
A Large-Scale Empirical Exploration on
Refactoring Activities in Open Source Software Projects

Carmine Vassallo, Giovanni Grano, Fabio Palomba, Harald C. Gall, Alberto Bacchelli
University of Zurich, Switzerland

vassallo@ifi.uzh.ch, grano@ifi.uzh.ch, palomba@ifi.uzh.ch, gall@ifi.uzh.ch, bacchelli@ifi.uzh.ch

Abstract

Refactoring is a well-established practice that aims at improving the internal structure of a software system without
changing its external behavior. Existing literature provides evidence of how and why developers perform refactoring in
practice. In this paper, we continue on this line of research by performing a large-scale empirical analysis of refactoring
practices in 200 open source systems. Specifically, we analyze the change history of these systems at commit level
to investigate: (i) whether developers perform refactoring operations and, if so, which are more diffused and (ii) when
refactoring operations are applied, and (iii) which are the main developer-oriented factors leading to refactoring. Based on
our results, future research can focus on enabling automatic support for less frequent refactorings and on recommending
refactorings based on the developer’s workload, project’s maturity and developer’s commitment to the project.

Keywords: Refactoring, Software Evolution, Software Maintenance

1. Introduction

Refactoring is the process of improving existing code
without creating new functionalities [24]. The code im-
provements targeted through refactoring go in two main
directions [28]: on the one hand, refactoring tasks aim
at increasing the code maintainability by reducing large
monolithic routines into a set of individually concise, well-
named, single-purpose methods; on the other hand, refac-
toring tasks aim at enhancing code extensibility and flexi-
bility, by introducing recognizable design patterns. Over-
all, the main goal of refactoring is to reduce design debt
[57], which is the development work accumulated when
quick and low-quality solutions are used, instead of high-
quality ones, to implement functionalities.

Several researchers investigated the use of refactor-
ing. For example, Kataoka et al. found that refactoring
does lead to code metric improvements (e.g., decreasing
of code coupling and code complexity [27]), Moser et al.
found that refactoring has a positive impact on develop-
ers’ productivity when properly applied [36], and Wang
et al. studied the motivations industrial developers have
when refactor, finding that developers often reduce tech-
nical debt to attract peer recognition [64].

Despite its usefulness, refactoring requires substantial
effort from developers. In fact, there is a lack of proper
support for refactoring and developers almost always per-
form refactoring operations manually [30, 37]. Moreover,
even when some sophisticated automated refactoring solu-
tions are available [33], developers do not perceive them as
trustworthy and manually verify the refactorings’ correct-
ness with the fear that they may introduce defects [30]. For

this reason, previous work investigated other approaches
aiming at only suggesting developers to refactoring oppor-
tunities without forcing their application. Simon et al.
[52] proposed a metric-based visualization tool indicating
code components that need refactoring, while Bodhuin et
al. [14] conceived a refactoring decision support tool based
on genetic algorithms. Furthermore, Tsantalis et al. devel-
oped JDeodorant, a tool that detects certain types of code
smells (i.e., Feature Envy, Type Checking, Long Method
God Class and Duplicate Code) and suggests ad-hoc refac-
toring strategies to remove them. However, all the pro-
posed approaches did not specifically investigate the ac-
tual developers’ needs, such as what are the refactoring
operations with which developers need more help and in
which circumstances developers need support.

To fill this knowledge gap and to guide future research
in building approaches for supporting developers during
refactoring, we performed a large-scale empirical study
aimed at investigating (i) the types of refactoring develop-
ers perform more frequently, (ii) when refactoring is per-
formed across the project’s history and (iii) the developer-
oriented factors leading to refactoring.

Our study takes 200 open source projects belonging
to three well-known ecosystem (namely Android, Apache
and Eclipse) as subjects and our results show that develop-
ers adopt refactoring operations quite differently. Specifi-
cally, (1) the support provided by the current generation
of development environment (e.g., IDEs) has an impact on
which refactorings are performed the most, (2) the age of a
software component as well as the proximity to a software
release guides the planning of refactoring activities during

Preprint submitted to Elsevier May 5, 2019

the overall project maintenance, and (3) the current task
developers are working on and the developers’ commit-
ment to the software project are strong indicators of de-
velopers’ suitability for refactoring. Based on these results,
future research can focus on enabling automatic support
for less frequent refactoring and on recommending refac-
toring based on the developer’s workload and project’s ma-
turity. And last but not least, our findings paves the way
to refactoring tasks triaging.

2. Methodology

The goal of the study is to analyze the change his-
tory of software projects, with the purpose of investigating
(i) which kind of refactoring operations developers per-
form more often, (ii) when refactoring is applied, and (iii)
what are the developer-oriented factors leading to refactor-
ing operations. The perspective is of both researchers and
practitioners, interested in broadening the knowledge on
refactoring practices in real software systems and conceiv-
ing new approaches to enhance the adoption of refactoring.

2.1. Research Questions
The first goal of our study is to analyze the primary use

of different types of refactoring operations, with the pur-
pose of understanding (i) the extent to which refactoring
is applied in practice and (ii) on which types of refactoring
operations the research community, project managers, and
tool vendors should spend more effort to support practi-
tioners. This leads to our first research question:

RQ1. Which types of refactoring are more frequently
applied in software ecosystems such as Android, Apache,
and Eclipse?

Once assessed the refactoring distribution, we conduct a
fine-grained analysis on when developers perform refactor-
ing, so that we can delineate possible trends in the adop-
tion of specific refactoring types. This may be useful for
researchers when devising refactoring approaches that are
closer to the developers’ habits:

RQ2. When are refactoring operations performed?

Finally, we investigate which kind of developer-oriented
factors (e.g., as the current task and workload, as well
as the knowledge of the class) may induce developers to
apply refactoring. The aim is to devise new methods for
“adaptive” refactoring, i.e., tools adapting their behavior
to both the current task and the developer:

RQ3. What are the main developer-oriented factors
related to refactoring?

In the following subsections we detail the design decisions
taken to answer these research questions.

2.2. Context Selection
The context of the study consists of software systems

and refactoring operations. We consider the change his-
tory of 200 projects belonging to three well-known software
ecosystems (i.e., Android, Apache, and Eclipse). We
select these three ecosystems and their projects to obtain
substantial differences in terms of (i) project size (e.g.,
Apache and Eclipse projects are generally larger with
respect to Android apps), (ii) team size (e.g., Apache
projects involve hundreds of developers [7], while usually
Android apps are developed by small teams), and (iii)
application type (e.g., we analyze Android mobile apps,
Apache libraries, and plug-in based Eclipse projects).
Table 1 provides an overview.

All the analyzed projects are hosted in Git reposi-
tories, associated to their own issue tracker. The An-
droid ecosystem consists of 70 apps randomly selected
from the F-Droid repository.1 The Apache dataset in-
cludes 100 Java projects randomly selected from the list of
all the Apache systems available on GitHub.2 Finally,
the Eclipse ecosystem is composed by 30 Java projects se-
lected in a random manner from the list of GitHub repos-
itories managed by the Eclipse Foundation.3 Overall,
we mined 579,671 commits and 4,803 issues.

As for the refactoring operations, we consider the 11
types in Table 2, which belong to the catalog defined by
Fowler [24] and consider operations aiming at improving
the design of the code from different perspectives (e.g., by
extracting parts of the source code to simplify a method or
by renaming classes for understandability). As explained
in the next section, the choice of these refactoring opera-
tions is driven by the availability of a tool able to effec-
tively identify them by analyzing the change history of the
studied projects.

2.3. Extraction of Refactoring Operations
Given the amount of commits analyzed in this study,

a manual detection of refactoring operations performed by
developers would have been too expensive. In literature,
two main approaches to automatically identify refactoring
operations at commit level have been defined, i.e., Refac-
toringMiner [61] and RefDiff [51]. In this study, we
opt for the former because its accuracy has been shown
to be higher than RefDiff [61]. More specifically,
RefactoringMiner identifies all the refactoring opera-
tions considered in our study through the application of a
two-step approach. It firstly uses the UMLDiff [66] al-
gorithm to infer which classes, methods, and fields have
been added/removed/modified between two subsequent
commits; then, it uses a set of rules to discriminate the
different types of refactoring operations. The tool was
empirically measured to have precision and recall of 98%

1https://f-droid.org/
2https://git.apache.org
3https://github.com/eclipse

2

https://f-droid.org/
https://git.apache.org
https://github.com/eclipse

Table 1: Characteristics of the ecosystems consider in our analysis, in terms of the number of analyzed projects (#Proj.), size ranges (#Classes,
KLOC), the overall number of analyzed commits (#Commits) and issues (#Issues), and the projects’ age in years (Mean Age, Min-Max
Age).

