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Abstract

Background: Code smells indicate suboptimal design or implementation
choices in the source code that often lead it to be more change- and fault-
prone. Researchers defined dozens of code smell detectors, which exploit
different sources of information to support developers when diagnosing de-
sign flaws. Despite their good accuracy, previous work pointed out three
important limitations that might preclude the use of code smell detectors in
practice: (i) subjectiveness of developers with respect to code smells detected
by such tools, (ii) scarce agreement between different detectors, and (iii) dif-
ficulties in finding good thresholds to be used for detection. To overcome
these limitations, the use of machine learning techniques represents an ever
increasing research area.

Objective: While the research community carefully studied the methodolo-
gies applied by researchers when defining heuristic-based code smell detec-
tors, there is still a noticeable lack of knowledge on how machine learning
approaches have been adopted for code smell detection and whether there are
points of improvement to allow a better detection of code smells. Our goal is
to provide an overview and discuss the usage of machine learning approaches
in the field of code smells.

Email addresses: azeem@itechs.iscas.ac.cn (Muhammad Ilyas Azeem),
palomba@ifi.uzh.ch (Fabio Palomba), shilin@itechs.iscas.ac.cn (Lin Shi),
wq@itechs.iscas.ac.cn (Qing Wang)

Preprint submitted to Information & Software Technology January 7, 2019



Method: This paper presents a Systematic Literature Review (SLR) on
Machine Learning Techniques for Code Smell Detection. Our work considers
papers published between 2000 and 2017. Starting from an initial set of
2,456 papers, we found that 15 of them actually adopted machine learning
approaches. We studied them under four different perspectives: (i) code
smells considered, (ii) setup of machine learning approaches, (iii) design of the
evaluation strategies, and (iv) a meta-analysis on the performance achieved
by the models proposed so far.

Results: The analyses performed show that God Class, Long Method, Func-
tional Decomposition, and Spaghetti Code have been heavily considered in
the literature. Decision Trees and Support Vector Machines are the
most commonly used machine learning algorithms for code smell detection.
Models based on a large set of independent variables have performed well.
JRip and Random Forest are the most effective classifiers in terms of
performance. The analyses also reveal the existence of several open issues
and challenges that the research community should focus on in the future.

Conclusion: Based on our findings, we argue that there is still room for
the improvement of machine learning techniques in the context of code smell
detection. The open issues emerged in this study can represent the input for
researchers interested in developing more powerful techniques.

Keywords: Code Smells, Machine Learning, Systematic Literature Review.

1. Introduction

During software maintenance and evolution, software systems need to be
continuously changed by developers in order to (i) implement new require-
ments, (ii) enhance existing features, or (iii) fix important bugs [1]. Due
to time pressure or community-related factors [2], developers do not always
have the time or the willingness to keep the complexity of the system under
control and find good design solutions before applying their modifications
[3]. As a consequence, the development activities are often performed in an
undisciplined manner, and have the effect to erode the original design of the
system by introducing the so-called technical debt [4, 5].

Code smells [6], i.e., symptoms of the presence of poor design or im-
plementation choices in the source code, represent one of the most serious
forms of technical debt [7, 8]. Indeed, previous research found that not
only they strongly reduce the ability of developers to comprehend the source
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code [9], but also make the affected classes more change- and fault-prone
[10, 11, 12, 13]. Thus, they represent an important threat for maintain-
ability effort and costs [14, 15, 16]. In past and recent years, the research
community was highly active on the topic. On the one hand, many empirical
studies have been conducted with the aim of understanding (i) when and
why code smells are introduced [17, 18, 19], (ii) what is their evolution and
longevity in software projects [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], and (iii)
to what extent they are relevant for developers [30, 31, 32, 33, 34, 35, 36, 37].

On the other hand, several code smell detectors have been proposed as
well [38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. Most of them can be considered
as heuristics-based : they apply a two-step process where a set of metrics
are firstly computed, and then some thresholds are applied upon such met-
rics to discriminate between smelly and non-smelly classes. They differ from
each other for (i) the specific algorithms used to identify code smells (e.g., a
combination of metrics or through the use of more advanced methodologies
like Relational Topic Modeling) and (ii) the metrics exploited (e.g., based
on code metrics or historical data). Although it has been showed that such
detectors have reasonable performance in terms of accuracy of the recommen-
dations, previous works highlighted a number of important limitations that
might preclude the use of such detectors in practice [48, 49]. In particular,
code smells identified by existing detectors can be subjectively interpreted
by developers [50, 51]. At the same time, the agreement between them is low
[52]. More importantly, most of them require the specification of thresholds
to distinguish smelly code components from non-smelly ones [48]: naturally,
the selection of thresholds strongly influence their accuracy.

For all these reasons, a recent trend is the adoption of Machine Learning
(ML) techniques for approaching the problem [53]. In this scenario, a super-
vised method is exploited: a set of independent variables (a.k.a., predictors)
are used to predict the value of a dependent variable (i.e., the smelliness of
a class) using a machine learning classifier (e.g., Logistic Regression [54]).
The model can be trained using a sufficiently large amount of data avail-
able from the project under analysis, i.e., within-project strategy, or using
data coming from other (similar) software projects, i.e., cross-project strat-
egy. These approaches clearly differ from the heuristics-based ones, as they
rely on classifiers to discriminate the smelliness of classes rather than on
predefined thresholds upon computed metrics.

While the research community heavily studied the methodologies adopted
by researchers and practitioners in the context of heuristics-based code smell
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detectors [48, 52, 49], only a little knowledge is available on the strategies
applied for building code smell prediction models. We believe that this piece
of information is extremely important for researchers interested in devising
novel effective methodologies to deal with code smells.

To cope with this lack of knowledge, in the paper we conducted a System-
atic Literature Review (SLR) on the usage of ML techniques for code smell
detection—covering the papers published between 2000 and 2017—with the
aim of (i) understanding and summarizing the current state of the art in this
field and (ii) analyzing its limitations and open challenges in order to drive
future research.

More specifically, our SLR aims at providing a comprehensive investiga-
tion to elaborate (i) the types of code smells taken into account by previous
research, (ii) the dependent and independent variables proposed in literature
to identify code smells, (iii) the types of classifiers exploited by researchers,
and (iv) the training strategies used to train and evaluate the machine learn-
ing techniques. Moreover, we report a meta-analysis of the performance of
the machine learning models defined so far. To this aim, we set up the
research questions reported in Table 1.

Besides the mere analysis of the state of the art, we also aim at discovering
and reporting the limitations of the current approaches in terms of classifier
selection, dependent and independent variables, training strategy, and the
evaluation approaches adopted so far.

1.1. Related Research

To the best of our knowledge, no Systematic Literature Review has been
conducted with the aim of understanding and summarizing the research on
code smell prediction models. However, it is important to point out that
some secondary studies on code smells and code smell detection tools have
been proposed [48, 49, 55, 56, 57].

Specifically, the SLR conducted by Zhang et al. [49] covered the state-of-
the-art on code smells between 2000 and June 2009 with a focus on (i) which
code smells have received more attention, (ii) what design methodologies
have been used to study the phenomenon, and (iii) what was the goal of such
studies (e.g., empirical observations or devising of new techniques). As an
additional analysis, they also explored whether any published study provided
empirical evidence to support the negative effects of code smells [6].

Wangberg and Yamashita [55] performed another SLR on code smells and
refactoring. The aim of the study was to get an overview of research related
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Table 1: Research Questions posed for our Systematic Literature Review

Research Question Motivation
RQ1 - Code Smells Considered

• RQ1: Which code smells can be cur-
rently detected using machine learning
techniques?

To explore the current state-of-the-art of the code smell
detection using machine learning techniques with re-
spect to the code smells considered so far.

RQ2 - Machine Learning Setup

• RQ2.1: What independent variables have
been considered to predict the presence of
code smells?

• RQ2.2: What classification types have
been considered to identify the smelliness
of source code artifacts?

• RQ2.3: What machine learning algo-
rithms have been used for code smell iden-
tification?

• RQ2.4: What training strategies have
been proposed in the literature?

To analyze the machine learning settings adopted by
previous research with respect to independent and de-
pendent variables, machine learning algorithms, and
training methodologies. Answers to these questions will
help both the practitioners and researches to select the
best machine learning setup for code smell detection:
Which independent variables (reduces feature engineer-
ing efforts required to select the best feature from the
corpus) should be used with which machine learning al-
gorithm(s) using which training strategy to produce best
prediction results.

RQ3 - Evaluation Setup

• RQ3.1: What types of validation tech-
niques have been exploited?

• RQ3.2: Which have been the evaluation
metrics used to access code smell predic-
tion models?

• RQ3.3: Which have been the datasets
considered?

To study the methodologies exploited to (i) validate
the proposed code smell prediction models, (ii) evaluate
their accuracy, and (iii) analyze the source code projects
taken into account by researchers.

RQ4 - Performance Meta-Analysis

• RQ4.1: Which independent variables
were reported to perform better for code
smell prediction?

• RQ4.2: Does the machine learning al-
gorithm impact the performance of code
smell prediction models?

• RQ4.3: Does the training strategy im-
pact the performance of code smell pre-
diction models?

To study the extent to which independent variables, ma-
chine learning approaches, and training strategies im-
pact the performance of code smell prediction models.

to each of the stages of the refactoring process: (i) detecting code smells,
(ii) making decisions on which refactoring to choose, and (iii) performing the
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refactoring. The review also attempted to identify which methods and tools
have been created to support these various stages of refactoring.

The SLR proposed by Vale et al. [56] investigated the phenomenon of
code smells in the context of Software Product Lines (SPL). The study had
the goal to identify SPL-specific code smells and refactoring methods. In-
deed, as a result, they came up with a catalog of code smells and refactoring
methods for Software Product Lines. Fernandes et al. [48] performed an
SLR on code smells detection tools, targeting papers from 2000 to 2016. The
study aimed at identifying all the code smells detection tools, their key fea-
tures and code smell types they are able to identify. Besides, a comparison of
the four most frequently occurred tools was made based on recall, precision,
usability and agreement among the tools. Finally, Rasool and Arshad [57]
also conducted an SLR on techniques and tools used for mining code smells
from the source code. State-of-the-art tools and techniques were classified
based on the detection methods and their results were analyzed. They pro-
posed some recommendations about the tools for developers working in the
field of code smell detection.

With respect to the papers discussed above, it is important to point
out that none of them explicitly targeted machine learning approaches for
code smell detection. Fernandes et al. [48] focused on tools rather than
techniques for code smell detection: as no tool implements a machine learning
model, the authors did not include ML-based approaches in their review.
Vale et al. [56] took into account code smells in the context of product lines,
highlighting which smells exist in that context and what are the techniques
that can be applied: since no machine learning approach has been defined
for that purpose, the authors did not overview ML-based methods. Rasool
and Arshad [57] focused on mining approaches, and therefore they did not
take into account machine learning models. The papers by Zhang et al.
[49] and Wangberg and Yamashita [55] focused instead on the research on
code smells and refactoring: as such, they included both empirical studies
and approaches enabling the entire refactoring process. In their works, some
machine learning approaches identified as primary studies in our work (i.e.,
the [S01], [S03], [S13] presented later in the paper) were cited; however, the
authors did not focus on the characteristics of such techniques but limited
to signal their presence. Thus, they did not analyze the specific machine
learning settings adopted by researchers, the independent and dependent
variables considered, and the validation techniques exploited to evaluate the
performance of code smell prediction models.
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Since the usage of machine learning for code smell detection is highly
promising [53], and given the proved impact of machine learning settings on
the overall performance of prediction models [58, 59, 60, 61], we believe that
a dedicated analysis is required in order to build additional knowledge on the
topic and extract the open challenges that future research should focus on.

