145/1527202.1527209
http://doi.acm.org/10.1145/1527202.1527209
http://dx.doi.org/10.1109/MySec.2014.6986006
http://dx.doi.org/10.1109/ICIECS.2009.5362767
http://dx.doi.org/10.1109/ICIECS.2009.5362767
http://dx.doi.org/10.1109/ICIECS.2009.5362767
http://dx.doi.org/10.1109/SCC.2011.98
http://dx.doi.org/10.1109/RACSS.2012.6212677


[95] M. Perepletchikov, C. Ryan, K. Frampton, Z. Tari, Coupling Metrics

for Predicting Maintainability in Service-Oriented Designs, in: 2007 Aus-1635

tralian Software Engineering Conference (ASWEC’07), ISSN 1530-0803,

329–340, doi:10.1109/ASWEC.2007.17, 2007.

[96] T. Erl, SOA: Principles of Service Design, The Prentice Hall Service Tech-

nology Series from Thomas Erl, Pearson Education, ISBN 9780132715836,

2007.1640

[97] A. Kazemi, A. Azizkandi, A. Rostampour, H. Haghihi, P. Jamshidi,

F. Shams, Measuring the Conceptual Coupling of Services Using Latent

Semantic Indexing, IEEE International Conference on Service Computing

(SCC) (2011) 504–511.

[98] B. Alshammari, C. Fidge, D. Corney, Security Metrics for Object-Oriented1645

Designs, 21st Australian Software Engineering Conference (ASWEC)

(2010) 55–64.

[99] J. Jrjens, Secure Systems Development with UML, Springer-Verlag,

Berlin, Heidelberg, ISBN 3642056350, 9783642056352, 2010.

[100] J. Barnes, High Integrity Software: The SPARK Approach to Safety and1650

Security, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, ISBN 0321136160, 2003.

[101] S. Kamble, X. Jin, N. Niu, M. Simon, A Novel Coupling Pattern in Com-

putational Science and Engineering Software, in: 2017 IEEE/ACM 12th

International Workshop on Software Engineering for Science (SE4Science),1655

9–12, doi:10.1109/SE4Science.2017.10, 2017.

[102] M. Ahmed, M. Shoaib, Novel Design Metrics to Measure Real Time En-

vironment Application Design, Journal of American Science 7 (2011) 222.

[103] D. Spinellis, Tool writing: a forgotten art? (software tools), IEEE Soft-

ware 22 (4) (2005) 9–11.1660

67

http://dx.doi.org/10.1109/ASWEC.2007.17
http://dx.doi.org/10.1109/SE4Science.2017.10


[104] S. Husein, A. Oxley, A Coupling and Cohesion Metrics Suite for Object-

Oriented Software, in: Proceedings of the 2009 International Conference

on Computer Technology and Development - Volume 01, ICCTD ’09,

IEEE Computer Society, Washington, DC, USA, ISBN 978-0-7695-3892-1,

421–425, 2009.1665

[105] M. Eichberg, D. Germanus, M. Mezini, L. Mrokon, T. Schafer, QScope: an

open, extensible framework for measuring software projects, in: Confer-

ence on Software Maintenance and Reengineering (CSMR’06), 10 pp.–122,

2006.

[106] N. Kayarvizhy, S. Kanmani, An Automated Tool for Computing Object1670

Oriented Metrics Using XML, Springer Berlin Heidelberg, Berlin, Heidel-

berg, 69–79, 2011.

[107] M. Scotto, A. Sillitti, G. Succi, T. Vernazza, A Relational Approach

to Software Metrics, in: Proceedings of the 2004 ACM Symposium on

Applied Computing, SAC ’04, ACM, New York, NY, USA, ISBN 1-1675

58113-812-1, 1536–1540, doi:10.1145/967900.968207, URL http://doi.

acm.org/10.1145/967900.968207, 2004.

[108] M. Scotto, A. Sillitti, G. Succi, T. Vernazza, Non-invasive Product Metrics

Collection: An Architecture, in: Proceedings of the 2004 Workshop on

Quantitative Techniques for Software Agile Process, QUTE-SWAP ’04,1680

ACM, New York, NY, USA, 76–78, doi:10.1145/1151433.1151444, URL

http://doi.acm.org/10.1145/1151433.1151444, 2004.