Ecosystem #Proj. #Classes KLOC #Commits #Issues Mean Age Min-Max Age
Apache 100 4-5,052 1-1,031 207,997 3,486 6 1-15
Android 70 5-4,980 3-1,140 107,555 1,193 3 1-6
Eclipse 30 142-16,700 26-2,610 264,119 124 10 1-13

Overall 200 - - 579,671 4,803 6 1-15

Table 2: The refactoring operations considered in this study, derived
from the catalogue defined by Fowler [24].

Name Description
Extract Inter-
face

Extract a subset of a class interfaces
into a single interface.

Extract
Method

Extract a fragment of a method into
a new method whose name explains
its purpose.

Inline Method Put the method’s body into the
body of its callers and remove the
method.

Move Field Create a new field in the target class,
and change all its users.

Move Method Create a new method with a simi-
lar body in the class it uses most.
Either turn the old method into a
simple delegation, or remove it alto-
gether.

Pull Up Field Move the field to the superclass.
Pull Up
Method

Move the method to the superclass.

Push Down
Field

Move the field to the subclasses that
actually use it.

Push Down
Method

Move the method to the subclasses
that actually use it.

Rename
Method

Replace the name of a method with
a new one.

Rename Class Replace the name of a class with a
new one.

and 93%, respectively, when it turns to the detection of
seeded refactorings [50], while it exhibited 98% and 87%
of precision and recall, respectively, when detecting real
refactoring operations applied by developers [61]. To fur-
ther assess the suitability of RefactoringMiner for our
study, we re-evaluate the precision of the detector4 on a
statistically significant sample composed of 380 refactor-
ing instances identified in the subject software projects.
Such a set represents a 95% statistically significant strat-
ified sample with a 5% confidence interval of the 16,660

4The recall cannot be evaluated because of the lack of a com-
prehensive oracle of refactoring operations applied on the considered
projects

total refactoring operations detected by the tool. The val-
idation was manually conducted by one of the authors of
this paper, who has 5 years of experience in the refactor-
ing research field and more than 10 years of development
experience. The validity of the tool recommendations was
manually assessed by analyzing the unix diff related to
the two subsequent commits where RefactoringMiner
identified a certain refactoring. As a result of this manual
analysis, we found that the precision of the approach in our
dataset is 95% (i.e., in line with the previously reported
one [50]), as such we deem the accuracy of Refactoring-
Miner appropriate for our study.

Overall, the tool identified 16,660 refactoring opera-
tions over the 200 analyzed systems (1,941 refactorings for
Android, 10,047 for Apache, and 4,672 for Eclipse).
The data extraction (i.e., repositories cloning and refac-
toring detection at commit granularity for the 200 sys-
tems) took four weeks on two Linux platforms with two
quad-core, 3.1GHz CPUs and 16 Gb of RAM.

2.4. RQ1. Distribution of Refactoring Types
To analyze how frequently each type of refactoring op-

erations is applied, we count the number of refactoring op-
erations per each of the 11 refactoring types considered and
divide it by the overall number of refactoring operations.
We do this analysis by ecosystem. In this way, we can
identify the most popular refactoring activities and pos-
sibly highlight the types for which developers would ben-
efit from a better support from the research community,
project managers, and tool vendors. Section 3.1 presents
the results.

2.5. RQ2. When Refactoring Is Applied
To investigate when developers perform refactoring op-

erations, we proceed in two complementary ways.
Firstly, we measure the number of commits that are be-

tween the introduction of a class on the repository and the
first refactoring operation performed on that class. This
can be seen as a coarse-grained analysis aimed at investi-
gating how many times a class is changed before a refac-
toring takes place. Afterwards, for each commit with a
refactoring, we compute two values:

‘project-startup’: The time between the project initia-
tion and the commit with a detected refactoring. It is

3

computed as an ordinal measure (values from ‘one week’,
‘one month’, ‘one year’, to ‘more than one year’ after
the project’s start date) and is automatically assigned
by comparing the date of a commit where a refactoring
has been detected with the creation date of the project
(i.e., the date of the first commit on the repository).5

‘working-on-release’: The time between the commit
with a detected refactoring and the closest project re-
lease. It is computed as an ordinal measure (values from
‘one day’, ‘one week’, ‘one month’, to ‘more than one
month’ before issuing of a major release, or ‘one day’,
‘one week’ after issuing of a major release).6 To com-
pute this tag, one of the authors manually identified the
dates of the major releases by analyzing the Git tags in
the overall projects’ histories.

We compute these two values to investigate in which
development phase developers are more prone to ap-
ply refactoring operations. More specifically, we use
‘project-startup’ to verify whether developers are more
prone to refactor code components at the project’s startup,
when the source code design might not be fully defined, for
example to improve the organization of the code. We use
‘working-on-release’ to investigate if developers apply
refactoring close to a project’s deadline or prefer to be
conservative and waiting for the release before applying
operations that might lead to introduce faults [9].

2.6. RQ3. Developer-oriented Factors And Refactoring
To understand the reasons that lead developers to im-

prove the design of existing code, we compute four values:

‘commit-goal’: It is focused on what the developer is do-
ing when a refactoring is applied. It is a categorical
measure that can have one or more values (possible val-
ues: ‘bug fixing operation’, ‘new feature implementa-
tion’, ‘enhancement operation’ and ‘refactoring applica-
tion’), used to assess if developers refactor code while
performing other tasks or through dedicated refactor-
ing sessions. To compute ‘commit-goal’, we perform a
two-step approach. In the first place, we try to assign
the tags automatically by exploiting the issue tracker of
the considered projects with the aim of automatically
link issues and commits. Note that issue trackers do
not only contain information about bugs, but can in-
clude issues explicitly related to other activities, (in our
case, enhancements, new feature implementations, and

5The ‘project-startup’ value may be not properly computed in
case of projects that migrated from another VCS to Git. Indeed, in
these cases only a part of the whole change history is available. To
mitigate this issue, we check whether the first release tagged in the
versioning system is either 0.1 or 1.0. As a result, 31 projects—having
871 commit containing refactoring—do not respect this constraint
and are excluded.

6We consider only the major releases since they generally repre-
sent a real deadline for developers, while minor releases are a conse-
quence of minor bug fixing.

refactoring). To this aim, we download the issues for all
200 projects from their Jira or Bugzilla issue track-
ers. Afterwards, we check whether any of the 16,660
commits detected as those containing a refactoring op-
eration are related to any of the collected issues. In this
step, we rely on two existing approaches to link commits
and issues. The first, proposed by Fischer et al. [22],
uses regular expressions to match the issue ID in the
commit message. The second is a re-implementation of
the approach proposed by Wu et al. [65], named Re-
Link, that works under the following constraints: (1) It
matches the committer/authors with issue tracking con-
tributor name/email; (2) the time interval between the
commit and the last comment posted by the same au-
thor/contributor on the issue tracker must be less than
seven days; (3) the cosine similarity (computed using
the Vector Space Model (VSM) [6]) between the com-
mit message and the last comment referred above is
greater than 0.7. Wu et al. [65] empirically evaluate the
ReLink approach, demonstrating high accuracy (pre-
cision=89% and recall=78%). With the two aforemen-
tioned approaches we look for links between of the 16,660
considered commits and the gathered issues. In the case
of a link, we look at the issue type to automatically as-
sign one of the ‘commit-goal’ tags to the commit. In the
end, we found links in 1,526 cases, i.e., about (9.2%) of
the commits, in line with previous findings [5]. As for the
remaining 15,073 commits containing a refactoring op-
eration, two of the authors of this paper (the inspectors)
manually analyzed them with the aim of assigning one
or more of the ‘commit-goal’ tags. To perform this task,
they relied on (i) commit message and (ii) git diff be-
tween the commit under analysis and the previous, and
adopted a two-step grounded theory-like approach [18]
described in the following:

Tuning phase: In the first step, the two inspectors in-
dependently analyzed the same set of 500 commits
and assigned ‘commit-goal’ tags based on the com-
mit message and/or the git diff. This can be seen
as a tuning phase, namely a preliminary step in which
the inspectors tried to understand and find a common
procedure to correctly classify commits. After com-
pleting the independent classification, they opened a
discussion on the tags assigned and the overall pro-
cedure followed so far. In so doing, they discussed
each of the tags assigned; in only 6 cases there was
a disagreement that was then solved through discus-
sion. For instance, in one case the commit message
was misleading, as the actual changes applied and vis-
ible through the git diff led to a different tag. As
such, the inspectors decided to mainly focus on the
git diff to elicit ‘commit-goal’ tags.

Classification phase: Once the two inspectors found
a common way to assign ‘commit-goal’ tags, they in-
dependently classified the remaining 14, 573 commits,
by analyzing 7, 287 and 7, 286 each. Overall, this step

4

took 90 person/hours and output the commit goals of
each refactoring-related commits of the study.

Developer status: This is a group of values focused on
whether developer-related factors influence the decisions
on the refactoring to apply.

