
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 1

Exploring Community Smells in Open-Source:
An Automated Approach

Damian A. Tamburri, Member, IEEE, Fabio Palomba, Member, IEEE, Rick Kazman, Member, IEEE

Abstract—Software engineering is now more than ever a community effort. Its success often weighs on balancing distance, culture,
global engineering practices and more. In this scenario many unforeseen socio-technical events may result into additional project cost
or “social" debt, e.g., sudden, collective employee turnover. With industrial research we discovered community smells, that is,
sub-optimal patterns across the organisational and social structure in a software development community that are precursors of such
nasty socio-technical events. To understand the impact of community smells at large, in this paper we first introduce
CODEFACE4SMELLS, an automated approach able to identify four community smell types that reflect socio-technical issues that have
been shown to be detrimental both the software engineering and organisational research fields. Then, we perform a large-scale
empirical study involving over 100 years worth of releases and communication structures data of 60 open-source communities: we
evaluate (i) their diffuseness, i.e., how much are they distributed in open-source, (ii) how developers perceive them, to understand
whether practitioners recognize their presence and their negative effects in practice, and (iii) how community smells relate to existing
socio-technical factors, with the aim of assessing the inter-relations between them. The key findings of our study highlight that
community smells are highly diffused in open-source and are perceived by developers as relevant problems for the evolution of
software communities. Moreover, a number of state-of-the-art socio-technical indicators (e.g., socio-technical congruence) can be used
to monitor how healthy a community is and possibly avoid the emergence of social debt.

Index Terms—Software Organisational Structures; Software Community Smells; Human Aspects in Software Engineering; Social
Software Engineering; Empirical Software Engineering;

F

1 INTRODUCTION

Software is increasingly being engineered by large globally-
distributed communities with highly complex social net-
works of software development. Knowing more about the
quality of these communities and their social networks as
well as the factors that affect their quality is critical to
software success [1], [2], [3]. Several notations have been
used in the software engineering literature to elicit and
study these social networks, e.g., Developer Social Net-
works (DSNs) for bug prediction or error-pronenness [4],
[5]. Moreover, several quality factors have been proposed
over the years to highlight the importance of social aspects
in software engineering. Nevertheless, both research and
practice discuss software development communities and
their characteristics rather vaguely; none has yet precisely
quantified and evaluated the cost of the potential flaws in
community structures and their (mis-)alignment to software
structures [6]. Fewer still have identified and quantified a
meaningful set of software community characteristics and
associated these with project thresholds for achieving good
quality [7], [8].

Our objective is in line with the emerging DevOps trend
of speeding up software lifecycles from a technical and
organisational perspective; we aim to offer means to contin-

• D. A. Tamburri is with the Eindhoven University of Technology, The
Netherlands
E-mail: d.a.tamburri@tue.nl

• F. Palomba is with the University of Zurich, Switzerland
E-mail: palomba@ifi.uzh.ch

• R. Kazman is with the University of Hawaii & SEI/CMU, USA
E-mail: kazman@hawaii.edu

uously analyse a live organisational structure and make it
more “healthy" by finding, tracking, and possibly removing
negative or detrimental community behaviour across the
software community. We begin by formalising, operational-
ising, and evaluating the effects of software development
community “smells" [9], that is, patterns of sub-optimal
organisational and socio-technical characteristics that may
lead to tangible problems in development communities [10].
In fact, much like code smells in source code [11], [12],
community smells are not “show-stoppers" for software
code or system builds, rather, they reflect circumstances
that, on the long run, manifest in additional project cost —
a phenomenon called social debt [13]. It is our intention to
further our understanding also in the conditions wherefore
community smells are actually detrimental or whether some
of them can be accepted as de-facto organisational proce-
dures, especially in an open-source context.

To conduct our analysis, we adopt a state of the art socio-
technical analysis tool called CODEFACE [14] and use this to
evaluate community smells in action. We focus on four com-
munity smells previously seen in organisations, social net-
works, and software engineering research [9], [15], [16], [17],
namely: (1) the Organisational Silo effect—reflecting isolated
sub-communities; (2) the Black Cloud effect—reflecting ex-
cessive recurrent communication; (3) the Lone Wolf effect—
reflecting isolated individuals acting as knowledge brokers;
(4) the Bottleneck effect—an instance of the “unique bound-
ary spanner" phenomenon [18] in software engineering.

Stemming from the above community smells, we study:
(a) their diffuseness, i.e., how many instances of such
community smells are present in open-source; (b) their
perception by developer communities; (c) their relation to

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 2

socio-technical factors from the state of the art, e.g., socio-
technical congruence [7], [8]. While the first two objects of
study serve as starting point for our analysis, the last point,
serves the purpose of identifying which factors from the
state of the art relate to community smells (if any) and
can therefore be used as monitored quantities that mediate
smells’ occurrence.

In terms of diffuseness, we found an average of 25
community smells per community, per release. The only
exception is with the Black Cloud effect, which is less present
and tends to appear more frequently in communities com-
posed of more than 50 participants. Moreover, in terms
of smells perception, our survey in “smelly communities”
shows that the negative effects connected to smells are
indeed perceived by the respective community members.
This is also confirmed by an additional study where we di-
rectly interviewed 35 developers of 11 communities, asking
them about their perceptions of the harmfulness of commu-
nity smells. Finally, we found that several socio-technical
factors, such as socio-technical congruence, are correlated
with a lower number of community smells. For example,
we confirmed that socio-technical congruence does reflect
a lower number of smells and hence a higher quality of
organisational structures and consequent lower social debt.
Conversely, other factors such as distance do not correlated
with the emergence of any smell.

Our study led us to three conclusions: (a) further investi-
gating the causes and effects connected to community smells
is paramount for efficient running of distributed organisa-
tions, particularly those interested in high release velocity;
(b) known factors from the state of the art offer a good
starting point to instrument the study of community smells;
(c) automated means for smell detection and evaluation
need to be created and empirically evaluated.

In summary, in the scope of this manuscript we provide
4 novel contributions:

1) The operationalisation and quantitative detection
mechanisms for 4 community smells from previous
research;

2) The implementation of said mechanisms as an exten-
sion of the previously available CODEFACE tool. This
extension is also open-source and was made available
as the CODEFACE4SMELLS tool under the same license;

3) An extensive empirical evaluation of the presence, per-
ception, consequences, and naturalness of community
smells as a phenomenon occurring in 60 open-source
communities.

The impact of the above contributions and conclusions
on both industry and academia are manifold. First, aca-
demics can use our results, and the tools we devised to
obtain them, to further study community smells and their
associated effects. Second, practitioners could use said tools
and conclusions to “refactor” their own communities in line
with more efficient organisations. Third, open-source practi-
tioners can use the results we provide for better community
management and steering.

Paper Structure. Section 2 introduces the basic terminol-
ogy needed to comprehend our work. Section 3 provides
background and definitions. Section 4 outlines our study of
community smells, while Section 5 offers an overview of

study results and their discussion. Section 5.4 analyses the
trade-offs of using community smells to assess how healthy
a community is. In Section 6 we discuss possible threats to
validity and verifiability. Section 7 discusses related work.
Finally, Section 8 concludes the paper.

2 THEORETICAL FRAMEWORK

Our study aims at detecting and understanding the role of
community smells in the scope of software development com-
munities as reflected in their organisational structure. These
concepts are defined as follows.

According to Pugh [19] an organisational structure is a
complex multi-layered network of relations across people
and artefacts outlining how certain activities are directed in
order to achieve the goals of an organization. For the sake
of operationalisation, organisational structures are formally-
defined graphs, or sociograms [20], featuring (1) organi-
sational nodes (people, artefacts, etc.) (2) social relations
(across people and with collective intent [21]) as well as
technical relations (across people and artefacts and relating
to a specific craft [22]).

A software development community is a specific type of the
afore-mentioned organisational social network upon which
certain properties hold constantly (e.g., informal commu-
nication across a project’s electronic channels) [10]. From
a socio-metrical and social-networks analysis perspective,
two structures need to be distinguished: (a) macrostructure,
often simply called ’structure’, corresponding to the over-
all organization of the community, its properties, defini-
tions, norms [23]; (b) microstructure, corresponding to the
micro-interactions between a subset of nodes part of the
macrostructure.

From a research perspective, we seek to study the micro
and macro organisational structure of software development
communities with the purpose of identifying, possibly pre-
dicting, averting, and mitigating any recurring anti-patterns.

More specifically, just like any community structure,
the aforementioned software development communities can
develop sub-optimal conditions [24], [25] which we previ-
ously introduced as community smells [9] on analogy with
code smells. The analogy signifies that, on one hand, com-
munity smells do identify sub-optimal circumstances (e.g.,
the lack of communication across different modules of a
software system) but, on the other hand, these conditions
do not necessarily destroy the organisational behaviour
across the community. Rather, they prove detrimental and
cause additional project costs, such as recurrent delays in
communication, imperfect knowledge sharing, etc. Finally,
with the term project, we identify the goal or shared practice
that the community maintains as its central endeavour. For
example, the Apache Spark community holds the delivery
of the Apache Spark product as its key project.

It should be noted that community smells reflect sub-
optimal recurrent microstructures that can be detected over
time across a complex macrostructure such that, following
Coleman et al. [23], software practitioners can influence
and fine-tune the macrosocial behavior across their software
community by uncovering and mitigating the microfounda-
tions of such behavior. It is for this reason that each mi-

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 3

crostructural behavior reflecting known organisational anti-
patterns (e.g., Organisational Silo effects, see Sec. 3) needs
explicit addressing.

From the above theoretical foundations, it follows that,
to positively influence and mitigate the macrostructural be-
haviors amounting to sub-optimal organisational circum-
stances (e.g., bad communication practices across the or-
ganisation or lack of vision of its members) a more fine-
grained and microstructural lens of analysis is required. On
one hand, previous research has attempted to formulate
holistic indicators for the former macrostructural behaviors
(e.g., [7]) but, on the other hand, never before investigated
the microstructural circumstances which together amount
to those macro-phenomena. Ours is the first such attempt
and harnesses the notion of community smells as instances
of transversal micro-/macro-structural phenomena that (1)
indicate the emergence of nasty macrostructural circum-
stances (2) have structural features that can be detected
using graph theory and social-network analysis and (3)
are the most known to occur (e.g., consider the works of
Alter [26] or Levina et al. [27]) and have an established
body of knowledge all across organisational and social-
networks literature, with empirically-established negative
consequences [28], [29].

3 COMMUNITY SMELLS AND THEIR DETECTION

Community smells represent sub-optimal organisational
and socio-technical characteristics within a software com-
munity that might lead to additional costs due to commu-
nication problems, rage-quitting (i.e., cases where a com-
munity member leaves the project before its end because
of socio-technical issues with other community members),
and so on [10]. In the context of this work, we considered
four of the community smells defined by Tamburri et al. [6],
namely:

1) Organisational Silo Effect: siloed areas of the developer
community that do not communicate, except through
one or two of their respective members;

2) Black Cloud Effect: information overload due to lack of
structured communications or cooperation governance;

3) Lone Wolf Effect: unsanctioned or defiant contributors
who carry out their work with little consideration of
their peers, their decisions and communication;

4) Bottleneck or “Radio-silence" Effect: an instance of the
“unique boundary spanner" [18] problem from social-
networks analysis: one member interposes herself into
every formal interaction across two or more sub-
communities with little or no flexibility to introduce
other parallel channels.

In the following sections, we describe (1) the reasons
behind the selection of these community smells, especially
in relation to the theoretical framework presented in Section
2 and (2) how we operationalised their detection.

3.1 A Theoretical Tale of the Selected Community
Smells

The rationale behind the selection of Organisational Silo,
Black Cloud, Lone Wolf, and Bottleneck as community smells
on which to focus in this paper is twofold. First, they reflect

sub-optimal macro and microstructures of the organisa-
tional structure that, according to previous industrial experi-
ences [30], are commonly observable in practice. Second, all
the community smells considered have been shown to have
a negative impact in practice, as they may not only lead to
the emergence of social debt [6], but also to poor source code
quality [31]. As such, our study targets those smells whose
impact is higher. In the following, we further describe the
relation of these smells to the theoretical framework as well
as provide an overview of their impacts in practice.

3.1.1 Relation with the Theoretical Framework
The selected community smells are related to recurrent
communication and collaboration hindrances that occur to-
gether (in the context of Organisational Siloes and Lone Wolf
effects) or across a larger and communication graph (as
with Black Clouds and Bottlenecks). Altogether, the smells link
macrostructural phenomena (e.g., lack of vision, lack of or
nasty communication) with microstructural patterns. From
a theoretical perspective, community smells are patterns of
organisational, social, and technical circumstances that span
both the macro- and microstructures in the organisational
structure. For example, an Organisational Silo connects an
organisational dyad (i.e., a pair of coordinated developers)
[32] working over a single file in part of the project coordina-
tion microstructure to a hindrance of communication, even
of multiple scales (e.g., in the Lone Wolf effect); the link be-
tween the communication and coordination microstructures
may be used to diagnose higher-order macrostructural phe-
nomena in a targeted community. Similarly, a microstruc-
tural pattern (e.g., a clique inside a larger graph) can be
linked to a higher-order phenomenon in the macrostructure;
such is the case of the Black Cloud and Bottleneck effects
where separated communication cliques occur over time
and manifest themselves into higher-order, recurring, and
nasty circumstances (e.g., overall production delays, lower
quality, code churn [31]).