[109] M. Scotto, A. Sillitti, G. Succi, T. Vernazza, A non-invasive approach to

product metrics collection, Journal of Systems Architecture 52 (11) (2006)

668 – 675, agile Methodologies for Software Production.1685

[110] M. Wilhelm, S. Diehl, Dependency Viewer - A Tool for Visualizing

Package Design Quality Metrics, in: 3rd IEEE International Work-

shop on Visualizing Software for Understanding and Analysis, 1–2, doi:

10.1109/VISSOF.2005.1684321, 2005.

68

http://dx.doi.org/10.1145/967900.968207
http://doi.acm.org/10.1145/967900.968207
http://doi.acm.org/10.1145/967900.968207
http://doi.acm.org/10.1145/967900.968207
http://dx.doi.org/10.1145/1151433.1151444
http://doi.acm.org/10.1145/1151433.1151444
http://dx.doi.org/10.1109/VISSOF.2005.1684321
http://dx.doi.org/10.1109/VISSOF.2005.1684321
http://dx.doi.org/10.1109/VISSOF.2005.1684321


[111] J. Alghamdi, R. Rufai, S. Khan, OOMeter: A Software Quality Assur-1690

ance Tool, in: Ninth European Conference on Software Maintenance and

Reengineering, ISSN 1534-5351, 190–191, doi:10.1109/CSMR.2005.44,

2005.

[112] M. Barnett, C. Bird, J. Brunet, S. Lahiri, Helping Developers Help Them-

selves: Automatic Decomposition Of Code Review Changesets, Proceed-1695

ings of the 37th International Conference on Software Engineering 1 (1)

(2015) 134–144.

[113] B. Alshammari, C. Fidge, D. Corney, An Automated Tool for Assessing

Security-Critical Designs and Programs, in: WIAR 2012; National Work-

shop on Information Assurance Research, 1–10, 2012.1700

[114] M. R. Girgis, T. M. Mahmoud, R. R. Nour, UML class diagram metrics

tool, in: 2009 International Conference on Computer Engineering Sys-

tems, 423–428, doi:10.1109/ICCES.2009.5383226, 2009.

[115] J. AlGhamdi, M. Elish, M. Ahmed, A tool for measuring in-

heritance coupling in object-oriented systems, Information Sciences1705

140 (3) (2002) 217 – 227, ISSN 0020-0255, doi:https://doi.org/10.

1016/S0020-0255(01)00172-4, URL http://www.sciencedirect.com/

science/article/pii/S0020025501001724, software Engineering: Sys-

tems and Tools.

[116] V. Bidve, P. Sarasu, Tool for Measuring Coupling in Object- Oriented1710

Java Software 8 (2016) 812–820.

[117] J. Offutt, A. Abdurazik, S. R. Schach, Quantitatively measuring object-

oriented couplings, Software Quality Journal 16 (4) (2008) 489–512, ISSN

1573-1367, doi:10.1007/s11219-008-9051-x, URL https://doi.org/10.

1007/s11219-008-9051-x.1715

[118] P. Rosner, S. Viswanathan, Visualization of Coupling and Program-

ming to Interface for Object-Oriented Systems, in: 2008 12th Interna-

69

http://dx.doi.org/10.1109/CSMR.2005.44
http://dx.doi.org/10.1109/ICCES.2009.5383226
http://dx.doi.org/https://doi.org/10.1016/S0020-0255(01)00172-4
http://dx.doi.org/https://doi.org/10.1016/S0020-0255(01)00172-4
http://dx.doi.org/https://doi.org/10.1016/S0020-0255(01)00172-4
http://www.sciencedirect.com/science/article/pii/S0020025501001724
http://www.sciencedirect.com/science/article/pii/S0020025501001724
http://www.sciencedirect.com/science/article/pii/S0020025501001724
http://dx.doi.org/10.1007/s11219-008-9051-x
https://doi.org/10.1007/s11219-008-9051-x
https://doi.org/10.1007/s11219-008-9051-x
https://doi.org/10.1007/s11219-008-9051-x


tional Conference Information Visualisation, ISSN 1550-6037, 575–581,

doi:10.1109/IV.2008.96, 2008.

