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Abstract

Previous studies have investigated the reasons behind refactoring operations performed by developers, and proposed
methods and tools to recommend refactorings based on quality metric profiles, or on the presence of poor design and
implementation choices, i.e., code smells. Nevertheless, the existing literature lacks observations about the relations
between metrics/code smells and refactoring activities performed by developers. In other words, the characteristics
of code components increasing/decreasing their chances of being object of refactoring operations are still unknown.
This paper aims at bridging this gap. Specifically, we mined the evolution history of three Java open source projects to
investigate whether refactoring activities occur on code components for which certain indicators—such as quality metrics
or the presence of smells as detected by tools—suggest there might be need for refactoring operations. Results indicate
that, more often than not, quality metrics do not show a clear relationship with refactoring. In other words, refactoring
operations are generally focused on code components for which quality metrics do not suggest there might be need for
refactoring operations. Finally, 42% of refactoring operations are performed on code entities affected by code smells.
However, only 7% of the performed operations actually remove the code smells from the affected class.
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1. Introduction

Refactoring has been defined by Fowler as “the pro-
cess of changing a software system in such a way that it
does not alter the external behavior of the code yet im-
proves its internal structure” [21]. This definition en-
tails a strong relationship between refactoring and internal
software quality, i.e., refactoring improves software qual-
ity (improves the software internal structure). This has
motivated research on bad smell and antipattern detec-
tion and on the identification of refactoring oppotunities
[54, 34, 43, 20, 5, 9, 12, 26].

However, whether refactoring is actually guided by poor
design has not been empirically evaluated enough. Thus,
this assumption still remains—for some aspects—a com-
mon wisdom that has generated controversial positions
[27]. Specifically, there are no studies that quantitatively
analyze which are the quality characteristics of the source
code increasing their likelihood of being subject of refac-
toring operations. To the best of our knowledge, the avail-
able empirical evidence is based on two surveys performed
with developers trying to understand the reasons why de-
velopers perform refactoring operations [55, 27].

In addition, concerning the improvement of the inter-
nal quality of software, empirical studies have only shown
that generally refactoring operations improve the values
of quality metrics [25, 28, 46, 37, 49], while the effective-
ness of refactoring in removing design flaws (such as code

smells) is still unknown.
In order to fill this gap, we use an existing tool, namely

Ref-Finder [45], to automatically detect refactoring oper-
ations of 52 different types on 63 releases of three Java
software systems, namely Apache Ant1, ArgoUML2, and
Xerces-J3. Since Ref-Finder can identify some false pos-
itives, we manually analyzed the 15,008 refactoring op-
erations detected by the tool. Among them, 2,086 were
classified as false positives. Thus, in the context of our
study we analyzed 12,922 refactoring operations.

Having identified the refactoring operations, for each
class in the analyzed systems’ releases we (i) measured
a set of eleven quality metrics, and (ii) detected if it is af-
fected by any instance of eleven code smells. Using these
data we verify whether refactoring operations occur on
code components for which the factors above (i.e., quality
metrics, presence of code smells) suggest there might be
need for refactoring operations. In addition, we also mea-
sure the effectiveness of refactoring operations in terms of
their ability to remove code smells.

The results achieved can be summarized as follows:

1. More often than not, quality metrics do not show a
clear relationship with refactoring. In other words

1http://ant.apache.org/
2http://argouml.tigris.org/
3http://xerces.apache.org/xerces-j/

Preprint submitted to Elsevier May 8, 2015



Table 1: Characteristics of the analyzed projects

Project Period Analyzed #Releases Classes KLOC
Apache Ant Jan 2000-Dec 2010 1.2-1.8.2 17 87-1,191 8-255
ArgoUML Oct 2002-Dec 2011 0.12-0.34 13 777-1,519 362-918
Xerces-J Nov 1999-Nov 2010 1.0.4-2.9.1 33 181-776 56-179
Overall - - 63 - -

quality metrics might suggest classes as good candi-
dates to be refactored that are generally not involved
in developers’ refactoring operations.

2. Among the 12,922 refactoring operations analyzed,
5,425 are performed by developers on code smells
(42%). However, of these 5,425 only 933 actually
remove the code smell from the affected class (7%
of total operations) and 895 are attributable to only
four code smells (i.e., Blob, Long Method, Spaghetti
Code, and Feature Envy). Thus, not all code smells
are likely to trigger refactoring activities.

In summary, such results suggest that (i) more often
than not refactoring actions are not a direct consequence of
worrisome metric profiles or of the presence of code smells,
but rather driven by a general need for improving main-
tainability, and (ii) refactorings are mainly attributable
to a subset of known smells. For all these reasons,
the refactoring recommendation tools should not only
base their suggestions on code characteristics, but they
should consider the developer’s point-of-view in order to
propose meaningful suggestions of classes to be refactored.

The paper is organized as follows. Section 2 describes
the design of our empirical study, while Section 3 reports
and discusses the obtained results. Section 4 analyzes and
discusses the threats that could affect the results of our
study. After a discussion of the related literature (Section
5), Section 6 concludes the paper.

2. Empirical Study Design

The goal of the study is to analyze refactoring operations
occurring over the history of a software project, with the
purpose of understanding (i) if quality metrics and code
smells presence provide indications on which code compo-
nents are more/less likely of being refactored; and (ii) as
a consequence, to what extent are refactoring operations
effective in removing code smells from source code. The
object systems, the tools, and the raw data are available
for replication in our online appendix.4

2.1. Context and Research Questions

The study aims at addressing the following research
questions:

• RQ1: Are refactoring operations performed on classes
having a low-level of maintainability as indicated by
quality metrics?

4http://dx.doi.org/10.6084/m9.figshare.1207916

• RQ2: To what extent are refactoring operations (i)
executed on classes exhibiting code smells and (ii) able
to remove code smells?

The context of the study consists of 63 releases of
three Java open source projects, namely Apache Ant, Ar-
goUML, and Xerces-J. Apache Ant is a build tool and li-
brary specifically conceived for Java applications (though
it can be used for other purposes). ArgoUML is an open
source UML modeler, while Xerces-J is a XML parser for
Java. Although this looks a relatively small context (three
projects only), such a choice has been necessary to allow
us manually validating the detected refactoring and code
smells, as detailed below. Table 1 reports characteristics
of the analyzed systems, namely analyzed releases, num-
ber of analyzed releases, and size range (in terms of KLOC
and # of classes).

2.2. Study Variables and Data Extraction

The dependent variables considered in our study, for
all the research questions, are the refactoring operations
(of different types) being observed across releases of dif-
ferent programs. The independent variables are the
factors we relate to such observed refactoring and namely:

1. For RQ1, a series of quality metrics (described below).

2. For RQ2, the presence of code smells (of different
types) in software releases.

To answer our research questions, we first need to detect
refactorings over the evolution history of the studied sys-
tems. To this aim we use an existing tool, Ref-Finder [45],
to detect refactoring operations performed between each
subsequent couples of releases of each system. Ref-Finder
has been implemented as an Eclipse plug-in and it is able
to detect 63 different kinds of refactoring operations. In a
case study conducted on three open source systems, Ref-
Finder was able to detect refactoring operations with an
average recall of 95% and an average precision of 79% [45].
Even if the accuracy of such a tool is quite high, we tried to
(at least) mitigate problems related to false positives (pre-
cision) through manual validation of the refactoring oper-
ations identified by Ref-Finder. Specifically, each refactor-
ing operation identified by the tool was manually analyzed
through source code inspection by two Master’s students
from the University of Salerno. The students individually
validated each of the proposed refactoring operations.

Once students validated the refactoring operations, they
performed an open discussion with two of the authors of
this paper to solve conflicts and reach a consensus on the
refactoring operations analyzed, classifying them as true
positive or false positive. Of the 15,008 refactoring opera-
tions detected by Ref-Finder, 12,922 operations have been
manually classified as actual refactoring operations, pro-
ducing as output a set of triples (relj , refk, C), where relj
indicates the release number, refk the kind of refactoring
occurred, and C is the set of refactored classes. Table 2 re-
ports the number of refactoring operations (as well as the
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Table 2: Refactoring operations analyzed

Project #Refactorings Distinct types of refactorings
Apache Ant 1,469 31
ArgoUML 3,532 43
Xerces-J 7,921 43
Overall 12,922 52

number of different types of refactorings) identified on the
three systems after the manual validation. While the ex-
tracted refactoring operations are needed to answer all our
research questions, in the following we detail on data col-
lection activities made to specifically answer each research
question.

2.2.1. Data Extracted to Answer RQ1

To answer RQ1, we need to measure—for each class of
the analyzed systems—a set of quality metrics. Specifi-
cally, we measure for each class in the analyzed systems’
releases a set of eleven quality metrics. Since we know
in each release which classes have been subject of which
refactoring operations, we can use these metrics to under-
stand if any of them suggest that the considered classes
need to be refactored.

The employed quality metrics are reported in Table 3.
Our choice of the metrics is not random. We considered
LOC since it has been demonstrated to be one of the better
metrics in predicting the number of faults in a code com-
ponent [18]. Thus, it is also possible that LOC also helps
in identifying classes having a poor design from the de-
velopers point of view. The Chidamber & Kemerer (CK)
metrics [17] have been object of several empirical studies
showing their ability of capturing different aspects of code
maintainability [3, 10, 13, 14, 17, 23, 29]. We also adopted
NOA and NOO since they measure quality aspects of a
class that are not taken into account by the CK metrics
(see Table 3). Finally, we also considered semantic met-
rics since (i) they have been shown to not correlate with
structural metrics [31] and (ii) in a recent study [7] the
Conceptual Coupling Between Classes (CCBC) has been
shown to be the coupling metric better capturing the de-
velopers perception of coupling between code components.
To extract these metrics, we developed a tool exploiting
the Eclipse JDT API to extract all needed information
from source code.