Overall, although the definition of such smells may
seem similar, it is important to consider that they have
different granularities and, as such, arise in a different
ways and involve different socio-technical situations. As
an example, the Black Cloud appears as a consequence of
disagreeing repeated communications among community
members that have the effect of obfuscating information,
while the Bottleneck represents one single member that in-
terposes herself into every formal interaction across two
or more sub-communities with little or no flexibility to
introduce alternative channels. Thus, while the former smell
originates in the behavior of more community members and
has the possible effect of obfuscating a wide amount of
information, the second one refers to a single contributor
that does not provide information on her own work. Thus,
these phenomena represent different organisational/social
situations that require specific attention and formulations
which match their exact manifestations, emergence, and
characteristics. Another example, as Leistner [33] pointed
out, refers to the Organisational Silo, which is a smell that
exists across several layers of the organisational structure,
spanning both its macro- and micro-structure, namely the
“local” (a communication/collaboration clique of the larger
organizational network) and “global” graphs (i.e., the entire

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 4

Arch. 1

Arch. 2

Dev. 3 Dev. 4

Dev.2
Ops. 2

Ops. 1

Arch. 3

Int. 2

Int. 1

Dev. 5

Man.1

SITE A
Product: RED, Waterfall

SITE B
Product: GREEN, ScrumSITE A+B, i.e. Integra

Dev.1

Fig. 1: The organisational scenario under investigation of the Integra project.

organizational network). Such a smell needs uncovering and
explicit bridging [34] at all levels, but the organizational
dynamic needs identification first. As a final note, it is
worth mentioning that the selected community smells are
those whose detection can be enabled using the data cur-
rently openly available in most open-source communities,
i.e., communication and collaboration data extractable from
issue trackers, mailing lists, and similar.

3.1.2 Impact of Community Smells
To intuitively grasp the notion of community smells and
their impact in practice, one should consider that all com-
munity smells are effects—Lone Wolf effect, Organisational
Silo effect, etc.—meaning that they produce a visible mani-
festation which is not bad per se, but, in the long run, may
eventually manifest into a negative consequence. For exam-
ple, consider the real-life industrial software organizational
structure reported previously [6], [9] depicted in Fig. 1.
The scenario features a software project (called Integra from
now on) undergoing integration with two other software
products, called RED and GREEN, respectively.

Nodes in the graph are people in the development net-
work under study, while edges represent frequent recorded
interactions between network members. The community
of developers under analysis involves two geographically
distributed production sites A (headquarters) and B (remote
site) providing development as well as customer support
and operations. A and B sites are both responsible for
the implementation of incoming user requests (e.g., new
requirements, revised requirements, bug-reports, etc.) but B
also handles maintenance of both products being integrated.

A big organisational difference between sites A and B
is that responsibilities in the remote site B are limited to
what is decided by product managers in Site A. Product
managers and architects in site A are responsible for man-
agement, software architecture, requirement elicitation and
critical decision-making. In addition, while RED is a well-
established product, active for well over 10 years, and man-
aged following an established waterfall model, the GREEN
product (and people) are relatively new and have adopted

agile methods. The RED/GREEN integration team resides
mainly in site A and acts as an intermediary between Sites
A and B. The RED/GREEN team is meant to integrate deci-
sions and their implementations on both products into one
coherent whole, sometimes borrowing expertise from either
RED or GREEN. Essentially, the scope of people working
on RED is to maintain critical and un-replicable operations
for the product while aiding its integration with GREEN.
Conversely, the scope of people working on GREEN is to
adapt some of its interfaces to interact with RED, while
developing new functionality. Finally, the scope of people
working on the RED/GREEN integration is to integrate
RED and GREEN interfaces using middleware, wrappers,
and similar integration technology.

According to our analysis, this scenario reflects the pres-
ence of at least 3 of the smells we focus on in this study.
Specifically, practitioners at Site A (together with people
at Sites A+B) constitute an organizational silo which is also
blended within a Black Cloud effect, since they communicate
with Site B only via a specific, restricted number of pro-
fessionals (Dev 2, in this case). Similarly, Dev. 1 constitutes
a Lone Wolf, who is focused on improving the microser-
vices under her care, regardless of the integration efforts
currently undergoing. From a practical point of view, all
the considered community smells have been shown to have
a negative impact for the evolution of software projects.
This is, however, not only related to the emergence of social
debt [6], which represents a natural consequence of having
community smells. Indeed, in our previous work [31], we
demonstrated that (i) software communities affected by
these four community smells are more prone to the intro-
duction of technical debt and (ii) different community smells
lead to the emergence of different code smells in source
code. On the basis of these results, we can claim that the
definition of automatic mechanisms for the identification of
those smells can provide important benefits for practitioners
with respect to both management of the community and
monitoring of the evolution of source code.

3.2 Operationalizing Community Smells

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 5

Fig. 2: High-level representation of the Developer Social Net-
work (DSN) structure we used for community smell detection.

Starting from the developer networks built by CODEFACE,
we detect instances of smells according to the formalisation
below. For all of them, a premise is needed:

Premise. Let Gm = (Vm, Em) be the communication
graph of a project and Gc = (Vc, Ec) its the collabora-
tion graph.

More precisely, for communication we mean the relation
by which two or more developers communicate with each
other through any channel: for example, a communication
link between two developers is established in case they
reply to the same discussion within a mailing list or they
comment on the same issue in the issue tracker. As for
collaboration, we mean the relation for which two or more
developers have worked on the same source code elements.
This is established by considering the change history of a
project, looking for cases where two or more developers
have modified the same code entities.

3.2.1 Organisational Silo Effect
The Silo effect reflects independent sub-communities—parts
of a larger software development community—and these
sub-communities often duplicate effort and waste resources
due to their isolation [9], [35]. With the occurrence of Silo
effects, social debt manifests as decaying communication
across sub-communities and consequent negative effects on
developers’ situational awareness [36] as well as degrada-
tion of projects’ socio-technical congruence [6], [31]. Also,
according to recent findings [9], the Silo effect may lead to
tunnel-vision, since participants may focus their cooperation
and communication solely on other members of their nar-
row sub-community rather than on the broader community.
Finally, community members belonging to an Organisational
Silo may exhibit egotistical behaviour leading to unsanc-
tioned architectural decisions [17] as well as defiance of the
decisions of others [9].

Based on this definition, we define the set of Organiza-
tional Silo pairs S as follows:

{(v1, v2)|v1, v2 ∈ Vc, (v1, v2) 6∈ E∗m}

where E∗m is the transitive closure of Em. With transitive
closure we indicate the transitive closure of a graph. More

Fig. 3: Organisational Silo Effect Community Smell identification
pattern.

specifically, given a directed graph, the operation finds out
if a vertex j is reachable from another vertex i for all vertex
pairs (i, j) in the given graph. With reachable we mean that
there is a path from vertex i to j. The reach-ability matrix is
called transitive closure of a graph. For the sake of precision,
we capture the Silo Effect at the finest grain possible, i.e.,
that of collaboration dyads: pairs of co-committing develop-
ers. An example is shown in Figure 3. Here the Silo effect is
reflected on developer “1", who does not communicate with
developer “2" even though “1” is collaborating with “2".
Conversely, developer “2" is communicating with (at least)
one other developer, “3", who belongs to a sub-community
other than “1". Considering the example proposed in Figure
2, an operationalisation of the identification pattern for the
Silo effect has two steps. In the first step, the identification
mechanism compares the collaboration network (bottom
half of Figure 2) with its communication counterpart (top
half of Figure 2). Then it verifies that the developer identi-
fied by the letter A is present in the collaboration network,
i.e., A commits to files co-committed by others, but is not
present in the communication DSN reflecting those files.

3.2.2 Lone Wolf Effect
The Lone Wolf community smell reflects circumstances in
which communication may indeed be present but insuffi-
ciently addressing project needs [9], [35]. The result is de-
veloper free-riding and unsanctioned architectural decisions
that cause nasty ripple effects such as code duplication and
churn [36]. Thus, we define the set of Lone Wolf pairs L
as the set of collaborators that do not directly or indirectly
communicate with each others. More formally:

{(v1, v2)|v1, v2 ∈ Vc, (v1, v2) ∈ Ec, (v1, v2) 6∈ E∗m}. By
definition L ⊆ S.

The identification pattern for the Lone Wolf smell is based
on the detection of development collaborations between two
community members that have intermittent communication
counterparts or feature communication by means of an
external “intruder", i.e., not involved in the collaboration.
A simple example is given in Figure 4. In this example two
developers, “1" and “2", are collaborating on some code, but
they are not connected by any communication link other
than developer “3", who is not co-committing on a shared
file. In this case, either developer “1" or developer “2" (or
both) can develop a Lone Wolf community smell.

This smell reflects the presence of possible side effects
generated by the Organisational Silo such as communication
decay or negative influence on developer awareness and
heavy socio-technical congruence degradation. Our conjec-
ture is that the occurrence of the Organisational Silo effect

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 6

Fig. 4: Lone Wolf Community Smell identification pattern.

is not negative per se. But when that occurrence is com-
pounded by the occurrence of Lone Wolves, extra attention
must be paid to avoid negative consequences such as delays
and unmanageable social debt. The Lone Wolf smell reflects
dyads of co-committing (collaborating) software developers
who exhibit uncooperative behaviour and mistrust by not
appropriately communicating.

3.2.3 Black-cloud Effect
The Black Cloud Effect leads to negative social interactions
within a software development community featuring: (a)
community members’ inability to cover knowledge and
experience gaps between two different software products
developed within the same software community [9]; (b)
lack of periodic and official opportunities to share and
exchange knowledge between all community members [9],
[35]. Whenever these two circumstances occur together, they
can generate a “black-cloud" of misinformation (e.g., confus-
ing, delayed, or unnecessary communication that generates
communication overload) within the community. The main
consequence of the Black Cloud effect is to obfuscate project
vision, compromising progress [9], [35]. The occurrence of
this community smell can be generated or worsened by
several socio-technical triggers:
• absence of ad-hoc protocols for knowledge sharing;
• lack of boundary spanners;
• presence of inefficient communication filtering proto-

cols.
Moreover, the Black Cloud Effect smell is associated with

several other side effects such as: lowering of trust between
developers, information obfuscation, as well as inception
of the Organisational Silo Effect, due to the rise of egoistic
behaviour. The identification pattern for the Black Cloud
Effect smell reflects sub-communities that in subsequent
release windows do not communicate, with the exception of
two community members (i.e., boundary spanners in social-
network jargon [37]), one belonging to each sub-community.
The detection of the Black Cloud instances starts with the
identification of vertex clusters as already implemented in
CODEFACE. More specifically, let P = {p1, . . . , pk} be a
mutually exclusive and completely exhaustive partition of
Vm induced by the clustering algorithm. From the partition,
Black Cloud is the set of pairs of developers C that connect
otherwise isolated sub-communities, more formally:

{(v1, v2)|v1, v2 ∈ Vm, (v1, v2) ∈ Em,∀i, j(((v1 ∈ pi ∧ v2 ∈
pj)⇒ i 6= j) ∧ ∀vx, vy((vx ∈ pi ∧ vy ∈ pj ∧ (vx, vy) ∈

Em)⇒ vx = v1 ∧ vy = v2))}

Fig. 5: Black-cloud Effect Community Smell, an identification
pattern.

The smell manifests if the above condition holds for at
least two consecutive organisational time-windows (fixed
to 3-month intervals, in the case of CODEFACE4SMELLS).
An example is presented in Figure 5. Here the occurrence
of Black Clouds reflects two developers, “3" and “4", who
are the lone boundary spanners across two different sub-
communities and over time—at least two subsequent anal-
ysis windows (3 months, in our case).

Detecting black clouds requires eliciting the communi-
cation network and applying known community detection
algorithms [38] to identify sub-community structures and
boundary spanners across them. For example see Figure 2
where two sub-communities (previously specified) can be
detected by considering the density of communication links.

3.2.4 Bottleneck Effect
The Bottleneck community smell is characterised by the oc-
currence of the following sub-optimal characteristics within
a software development community: (a) proposed changes
within every software development phase require an ex-
traordinary quantity of time to be implemented [9], [6];
(b) time waste [9], [35]; (c) hidden or counterintuitive in-
formation (and broker) locations [9]; (d) highly formal or
complex organisational structure [9]; (e) highly regularized
procedures [9], [35].

The fundamental side-effect generated by this commu-
nity smell is a massive delay that characterises key organi-
sational processes within the community such as decision-
making, due to personnel unavailability or communication
overload. The identification pattern of this smell is based on
the detection of unique knowledge and information brokers
in different sub-communities.

In our attempt to define an automatic identification pat-
tern for this community smell we focused on the analysis of
project communication networks. We considered the six key
factors around Bottleneck as reflecting the presence, within
a project organisational structure, of a unique boundary
spanner across several different sub-communities (i.e., more
than 2). The social-network analysis concept of unique
boundary spanner [37] has, in fact, a remarkable similar-
ity to Bottleneck. A unique boundary spanner interposes
him/herself into every formal interaction across two or
more sub-communities and if the organisational structure
of the project is complex and characterised by highly for-
mal procedures, it will not be possible to incept parallel

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 7

Fig. 6: Bottleneck Community Smell.

information channels between other members of the sub-
communities. From a formal perspective, we define the set
of Bottlenecks as:

{v|v ∈ Vm,∃i(v ∈ pi ∧ ∀vx(vx ∈ pi ⇒ v = vx))} ∪ {v|v ∈
Vm,∃vx, i, j(v ∈ pi ∧ vx ∈ pj ∧ (v, vx) ∈ Em ∧ ∀vy, vz((vy ∈

pi ∧ vz ∈ pj ∧ (vy, vz) ∈ Em)⇒ vy = v)}

To further elaborate on the definition of this community
smell, let consider the example proposed in Figure 6. As
shown, detecting Bottleneck requires the identification of
community members who are the only members of their
sub-community that communicate with (at least) two other
sub-communities. Therefore, assuming a communication
link was present between developer “A" and “B", then
developer “B" is the pivot of Bottleneck.