‘workload’: It measures how busy a developer is when
the refactoring is applied. Such metric is computed
by analyzing time frames of one month, starting from
the date in which the developer performed the first
commit. The number of commits performed by a de-
veloper during one month is the value of ‘workload’.
It is worth noting that this metric (i) is approximated
because different commits can require different amount
of work and (ii) a developer could also work on other
projects. However, previous work [63] found this mea-
sure to be accurate in describing the actual workload
of a developer. Once computed the workload for the
developer d during a month m, we compute the work-
load distribution for all developers involved in the
project at m. Then, given Q1 and Q3, respectively
the first and the third quartile of such distribution,
we therefore compute the ‘workload’ as an ordinal
measure with possible values ‘low’ (if the developer
performing the commit has a workload less than Q1),
‘medium’ (if Q1 ≤ workload ≤ Q3), or ‘high’ (if the
workload > Q3).

‘ownership’: If developer is the owner of a file included
in a commit where a refactoring was applied, the own-
ership value is ‘true’. This is a binary measure. We
compute ownership by following the heuristic by Bird
et al. [13]: A file owner is a developer responsible for
more than 75% of the commits performed on the file.

‘newcomer’: We consider whether the developer author
of a refactoring was or not a newcomer. This is a bi-
nary measure. We assign this measure the value ‘true’
if the commit where the refactoring was applied is one
of the first three commits performed by a developer.

For each value considered in this study we report (i)
descriptive statistics of the number of commits to which
a value is not null and (ii) qualitative examples of the
commits having certain values.

3. Analysis of the Results

This section reports the analysis of the results used to
answer our research questions.

3.1. RQ1. Distribution of Refactoring Types
Table 3 shows the distribution of refactoring oper-

ations over the analyzed ecosystems, with the absolute
number and percentage of detected refactoring operations.
Moreover, in Table 4 we report how the distribution of
refactoring operations varies when grouping the consid-
ered projects based on their type, i.e., if they are libraries

providing public APIs or standard applications. This is a
further analysis with which we verify if developers of li-
braries are more cautious when performing refactoring to
avoid breaking the public API: indeed, they may be more
reluctant since such changes might impact their clients.

Refactoring operations are a small fraction of the com-
mits analyzed in the considered ecosystems: On average
1.8%, 4.8% and 1.8% of the commits mined respectively
from Android, Apache and Eclipse contain a refactor-
ing operation. This corroborates previous results on the
limited adoption of refactoring in practice [11, 44] .

Looking more in depth, the Rename Method refactor-
ing is the operation most frequently applied by develop-
ers (36.7%, 30.8% and 23.6% in Android, Apache, and
Eclipse, respectively): intuitively, this may be due to the
simplicity with which developers can apply it. Our find-
ings suggest that developers are mainly concerned with the
improvement of the understandability of source code [15]
when performing refactoring, strengthening the need for
techniques able to recommend consistent naming usage
based on the purpose of a method [32]. A similar discus-
sion can be done for the Rename Class refactoring, which
aims at renaming a class to improve the understandabil-
ity of its role within a software project. Also in this case,
the non-negligible adoption could be due to the simplicity
with which it can be applied by developers.

The results obtained for Move Field and Move Method
seem to corroborate the hypothesis that the most frequent
refactoring operations are those that can be easily per-
formed. Indeed, also in this case the operation of moving
a field/method from a class to another is generally doable
using specific features available in most IDEs. As a side
effect, this result justifies the amount of work done by
the research community with respect to the identification
of Feature Envy instances [12, 42, 43, 59], i.e., methods
exhibiting high coupling with a class different than the
one where it is located in and that should be refactored
through the application of a Move Method [24]. At the
same time, the reported findings advocate the study of
how to recommend when a field should be moved.

As for the Extract Interface refactoring, we find 124,
1,276, and 528 occurrences in Android, Apache, and
Eclipse, respectively. This type of refactoring is popu-
lar in client/server applications [67], thus this may be the
reason why we find a more Extract Interface refactoring
operations when analyzing the Apache ecosystem, which
is composed of several projects using this architecture [8].

We find few occurrences of the Extract Method refac-
toring over all the considered systems. Despite practition-
ers perceiving the Extract Method as the most versatile
operation to apply for improving the source code [50], we
observed that developers do not frequently apply it. This
might be due to (i) the intrinsic complexity of selecting the
part of the method to extract and (ii) the limited support
given by IDEs. For instance, consider the case of Eclipse:
It supports the automatic extraction of methods from an
existing one, yet the developer must manually select the

5

Table 3: RQ1: Distribution of the different refactoring operations across all the considered ecosystems.

Refactoring Android Apache Eclipse
% # % # %

ExtractInterface 124 6.40% 1276 12.70% 528 11.30%
ExtractMethod 43 2.20% 268 2.70% 252 5.40%
InlineMethod 36 1.80% 119 1.20% 70 1.50%
MoveField 552 28.40% 2004 19.90% 844 18.10%
MoveMethod 177 9.10% 1107 11.00% 747 15.90%
PullUpField 50 2.60% 303 3.00% 245 5.20%
PullUpMethod 58 3.00% 711 7.10% 269 5.80%
PushDownField 4 0.20% 134 1.30% 153 3.30%
PushDownMethod 5 0.30% 148 1.50% 53 1.10%
RenameMethod 713 36.70% 3094 30.80% 1105 23.60%
RenameClass 179 9.20% 883 8.80% 406 8.70%

Overall 1,941 10,047 4,672

Table 4: RQ1: Distribution of the refactoring operations across libraries providing a public API (Lib.) and standard applications (App.).

Refactoring
Android Apache Eclipse

Lib. App. Lib. App. Lib. App.
% # % # % # % # % # %

ExtractInterface 0 0% 124 6.40% 630 6.30% 646 6.40% 0 0.00% 528 11.30%
ExtractMethod 0 0% 43 2.20% 132 1.30% 136 1.40% 0 0.00% 252 5.40%
InlineMethod 0 0% 36 1.80% 58 0.60% 61 0.60% 0 0.00% 70 1.50%
MoveField 0 0% 552 28.40% 992 10.00% 1012 10.10% 402 8.60% 442 9.50%
MoveMethod 0 0% 177 9.10% 588 5.90% 519 5.20% 108 2.30% 639 13.60%
PullUpField 0 0% 50 2.60% 140 1.40% 163 1.60% 0 0.00% 245 5.20%
PullUpMethod 0 0% 58 3.00% 335 3.30% 376 3.70% 0 0.00% 269 5.80%
PushDownField 0 0% 4 0.20% 60 0.60% 74 0.70% 0 0.00% 153 3.30%
PushDownMethod 0 0% 5 0.30% 70 0.70% 78 0.80% 0 0.00% 53 1.10%
RenameMethod 0 0% 713 36.70% 1583 15.80% 1511 5.00% 156 3.40% 949 20.20%
RenameClass 0 0% 179 9.20% 440 4.40% 443 5.90% 0 0.00% 406 8.70%

Overall 0 0% 1941 100.00% 5028 50.10% 5019 49.90% 666 14.30% 4006 85.70%

portion of code that will be extracted, i.e., the problem
of finding an optimal design solution is up to the devel-
oper. Past research provided evidence that this process is
far from being trivial [60]. This calls for further research
on how to automatically find refactoring opportunities to
better assist developers during this type of refactoring.

The other considered refactoring operations are seldom
applied to any of the analyzed systems. Pull Up Field, Pull
Up Method, Push Down Field, and Push Down Method
occur in less than 8% of the refactoring-related commits
in all the ecosystems, while Inline Method in less than 2%.
Thus, moving methods or field along the hierarchy is not
a common practice among developers. Even less adopted
is moving a method’s body into the body of its callers.

When splitting projects based on their type (i.e., li-
brary or application), the distribution of refactoring oper-
ations between the two categories does not variate signifi-
cantly in the Apache ecosystem, meaning that the number
of refactorings in libraries with public APIs and applica-

tions are basically the same. This may indicate that the
developers’ behavior with respect to refactoring is inde-
pendent from the application type. As for Eclipse, only
8 projects out of the total 30 are libraries with a public
API. Thus, the comparison is naturally balanced: this is
also reflected in the number of refactoring operations per-
formed in the two sets. Finally, in the Android ecosys-
tem, none of the considered apps provide APIs, therefore
all the refactorings fall into the ‘applications’ set.

Based on our findings, it seems reasonable to think
that the refactoring operations more frequently applied
are those automatically supported by IDEs. This result
somehow provides a different perspective on the observa-
tions provided by previous work [11, 37] on the limited
usage of refactoring practices. Our results call for further
work to verify the hypothesis that when developers have
tools to perform a certain type of refactoring, they do it
more frequently and, if verified, to devise approaches and
tools able to deeply support software developers in more

6

diverse refactoring operations.