1.2. Contributions

The contributions made by this SLR are the following:

1. We identify a set of 15 primary studies that proposed code smell pre-
diction models. The research community can use them as a starting
point to extend the knowledge on the topic.

2. We present a comprehensive synthesis of the primary studies identified.
This includes four main themes: (i) code smell considered, (ii) setup of
machine learning approaches, (iii) design of the evaluation strategies,
and (iv) performance analysis of the proposed models.

3. We provide guidelines and recommendations based on our findings to
support further research in the area.

4. We provide a comprehensive replication package1 containing all the
data and analysis scripts used to conduct this SLR.

2. Research Methodology

A systematic literature review has been used as a research methodology
in this study as it is a defined and methodical way of identifying, assessing,
and analyzing published literature in order to investigate a specific research
question or a phenomenon [62]. As done by other researchers in the field of
software engineering [63, 64, 65, 66], we adopted the SLR guidelines proposed
by Kitchenham and Charters [62]. Furthermore, we integrated the procedure
adopting the systematic inclusion of references, also known as “snowballing”,
defined by Wohlin [67]. The following subsections describe the process fol-
lowed.

1https://figshare.com/articles/Replication_package/7370423
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2.1. Search Strategy

We devised a search strategy to collect all the available published liter-
ature relevant to our topic. Our search strategy comprised of search terms
identification, resources to be searched, search process and article selection
criteria adopted for the studies.

2.1.1. Identifying search terms

To find the relevant search terms we followed five steps [62]:

a We used the research questions for the derivation of major terms, by
identifying population, intervention, and outcome;

b For all the major terms, we found the alternative spellings and/or syn-
onyms;

c We verified the keywords in any relevant paper;

d We used boolean operators for conjunction in case a certain database
allows it, i.e., we used the OR operator for the concatenation of al-
ternative spellings and synonyms whereas the AND operator for the
concatenation of major terms;

e We integrated the search string into a summarized form if required.

Results for a). As for the first step, we identified population, interven-
tion, and outcome in order to better design our search terms. Specifically:

• Population: Code smell detectors;

• Intervention: Machine Learning techniques;

• Outcomes of relevance: Code smells.

For instance, a research question containing the above details is:

RQ1.1: Which [code smells]
[
OUTCOMES

]
can be currently [detected]

[
POPULATION

]
by using [machine learning techniques]?

[
INTERVENTION

]
Results for b). The alternative spellings and synonyms identified are:
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• Code Smells: (“code smells” OR “code smell” OR “code bad smells”
OR “bad code smells” OR “bad smells” OR “anomalies” OR “anti-
patterns” OR “antipattern” OR “design defect” OR “design-smells”
OR “design flaw”);

• Machine Learning: (“machine learning” OR “supervised learning”
OR “classification” OR “regression” OR “unsupervised learning”);

• Prediction: (“prediction” OR “detection” OR “identification” OR
“prediction model” OR “model”);

• Software: (“software” OR “software engineering”).

Results for c). We checked the keywords in the relevant papers, and
we did not find any other alternative spelling or synonym to add in the set
of relevant terms to consider.

Results for d). We used boolean operators, coming up with the search
query reported below:

((“code smells” OR “code smell” OR “code bad smells” OR “bad code
smells” OR “bad smells” OR anomalies OR anti-patterns OR antipat-
tern OR “design defect” OR “design-smells” OR “design flaw”) AND
(“machine learning” OR “supervised learning” OR classification OR
regression OR “unsupervised learning”) AND (software OR “software
engineering”))

Results for e). Due to the search term limitation of the IEEE Xplore
digital library, we also defined the short search string reported below:

((“code smells” OR “code bad smells” OR “bad smells” OR anti-
patterns OR “design defect” OR “design-smells” OR “design flaw”)
AND (“machine learning” OR “supervised learning” OR “unsuper-
vised learning”) AND (detection OR identification OR “prediction
model”) AND (software OR “software engineering”))
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2.1.2. Resources to be searched

Selection of proper resources to search for relevant literature plays a sig-
nificant role in an SLR. We selected the following resources to search for all
the available literature relevant to our research questions:

• IEEE Xplore digital library (http://ieeexplore.ieee.org)

• ACM digital library (https://dl.acm.org)

• ScienceDirect (http://www.sciencedirect.com)

• SpringerLink (https://link.springer.com)

• Scopus (https://www.scopus.com)

• Engineering Village (https://www.engineeringvillage.com)

The selection of these databases was driven by our willingness of gather-
ing as many papers as possible to properly conduct our systematic literature
review. In this respect, the selected sources are recognized as the most repre-
sentative for Software Engineering research and are used in many other SLRs
[62] because they contain a massive amount of literature, i.e. journal articles,
conference proceedings, books etc., related to our research questions.

2.2. Article Selection Process

The article selection process followed in this study is depicted in Figure
1. The following subsections report details on the selection process.

2.2.1. Search process overview

To search all the available published papers relevant to our research ques-
tions, we followed four main steps:

a We used the search strings mentioned in Section 2.1.1 to collect the pri-
mary studies present in the digital libraries mentioned in Section 2.1.2.
We did not put any date restriction on the search process to collect
as much relevant literature as possible. The search results produced
by the digital libraries is shown in the second column of Table 2: as
shown, we found 2,456 papers respecting the query;
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Figure 1: Article selection process

b Starting from the entire list of retrieved sources, we firstly filtered out
non-relevant papers by applying the exclusion criteria (detailedly re-
ported in Section 2.2.2). This step was conducted by the first author
of this paper, who read the title, abstract and keywords of the 2,456
found papers and applied the exclusion criteria. The articles that satis-
fied such criteria were discarded, while the remaining ones were selected
for the second stage of screening, i.e., the inclusion criteria. This pro-
cess leads to our final selection for the search string, composed of 12
articles (≈ 0.13% of the papers found in the previous step);

c We performed a snowballing process to search for possible missing pa-
pers [67]. In particular, snowballing refers to the use of the reference
list of a paper or the citations to the paper to identify additional sources
[67]. In our context, we carried out both forward and backward snow-
balling: with the former, we included all the papers referenced in the
initially selected papers, while with the latter we included all the papers
that reference the initially selected papers. Afterward, the first author
of this paper carried out the same process as the previous point, i.e., he
read the title, abstract, and keywords of the 35 snowballed papers and
re-applied the exclusion/inclusion criteria: as a result, only 2 papers
(see Table 2) were found to be further analyzed;
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Table 2: Data sources and search results.

Resource name Total
results
found

Initial Se-
lection

Final Se-
lection

IEEE Xplore Digital Li-
brary

132 28 9

ACM Digital Library 407 11 1
ScienceDirect Digital Li-
brary

259 3 2

SpringerLink Digital Li-
brary

1456 16 0

Scopus Digital Library 111 7 0
Engineering Village Digital
Library

91 9 0

Total 2456 74 12
Snowballing Process 35 9 2
Manual Search ≈13,300 35 1
Total ≈13,335 44 3
Grand Total ≈15,751 118 15

d To ensure that all the relevant literature was included in the final list
of selected sources, we also performed an additional manual search
covering all the papers published in the last ten years in the 21 most
relevant software engineering conferences and 11 journals (the complete
list of conferences and journals analyzed in this phase is given in Ap-
pendix A). More specifically, the first author of the paper scanned each
of the ≈13,300 additional sources identified and based on the exclu-
sion/inclusion criteria he decided whether to include it or not in the
final selection. To this aim, he first considered the title: if this was
clearly out of scope (e.g., if it referred to automatic test case genera-
tion), the paper was skipped; conversely, if a certain publication was
considered potentially useful, the first author went through the ab-
stract, introduction, and conclusion to further verify how appropriate
it was for our study. The entire process took three work-weeks and,
in the end, only 1 publication relevant to our research question was
included;
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e Given the set of sources finally discovered via search string and then
augmented with those retrieved using snowballing and manual search,
i.e., a set composed of 15 sources. Thus, overall 15 papers passed all
the steps;

f Once we had established the set of final papers to consider in the SLR,
we applied the last filtering, i.e., the quality assessment phase, to ensure
that all the final papers had the information needed to answer our
research questions (see Section 2.2.3). This step led to the final set of
papers analyzed in our study. Of the 15 sources discovered until this
step, all of them passed the quality assessment. Thus, our SLR is based
on such 15 papers. The data extraction process is reported in Section
2.2.4.

It is important to note that the process described above was completely
double-checked by the second author of this paper to ensure the accuracy of
the selection process. To measure the agreement between the two inspectors
in the inclusion/exclusion process, we computed an inter-rater reliability in-
dex: specifically, we measured the widely known Krippendorff’s alpha Krα
[68]. We found it to be 0.98, considerably higher than the 0.80 standard ref-
erence score [69] for Krα. As for the disagreements, the two authors opened
a discussion in order to reach a consensus: as a result, the 15 papers previ-
ously selected as final sources were confirmed as such. The next subsections
overview (i) inclusion/exclusion criteria, (ii) quality assessment process of
the procedure reported above, and (iii) data extraction process.

2.2.2. Inclusion and Exclusion Criteria

To be useful for answering our research questions, a paper passed the
following criteria.

a Exclusion criteria: Sources that met the constraints reported below
were excluded from our study:

• Articles that were focused on other detection techniques rather
than machine learning. This led to the exclusion of 1,958 papers;

• Articles that were not written in English. A set of 13 papers were
excluded;
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• Articles whose full text is not available. Further 411 papers were
excluded.

b Inclusion criteria: Sources that met the constraints reported below
were included in our study:

• All the articles, written in English, reporting machine learning
techniques for code smells detection;

• Articles which introduce new techniques to improve the perfor-
mance of the existing machine learning techniques used for code
smell detection.

It is worth noting that we included all types of papers (i.e., journal,
conference, workshop, and short papers) with the aim of collecting a
set of relevant sources as more comprehensive as possible.

2.2.3. Study quality assessment

The quality of publications was measured after the final selection process.
The following checklist was used to assess the credibility and thoroughness
of the selected publications.

• Q1: Are the code smells detected by the proposed technique clearly de-
fined?

• Q2: Are the independent and dependent variables clearly defined?

• Q3: Is the machine learner classifier clearly defined?

• Q4: Are the evaluation strategies and metrics explicitly reported?

Each of the above questions was marked as “Yes”, “Partially” or “No”.
We considered a study as partial in cases where the methodological details
could have been derived from the text, even if they were not clearly reported.
As an example, consider the case in which a study reports precision and
recall as evaluation metrics: details on the F-Measure of the proposed model
could be simply derived starting from the values of precision and recall,
even though the F-Measure was not explicitly reported. These answers were
scored as follows: “Yes”=1, “Partially”=0.5, and “No”=0. For each selected
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Table 3: Data extraction Form.

Dimension Attribute: Description
Type of Code Smells studied What type of code smells are detected by the proposed system?
Programming Language The technique is applicable to which programming language e.g.

Java, C++ etc.
Machine Learning algorithm used What type of machine learning algorithm(s) has/have been used in

the study?
Independent Variables The predictors used to measure the proneness of a code component

to be affected by a code smell e.g. LCOM, WMC etc.
Dependent Variables The smelliness of a source code component like class level or method

level etc.
Classification Type What type of classification type has been used to report the code

smell detection result e.g. binary classification or multi-valued clas-
sification etc?

Training strategy What type of strategy i.e. within- or cross-project has been used
to train the model?

Validation Techniques What technique has been used to validate the model? E.g. k-fold
cross-validation etc.