3.3 CodeFace4Smells Extension

From the perspective of the CODEFACE tool, a community is
operationalised as a densely connected set of nodes within
the community group (i.e., the members that make up a
development community) which is sparsely connected to
all other nodes in the network. To identify and properly
characterise the community structure, the CODEFACE tool
enacts two community detection strategies, defined as fol-
lows, paraphrasing from Joblin et al. [14]:

1) Function — To recover a community structure, CODE-
FACE uses a heuristic for identifying when two de-
velopers are engaged in a coordinated effort using a
fine-grained heuristic based on code structure, where
developers are considered to be coordinated when they
actually contribute code to a common function block.
Furthermore, CODEFACE uses the commits’ timestamp
for identifying the appropriate directions of the edges
in the recovered community structure.

2) Committer-Author — In this method, the tool uses tags
to identify relationships between all people that con-
tributed to a common commit, including authors, re-
viewers, and testers. For example, sign-off tags are
self-reported acknowledgments of participation on a
commit, therefore the tag-based networks undoubtedly
capture real-world collaboration [14].

3) Community-Verification — to verify the recovered com-
munity structure, CODEFACE uses a random null-
model to compute the probability of observing the
identified community in an equivalent class of null-
model graphs that lack a community structure. The tool
generates the null-model using a standard approach
called the configuration model for random graphs,

where nodes are joined uniformly at random under the
constraint that the degree distribution is identical to the
observed graph [39].

To the above heuristics, we add a systematic implemen-
tation of the operationalisation provided in the previous
section, to allow for automated detection of community
smells at the same time as CODEFACE operates community
structure recovery. The output of the tool is represented
by a CSV file containing the community smell instances
identified over a social structure representation known as
a Developer Social Network (DSN), a notation previously
used for bug prediction and error-proneness [4], [5]. It is
important to note that the detection tool has been previously
evaluated [40]: in that context, we formally proved that it is
able to correctly identify all the community smell instances
affecting software communities using a formal interpreta-
tion of the DSN abstraction and the formalisations reported
in this section. Thus, we claim that CODEFACE4SMELLS is
an accurate tool on which to base the current study. Further-
more, the implementation and operationalisations currently
available within CODEFACE4SMELLS inherit and extend
the state of the art in social and organisational networks
analysis. For example, we re-use and extend the concept of
Simmelian ties [41] from Borgatti et al. and Krackhardt et al.
[42] and use it to represent an organizational silo wherefore
the ties in question (that is, triads of reciprocal and strong
inter-personal relations in a social network of practitioners)
among sub-groups across a development community consti-
tute a stable set. Furthermore, we build upon the concept of
similarity by Hinds et al. [43] to identify practitioners with
overlapping extraction and identify Lone Wolves. Finally, we
build upon solid foundations for the use of social networks
data with regression modelling as shown by Krackhardt
[44].

4 STUDY DESIGN

The goal of our study was to evaluate three aspects related
to community smells: (i) their diffuseness in open source
communities, (ii) the awareness of developers with respect
to the symptoms indicating the presence of community
smells, and (iii) the actual impact of community smells on
open source communities. The purpose of the study was to
improve the diagnosability of software community health.
Specifically, we aim to answer the following research ques-
tions:

• RQ1. How does the distribution of community smells in
open-source software communities vary over time?

• RQ2. Do developers actually perceive the presence of smells
in their community?

• RQ3. How do community smells relate to existing socio-
technical factors?

For the first research question, we studied the extent to
which open-source communities suffer community smells
and how the numbers of these smells vary over time. This
is important to know so that we can give guidelines to
architects and project managers regarding how to interpret
trends and establish thresholds for “healthy” values. RQ2 is
aimed at understanding whether developers are conscious
of the presence of such smells in their communities. If they

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 8

Community # survey part. # interviews part.

LibreOffice 12 4
Firefox 33 6
FFmpeg 14 2
VLC 14 3
Tomcat 9 5
Scala 18 1
Qt 22 3
Salt 13 5
Vagrant 21 2
Eclipse 5 3
Python 11 2

TABLE 1: Number of participants to survey and semi-
structured interviews, respectively. Data is reported per
community.

are not then it is even more important to detect such smells
automatically. Finally, RQ3 had the goal of assessing the
relationship between community smells and other known
socio-technical factors studied in the past. Smells are symp-
toms. For this research to affect the practice of software de-
velopment we need to understand the root causes of smells
so that we can provide advice on what project characteristics
(measured by factors such as socio-technical congruence) to
adjust.

4.1 Context of the study

The context of the study consisted of 60 active open-source
software communities using GITHUB1 as a tool for manag-
ing software versions. The selection of these systems was
driven by two factors. On the one hand, to properly ob-
serve the phenomenon of community smells, we focused on
communities having at least X contributors and Y commits
performed in their history. On the other hand, we aimed at
studying communities that are currently active, since this
allows us to mitigate threats due to outdated phenomena.
Thus, starting from the list of open source projects avail-
able on GITHUB, we randomly selected 60 systems having
enough commits and contributors, verifying that at least ten
commits were performed during the last month on each
repository (our threshold for activeness). The complete list
of communities studied, their repositories, and mailing list
are reported in our online appendix [45].

Projects were selected according to the following criteria:
(a) codebase size - 20 medium-sized (200-500 KLOC), 20
large (500-850 KLOC) and 20 very large (> 850 KLOC);
(b) main programming language - Java, C#, C, Python,
YAML and other languages are included in our sample;
(c) community size - our size distribution is evenly split
among three ranges: medium (<50 members), large (50>150
members) and very-large (>150 members); (d) age - our
age distribution is evenly split among three ranges: young
projects (<24 months), established projects (24>32 months),
and mature projects (>32 months).

1. http://github.com/

4.2 RQ1. The distribution of community smells
To answer RQ1, we ran CODEFACE4SMELLS over the set of
software communities listed in Table ??. It is important to
note that the communication graph used to detect commu-
nity smells was built considering the three months before the
date where the analyzed project versions were released; this
choice was guided by previous research [40] that showed
how this time window allows us to correctly analyze the
current organisational aspects of a software community,
excluding outdated information.

Once we gathered the information about community
smells, we verified their distribution in each time period for
the subject projects. Furthermore, we verified whether there
exists a correlation between system characteristics (#contrib-
utors, #commits, and KLOC) and the number of observed
community smells. To properly verify this correlation, we
repeated the analysis for each time period considered (e.g.,
we computed the correlation between the presence of com-
munity smells in a time period Ti→j and contributors
present in the same period). To measure the relations, we
exploited the Spearman rank correlation index [46] which
measures the strength and direction of association between
two ranked variables, and ranges between -1 and 1. A
value of 1 represents a perfect positive linear relationship, -1
represents a perfect negative linear relationship, and values
in between indicate the degree of linear dependence be-
tween the considered distributions. To interpret the results,
we followed the guidelines provided by Cohen [47]: it is
assumed that there is no correlation when 0 ≤ ρ < 0.1,
small correlation when 0.1 ≤ ρ < 0.3, medium correlation
when 0.3 ≤ ρ < 0.5, and strong correlation when 0.5 ≤ ρ ≤
1. Similar intervals also apply for negative correlations.

4.3 RQ2. The perception of community smells
To answer RQ2, we designed a survey involving the devel-
opers of the projects considered in the context of RQ1.

Recruitment. We adopted an opt-in strategy [48] when
asking developers to participate in our study. We extracted
from GITHUB the e-mail addresses of all the developers
who have committed at least 10 changes during the year
before the release dates taken into account: in this way,
we focused only on developers having adequate experience
with the projects and communities considered [49]. Then
we sent them a first e-mail asking whether they would like
to participate in our survey. In other words, we recruited
only volunteers to avoid privacy issues or other developer
concerns2. To mitigate the side effects of this generalisation,
developers participation was stimulated offering by a prize
of four Amazon gift cards with a total value of $100. The
four prizes were awarded to four randomly chosen partici-
pants a few weeks after the survey ended.

As a result, we obtained a positive reply from 172 of the
5,169 developers approached (≈3.32%), who were later con-
tacted with the actual survey. Table 1 reports the distribution
of the participants across the investigated communities. We
obtained answers from developers of 11 different projects in
the dataset: thus, our survey covered 18% of all considered
communities. We are aware that the opinions collected on

2. http://tinyurl.com/yd2usw5p

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 9

Question Answer

Developer’s background
1. Country of Birth Open answer
2. Year of Birth Open answer

Student
Part-time Employee
Full-time Employee

Unemployed
3. Current Occupation

Retired
4. Community for which you contribute the most Open answer

Developer
Maintainer

Software Engineer
Translator

Graphic

5. Role within the community where you contribute the most

Other
Paid by a company

Partially paid by a company6. Do you contribute to this project as an individual or because your company is involved in it?
Voluntary Developer

Community Smell Perception
7. [BC] Delay of communications can stall some community activities. strongly disagree|disagree|uncertain|agree|strongly agree
8. [BC] Lack of periodic opportunities to share and exchange knowledge
between all community members is a threat to the success of the project.

strongly disagree|disagree|uncertain|agree|strongly agree

9. [LW] Community members having intermittent communications are a
threat for the implementation of the project.

strongly disagree|disagree|uncertain|agree|strongly agree

9. [LW] Community members working on the same code and communicat-
ing by means of a third person cannot properly proceed the collaboration.

strongly disagree|disagree|uncertain|agree|strongly agree

11. [RS] High degree of formality is detrimental for project communica-
tions.

strongly disagree|disagree|uncertain|agree|strongly agree

12. [RS] There are highly regular procedures for communicating changes. strongly disagree|disagree|uncertain|agree|strongly agree
13. [OS] There are different subgroups that rarely communicate with each
other.

strongly disagree|disagree|uncertain|agree|strongly agree

14. [OS] Different subgroups are sometimes antagonists. strongly disagree|disagree|uncertain|agree|strongly agree

TABLE 2: Questionnaire filled in by the study participants. [LW] indicates statements related to Lone Wolf; [RS] to
Bottleneck; [BC] to Black Cloud; [OS] to Organisational Silo.

this sample might be not necessarily generalizable, however
we argue that our analysis still provides confirmation with
respect to the perception of community smells present in the
community around the participants.

Survey Dissemination. The questionnaire was created
and distributed to participants using GOOGLE FORMS3. We
opened it two times with the aim of collecting as many
replies as possible: the survey was first available from
February 15 to March 5, 2016; then, it was open from May 7
to July 26, 20184. The link to the questionnaire and a short
introduction were sent to every recruited developer via e-
mail. We estimated a completion time of 25 minutes.

Survey Design. The complete list of questions in our
survey is presented in Table 2. It contained three parts.
First, we gathered information about occupation, reference
community, and role of the developers involved (Q1-Q6).
Second, we asked participants to rate the validity of 8
statements using a 5 point Likert scale [50] ranging be-
tween “Strongly Disagree” to “Strongly Agree” (Q7-Q14). Such
statements reported typical situations in which community
smells occur. By collecting developers’ answers to these
questions we could match their perception of community
smells with the community smells actually detected in their

3. https://www.google.us/intl/en/forms/about/
4. In the second round, we (re-)invited only those developers who

had not already participated in the questionnaire in the first round.

communities. It is important to point out that each statement
referred to only one type of community smell. For instance,
the statement “There are different subgroups that rarely com-
municate with each other” (Q13) was aimed at understanding
whether developers actually recognise the presence of an
“Organisational Silo Effect” in their community. In Table 2
we map each statement with the community smell we were
interested in. It is important to note that, to avoid any
possible bias in the responses, we took two precautions.
First, we never mentioned the terms social debt or com-
munity smells in the questionnaire. Second, we collected
participants’ opinions on the typical situations leading to
the emergence of community smells rather that directly
ask them to rate how healthy was their own community.
This was a conscious design decision taken on the basis of
well-established findings in psychology research: as pointed
out by Fisher [51], people might be reluctant to express
negative or controversial opinions on topics they are too
much involved in, and for this reason indirect questioning
[52] should be preferred to increase the validity of the
collected observations. In our context, this means that the
surveyed developers might have been reluctant to reveal
the presence of problems in the community they belong
to, leading to provide invalid answers and bias our results.
For this reason, we proceeded with the selected research
approach.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 10

Data Analysis. Once we collected the developers’ ques-
tionnaires, we answered RQ2 by means of statistical anal-
yses. We computed the percentage of times developers
perceived a community smell. We considered a smell as
perceived in case a developer marked a statement indicating
the symptoms of a smell with an “Agree” or a “Strongly
Agree”.

Confirmatory semi-structured interviews. While a sur-
vey provides useful insights to understand the developers’
perception of community smells, it might not be sufficient
to provide definitive conclusions, as developers did not
directly comment on such smells. For this reason, we per-
formed a post-survey additional confirmatory study aimed
at corroborating the findings of the survey study. We invited
the participants who performed the survey to conduct a
further semi-structured interview, to discuss with us the
results obtained on their perceptions of community smells.
We were able to perform 35 semi-structured interviews with
developers coming from all 11 communities. Table 1 reports
the number of interviewees per community. The interviews
were conducted via Skype, and required ≈30 minutes per
interview. We started the discussion by summarising the re-
sults obtained from the surveys—reporting both the overall
findings and those related to the project the developer was
involved to—and presenting the definitions of the commu-
nity smells analysed in the study. This step was needed
to provide developers with a complete overview of our
research and to prepare them for the discussion. Afterwards,
for each community smell, we focused on the three main
questions:

1) Did you happen to observe a [community smell] in your
organisation?

2) How frequent is [community smell] in your organisation?
3) Do you think that [community smell] can be harmful for

any socio-technical aspect of your organisation? If so, which
ones?

All interviews were recorded and transcribed for anal-
ysis. Then, two of the authors of this paper manually
went through the developers’ answers to extract relevant
information and observations that confirmed/rejected the
findings obtained from the surveys. In a first step, the two
authors independently analyzed the developers’ discussion
and came up with a summary for each of the considered
community smells. In a second step, they opened a discus-
sion on the basis of their summaries with the aim of reaching
an agreement on the insights given by the participants.
Such a two-step process was needed to avoid subjective
interpretations of the developers’ answers.