2.2.2. Data Extracted to Answer RQ2

To answer RQ2, we analyze each class of the 63 con-
sidered software releases to verify if it is affected by any
code smell. In particular, we detected instances of the
eleven code smells reported in Table 4 defined by Fowler
[22] and Brown et al. [15]. Also in this case, the goal is to
understand if the presence of specific code smells increas-
es/decreases the changes of the affected code components
of being the object of refactoring actions. To detect the
code smells we developed a simple tool that outputs a list
of candidate classes potentially exhibiting a code smell.
Then, we manually validated the candidate code smells

Table 6: Number of smells analyzed in this paper

Project #Smells Distinct types of smells
Apache Ant 1,493 10
ArgoUML 1,197 7
Xerces-J 2,788 10
Overall 5,478 10

suggested by the tool. The validation was performed by
a Master and a Ph.D. student, who individually analyzed
and classified as true positive or false positive all candidate
code smells. Finally, the students performed an open dis-
cussion with researchers to resolve any conflicts and reach
a consensus on the detected code smells.

To ensure high recall, our tool uses very simple detec-
tion rules that overestimate the presence of code smells in
the code. This is done at the expense of precision. Even
though this choice resulted in a longer list of candidates
and thus in a more expensive manual validation, it was
necessary to study the real distribution of code smells in
the analyzed releases. Table 5 reports the rules applied
by our tool to detect each of the eleven analyzed code
smells. Note that we choose not to use existing detec-
tion tools [34, 20, 54] because (i) none of them has ever
been applied to detect all the studied code smells, and (ii)
their detection rules are generally restrictive to ensure a
good compromise between recall and precision, thus they
may miss some code smell instances. Table 6 reports the
number of code smells and the number of different types
of smells identified on the three systems after the manual
validation.

Knowing the list of classes affected by each code smell in
each software release, we are also able to verify to what ex-
tent refactoring operations are able to remove code smells
from source code. In particular, given a refactoring opera-
tion (e.g., Extract Class) oi performed in a release rj on a
class affected by a code smell (e.g., Blob class) ak, we can
verify if oi was able to remove ak by checking if ak is still
present in the release rj+1 (and thus, the code smell has
not be removed) or not (the code smell has been removed).

2.3. Analysis Method

To address the two research questions formulated above,
we build, for each object system and for each kind of
refactoring operation performed on it, logistic regression
models relating a (dichotomous) dependent variable—
indicating whether or not a particular type of refactoring
was performed—with independent variables represented
by the quality indicators (metrics, and presence of code
smells) described above. Logistic regression models [24]
relate dichotomous dependent variables with one or more
independent variables as follows:

π(X1, X2, . . . , Xn) =
eC0+C1·X1+...+Cn·Xn

1 + eC0+C1·X1+...+Cn·Xn
(1)

where Xi are the independent variables describing the phe-
nomenon, and Ci the coefficients (estimates) of the logis-

3



Table 3: Quality metrics measured to answer RQ1

Metric Description
Lines of Code (LOC) The number of lines of code excluding white spaces and comments
Weighted Methods per Class (WMC) [17] The complexity of a class as the sum of the McCabe’s cyclomatic complexity of its methods
Depth of Inheritance Tree (DIT) [17] The depth of a class as the number of its ancestor classes
Number Of Children (NOC) [17] The number of direct descendants (subclasses) of a class
Response for a Class (RFC) [17] The number of distinct methods and constructors invoked by a class
Coupling Between Object (CBO) [17] The number of classes to which a class is coupled
Lack of COhesion of Methods (LCOM) [17] The higher the pairs of methods in a class sharing at least a field, the higher its cohesion
Number of Operations Added by a subclass (NOA) [30] The number of methods added by a subclass to the methods inherited by its superclass
Number of Operations Overridden by a subclass (NOO) [30] The number of methods overridden by a subclass among those inherited by its superclass
Conceptual Coupling Between Classes (CCBC) [44] The higher the textual similarity between two classes, the higher their coupling
Conceptual Cohesion of Classes (C3) [31] The higher the textual similarity between the methods of a class, the higher its cohesion

Table 4: Code smells detected to answer RQ3

Name Description
Class Data Should Be Private (CDSBP) [15] A class exposing its fields, violating the principle of data hiding.
Complex Class [15] A class having at least one method having a high cyclomatic complexity.
Feature Envy [22] A method is more interested in a class other than the one it actually is in.
Blob Class (Blob) [15] A large class implementing different responsibilities and centralizing most of the system processing.
Lazy Class [22] A class having very small dimension, few methods and with low complexity.
Long Method [22] A method that is unduly long in terms of lines of code.
Long Parameter List (LPL) [22] A method having a long list of parameters, some of which avoidable.
Message Chain [22] A long chain of method invocations is performed to implement a class functionality.
Refused Bequest [22] A class redefining most of the inherited methods, thus signaling a wrong hierarchy.
Spaghetti Code [15] A class implementing complex methods interacting between them, with no parameters, using global variables.
Speculative Generality [22] A class declared as abstract having very few children classes using its methods.

tic regression model. We used the R statistical software
(http://www.r-project.org/) to build the logistic re-
gression models. Specifically, we built the following two
models:

1. Metrics. The first model uses the eleven measured
quality metrics as independent variables and the ap-
plication of the particular type of refactoring (e.g.,
Extract class) as the dependent variable. All met-
rics have been normalized using the z-score, i.e., by
subtracting the mean and dividing by the standard
deviation.

2. Smells. The second model uses the presence of the
considered code smells in a class as independent (and
Boolean) variables, and the application of the par-
ticular type of refactoring (e.g., Extract class) as the
dependent variable.

Note that, given a refactoring type ri and a system sj ,
we build the two models presented above only if the refac-
toring type ri has been applied on the system sj at least
10 times. This is done to avoid the creation of unreliable
logistic regression models.

We are aware that our models could be affected by multi-
collinearity [39], which occurs when two or more indepen-
dent variables are highly correlated and can be predicted
one from the other, possibly affecting the resulting model.
We assess our models for the presence of multi-collinearity
in two different ways:

1. Whenever possible, i.e., for the models based on met-
rics, we compute the Spearman’s rank correlation
between all possible pairs of metrics, to determine
whether there are pairs of strongly correlated metrics

(i.e., with a Spearman’s α > 0.8). If two independent
variables are highly correlated, one of them should be
removed from the model.

2. By using a stepwise variable removal procedure based
on the Companion Applied Regression (car) R pack-
age5, and in particular based on the vif (variance in-
flation factors) function [39].

Once we have avoided multi-collinearity using the proce-
dure described above, we build the logistic regression mod-
els with the variables remained after the pruning. Then,
for each model we analyze (i) whether each independent
variable is significantly correlated with the dependent vari-
able (we consider a significance level of α = 5%), and (ii)
we quantify such a correlation using the Odds Ratio (OR)
[50] which, for a logistic regression model, is given by eCi .
The higher the OR for an independent variable, the higher
its ability to explain the dependent variable. However, the
interpretation of the OR changes between the two kinds of
models we built, due to the different measurement scale of
the independent variables, i.e., ratio for the metric-based
model and nominal (categorical) for the code smell-based
model. In particular, for the model built using quality
metrics, the OR for an independent variable indicates the
increment of chances for a class to be subject of refactor-
ing in consequent of a one-unit increase of the independent
variable. For example, if we found that the CBO has an
OR of 1.15 when building a logistic regression model for
the Extract Class refactoring operation, this means that
for each one-unit increase of the CBO value for a class, it
has 15% higher chances of being involved in an Extract

5http://cran.r-project.org/web/packages/car/index.html
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Table 5: The rules used by our tool to detect candidate code smells

Name Description
Class Data Should Be Private A class having at least one public field.
Complex Class A class having at least one method for which McCabe cyclomatic complexity is higher than 10.
Feature Envy All methods having more calls with another class than the one they are implemented.
Blob Class All classes having (i) cohesion lower than the average of the system AND (ii) LOCs > 500.
Lazy Class All classes having LOCs lower than the first quartile of the distribution of LOCs for all system’s classes.
Long Method All methods having LOCs higher than the average of the system.
Long Parameter List All methods having a number of parameters higher than the average of the system.
Message Chain All chains of methods’ calls longer than three.
Refused Bequest All classes overriding more than half of the methods inherited by a superclass.
Spaghetti Code A class implementing at least two long methods (see previous rule) interacting between them through method calls or shared fields.
Speculative Generality A class declared as abstract having less than three children classes using its methods.

Class refactoring operation. On the other side, for the
model built using code smells, the OR indicates the likeli-
hood of a class affected by a code smell of being involved
in refactoring operations with respect to a non-affected
class. As example, if we found that the code smell Blob has
an OR of 3 when building a logistic regression model for
the Extract Class refactoring operation, this means that
classes affected by the Blob code smell have 3 times higher
chances of being involved in an Extract Class refactoring
operation than classes not affected by it.

Finally, to verify the ability of refactoring in remov-
ing code smells from source code, we simply analyze for
each refactoring type (e.g., Extract class) the percentage
of times it is able to remove each type of code smell (e.g.,
Blob class).