Evaluation Metrics What evaluation metrics have been used to assess the accuracy of
the model e.g. Precision, Recall, F Measure, and AUC-ROC etc?

Evaluation Methodology Preliminary: The evaluation is on small systems or small datasets
or only preliminary evidence is given (i.e., proof of concept)
Benchmark: The evaluation uses a dataset that
was published by other authors or the dataset used
in this evaluation is later used by other researchers
Human subjects:

• Academic: Students or non-professional developers partici-
pated in the evaluation

• Professional: Professional developers participated in the
evaluation of the results

Qualitative: The paper discusses details about the characteris-
tics of the technique/tool and/or some aspects of the results
Comparison with other approaches: Compar-
isons of the authors approach with existing solutions
Unknown/none: There is no evaluation performed, or the
details are not available

Dataset What data set has been used to train the model? The list of the
software projects upon which code smell detection techniques have
been applied.

Limitations The limitation of the existing technique

primary study, its quality score was computed by summing up the scores of
the answers to all the four questions.
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Table 4: The Reviewed Primary Studies

Ref. Title Author Year Publication Type
[S01] Code Smell Detection: Towards a Machine Learning-Based Approach Arcelli Fontana et al. 2013 Conference
[S02] Tracking Design Smells: Lessons from a Study of God Classes Vaucher et al. 2009 Conference
[S03] A Bayesian Approach for the Detection of Code and Design Smells Khomh et al. 2009 Conference
[S04] IDS: An Immune-Inspired Approach for the Detection of Software Design Smells Hassaine et al. 2010 Conference
[S05] Bad-smell prediction from software design model using machine learning techniques Maneerat and Muenchaisri 2011 Conference
[S06] SMURF: A SVM-based Incremental Anti-pattern Detection Approach Maiga et al. 2012 Conference
[S07] Can I clone this piece of code here? Wang et al. 2012 Conference
[S08] Support vector machines for anti-pattern detection Maiga et al. 2012 Conference
[S09] Experience report: Evaluating the effectiveness of decision trees for detecting code smells Amorim et al. 2015 Conference
[S10] Code smell severity classification using machine learning techniques Arcelli Fontana and Zanoni 2017 Journal
[S11] Adaptive Detection of Design Flaws Kreimer 2005 Journal
[S12] BDTEX: A GQM-based Bayesian approach for the detection of antipatterns Khomh et al. 2011 Journal
[S13] Comparing and experimenting machine learning techniques for code smell detection Arcelli Fontana et al. 2016 Journal
[S14] Deep learning code fragments for code clone detection White et al. 2016 Conference
[S15] Classification model for code clones based on machine learning Yang et al. 2015 Journal

The process was performed by the first two authors of this paper, who
jointly evaluated each source. We classified the quality level into High (score
= 4), Medium (2 ≤ score < 4), and Low (score < 2). We selected 15 studies
that scored in high and medium levels as our final selection.

2.2.4. Data extraction

Once we had selected the final papers to be used for the SLR, we pro-
ceeded with the extraction of the data needed to answer our research ques-
tions. Specifically, we relied on the data extraction form presented in Table
3. Besides the information about the specific attributes under consideration,
e.g., the code smell types considered in the selected papers, we also reserved
a field aimed at reporting possible limitations of the considered studies. This
eased the process of finding limitations of existing work as well as guidelines
for future research.

While the extraction of the attributes needed to answer our research
questions was conducted by the first author of this paper, the limitation field
was filled out by all the authors, who individually reasoned and reviewed all
the papers in order to find possible limitations. The individual considerations
were then merged together by the first two authors.

3. Results

Before reporting the results of the SLR with respect to the considered
research questions, in this section, we provide a brief overview of the demo-
graphics of the papers which passed the inclusion/exclusion criteria and the
quality assessment.
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3.1. Demographics

Table 4 reports the final list of relevant primary studies that were ana-
lyzed in this SLR, while column ’Year’ and ’Publication Type’ reporting the
number of papers published in journals and conferences over the years. As
it is possible to observe, all the considered papers were published between
2005 and 2017; 60% of these primary studies were published after 2012, pos-
sibly highlighting a growing trend that is now in the process of becoming a
more established discipline. Moreover, we observed that 67% of the primary
studies were published in conference proceedings, while the remaining 33%
in international journals: this data seems to remark that articles published
so far mostly report preliminary insights on how machine learning can be
exploited for code smell detection.

Looking more in-depth to the authors of the papers in Table 4, we noticed
that almost 60% of them was co-authored by researchers coming from two
specific research groups, i.e., the ones at the University of Milano-Bicocca
(Italy) and the École Polytechnique de Montréal (Canada), which indeed
represent the current institutions of the researchers who contributed most
to this research area, i.e., Arcelli Fontana2 and Khohm3, respectively. Thus,
analyzing the primary studies we could derive two main expert institutions
that can be considered the reference for young researchers interested in ap-
proaching the topic.

In Summary. Looking at the number and types of papers pub-
lished by the research community, we concluded that the adoption
of machine learning techniques for code smell detection still possibly
presents open challenges. Furthermore, we identified two specific re-
search groups that can be considered as a reference for researchers
interested in embracing the topic.

3.2. RQ1 - Code Smells Considered

In our SLR, we found that previous research focused on the 20 different
code smells listed in Table 5, along with the frequency of appearance in the
primary studies. As it is possible to observe, the God Class smell is the one
considered most, i.e., 11 of the primary studies analyzed it. This result was

2https://scholar.google.it/citations?user=8Z20aIMAAAAJ.
3https://scholar.google.com/citations?user=YYXb3KIAAAAJ.
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somehow expected, since this smell historically received more attention than
others [48], other than being one of the most harmful for developers [31, 37].

Other smells frequently considered are Long Method with 6, Feature Envy
with 5, and Functional Decomposition and Spaghetti Code with 4 references in
the primary studies. The reason here is strictly connected with the research
methodology adopted by the authors of these papers: as better explained
later in Section 3.3.2, most of the previous studies relied on automated de-
tectors to identify the dependent variable of the prediction models experi-
mented. Therefore, the choice of the code smells to analyze was somehow
driven by the availability of detectors. One of the most used tools is Decor
[40], which is indeed able to identify the code smells that were considered
most in the primary studies.

Code smells like Data Class, Swiss Army Knife, and Duplicated Code were
also considered a few times, while the appearance of the remaining ones can
be considered occasional. Thus, we can conclude that the existing literature
did not consider a variety of other code smells [6, 70], e.g., the Inappropriate
Intimacy [6], that might also be potentially harmful to developers [31, 37]
and for which more automated support would be needed. As a matter of
fact, the use of machine learning for code smell detection only represents a
partial solution that cannot be still extensively adopted by developers.

Interestingly, in the primary studies analyzed we found only one approach
able to identify 12 code smells simultaneously, whereas the others limit their
detection to at most 3 smell types. This means that developers can only rely
on machine learners that cope with a limited set of code smells.

Summary for RQ1. God Class, Long Method, Functional Decomposi-
tion, and Spaghetti Code are the smells more considered in the context of
machine-learning based detection. Nevertheless, a large variety of other
code smells from both the catalogs by Fowler [6] and Brown et al. [70]
have not been considered. So, overall, we found that the research com-
munity only provided limited support for the identification of code smells
through machine learning models.

3.3. RQ2 - Machine Learning Setup
The second research question of our SLR was related to the way machine

learners used in literature were configured. Specifically, we aimed at under-
standing (i) independent and dependent variables considered, (ii) classifiers
exploited, and (iii) training strategies adopted. The following subsections
detail the results of our analyses.
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Table 5: Code smells identified via SLR mentioned in the previous code smell
detection literature.

S.No Code Smell Frequency Cited
1 God Class 11 [S01], [S02], [S03], [S04], [S06], [S08], [S09],

[S10], [S11], [S12], [S13]
2 Long Method 6 [S01], [S05], [S09], [S10], [S11], [S13]
3 Feature Envy 5 [S01], [S05], [S10], [S11], [S13]
4 Spaghetti Code 4 [S04], [S06], [S08], [S12]
5 Functional Decom-

position
4 [S04], [S06], [S08], [S12]

6 Data Class 3 [S01], [S10], [S13]
7 Swiss Army Knife 3 [S06], [S08], [S09]
8 Duplicated Code 3 [S07], [S14], [S15],
9 Lazy Class 2 [S09], [S11]
10 Long Parameter

List
2 [S05], [S09]

11 Message Chain 2 [S05], [S09]
12 Antisingleton 1 [S09]
13 Class Data should

be Private
1 [S09]

14 Complex Class 1 [S09]
15 Refused Parent Be-

quest
1 [S09]

16 Speculative Gener-
ality

1 [S09]

17 Delegator 1 [S11]
18 Middle Man 1 [S05]
19 Switch Statement 1 [S05]
20 Large Class 1 [S13]

3.3.1. RQ2.1 - Independent Variables

The independent variables of a machine learning model, also called fea-
tures or predictors, play a significant role to enable good prediction perfor-
mance. To properly analyze the types of predictors used in the primary
studies, we firstly grouped metrics according to their design goal. Specifi-
cally, we followed the metric classification framework provided by Pressman
[71] and Nunez et al. [72] to categorize the independent variables exploited
by the primary studies. For instance, the Lines of Code (LOC) [73] metric
was assigned to the Size category since it aims at measuring the length of
a source code file, whereas the Lack of Cohesion Between Methods (LCOM)
[74] was considered as a Cohesion metric.

This process was conducted for each primary study. The number of stud-
ies which relied on each of the identified categories is shown in Figure 2. As a
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Table 6: Independent variables grouped into categories and list of metrics in each
category

S.No Category Metrics Studies Smells Detected

1

Size LOC, LOCNAMM, NOM, NOPK, NOCS, NOMNAMM, NOA

[S01-2013],
[S10-2017],
[S13-2016]

God Class, Data Class, Long
Method, and Feature Envy

Complexity CYCLO, WMC, WMCNAMM, AMWNAMM, AMW, MAXNESTING, WOC,
CLNAMM, NOP, NOAV, ATLD, NOLV

Coupling FANOUT, FANIN, ATFD, FDP, RPC, CBO, CFNAMM, CINT, CDISP, MaMCL,
MeMCL, NMCS, CC, CM

Encapsulation LAA, NOAM, NOPA
Inheritance DIT, NOI, NOC, NMO, NIM, NOII
Cohesion LCOM5, TCC
Others NODA , NOPVA, NOPRA, NOFA, NOFSA, NOFNSA, NONFNSA, NOSA, NON-

FSA, NOABM, NOCM, NONCM, NOFM, NOFNSM, NOFSM, NONFNABM,
NONFNSM, NONFSM, NODM, NOPM, NOPRM, NOPLM, NONAM, NOSM

2

Size LOC, LOC 1, MLOCsum, NAD, NADExtended, NMA, NMD, NMDExtended,
NOM

[S09-2015]

Antisingleton, God Class, Class
Data Should Be Private,
Complex Class, Large Class,
Lazy Class, Long Method, Long
Parameter List, Message Chains,
Refused Parent Bequest,
Speculative Generality, and
Swiss Army Knife

Complexity WMC, McCabe, NOF, NOP, NOParam, Vgsum, WMC1, WMC New
Coupling CBO, RFC, CA, CE, CAM, ACAIC, ACMIC, DCAEC, DCC, DCMEC, IR, NCM,

NOTI, RFC New, connectivity
Encapsulation DAM
Inheritance DIT, NOC, MFA, AID, CLD, DIT 1, ICHClass, NMI, NMO, NOA, NOC 1, NOD,