[119] S. Sarvari, P. Singh, G. Sikka, Efficient and Scalable Collection of Dynamic1720

Metrics Using MapReduce, Asia-Pacific Software Engineering Conference

(APSEC), 2015 (2015) 127–134.

[120] A. Dogra, H. Singh, P. Singh, Execution Trace Streaming Based Real Time

Collection of Dynamic Metrics Using PaaS, 8th Workshop on Emerging

Trends in Software Metrics (WETSoM) (2017) 43–48.1725

[121] P. Singh, H. Singh, DynaMetrics: a runtime metric-based analysis tool for

object-oriented software systems, ACM SIGSOFT Software Engineering

Notes 33 (2008) 1–6.

[122] T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller, Mining Version Histo-

ries to Guide Software Changes, in: Proceedings of the 26th International1730

Conference on Software Engineering, ICSE ’04, IEEE Computer Society,

Washington, DC, USA, ISBN 0-7695-2163-0, 563–572, 2004.

[123] M. D’Ambros, M. Lanza, Reverse Engineering with Logical Coupling, in:

2006 13th Working Conference on Reverse Engineering, ISSN 1095-1350,

189–198, doi:10.1109/WCRE.2006.51, 2006.1735

[124] M. D’Ambros, M. Lanza, M. Lungu, Visualizing Co-Change Information

with the Evolution Radar, IEEE Transactions on Software Engineering 35

(2009) 720–735.

[125] M. D’Ambros, M. Lanza, M. Lungu, The Evolution Radar: Visualizing

Integrated Logical Coupling Information, in: Proceedings of the 2006 In-1740

ternational Workshop on Mining Software Repositories, MSR ’06, ACM,

New York, NY, USA, ISBN 1-59593-397-2, 26–32, doi:10.1145/1137983.

1137992, URL http://doi.acm.org/10.1145/1137983.1137992, 2006.

70

http://dx.doi.org/10.1109/IV.2008.96
http://dx.doi.org/10.1109/WCRE.2006.51
http://dx.doi.org/10.1145/1137983.1137992
http://dx.doi.org/10.1145/1137983.1137992
http://dx.doi.org/10.1145/1137983.1137992
http://doi.acm.org/10.1145/1137983.1137992


[126] A. Ying, G. Murphy, R. Ng, M. Chu-Carroll, Predicting Source Code

Changes by Mining Change History, IEEE Transcription Software Engi-1745

neering 30 (9) (2004) 574–586, ISSN 0098-5589, doi:10.1109/TSE.2004.52.

[127] N. Hanakawa, Visualization for Software Evolution Based on Logical Cou-

pling and Module Coupling, in: 14th Asia-Pacific Software Engineering

Conference (APSEC’07), ISSN 1530-1362, 214–221, doi:10.1109/ASPEC.

2007.36, 2007.1750

[128] J. Garcia, F. Garcia, R. Therón, Modelling Relationships among Classes

as Semantic Coupling in OWL Ontologies, 2011.

[129] E. Figueiredo, A. Garcia, C. Sant’Anna, U. Kulesza, C. Lucena, Assessing

aspect-oriented artifacts: Towards a tool-supported quantitative method,

in: Proc. of the 9th ECOOP Workshop on Quantitative Approaches in1755

OO Software, 2005.

[130] E. Figueiredo, A. Garcia, C. Lucena, AJATO: an AspectJ Assessment

Tool, Proceedings of European Conference on Object Oriented Program-

ming (ECOOP Demo) .

[131] J. Zhao, S. Zhang, H. Shen, An Empirical Study of Maintainability in1760

Aspect-Oriented System Evolution Using Coupling Metrics, in: 2008 2nd

IFIP/IEEE International Symposium on Theoretical Aspects of Software

Engineering(TASE), vol. 00, 233–236, doi:10.1109/TASE.2008.17, URL

doi.ieeecomputersociety.org/10.1109/TASE.2008.17, 2008.