3. Empirical Study Results

This section discusses the results of our study, aimed
at addressing the research questions formulated in Section
2.1. As explained in Section 2.3, before building the lo-
gistic regression models, we performed a multi-collinearity
analysis. As a result of such analysis, we found that:

• For the models based on metrics, and only for the
Xerces project, the stepwise regression procedure re-
moved the DIT metric from the logistic regression
model. Consistently with that, we found a strong
(α = 0.83) Spearman’s rank correlation between DIT
and NOA. This is not entirely surprising as both DIT
and NOA capture information related to inheritance
relations between classes. No multi-collinearity was
found for the other two projects (Apache Ant and
ArgoUML).

• For the models based on smells, no independent vari-
able is affected by multi-collinearity.

3.1. Are refactoring operations performed on classes hav-
ing a low-level of maintainability as indicated by qual-
ity metrics?

Table 7 reports the ORs of quality metrics obtained
when building a logistic regression model for data con-
cerning each refactoring operation. Statistically significant
values, i.e., those for which the p-value is lower than 0.05,

are reported in bold face. In the following, we will mainly
focus our discussion on such statistically significant values.

First, we can immediately notice that longer classes (in
terms of LOC) generally have a higher chance of being
involved in a refactoring operations (the ORs for LOC are
higher than 1 in 71% of significant ORs). This is quite an
expected result. More interesting are the results—and in
particular the observed OR values—for the other metrics.

The WMC metric of a class, i.e., the sum of the Mc-
Cabes’ cyclomatic complexity of its methods, exhibits very
high ORs for some of the refactoring operations dealing
with the simplification of methods inside a class. How-
ever, this is not always true for all systems. In particular,
classes having high WMC have:

• In ApacheAnt (OR 22.35), a much higher chance of
being involved in a consolidate conditional expression
refactoring, performed to simplifying a sequence of
conditional expressions which produce the same re-
sult by combining them into a single expression. The
OR for WMC on this refactoring is also very high on
ArgoUML (9.54), even if not statistically significant.

• In ApacheAnt (OR 5.47), a higher chance of being in-
volved in a remove control flag refactoring, performed
to replace a variable that is acting as a control flag for
a series of Boolean expressions with a simpler break
statement. In this case, also on the other systems the
OR is higher than 1, but not statistically significant.

• In ApacheAnt (OR 8.9), a higher chance of being
involved in a replace nested conditional with guard
clauses refactoring, applied to methods in which the
conditional behavior does not make clear the normal
path of execution. Also in this case, on both other
systems the OR is higher than 1, but not statistically
significant.

• In Xerces (OR 9.94), a higher chance of being involved
in an inline temp refactoring, performed to remove
temporary variables that are only assigned once with a
simple expression. Also in ApacheAnt the OR for this
refactoring is high (3.55) but, again, not statistically
significant.

Surprisingly, we did not find any statistically significant
OR higher than one for WMC on models built for the
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Table 7: Quality metrics model: OR of metrics when building logistic model. Statistically significant ORs are reported in bold face.

Refactoring System LOC WMC DIT NOC RFC CBO LCOM NOA NOO CCBC C3
add parameter ApacheAnt 3.51 0.40 0.39 1.24 1.61 0.41 1.26 0.59 0.98 0.75 0.22
add parameter ArgoUML 1.15 1.01 1.62 1.09 1.45 0.79 0.04 1.04 0.69 0.34 0.54
add parameter Xerces 1.06 2.26 - 1.13 0.67 1.10 0.66 1.31 0.99 0.30 0.56
consolidate cond expression ApacheAnt 0.27 22.35 1.00 0.90 1.58 0.36 0.23 0.14 1.04 1.54 0.34
consolidate cond expression ArgoUML 1.79 1.07 1.21 0.77 3.05 0.74 0.01 1.44 1.28 1.56 0.30
consolidate cond expression Xerces 1.30 9.54 - 1.07 0.63 1.01 0.78 1.10 1.13 1.49 0.36
consolidate duplicate cond fragments ApacheAnt 0.53 8.02 0.53 1.25 2.35 0.38 0.47 0.54 0.63 0.91 0.31
consolidate duplicate cond fragments ArgoUML 1.09 1.92 1.23 1.02 2.62 1.35 0.00 0.53 1.29 0.54 0.72
consolidate duplicate cond fragments Xerces 1.26 6.77 - 1.13 0.77 1.86 0.92 1.13 1.02 0.68 0.56
extract method ApacheAnt 0.83 5.84 0.40 1.24 2.42 0.58 0.31 0.34 0.84 0.78 0.20
extract method ArgoUML 1.29 0.27 1.55 1.03 2.40 1.12 0.05 0.94 0.86 0.35 0.28
extract method Xerces 1.16 0.64 - 1.11 1.33 1.49 0.66 0.99 1.08 0.67 0.28
extract superclass ArgoUML 2.56 0.36 0.45 1.11 0.65 1.04 0.00 0.68 0.38 0.95 0.06
form template method ArgoUML 4.10 0.00 0.00 1.82 0.88 1.18 0.00 2.94 1.82 0.00 0.38
inline method ApacheAnt 1.16 0.14 3.23 1.41 4.04 0.20 0.11 0.13 0.42 1.40 0.08
inline method ArgoUML 1.15 0.63 3.46 1.15 1.46 1.35 0.24 0.84 0.85 0.17 0.30
inline method Xerces 0.71 1.59 - 1.10 1.10 1.15 0.39 0.98 1.30 1.14 0.07
inline temp ApacheAnt 1.56 3.55 0.57 1.14 0.59 0.98 0.85 0.35 0.63 0.95 0.29
inline temp ArgoUML 1.17 0.96 1.58 0.43 1.02 1.31 0.16 0.78 0.94 0.82 0.29
inline temp Xerces 1.80 9.94 - 1.09 0.61 1.64 0.68 1.37 1.00 0.97 0.70
introduce assertion ArgoUML 0.13 0.68 6.97 0.68 6.23 1.83 0.02 0.27 0.00 0.83 0.39
introduce explaining variable ApacheAnt 1.54 0.81 1.14 1.29 1.88 0.61 1.04 0.10 0.18 1.04 0.16
introduce explaining variable ArgoUML 0.82 1.05 0.83 1.00 2.54 1.16 0.27 0.80 0.99 0.69 0.53
introduce explaining variable Xerces 1.00 4.12 - 1.11 0.86 1.81 0.97 1.04 1.02 0.80 0.46
introduce null object ArgoUML 0.42 1.90 1.12 0.97 0.00 2.21 0.00 4.91 2.53 1.52 0.92
introduce parameter object Xerces 0.88 2.97 - 1.08 1.33 0.25 0.15 1.36 0.91 0.00 0.06
move field ApacheAnt 7.53 0.02 2.80 1.35 6.82 0.12 1.51 0.43 0.47 0.65 0.23
move field ArgoUML 10.40 0.00 1.58 0.92 0.77 1.16 0.00 0.75 0.24 1.08 1.72
move field Xerces 1.07 2.63 - 1.00 0.61 1.58 0.89 1.04 1.10 0.55 0.10
move method ApacheAnt 1.41 0.10 0.51 1.39 7.13 0.25 0.77 1.04 0.37 1.13 0.83
move method ArgoUML 1.18 1.61 2.97 1.06 0.60 1.26 0.04 0.81 0.92 0.58 1.22
move method Xerces 1.03 2.91 - 0.82 0.50 1.29 0.71 1.18 1.12 0.50 0.13
pull up field Xerces 2.44 0.37 - 1.17 0.89 1.90 0.60 20.31 6.07 0.25 0.73
pull up method Xerces 1.71 0.00 - 0.03 0.00 4.20 0.00 8.26 20.91 0.45 0.00
push down field Xerces 5.49 0.22 - 2.34 0.06 0.86 0.44 0.31 1.64 0.23 1.43
push down method Xerces 29.65 0.00 - 1.54 0.00 3.00 0.07 0.32 1.42 0.38 1.18
remove assignment to parameters ApacheAnt 0.25 4.35 0.73 1.02 0.37 0.85 0.31 0.38 0.00 1.09 1.19
remove assignment to parameters ArgoUML 1.52 0.29 1.24 0.34 1.88 0.82 0.00 1.12 0.65 0.22 0.25
remove assignment to parameters Xerces 1.73 0.34 - 1.10 1.29 0.99 1.01 1.26 0.85 0.47 0.58
remove control flag ApacheAnt 0.23 5.47 0.32 0.13 1.06 0.16 0.24 0.26 0.69 1.59 0.46
remove control flag ArgoUML 1.38 2.19 1.47 0.97 1.65 1.06 0.10 1.53 0.37 0.69 0.22
remove control flag Xerces 2.32 1.68 - 0.85 0.66 1.15 0.75 0.92 0.91 0.37 0.39
remove parameter ApacheAnt 2.26 0.77 0.51 1.28 1.08 0.51 1.13 0.55 0.59 0.80 0.22
remove parameter ArgoUML 1.10 0.93 1.16 1.12 1.42 0.95 0.06 0.88 0.89 0.36 0.59
remove parameter Xerces 0.96 1.41 - 1.12 1.06 0.87 0.68 1.19 0.99 0.36 0.35
rename method ApacheAnt 10.76 0.00 3.08 1.73 9.88 0.13 0.95 0.07 0.08 1.03 0.03
rename method ArgoUML 1.29 0.90 1.01 1.13 0.98 1.22 0.12 1.10 0.96 0.34 0.26
rename method Xerces 0.62 8.61 - 1.05 0.35 0.83 0.64 1.27 1.30 0.77 0.09
replace data with object ArgoUML 0.38 0.95 2.38 1.19 1.20 1.57 0.12 1.02 0.19 0.01 0.39
replace data with object Xerces 1.81 1.47 - 0.96 0.36 1.32 1.40 1.26 1.31 0.24 0.15
replace exception with test Xerces 8.43 0.74 - 0.00 0.48 0.03 1.86 7.48 0.00 0.09 0.42
replace magic number with constant ApacheAnt 0.37 10.04 0.86 0.55 0.51 1.15 0.57 0.02 0.26 0.81 0.57
replace magic number with constant ArgoUML 1.95 0.04 1.87 0.28 2.18 0.56 0.76 0.77 0.57 0.12 0.26
replace magic number with constant Xerces 0.77 2.64 - 0.92 0.61 3.63 1.03 1.05 0.90 0.54 0.51
replace method with method object ApacheAnt 0.61 5.84 0.39 0.12 4.51 0.27 1.05 0.45 1.08 0.31 0.40
replace method with method object ArgoUML 1.21 0.80 2.16 0.97 1.17 1.68 0.10 0.74 0.91 0.77 0.68
replace method with method object Xerces 1.69 0.92 - 1.04 0.80 1.15 1.08 0.98 1.04 0.47 0.24
replace nested cond guard clauses ApacheAnt 0.22 8.92 1.31 0.42 1.11 0.87 0.09 0.93 0.62 0.61 1.26
replace nested cond guard clauses ArgoUML 0.66 3.86 0.44 0.98 2.50 0.87 0.01 1.48 0.86 1.03 0.55
replace nested cond guard clauses Xerces 1.64 1.56 - 1.09 0.94 1.42 0.87 0.96 1.06 0.76 0.19
separate query from modifier Xerces 0.76 3.31 - 1.04 0.42 1.63 0.60 1.33 0.54 3.56 0.95