NOH, NOPM
Cohesion LCOM, LCOM3, LCOM1, LCOM2, LCOM5, cohesionAttributes
Others NPM, MOA, IC, CBM, AMC, DSC, NOTC, SIX

3

Size NAD, NADextended, NCP, NMA, NMD, NMDextended, NOM, PP

[S04-2010]
God Class, Functional
Decomposition, and Spaghetti
Code

Complexity CIS, McCabe, NOParam, WMC1, WMCinvocations, WMCmccabe
Coupling ACAIC, ACMIC, CAM, CBO, CBOingoing, CBOoutgoing, connectivity, CP,

DCAEC, DCCdesign, DCMEC, FanOut, NCM, RFP, RTP
Encapsulation DAM
Inheritance AID, ANA, CLD, DIT, EIC, EIP, ICHClass, MFA, NMI, NMO, NOA, NOC, NOD,

NOH, NOP, NOPM, PIIR
Cohesion cohesionAttributes, LCOM1, LCOM2, LCOM5
Others DSC, MOA, REIP, RPII, RRFP, RRTP, SIX

4

Size LOC, NAD, NADextended, NMA, NMD, NMDextended, NOM

[S06-2012],
[S08-2012]

God Class, Functional
Decomposition, Swiss Army
Knife and Spaghetti Code

Complexity McCabe, NOParam, WMC, WMC1, CIS
Coupling ACAIC, ACMIC, CAM, CBO, CBOingoing, CBOoutgoing, connectivity, DCAEC,

DCMEC, IR, NCM, NOTI, RFC, DSC, DCC
Encapsulation DAM, NPrM
Inheritance AID, ANA, CLD, DIT, ICHClass, MFA, NMI, NMO, NOA, NOC, NOD, NOH,

NOP, NOPM
Cohesion cohesionAttributes, LCOM1, LCOM2, LCOM5
Others MOA, SIX, USELESS

5

Size NA, NC, NM, NO, ACT, COMP, NS

[S05-2011]

Lazy Class, Feature Envy,
Middle Man, Message Chains,
Long Method, Long Parameter
Lists and Switch Statement

Complexity RFC, WAC, WMA, NP
Coupling CBC
Encapsulation AHF, AlF, CF, MHF, MIF, PF
Inheritance DIT, NOC, NAI, NOI
Class Employ-
ment

C PARAM

Diagrams D APPEAR
Relationship ABSTR R, ASSOC R, DEPEND R

6
Size No of instance variables of a class, Median of the number of statements of all methods

of a class, Median of complexities of all methods of a class [S11-2005]
Lazy Class, God Class,
Delegator, Long Method,
Feature EnvyComplexity NOP, NOLV

Coupling No of internal connected components, No of external connected components

7

Size LOC

[S07-2012] Duplicate Code
Coupling Number of Invocations, Number of Library Invocations, Number of Local Invoca-

tions, Number of Other Invocations, Number of Field Accesses
Process History Features (Existence-Time, Number of Changes, Number of Recent Changes,

File Existence-Time, Number of File Changes, Number of Recent File Changes),
Destination Features (Whether it is a Local Clone, Fine Name Similarity, Masked
File Name Similarity, Method Name Similarity, Sum of Parameter Similarities, Max-
imal Parameter Similarity, Difference on Only Postfix Number)

8

Size NMD, NAD
[S02-2009],
[S03-2009],
[S12-2011]

God Class, Functional
Decomposition, and Spaghetti
code

Encapsulation NAM (Number of Accessor Method)
Cohesion LCOM5
Textual ControllerClass rule (a controller class can be identified by its name or its method

names, which must contain terms indicative of procedural programming: Process,
Control, . . .)

9 Textual Tokenized source code e.g. terms of the class and programming constructs used in
the class etc.

[S14-2016], [S15-
2015]

Duplicate Code

result, we found that previous studies have almost never used a single group
of software metrics except for two studies [S14] and [S15], but rather they

20



Figure 2: Bar chart reporting the number of primary studies adopting each of the
metric category identified.

adopted, overall, nine different combinations of metrics. Table 6 reports the
whole list of metric combinations: for each of them we also report (i) in-
formation about the specific metrics belonging to that combination, (ii) the
primary studies adopting it, (iii) the total number of features exploited, and
(iv) the code smell types detected by relying on it. Note that we also had a
category called Others, that includes the metrics that are out from the con-
sidered metric classification framework: for instance, the feature DSC, i.e.,
Number of top-level entities in a model, was included in this category. All
the metrics given in Table 6 are defined in AppendixB.

Looking deeper into the results, we basically observed how most of the
code smell prediction models built so far relied on source code metrics able
to capture the structural characteristics of a piece of code. The Chidamber
and Kemerer (CK) metrics [74] were the most popular ones and were used
by almost all the primary studies. The CK metrics suite originally con-
sists of 6 metrics calculated for each class: WMC, DIT, NOC, CBO, RFC,
and LCOM1. Likely, such a test suite was mostly selected because it con-

21



tains metrics that can capture different aspects of source code, e.g., cohesion,
coupling or complexity. Thus, they represented the starting point to build
machine learning approaches for code smell detection. The frequency of each
metrics used across the studies is illustrated in Figure 3.

Besides them, a variety of other structural-based metrics were used to
complement the assessment doable with the CK suite. For instance, the
primary studies [S01], [S10], and [S13] customized some existing metrics to
better capture the structure of source code elements: in particular, they cre-
ated alternative versions of CK metrics that do not account for the accessor
methods (getters and setters).

Other metrics such as the ones falling into the Encapsulation and Inher-
itance categories were instead considered as predictors starting from 2009
and 2011 respectively. This likely indicates the willingness of the research
community to explore new metrics for improving the prediction performance
of code smell detectors based on machine learning.

To broaden the scope of the discussion, our results clearly indicate the
absence of studies investigating metrics different from the structural ones,
that have been shown to be pretty effective when employed for code smell
detection [44, 43]. Indeed, we found only one primary study relying on a com-
bination of product and process metrics (i.e., [S07]): nevertheless, it aimed at
predicting the existence of a single smell, i.e., Duplicate Code. Similarly, the
use of textual-related information is rather scarce. Even though five primary
studies relied on it ([S02], [S03], [S12], [S14], and [S15]), they adopted very
basic textual metrics such as (i) string tokenization to identify Duplicate Code
instances ([S14] and [S15]) or (ii) rules based on naming conventions to de-
tect God Class, Functional Decomposition, and Spaghetti Code smells ([S02],
[S03], and [S12]). Given the strong complementarity of such metrics [43, 33],
we believe that their wider adoption could provide substantial improvements
in the way machine learning approaches perform. At the same time, none of
the surveyed studies adopted further alternative metrics like dynamic met-
rics [75] or metrics able to identify separation of concerns [76]. Intuitively,
such metrics can perfectly fit the detection of many code smell types. For
instance, dynamic metrics might be nicely adopted for the detection of Mes-
sage Chains instances, whose definition is related to methods performing a
long series of method calls. At the same time, concern separation metrics
are already considered effective in the detection of code smells like Diver-
gent Change and God Class [76], as they can quantify properties of concerns
such as scattering and tangling [77]. We believe that the inclusion of those
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Figure 3: Frequency of each metric, belongs to various categories, used across the
studies

metrics can significantly boost the performance of existing approaches and,
perhaps more importantly, they can be adopted to detect more code smells
at different levels of granularity. As an example, we envision the adoption
of concern separation metrics for the detection of code smells characterizing
poor modularization, e.g., Promiscuous Package [78].

Perhaps more importantly, none of the previous studies took into consid-
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Figure 4: Pie chart showing the classification types used across the primary studies

eration developer-related information (e.g., developer’s experience or work-
load) that have been successfully exploited in other software engineering con-
texts such as, e.g., bug- or change-prediction [79, 80, 81, 82]. When it turns
to code smell detection, such factors might be even more important given the
subjectivity with which they are interpreted by developers: in other words,
they might be exploited with the aim of recommending to developers the
code smells that are more critical for them based on their expertise or their
workload in a certain moment. Thus, we believe that their integration repre-
sents an important opportunity for researchers in order to eventually bridge
the gap between the research on the topic and the practice.

Summary for RQ2.1. Most of the primary studies analyzed relied on
product metrics. The CK metric suite is the most used one. Neverthe-
less, we observed a noticeable lack of studies investigating the usefulness
of process and textual metrics, which have been shown to be a good al-
ternative source of information for detecting code smells. At the same
time, we noticed the complete absence of the analysis of developer-related
metrics, which might represent an important opportunity to reduce the
subjectivity in the interpretation of code smells.
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3.3.2. RQ2.2 - Dependent Variable

The dependent variable of a code smell prediction model provides in-
formation about the smelliness of a software artifact. A classification type
defines the kind of output produced by a code smell prediction model. Fig-
ure 4 depicts the different classification types that have been used by the
primary studies. As it is possible to observe, the Binary and Probability
categories are the ones more used. In the former scenario, a model simply
aims at discriminating whether a software artifact is affected by a smell or
not, whereas in the latter one the goal is to predict the likelihood—usually in
the range between 0 and 1—of a source code entity to be smelly. The basic
difference between the two classification methods is related to the selection of
a threshold, that in the Binary context is used to distinguish those elements
affected by code smells.

Besides them, the Severity Level classification was used by 20% of the
primary studies. In this context, the dependent variable is represented by
a nominal value reporting the intensity of a design issue. For instance, in
source [S10] the authors used a four-level scale: (i) absence of a smell, (ii)
presence of a non-severe smell, (iii) presence of a smell, and (iv) presence of
a critical smell. Table 7 shows the classification types which have been used
by previous models to predict the 20 code smells identified via this SLR.
The smelliness of all the code smells except Large Class have been predicted
using Binary classification. Probability classification has been used to predict
only six code smells. Only four code smells God Class, Long Method, Feature
Envy and Data Class have been experimented with all the classification types.

Thus, we could recognize the presence of three different versions of the
problem of code smell detection via machine learning techniques. However,
given some recent results on the costs and risks of code smell removal [83], we
believe that the Severity Level classification, based on independent variables
that include a larger variety of metrics, has not reserved the right attention
from the research community. Therefore, we recommend more empirical
research on this topic.
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Table 7: Code smells identified by models in the literature using various classifi-
cation types.

(a)

Classification
Type

God
Class

Long
Method

Functional
Decomposi-
tion

Spaghetti
Code

Feature
Envy

Data
Class

Swiss
Army
Knife

Duplicated
Code

Lazy
Class

Long Pa-
rameter
List

Binary Y Y Y Y Y Y Y Y Y Y
Probability Y Y Y Y Y Y N Y N N
Severity levels Y Y N N Y Y N N N N

(b)

Classification
Type

Message
Chain

Antisingleton Class Data
should be
Private

Complex
Class

Refused
Parent
Bequest

Speculative
Generality

Delegator Middle
Man

Switch
State-
ment

Large
Class

Binary Y Y Y Y Y Y Y Y Y N
Probability N N N N N N N N N N
Severity levels N N N N N N N N N Y

Summary for RQ2.2. We identified three classification types: (i) the
binary one, (ii) based on probability, and (iii) based on severity. The
latter was involved in 20% of the primary studies, while the others were
employed in 40% of the cases each. Based on our findings, we believe
that more research on the severity-based classification is needed so that
developers can better assess the harmfulness of code smells before their
removal.

3.3.3. RQ2.3 - Machine Learning Algorithms

Our review showed that a large variety of machine learning algorithms,
i.e., 17, were used for code smell detection. Figure 5 depicts the bar chart
reporting the algorithms used along with the frequency of appearance in the
primary studies. Note that in a single primary study, more classifiers might
have been experimented.