Summary for RQ1: Developers do not frequently
perform refactoring. When they do, the most promi-
nent types are Rename Method, Rename Class, and
Move Field. Other types of refactoring, e.g., Inline
Method and Extract Method, are less popular across the
considered ecosystems.

3.2. RQ2. When Refactoring Is Applied
Figure 1 depicts the box plots of the distribution re-

lated to the number of commits done to a class before
incurring in the first refactoring operation. The results
are grouped by ecosystems, but we also report the overall
results (i.e., all the ecosystems together).

Figure 1: Number of commits to a class before the first refactoring
operation.

100

0

50

25

75

Android

Number of commits

Apache
100

0

50

25

75

100

0

50

25

75

Eclipse
100

0

50

25

75

Overall

Number of commits

Number of commitsNumber of commits

We observe substantial differences between the An-
droid apps and the remaining ecosystems. Indeed, the
median number of commits required to do refactoring on
a mobile app is 8, while respectively 33 and 28 commits in
Apache and Eclipse. The difference between Android
and the other ecosystems is also statistically significant.
In particular, we first run the Mann-Whitney test [20] to
verify the differences between distributions; in this case,
results are intended as statistically significant at α=0.05.
Furthermore, we estimate the magnitude of the measured
differences by using Cliff’s Delta (or d), a non-parametric
effect size measure [26] for ordinal data. We followed well-
established guidelines to interpret the effect size values:
negligible for |d| < 0.10, small for |d| < 0.33, medium for
0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474 [26]. As
a result, we find that the distribution of the number of

commits required to do refactoring in Android is signif-
icantly lower and with a large effect size with respect to
both Apache and Eclipse, while there is not statistical
difference between Apache and Eclipse. This result can
be explained by Android apps having a smaller lifecy-
cle, than the more complex systems found in Apache and
Eclipse [19].

Looking at the overall results, the median value is 32
with very few outliers. This result provides a wider per-
spective of refactoring: It seems reasonable to think that
developers may improve the existing code as a consequence
of software aging [47] and because of the presence of some
forms of technical debt [49, 55], however the relatively
low number of commits required for applying a refactor-
ing seems suggesting that developers do not necessarily
restructure classes because of the presence of design is-
sues (this result is aligned with previous studies, which
reported that refactoring is mostly triggered by functional
changes [50]).

The findings concerning RQ1 can provide an explana-
tion for these results. Indeed, the most frequent refactor-
ing operations are concerned with the understandability
and comprehensibility of the source code rather than its
maintainability. As such, they can be continuously applied
during the software development. This result corroborates
the findings by Kim et al. [30], who found in readability
issues the main trigger for refactoring [30].

A complementary view on when developers perform
refactoring is given in Table 6, where we report the per-
centage of commits containing refactoring operations as-
signed to each category of the ‘project-startup’ value.7
The results clearly show that most of the refactoring-
related commits are performed more than one year after
the startup of the project. This may indicate that in the
first part of the development programmers are generally
busy with the implementation of core functionalities, while
the need for refactoring is triggered when existing code
must be maintained. This general result slightly varies for
the Apache ecosystem: Indeed we find that 19% of refac-
toring operations are done during the first month from the
project startup. This may be the result of some Apache
projects (e.g., Open Office) explicitly suggesting devel-
opers (e.g., [1]) to apply some refactoring whenever possi-
ble. From a statistical perspective, the differences between
Apache and the other ecosystems is indeed statistically
significant, but with a small effect size when considering
both Android and Eclipse.

The results about ‘working-on-release’ are reported
in Table 5. Developers do not usually do refactoring oper-
ations close the issuing of a new release: The percentage of
refactoring operations performed in the week before a new

7While in the previous analysis we consider only the commits
where a refactoring is applied for the first time on a class, here we
take into account the whole set of commits reporting a refactoring
operation. In this way, we can monitor the development phases in
which developers feel the need of re-structuring the source code.

7

Table 5: RQ2: Distribution of categories in ‘working-on-release’ for commits containing refactoring operations.

Ecosystem ‘working-on-release’
> 1 month before 1 month before 1 week before 1 day before 1 day after 1 week after

Android 0.27 0.42 0.12 0.05 0.01 0.13
Apache 0.63 0.31 0.02 0.01 0.01 0.02
Eclipse 0.41 0.46 0.05 0.01 0.01 0.06

Overall 0.49 0.42 0.04 0.01 0.01 0.03

Table 6: RQ2: Distribution of categories in ‘project-startup’ for
commits containing refactoring operations.

Ecosystem ‘project-startup’
1 Week 1 Month 1 Year > 1 Year

Android 0.01 0.03 0.27 0.69
Apache 0.07 0.19 0.33 0.41
Eclipse 0.01 0.03 0.28 0.68

Overall 0.01 0.04 0.27 0.68

Figure 2: Distribution of the days elapsing between releases.

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

Android Apache Eclipse

50
10

0
15

0
20

0

Ti
m

e
be

tw
ee

n
re

le
as

es

release is generally low (ranging between 4% and 12%).
This may be explained with the results of previous re-
search [30, 9], which reported that developers do not per-
ceive refactoring as a behavior-preserving operation and
therefore, they are concerned about the possible introduc-
tion of new faults. Finally, refactoring activities do not
particularly occur in proximity of a date of a system’s re-
lease. The discussion around ‘working-on-release’ can
be influenced by the release cycle followed by the consid-
ered projects. For example, if a project issues a release per
year, it would mean that the application of refactoring op-
erations within the last month before a release represents
an action done very closely to the release. To control for
this aspect, Figure 2 depicts the distribution of the num-
ber of days between releases of the projects considered,
grouped by ecosystem. As shown, in all cases the median
of the distribution tends to be around 50 days, meaning
that most of the considered projects (185 out of the to-
tal 200) issue a new release every two months. As such,
we can conclude that the discussion reported above is not

biased by the specific release cycle followed by the consid-
ered projects. The discussion done so far does not change
when considering libraries and standard applications in-
dependently. Indeed, we do not observe divergences with
respect to the results reported at ecosystem-level; this also
holds when considering the statistical point of view: the
differences between libraries and standard application are
not statistically significant.

Summary for RQ2: We observed statistically sig-
nificant differences between Android and the other
ecosystems: on average, classes are subject of a refactor-
ing operation after 8 commits from their introduction
in the Android projects, while they require 33 and 28
commits in Apache and Eclipse, respectively. Refac-
toring activities are mainly done after at least one year
from the project startup and developers perform few
refactoring operations in the proximity of a new system
release.

3.3. RQ3. Developer-oriented Factors And Refactoring
To answer RQ3, we analyze the percentage of

refactoring-related commits classified according to the four
values mentioned in Section 2.6: the ‘commit-goal’ and
the developer status ones (i.e., ‘workload’, ‘ownership’,
and ‘newcomer’).

Regarding ‘commit-goal’, Table 7 reports, for each
refactoring operation, the distribution across the different
possible categories assigned to commits containing refac-
toring operations. Among the three considered ecosys-
tems, most of the refactoring operations are performed
during activities involving developers improving the sys-
tem, such as the enhancement of existing features. Indeed,
the percentage of commits tagged as enhancement ranges
between 54% and 100%. This finding confirms what was
previously found by Murphy-Hill et al. [37]: Developers
mainly refactor while improving the system or develop-
ing new features (aka floss refactoring). For instance, we
observed that 37 Move Field and 28 Move Method refac-
toring operations were usually performed during enhance-
ment tasks in the Apache Cocoon project. As an ex-
ample, a developer applied an operation of Move Method
refactoring when writing in the commit message to “[start]

8

Table 7: RQ3: Distribution of ‘commit-goal’ categories assigned to commits containing refactoring operations. We refer as BF to Bug Fixing,
as E to Enhancement, as NF to New Feature and as R to Refactoring.

Refactoring Android Apache Eclipse Overall
E NF BF R E NF BF R E NF BF R E NF BF R

Extract Interface .65 .21 .09 .05 .96 .01 .02 .00 .38 .16 .37 .09 .79 .06 .12 .03
Extract Method .79 .12 .07 .02 .96 .03 .01 .01 .41 .20 .38 .01 .70 .11 .18 .01
Inline Method .58 .22 .08 .11 .96 .03 .00 .01 .54 .10 .27 .09 .77 .08 .10 .05
Move Field .54 .07 .15 .24 .95 .02 .01 .01 .29 .15 .45 .12 .72 .06 .14 .08
Move Method .53 .05 .16 .27 .88 .03 .07 .02 .54 .08 .31 .06 .73 .05 .17 .06
Pull Up Field .64 .20 .14 .02 .96 .00 .01 .03 .53 .13 .27 .07 .76 .07 .13 .04
Pull Up Method .57 .07 .24 .12 .94 .01 .00 .05 .39 .09 .36 .17 .77 .03 .11 .09
Push Down Field 1.00 .00 .00 .00 1.00 .00 .00 .00 .49 .20 .28 .03 .73 .11 .15 .01
Push Down Method 1.00 .00 .00 .00 .92 .07 .01 .00 .53 .13 .23 .11 .82 .09 .06 .03
Rename Method .63 .16 .16 .50 .94 .03 .02 .01 .62 .12 .24 .02 .82 .07 .09 .02
Rename Class .65 .10 .11 .14 .92 .01 .07 .01 .35 .10 .50 .05 .73 .04 .19 .03

Table 8: RQ3: Distribution of values in the developer status group
to commits containing refactoring operations.