extract method refactoring (see Table 7).

Concerning DIT, the metric measuring the depth of a
class as the number of its ancestor classes, we expect strong
ORs for refactoring operations dealing with changes ap-
plied to the class hierarchy (i.e., push down method, pull
up method, pull up field, push down field, form template
method, and extract superclass). However, we do not ob-
serve any statistically significant OR higher than one.

As for the NOC metric, counting the number of direct
descendants (subclasses) of a class, we expected high ORs
for refactoring operations acting on the class hierarchy.
However, the ORs we found are either not statistically
significant, or very close to 1 (see Table 7).

NOA (the number of operations added by a subclass)
and NOO (the number of operations overridden by a sub-

class) are also related to class hierarchies and, in such
cases, results confirm the conjecture that such metrics can
relate with refactorings. Firstly, both metrics show high
ORs with the form template method refactoring, which is
often applied when in two subclasses there are very similar
methods. These two methods are generally merged into a
single one that is pulled up in the class hierarchy. For this
reason, NOA and NOO also exhibit very high ORs with
the pull up method and pull up field refactorings, even if
these are not statistically significant.

RFC measures the coupling of a class and thus, we
expect it to obtain high ORs for refactoring operations
allowing a coupling reduction (e.g., inline method, move
method, move field). Concerning the inline method refac-
toring, applied to merge two very coupled methods, we
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Table 8: Quality metrics model: summary of results.

Metric
Refactoring operations related to the metric

Overlap
Expected Found

LOC All

add parameter; extract superclass; form tem-
plate method; inline temp move field; move
method; pull up field; pull up method; push
down field; push down method; replace excep-
tion with test

39%

WMC

add parameter; consolidate cond expression;
consolidate duplicate cond fragments; extract
method; remove control flag; replace nested
cond guard clauses

consolidate cond expression; consolidate dupli-
cate cond fragments; remove control flag; re-
place nested cond guard clauses

67%

DIT
pull up method; pull up field; push down field;
push down method; form template method; ex-
tract superclass

introduce null object 0%

NOC
pull up method; pull up field; push down field;
push down method; form template method; ex-
tract superclass

add parameter; extract superclass; consolidate
duplicate cond fragments; introduce explaining
variable; pull up field; remove parameter

20%

RFC inline method; move field; move method
extract method; inline method; remove param-
eter

20%

CBO
inline method; move field; move method; pull
up method; pull up field; push down field; push
down method; form template method

introduce null object; pull up field; push down
method; replace data with object

20%

LCOM move field; move method replace exception with test 0%

NOA
pull up method; pull up field; push down field;
push down method; form template method; ex-
tract superclass

form template method 17%

NOO
pull up method; pull up field; push down field;
push down method; form template method; ex-
tract superclass

form template method; push down field 30%

CCBC

inline method; move field; move method; pull
up method; pull up field; push down field; push
down method; form template method; rename
method

separate query from modifier 0%

C3 move field; move method; rename method push down field; push down method 0%

Table 9: Code smells identified in each system (among all analyzed versions).

System Blob CDSBP
Complex Lazy Long

LPL
Message Refused Spaghetti Speculative Feature

Class Class Method Chain Bequest Code Generality Envy
ApacheAnt 85 370 0 167 110 12 0 5 9 40 62
ArgoUML 196 343 67 351 151 31 0 56 28 185 291
Xerces 328 792 48 664 700 17 0 852 71 124 34

found ORs higher than 1 for all object systems, showing
that highly coupled classes have a higher chance of be-
ing involved in such refactoring. However, for operations
like move method and move field, we found contradicting
results. Specifically, for these two refactorings we found
very high ORs on ApacheAnt (7.13 for move method and
6.82 for move field) together with ORs lower than 1 on
the other two systems. We also found very high ORs for
other refactoring operations that, however, do not allow
to reduce coupling (see e.g., rename method with an OR
of 9.88 in ApacheAnt).

CBO, also related to coupling, mainly exhibits high ORs
for refactoring operations that are not related to a coupling
reduction (e.g., replace method with method object with an
OR of 3.63 in Xerces). The only expected result we found
is that classes having high CBO (and thus, having sev-
eral dependencies with other classes) have a higher chance
of being involved in a push down method refactoring (OR
equals 3.00) and generally have a higher chance of being
involved in all refactoring operations moving code compo-
nents among the class hierarchy. This result is expected
since classes having a high CBO are also more likely to
have inheritance dependencies with other classes. In fact,
the CBO counts the number of objects with which a class
has dependencies, including inheritances.

The structural cohesion metric LCOM does not provide
any interesting result, generally showing low OR for the
different refactoring operations. Some interesting results
were achieved for the semantic cohesion metric C3, for
which we observed an OR higher than 1 for move method
and move field refactoring on ArgoUML. This indicates
that some responsibilities of classes having low C3 (con-
ceptual cohesion) are extracted from such classes. Finally,
concerning the semantic coupling metric CCBC, it shows a
high OR for the separate query from modifier refactoring.
However, this refactoring operation does not deal with cou-
pling reduction. While in some cases ORs higher than 1
are obtained for refactoring reducing coupling (e.g., move
method on ApacheAnt), as already observed for the struc-
tural coupling metric RFC, this result is not confirmed on
all the other systems, exhibiting ORs lower than 1.

Table 8 summarizes the results achieved for the quality
metrics model by reporting for each of the investigated
metrics:

1. The refactoring operations for which we expected
some form of correlation. For example, we expect
that classes having a high WMC value (WMC mea-
sures the code complexity) are more subject to refac-
toring operations aiming at reducing code complexity
like, for example, extract method.
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Table 10: Code smell model: OR of smells when building logistic regression model. Statistically significant ORs are reported in bold face.