[132] A. S. Núñez-Varela, H. G. Pérez-González, F. E. Martínez-Pérez,1765

J. Cuevas-Tello, Building a User Oriented Application for Generic Source

Code Metrics Extraction from a Metrics Framework, in: 2016 4th In-

ternational Conference in Software Engineering Research and Innovation

(CONISOFT), 27–32, doi:10.1109/CONISOFT.2016.13, 2016.

[133] P. Weißgerber, L. V. Klenze, M. Burch, S. Diehl, Exploring Evolutionary1770

Coupling in Eclipse, 2005.

71

http://dx.doi.org/10.1109/TSE.2004.52
http://dx.doi.org/10.1109/ASPEC.2007.36
http://dx.doi.org/10.1109/ASPEC.2007.36
http://dx.doi.org/10.1109/ASPEC.2007.36
http://dx.doi.org/10.1109/TASE.2008.17
doi.ieeecomputersociety.org/10.1109/TASE.2008.17
http://dx.doi.org/10.1109/CONISOFT.2016.13


[134] T. Zimmermann, V. Dallmeier, K. Halachev, A. Zeller, eROSE: guiding

programmers in eclipse, in: OOPSLA Companion, 2005.

[135] A. Tahir, S. MacDonell, A systematic mapping study on dynamic metrics

and software quality, 28th IEEE International Conference on Software1775

Maintenance (ICSM) (2012) 326–335.

[136] A. Sarimbekov, A. Sewe, W. Binder, P. Moret, M. Mezini, JP2: Call-site

aware calling context profiling for the Java Virtual Machine, Science of

Computer Programming 79 (Supplement C) (2014) 146–157.

[137] R. Harrison, S. Counsell, R. Nithi, Coupling metrics for object-oriented1780

design, in: Proceedings Fifth International Software Metrics Sympo-

sium. Metrics (Cat. No.98TB100262), 150–157, doi:10.1109/METRIC.

1998.731240, 1998.

[138] P. Joshi, R. K. Joshi, Microscopic coupling metrics for refactoring, in:

Conference on Software Maintenance and Reengineering (CSMR’06),1785

ISSN 1534-5351, 8 pp.–152, doi:10.1109/CSMR.2006.32, 2006.

[139] M. English, T. Cahill, J. Buckley, Construct specific coupling measure-

ment for C++ software, Computer Languages, Systems and Structures

38 (4) (2012) 300 – 319, ISSN 1477-8424, doi:https://doi.org/10.1016/j.cl.

2012.06.002, URL http://www.sciencedirect.com/science/article/1790

pii/S1477842412000243.

[140] A. Tripathi, D. S. Kushwaha, A metric for package level cou-

pling, CSI Transactions on ICT 2 (4) (2015) 217–233, ISSN 2277-

9086, doi:10.1007/s40012-015-0061-0, URL https://doi.org/10.1007/

s40012-015-0061-0.1795

[141] C. Rajaraman, M. R. Lyu, Some Coupling Measures for C++ Programs,

in: Proc. TOOLS USA 92 Conference, 225–234, 1992.

[142] V. Dixit, R. Vishwkarma, Comparison of class-level versus object-level

static and dynamic coupling and cohesion measures in object oriented pro-

72

http://dx.doi.org/10.1109/METRIC.1998.731240
http://dx.doi.org/10.1109/METRIC.1998.731240
http://dx.doi.org/10.1109/METRIC.1998.731240
http://dx.doi.org/10.1109/CSMR.2006.32
http://dx.doi.org/https://doi.org/10.1016/j.cl.2012.06.002
http://dx.doi.org/https://doi.org/10.1016/j.cl.2012.06.002
http://dx.doi.org/https://doi.org/10.1016/j.cl.2012.06.002
http://www.sciencedirect.com/science/article/pii/S1477842412000243
http://www.sciencedirect.com/science/article/pii/S1477842412000243
http://www.sciencedirect.com/science/article/pii/S1477842412000243
http://dx.doi.org/10.1007/s40012-015-0061-0
https://doi.org/10.1007/s40012-015-0061-0
https://doi.org/10.1007/s40012-015-0061-0
https://doi.org/10.1007/s40012-015-0061-0


gramming, 11th International Conference on Wireless and Optical Com-1800

munication Networks (WOCN) (2014) 1–5.