Ecosystem ‘workload’ ‘ownership’ ‘newcomer’
High Medium Low True False True False

Android 0.28 0.52 0.20 0.84 0.16 0.15 0.85
Apache 0.11 0.64 0.25 0.90 0.10 0.07 0.93
Eclipse 0.05 0.69 0.26 0.85 0.15 0.09 0.91

Overall 0.13 0.64 0.23 0.86 0.14 0.08 0.92

the implementation of a new configuration option from the
endpoint which is standard way in Camel” in the class
RabbitMQProducer.

In the Eclipse ecosystem we observed a consistent
percentage of refactoring actions performed while fixing
bugs; in this case, the differences with the other ecosys-
tems are statistically significant and have a medium effect
size when compared to Android and a large one when
considering Apache. A similar result had been already
noticed by Palomba et al. [46], who showed that different
refactoring activities aimed at improving both maintain-
ability and comprehensibility of the source code are gen-
erally applied during bug fixing tasks. Such a scenario
is particularly evident if we look the case of the Extract
Method refactoring for Eclipse projects, where the com-
mits tagged as bug fixing reach 38%. An interesting case
regards the method testStepIntoBinaryMethod of the
class StepIntoSelectionTests contained in the Eclipse
Debug UI project. During a debugging session, in order
to fix a bug causing the destruction of the error reports,
that method was decomposed thought an Extract Method
refactoring in two separate ones. Indeed, the developer re-
ported the following commit message: “Fixed bug 413434:
StepIntoSelectionTests destroys error reporting.”

The second interesting aspect to consider is related to
the refactoring tag (see ‘commit-goal’ tags in 2.6). On
the Android ecosystem, we found several cases in which
refactoring operations were the main goal of the com-
mit. As an example, a developer of the Frost Wire
app refactored its code by applying a Push Down Method

operation to “abstract new BittorrentIntent. Code must
be beautiful on the inside too” (as explained in the com-
mit message). Even if the percentage of commits tagged
as refactoring operations is statistically lower considering
the Apache (α <0.05, Cliff’s d=medium) and Eclipse
(α <0.05, Cliff’s d=large) ecosystems, also in these cases
we found situations in which developers were aware of the
design problems of the source code and actually performed
program transformations aimed at improving it. This
is, for example, the case of the class FtpConsumer of the
Apache Camel project, where the developer reports in
the commit message to have “refactored camel-ftp so the
producer and consumer share more code between the FTP
and SFTP parts in their common super class.”

Finally, Table 8 reports the distribution of commits
across the values of developer status. From the analysis of
the results, the developer’s ‘workload’ emerges has a key
feature when we consider the application of refactoring op-
erations. Indeed, we find that developers with a medium
workload are more prone to apply refactoring operations,
while developers having a high one tend to refactor less.
On the overall dataset, at least in 52% of cases the devel-
oper who refactors the code has medium workload.

Developers who apply refactoring operations are usu-
ally not newcomers, meaning that the improvement of
source code is done by more experienced and knowledge-
able developers. Perhaps more important, developers that
apply refactoring operations are almost always owners of
the refactored files, as visible in the values Table 8 under
the ‘newcomer’ and ‘ownership’ columns. This may sug-
gest that, in most cases, even developers who have a good
knowledge of a file (being the owner) prefer to refactor the
code to increase its maintainability. As for the previous
research questions, the discussion is similar when consid-
ering libraries and standard applications independently.

9

Summary for RQ3: Developers apply refactoring
mainly when enhancing existing features, yet we found
several cases in which refactoring operations are made
during bug fixing. Developers that refactor code are al-
most always the owners of the refactored file and they
tend to improve the design when their workload is less
than medium.

4. Discussion & Implications

After presenting the results of the study, in this section
we focus on discussing the main results of our study and
what are the key implications they have for researchers
and practitioners.

4.1. Discussion
Our results let emerge some topics worth further dis-

cussion:

Developers do not perform the refactoring types
considered in this study. The first clear result of the
study concerns the low frequency of application of the
refactoring operations considered in the context of this
study. While this is in line with previous findings in the
field [11], we provided additional evidence that this is true
independently from the characteristics of the system: the
lack of refactoring was observed among all the considered
ecosystems.

Developers mainly perform tool-supported refac-
toring. Based on our findings, the most frequently ap-
plied refactoring operations, i.e., Rename Method, Rename
Class, and Move Field, are those that can be more eas-
ily performed either manually or using the features made
available by existing IDEs. Thus, it seems that if develop-
ers have an automatic support, refactoring is more likely
to be applied.

Code improvement is not done before a release.
During the days leading to the issue of a new software
release, developers tend to avoid the application of refac-
toring. This is likely due to the fear of introducing defects
that cannot be repaired anymore [9]. Interestingly, how-
ever, is that exactly the time pressure before a release leads
developers to introduce more design flaws [63, 62].

Developers do floss refactoring. As previously shown
by Murphy-Hill et al. [37], developers rarely perform refac-
toring operations during dedicated sessions, but rather
they generally perform floss refactoring, i.e., the interleave
enhancements to the source code with its improvement.

Ownership and refactoring. Developers performing
refactoring are almost always the owner of the refactored
files, likely indicating that it requires enough knowledge of
the code to be successfully applied.

4.2. Implications
The aforementioned findings have implications for dif-

ferent stakeholders, such as researchers, tool vendors and
project managers:

1. Enabling automatic support. Several refactor-
ing types are not supported by the IDEs and, there-
fore, their application is more difficult for developers.
This represents a call for new approaches and tools
enabling the management of a wider set of and more
complex refactoring operations.

2. Adaptive refactoring. Our results provide in-
sights on the circumstances leading to the applica-
tion of certain refactorings. Specifically, the current
development task (e.g., bug fixing, new feature im-
plementation, feature enhancement) the developers’
workload and the knowledge developers have about
certain software components seem to be related to
(i) the decision to refactor or not and (ii) which kind
of refactoring operations to perform. These findings
may represent an important starting point for re-
searchers interested in devising new methodologies
for adapting refactoring recommendations not only
to the change type [46] but also to the characteris-
tics of developers and the development time-frame
of a project.

3. Triaging of refactoring activities. Developers
performing refactoring are almost never newcomers
and, more importantly, they are owners of the refac-
tored files. Likely, this is due respectively to the
difficulty to refactor long existing systems and the
knowledge of the file logic required to improve the
source code. For this reason, the decisions of who
should be in charge of such operations must account
not only for the technical expertise of a developer,
but also for the knowledge she has of the overall sys-
tem.

4. Understanding the consequences of missing
refactoring. Close to releases, developers intro-
duce a number of design flaws [63] but not perform
refactoring. Given the harmfulness of having code
smells in source code for change- and fault-proneness
[29, 21, 41], an important need for the research com-
munity is that to find ways to make developers aware
of the possible consequences of poor applications of
refactoring.

5. Threats to Validity

In this section we discuss possible threats to the valid-
ity of our study and how we mitigated them.

10

5.1. Threats to Construct Validity
A first threat influencing the relationship between the-

ory and observation is concerned with the dataset ex-
ploited to conduct the study. To identify the refactor-
ing operations between two subsequent commits, we rely
on the RefactoringMiner tool devised by Silva et al.
[50]. While the empirical evaluation conducted by the au-
thors of the tool already showed a precision of 98% and
a recall of 93%, we ensure its suitability for our study by
re-evaluating the precision of the tool on a statistically
significant sample composed of 380 refactoring operations
it detected. We find a precision of 95%, thus confirming
that this tool is actually useful for our purposes. We are
aware that the recall might diverge for different projects
not involved in the original validation that we take into ac-
count in our study, however we cannot evaluate it because
of the lack of a golden set reporting the actual refactor-
ing actions over all the history of the considered projects.
Moreover, every detecting approach is sensitive to partic-
ular situations: commits that mix refactoring operations
with other changes and sequence of refactoring that are
applied sequentially on the same piece of code and then
committed.

To compute values for ‘project-startup’, we compare
the date of the commit including a refactoring operation
with the creation date of the project, identified as the date
of the first commit. However, this assignment might lead
to incorrect creation dates in the case of project migrated
to Git from another VCS. In such cases, part of the his-
tory is not available and therefore, going back the exact
creation date is not possible. To mitigate this threat, we
check the tag of the first release in the versioning system.
Whether the tag is 0.1 or 1.0, we consider the project as
created originally in Git. Nevertheless, we are aware that
this is still an approximation, since a project starting with
1.0 might have a previous 0.x history.