Refactoring System Blob CDSBP
Complex Lazy Long

LPL
Refused Spaghetti Speculative Feature

Class Class Method Bequest Code Generality Envy
add parameter ApacheAnt 6.53 1.74 0.00 0.00 3.25 0.00 0.00 7.40 0.00 0.00
add parameter ArgoUML 2.66 1.83 0.00 0.12 3.62 0.00 0.85 0.00 0.86 1.02
add parameter Xerces 1.10 0.70 0.39 0.00 2.27 2.70 0.11 2.35 4.14 0.75
consolidate cond expression ApacheAnt 9.33 0.46 0.00 0.00 0.00 0.00 0.00 195.80 0.00 0.00
consolidate cond expression ArgoUML 3.29 0.90 0.00 0.00 5.16 0.00 0.00 0.00 0.00 3.71
consolidate cond expression Xerces 2.45 0.91 0.00 0.00 1.79 5.44 0.37 0.61 1.98 0.00
consolidate duplicate cond fragments ApacheAnt 2.72 1.55 0.00 0.00 0.00 0.00 0.00 0.04 3.96 0.00
consolidate duplicate cond fragments ArgoUML 2.34 2.66 0.00 0.00 3.84 0.00 0.00 0.00 0.00 2.74
consolidate duplicate cond fragments Xerces 1.40 1.08 1.84 0.00 5.33 4.49 0.90 1.97 1.80 3.44
extract method ApacheAnt 2.76 1.83 0.00 0.00 4.02 0.00 0.00 0.57 0.00 0.00
extract method ArgoUML 12.54 0.21 0.00 0.00 9.17 0.00 0.00 0.00 0.00 0.90
extract method Xerces 1.56 1.88 0.43 0.00 5.94 0.00 0.00 4.56 0.93 3.47
extract superclass ArgoUML 0.00 3.12 4.14 0.00 0.00 0.00 0.00 4.24 0.00 0.00
form template method ArgoUML 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
inline method ApacheAnt 2.43 0.84 0.00 0.00 45.79 0.00 0.00 1.14 0.00 0.00
inline method ArgoUML 0.00 1.87 0.00 0.00 0.00 0.00 0.00 85.92 0.00 1.35
inline method Xerces 3.29 1.62 0.00 0.00 3.23 0.00 0.00 0.00 0.22 5.41
inline temp ApacheAnt 8.80 2.89 0.00 0.00 11.63 0.00 0.00 0.00 0.00 0.00
inline temp ArgoUML 1.80 2.02 0.00 0.00 2.71 0.00 0.00 0.00 0.00 0.83
inline temp Xerces 2.28 1.41 1.13 0.00 5.02 2.10 0.00 0.00 2.18 0.00
introduce assertion ArgoUML 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.30 0.00 7.40
introduce explaining variable ApacheAnt 5.15 2.66 0.00 0.00 6.88 4.75 0.00 4.69 4.48 0.00
introduce explaining variable ArgoUML 1.56 0.78 0.00 0.00 5.06 0.00 0.00 0.00 0.00 2.14
introduce explaining variable Xerces 1.48 2.11 0.00 0.00 3.73 8.17 0.24 0.98 1.61 2.39
introduce null object ArgoUML 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
introduce parameter object Xerces 14.14 0.00 0.00 0.00 0.48 0.00 0.00 48.74 0.00 0.00
move field ApacheAnt 2.49 1.84 0.00 0.00 43.74 0.00 0.00 1.82 0.00 0.00
move field ArgoUML 0.00 1.64 0.00 0.00 0.00 0.00 0.00 22.15 0.00 8.03
move field Xerces 1.65 0.66 0.00 0.53 1.27 0.00 0.00 0.00 2.04 0.00
move method ApacheAnt 1.43 0.49 0.00 0.00 2.92 0.00 0.00 0.00 0.00 0.00
move method ArgoUML 0.00 1.71 22.35 0.00 0.61 0.00 0.00 0.00 1.13 0.44
move method Xerces 2.46 0.05 0.00 0.00 1.10 0.00 0.00 0.00 0.27 0.00
pull up field Xerces 0.00 3.55 19.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pull up method Xerces 11.95 0.00 17.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00
push down field Xerces 16.43 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00
push down method Xerces 26.79 0.00 16.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00
remove assignment to parameters ApacheAnt 3.27 1.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
remove assignment to parameters ArgoUML 2.36 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.36
remove assignment to parameters Xerces 0.92 0.89 8.79 0.00 2.00 6.47 0.00 0.00 2.82 0.00
remove control flag ApacheAnt 8.13 0.67 0.00 0.00 5.69 0.00 0.00 0.00 0.00 0.00
remove control flag ArgoUML 0.40 0.87 0.08 0.00 26.12 0.00 0.00 0.00 0.54 9.35
remove control flag Xerces 1.82 0.85 3.18 0.00 2.85 0.00 0.53 2.24 2.29 0.00
remove parameter ApacheAnt 6.54 2.17 0.00 0.00 5.76 0.00 0.00 3.19 0.00 0.00
remove parameter ArgoUML 3.28 2.38 0.00 0.14 3.85 0.00 0.99 0.00 1.23 0.66
remove parameter Xerces 1.16 0.97 0.45 0.00 2.76 1.38 0.12 2.69 1.38 1.52
rename method ApacheAnt 2.73 2.29 0.00 0.00 76.36 0.00 0.00 1.36 0.00 0.00
rename method ArgoUML 0.00 1.21 0.00 0.00 0.00 0.00 0.00 189.30 2.37 0.54
rename method Xerces 14.05 0.91 0.00 0.00 1.68 0.91 0.10 0.00 0.07 0.39
replace data with object ArgoUML 0.00 4.16 21.65 0.00 0.00 0.00 0.00 43.26 0.00 0.00
replace data with object Xerces 2.95 1.02 0.00 0.00 1.14 0.00 0.00 0.00 5.07 0.00
replace exception with test Xerces 0.74 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00
replace magic number with constant ApacheAnt 1.14 3.59 0.00 0.00 1.01 3.41 0.00 2.12 1.00 0.00
replace magic number with constant ArgoUML 4.63 17.43 0.00 0.00 0.00 0.00 0.00 0.00 1.27 0.00
replace magic number with constant Xerces 1.31 2.08 0.00 0.00 2.36 0.00 0.12 0.00 3.58 0.45
replace method with method object ApacheAnt 16.46 4.43 0.00 0.00 0.00 0.00 0.00 13.70 0.00 0.00
replace method with method object ArgoUML 0.44 1.79 0.00 0.00 3.90 0.00 1.11 0.00 0.00 1.14
replace method with method object Xerces 3.41 0.80 0.41 0.00 1.53 0.00 0.00 6.71 3.92 1.05
replace nested cond guard clauses ApacheAnt 3.09 0.84 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.00
replace nested cond guard clauses ArgoUML 0.00 1.48 0.00 0.00 0.00 0.00 0.00 1.40 0.00 6.52
replace nested cond guard clauses Xerces 1.06 0.99 0.00 0.00 11.34 0.00 0.46 3.97 2.75 0.59
separate query from modifier Xerces 5.94 0.00 0.00 0.00 3.82 0.00 0.00 0.00 0.00 0.00

2. The refactoring operations for which we observed ev-
idence of a relationship with quality metrics profile.
In this case we mean refactoring operations for which
we observed (i) a statistically significant OR higher
than one for at least one of the object systems and
(ii) consistent results (i.e., OR higher than one, even
if not statistically significant) on the other systems.

3. The percentage of overlap between the set of expected
refactorings (point 1) and the set of refactorings for
which we actually observed some form of correlation
(point 2).

The analysis of Table 8 highlights that with very few ex-
ceptions, quality metrics do not show a clear relationship
with refactoring. The only exception is represented by the
WMC metric, that seems to be able to indicate classes
attracting the developers’ refactoring attentions. As for
the other metrics, none of them showed with strong ev-

idence relation with refactoring. Particularly surprising
are the results achieved with cohesion and coupling met-
rics, generally considered good indicators of source code
components in need of refactoring [5]. It is important to
point out that we are not claiming the opposite being gen-
erally true, but just reporting that refactoring operations
do not target classes exhibiting low cohesion and/or high
coupling as much as expected.

3.2. To what extent are refactoring operations (i) executed
on classes exhibiting code smells and (ii) able to re-
move code smells?

Table 9 reports the number of classes affected by the
different code smells we identified in the analyzed releases.
Note that, for each system, we report the overall number
of code smells identified across all the analyzed releases.
This means that if a class is affected by a code smell in
all the 33 analyzed Xerces releases, this class has been

8



Table 11: Number of refactorings performed on each type of code smell.

Refactoring System Blob CDSBP
Complex Lazy Long

LPL
Refused Spaghetti Speculative Feature

Class Class Method Bequest Code Generality Envy
add parameter ApacheAnt 20 18 0 0 33 0 0 24 0 0
add parameter ArgoUML 15 23 0 1 13 0 1 0 4 19
add parameter Xerces 131 63 3 0 201 5 3 18 71 5
consolidate cond expression ApacheAnt 5 2 0 0 3 0 0 3 0 0
consolidate cond expression ArgoUML 2 1 0 0 2 0 0 0 0 6
consolidate cond expression Xerces 46 15 0 0 44 3 2 1 10 0
consolidate duplicate cond fragments ApacheAnt 6 9 0 0 0 0 0 0 1 0
consolidate duplicate cond fragments ArgoUML 3 6 0 0 3 0 0 0 0 9
consolidate duplicate cond fragments Xerces 125 43 10 0 193 6 9 12 33 15
extract method ApacheAnt 7 10 0 0 9 0 0 2 0 0
extract method ArgoUML 16 1 0 0 10 0 0 0 0 6
extract method Xerces 53 24 1 0 84 0 0 11 10 7
extract superclass ArgoUML 0 1 0 0 0 0 0 0 0 0
form template method ArgoUML 0 0 0 0 0 0 0 0 0 0
inline method ApacheAnt 2 1 0 0 16 0 0 6 0 0
inline method ArgoUML 0 1 0 0 0 0 0 0 0 1
inline method Xerces 31 8 0 0 31 0 0 0 1 6
inline temp ApacheAnt 15 13 0 0 12 0 0 0 0 0
inline temp ArgoUML 2 5 0 0 2 0 0 0 0 3
inline temp Xerces 37 15 2 0 47 1 0 0 12 0
introduce assertion ArgoUML 0 0 0 0 0 0 0 0 0 3
introduce explaining variable ApacheAnt 17 19 0 0 38 1 0 24 1 0
introduce explaining variable ArgoUML 2 2 0 0 4 0 0 0 0 8
introduce explaining variable Xerces 45 29 0 0 63 4 1 2 14 4
introduce null object ArgoUML 0 0 0 0 0 0 0 0 0 0
introduce parameter object Xerces 8 0 0 0 4 0 0 3 0 0
move field ApacheAnt 5 5 0 0 43 0 0 20 0 0
move field ArgoUML 0 13 0 0 0 0 0 0 0 0
move field Xerces 53 4 0 0 42 0 0 0 5 0
move method ApacheAnt 1 1 0 0 2 0 0 0 0 0
move method ArgoUML 0 15 3 0 4 0 0 0 2 4
move method Xerces 71 3 0 0 62 0 0 0 3 0
pull up field Xerces 0 0 0 0 0 0 0 0 0 0
pull up method Xerces 5 0 0 0 0 0 0 0 0 0
push down field Xerces 9 0 0 0 7 0 0 0 0 0
push down method Xerces 0 0 0 0 0 0 0 0 0 0
remove assignment to parameters ApacheAnt 5 7 0 0 0 0 0 0 0 0
remove assignment to parameters ArgoUML 1 1 0 0 0 0 0 0 0 2
remove assignment to parameters Xerces 12 6 4 0 18 1 0 0 6 0
remove control flag ApacheAnt 5 2 0 0 4 0 0 0 0 0
remove control flag ArgoUML 1 3 1 0 21 0 0 0 0 44
remove control flag Xerces 26 4 0 0 42 0 0 0 5 0
remove parameter ApacheAnt 20 19 0 0 29 0 0 16 0 0
remove parameter ArgoUML 16 26 0 1 12 0 1 0 5 11
remove parameter Xerces 91 42 2 0 140 2 2 15 22 7
rename method ApacheAnt 13 14 0 0 112 0 0 44 0 0
rename method ArgoUML 0 8 0 0 0 0 0 0 5 5
rename method Xerces 563 62 0 0 339 6 2 0 4 9
replace data with object ArgoUML 0 1 0 0 0 0 0 0 0 0
replace data with object Xerces 11 5 0 0 9 0 0 0 5 0
replace exception with test Xerces 1 0 0 0 1 0 0 0 0 0
replace magic number with constant ApacheAnt 17 62 0 0 16 1 0 8 1 0
replace magic number with constant ArgoUML 9 46 0 0 0 0 0 0 2 0
replace magic number with constant Xerces 104 101 0 0 144 0 2 0 64 2
replace method with method object ApacheAnt 17 17 0 0 0 0 0 0 0 0
replace method with method object ArgoUML 2 16 0 0 10 0 1 0 0 15
replace method with method object Xerces 59 17 1 0 55 0 0 9 18 2
replace nested cond guard clauses ApacheAnt 1 1 0 0 0 0 0 0 0 0
replace nested cond guard clauses ArgoUML 0 1 0 0 0 0 0 0 0 6
replace nested cond guard clauses Xerces 37 16 0 0 79 0 1 10 17 1
separate query from modifier Xerces 10 0 0 0 9 0 0 0 0 0