4.4 RQ3. The relationship between community smells
and existing socio-technical factors

In the context of this research question, we focused on
identifying which socio-technical development aspects are
related to or responsible for the presence of community
smells. Such an analysis has a vital importance since it can
reveal what are the factors that can be used as monitored
quantities that mediate the occurrence of community smells.
It is important to note that since social debt is considered a

ubiquitous phenomenon within the software development
lifecycle [9], it is not possible to clearly identify specific
socio-technical aspects or phases responsible for increases
or decreases of social debt. Thus, our analysis aims to
shed light on the phenomenon as a whole: specifically, we
defined a Socio-technical Quality Framework [53] that includes
40 socio-technical quality factors, which were extracted by
analysing the existing literature.

Specifically, we conducted a systematic literature review
(SLR) that investigated previous work concerning social
factors for software engineering (e.g., [54], [13], [55], [56]),
identifying the metrics proposed in related work [53]. The
quality factors that emerged from our study are recapped
in Table 3. To better scope the work of the present study,
we selected a subset of the afore-mentioned 40 factors (see
Table 3) by first isolating three independent lists of factors
identified by the authors of this paper, who took the role
of inspectors and extracted a set of initial metrics each.
Subsequently, the inspectors refined the three sets with the
goal of finding a single set containing all the social metrics:
this has been done by merging the factors identified by all
the inspectors and discussing whether to include or not the
initial metrics discovered by one or two of them. To measure
the level of agreement among the inspectors we computed
the Krippendorff’s alpha Krα [57]. Agreement measured
0.87, considerably higher than the 0.80 standard reference
score [58] for Krα. A complete report of the papers analysed
as well as of the coding activities performed is available in
our on-line appendix [45].

5 STUDY RESULTS

In this section we describe and analyse the results achieved
when answering our research questions.

5.1 The Distribution of Community Smells

Figure 7 depicts the box plots reporting the distribution
of the community smells analysed over the 60 projects in
our dataset. For sake of readability, we removed outliers
from the plots; furthermore, the plots report the overall
distributions, i.e., the ones resulting by considering all the
community smells arising over the different 3-month pe-
riods. To have a fine-grained view of the distribution of
community smells over time, Table 4 reports minimum,
mean, maximum, and standard deviation observed in each
of the considered 3-month periods. Finally, Table 5 reports
instead the number of projects in which we found at least
one instance of such smells. To more clearly understand
their distribution, in the table we divided the subject com-
munities into three categories—small, medium, and large—
based on the number of contributors.

As shown in Figure 7, three community smells—
Organisational Silo, Lone Wolf, and Bottleneck—appear consis-
tently: the median number for Bottleneck is 13, for Lone Wolf
is 12 and for Organisational Silo is 9. Surprisingly, the median
number of Black Cloud instances is 1. This result seems to
contradict what has been previously observed in industrial
communities [6], where practitioners frequently pointed out
the existence of this smell. From a practical perspective,
the absence of such a smell highlights that open-source

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 11

Category Metric Description

devs Number of developers present in the global Developers Social Network
ml.only.devs Number of developers present only in the communication Developers Social Network
code.only.devs Number of developers present only in the collaboration Developers Social Network
ml.code.devs Number of developers present both in the collaboration and in the communication DSNs
perc.ml.only.devs Percentage of developers present only in the communication Developers Social Network
perc.code.only.devs Percentage of developers present only in the collaboration Developers Social Network
perc.ml.code.devs Percentage of developers present both in the collaboration and in the communication DSNs
sponsored.devs Number of sponsored developers (95% of their commits are done in working hours)

Developer Social Network metrics

ratio.sponsored Ratio of sponsored developers with respect to developers present in the collaboration DSN
st.congruence Estimation of socio-technical congruence
communicability Estimation of information communicability (decisions diffusion)
num.tz Number of timezones involved in the software developmentSocio-Technical Metrics

ratio.smelly.devs Ratio of developers involved in at least one Community Smell
core.global.devs Number of core developers of the global Developers Social Network
core.mail.devs Number of core developers of the communication Developers Social Network
core.code.devs Number of core developers of the collaboration Developers Social Network
sponsored.core.devs Number of core sponsored developers
ratio.sponsored.core Ratio of core sponsored developers with respect to core developers of the collaboration DSN
global.truck Ratio of non-core developers of the global Developers Social Network
mail.truck Ratio of non-core developers of the communication Developers Social Network
code.truck Ratio of non-core developers of the collaboration Developers Social Network
mail.only.core.devs Number of core developers present only in the communication DSN
code.only.core.devs Number of core developers present only in the collaboration DSN
ml.code.core.devs Number of core developers present both in the communication and in the collaboration DSNs
ratio.mail.only.core Ratio of core developers present only in the communication DSN
ratio.code.only.core Ratio of core developers present only in the collaboration DSN

Core community members metrics

ratio.ml.code.core Ratio of core developers present both in the communication and in the collaboration DSNs
global.turnover Global developers turnover with respect to the previous temporal window
code.turnover Collaboration developers turnover with respect to the previous temporal window
core.global.turnover Core global developers turnover with respect to the previous temporal window
core.mail.turnover Core communication developers turnover with respect to the previous temporal window
core.code.turnover Core collaboration developers turnover with respect to the previous temporal window

Turnover

ratio.smelly.quitters Ratio of developers previously involved in any Community Smell that left the community
closeness.centr SNA degree metric of the global DSN computed using closeness
betweenness.centr SNA degree metric of the global DSN computed using betweenness
degree.centr SNA degree metric of the global DSN computed using degree
global.mod SNA modularity metric of the global DSN
mail.mod SNA modularity metric of the communication Developers Social Network
code.mod SNA modularity metric of the collaboration Developers Social Network

Social Network Analysis metrics

density SNA density metric of the global Developers Social Network

TABLE 3: Socio-technical Quality Factors Investigated in Total, reported from literature [53].

Community smell Min. Mean Max. St. Dev.

Black Cloud 0 0.18 7 0.65
Organisational Silo 0 13.65 91 19
Lone Wolf 0 25.62 151 36.17
Bottleneck 0 21.52 96 23.59

TABLE 4: Statistics of the number of community smells
occurring in each of the considered 3-months time windows.

communities do not lack structured communication or gov-
ernance, despite their contributors being largely part-time
volunteers who are often involved in other projects. In other
words, FLOSS developers try to organise communications
in a structured manner so that they can avoid informa-
tion overload. At the same time, the high numbers of the
other community smells tell us a different story: although
communications among developers are structured, there
are often members who try to interpose themselves into
every formal interaction across sub-communities (creating
a Bottleneck) or that perform their tasks independently from
community decisions (thus being a Lone Wolf). Furthermore,
our findings highlight that, in several cases, there exist sub-
communities that essentially do not communicate, each cre-
ating Organisational Silos. When considering the distribution

over time (Table 4), we could provide similar observations.
Indeed, Organisational Silo, Lone Wolf, and Bottleneck are the
smells that appear more frequently in each time window,
while the mean of Black Cloud instances is close to 0 and
has a standard deviation of 0.65. Interestingly, there seems
to be a pretty high standard deviation for all the three most
diffused community smells (e.g., Organisational Silo has a
standard deviation of 19): this indicates that there are time
windows in which the number of community smells tend to
decrease significantly with respect to other periods. Further
analyses aimed at understanding the root causes behind this
phenomenon as well as how community smell instances
evolve over time are part of our future research agenda.

Looking at Table 5 we observe that the three most
frequent community smells are present in almost all of
the projects analysed. All the communities experienced at
least one Bottleneck during their evolution, while 59 of them
had at least one Organisational Silo and Lone Wolf. When
correlating the number of community smells with project
characteristics (Table 6), we observed a weak correlation
between the number of contributors within the community
and Organisational Silo, Lone Wolf, and Bottleneck. This con-
firms that the amount of instances of these smells is not
solely dependent on the size of the community.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 12

Community Dimension Black Cloud Organisational Silo Lone Wolf Bottleneck

< 50 8 19 19 20
50− 150 11 20 20 20
> 150 12 20 20 20

Overall 31 59 59 60

TABLE 5: Number of projects/communities affected by community smells.
B

la
ck

 C
lo

ud

O
rg

. S
ilo

Lo
ne

 W
ol

f

B
ot

tle
ne

ck

0

50

100

150

Fig. 7: Distribution of community smells on the 60 projects
considered in our study.

Contributors # Commits KLOC

Black Cloud 0.77* 0.23 0.11
Organisational Silo 0.48* 0.32 0.39*
Lone Wolf 0.47 0.36* 0.32
Bottleneck 0.42 0.44* 0.26

TABLE 6: Correlations between Project Characteristics and
Community Smells. Statistically significant correlations (ρ−
value < 0.05) are marked with ’*’.

As for the Black Cloud smell, the discussion is different.
Only eight projects with fewer than 50 contributors suffered
this smell while the number of smelly communities slightly
increases as the number of contributors increases: this may
suggest that the number of Black Cloud instances is somehow
dependent on the size of the community. The Spearman’s
value between Black Cloud and number of contributors
seems to confirm that this smell is dependent on the size
of the community, however further verification would be
needed.

At the same time, we discovered that the simplistic tech-
nical aspects we controlled for, e.g., the number of commits
or the total number of lines of code in a project, do not
strongly influence the diffuseness of community smells. This
result does not mean that we can exclude a relation between

social and technical aspects in general. Our data suggests
that a more structured research approach—digging deeper
in potential confounding factors—is in order.

Summary for RQ1. In general, community smells are
highly diffused in open source communities. Among the
studied ones, Organisational Silo, Lone Wolf, and Bottleneck
are found regularly, while the presence of Black Cloud
instances may depend on the number of contributors
within a community. We have not found a simple cor-
relations between such smells and “technical” project
characteristics.

5.2 The Perception of Community Smells
As explained in Section 4.3, we obtained 172 survey re-
sponses from 11 open source projects. Before discussing
the perceptions of community smells, we report on the de-
mographic and FLOSS-related data provided by our study
participants.

5.2.1 Demographics
Figure 8 illustrates age, occupation, and role of the survey
participants, along with the information on the number of
developers falling into each of the reported categories. In the
first place, we can observe that the participants were almost
uniformly distributed across the different age ranges. The
majority of them were between 26 and 35 years old (49),
while developers younger than 25 years old and between
36 and 50 years old were 42 and 41, respectively. Finally, 40
participants were over 50 years old.

Looking at the working status of the respondents, we
observe that 104 of them have a full-time job, while a
minority had a part-time job (45). 22 participants identified
themselves as a student and 1 was neither employed nor a
student. This indicates that our data was collected primarily
from people constantly working in open-source projects.

The respondents were mainly developers (89). This was
expected, given the modalities through which we retrieved
developer information. However, an important fraction of
the respondents specified their status as software engineer
(67), while a few stated that they were maintainers or
translators (5 and 2, respectively). Finally, 9 were not able
to identify themselves in any of these categories.

Finally, we asked respondents to specify if their contri-
bution to the project is on voluntary or if their involvement
within the project community is sponsored by a commercial
company. We found that 144 of them participate in FLOSS
development without any monetary interest; considering
the 11 reference communities independently, the number of
sponsored developers varied from a minimum of 3 (Tomcat)
to a maximum of 27 (Firefox). The percentage of respondents

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 13

Fig. 8: Demographical information of the survey participants.

whose involvement was completely supported by a com-
pany was 17. Furthermore, 11 participants said that they
were paid only partially by a commercial company. All in
all, we conclude that the vast majority of our respondents
work in open-source development as a full-time job. This
made our population appropriate for the aspects that we
wanted to investigate, i.e., community smells in open-source
projects.

Besides the questions posed to participants, we also took
into account the role of experience. Indeed, it is likely that
this factor impacts the way developers perceive community
smells. To account for this aspect, we mined the repositories
of their 11 projects with the aim of computing two well-
established metrics [59] capturing the experience of the
contributors who participated in the survey: (i) commit
tenure, which measures developer experience as the number
of months since the developer’s first event on any Github
repository; (ii) project tenure, which measures developer
experience on the project of interest as the number of
months since their first event on the project repository. Once
we extracted those metrics for all survey participants we
correlated them—using the Pearson correlation coefficient—
with the Likert scale values assigned by the participants to
each of the survey statements; we mapped nominal values
to numeric ones, e.g., “Strongly Disagree” was assigned to 1
while “Strongly Agree” to 5. As a result, we could examine
the relationship between commit tenure and the answers
provided in the survey. Indeed, the correlations between
this experience metric and the values assigned to all the
statements are higher than 0.6, meaning that there is a strong
correlation between the two distributions. At the same time,
we did not find any strong correlations when considering
the project tenure metric. In other words, the overall level
of experience in open source projects, but not the experience
on a specific project, strongly correlates with the perception
of community smells.

5.2.2 Community Smells Perception

Table 7 reports the results obtained when analysing the
developers’ opinions on the symptoms behind community
smells. For each statement, we report the number of de-
velopers who rated its validity from “Strongly Disagree” to
“Strongly Agree”. Our survey of open-source practitioners
strongly confirmed their perception of the nasty effects
associated with community smells: the vast majority of

developers reported all the situations behind such smells
as serious threats to the health of the community and the
quality of the communication among developers. This was
also confirmed by the participants of the confirmatory semi-
structured interviews: all of them reported to have observed
at least one community smell in their organisation and, at
the same time, that the frequency of appearance is generally
high and that they may cause socio-technical problems. It is
important to note that we did not notice discrepant answers,
meaning that all the interviewees agreed on the harmfulness
of community smells. Thus, the first key result of RQ2 is
represented by the fact that developers perceive community
smells as actually pervasive and harmful for the health
of software communities. In the following subsections, we
describe the results analyzing each community smell inde-
pendently.