[143] Y. Hassoun, S. Counsell, R. Johnson, Dynamic coupling metric: proof of

concept, IEE Proceedings - Software 152 (6) (2005) 273–279, ISSN 1462-

5970, doi:10.1049/ip-sen:20045067.

[144] H. Washizaki, T. Nakagawa, Y. Saito, Y. Fukazawa, A Coupling-based1805

Complexity Metric for Remote Component-based Software Systems To-

ward Maintainability Estimation, in: 2006 13th Asia Pacific Software En-

gineering Conference (APSEC’06), ISSN 1530-1362, 79–86, doi:10.1109/

APSEC.2006.3, 2006.

[145] E. Tempero, P. Ralph, A Model for Defining Coupling Metrics, in: 20161810

23rd Asia-Pacific Software Engineering Conference (APSEC), ISSN 1530-

1362, 145–152, doi:10.1109/APSEC.2016.030, 2016.

[146] B. Kitchenham, S. L. Pfleeger, N. Fenton, Towards a framework for soft-

ware measurement validation, IEEE Transactions on Software Engineering

21 (12) (1995) 929–944, ISSN 0098-5589, doi:10.1109/32.489070.1815

[147] E. J. Weyuker, Evaluating Software Complexity Measures, IEEE Trans.

Softw. Eng. 14 (9) (1988) 1357–1365, ISSN 0098-5589, doi:10.1109/32.

6178, URL https://doi.org/10.1109/32.6178.

[148] T. Baum, K. Schneider, A. Bacchelli, On The Optimal Order Of Read-

ing Source Code Changes for Review, IEEE International Conference on1820

Software Maintenance and Evolution (ICSME) (2017) 329–340.

[149] T. Baum, O. Liskin, K. Niklas, K. Schneider, A Faceted Classification

Scheme for Change-Based Industrial Code Review Processes, 2016 IEEE

International Conference on Software Quality, Reliability and Security

(QRS) (2016) 74–85.1825

[150] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, A. Bacchelli, Infor-

mation Needs in Contemporary Code Review .

73

http://dx.doi.org/10.1049/ip-sen:20045067
http://dx.doi.org/10.1109/APSEC.2006.3
http://dx.doi.org/10.1109/APSEC.2006.3
http://dx.doi.org/10.1109/APSEC.2006.3
http://dx.doi.org/10.1109/APSEC.2016.030
http://dx.doi.org/10.1109/32.489070
http://dx.doi.org/10.1109/32.6178
http://dx.doi.org/10.1109/32.6178
http://dx.doi.org/10.1109/32.6178
https://doi.org/10.1109/32.6178


[151] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,

N. Ubayashi, A large-scale empirical study of just-in-time quality assur-

ance, IEEE Transactions on Software Engineering 39 (6) (2013) 757–773.1830

[152] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,

D. Poshyvanyk, When and why your code starts to smell bad (and whether

the smells go away), IEEE Transactions on Software Engineering 43 (11)

(2017) 1063–1088.

[153] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk,1835

A. De Lucia, Mining version histories for detecting code smells, IEEE

Transactions on Software Engineering 41 (5) (2015) 462–489.

[154] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, A. De Lucia,

On the diffuseness and the impact on maintainability of code smells: a

large scale empirical investigation, Empirical Software Engineering 23 (3)1840

(2018) 1188–1221.

[155] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y. Guéhéneuc, E. Aimeur,

SMURF: A SVM-based Incremental Anti-pattern Detection Approach, in:

2012 19th Working Conference on Reverse Engineering, 466–475, 2012.

[156] F. Khomh, S. Vaucher, Y. Guéhéneuc, H. Sahraoui, BDTEX: A GQM-1845

based Bayesian approach for the detection of antipatterns, Journal of Sys-

tems and Software 84 (4) (2011) 559 – 572.