counted 33 times. We did not find any Message Chain
code smell. Thus, we will not discuss it in the following
results analysis.

Table 10 reports the ORs obtained for the considered
code smells when building a logistic regression model for
data concerning each refactoring operation (as explained
in Section 2). Moreover, we also show in Table 11, the
number of refactorings performed on each type of code
smell, and in Table 12 the percentage of code smells re-
moved when developers performed refactoring actions.

The analysis of ORs reported in Table 10 highlights that
Blob classes are generally subject to refactoring. A Blob
is a large class implementing different responsibilities and
centralizing most of the system behavior. Note that this is
somewhat an expected result, and consistent with the find-
ings related to the metric model (Table 8). Indeed, Blob
classes are quite large in terms of LOCs and, as observed
while discussing the quality metrics results, larger classes

generally have a higher chance of being involved in a refac-
toring operation. This result is also confirmed by the fact
that developers of the three object systems performed a
total of 1,753 refactoring operations on classes affected by
the Blob code smell (see Table 11). However, the data in
Table 12 shows that the refactoring operations that actu-
ally removed the Blob code smell are mainly two: move
method and move field. Specifically, in Xerces (the only
system for which we have a good number of move method
and move field refactoring operations performed on Blob
classes), move method refactoring removes the Blob code
smell in 71% of cases while move field refactoring in 30%
of cases. By performing a manual analysis of such cases,
we discovered as often a set of move method refactorings
is performed to completely remove a responsibility from
the Blob class and, in some cases, move method and move
field refactorings are performed together as extract class
refactoring (this type of refactoring is not detected by
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Ref-Finder). For example, the class XSchemaValidator

from the Xerces system has been refactored by the devel-
opers between releases 1.0.0 and 1.0.4. XSchemaValidator
was composed of 100 methods and 74 attributes and, as
stated in its comment, was an “experimental implementa-
tion of a validator for the W3C schema language”. De-
velopers removed this Blob class from the system by split-
ting its responsibilities across three new classes extracted
from it in release 1.0.4 (i.e., Schema, SchemaImporter, and
SchemaParser). This was done by (i) partially rewrit-
ing the code present in class XSchemaValidator, and (ii)
by performing 52 move field and 31 move method opera-
tions from XSchemaValidator to the three new extracted
classes.

Thus, while a Blob class generally represents a cata-
lyst of several refactoring operations due to its size (i.e.,
high LOCs), move method and move field refactorings (or
in combination as extract class) seem to be the only refac-
toring operations effective in removing this design problem
from the system.

Classes affected by the Class Data Should Be Private
(CDSBP) code smell also attracted several refactoring op-
erations. However, it is worth noting that this is mainly
due to the fact that this is the most diffused code smell
we found (see Table 9). In fact, as shown in Table 12, no
refactoring operations removed this code smell. The refac-
toring operation having this goal is the encapsulate field.
However, we only found one instance of this refactoring in
the ArgoUML system. What instead stands out from the
analysis of the ORs reported in Table 10, is that classes
affected by CDSBP have a much higher chance of being
involved in replace magic number with constant refactor-
ing operations (this chance is up to 17.43 higher). By
manually analyzing those cases, we did not find a clear
explanation for this phenomenon. However, two possible
explanations are plausible from our point of view. The
first is that developers are more prone to add new class
fields (and thus to apply replace magic number with con-
stant refactoring) in classes already containing fields (like
those affected by the CDSBP code smell). The second
is that the introduction of this code smell is favored by
the application of the replace magic number with constant
refactoring. Indeed, such refactoring implies the introduc-
tion of a new field within the class and it is possible that
the added field is publicly exposed, introducing a CDSBP.

Particularly interesting are the results achieved for Com-
plex and Lazy Classes. Both are poorly refactored by de-
velopers. On the one side, Lazy Classes are very sim-
ple classes, thus they should not create too much trouble
during maintenance activities, and consequently develop-
ers are not particularly motivated to refactor them. For
example, the interface LayoutedObject from ArgoUML
reported in Listing 1 has never been refactored by Ar-
goUML developers until the last release considered in our
study (0.34). Hence, this is an expected result. On the
other side, the reason behind the very few refactorings per-
formed on Complex Classes is likely their complexity. In

1 package org . argouml . uml . diagram . layout ;

3 // This i s the most common form o f an layouted
// ob j e c t .

5 pub l i c i n t e r f a c e LayoutedObject {
}

Listing 1: Example of a Lazy Class never refactored by developers
in ArgoUML

total, we observed just 27 refactoring operations on the 115
complex classes involved in our study (to be compared, as
example, to the 1,753 performed on the 609 Blob classes).
For example, the Complex Class RegularExpression from
the Xerces system has never been refactored by the devel-
opers. By looking inside its source code we found that
RegularExpression is a large class composed of 3,155
LOCs, and the 32 methods contained in it are very com-
plex. To get an idea, these methods contain in total
126 switch case statements and 536 if else statements.
Thus, refactoring this class would be very challenging for
developers.

Conversely, classes containing Long Methods are widely
refactored, for a total of 2,012 total refactorings. Firstly,
it is interesting to note that 35% of classes affected by
Long Methods are also Blobs and, as these latter, they
also catalyze the refactoring attention of developers. In
particular, classes affected by this code smell have:

• from 2.27 to 3.62 times more chances of being involved
in an add parameter refactoring;

• from 4.02 to 9.17 times more chances of being involved
in an extract method refactoring;

• form 3.23 to 45.79 times more chances of being in-
volved in an inline method refactoring (no data for
ArgoUML);

• from 3.73 to 6.88 times more chances of being involved
in an introducing explaining variable refactoring;

• from 2.85 to 26.12 times more chances of being in-
volved in a remove control flag refactoring;

• from 2.76 to 5.76 times more chances of being involved
in a remove parameter refactoring;

• from 1.68 to 76.36 times more chances of being in-
volved in a rename method refactoring (no data for
ArgoUML).

However, as shown in Table 12, only some of these refac-
torings are applied by developers with the aim of re-
moving the Long Method. The refactoring more of-
ten removing a Long Method is the remove control
flag that helps in removing the code smell by reduc-
ing the method length. As expected, the other refac-
toring often removing the Long Method is the extract
method, representing the most natural solution to this
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Table 12: Perc. of smells removed by each refactoring. In bold values for which a refactoring has been applied at least 10 times on a smell.