Black Cloud. The presence of this smell strongly impacts
the way developers communicate with each other and share
knowledge about the status of the project. As a conse-
quence, communication delays might cause problems such
as a complete stall of the community. 101 and 44 respon-
dents rated statement 7 as “Strongly Agree” and “Agree”,
respectively, thus confirming that effective communication
among community members is a must to carry out the
project. Interestingly, our respondents did not confirm that
having periodic meetings with all community members
is an important aspect to improve project activities. 117
participants were “Uncertain” with respect to statement 8.
To further investigate the answers related to the presence
of a Black Cloud smell we discussed these findings during
semi-structured interviews. All 35 interviewees reported
that Black Cloud instances occurred in their communities,
even though their frequency depend on the size and ma-
turity of the community. Moreover, they also reported that
constant knowledge sharing is vital for the survival of the
community. However, it is not relevant for them to have
meetings with all community members: they just need to
effectively communicate with other developers involved in
the development of shared portions of code. For instance,
one Tomcat developer reported:

“It happened to us in the past, and in general is pretty frequent
to see people that do not want to discuss what they do or simply
delay in communicating what they have implemented. Code re-
view can somehow mitigate the problem, but still, programmers
sometimes do not properly or timely communicate, causing other

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 14

Question strongly disagree|disagree|uncertain|agree|strongly agree

Community Smell Perception
7. [BC] Delay of communications can stall some community activities. 5 | 8 | 14 | 44 | 101
8. [BC] Lack of periodic opportunities to share and exchange knowledge
between all community members is a threat to the success of the project.

5 | 5 | 117 | 32 | 13

9. [LW] Community members having intermittent communications are a
threat for the implementation of the project.

6 | 17 | 25 | 36 | 88

10. [LW] Community members working on the same code and com-
municating by means of a third person cannot properly proceed the
collaboration.

0 | 0 | 5 | 22 | 145

11. [RS] High degree of formality is detrimental for project communica-
tions.

4 | 8 | 11 | 46 | 103

12. [RS] There are highly regular procedures for communicating changes. 0 | 94 | 55 | 21 | 2
13. [OS] There are different subgroups that rarely communicate with each
other.

0 | 2 | 4 | 100 | 66

14. [OS] Different subgroups are sometimes antagonists. 14 | 11 | 10 | 66 | 71

TABLE 7: Results of the questionnaire. Number of answers for each level on the Likert scale are reported: [LW] indicates
statements related to Lone Wolf, [RS] to Bottleneck, [BC] to Black Cloud, [OS] to Organisational Silo.

people to lose time understanding source code implemented by
others.”

Thus, we conclude that the Black Cloud effect can cause
the introduction of social debt in form of additional work
spent to re-construct the knowledge around the activities
done by people involved in the smell. At the same time, the
semi-structured interviews explained the results achieved
in RQ1 with respect to the low diffusion of this smell:
developers can mitigate communication delays by “forcing”
members to take part in code reviews, which are one of the
main means of knowledge sharing [60].

Lone Wolf. The emergence of this smell is caused by
intermittent or indirect communications between members
who are supposed to collaborate on the development of a
piece of code. The majority of the participants agreed or
strongly agreed with both statements (9 and 10) related
to Lone Wolf. This result indicates that developers perceive
the smell as harmful for the success of a project. This was
also confirmed when interviewing developers: all of them
reported that the presence of a Lone Wolf is frequent is
practice and can lead to serious problems for the entire
community. For example, a developer from Qt said:

“This is terribly frequent. The main problem here is that, if
these people leave, we are stuck. If another guy needs to work
on the same code, we are stuck. Much more attention should be
given to control this kind of problem, as it can cause losing entire
weeks of productivity to only understand what a former member
has done or having information from other people.”

Thus we can claim that the Lone Wolf smell is perceived
by developers as an important source leading to social debt.

Bottleneck. Our survey participants confirmed that a
high degree of formality in the community can be detri-
mental for communications (149 participants rated this
statement as “Agree” or “Strongly Agree”). However, at the
same time they did not believe that regular procedures to
communicate and propose changes represent a threat to
the success of the project. In other words, while they did
not support having an extremely formal community, they
agreed that constant communications help in understanding
and sharing project knowledge. This became even clearer

during the semi-structured interviews: while all participants
recognized the frequent presence of this community smell
within their communities, they also highlighted that dealing
with it can be hard because of the compromise between
formality and informality of the development structure. For
instance, a participant from VLC declared:

“Project development should be always lean and easy to per-
form. Developers need freedom and complex organisations make
the job hard. However, communicating constantly with other
developers is important to correctly carrying out the activities.”

With respect to this smell, we claim that extremely
formal organisations—typical in cases where the Bottleneck
smell appears—should be avoided. Thus, we confirm that
developers perceive the symptoms behind this smell as a
source of social debt; moreover, an efficient way to deal with
Bottleneck instances seems to be that of having constant (in-
formal) communications about the changes to be performed.

Organisational Silo. The last two statements of Table 7
referred to this smell, and reported situations where there
are parallel sub-communities within the same organisation.
Our participants widely recognised this as an important
problem, since these sub-communities might rarely com-
municate with each other and, even more importantly, they
might become antagonist. This would lead to serious con-
sequences in terms of social debt and additional project
costs. This was also reported by all the interviewees. All
the 35 interviewees explain that this smell is frequent and
can cause serious issues to the community. An interesting
comment is reported below, and refers to a participant from
Eclipse:

“Unfortunately, in open source this problem is extremely
frequent because of the distributed nature of such projects. This
is beyond doubts a problem, as having sub-communities naturally
lead to missing communications that can potentially cause serious
technical problems.”

We therefore confirm that the presence of Organisational
Silo is perceived by developers as a negative pattern in the
structure of a software community.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 15

Summary for RQ2. We can conclude that developers per-
ceive the presence of all community smells considered in
the study, identifying them as important sources for the
emergence of social debt. Sometimes, as in the case of
Black Cloud, developers learn to cope with these smells in
an orderly and governed fashion, reflecting an organised
and coherent whole. Further study of the emergence
of community smells and any connected (causal) socio-
technical factors may foster the discovery of best-fit gov-
ernance patterns for open- and closed-source projects.

5.3 Relations Among Community Smells
and State of the Art Quality Factors
This section reports on our findings in correlating the
occurrence of community smells across our dataset with
socio-technical quality factors and theories from the state
of the art. More than verifying theories, we aimed at finding
empirical thresholds that indicate stability of smells, that is,
levels at which the number of smells no longer increases. We
now discuss the quality factors and the stability thresholds
associated with each. Specifically, following guidelines from
the research literature [61] the thresholds were elicited as
the level above which the frequency of datapoints for a
certain correlation became less than 20%; that is, the cutpoint
where frequency of datapoints becomes more and more
statistically irrelevant.

5.3.1 Community Smells vs. Sponsored Developers
The research literature suggests that a higher number of
paid developers (sponsored by commercial companies or
self-employed) is correlated to a higher attractiveness and
health of an Open-Source community [62]. Our data, how-
ever, indicates that a higher number of sponsored devel-
opers is associated with a linear increase of the number of
occurrences of Organisational Silo Effect and Lone Wolf com-
munity smells in 25% of our dataset. It is worth noting that,
in the context of RQ1, we also reported a weak correlation
between the number of contributors and the presence of all
smells, with the exception of the Black Cloud effect. This
result does not contradict the findings of RQ3; rather, it
highlights the dependence between the role of sponsored vs.
non-sponsored developers and the levels of different smells.

Community Smells Stability Threshold. We ob-
serve a threshold of 10 trimestral sponsored develop-
ers above which the number of detected Community
Smells grows super-linearly above median values.

Moreover, the role of sponsored developers in the gener-
ation of additional Community Smells has different effects
depending on the size of the software project:
• In projects with fewer than 50 trimestral community

members, socio-technical quality factors related to the
identification of sponsored developers were not corre-
lated at all to the generation of additional Community
Smells;

• In projects with more than 50 but fewer than 150
trimestral community members, the occurrences of Or-
ganisational Silo Effect and Lone Wolf community smells

Fig. 9: Community Smells vs. Sponsored Developers.

was not only positively correlated to the number of
sponsored developers in a community, but also to
the number of sponsored developers who were core
developers. Furthermore, a higher ratio of sponsored
core developers was associated with an increase in the
occurrences of the Organisational Silo Effect. This finding
highlights that in software communities with 50-150
trimestral members, core sponsored developers tend to iso-
late themselves and not participate in project communication
channels.

5.3.2 Community Smells vs. Temporal and Geographic Dis-
persion

The research literature suggests that temporal and geo-
graphic dispersion generates socio-technical issues across
software development communities affecting product out-
comes and qualities [63]. Therefore, it was expected that
the number of time-zones involved in a software devel-
opment community—a proxy for geographic and temporal
dispersion—would be positively correlated with an increase
in Community Smells. But this correlation was detected in
just 5% of analysed projects. A possible explanation is that,
nowadays, distributed development is common in software
development and only implies delays in communications
among developers. Moreover, FLOSS is founded on the
concept of distributed software development and so co-
ordination mechanisms are built. These mechanisms, we
postulate, help to mitigate the development of Community
Smells due to temporal and geographic dispersion.

5.3.3 Community Smells vs. Socio-Technical Congruence

Cataldo et al. [64] remark that higher socio-technical congru-
ence is correlated to higher software development perfor-
mance and thus, considering the concept of socio-technical
congruence as an indicator of the alignment between an or-
ganisational structure and its technical requirements, it was
reasonable to suppose that a higher level of socio-technical
congruence would be associated with fewer occurrences
of community smells. Our results support this hypothesis

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 16

Fig. 10: Community Smells vs. Socio-Technical Congruence.

since, in over 50% of analysed projects, an increase in socio-
technical congruence strongly correlates to a decrease of two
smells—Organisational Silo and Lone Wolf. Also, considering
the scatter plot in Figure 10 and the regression therein, it was
possible to identify a quality threshold of 0.5 for socio-technical
congruence. Over this threshold the number of detected
community smells were over median values.

5.3.4 Community Smells vs. Community Structure
A number of community structure factors were also inves-
tigated as possible predictors for community smells. For
example, the number of core community members corre-
lates to additional occurrences of Organisational Silo (27% of
analysed projects), Lone Wolf (28% of analysed projects) and
Bottleneck (30% of analysed projects) smells. Specifically, our
data shows that an increment in the number of core develop-
ers belonging to the collaboration DSN was associated with
higher numbers of Organisational Silo in 80% of analysed
projects and of Lone Wolf in 93% of analysed projects. It
is important to highlight that this positive correlation was
found both with respect to the number of developers who
were considered core members in just the collaboration
DSN, and with respect to the number of developers who
were considered core members of the collaboration and the
communication DSNs. Therefore, an increment of any type
of core developer in the collaboration DSN was correlated to
an increment of the number of occurrences of Organisational
Silo and Lone Wolf. The incidence of core developers in the
generation of additional Community Smells is confirmed
by the relation between a higher ratio of peripheral de-
velopers and a decrease of the number of occurrences of
Organisational Silo and Lone Wolf, in 42% and in 52% of
analysed projects respectively. Furthermore, since a higher
truck number [65] is strongly related to the density of the
collaboration DSN, it follows that the truck-number itself
relates strongly to the emergence of more Organisational Silo
and Lone Wolf smells.

Additionally, in 27% of analysed projects, an increase
in the number of core community members belonging to
the communication DSN correlates to a higher number of

occurrences of the Bottleneck smell. In projects with more
than 150 trimestral community members, the correlation
between the number of core community members belonging
to the global or communication DSNs and the number
of occurrences of Bottleneck is found to be irrelevant. A
possible explanation can be that within big communities the
influence of core community members tends to decrease;
core community members tend to lose their role of unique
knowledge and information brokers in larger development
communities [66]. This explanation is also motivated by
further analyses which revealed that in 43% of projects, a
higher truck number related to the communication DSN,
thus a higher ratio of peripheral community members was
correlated to an increment of the number of occurrences of
Bottleneck. Therefore, the Bottleneck smell is generated by
both core and peripheral community members belonging
to the communication DSN but additional occurrences of
Bottleneck generated by core members tend to be irrelevant
in big communities. Considering the scatter plots repre-
sented in Figure 11 and the linear regressions therein, it was
possible to identify the following quality thresholds for which
the amount of detected Community Smells were above the
average values:

Community Quality Thresholds.
• 25 trimestral core community members in the global

DSN. The quality threshold with respect to Lone
Wolf and Bottleneck smells was a bit higher (30 in
both cases), but since the threshold with respect
to Organisational Silo was 25, it was selected as the
global threshold for the number of core community
members within the global DSN;

• 9 trimestral core developers in the collaboration DSN;
• 30 trimestral core community members in the commu-

nication DSN;
• 0.8 for the truck number of the collaboration DSN;
• 0.55 for the truck number of the communication DSN.

5.3.5 Community Smells vs. Number of Quitters

Within small communities, the quitting of members previ-
ously involved in Community Smells generates additional
smells. In projects with fewer than 50 trimestral community
members a positive correlation was found between the
number of members who left the community and who were
implicated in at least one Community Smell in the previous
3 months, and the number of occurrences of Organisational
Silo and Lone Wolf smells.

Even if the centrality of the global Developer Social
Network was not associated with an increase or decrease of
the number of occurrences of community smells at a global
level, several strong correlations were found considering
different categories of FLOSS development communities:
• in projects with fewer than 50 trimestral community

members, the increase of closeness centrality was asso-
ciated with additional occurrences of the Organisational
Silo smell;

• in projects with more than 150 trimestral community
members, the increase of betweenness centrality was

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 17

Fig. 11: Community Smells vs. Community Structure Social
Network Features.

associated with additional occurrences of Black Cloud
smell;

Table 8 shows an overview of all the relevant correlations
found between quality factors from the state of the art (see
Tab. 3) and Community Smells; positive correlations are
identified by the “+" sign while the negative ones with a
“-".