As it is possible to see, Decision Trees were investigated by 6 primary
studies. A possible reason lies into the output of this type of models, which
consists of a rule indicating the conditions making a source code element
smelly or not (i.e., a set of predicates aggregated by means of AND/OR
operators): such an output is pretty easy to interpret, giving the opportunity
to properly understand the mechanisms that lead to the detection of a certain
code smell instance [84].

Support Vector Machines were also used a number of times. As
previously reported [85], this classifier can achieve very high performance. At
the same time, it is among the ones that are more complicated to configure
and use in practice [86].
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Figure 5: Frequency of each machine learning algorithm across the primary studies

As for Random Forest, it was used 4 times. Also, in this case, a
likely reason behind its popularity is due to the good performance that this
classifier ensures [87]. Note that we distinguished between decision trees and
Random Forest since the latter can be considered as an ensemble method
[88] rather than a standard classifier.

Other popular machine learning algorithms were Naive Bayes and JRip,
while the remaining ones were used in a lower number of primary studies.

To sum up, the research community experimented a large variety of clas-
sifiers. However, we noticed a lack of studies that investigate the potential of
ensemble techniques, which might notably improve the prediction capabili-
ties of code smell models [88, 89]. Indeed, several other ensemble mechanisms
were devised and tested in the last decade besides Random Forest [88].
Panichella et al. [58] study confirmed that CODEP (COmbined DEfect Pre-
dictor) have achieved higher prediction accuracy than the stand-alone defect
predictors.

Another interesting observation can be done by considering the number
of primary studies that explicitly considered the problem of configuring the
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machine learning algorithm. As widely demonstrated in previous studies
(e.g., in the study by Thomas et al. [90] and Tantithamthavorn et al. [91]),
the configuration of these algorithms can significantly improve or worsen
the overall model performance. Unfortunately, we found that only the study
[S10] addressed this issue by employing the Grid-search algorithm [92], which
explores the parameter space to find an optimal configuration. Thus, we can
conclude that the real role of classifiers is still to evaluate and more research
on this can possibly produce more effective code smell prediction models.

Summary for RQ2.3. Most of the existing studies employed decision
trees or Support Vector Machines as machine learning algorithm.
However, the problem of finding an optimal configuration was not prop-
erly addressed. At the same time, ensemble techniques were almost never
considered as a way to improve the performance of code smell prediction
models.

3.3.4. RQ2.4 - Training Strategies

Figure 6 reports the results for RQ2.4. Note that in one case (related to
[S11]) we could not properly establish the type of training strategy adopted
because this information was missing in the primary study.

The performance of most of the code smell prediction models devised so
far was analyzed in both a within- and cross-project settings, meaning that
the same model was trained once using data coming from the same project
under analysis and once using data from external projects. We found this
a positive result: indeed, as recommended by He et al. [93] and Watanabe
et al. [94] whenever a certain technique is experimented in a cross-project
setting, it should be applied in a within- project setting as well in order to
fairly benchmarking its real capabilities.

Only the study by Arcelli Fontana et al. ([S10]) explicitly targeted the
cross-project scenario, while the remaining ones focused on the within-project
one.

Given the practical complexity of building a dataset of annotated code
smell instances, needed to train a within-project model, we believe that fo-
cusing more on cross-project code smell prediction represents the right choice
to take.

Summary for RQ2.4. Most of the code smell prediction models were
experimented in both a within- and cross-project setting, while 33.33%
of them were only considered in a cross-project scenario.
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Figure 6: Pie chart showing the training strategies used across the primary studies

3.4. RQ3 - Evaluation Setup

Our third research question revolves around the code smell prediction
model evaluation strategies. It basically refers to (i) validation techniques,
(ii) assessment metrics adopted, and (iii) datasets exploited.

3.4.1. RQ3.1 - Validation Techniques

The validation methodologies adopted by the primary studies analyzed
are shown in Figure 7.

The vast majority of them adopted the k-fold cross-validation [95]. Gen-
erally, k is set to 10. In this way, the strategy randomly partitions the original
set of data into 10 equal sized subsets. Of the 10 subsets, one is retained as a
test set, while the remaining 9 are used as a training set. The cross-validation
is then repeated 10 times, allowing each of the 10 subsets to be the test set
exactly once [95].

Although reasonable for an initial validation, the adoption of this strategy
has two limitations that are likely to influence the results of all the primary
studies using it. In the first place, the randomness with which the subsets are
created strongly impact the performance of a prediction model [96]: to cope
with it, the minimum requirement would have been that of repeating the
validation n times, e.g., 100 times as recommended by Hall et al. [96]. Un-
fortunately, none of the primary studies considered this issue and, therefore,
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Figure 7: Pie chart showing the validation techniques used across the primary
studies

their evaluations are strongly threatened.
Perhaps more importantly, a recent study by Tantithamthavorn et al.

[60] demonstrated that this validation strategy is among the most biased
and less reliable. Thus, its use is highly discouraged. To some extent, this
means that all the primary studies relying on k-fold cross-validation should
be re-evaluated in order to empirically analyze the impact of this issue on
the achieved results.

Besides [S11] that adopted the more reliable Leave-one-out system valida-
tion [60], the remaining studies still adopted biased and error-prone methods.
Thus, we conclude that the reliability of the findings provided so far on the
ability of machine learning models to detect code smells is biased and should
be re-evaluated.

Summary for RQ3.1. 93% of the primary studies analyzed relied on a
biased validation strategy that likely led to interpretation errors. Thus,
their empirical re-evaluation is needed.

3.4.2. RQ3.2 - Evaluation Metrics

Figure 8 shows the bar chart reporting the evaluation metrics adopted
by the primary studies. The most widely used is precision, i.e., the ratio
between true and false positives, while the recall was adopted by 10 of them.
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Figure 8: Evaluation metrics used across the primary studies

Other metrics were used less often, but in general, we can observe that the
main target of the conducted evaluations was the overall accuracy of the
prediction models. Only one study ([S14]) adopted Time to evaluate the
training performance of the built model.

More in general, it is important to note that most of the previous studies
relied on threshold-dependent metrics, i.e., metrics whose computation de-
pend on the specific threshold assigned to the machine learner to discriminate
smelly and non-smelly source code elements. As recently shown [96], these
metrics can bias the interpretation of the performance of a prediction model
and should be at least complemented by threshold-independent metrics like
the Area Under the ROC Curve and the Matthew’s Correlation Coefficient
[96]. In this regard, we can claim that existing literature possibly missed an
important piece of information while assessing the real capabilities of code
smell prediction models.

Summary for RQ3.2. Most of the primary studies considered
threshold-dependent metrics that possibly bias the interpretation of the
achieved results. This result confirms that a proper assessment of existing
code smell prediction models would be worthwhile.
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3.4.3. RQ3.3 - Code Smells Datasets

The final step, to understand the evaluation setup of the primary studies,
consisted of the analysis of the datasets exploited. As shown in a recent
work [97], the dataset might influence the performance of machine learning
models. Table 8 reports the list of systems considered in the years. The
studies [S01], [S10], and [S13] conducted experimentations on the Qualitas
Corpus dataset [98], which contains 112 open-source Java systems along
with the code metric values measuring a large variety of structural aspects
of the source code.

Besides them, all the other studies performed small-scale empirical as-
sessments having an object up to 8 software projects. More importantly,
only 3 studies ([S05], [S07], and [S11]) tested their approaches on industrial
datasets.

Besides the size of the dataset, it is also important to analyze the way
the dependent variable (i.e., the smelliness of code artifacts) of such datasets
was identified. We observed that only the work by White et al. [S14] relied
on a manually validated set of code clones; instead, all the other primary
studies estimate the smelliness of source code artifacts by means of existing
code smell detectors. For instance, Arcelli Fontana et al. [S13] firstly ran a
set of detectors over the Qualitas Corpus dataset and then manually eval-
uate a sample of the code smell instances identified by such detectors: while
this process allowed to not consider as smelly the false positive instances,
the dataset could not deal with false negatives, i.e., actual smelly instances
wrongly detected as non-smelly. Thus, such datasets could have missed some
real instances. In other words, there is still a lack of evaluations conducted
on totally manually built datasets containing a comprehensive set of code
smells. Noticeably, some of them are already publicly available [99, 11].

Summary for RQ3.3. We obtained two main findings. On the one
hand, a few studies were performed on a large scale, thus threatening the
generalizability of the reported findings. On the other hand, we found
only one primary study that investigated the performance of machine
learning techniques on manually built datasets reporting a comprehensive
set of code smells.

3.5. RQ4 - Performance Meta-Analysis

The last research question of our study was related to a statistical meta-
analysis of the performance of code smell prediction models. Ideally, this
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Table 8: Datasets used to train code smell detection models in the previous liter-
ature

S.No Systems used in the dataset Studies Dataset type
1 Qualitas Corpus: 20120401r [S01], [S10], [S13] Open-source
2 GanttProject v1.10.2 and Xerces v2.7.0 [S03], [S04], [S12] Open-source
3 ArgoUML v0.19.8, Azureus v2.3.0.6, and Xerces v2.7.0 [S06], [S08] Open-source
4 Eclipse JDT and Xerces [S02] Open-source
5 Eclipse, Mylyn, ArgoUML, and Rhino [S09] Open-source
6 ANTLR 4, Apache Ant 1.9.6, ArgoUML 0.34, CAROL 2.0.5, dnsjava 2.0.0, Hibernate 2, JDK 1.4.2, JHotDraw 6 [S14] Open-source
7 git v1.7.9-rc1, xz 5.0.3, bash 4.2, and e2fsprogs 1.41.14 [S15] Open-source
8 Two large industrial software projects from Microsoft [S07] Industrial
9 Two small industrial software projects [S11] Industrial
10 Seven data sets from software of previous works of literature that have bad smells [S05] Industrial

kind of investigation would have required the complete re-execution of the
prediction models on a common dataset and using common evaluation met-
rics, so that they might have benchmarked. However, this is outside the
scope of a Systematic Literature Review: rather, the goal is to synthesize
the results reported in the primary studies, accepting the limitations that
we observed during the analysis of the previous research questions. In this
study, we analyzed the impact of (i) independent variables, (ii) machine
learning algorithm, and (iii) training strategy on the performance of code
smell prediction models. We kept out of the scope of this analysis the valida-
tion technique because the vast majority of the previous studies applied the
10-fold cross validation (see Section 3.3.3); as a consequence, only a limited
amount of data points is available for the other validation strategies, making
not reliable an analysis like the one proposed herein.

A statistical meta-analysis aims at combining multiple studies in an ef-
fort to increase power over individual studies while improving the estimates
of the effect sizes and resolve uncertainties when different studies disagree
[100, 101]. Indeed, while individual studies are often too small for drawing
reliable generalizable conclusions, their combination might provide less ran-
dom error and narrower confidence intervals [102, 103]. Meta-analyses have
also an important drawback: they cannot correct for the poor design and bias
in the original studies [101]. Nonetheless, the advantages are far more valu-
able than the few downsides if the analyses are carried out and interpreted
carefully. In the context of software engineering, Kitchenham et al. [104]
endorsed the use of meta-analyses. To perform the meta-analysis, we fol-
lowed the guidelines available in the book by Cooper et al. [100]; this is the
same methodology already successfully adopted in previous meta-analyses
conducted in the context of software engineering research [105, 106, 107].