Refactoring System Blob CDSBP
Complex Lazy Long

LPL
Refused Spaghetti Speculative Feature

Class Class Method Bequest Code Generality Envy
add parameter ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
add parameter ArgoUML 0% 0% 0% 0% 15% 0% 100% 0% 50% 16%
add parameter Xerces 4% 0% 0% 0% 6% 0% 0% 6% 7% 100%
consolidate cond expression ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
consolidate cond expression ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 17%
consolidate cond expression Xerces 2% 0% 0% 0% 2% 0% 0% 0% 0% 0%
consolidate duplicate cond fragments ApacheAnt 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
consolidate duplicate cond fragments ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
consolidate duplicate cond fragments Xerces 2% 0% 0% 0% 1% 0% 0% 25% 12% 93%
extract method ApacheAnt 0% 0% 0% 0% 22% 0% 0% 100% 0% 0%
extract method ArgoUML 0% 0% 0% 0% 40% 0% 0% 0% 0% 50%
extract method Xerces 0% 0% 0% 0% 11% 0% 0% 0% 0% 100%
extract superclass ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
form template method ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
inline method ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
inline method ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
inline method Xerces 3% 0% 0% 0% 3% 0% 0% 0% 0% 100%
inline temp ApacheAnt 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
inline temp ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 33%
inline temp Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
introduce assertion ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 67%
introduce explaining variable ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
introduce explaining variable ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 13%
introduce explaining variable Xerces 0% 0% 0% 0% 3% 0% 0% 0% 0% 100%
introduce null object ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
introduce parameter object Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
move field ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
move field ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
move field Xerces 30% 0% 0% 0% 0% 0% 0% 0% 0% 0%
move method ApacheAnt 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
move method ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
move method Xerces 73% 0% 0% 0% 0% 0% 0% 0% 0% 0%
pull up field Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
pull up method Xerces 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
push down field Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
push down method Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
remove assignment to parameters ApacheAnt 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
remove assignment to parameters ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 50%
remove assignment to parameters Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
remove control flag ApacheAnt 0% 0% 0% 0% 25% 0% 0% 0% 0% 0%
remove control flag ArgoUML 0% 0% 0% 0% 81% 0% 0% 0% 0% 9%
remove control flag Xerces 4% 0% 0% 0% 14% 0% 0% 0% 0% 0%
remove parameter ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
remove parameter ArgoUML 0% 0% 0% 0% 7% 0% 100% 0% 60% 27%
remove parameter Xerces 5% 0% 0% 0% 9% 0% 0% 0% 9% 100%
rename method ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
rename method ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
rename method Xerces 9% 0% 0% 0% 57% 0% 0% 0% 0% 100%
replace data with object ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
replace data with object Xerces 7% 0% 0% 0% 11% 0% 0% 0% 0% 0%
replace exception with test Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
replace magic number with constant ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
replace magic number with constant ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
replace magic number with constant Xerces 0% 0% 0% 0% 4% 0% 0% 0% 19% 100%
replace method with method object ApacheAnt 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
replace method with method object ArgoUML 0% 0% 0% 0% 30% 0% 100% 0% 0% 13%
replace method with method object Xerces 5% 0% 0% 0% 4% 0% 0% 0% 0% 100%
replace nested cond guard clauses ApacheAnt 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
replace nested cond guard clauses ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 17%
replace nested cond guard clauses Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
separate query from modifier Xerces 0% 0% 0% 0% 22% 0% 0% 0% 0% 0%

code smell. This refactoring has been applied by Xerces
developers between release 2.7.1 and release 2.8.0 on the
Long Method DOMSerializerImpl.writeToString(Node

wnode) to extract from it three new methods (i.e.,
getXmlVersion(Node node), getInputEncoding(Node

node), getXmlEncoding(Node node)) each one imple-
menting a specific responsibility.

It can also be noted that the high number of extract
method refactorings partially explains the high number of
rename method refactorings performed on long methods.
Indeed, the method undergoing an extract method refac-
toring is generally also renamed to reflect its new purpose.
As for the add parameter refactoring, it sometimes helps
to remove a Long Method. This is due to the fact that
computations previously performed inside the method to
obtain a result r are now required to the classes invoking
the long method through the passing of r as parameter.

As for the other refactorings previously mentioned (i.e.,
inline method, introducing explaining variable, remove pa-

rameter) they are massively performed on classes affected
by Long Method mainly due to the long size of the involved
code component.

The Long Parameter List (LPL) code smell is rarely
refactored by developers (just 30 refactorings in total) as
well as the Refused Bequest code smell (25 refactorings).
Classes affected by the Spaghetti Code code smell have a
higher chance of being involved in an add parameter refac-
toring. This is a very expected result. In fact, these classes
are generally composed by methods with few (or no) pa-
rameters. Note that, as shown in Table 12, this refac-
toring is able to remove the code smell in 100% of cases
on ApacheAnt. However, a deeper analysis, reported in
Table 12, reveals that also the remove parameter refac-
toring removes the Spaghetti Code code smell in 100% of
cases on ApacheAnt. Our manual analysis revealed that
the 16 remove parameter performed on Spaghetti Code
in ApacheAnt were always executed together with an add
parameter refactoring. In particular, the parameter was
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generally moved from methods having more than one pa-
rameter to methods having no parameters inside the same
class.

For the Speculative Generality code smell, we did not
observe any particular result, while it is interesting to note
that in 93% of cases a consolidate duplicate conditional
fragments refactoring operation is able to remove a Feature
Envy code smell on Xerces (the only system on which we
have data for this refactoring). This refactoring removes a
fragment of code that is present in more than one branch
of a conditional expression. This means that often, a high
coupling between one method and the “envied class” (i.e.,
the class causing the Feature Envy in which the method
should moved) is not really needed, but just emphasized
by duplicated code.

In summary, 5,425 of the analyzed 12,922 refactoring
operations are performed on code smells (42%). However,
of these 5,425 only 933 actually removed the code smell
from the affected class (7% of total operations) and 895
are attributable to only four code smells (i.e., Blob, Long
Method, Spaghetti Code, and Feature Envy). Table 13
summarizes our findings for the studied code smells, high-
lighting for each of them (i) the refactoring operations for
which we expected a correlation with the presence of code
smells, (ii) the refactoring operations that we identified
as applied on the code smell and able to often remove it,
and (iii) the percentage overlap between the two previous
explained sets. Looking at Table 13 we conclude that:

• Only some of the analyzed code smells, such as Blob,
Long Method, Spaghetti Code, and Feature Envy,
increases the chances of the affected classes of being
refactored.

• The effectiveness of refactoring operations in remov-
ing code smells is generally low. In the analyzed
project releases, only 7% of the smells are removed
through refactoring operations.

4. Threats to Validity

This section discusses the threats that could affect the
validity of our study. Threats to construct validity con-
cern the relationship between theory and observation. The
most important threat to construct validity to be discussed
is how we assess source code quality in this paper. Specif-
ically, we have chosen to use source code metrics, namely
LOC, Chidamber & Kemerer metrics, conceptual cohesion
and coupling. Clearly, there may be other metrics that
may capture software quality, for example metrics com-
puted by means of dynamic analysis. Nevertheless, as ex-
plained in Section 2.2, we have chosen a mix of metrics
capturing source code size, structural and lexical charac-
teristics. Another threat to validity concerns the identi-
fication of code smells. As explained in Section 2.2, we
used a constraint-based approach to perform a prelimi-
nary detection of code smells (using low threshold values

to avoid reducing the recall) followed by a manual anal-
ysis performed by two independent evaluators (with the
aim of reducing imprecision and subjectiveness). Despite
such process, we cannot exclude that some code smells
were missed by our analysis or that false positives were
considered. Finally, similar issues apply to the investi-
gated refactorings, selected through a manual validation
over an initial set detected by Ref-Finder. As pointed out
by its authors [45], Ref-Finder has a very good recall (95%)
while the precision is a bit lower (79%). However, in this
study we back-up possible imprecisions by complementing
Ref-Finder by manual validation.

Threats to conclusion validity concern the relationship
between treatment and outcome. We use logistic regres-
sion models to identify correlations between metric values,
and the presence of code smells with refactoring actions.
Other than highlighting cases of significant correlations,
we report and discuss OR values.

Threats to internal validity concern factors that could
influence our observations. In particular, the fact that
code smells disappear, may or may not be related to refac-
toring activities occurred between the observed releases.
In other words, other changes could have produced such
effects. However, although the performed analyses and the
obtained results allow us to claim correlation and not cau-
sation, we corroborate our quantitative results by means of
some qualitative analysis, aimed at illustrating examples
in which specific kinds of refactorings helped to remove
some code smells.

Threats to external validity concern the generalization
of our findings. The study is limited to three Java projects,
because we preferred to observe fewer projects over a long
period of evolution history, rather than many projects for
a short period. This better allowed us to observe refactor-
ings, that often happen during specific periods of a project
lifetime [22]. We considered open source systems for our
analysis, since the source code of commercial ones are not
available. However, we provided data and tools used for
the investigation in order to allow a replication on different
(both open source and commercial) systems. Last, but not
least, as mentioned in Section 2, this choice to analyze few
systems was also due to the need for manually validating
refactorings and smells, rather than just relying on tool
output. In any case, further studies are therefore needed
to confirm (or refute) our results. Also, the findings ob-
tained for the investigated code smells may or may not
apply to other kinds of code smells, for example those—
such as Divergent Change or Parallel Inheritance—that
can be detected using change history metrics [43].

5. Related Work

In the refactoring field, most of the effort has been de-
voted to the definition of automatic and semi-automatic
approaches supporting refactoring operations (see Mens et
al. [33] and Bavota et al. [6] for a complete survey on the
most recent approaches). However, our paper is mostly
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Table 13: Code Smell model: Summary of the achieved results

Code Smell
Refactoring operations related to the metric

Overlap
Expected Found

Blob extract class; move method; move field
extract class (as combination of move method
and move field); move method; move field

100%

CDSBP encapsulate field replace magic number with constant 0%

Complex Class
extract method; consolidate conditional expres-
sion; move method; extract class

- 0%

Lazy Class inline class - 0%

Long Method
extract method; remove control flag; consoli-
date conditional expression

extract method; remove control flag; consoli-
date conditional expression; add parameter; re-
move parameter; inline method; introducing ex-
plaining variable; rename method

38%

LPL introduce parameter object - 0%

Refused Bequest
push down method; push down field; replace
inheritance with delegation

- 0%

Spaghetti Code add parameter add parameter; remove parameter 50%
Speculative Generality collapse hierarchy - 0%

Feature Envy
move method; extract method; consolidate du-
plicate conditional fragments

consolidate duplicate conditional fragments 33%

related to work analyzing how developers refactor source
code. In the following, we discuss only some of the ex-
isting approaches that automatically support refactoring
operations, while we provide a full overview of the related
literature on the works analyzing how developers refactor
source code.