5.3.6 Community Smells vs. Turnover
Cataldo et al. [67] show that if a software developer commu-
nity is stable, then its socio-technical congruence increases
linearly over time. Thus, it was reasonable to hypothesise
that a lower turnover is associated with a lower number of
Community Smells. Our results reveal that this is not true
in general. Rather, in the case of Lone Wolf effects, a higher
turnover of core developers belonging to the collaboration
DSN correlates strongly to a decrease of the number of
occurrences of the Smell. In projects with fewer than 50
trimestral community members this correlation becomes
irrelevant; none of the turnover metrics were found to have
a correlation with any community smell in such projects.

Quality factor (ID) Organisational Silo Effect Bottleneck Lone Wolf
devs + + +

ml.only.devs +
code.only.devs + +
ml.code.devs +

perc.ml.only.devs - -
perc.code.only.devs + +

sponsored.devs + +
st.congruence - -

communicability - -
ratio.smelly.devs + + +
core.global.devs + + +
core.mail.devs +
core.code.devs + +

mail.truck +
code.truck - -

mail.only.core.devs +
code.only.core.devs + +
ml.code.core.devs + +

ratio.mail.only.core - -
ratio.code.only.core + +
core.code.turnover -

mail.mod -

TABLE 8: Summary of quality factors correlated to Com-
munity Smells. The Black Cloud smell is missing and largely
absent across our dataset.

Conversely, in projects with more than 150 trimestral com-
munity members the turnover of core developers negatively
correlates with the emergence of additional Organisational
Silo smells and the turnover of global core community
members was found to be negatively correlated with both
Organisational Silo and Lone Wolf community smells. In sum-
mary, even if it was evident that turnover of core developers
does in fact influence the presence of community smells, it
was not possible to identify a quality threshold.

5.3.7 Discussion: Relations with State of the Art Factors
In our investigation of factors from the state of the art,
we noticed several thresholds playing a role in community
smell emergence. However, we noticed that the only factor
which strongly correlates with all smells reported across our
dataset was the number of community members. It is not
surprising that community smells increase as the number
of community members increases but, perhaps more impor-
tantly, the number of occurrences of all community smells
grows quadratically until the threshold of 200 community
members is reached. After this threshold the occurrences
tend to stabilise (see Fig. 12).

In combination with the above number of 200 developers
recall that several factors fluctuated around a threshold
of 50 members. This also means that major fluctuations
of community smells fluctuate in the range 50<150<200,
a range very close to Dunbar’s Number [68], [69], [70]
of 150. This number theoretically dictates the number of
people in a community required to reach organisational
saturation and stability. Further investigation of this and
similar organisational theories from SNA may reveal even
more stability thresholds and characteristics to be used
for improved governance, participation, engagement, and
sustainability of open-source communities at large.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 18

(a) Organisational silo effect (b) Lone Wolf effect (c) Bottleneck

Fig. 12: Scatter plots for global DSN community members and three community smells. The threshold around 200 members is
evident.

Summary for RQ3. We conclude that several factors
from the state of the art relate strongly to commu-
nity smells. Not surprisingly, factors that are health
indicators for community structure (e.g., socio-technical
congruence) are correlated with smells: the better the
congruence the fewer smells we find. Conversely, we
report several relations with theories and conjectures
from organisations and social-networks research which
are still unproven and are not investigated in the scope
of existing software engineering research.

5.4 Refactoring Software Communities:
Smells and Factors Trade-offs
Our data indicates that community smells and socio-
technical factors may jointly be used to refactor software
communities for improved organizational quality. In that
respect, however, several observations can be made.

First, there are underlying forces in action which are
yet to be discovered and elaborated fully and that relate
to the counterbalance between factors and their mediating
role with respect to community smells. For example, plots in
Fig. 11 outline the interactions between several smells and a
specific quality factor but the cross-relations between factors
and their counterbalancing effect needs to be weighted
against the single factor’s role as a mediator for more or
less community smells of a specific type. In the specific
case highlighted by Fig. 11 the bottom-left plot points out
to the clear relation between radio-silence effects and the
truck factor; in that specific instance, however, there exist
several outliers wherefore a high truck factor corresponds to
few smells and the opposite conditions are true as well. The
aforementioned conditions reflect a trade-off that needs to
be evaluated when fine-tuning with community structures,
e.g., with specific communication protocols. For example,
reducing the truck factor by increasing the modularization
of the community positively influences the ratio of radio
silence effects, but, at the same time, the action weighs
negatively on Organisational Siloes which are connected to
overly modularised community structures.

Similarly, organisational structures are fluidly evolving
networks [71] where sub-optimal effects often occur in
stages following a fuzzy logic at best [72]. Consider for

example the plot in Fig. 10: the plot distinctively identifies at
least three stages of considerable socio-technical congruence
value density, namely, STC = 0, STC ' 0,30 and STC >
0,50; given these three stages, practitioners and community
leaders would need to experiment with each along with dif-
ferent communication and/or collaboration protocols in an
effort to strike a balance between their own desired/optimal
values of STC with respect to other desired parameter levels.
For example, focusing on Fig. 10, the stage in which STC
= 0 offers evidence of considerable variance between the
numbers of Organisational Siloes, which itself reflects the
existence of other possible mediators to be acted upon.

In summary, these aforementioned observations clearly
indicate the need for further quantitative and qualitative
empirical experimentation on the route to figuring out ap-
propriate community refactoring mechanisms and patterns.
Said patterns are likely to consist of interactions among
smells and sets of socio-technical factors. This work acts a
first keystone towards this exploration.

5.5 Observations and Impact
The findings captured in the previous sections have several
impacts in the state of research and practice in software
engineering.

First, the thresholds we identified could be used as
stability metrics to be combined with data and inputs from
sites such as OPENHUB and BITERGIA, to evaluate the par-
ticipation or adoption of specific open-source products. For
example, community activity and stability around a specific
software component may need to be evaluated in order to
reduce the risks connected to adopting that component in
the first place. Our results can offer a lens of analysis and
a series of thresholds to evaluate whether the quality of
a certain community is sufficient enough for adoption. At
the same time, community smells and their detection can
be used as a means to mitigate the connected risks — for
example, practitioners can re-modularise their products to
work around smelly components and communities.

Furthermore, from a research perspective, academicians
can further the study and understanding over the relations
of more complex patterns of software engineering organisa-
tional structures with respect to more complex patterns of
software (e.g., architectural or design patterns, etc.) as well

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 19

as known code quality issues and metrics in the scope of
software maintenance and evolution activities.

In addition, from a closed-source perspective, the tool
we provide can offer a valuable basis to enact continuous
community improvement in the scope of DevOps pipelines
wherefore the quality of the organisation is as much impor-
tant as the quality of the product underneath.

6 VERIFIABILITY AND THREATS TO VALIDITY

6.1 Verifiability
As pointed out throughout this article, we encourage repli-
cation of this study to more deeply study community smells
and to characterise the forces around social debt. To support
this goal, first we have created a complete report [73] with
the full details of the study design, from the literature
analysis that drove its inception to the entire span of the
evaluation (partially) reported in this article. Second, we
prepared a detailed explanation of the set-up and execution
for the data-mining and analysis tools used throughout
our work5. Finally, we prepared an online appendix [45]
reporting fine-grained details on the analyses conducted.
We hope this material can support both replication of this
study and the further study of community smells from other
perspectives.

6.2 Threats to validity
In the following, we discuss the threats that might have
affected our findings, and how we have mitigated these
threats.

Construct Validity. Threats to construct validity are
related to the relationships between theory and observa-
tion. Generally, this threat is constituted by imprecision in
performed measurements. The part of the study related to
community smell identification is affected by construct va-
lidity since the metrics of our quality model may have been
implemented in our tool in a “biased" way. For example, the
operationalisation that we exploit stems from previous work
of Joblin et al., who refined and operationalised the con-
cept of verified community [14]. Community structures are
detected through a series of methodological triangulations
(code function level, commit level and communication level
approaches) validated based on comparisons with null-
models, hence the term ‘verified’. This notwithstanding,
the operationalisation they provide could still suffer from
the consequence of unknown organisational circumstances.
Furthermore, the operationalisation we adopt looks for in-
stances of smells following the definitions in the strictest
sense. That is, for example, in the case of the Black Cloud and
Lone Wolf effects, no communication needs to be observed
but look for this effect over a period of two consecutive
time-windows (i.e., 6 months). This is because the smell has
a meaningful observable effect when manifests over such a
time window; at the same time, the smell may persist even
if after such a time window there is in fact communication
which is intermittent or by the interposition of an external
“intruder".

Likewise, the survey was phrased to identify such in-
stances, since they were less common and more difficult

5. https://github.com/smnmgn/codeface

to identify based on our quantitative empirical data. These
approaches are themselves empirically-derived and may
be compromising the validity of our theoretical constructs.
Also, part of our study is based on survey results, so
construct validity may be compromised by developer per-
ceptions. To mitigate possible biases, we first inquired par-
ticipants indirectly, as recommended by Fisher [51]: this was
due to the fact that participants of survey studies might be
reluctant to express negative or controversial opinions on
topics they are too much involved in. Then, we perform
confirmatory semi-structured interviews to ask developers
direct experiences with community smells. Besides employ-
ing such established research techniques, we were not able
to mitigate these threats further. Therefore the study remains
potentially affected.

Internal Validity. Threats to internal validity are related
to factors that could have influenced our results but which
were not accounted for. Concerning community smell iden-
tification, one factor that might have impacted on our ability
to correctly detect smells concerned how the communication
network was built. Specifically, we relied on mailing lists
to mine the communications among developers, but there
might be additional channels where community members
communicate with each other. While this is a limitation of
our approach, it is worth discussing this point further by
clarifying three important points:
• 95% of the open-source communities investigated in

this work (and, in fact, the vast majority of existing
communities) explicitly state in the contribution guide-
lines that mailing lists represent the main channel to
give and get updates about the status of the project.
For instance, the first requirement to get involved in
the Apache Mahout project6 is to join the ’user’,
’development’, and ’commit’ lists, to help others,
join discussions of changes, and be informed of new
commits, respectively. Moreover, the project explicitly
states that “discussions at Apache happen on the mailing
list”. In other words, mailing lists represent the main
communication channel in open-source projects: we
believe that this aspect supports our choice of method-
ology to identify community smells.

• Despite the prominent role of mailing lists, we cannot
exclude that some communications are conducted by
developers using other channels (e.g., Skype). However,
the mining of such channels would (i) not be practical,
e.g., there is no way to access the Skype data of a
developer, and (ii) more importantly, have important
privacy implications.

• We included confirmatory survey questions as part of
the questionnaire used to infer our original quality
model. Survey results [73] strongly support that project
mailing lists were indeed the key communication chan-
nel used across the community for almost 87% of sur-
vey respondents.

For these reasons, we believe that mailing lists represent
a sufficiently accurate information source to study commu-
nication and collaboration among developers. As further
proof, it is worth mentioning that the CODEFACE approach
was empirically validated by the original authors [74]: one

6. https://mahout.apache.org/developers/how-to-contribute

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 20

of their main findings was that the verified community
structure detected by CODEFACE was in line with the devel-
oper networks built using the manual certificate-of-origin
reporting systems that documented code changes. Thus,
the methodology appears suitable to properly capture real-
world collaborations.

In the context of RQ2 we evaluated developer percep-
tion of community smells by conducting a questionnaire
involving 172 contributors coming from 11 of the 60 projects
considered. While this sample might not reflect the percep-
tions of developers in other communities, we argue that
our analysis provides important insights on the perceived
impact of community smells. Furthermore, the additional
confirmatory analysis made by means of semi-structured
interviews allows us to be more confident about the re-
ported findings. Notwithstanding, additional experiments
and replications of our work would be desirable. A factor
that might have influenced the respondents’ perception of
community smells could be their level of experience in
open-source projects. To control for this aspect we computed
two well-established metrics—commit- and project-tenure
[59]—by mining Github repositories, and we computed
statistical tests to verify the correlation between developers’
experience and perception of community smells. However,
further analyses of how experience impacts community
smells should be carried out in future studies.

Furthermore, we must acknowledge that the exploration
of our study subject (namely community structure patterns)
is subject to many biases from the members of the commu-
nities. On one hand, it was our research design decision
to confirm the validity of the tool in detecting commu-
nity smells, reflecting actual sub-optimal conditions, thus
avoiding, in the scope of RQ2, explicit questions phrased
to directly assess the smells themselves. This decision was
made explicitly to avoid any bias connected to our con-
firmatory evaluation connotation [75], [76]. On the other
hand, this still constitutes a threat to validity—we were not
able to directly and consistently confirm all questions with
their single nasty effects, which would require an additional
confirmatory study (which is currently being planned).

In the context of RQ3, when looking at the relationship
between the community smells and socio-technical metrics
we did not normalise the number of smells but relied on the
absolute values. This might have potentially affected our
interpretations: to understand whether and how much the
results would have been affected, we re-run our analyses
while normalising the number of community smells based
on the number of community members: in other words, we
considered the relation between the density of community
smells and the other socio-technical factors considered. As a
result, the findings achieved do not change when compared
to those reported in Section 5.3. This indicates that, inde-
pendently from the normalisation, the relations between
community smells and socio-technical factors highlighted
hold. A complete report of these additional analyses is
available in our online appendix [45].

External Validity. Threats to external validity are related
to the generalisation of obtained results. Our tool support
CODEFACE4SMELLS currently considers only four indica-
tors of social debt but there are doubtless many community

smells yet to uncover. Also, in our evaluation, our analysis
was made over a total of 60 FLOSS projects, strengthening
the generality of our findings. However, these results might
be influenced by the temporal window we selected for our
analysis (3 months) as well as myriad other factors that we
could not control for.

7 RELATED WORK

This section describes the related work that is the foun-
dation for our contributions, ranging from research on
Conway’s Law [77] to efforts that capture and empirically
evaluate the impact of organisational structure quality to
code and general product quality. We also review research
on the dimensions that affect community quality in a global
software engineering context.