The first step in a meta-analysis is that to compute, from each of the indi-
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vidual studies, the outcome of interest and summary statistics. As explained
in Section 3.4.2, not all the previous studies assessed the performance of the
proposed models in the same way. To have a common basis and conduct a
fair comparison, we only considered the papers that evaluated the code smell
prediction models in terms of overall precision, recall, or F-Measure: we se-
lected these metrics since they were used in most of the other sources. We
used Comprehensive Meta-Analysis v2 [108] to calculate effect size estimates
for all the F-Measure values in the primary studies. It is worth noting that,
to be comparable across studies, effect sizes must be standardized. To this
aim, we used Hedges’ g as the standardized measure of effect size. Basically,
this represents the difference between the outcome means of the treatment
groups, but standardized with respect to the pooled standard deviation and
corrected for small sample bias [108]. An effect size value of 0.5 indicates
that the mean of the treatment group is half a standard deviation larger
than the mean of the control group, while (i) effect sizes larger than 1 can be
considered large, (ii) effect sizes between 0.38 and 1.00 medium, and effect
sizes between 0 and 0.37 small [108].

In the second stage, individual studies are summarized. While different
methods have been proposed in meta-analysis research [100], the inverse-
variance method [109] is the most recommended and widely used [110]. It
basically assigns a higher importance to larger studies and less to smaller
ones. Moreover, as recommended by Cooper et al. [100], we defined fixed
and random effect models. The former assumes the existence of one source of
variability: the within-study error, for which the contribution of each study
is proportional to the amount of information observed in that study. As a
consequence, this implies that the differences among studies are solely due
to sampling error, i.e., the size of a study. However, the assumption of only
one source of variability might not always hold and, therefore, the second
source of control is usually taken into account: this is the random effect (also
known as between-study error), that assumes that the differences among in-
dividual studies are due to both sampling error and other variables/factors
that have not been accounted for. Modeling the problem in this way, we
could provide an overview of what are the factors influencing more the perfor-
mance of the models proposed so far. To implement these analyses (including
inverse-variance weighting schema and fixed/random effects), we relied on
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the forestplot package4 available in the R toolkit. In the following section,
we report and discuss the results obtained when analyzing the forest plots.

3.5.1. RQ4.1 - Impact of Independent Variables

Figure 9 reports the forest plot of the performance of various code smell
prediction models trained on different independent variables. The complete
list of independent variables in each set (A-G) is given in AppendixC. The
primary studies given in Figure 9 have either explicitly mentioned the pre-
cision, recall, and F-measure values or could be computed by us. F-measure
value has been used to analyze the impact of the independent variables on
the performance of code smell prediction models. When multiple code smell
types have been considered by a certain primary study, we computed and re-
ported in Figure 9 the average F-Measure obtained over the different smells.
It is important to note that in our case the average can be considered as
a valid aggregator because all the code smell types have been detected us-
ing the same set of independent variables and thus the average can actually
represent the ability of certain variables in detecting different smells.

As it is possible to see, the overall performance, with 95% of the con-
fidence interval, is ≈81%, meaning that the reported F-Measure of the pri-
mary studies is extremely high and overcome the general accuracy obtainable
using heuristic-based approaches [48]. In this case, both fixed- and random-
effects converge over a similar conclusion, without contrasting result: this
means that the results hold independently from eventual confounding effects
present in the individual studies. More in detail, our data reports that hav-
ing a large number of metrics able to capture different aspects of source code
significantly helps a code smell prediction model to perform better. Specifi-
cally, the models presented in the studies [S01] and [S13] were the ones using
the largest amount of independent variables and that also included ad-hoc
metrics such as the LOC without Accessor Methods (LOCNAMM). They
reached the highest F-measure values, quantifiable in 91.29% and 97.44%,
respectively. Similarly, the metrics set used in the study [S04] also consists
of a number of different independent variables, leading the model to perform
with an F-measure of 90.59%. The difference in the performance might re-
flect the importance of a good selection of metrics able to characterize the
symptoms behind the presence of code smells. The independent variables in

4https://cran.r-project.org/web/packages/forestplot/forestplot.pdf
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Figure 9: Performance of code smell prediction models based on the different
combination of independent variables adopted by the primary studies.

the sets B, C, and D (studies [S06], [S09] and [S04]) are almost the same
with small differences related to the number of chosen metrics; however,
the difference in the performance of the models trained on these indepen-
dent variables shows that the selection of independent variables has an effect
on the performance achieved by the models. At the same time, the set E
(study [S05]) has independent variables categories Diagrams, Relationship,
and Class Employment that are unique and produced good performance. Fi-
nally, the independent variables in sets F and G were used to train models
able to predict the Duplicate code smell by studies [S07] and [S15], respec-
tively. The independent variables in set F perform better than the set G,
that consists of source code text metrics whereas set F contains size, coupling
and process metrics. This may suggest that textual-related information can
provide additional and orthogonal information to improve the performance
of existing models.

The observations made above allow us to address our research question:
the selection of proper independent variables has an important impact on
the performance of code smell prediction models. Based on our data, such
an impact can be up to 29%.
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Summary for RQ4.1. The proper selection of independent variables
impacts the performance of code smell prediction models up to 29%.
The specification of ad-hoc metrics able to capture the symptoms of
specific code smell types seems to be a key factor for the creation of good
prediction models.

3.5.2. RQ4.2 - Impact of Machine Learning Algorithm on Performance

Figure 10 depicts the forest plot showing the performance of the different
machine learners adopted by the primary studies in the detection of code
smells. We only analyzed five machine learners because for the rest of the
machine learners the frequency is quite low and therefore they cannot be con-
sidered for robust analysis. As done for the previous analysis, in case multiple
code smell types have been considered by a primary study, we computed and
reported the average F-Measure obtained over the different machine learners
considered. Also, in this case, both fixed- and random-effects did not provide
contrasting results: with a confidence interval of 95%, the overall performance
is ≈79%. From the plot, we observed that models based on JRip and Ran-
dom Forest seem to provide better performance than the others. Similarly,
models based on tree-based classifiers also performed well and could achieve
an F-measure value up to 83%. The performance of SVM (Support Vector
Machine) and Naive Bayes classifiers were found to be pretty limited when
compared to the other classifiers. In this regard, it is worth mentioning that
the SVM model was experimented by Fontana et al. in studies [S01] and [S13]
and produced quite good performances in predicting code smells: likely, this
difference was due to the steps conducted by the authors, which included
parameter optimization and standardization; this may further suggest that
such operations are vital to achieve better performance. At the same time,
the dataset exploited in those studies was also the largest available one, with
one-third smelly and two-third non-smelly instances, manually validated.

All in all, we can conclude that JRip and Random Forest are the most
reliable classifiers for predicting code smells. A likely reason is concerned
with their ability to automatically selecting the most important features to
use in the prediction. However, our findings reveal that an appropriate se-
lection of classifiers is important since this choice impacts by up to 40% the
performance of code smell prediction models.
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Figure 10: Performance of machine learning algorithms

Summary for RQ4.2. Among all the classifiers experimented by the
primary studies, JRip and Random Forest were reported as the most ef-
fective. However, we discovered that a wrong selection of the machine
learning algorithm to use impacts the performance of code smell predic-
tion models by up to 40% in terms of F-Measure.

3.5.3. RQ4.3 - Impact of Training Strategies

In the case of training strategies, we could directly compare within- and
cross-project models by extracting data from the primary studies that tested
both of them. For this reason, we excluded from this analysis those stud-
ies not reporting experimentations in both the contexts. Our findings are
reported in Figure 11. We could also report the Odds Ratio [111] (OR), a
measure that quantifies how much the within-project models are better than
the cross-project ones in terms of F-Measure: more specifically, this metric
can estimate the extent to which one training strategy has been found in
literature to be better than the other one. For instance, if the OR of the
within-project strategy in comparison with the cross-project one is 1.10, this
indicates that it is 10% better than the cross-project strategy.

As expected, within-project models constructed using data coming from
the same project where the predictions are applied perform generally better
than cross-project models. Overall, we observed that within-project models
have performance about two times better than cross-project ones (OR=1.9).
Likely, this is due to the well-known phenomenon of data heterogeneity [112],
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Figure 11: The impact of training strategy on the performance of CSD models.

i.e., data coming from external projects have a different metric distribution
and cannot be easily used to train models that work on different datasets. To
partially solve this problem, some approaches were proposed in the field of
bug prediction (e.g., external data filtering approaches [113]): the assessment
of such mechanisms in the context of code smell prediction models would be
worthwhile. In the worst case, cross-project models have performance ≈19%
lower than the one reported for within-project ones. The result holds for all
the code smells considered by existing approaches. The only exception to this
discussion is related to the Spaghetti Code smell: in this case, a cross-project
strategy slightly performs better. We cannot speculate on the reasons behind
this result since it might be due to several reasons. In our future research
agenda, we plan to further study this point.

Summary for RQ4.3. Data heterogeneity plays a role in code smell
prediction. We found that cross-project models are up to 19% less effec-
tive than within-project ones. We cannot conclude that within-project
trained models are better. The higher performance may be attributed to
the over-fitting of the model. It also explores that, the data drift problem
has not been solved in machine learning based code smell detection.

4. Discussion and Implications

At the end of our analyses, in this section, we further discuss the main
findings of our work as well as delineate guidelines and future trends that
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Table 9: Code smell types shown as harmful for developers by previous research.

Name Description
Class Data Should Be Private A class exposing its attributes.
Inappropriate Intimacy Two classes exhibiting high coupling between them.
Middle Man A class delegating all its work to other classes.
Orphan Variable of Constant Class A class containing variables used in other classes.
Refused Bequest A class inheriting functionalities that it never uses.
Speculative Generality An abstract class that is not actually needed, as it is not specialized by any other class.
Tradition Breaker A class that does not fully extend the parent class and has no subclasses.

the research community might be interested in. For the sake of clarity, in
the following we also reported the specific research question relating to the
discussed point.

• RQ1 - Limited support to identify and prioritize code smells using ma-
chine learning techniques. Looking at the types of code smells that
have been subject of an investigation by researchers in the past (RQ1),
we can clearly delineate a lack of machine learning-based automated
solutions for the detection of code smells. Indeed, we showed that only
a few design problems, God Class, Long Method, Functional Decom-
position, and Spaghetti Code, have received some attention, while the
capabilities of machine learning in detection of the vast majority of
the code smells in the catalog by Fowler [6] and Brown et al. [70] are
still not assessed or only preliminarily evaluated. More importantly,
some of the non-supported smells, e.g., Refused Bequest [6], have been
shown to be harmful to developers by recent studies [31, 114]: as a
consequence, the first recommendation is: start from the empiri-
cal investigations on code smell harmfulness when deciding
which of them a machine learning approach should target. To
ease the work of researchers of the field, we summarized the studies on
code smell perception in order to come up with a detailed list of design
problems that need to be investigated further. This list is reported in
Table 9: it is composed of seven code smells that are not related to
source code complexity or misplacement of code elements. Rather, we
observed that major attention should be given to inheritance-related
and coupling-related code smells.

• RQ2 - Research in code smell prediction is stuck in a local optimum.
Most of the approaches defined so far rely on structural code metrics
as independent variables. We believe that this represents an important
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limitation that might possibly lead existing techniques to provide a sub-
optimal support to practitioners. More specifically, recent research has
shown how code metrics are not enough to characterize neither code
smells [115, 116, 117] nor the developers’ perception of design problems
[33]. To overcome these limitations, the adoption of a broader set of
metrics exploiting different types of information, i.e., textual, histor-
ical, dynamic, and concern separation aspects, could be beneficial to
devise more effective solutions that are also closer to the way developers
perceive and identify code smells. Thus, a clear opportunity for future
research is to investigate the impact of other sources of infor-
mation for the classification of code smell instances. Even more
importantly, we believe there is a need for developer-oriented meth-
ods that take into account the developers’ characteristics to perform
predictions on code smells that are relevant to them.