As for the working on release tag, we identify the date
in which a release has been issued by considering the tags
assigned by developers in Git. Furthermore, we consider
the major revisions only, since they represent the main
deadlines for developers. We cannot exclude possible im-
precisions of the tags contained in Git.

To compute values for the ‘commit-goal’ we link issues
to refactoring commits relying on the ReLink [65] tool; it
shows about 89% and 78% of precision and recall, respec-
tively. We argue that such approach is precise enough to
not influence the validity of our results. To deal with the
missing links, we manually validated about 27,000 cases
looking at the commit message and at the diff between
such a commit and the previous one.

5.2. Threats to Internal Validity
In the context of RQ1 and RQ2 we studied tags re-

lated to different aspects of the development of a soft-
ware project, able to characterize commits, developers,
and project status. We are aware that there might be

other factors that could have influenced the decisions of
developers to refactor or not a certain class. In any case,
it is beyond the scope of this paper to make claims about
the causation between the factors considered and the ap-
plication of refactoring operations.

5.3. Threats to External Validity
Our study is restricted to open source Java project

hosted on GitHub. Therefore, we cannot ensure the gen-
eralization of our results to industrial systems or to sys-
tems implemented in other languages. However, to deal
with such a threat, we conduct our study on a large dataset
of 200 projects in total, coming from different application
domains.

6. Related Work

We provide an overview of the literature on the em-
pirical studies on refactoring, followed by a brief summary
of (semi-)automatic refactoring approaches (on the latter,
a more complete overview is available in the surveys by
Mens et al. [34] and Bavota et al. [10]).

6.1. Empirical Studies on Refactoring
Several studies have investigated the motivations be-

hind refactoring operations. Silva et al. [50] monitored
748 Java projects for 61 days, asking developers the rea-
sons behind refactoring operations these developers had
recently performed. The researchers found that refactor-
ing is often driven by changes rather than by the necessity
to fix code smells. Similarly, Wang et al. [64] interviewed
ten industrial developers to investigate the major reasons
motivating refactoring activities. They report 12 differ-
ent factors classifiable in intrinsic motivators and external
motivators. The former are those that do not lead to ex-
ternal rewards (e.g., an intrinsic motivator is present when
developers want to ensure high quality for the code they
authored), while the latter are motivated by external re-
wards, such as the recognition from other developers.

Murphy-Hill et al. [37] analyzed 8 different datasets
trying to understand how developers perform refactoring.
They discovered that developers: (i) perform at least one
refactoring session in more than 40% of development ac-
tivities, (ii) rarely (less than 10% of times) configure refac-
toring tools, (iii) seldom report their refactoring activities
in commit messages, (iv) often perform floss refactoring
(i.e., interleaving refactoring with other programming ac-
tivities), and (v) manually perform most of the refactoring
operations (close to 90%) without the help of any tool.

The results on floss refactoring were confirmed later
by Negara et al. [38]; In particular, they performed a
comparative study of manual and automated refactoring
operations, finding that more than half of the manually
performed ones are clustered in time. Moreover, they also
investigated the most popular refactoring types, reporting
differences between those that are more frequently done

11

manually (e.g., Rename Field) and automatically (e.g.,
Extract Local Variable). Our results confirm some of the
findings reported by Murphy-Hill et al. [37] and Negara et
al. [38], such as the scheduling of refactoring during other
tasks e.g., enhancing existing features, or the popularity
of renaming-related refactoring operations. At the same
time, we also provide new crucial insights on the factors
that lead developers to apply certain type of refactoring.

Kim et al. [30] presented a survey performed with 328
Microsoft engineers investigating (i) when and how devel-
opers refactor code, (ii) if they use automated refactoring
tools, and (iii) the perception of developers on the bene-
fits, risks, and challenges of refactoring. The main findings
from the survey include that: (i) refactoring is not per-
ceived as a behavior-preserving operation, (ii) half of the
developers report to manually perform it, (iii) refactoring
is spurred by low source code readability, (iv) the main per-
ceived benefits are improved readability and maintainabil-
ity, and (v) there is an high perceived risk of introducing
bugs while refactoring. Kim et al. also reported a quanti-
tative analysis performed on the Windows 7 change history
showing that code components refactored over time have
fewer inter-module dependencies and post-release defects
than other modules. Similar results have been reported
by Kataoka et al. [27] and Gatrell & Counsell [25]. We
continue on this line of research by investigating at which
development stages developers plan for refactoring and the
characteristics that developers usually exhibit while refac-
toring certain software components.

Palomba et al. [46] conducted an empirical study aimed
at understanding the relationship between different kind
of code changes and various refactoring operations. They
found that a higher number of refactoring occurs during
bug fixing, while more complex operations aim at improv-
ing code cohesion. Differently from this study, we consider
not only the undergoing task while refactoring. Indeed, in
additional to a considerably larger dataset, we take into
account both the system history and developer-oriented
metrics.

Previous work also studied the relationship between
refactoring and software quality. Bavota et al. [9] con-
ducted a study aimed at investigating to what extent refac-
toring activities induce faults. They found a positive corre-
lation between refactoring involving hierarchies (e.g., pull
down method) and the number of faults. Conversely, other
kinds of refactoring were found to be less likely harmful in
practice. In our study, we use the same dataset of refactor-
ing operations. Bavota et al. also conducted a study aimed
at understanding the relationships between code quality
and refactoring [11]. In particular, they analyzed the evo-
lution of 63 releases of three open source software systems
to investigate what makes code components more or less
prone to being object of refactoring operations. Results
indicate that often refactoring is not performed on classes
having a low metric profile, while almost 40% of the times
refactoring was performed on classes affected by smells.
We complement this study by investigating the impact of

classes’ age (i.e., number of commits since the starting of
the project) on their refactoring. Similarly, Cedrim et al.
[17] analyzed how commonly-used refactoring affect the
density of code smells. They discovered that only 9.7%
of the refactoring operations removed code smells. More-
over, they observed that typical refactoring operations in-
duce the surfacing of code smells, such as Move Method
and Pull Up Method with respect to the God Class smell.
Palomba & Zaidman [45] analyzed the correlation between
code smells and flakiness in unit test cases. One of the
main outcome of their empirical investigation is that refac-
toring is an effective flaky test fixing strategy, i.e., refac-
toring might turn to deterministic the output of otherwise
non-deterministic tests. Stroggylos and Spinellis [53] stud-
ied the impact of refactoring operations on the values of
eight object-oriented quality metrics. Their results show
the possible negative effects that refactoring can have on
some quality metrics (e.g., increased value of the LCOM
metric). On the same line, Stroullia & Kapoor [54] ana-
lyzed the evolution of one system observing a decreasing of
LOC and NOM (Number of Method) metrics on the classes
in which a refactoring was applied. Szoke et al. [56] per-
formed a study on five software systems to investigate the
relationship between refactoring and code quality. They
found that small refactoring operations performed in iso-
lation rarely impact software quality. On the other side, a
high number of refactoring operations performed in block
helps in substantially improving code quality. Alshayeb
[2] investigated the impact of refactoring operations on
five quality attributes, namely adaptability, maintainabil-
ity, understandability, reusability, and testability. Their
findings highlight that the benefits brought by refactoring
operations on some artifacts are often counterbalanced by
a decrease of quality in some other artifacts. Compared
to these work, we differ our focus looking at the circum-
stances leading to refactoring and not at its consequences.

Finally, Moser et al. [36] conducted a case study in an
industrial environment aimed at investigating the impact
of refactoring on the productivity of an agile team. They
provided evidence that refactoring is a factor boosting the
productivity itself. Ammerkaan et al. [3] investigated the
effect of refactoring in legacy industrial systems. Coun-
terintuitively, they observed cases of decrease in under-
standability, resulting in a productivity penalty due the
introduction of a different style not familiar to developers.
In our study, we do not analyze the impact refactoring has
on the developers’ productivity but we investigated the cir-
cumstances making usually developers willing to perform
refactoring.

6.2. (Semi-)automated Refactoring Approaches
In addition to conducting empirical studies on refac-

toring, researchers have proposed strategy to (semi-
)automatically support refactoring operations. O’Keeffe &
O’Cinneide [39] proposed the idea of refactoring as a search
problem in the space of alternative designs. Maruyama &

12

Shima [33] introduced a mechanism for automating refac-
toring of methods in Object-Oriented frameworks to im-
prove the reusability of frameworks relying on weighted
dependence graphs. Atkinson & King [4] presented a low-
cost, syntactic approach for automatically discovering op-
portunities for refactoring the source code using symbol
table and reference information. Casais [16] proposed sev-
eral algorithms to restructure class hierarchies to maximize
abstraction, while Moore [35] proposed a method in which
the existing classes having low quality are replaced with
a new set of classes where their methods are optimally
factored aiming at minimizing code duplication.