Since the original inception of Conway’s Law, positing
the relationship between the structure of a system and the
structure of the organisation that designed it, several studies
have tried to understand more about this intriguing relation.
For example, the works by Cataldo et al. and Herbsleb et
al. around socio-technical congruence [7], [8], [78] study
software development as a social-technical activity, in which
the technical and the social components need to be aligned
to succeed. These and similar works introduce valuable
socio-technical factors to be addressed and tracked for soft-
ware communities to succeed. The fundamental component,
Herbsleb [79], Damian [80] and others say, is to achieve an
effective coordination among teams, whose organisational
structure is a key dimension that should be considered as
much as project plans, processes and coordination mecha-
nisms [78].

These insights are also reinforced by evidence regarding
the opposite influence — for example, in 2010 Colfer and
Baldwin [81] complemented Conway’s law verifying the
validity of their “mirroring hypothesis”, which assumed
that the organisational patterns of a development commu-
nity (e.g. team co-membership and geographic distribution,
communication links) mirror the technical dependency pat-
terns of the software under development. With respect to
these works, the results outlined in this paper take a non-
trivial further step. Building upon the state of the art, our
intent was to gather metrics to evaluate the health sta-
tus of software engineering communities, formulating the
thresholds needed to automatically detect and “diagnose"
community problems we observed in industry that lead to
social debt [13]. Although mainly validated in open-source
projects our model and appraisal approach and tools can be
used effectively on any DSN [4], given that the foundations
of the theory behind the model (i.e., social debt and commu-
nity smells) were elaborated solely on large-scale distributed
industrial case-studies [9], [17].

Moreover, there is much research related to our inten-
sions, e.g., in terms of providing effective ways to study the
success (and failure) factors of global software engineering.
For example, In 2002 Herbsleb and Mockus carried out an
initial social-network analysis featuring mailing lists, code
repositories and issue tracking systems of two important
FLOSS projects and analysed developer participation and
community metrics [82], [83]. Herbsleb and Mockus con-
cluded that higher levels of organisational modularity indi-

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 21

cate a lower coordination need and that a “communication-
only" approach in a distributed software development envi-
ronment, such as a FLOSS ecosystem, does not scale because
communication channels will be overwhelmed as the size
and the complexity of the project and community will grow
[83]. Similar results were also confirmed by Bird et al. a
number of years later both in open- [84] and closed-source
[85] projects. Also, Nagappan et al. [1] analysed the rela-
tion between organisational structure and software quality.
They proposed eight measures to quantify organisational
complexity from the code viewpoint and empirically eval-
uated their efficacy to identify failure-prone binaries in a
commercial project. The failure-proneness prediction model
based on the organisational metrics outperformed tradi-
tional technical metrics (e.g. code churn, code complexity,
LOC). Even more recently, the work of Lavallee et al. [86]
analysed the relationships between several organisational
factors and their impact on developers’ working conditions
and performance. Lavallee et al. identified several socio-
technical organisational issues (i.e., community smells [9])
that compromise software quality and its success, e.g., the
truck number across the community structure.

In the same way, we argue that a key number of or-
ganisational and socio-technical dynamics, inherited from
social-network research [10], need to be studied and tracked
to ensure the performance and organisational health for soft-
ware development communities. In this paper we present a
tool to aid in this endeavour, constructed from prior theories
and from the social debt and community smells we ob-
served through industry case-study research. Our tool was
evaluated on over 60 open-source projects and did indeed
reveal key insights on communities health. To the best of our
knowledge the tool we propose is the first of its kind: its key
benefit is that of offering confirmed community quality di-
mensions and thresholds for diagnosing potentially expen-
sive organisational and socio-technical community smells
that may be introducing friction in DevOps lifecycles.

8 CONCLUSIONS

8.1 Contributions

This paper introduces, elaborates, and evaluates the dif-
fuseness, developer perception, and impact of community
smells—detrimental socio-technical circumstances that in-
crease social debt [9], [17]—across large, distributed open-
source communities. We contribute to the state of the art
by quantitatively illustrating the occurrences of community
smells across over 100 years worth of historical commit
and communication data for 60 open-source projects. Also,
we confirm the value of our contributions showing, via a
survey, the impacts that open-source developers perceive
regarding smells in their own communities. Finally, we
contribute to the state of the art using known and previously
studied socio-technical quality factors to discover several
quality thresholds that strongly correlate with community
smell stability over time.

We have made all of our tools and data available for
other researchers to use, and for replication purposes.

8.2 Conclusion

We conclude that community smells are indeed a force to be
reckoned with. But, just as important, we have discovered
several thresholds over measurable socio-technical quality
factors that aid in the prediction and mitigation of commu-
nity smells along with any connected nasty effects.

8.3 Future Work

In the future work we plan to strengthen the usability
and evaluation of our tool, experimenting further with
its dimensions based on additional evaluation. Also, we
plan to evaluate the tool from a technical perspective, i.e.,
answering the research question “what factors from the
model reflect better technical quality?". In addition, we
plan to merge our tool support with the main CODEFACE
distribution, aiding its software community improvement
potential.

Furthermore, in recognising the limitations of the cur-
rent implementation of CODEFACE4SMELLS tool, we plan
to further provide additional operationalisations that cover
the remaining community smells which were not further
explored in the scope of this study. For example, stem-
ming from the remaining community smells identified in
previous work [9], we aim at further investigating what
other community smells can be operationalised using open-
data available from software repositories other than GitHub,
as well as the feasibility of using non-conventional tech-
niques (e.g., Neuro-linguistic programming, natural lan-
guage processing, sentiment analysis, etc.) to operationalise
the remaining community smells from the state of the art.
Finally, the patterns and community smells we analyse were
operationalised in an rather ’assertive’ fashion, meaning that
the patterns themselves have no weights associated to them
(e.g., if a Lone Wolf is a more experienced developer or
whether a Bottleneck effect separates very large communi-
ties) — disregarding these aspects constitutes a required
simplification for the nature of this study but should be
addressed with future work.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Simone Magnoni to the
definition and refinement of the contents of this study and to
Prof. Dr. Elisabetta Di Nitto for the feedback she gave during
the inception of this study. Dr. Palomba gratefully acknowl-
edges the support of the SNSF Project named “Data-driven
Contemporary Code Review” (No. PP00P2_170529).

REFERENCES

[1] N. Nagappan, B. Murphy, and V. Basili, “The influence of
organizational structure on software quality: an empirical case
study,” in International conference on Software engineering. Leipzig,
Germany: IEEE, May 2008, pp. 521–530. [Online]. Available:
http://doi.acm.org/10.1145/1368088.1368160

[2] M. Saeki, “Communication, collaboration, and cooperation in
software development-how should we support group work in
software development?” in APSEC. IEEE Computer Society,
1995, pp. 12–21. [Online]. Available: http://dblp.uni-trier.de/db/
conf/apsec/apsec1995.html#Saeki95

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 22

[3] Y. Dittrich, J. Norbjerg, P. Tell, and L. Bendix, “Researching
cooperation and communication in continuous software
engineering.” in CHASE@ICSE, H. Sharp, C. R. B. de Souza,
D. Graziotin, M. Levy, and D. Socha, Eds. ACM, 2018,
pp. 87–90. [Online]. Available: http://dblp.uni-trier.de/db/conf/
icse/chase2018.html#DittrichNTB18

[4] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer social
networks predict failures?” in FSE ’08: Proceedings of the 16th
ACM SIGSOFT international symposium on Foundations of software
engineering, 2008.

[5] C. Bird, N. Nagappan, H. C. Gall, B. Murphy, and P. T.
Devanbu, “Putting it all together: Using socio-technical networks
to predict failures.” in ISSRE. IEEE Computer Society, 2009, pp.
109–119. [Online]. Available: http://dblp.uni-trier.de/db/conf/
issre/issre2009.html#BirdNGMD09

[6] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “Social
debt in software engineering: insights from industry.” J. Internet
Services and Applications, vol. 6, no. 1, pp. 10:1–10:17, 2015.

[7] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical
congruence: a framework for assessing the impact of technical
and work dependencies on software development productivity.”
in ESEM, H. D. Rombach, S. G. Elbaum, and J. Munch, Eds.
ACM, 2008, pp. 2–11. [Online]. Available: http://dblp.uni-trier.
de/db/conf/esem/esem2008.html#CataldoHC08

[8] J. D. Herbsleb, M. Cataldo, D. Damian, P. T. Devanbu, S. M.
Easterbrook, and A. Mockus, “Socio-technical congruence (stc
2008).” in ICSE Companion. ACM, 2008, pp. 1027–1028, 978-
1-60558-079-1. [Online]. Available: http://dblp.uni-trier.de/db/
conf/icse/icsec2008.html#HerbslebCDDEM08

[9] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet,
“Social debt in software engineering: insights from industry.” J.
Internet Services and Applications, vol. 6, no. 1, pp. 10:1–10:17,
2015. [Online]. Available: http://dblp.uni-trier.de/db/journals/
jisa/jisa6.html#TamburriKLV15

[10] D. A. Tamburri, P. Lago, and H. v. Vliet, “Organizational
social structures for software engineering,” ACM Comput. Surv.,
vol. 46, no. 1, pp. 3:1–3:35, Jul. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2522968.2522971

[11] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

[12] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “On the diffuseness and the impact on maintainabil-
ity of code smells: a large scale empirical investigation,” Empirical
Software Engineering, vol. 23, no. 3, pp. 1188–1221, 2018.

[13] D. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “What is social
debt in software engineering?” in Cooperative and Human Aspects of
Software Engineering (CHASE), 2013 6th International Workshop on,
May 2013, pp. 93–96.

[14] M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle,
“From developer networks to verified communities: A fine-
grained approach.” in ICSE (1), A. Bertolino, G. Canfora,
and S. G. Elbaum, Eds. IEEE Computer Society, 2015, pp.
563–573. [Online]. Available: http://dblp.uni-trier.de/db/conf/
icse/icse2015-1.html#JoblinMASR15

[15] E. Allman, “Managing technical debt.” Commun. ACM, vol. 55,
no. 5, pp. 50–55, 2012. [Online]. Available: http://dblp.uni-trier.
de/db/journals/cacm/cacm55.html#Allman12

[16] C. B. Seaman, R. L. Nord, P. Kruchten, and I. Ozkaya, “Technical
debt: Beyond definition to understanding report on the sixth
international workshop on managing technical debt.” ACM
SIGSOFT Software Engineering Notes, vol. 40, no. 2, pp. 32–34,
2015. [Online]. Available: http://dblp.uni-trier.de/db/journals/
sigsoft/sigsoft40.html#SeamanNKO15

[17] D. A. Tamburri and E. D. Nitto, “When software architecture
leads to social debt.” in WICSA, L. Bass, P. Lago, and
P. Kruchten, Eds. IEEE Computer Society, 2015, pp. 61–
64. [Online]. Available: http://dblp.uni-trier.de/db/conf/wicsa/
wicsa2015.html#TamburriN15

[18] S. Wasserman and K. Faust, Social Network Analysis. Methods and
Applications. Cambridge University Press, 1994.

[19] D. Pugh and M. Weber, Eds., Organization theory,
2nd ed., ser. Penguin education. Harmondsworth,
Middlesex [u.a.]: Penguin Books, 1984. [Online]. Available:
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&
IKT=1016&TRM=ppn+022044973&sourceid=fbw_bibsonomy

[20] A. Rapoport, “Contribution to the theory of random and biased
nets,” Bulletin of Mathematical Biology, vol. 19, pp. 257–277, 1957.
[Online]. Available: http://dx.doi.org/10.1007/BF02478417

[21] R. K. Merton, Social Theory and Social Structure. New York,
London: The Free Press, 1968.

[22] M. Prilla, “Supporting collaborative reflection at work: A socio-
technical analysis,” AIS Transactions of Human-Computer Interaction,
2015 (upcoming).

[23] J. S. Coleman, Microfoundations and Macrosocial Behavior. Berkley,
CA: University of California Press, 1987, pp. 153–176.

[24] M. M. Burnett and B. A. Myers, “Future of end-user software
engineering: beyond the silos.” in FOSE, J. D. Herbsleb and M. B.
Dwyer, Eds. ACM, 2014, pp. 201–211. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/icse/fose2014.html#BurnettM14

[25] M.-A. D. Storey, L. Singer, B. Cleary, F. M. F. Filho, and
A. Zagalsky, “The (r) evolution of social media in software
engineering.” in FOSE, J. D. Herbsleb and M. B. Dwyer,
Eds. ACM, 2014, pp. 100–116. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/icse/fose2014.html#StoreySCFZ14

[26] S. Alter, “Sidestepping the it artifact, scrapping the is silo, and
laying claim to "systems in organizations".” CAIS, vol. 12, p. 30,
2003. [Online]. Available: http://dblp.uni-trier.de/db/journals/
cais/cais12.html#Alter03b

[27] N. Levina and E. Vaast, “The emergence of boundary spanning
competence in practice: Implications for implementation and
use of information systems.” MIS Quarterly, vol. 29, no. 2, pp.
335–363, 2005. [Online]. Available: http://dblp.uni-trier.de/db/
journals/misq/misq29.html#LevinaV05

[28] D. Gotterbarn, “Professional trust and privacy: the dangers
of silo thinking.” Inroads, vol. 3, no. 2, pp. 4–5,
2012. [Online]. Available: http://dblp.uni-trier.de/db/journals/
inroads/inroads3.html#Gotterbarn12

[29] W. van Osch, C. Steinfield, and Y. Zhao, “Spanning the boundary:
Measuring the realized and lifecycle impact of distinct boundary
spanning activities on project success and completion.” in HICSS.
AIS Electronic Library (AISeL), 2017. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/hicss/hicss2017.html#OschSZ17

[30] D. A. Tamburri, R. Kazman, and H. Fahimi, “The architect’s role in
community shepherding.” IEEE Software, vol. 33, no. 6, pp. 70–79,
2016.

[31] F. Palomba, D. A. A. Tamburri, F. A. Fontana, R. Oliveto, A. Zaid-
man, and A. Serebrenik, “Beyond technical aspects: How do
community smells influence the intensity of code smells?” IEEE
Transactions on Software Engineering, 2018.