• RQ2 - Prioritization approaches are still missing. Only a small amount
of works (20%) focused on the problem of code smell prioritization: as
the intensity of code smells represents one of the key aspects when
scheduling refactoring operations [31] and given the great potential
that machine learning has in mitigating the subjectiveness with which
code smells are interpreted [51], we highlighted a lack of studies that
investigate how machine learning-based approaches can be adapted for
prioritization purposes. Thus, we argue that more specific tools that
capture the actual severity of code smells would be needed
[118].

• RQ2 - Existing machine learning approaches were not properly config-
ured. In the context of our systematic literature review, we pointed
out several aspects related to the settings of existing machine learning
approaches that might have potentially biased the results achieved so
far. A clear example is related to the configuration of the algorithms
exploited (e.g., Support Vector Machine). We argue that a closer
look into the way machine learning techniques are configured
is needed to properly interpret their results.

• RQ2 - A more comprehensive overview of machine learning perfor-
mance is needed. We observed that a number of classifiers have been
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used by previous research to predict the smelliness of source code. How-
ever, there is still a lack of understanding on the role of ensemble
techniques for code smell prediction. As ensemble techniques ap-
plied to defect predictors have produced higher prediction accuracy
than stand-alone defect predictors [58]. This is a clear opportunity for
the research community in order to improve the detection of design
issues [119].

• RQ3 - On the Validation of Machine Learning Techniques. Our find-
ings revealed that previous studies are affected by several threats to
the validity with respect to the validation strategies used to measure
the performance of the proposed models. In essence, we recommend
the adoption of the guidelines by Hall et al. [96] for the correct setup of
empirical investigations. Particular attention should be devoted to the
interpretation of the performance of machine learning models
through threshold-independent metrics and the application of pre-
processing techniques such as feature selection and data balancing to
correctly set up the machine learner. Finally, we observed the need for
manually validated dataset reporting the actual set of code smells
affecting software systems.

• RQ4 - On the Impact of Machine Learning Settings. The meta-analysis
we performed highlighted that each of the treated aspects, i.e., inde-
pendent variables, machine learning algorithm, and training strategy,
might have a considerable impact on the performance of machine learn-
ing approaches. This is a key aspect to take into account for future
research: a proper assessment of the impact of each aspect re-
lated to the settings of machine learning approaches should
be performed, in order to ease the interpretation of the performance
as well as the sensibility of the technique to different settings.

We believe that each of the points above deserves dedicated studies and
research. At the same time, we call for more sound and rigorous data analysis
processes.

5. Threats to Validity

The main threats affecting the validity of our SLR are related to the way
we selected and extracted the data used for our analyses.
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The most important challenge for any SLR is related to the identification
of an effective and complete set of search terms. To mitigate threats in
this regard, we defined a detailed search strategy: once we had extracted
the first set of keywords from the research questions we posed, we identified
synonyms or alternative spellings and then we verified the presence of such
terms in the relevant papers. Moreover, it is important to note that the
steps leading to the selection of the relevant papers were double-checked by
the second author of this paper. In addition to the automated search in
the publication databases selected, we also performed snowballing in order
to find other relevant papers. Finally, we conducted an additional manual
search over the papers published at the top software engineering venues in
the last ten years.

The study selection process was carried out by applying the exclusion
and inclusion criteria. It was performed in two steps: firstly, the first author
of the paper applied the criteria and filtered out non-relevant papers and
then the second author double-checked the selection process. As a result, the
agreement between them was very high: this somehow confirms the validity
of the whole process.

As for the quality assessment and data extraction process, we set up a
formal procedure leading to the definition of (i) a checklist for verifying the
presence of the needed information in the selected publications and (ii) a
data extraction form to gather information that allowed us to answer our
research questions.

Other threats are related to the meta-analysis performed when comparing
the performance reported in the primary studies. In doing such an analysis,
we employed fixed and random effect models [103] based on the F-measure
of the approaches proposed in the literature. While this can be considered as
a standard methodology to combine and synthesize the results of individual
studies [103], it is important to note that, by nature, this method cannot
correct for the poor design and bias in the original studies [101]. We ac-
cepted this limitation with the aim of providing a general overview of the
impact of independent variables, machine learning algorithms, and training
strategy on the performance of code smell prediction models. A detailed
benchmark analysis featuring the re-execution of all prediction models on a
common dataset is part of our future research agenda and would definitively
strengthen the conclusions provided by this study.
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6. Conclusion

This paper reported a Systematic Literature Review on the use of machine
learning techniques for code smell detection. It targeted four specific aspects
related to how previous research conducted experimentations on code smell
prediction models, i.e., (i) which code smells have been considered, (ii) what
has been the machine learning setup adopted, (iii) which types of evaluations
strategies have been exploited, and (iv) what are the claimed performance of
the proposed machine learning models. Our work was conducted on papers
published between 2000 and 2017. From an initial population of 2,456 papers,
we analyzed 15 of them proposing machine learning approaches for code smell
detection.

Our analyses highlighted a number of limitations of existing studies as
well as open issues that need to be addressed by future research. We also
provided a list of actions to perform in order to make the research field more
concrete. In this respect, we hope that our work will provide a reference
point for conducting future research and the recommendations provided will
lead to higher quality research in this area.
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[106] Y. Rafique, V. B. Mǐsić, The effects of test-driven development on
external quality and productivity: A meta-analysis, IEEE Transactions
on Software Engineering 39 (6) (2013) 835–856.

[107] J. E. Hannay, T. Dyb̊a, E. Arisholm, D. I. Sjøberg, The effectiveness of
pair programming: A meta-analysis, Information and Software Tech-
nology 51 (7) (2009) 1110–1122.

[108] M. W. Lipsey, D. B. Wilson, Practical meta-analysis., Sage Publica-
tions, Inc, 2001.

[109] S. Greenland, M. P. Longnecker, Methods for trend estimation from
summarized dose-response data, with applications to meta-analysis,
American journal of epidemiology 135 (11) (1992) 1301–1309.

[110] E. Tacconelli, Systematic reviews: Crd’s guidance for undertaking re-
views in health care, The Lancet Infectious Diseases 10 (4) (2010) 226.

[111] J. M. Bland, D. G. Altman, The odds ratio, Bmj 320 (7247) (2000)
1468.

56



[112] B. Turhan, T. Menzies, A. B. Bener, J. Di Stefano, On the relative
value of cross-company and within-company data for defect prediction,
Empirical Software Engineering 14 (5) (2009) 540–578.

[113] F. Peters, T. Menzies, A. Marcus, Better cross company defect predic-
tion, in: Mining Software Repositories (MSR), 2013 10th IEEE Work-
ing Conference on, IEEE, 2013, pp. 409–418.

[114] D. Taibi, A. Janes, V. Lenarduzzi, How developers perceive smells in
source code: A replicated study, Information and Software Technology
92 (2017) 223–235.

[115] C. Simons, J. Singer, D. R. White, Search-based refactoring: Metrics
are not enough, in: International Symposium on Search Based Software
Engineering, Springer, 2015, pp. 47–61.

[116] I. Candela, G. Bavota, B. Russo, R. Oliveto, Using cohesion and cou-
pling for software remodularization: Is it enough?, ACM Transactions
on Software Engineering and Methodology (TOSEM) 25 (3) (2016) 24.

[117] V. Kovalenko, F. Palomba, A. Bacchelli, Mining file histories: should
we consider branches?, in: Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering, ACM, 2018,
pp. 202–213.

[118] F. A. Fontana, V. Ferme, M. Zanoni, R. Roveda, Towards a prioritiza-
tion of code debt: A code smell intensity index, in: Managing Technical
Debt (MTD), 2015 IEEE 7th International Workshop on, IEEE, 2015,
pp. 16–24.

[119] D. Di Nucci, F. Palomba, R. Oliveto, A. De Lucia, Dynamic selection of
classifiers in bug prediction: An adaptive method, IEEE Transactions
on Emerging Topics in Computational Intelligence 1 (3) (2017) 202–
212.

57



AppendixA. List of journals and conferences manually searched

Table A.10: List of journals manually searched

S.No Journal name
1 IEEE Transactions on Software Engineering
2 ACM Transactions on Software Engineering and Methodology
3 Empirical Software Engineering
4 Software Quality Journal
5 Journal of Systems and Software (JSS)
6 Information & Software Technology (IST)
7 Journal of Automated Software Engineering
8 Software-Practice and Experience (SPE)
9 Journal of Software: Evolution and Process
10 Journal of Software Maintenance and Evolution: Research and Practice
11 IEEE Software
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Table A.11: List of Conferences manually searched

S.No Conference name
1 IEEE/ACM International Conference on Software Engineering (ICSE)

2007-2017
2 ACM/SIGSOFT Symposium on the Foundations of Software Engineering

(FSE) 2016, 2014, 2012, 2010, 2011, 2008
3 Joint Meeting of the European Software Engineering Conference and the

ACM/SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE) 2007, 2009, 2013

4 IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE) 2007-2016

5 European Conference on Object Oriented Programming (ECOOP) 2007-
2017

6 Fundamental Approaches to Software Engineering - International Confer-
ence (FASE), Held as Part of the European Joint Conferences on Theory
and Practice of Software, 2007-2017

7 IEEE International Conference on Software Maintenance (ICSM), 2007-
2013

8 International Conference on Software Maintenance and Evolution (IC-
SME), 2014-2016

9 International Conference on Mining Software Repositories (MSR), 2008-
2011, 2016-2017

10 ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM), 2007-2017

11 International Conference on Evaluation and Assessment in Software En-
gineering (EASE), 2007-2017

12 Software Engineering and Knowledge Engineering (SEKE), 2007-2017
13 International Conference on Program Comprehension (ICPC), 2007-2017
14 IEEE International Conference on Software Analysis, Evolution, and

Reengineering (SANER), 2015-2017
15 IEEE Conference on Software Maintenance, Reengineering, and Reverse

Engineering (CSMR-WCRE) 2014
16 Working Conference on Reverse Engineering (WCRE), 2007-2013
17 European Conference on Software Maintenance and Reengineering

(CSMR), 2007-2013
18 IEEE International Working Conference on Source Code Analysis and

Manipulation (SCAM), 2007-2016
19 ACM Object-oriented Programming, Systems, Languages, and Applica-

tions (OOPSLA), 2007-2017
20 International Conference on Advanced Information Systems Engineering

(CAiSE), 2007-2018
21 IEEE International Conference on Software Reuse (ICSR), 2006-2018
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AppendixB. List of all the metrics and their definitions used in the
literature on code smells prediction

Table B.12: Metrics names along with their definitions

Name Definition Name Definition

ACAIC Ancestor Class-Attribute Import Coupling ACMIC Ancestors Class-Method Import Cou-
pling

AID Average Inheritance Depth of an entity ANA Average number of entities from which
an entity inherits information wrt. to
the total number of entities in a model

CAM Relatedness among methods of an entity
based on the parameter list of its methods

CBO Coupling Between Objects of one entity

CBOingoing Coupling Between Objects of one entity (in-
going coupling only, towards the entity)

CBOoutgoing Coupling Between Objects of one entity
(out-going coupling only, from the en-
tity)