Opdyke [40] developed the first tool providing semi-
automatic refactoring support, which was implemented
in the Refactoring Browser presented in [48]. Simon et
al. [52] devised a metric-based visualization tool to sup-
port the software engineer during the identification of code
components that need refactoring. Bodhuin et al. [14] in-
troduced SORMASA, a refactoring decision support tool
based on Genetic Algorithms. Tsantalis et al. [59] pre-
sented JDeodorant, a tool able to detect the Feature Envy
code smell with the aim of suggesting move method refac-
toring opportunities. In its current version, JDeodorant
can refactor code to remove four additional code smells
[58, 60, 31, 23].

7. Conclusion

In this paper, we conduct a large-scale empirical study
on the refactoring activities performed by the developers
of 200 Apache, Eclipse, and Android systems. The
contributions made by this work are:

1. An analysis of the distribution of refactoring opera-
tions, which revealed how developers do not refactor
source code frequently and, when they do, privilege
the application of refactoring actions that improve
the understandability of source code.

2. An analysis of the time windows in which refactor-
ing is generally applied in real software systems. We
show that refactoring is mostly applied when a dead-
line is far and only after the initial creation of the
structure of the system.

3. A quantitative analysis of the circumstances in which
developers refactor source code. We reveal that they
do perform focused refactoring activities in very few
cases: while they tend to improve the understand-
ability and maintainability of source code and when
enhancing existing features. Furthermore, refactor-
ing is mostly applied by expert developers that are
owner of the refactored files.

Our findings highlight a number of challenges that
should be carefully taken into account by the research com-
munity in order to define a new generation of refactoring
tools that better fit the developers’ needs. This represents

the main input for our future research agenda, mainly ori-
ented to the definition of novel refactoring techniques.
[1] 2010. Apache open office refactoring guidelines.
[2] Alshayeb, M. 2009. Empirical investigation of refactoring effect

on software quality. Information and Software Technology 51, 9,
1319 – 1326.

[3] Ammerlaan, E., Veninga, W., and Zaidman, A. 2015. Old
habits die hard: Why refactoring for understandability does not
give immediate benefits. In SANER. IEEE Computer Society,
504–507.

[4] Atkinson, D. C. and King, T. 2005. Lightweight detection
of program refactorings. In Proceedings of the 12th Asia-Pacific
Software Engineering Conference. IEEE CS Press, Taipei, Tai-
wan, 663–670.

[5] Bachmann, A., Bird, C., Rahman, F., Devanbu, P. T., and
Bernstein, A. 2010. The missing links: bugs and bug-fix com-
mits. In Proceedings of the 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010, Santa
Fe, NM, USA, November 7-11, 2010. ACM, 97–106.

[6] Baeza-Yates, R. and Ribeiro-Neto, B. 1999. Modern Infor-
mation Retrieval. Addison-Wesley.

[7] Bavota, G., Canfora, G., Di Penta, M., Oliveto, R., and
Panichella, S. 2013. The evolution of project inter-dependencies
in a software ecosystem: The case of Apache. In 2013 IEEE
International Conference on Software Maintenance, Eindhoven,
The Netherlands, September 22-28, 2013. 280–289.

[8] Bavota, G., Canfora, G., Di Penta, M., Oliveto, R., and
Panichella, S. 2013. The evolution of project inter-dependencies
in a software ecosystem: The case of apache. In ICSM. 280–289.

[9] Bavota, G., De Carluccio, B., De Lucia, A., Di Penta, M.,
Oliveto, R., and Strollo, O. 2012. When does a refactor-
ing induce bugs? an empirical study. In Proceedings of the 12th
International Working Conference on Source Code Analysis and
Manipulation. SCAM ’12. 104–113.

[10] Bavota, G., De Lucia, A., Marcus, A., and Oliveto, R.
2014. Recommending refactoring operations in large software sys-
tems. In Recommendation Systems in Software Engineering, M. P.
Robillard, W. Maalej, R. J. Walker, and T. Zimmermann, Eds.
Springer Berlin Heidelberg, 387–419.

[11] Bavota, G., Lucia, A. D., Penta, M. D., Oliveto, R., and
Palomba, F. 2015. An experimental investigation on the innate
relationship between quality and refactoring. Journal of Systems
and Software 107, 1 – 14.

[12] Bavota, G., Oliveto, R., Gethers, M., Poshyvanyk, D.,
and Lucia, A. D. 2014. Methodbook: Recommending move
method refactorings via relational topic models. IEEE Trans.
Software Eng. 40, 7, 671–694.

[13] Bird, C., Nagappan, N., Murphy, B., Gall, H., and De-
vanbu, P. T. 2011. Don’t touch my code!: examining the effects
of ownership on software quality. In SIGSOFT/FSE’11 19th ACM
SIGSOFT Symposium on the Foundations of Software Engineer-
ing and 13rd European Software Engineering Conference, Szeged,
Hungary, September 5-9, 2011. ACM, 4–14.

[14] Bodhuin, T., Canfora, G., and Troiano, L. 2007. SOR-
MASA: A tool for suggesting model refactoring actions by metrics-
led genetic algorithm. In Proceedings of 1st Workshop on Refac-
toring Tools. Berlin, Germany, 23–24.

[15] Buse, R. P. L. and Weimer, W. 2010. Learning a metric for
code readability. IEEE Trans. Software Eng. 36, 4, 546–558.

[16] Casais, E. 1992. An incremental class reorganization approach.
In Proceedings of the 6th European Conference on Object-Oriented
Programming. Utrecht, the Netherlands, 114–132.

[17] Cedrim, D., Garcia, A., Mongiovi, M., Gheyi, R., Sousa,
L., de Mello, R., Fonseca, B., Ribeiro, M., and Chávez, A.
2017. Understanding the impact of refactoring on smells: A lon-
gitudinal study of 23 software projects. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineer-
ing. ESEC/FSE 2017. ACM, New York, NY, USA, 465–475.

[18] Charmaz, K. and Belgrave, L. L. 2007. Grounded theory.
The Blackwell encyclopedia of sociology.

13

[19] Collins, C., Galpin, M., and Käppler, M. 2011. Android in
practice. Manning Publications Co.

[20] Conover, W. J. 1998. Practical Nonparametric Statistics 3rd
Edition Ed. Wiley.

[21] D’Ambros, M., Bacchelli, A., and Lanza, M. 2010. On the
impact of design flaws on software defects. In Quality Software
(QSIC), 2010 10th International Conference on. IEEE, 23–31.

[22] Fischer, M., Pinzger, M., and Gall, H. 2003. Populating
a release history database from version control and bug tracking
systems. In 19th International Conference on Software Mainte-
nance (ICSM 2003), The Architecture of Existing Systems, 22-26
September 2003, Amsterdam, The Netherlands. IEEE Computer
Society, 23–.

[23] Fokaefs, M., Tsantalis, N., Stroulia, E., and Chatzige-
orgiou, A. 2012. Identification and application of extract class
refactorings in object-oriented systems. J. Syst. Softw. 85, 10,
2241–2260.

[24] Fowler, M., Beck, K., Brant, J., Opdyke, W., and
Roberts, D. 1999. Refactoring: Improving the Design of Existing
Code. Addison-Wiley.

[25] Gatrell, M. and Counsell, S. 2015. The effect of refactoring
on change and fault-proneness in commercial c# software. Sci.
Comput. Program. 102, C, 44–56.

[26] Grissom, R. J. and Kim, J. J. 2005. Effect sizes for research:
A broad practical approach 2nd Edition Ed. Lawrence Earlbaum
Associates.

[27] Kataoka, Y., Imai, T., Andou, H., and Fukaya, T. 2002. A
quantitative evaluation of maintainability enhancement by refac-
toring. In Software Maintenance, 2002. Proceedings. Interna-
tional Conference on. 576 – 585.

[28] Kerievsky, J. 2004. Refactoring to patterns. Addison Wesley.
[29] Khomh, F., Penta, M. D., Guéhéneuc, Y.-G., and Antoniol,

G. 2012. An exploratory study of the impact of antipatterns on
class change- and fault-proneness. Empirical Software Engineer-
ing 17, 3, 243–275.

[30] Kim, M., Zimmermann, T., and Nagappan, N. 2014. An em-
pirical study of refactoringchallenges and benefits at microsoft.
Software Engineering, IEEE Transactions on 40, 7, 633–649.

[31] Ligu, E., Chatzigeorgiou, A., Chaikalis, T., and Ygeiono-
makis, N. 2013. Identification of refused bequest code smells.
In Software Maintenance (ICSM), 2013 29th IEEE International
Conference on. 392–395.