[32] K. Stein, “Moving from dyad to triad: a triangular interdepen-
dent perspective on brand relationships,” Ph.D. dissertation, Uni
Mainz, 2013.

[33] F. Leistner, Connecting organizational silos: Taking knowledge flow
management to the next level with social media. John Wiley & Sons,
2012.

[34] O. Serrat, “Bridging organizational silos,” in Knowledge Solutions.
Springer, 2017, pp. 711–716.

[35] D. A. Tamburri, P. Lago, and H. van Vliet, “Uncovering latent so-
cial communities in software development.” IEEE Software, vol. 30,
no. 1, pp. 29–36, 2013. [Online]. Available: http://dblp.uni-trier.
de/db/journals/software/software30.html#TamburriLV13

[36] Q. Huang, H. Liu, and X. Zhong, “The impact of transactive
memory systems on team performance.” IT & People, vol. 26,
no. 2, pp. 191–212, 2013. [Online]. Available: http://dblp.uni-trier.
de/db/journals/itp/itp26.html#HuangLZ13

[37] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications, 1st ed., ser. Structural analysis in the social sciences.
Cambridge University Press, 1994, no. 8.

[38] M. Newman, “Fast algorithm for detecting community structure
in networks,” Physical Review E, vol. 69, September 2003. [Online].
Available: http://arxiv.org/abs/cond-mat/0309508

[39] C. Gkantsidis, M. Mihail, and E. W. Zegura, “The markov
chain simulation method for generating connected power law
random graphs.” in ALENEX, R. E. Ladner, Ed. SIAM, 2003,
pp. 16–25. [Online]. Available: http://dblp.uni-trier.de/db/conf/
alenex/alenex2003.html#GkantsidisMMZ03

[40] M. M. Bersani, F. Marconi, D. A. Tamburri, and F. Palomba,
“Formally-correct organizational anti-pattern detection for open-
source community health,” Journal of Systems and Software, Under
Review.

[41] S. P. Borgatti, K. M. Carley, and D. Krackhardt, “On
the robustness of centrality measures under conditions of

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 23

imperfect data,” Social networks, vol. 28, no. 2, pp. 124–
136, 2006. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0378873305000353

[42] D. Krackhardt and M. Kilduff, “Structure, culture and simmelian
ties in entrepreneurial firms.” Social Networks, vol. 24, no. 3, pp.
279–290, 2002. [Online]. Available: http://dblp.uni-trier.de/db/
journals/socnet/socnet24.html#KrackhardtK02

[43] P. J. Hinds, K. M. Carley, D. Krackhardt, and D. Wholey, “Choos-
ing work group members: Balancing similarity, competence, and
familiarity,” Organizational Behavior and Human Decision Processes,
vol. 81, no. 2, pp. 226–251, 2000.

[44] D. Krackhardt, “Predicting with networks: Nonparametric mul-
tiple regression analysis of dyadic data,” Social networks, vol. 10,
no. 4, pp. 359–381, 1988.

[45] D. Tamburri, F. Palomba, and R. Kazman, “Exploring community
smells in open-source: An automated approach - online appendix
- https://www.mediafire.com/folder/d429grc6jah32/,” 2018.

[46] Student, “An experimental determination of the probable error
of dr spearman’s correlation coefficients,” Biometrika, pp. 263–282,
1921.

[47] J. Cohen, Statistical power analysis for the behavioral sciences, 2nd ed.
Lawrence Earlbaum Associates, 1988.

[48] K. J. Hunt, N. Shlomo, and J. Addington-Hall, “Participant recruit-
ment in sensitive surveys: a comparative trial of ?opt in?versus
?opt out?approaches,” BMC medical research methodology, vol. 13,
no. 1, p. 3, 2013.

[49] W. Sugar, Studies of ID practices: A review and synthesis of research on
ID current practices. Springer, 2014.

[50] R. Likert, “A technique for the measurement of attitudes.” Archives
of psychology, 1932.

[51] R. J. Fisher, “Social desirability bias and the validity of indirect
questioning,” Journal of consumer research, vol. 20, no. 2, pp. 303–
315, 1993.

[52] G. Hoinville and R. Jowell, “Survey research practice.” 1978.
[53] S. Magnoni, D. A. Tamburri, E. Di Nitto, and R. Kazman, “Ana-

lyzing quality models for software communities,” Communications
of the ACM, vol. -, p. Under Review, 2017.

[54] G. Avelino, L. Passos, A. Hora, and M. T. Valente, “A novel
approach for estimating truck factors,” in Program Comprehension
(ICPC), 2016 IEEE 24th International Conference on. IEEE, 2016, pp.
1–10.

[55] D. A. Tamburri and E. D. Nitto, “When software architecture leads
to social debt.” in Software Architecture (WICSA), 2015 12th Working
IEEE/IFIP Conference on, L. Bass, P. Lago, and P. Kruchten, Eds.
IEEE Computer Society, 2015, pp. 61–64.

[56] H. Sharp and H. Robinson, “Some social factors of software
engineering: the maverick, community and technical practices,”
in ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4. ACM,
2005, pp. 1–6.

[57] K. Krippendorff, Content Analysis: An Introduction to Its Methodol-
ogy (second edition). Sage Publications, 2004.

[58] J.-Y. Antoine, J. Villaneau, and A. Lefeuvre, “Weighted
krippendorff’s alpha is a more reliable metrics for multi-coders
ordinal annotations: experimental studies on emotion, opinion
and coreference annotation.” in Proceedings of the 14th Conference of
the European Chapter of the Association for Computational Linguistics
(EACL), G. Bouma and Y. Parmentier, Eds. The Association for
Computer Linguistics, 2014, pp. 550–559. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/eacl/eacl2014.html#AntoineVL14

[59] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Sere-
brenik, P. Devanbu, and V. Filkov, “Gender and tenure diversity in
github teams,” in Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. ACM, 2015, pp. 3789–3798.

[60] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 international
conference on software engineering. IEEE Press, 2013, pp. 712–721.

[61] N. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, 2nd ed. London, UK: International Thomson
Computer Press, 1997.

[62] D. Riehle, P. Riemer, C. Kolassa, and M. Schmidt, “Paid vs.
volunteer work in open source,” in 2014 47th Hawaii International
Conference on System Sciences. IEEE, 2014, pp. 3286–3295.

[63] J. Cho, “Globalization and global software development,” Issues in
information systems, vol. 8, no. 2, pp. 287–290, 2007.

[64] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical
congruence: a framework for assessing the impact of technical
and work dependencies on software development productivity,”

in Proceedings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement. ACM, 2008, pp.
2–11.

[65] M. Torchiano, F. Ricca, and A. Marchetto, “Is my project’s
truck factor low?: theoretical and empirical considerations about
the truck factor threshold.” in WETSoM, G. Concas, E. D.
Tempero, H. Zhang, and M. D. Penta, Eds. ACM, 2011,
pp. 12–18. [Online]. Available: http://dblp.uni-trier.de/db/conf/
icse/wetsom2011.html#TorchianoRM11

[66] R. Kazman, D. Goldenson, I. Monarch, W. Nichols, and Valetto,
“Evaluating the effects of architectural documentation: A case
study of a large scale open source project,” IEEE Transactions on
Software Engineering, vol. 42, no. 3, pp. 220–260, 2016.

[67] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley,
“Identification of coordination requirements: implications for the
design of collaboration and awareness tools,” in Proceedings of the
2006 20th anniversary conference on Computer supported cooperative
work. ACM, 2006, pp. 353–362.

[68] P. M. Carron, K. Kaski, and R. Dunbar, “Calling
dunbar’s numbers.” Social Networks, vol. 47, pp. 151–155,
2016. [Online]. Available: http://dblp.uni-trier.de/db/journals/
socnet/socnet47.html#CarronKD16

[69] B. Goncalves, N. Perra, and A. Vespignani, “Modeling users’
activity on twitter networks: Validation of dunbar’s number,”
PLoS ONE, vol. 6, no. 8, 2011.

[70] J. Zhao, J. Wu, G. Liu, K. Xu, and G. Chen, “Being
rational or aggressive? a revisit to dunbar’s number in
online social networks,” CoRR, vol. abs/1011.1547, 2010.
[Online]. Available: http://dblp.uni-trier.de/db/journals/corr/
corr1011.html#abs-1011-1547

[71] K. M. Carley, “On the evolution of social and organizational
networks,” Special Issue of Research in the Sociology of Organizations
on Networks In and Around Organizations, vol. 16, pp. 3–30, 1999.

[72] D. A. Tamburri, F. Palomba, A. Serebrenik, and A. Zaidman, “Dis-
covering community types in open-source: A systematic approach
and its evaluation,” Jul 2017.

[73] S. Magnoni, D. A. Tamburri, and E. D. Nitto, “A socio-technical
quality model for software engineering organisational structures:
An empirical study,” Copyright - Politecnico di Milano Master Thesis
Series, vol. https://goo.gl/Y9R4KY, 2016.

[74] M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle,
“From developer networks to verified communities: A fine-
grained approach.” in Proc. Int’l Conf. on Software Engineering
(ICSE), A. Bertolino, G. Canfora, and S. G. Elbaum, Eds. IEEE
Computer Society, 2015, pp. 563–573.

[75] L. E. C. da Rocha, A. E. Thorson, R. Lambiotte, and
F. Liljeros, “Respondent-driven sampling bias induced by
clustering and community structure in social networks.” CoRR,
vol. abs/1503.05826, 2015. [Online]. Available: http://dblp.
uni-trier.de/db/journals/corr/corr1503.html#RochaTLL15

[76] Y. Mao, S. Bolouki, and E. Akyol, “Spread of information
with confirmation bias in cyber-social networks.” CoRR, vol.
abs/1803.06377, 2018. [Online]. Available: http://dblp.uni-trier.
de/db/journals/corr/corr1803.html#abs-1803-06377

[77] M. Conway, “How do committees invent?” Datamation Journal, pp.
28–31, April 1968.

[78] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter,
“An empirical study of global software development: distance
and speed,” in ICSE ’01: Proceedings of the 23rd International
Conference on Software Engineering. Washington, DC, USA:
IEEE Computer Society, 2001, pp. 81–90. [Online]. Avail-
able: http://portal.acm.org/citation.cfm?id=381481&dl=GUIDE&
coll=GUIDE&CFID=17819395&CFTOKEN=30991748#

[79] J. Herbsleb and R. Grinter, “Architectures, coordination, and dis-
tance: Conway’s law and beyond,” Software, IEEE, vol. 16, no. 5,
pp. 63 –70, sep/oct 1999.

[80] I. Kwan, A. Schroter, and D. Damian, “Does socio-technical con-
gruence have an effect on software build success? a study of
coordination in a software project,” IEEE Transactions on Software
Engineering, vol. 37, no. 3, pp. 307–324, 2011.

[81] L. Colfer and C. Y. Baldwin, “The mirroring hypothesis: Theory,
evidence and exceptions,” working paper, Feb. 2010. [Online].
Available: http://hbswk.hbs.edu/item/6361.html

[82] J. Herbsleb and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,”
IEEE Transactions on Software Engineering, vol. 29, no. 6, pp. 481–94,
2003.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 24

[83] J. D. Herbsleb and A. Mockus, “Formulation and preliminary
test of an empirical theory of coordination in software
engineering.” in ESEC / SIGSOFT FSE, J. Paakki and P. Inverardi,
Eds. ACM, 2003, pp. 138–137. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/sigsoft/fse2003.html#HerbslebM03

[84] C. Bird and N. Nagappan, “Who? where? what? examining
distributed development in two large open source projects.”
in MSR, M. Lanza, M. D. Penta, and T. Xie, Eds. IEEE
Computer Society, 2012, pp. 237–246. [Online]. Available:
http://dblp.uni-trier.de/db/conf/msr/msr2012.html#BirdN12

[85] C. Bird, N. Nagappan, P. T. Devanbu, H. C. Gall, and
B. Murphy, “Does distributed development affect software
quality? an empirical case study of windows vista.” in
ICSE. IEEE, 2009, pp. 518–528. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/icse/icse2009.html#BirdNDGM09

[86] M. Lavallee and P. N. Robillard, “Why good developers
write bad code: An observational case study of the impacts
of organizational factors on software quality.” in ICSE (1),
A. Bertolino, G. Canfora, and S. G. Elbaum, Eds. IEEE
Computer Society, 2015, pp. 677–687. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/icse/icse2015-1.html#LavalleeR15a

Damian A. Tamburri is an Assistant Professor
at the Jheronimus Academy of Data Science
(JADS) and the Technical University of Eind-
hoven (TU/e). His research interests include so-
cial software engineering, advanced software ar-
chitectures, design, and analysis tools as well
as advanced software-engineering methods and
analysis tools. He is on the IEEE Software edi-
torial board and is secretary of the International
Federation for Information Processing Working
Group on Service-Oriented Computing. Contact

him at damianandrew.tamburri@polimi.it or dtamburri@acm.org.

Fabio Palomba is a Senior Research Asso-
ciate at the University of Zurich, Switzerland.
He received the European PhD degree in com-
puter science from the University of Salerno,
Italy, in 2017. His research interests include soft-
ware maintenance and evolution, empirical soft-
ware engineering, change and defect prediction,
green mining and mining software repositories.
He serves and has served as a program commit-
tee member of international conferences such as
MSR, ICPC, ICSME, and others. He is member

of the IEEE and ACM. Contact him at palomba@ifi.uzh.ch

Rick Kazman is a professor of information tech-
nology management at the University of Hawaii
and a principal researcher at Carnegie Mellon
University Software Engineering Institute. His
research interests include software architecture
design and analysis tools, software visualiza-
tion, and software engineering economics. Kaz-
man received a PhD in computer science from
Carnegie Mellon University. Contact him at kaz-
man@hawaii.edu.