[157] F. Arcelli Fontana, M. Zanoni, Code smell severity classification using

machine learning techniques, Knowledge-Based Systems 128 (2017) 43 –

58.1850

[158] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, A. De Lucia,

Detecting code smells using machine learning techniques: are we there

yet?, in: 2018 IEEE 25th International Conference on Software Analysis,

Evolution and Reengineering (SANER), IEEE, 612–621, 2018.

74



[159] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, A. Zaidman, A1855

textual-based technique for Smell Detection, in: 2016 IEEE 24th Interna-

tional Conference on Program Comprehension (ICPC), 1–10, 2016.

[160] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, A. De Lucia, The

scent of a smell: An extensive comparison between textual and structural

smells, IEEE Transactions on Software Engineering .1860

[161] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: im-

proving the design of existing code, Addison-Wesley Professional, 1999.

[162] F. Khomh, M. Di Penta, Y. Guéhéneuc, G. Antoniol, An exploratory

study of the impact of antipatterns on class –change and fault –prone-

ness, Empirical Software Engineering 17 (3) (2012) 243–275, ISSN 1573-1865

7616, doi:10.1007/s10664-011-9171-y, URL https://doi.org/10.1007/

s10664-011-9171-y.

[163] G. Catolino, F. Palomba, A. De Lucia, F. Ferrucci, A. Zaidman,

Developer-related Factors in Change Prediction: An Empirical Assess-

ment, in: Proceedings of the 25th International Conference on Program1870

Comprehension, ICPC ’17, IEEE Press, Piscataway, NJ, USA, 186–195,

2017.

[164] S. Eski, F. Buzluca, An Empirical Study on Object-Oriented Metrics

and Software Evolution in Order to Reduce Testing Costs by Predicting

Change-Prone Classes, in: 2011 IEEE Fourth International Conference on1875

Software Testing, Verification and Validation Workshops, 566–571, 2011.

[165] M. O. Elish, M. Al-Rahman Al-Khiaty, A suite of metrics for quantify-

ing historical changes to predict future change –prone classes in object

–oriented software, in: J. Softw.: Evol. and Proc., 407–437, 2013.

[166] G. Catolino, F. Palomba, A. De Lucia, F. Ferrucci, A. Zaidman, Enhanc-1880

ing Change Prediction Models using Developer-Related Factors, Journal

of Systems and Software 143 (9) (2018) 14–28.

75

http://dx.doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1007/s10664-011-9171-y


Appendix A. List of selected ScienceDirect Journals

• AASRI Procedia

• Advances in Engineering Software1885

• Astronomy and Computing

• Computer Fraud and Security

• Computer Languages

• Computer Languages, Systems and Structures

• Computer Methods and Programs in Biomedicine1890

• Computer Programs in Biomedicine

• Computer Standards and Interfaces

• Data Processing

• Digital Investigation

• Egyptian Journal of Basic and Applied Sciences1895

• Entertainment Computing

• Environmental Modelling and Software

• Environmental Software

• Euromicro Newsletter

• Future Computing and Informatics Journal1900

• Future Generation Computer Systems

• Information and Software Technology

• Information Systems

• Integration

76



• Intelligent Data Analysis1905

• Journal of Computational Science

• Journal of Innovation in Digital Ecosystems

• The Journal of Logic and Algebraic Programming

• The Journal of Logic Programming

• Journal of Logical and Algebraic Methods in Programming1910

• Journal of Parallel and Distributed Computing

• Journal of Systems Architecture

• Journal of Systems and Software

• Journal of Web Semantics

• Microprocessing and Microprogramming1915

• Microprocessors

• Microprocessors and Microsystems

• Network Security

• Performance Evaluation

• Robotics1920

• Science of Computer Programming

• SoftwareX

77


	Introduction
	Research questions
	Research strategy
	RQ1: Coupling relations
	Structural coupling
	Dynamic coupling
	Semantic coupling
	Logical coupling
	 Recent or isolated trends

	RQ2: Developed tools
	Extensibility
	Visualization techniques
	Scalability and Dynamic coupling

	 Discussion
	 Coupling Relations: A Research Roadmap
	Conclusion
	List of selected ScienceDirect Journals