[32] Lin, B., Scalabrino, S., Mocci, A., Oliveto, R., Bavota,
G., and Lanza, M. 2017. Investigating the use of code analysis
and nlp to promote a consistent usage of identifiers. In Source
Code Analysis and Manipulation (SCAM), 2017 IEEE 17th In-
ternational Working Conference on. IEEE, 81–90.

[33] Maruyama, K. and Shima, K. 1999. Automatic method refac-
toring using weighted dependence graphs. In Proceedings of 21st
International Conference on Software Engineering. ACM Press,
Los Alamitos, California, USA, 236–245.

[34] Mens, T. and Tourwé, T. 2004. A survey of software refactor-
ing. IEEE Transactions on Software Engineering 30, 2, 126–139.

[35] Moore, I. 1996. Automatic inheritance hierarchy restructur-
ing and method refactoring. In Proceedings of 11th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications. ACM Press, San Jose, California,
USA, 235–250.

[36] Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., and
Succi, G. 2008. Balancing agility and formalism in software en-
gineering. Springer-Verlag, Berlin, Heidelberg, Chapter A Case
Study on the Impact of Refactoring on Quality and Productivity
in an Agile Team, 252–266.

[37] Murphy-Hill, E., Parnin, C., and Black, A. P. 2011. How
we refactor, and how we know it. Transactions on Software En-
gineering 38, 1, 5–18.

[38] Negara, S., Chen, N., Vakilian, M., Johnson, R. E., and
Dig, D. 2013. A comparative study of manual and automated
refactorings. In European Conference on Object-Oriented Pro-
gramming. Springer, 552–576.

[39] O’Keeffe, M. and O’Cinneide, M. 2006. Search-based soft-
ware maintenance. In Proceedings of 10th European Conference on
Software Maintenance and Reengineering. IEEE CS Press, Bari,
Italy, 249–260.

[40] Opdyke, W. F. 1992. Refactoring object-oriented framework.
Ph.D. thesis, University of Illinois.

[41] Palomba, F., Bavota, G., Di Penta, M., Fasano, F.,
Oliveto, R., and De Lucia, A. 2017. On the diffuseness and
the impact on maintainability of code smells: a large scale empir-
ical investigation. Empirical Software Engineering, 1–34.

[42] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshy-
vanyk, D., and De Lucia, A. 2015. Mining version histories for
detecting code smells. IEEE Transactions on Software Engineer-
ing.

[43] Palomba, F., Panichella, A., De Lucia, A., Oliveto, R.,
and Zaidman, A. 2016. A textual-based technique for smell de-
tection. In Program Comprehension (ICPC), 2016 IEEE 24th
International Conference on. IEEE, 1–10.

[44] Palomba, F., Panichella, A., Zaidman, A., Oliveto, R., and
De Lucia, A. 2017. The scent of a smell: An extensive comparison
between textual and structural smells. IEEE Transactions on
Software Engineering.

[45] Palomba, F. and Zaidman, A. 2017. Does refactoring of test
smells induce fixing flaky tests? In ICSME. IEEE Computer
Society, 1–12.

[46] Palomba, F., Zaidman, A., Oliveto, R., and De Lucia, A.
2017. An exploratory study on the relationship between changes
and refactoring. In Proceedings of the 25th International Confer-
ence on Program Comprehension. ICPC ’17. IEEE Press, Piscat-
away, NJ, USA, 176–185.

[47] Parnas, D. L. 1994. Software aging. 279–287.
[48] Roberts, D., Brant, J., and Johnson, R. 1997. A refactoring

tool for smalltalk. Theory and Practice of Object Systems 3, 4,
253–263.

[49] Seaman, C., Guo, Y., Izurieta, C., Cai, Y., Zazworka, N.,
Shull, F., and Vetrò, A. 2012. Using technical debt data in
decision making: Potential decision approaches. In Proceedings of
the Third International Workshop on Managing Technical Debt.
IEEE Press, 45–48.

[50] Silva, D., Tsantalis, N., and Valente, M. T. 2016. Why
we refactor? confessions of github contributors. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. FSE 2016. ACM, New York,
NY, USA, 858–870.

[51] Silva, D. and Valente, M. T. 2017. Refdiff: detecting refac-
torings in version histories. In Proceedings of the 14th Interna-
tional Conference on Mining Software Repositories. IEEE Press,
269–279.

[52] Simon, F., Steinbrückner, F., and Lewerentz, C. 2001. Met-
rics based refactoring. In Proceedings of the 5th European Con-
ference on Software Maintenance and Reengineering. IEEE CS
Press, Lisbon, Portugal, 30–38.

[53] Stroggylos, K. and Spinellis, D. 2007. Refactoring–does it
improve software quality? In Proceedings of the 5th International
Workshop on Software Quality. WoSQ ’07. IEEE Computer Soci-
ety, Washington, DC, USA, 10–.

[54] Stroulia, E. and Kapoor, R. 2001. Metrics of refactoring-
based development: An experience report. In OOIS 2001,
X. Wang, R. Johnston, and S. Patel, Eds. Springer London, 113–
122.

[55] Suryanarayana, G., Samarthyam, G., and Sharma, T. 2014.
Refactoring for software design smells: Managing technical debt.
Morgan Kaufmann.

[56] Szoke, G., Antal, G., Nagy, C., Ferenc, R., and Gyimóthy,
T. 2014. Bulk fixing coding issues and its effects on software
quality: Is it worth refactoring? In Source Code Analysis and
Manipulation (SCAM), 2014 IEEE 14th International Working
Conference on. IEEE, 95–104.

[57] Tom, E., Aurum, A., and Vidgen, R. 2013. An exploration
of technical debt. Journal of Systems and Software 86, 6, 1498 –
1516.

14

[58] Tsantalis, N., Chaikalis, T., and Chatzigeorgiou, A. 2008.
Jdeodorant: Identification and removal of type-checking bad
smells. In Software Maintenance and Reengineering, 2008. CSMR
2008. 12th European Conference on. 329–331.

[59] Tsantalis, N. and Chatzigeorgiou, A. 2009. Identification
of move method refactoring opportunities. IEEE Transactions on
Software Engineering 35, 3, 347–367.

[60] Tsantalis, N. and Chatzigeorgiou, A. 2011. Identification of
extract method refactoring opportunities for the decomposition of
methods. J. Syst. Softw. 84, 10, 1757–1782.

[61] Tsantalis, N., Mansouri, M., Eshkevari, L. M., Mazina-
nian, D., and Dig, D. 2018. Accurate and efficient refactoring
detection in commit history. In Proceedings of the 40th Interna-
tional Conference on Software Engineering. ACM, 483–494.

[62] Tufano, M., Palomba, F., Bavota, G., Di Penta, M.,
Oliveto, R., De Lucia, A., and Poshyvanyk, D. 2016. An em-
pirical investigation into the nature of test smells. In Proceedings
of the 31st IEEE/ACM International Conference on Automated
Software Engineering. ACM, 4–15.

[63] Tufano, M., Palomba, F., Bavota, G., Oliveto, R.,
Di Penta, M., De Lucia, A., and Poshyvanyk, D. 2017. When

and why your code starts to smell bad (and whether the smells go
away). IEEE Transactions on Software Engineering.

[64] Wang, Y. 2009. What motivate software engineers to refactor
source code? evidences from professional developers. In Software
Maintenance, 2009. ICSM 2009. IEEE International Conference
on. 413 –416.

[65] Wu, R., Zhang, H., Kim, S., and Cheung, S.-C. 2011. ReLink:
recovering links between bugs and changes. In SIGSOFT/FSE’11
19th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-19) and ESEC’11: 13rd European Software
Engineering Conference (ESEC-13), Szeged, Hungary, September
5-9, 2011. ACM, 15–25.

[66] Xing, Z. and Stroulia, E. 2005. Umldiff: an algorithm for
object-oriented design differencing. In Proceedings of the 20th
IEEE/ACM international Conference on Automated software en-
gineering. ACM, 54–65.

[67] Xing, Z. and Stroulia, E. 2006. Refactoring practice: How
it is and how it should be supported-an eclipse case study. In
Software Maintenance, 2006. ICSM’06. 22nd IEEE International
Conference on. IEEE, 458–468.

15

	Introduction
	Methodology
	Research Questions
	Context Selection
	Extraction of Refactoring Operations
	RQ1. Distribution of Refactoring Types
	RQ2. When Refactoring Is Applied
	RQ3. Developer-oriented Factors And Refactoring

	Analysis of the Results
	RQ1. Distribution of Refactoring Types
	RQ2. When Refactoring Is Applied
	RQ3. Developer-oriented Factors And Refactoring

	Discussion & Implications
	Discussion
	Implications

	Threats to Validity
	Threats to Construct Validity
	Threats to Internal Validity
	Threats to External Validity

	Related Work
	Empirical Studies on Refactoring
	(Semi-)automated Refactoring Approaches

	Conclusion