5.1. Automated Refactoring: Methods and Tools

Different approaches have been defined to identify the
better way in which to refactor the source code. O’Keeffe
and O’Cinneide [40] formulate the task of refactoring as a
search problem in the space of alternative designs. Such
a search is guided by a quality evaluation function based
on eleven object-oriented design metrics (i.e., the CK met-
rics [17]) that accurately reflects refactoring goals. Atkin-
son and King [2] present a low-cost, syntactic approach
for automatically discovering opportunities for refactoring
the source code. The proposed approach uses the sym-
bol table and reference information together with simple
code metrics, such as line and statement counts. More-
over, only structural metrics are used to guide refactor-
ing. Maruyama and Shima [32] present a mechanism that
automatically refactors methods in object-oriented frame-
works in order to improve the reusability of frameworks.
For this purpose, the authors use weighted dependence
graphs, when the weight of the edges is based on the mod-
ification histories of the methods. Casais [16] proposes sev-
eral algorithms to restructure class hierarchies to maximize
abstraction, while Moore [35] proposes a method where ex-
isting classes with a low quality are replaced with a new
set of classes where their methods are optimally factored
aiming at minimizing code duplication.

A fully automated approach might be undesirable, as
developers might want to have the last word on the refac-
toring activities to perform. Semi-automatic approaches
requiring the human interaction have also been presented
to support refactoring activities. Opdyke [41] developed
the first tool providing semi-automatic refactoring sup-
port, which was implemented in the Refactoring Browser
[47]. Simon et al. [51] provide a metric-based visualization
tool to support the software engineer in the identification
of source code components that needs refactoring. Bod-

huin et al. [11] introduce SORMASA, SOftware Refac-
toring using software Metrics And Search Algorithms, a
refactoring decision support tool based on optimization
techniques, namely Genetic Algorithms. Almost all the
proposed approaches use design metrics to guide refactor-
ing. The relation between design metrics and refactoring
has been analyzed by several authors. DuBois et al. [19]
analyze how refactorings manipulate coupling and cohe-
sion characteristics, and how to identify refactoring oppor-
tunities that improve these characteristics. They provide
practical guidelines for the optimal usage of refactoring
in a software maintenance process. Another interesting
study is presented by Sahraoui et al. [48], that propose to
investigate whether some object-oriented metrics can be
used as indicators for automatically detecting situations
where a particular transformation can be applied to im-
prove the quality of a system. The detection process is
based on the analysis of the impact of various transforma-
tions on these object-oriented metrics using quality estima-
tion models. Tsantalis et al. [54] presented JDeodorant, a
tool for detecting Feature Envy smells with the aim of sug-
gesting move method refactoring opportunities. In partic-
ular, for each method of the system, their approach forms
a set of candidate target classes where a method should
be moved. This set is obtained by examining the enti-
ties (i.e., attributes and methods) that a method accesses
from the other classes. In its current version JDeodor-
ant6 is also able to refactor code in order to remove three
other code smells (i.e., State Checking, Long Method, and
God Classes). Finally, it is worth mentioning the work by
Bavota et al. [8], in which the authors applied Relational
Topic Model (RTM) in order to find Move Class Refactor-
ing opportunities.

5.2. Empirical Studies on Refactoring

Wang et al. [55] performed a survey with ten profes-
sional developers with the aim of identifying the major
factors that motivate their refactoring activities. The au-
thor identified twelve different factors pushing developers

6http://www.jdeodorant.com/
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to adopt refactoring practices and classified them in intrin-
sic motivators and external motivators. Intrinsic motiva-
tors are those for which developers do not obtain external
rewards. An example of intrinsic motivators is Responsi-
bility with Code Authorship, i.e., developers want to ensure
high quality for their code. What we miss here, is a clear
definition of high-quality code (e.g., as measured by qual-
ity metrics?). On the other side, an example of external
motivators is Recognitions from Others, i.e., high technical
ability can help the software developers gain recognitions.
Note that, unlike our work, in the paper by Wang et al.
[55] the relationship between code quality (e.g., presence of
code smells, quality metrics, change-proneness) and classes
refactored by developers is not analyzed.

Murphy-Hill et al. [38] analyzed eight different datasets
trying to understand how developers perform refactoring.
Examples of the exploited datasets are usage data from 41
developers using the Eclipse environment, data from the
Eclipse Usage Collector aggregating activities of 13,000 de-
velopers for almost one year, and information extracted
from versioning systems. Some of the several interest-
ing findings they found were (i) programmers rarely (al-
most 10% of times) configure refactoring tools, (ii) com-
mit messages do not help in predicting refactoring, since
rarely developers explicitly report their refactoring activ-
ities in them, (iii) developers often interleave refactoring
with other programming activities, and (iv) most of the
refactoring operations (close to 90%) are manually per-
formed by developers without the help of any tool. In
the design of our empirical study we took into account
one of these important conclusions: commit messages do
not help in predicting refactoring. For this reason we de-
tected refactorings using Ref-Finder, that performs detec-
tion through code analysis. Differently from our work,
Emerson et al. [38] did not analyze the characteristics of
code artifacts generally object of refactoring by developers.

Kim et al. [27] presented a survey performed with 328
Microsoft engineers (of which 83% developers) to under-
stand (i) the participants own refactoring definition, (ii)
when and how they refactor code, (iii) if refactoring tools
are used by developers and (iv) developers perception to-
ward the benefits, risks, and challenges of refactoring [27].
The main findings of this study were that:

• While developers recognize refactoring as a way to
improve the quality of a software, in almost 50% of
cases they do not define refactoring as a behavior-
preserving operation.

• The most important symptom that pushes develop-
ers to perform refactoring is low readability of source
code.

• 51% of developers manually perform refactoring.

• The main benefits the developers observed from the
refactoring were improved readability (43%) and im-
proved maintainability (30%).

• The main risk developers fear when performing refac-
toring operations is bug introduction (77%).

Kim et al. [27] also reported the results of a quantita-
tive analysis performed on the Windows 7 change history
showing that refactored modules experienced a higher re-
duction in the number of inter-module dependencies and
post-release defects than other modules. Differently from
the study of Kim et al. [27], our work quantitatively an-
alyzes if developers focus their refactoring attentions on
classes having a low quality, as indicated by quality met-
rics, and code smells.

Finally, a number of works have studied the relation-
ship between refactoring and software quality. Bavota et
al. [4] conducted a study aimed at investigating to what
extent refactoring activities induce faults. They show that
refactorings involving hierarchies (e.g., pull down method)
induce faults very frequently. Conversely, other kinds of
refactorings are likely to be harmless in practice. We share
with this work the dataset of refactoring operations used
to run our study.

Stroggylos and Spinellis [52] studied the impact of refac-
toring operations on the values of eight object-oriented
quality metrics. Their results show the possible negative
effects that refactoring can have on some quality metrics
(e.g., increased value of the LCOM metric).

Szoke et al. [53] performed a study on five software sys-
tems to investigate the relationship between refactoring
and code quality. They show that small refactoring opera-
tions performed in isolation rarely impact software quality.
On the other side, a high number of refactoring operations
performed in block helps in substantially improving code
quality.

Alshayeb [1] investigated the impact of refactoring op-
erations on five quality attributes, namely adaptability,
maintainability, understandability, reusability, and testa-
bility. Their findings highlight that benefits brought by
refactoring operations on some code classes are often coun-
terbalanced by a decrease of quality in some other classes.

Moser et al. [36] conducted a case study in an industrial
environment aimed at investigating the impact of refactor-
ing on the productivity of an agile team and on the quality
of the code they produce. The achieved results show that
refactoring not only increases software quality but it also
increases developers’ productivity.

6. Conclusion

This paper reported an empirical study aimed at inves-
tigating the characteristics of code components increasing
their changes of being subject to refactoring operations. In
particular, we verified whether refactoring activities occur
on classes for which certain indicators—such as quality
metrics or the presence of smells as detected by tools—
suggest there might be need for refactorings. The study
has been conducted on 63 releases of three open source
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projects, and required the manual analysis of 15,008 refac-
toring operations and 5,478 smells.

Our results highlighted that, with very few exceptions,
quality metrics do not show a clear relationship with refac-
toring. One possible interpretation of such a finding can
be found in a survey we recently performed with devel-
opers about their perception about some code smells [42].
Indeed, on the one hand developers found that only partic-
ularly serious smells (in terms of metrics) are worthwhile
of being refactored. On the other hand, they also pointed
out that in some cases metrics may not be per se indicators
of smells: for example, some classes—e.g., implementing
parsers or complex algorithms—might intrinsically exhibit
anomalous metric profiles, without necessarily being con-
sidered as refactoring opportunities.

Almost 40% of the analyzed refactorings has been per-
formed on classes affected by smells. However, just 7%
of them actually removed the smell. In other words, it
is possible that the refactoring only mitigated the prob-
lem, without however necessarily removing completely the
smell.

This work is mainly exploratory in nature, as it is aimed
at empirically investigating a phenomenon—which charac-
teristics of classes promote refactoring operations—from a
quantitative point-of-view. Nevertheless, there are dif-
ferent possible uses one can make of the results of this pa-
per. When building recommendation tools aimed at high-
lighting refactoring opportunities to developers it must be
taken into account that, at least among the code character-
istics considered in this paper—i.e., code metrics, presence
of smells—there is no silver bullet able to indicate which
code artifacts are in need of refactoring. Future work in
this area should aim at learning something from the past
refactorings made by developers, in order to suggest refac-
toring recommendations more suitable for them.

Also, when evaluating refactoring recommendation tools
the developer’s point-of-view cannot be ignored. Often
such tools are just evaluated by verifying if the refactorings
they recommend are able to improve some quality metric
values and/or to remove smells. However, our study indi-
cates that the developer’s point-of-view of classes in need
of refactoring does not always match with these “quality
indicators”.
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