CIS Number of public methods in a class CLD Class to Leaf Depth of an entity

cohesionAttributes Percentage of fields (declared and inherited)
used by the declared methods of one entity
wrt. all its fields

connectivity Number of couples of methods that use
each other

CP Number of packages that depend on the
package containing the entity

DAM Ratio of the number of private (and pro-
tected) fields wrt. the total number of
fields declared in an entity

DCAEC Descendants Class-Attribute Export Cou-
pling of one entity

DCCdesign Number of classes that a class is directly
related to (by attribute and parameter
declarations)

FANIN DCMEC Descendants Class-Method Export Cou-
pling of one entity

DIT Depth of Inheritance Tree of an entity DSC Number of top-level entities in a model

EIC Number of inheritance relationships in which
super-entities are in external packages

EIP Number of inheritance relationships
where the super-entity is in the package
containing the entity and the sub-entites
is in another package

FanOut Number of methods and fields used by one
entity

ICHClass Complexity of an entity as the sum of
the complexities of its declared and in-
herited methods

IR Number of calls from the methods of an en-
tity to the methods and fields declared in its
super-entities

LCOM1 Lack of COhesion in Methods of an en-
tity

LCOM2 Lack of COhesion in Methods of an entity LCOM5 Lack of COhesion in Methods of an en-
tity

LOC Sum of the numbers of lines of code in the
methods of an entity

McCabe Sum of the cyclomatic complexities of
the operations of an entity

MFA Ratio of the number of methods inherited by
an entity wrt. the number of methods acces-
sible by member methods of the entity

MLOCsum Sum of the numbers of lines of code in
the methods of an entity. Same as LOC

MOA Number of data declarations whose types are
user-defined entities

NAD Number of Attributes Declared by an
entity

NADextended Number of Attributes Declared by an entity
and in its member entities

NCM Number of Changed Methods of an en-
tity wrt. its hierarchy

NCP Number of Classes per Package, i.e., the
number of classes within a package

NMA Number of Methods Added by an entity
with respect to its hierarchy

NMD Number of Methods Declared by an entity NMDextended Number of Methods Declared by an en-
tity and its member entities

NMI Number of Methods Inherited by an entity.
Constructors or not considered as method,
they are not counted in the result of the met-
ric

NMO Number of Methods Overridden by an
entity

NOA Number Of Ancestors of an entity NOC Number Of Children of an entity

NOD Number of descendants of an entity NOF Number Of Fields declared by an entity

NOH Number Of Hierarchies in a model NOM Number Of Methods declared by an en-
tity

NOP Number Of Parents of an entity NOParam Number of parameters of the methods of
an entity

NOPM Number Of Polymorphic Methods in an en-
tity wrt. its hierarchy

NOTC Number of invocations of JUnit assert
methods that occur in the code of a test
case

NOTI Number Of Transitive Invocation among
methods of a class. See the Law of Deme-
ter for a definition

NPrM Number protected members of an entity

NOII Number of Implemented Interfaces PIIR Number of inheritance relationships ex-
isting between entities in the package
containing an entity

PP Number of provider packages of the package
containing an entity

REIP EIP divided by the sum of PIIR and EIP
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Table B.12: Metrics names along with their definitions (continue..)

Name Definition Name Definition

RFC Response for class: number of methods of an
entity and of methods of other entities that
are invoked by the methods of the entity

RFCextended Response for class: number of methods
of an entity and of methods of other en-
tities that are invoked by the methods of
the entity plus number of methods de-
clared by that entity

RFP Number of references from entities belonging
to other packages to entities belonging to the
package containing an entity

RPII PIIR divided by the sum of PIIR and
EIP

RRFP RFP divided by the sum of RFP and the
number of internal class references

RRTP RTP divided by the sum of RTP and the
number of internal class references

RTP Number of references from entities in the
package containing an entity to entities in
other packages

SIX Specialisation IndeX of an entity

TLOC Number of lines of code of all the meth-
ods of an entity. Same as LOC

VGSum Sum of the cyclomatic complexities of the
operations of an entity. Same as McCabe

WMC1 Weight of an entity considering the com-
plexity of each of its method as being
1. (Default constructors are considered
even if not explicitly declared)

WMCinvocations Weight of an entity considering the complex-
ity of each of its method as being the num-
bers of invocations that they perform. (De-
fault constructors are considered even if not
explicitly declared).

WMCmccabe Weight of an entity considering the com-
plexity of each of its method as be-
ing their McCabe cyclomatic complex-
ity. (Default constructors are considered
even if not explicitly declared).

LOCNAMM Lines of Code Without Accessor or Mutator
Methods

NOPK Number of Packages

NOCS Number of Classes NOMNAMM Number of Not Accessor or Mutator
Methods

CYCLO Cyclomatic Complexity WMC Weighted Methods Count

WMCNAMM Weighted Methods Count of Not Accessor or
Mutator Methods

AMW Average Methods Weight

NODA Number of default Attributes NOPVA Number of Private Attributes

NOPRA Number of Protected Attributes NOFA Number of Final Attributes

NOFSA Number of Final and Static Attributes NOFNSA Number of Final and non - Static At-
tributes

NONFNSA Number of not Final and non - Static At-
tributes

NOSA Number of Static Attributes

NONFSA Number of non - Final and Static Attributes NOABM Number of Abstract Methods

NONCM Number of non - Constructor Methods NOFM Number of Final Methods

NOFNSM Number of Final and non - Static Methods NOFSM Number of Final and Static Methods

NONFNABM Number of non - final and non - abstract
Methods

NONFNSM Number of Final and non-Static Meth-
ods

NONFSM Number of non - Final and Static Methods NODM Number of default Methods

NOPM Number of Private Methods NOPRM Number of Protected Methods

NOPLM Number of Public Methods NONAM Number of non-Accessors Methods

NOSM Number of Static Methods NOCM Number of Constructor Methods

AMWNAMM Average Methods Weight of Not Accessor or
Mutator Methods

MAXNESTING Maximum Nesting Level

CLNAMM Called Local Not Accessor or Mutator Meth-
ods

NOAV Number of Accessed Variables

ATLD Access to Local Data NOLV Number of Local Variable

ATFD Access to Foreign Data FDP Foreign Data Providers

CFNAMM Called Foreign Not Accessor or Mutator
Methods

CINT Coupling Intensity

MaMCL Maximum Message Chain Length MeMCL Mean Message Chain Length

NMCS Number of Message Chain Statements CC Changing Classes

CM Changing Methods NOAM Number of Accessor Methods

NOAM Number of Accessor Methods NOPA
(NOAP)

Number of Public Attribute

LAA Locality of Attribute Accesses NOI Number of Interfaces

LOC 1 Customized LOC RFC New Customized RFC

WMC New Customized WMC DIT 1 Customized DIT

D APPEAR Appearance in Diagrams ABSTR R Number of Abstractions

ASSOC R Number of Associations DEPEND R Number of Dependencies

C PARAM Number of times class is used as parameter
type

NA Number of Attributes

NC Number of Classes NM Number of Members

ACT Number of Actors COMP Number of Components

NS Number of Namespaces WAC Weighted Attributes per Class

WMC Weighted Methods per Class NP Number of Parameters

AHF Attribute Hiding Factor AIF Attribute Inheritance Factor

CF Coupling Factor MHF Method Hiding Factor

MIF Method Inheritance Factor PF Polymorphism Factor
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Table B.12: Metrics names along with their definitions (continue..)

Name Definition Name Definition

NAI Number of Inherited Attributes NO Number of Operation

NOLV No of Local Variables of a Method

AppendixC. Independent variables used across different studies
with metrics set label

Table C.13: Performance of code smell prediction models based on the different
combination of independent variables adopted by the primary studies.

Studies Independent Variables Metrics
Set Label

[S01],
[S10],
[S13]

LOC, LOCNAMM, NOM, NOPK, NOCS, NOMNAMM, NOA, CYCLO, WMC, WMCNAMM, AMWNAMM,
AMW, MAXNESTING, WOC, CLNAMM, NOP, NOAV, ATLD, NOLV, FANOUT, FANIN, ATFD, FDP, RFC,
CBO, CFNAMM, CINT, CDISP, MaMCL, MeMCL, NMCS, CC, CM, LAA, NOAM, NOPA, DIT, NOI, NOC,
NMO, NIM, NOII, LCOM5, TCC, NODA , NOPVA, NOPRA, NOFA, NOFSA, NOFNSA, NONFNSA, NOSA,
NONFSA, NOABM, NOCM, NONCM, NOFM, NOFNSM, NOFSM, NONFNABM, NONFNSM, NONFSM,
NODM, NOPM, NOPRM, NOPLM, NONAM, NOSM

A

[S06],
[S08]

LOC, NAD, NADextended, NMA, NMD, NMDextended, NOM McCabe, NOParam, WMC1, WMC, CIS,
ACAIC, ACMIC, CAM, CBO, CBOingoing, CBOoutgoing, connectivity, DCAEC, DCMEC, IR, NCM, NOTI,
RFC, DSC, DCC, DAM, NPrM, AID, ANA, CLD, DIT, ICHClass, MFA, NMI (NIM), NMO, NOA, NOC,
NOD, NOH, NOP, NOPM, cohesionAttributes, LCOM1, LCOM2, LCOM5, MOA, SIX, USELESS

B

[S09] LOC, LOC 1, MLOCsum, NAD, NADExtended, NMA, NMD, NMDExtended, NOM, WMC, McCabe, NOF,
NOP, NOParam, Vgsum, WMC1, WMC New, CBO, RFC, CA, CE, CAM, ACAIC, ACMIC, DCAEC, DCC,
DCMEC, IR, NCM, NOTI, RFC New, connectivity, DSC, DAM, DIT, NOC, MFA, AID, CLD, DIT 1, ICH-
Class, NMI, NMO, NOA, NOC 1, NOD, NOH, NOPM, LCOM, LCOM3, LCOM1, LCOM2, LCOM5, cohesion-
Attributes, NPM, MOA, IC, CBM, AMC, NOTC, SIX

C

[S04] NAD, NADextended, NCP, NMA, NMD, NMDextended, NOM, PP, CIS, McCabe, NOParam, WMC1, WMCin-
vocations, WMCmccabe, ACAIC, ACMIC, CAM, CBO, CBOingoing, CBOoutgoing, connectivity, CP, DCAEC,
DCCdesign, DCMEC, FanOut, NCM, RFP, RTP, DSC, DAM AID, ANA, CLD, DIT, EIC, EIP, ICHClass, MFA,
NMI, NMO, NOA, NOC, NOD, NOH, NOP, NOPM, PIIR, cohesionAttributes, LCOM1, LCOM2, LCOM5,
MOA, REIP, RPII, RRFP, RRTP, SIX

D

[S05] NOA, NOCS, NOMembers, NOM, ACT, COMP, NS, WAC, WMA, NOP, CBO, RFC, AHF, AlF, CF, MHF,
MIF, PF, DIT, NOC, NAI, NMI, C PARAM, D APPEAR, ABSTR R, ASSOC R, DEPEND R

E

[S07] LOC, Number of Invocations, Number of Library Invocations, Number of Local Invocations, Number of Other
Invocations, Number of Field Accesses, Number of Invocations, Number of Library Invocations, Number of
Local Invocations, Number of Other Invocations, Number of Field Accesses, History Features (Existence Time,
Number of Changes, Number of Recent Changes, File Existence Time, Number of File Changes, Number
of Recent File Changes), Destination Features (Whether it is a Local Clone, Fine Name Similarity, Masked
File Name Similarity, Method Name Similarity, Sum of Parameter Similarities, Maximal Parameter Similarity,
Difference on Only Postfix Number)

F

[S14],
[S15]

Tokenized source code e.g. terms of the class and programming constructs used in the class etc. G
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