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Abstract

Bug prediction is aimed at identifying software artifacts that are more likely to be defective in the future. Most approaches
defined so far target the prediction of bugs at class/file level. Nevertheless, past research has provided evidence that
this granularity is too coarse-grained for its use in practice. As a consequence, researchers have started proposing defect
prediction models targeting a finer granularity (particularly method-level granularity), providing promising evidence that
it is possible to operate at this level. Particularly, models mixing product and process metrics provided the best results.

We present a study in which we first replicate previous research on method-level bug-prediction, by using different
systems and timespans. Afterwards, based on the limitations of existing research, we (1) re-evaluate method-level bug
prediction models more realistically and (2) analyze whether alternative features based on textual aspects, code smells,
and developer-related factors can be exploited to improve method-level bug prediction abilities. Key results of our study
include that (1) the performance of the previously proposed models, tested using the same strategy but on different
systems/timespans, is confirmed; but, (2) when evaluated with a more practical strategy, all the models show a dramatic
drop in performance, with results close to that of a random classifier. Finally, we find that (3) the contribution of
alternative features within such models is limited and unable to improve the prediction capabilities significantly. As a
consequence, our replication and negative results indicate that method-level bug prediction is still an open challenge.

Keywords: Defect Prediction, Empirical Software Engineering, Mining Software Repositories

1. Introduction

The necessary evolution of software systems often leads
to the introduction of defects, which possibly preclude
the correct functioning of a piece of software and reduce
its overall reliability [67]. To tackle this problem, re-
searchers have been developing several techniques to sup-
port developers (e.g., verification and testing [17]): one of
the most investigated areas is bug-prediction [50], which
consists in detecting the areas of a software more likely
to contain bugs in the future. Researchers have pro-
posed and evaluated a variety of bug prediction models
based on product [5, 74, 73], process [104, 93, 79], socio-
technical [102, 13], and developer-related [37, 24] metrics.
These models have been evaluated both in within-project
scenarios and in cross-project ones [105, 122, 127], with
several approaches achieving remarkable prediction per-
formance [33]. Nevertheless, the practical relevance of bug
prediction research has been put into question by studies
that suggest that bug prediction does not address any real
need of developers [109, 68, 66]. One of the main criticisms
regards the granularity at which bugs are found [109]. In
fact, most of the presented models predict bugs in mod-
ules or files – a granularity that is deemed not informa-
tive enough for practitioners, because files and modules
can be arbitrarily large and inspecting them can require
too much work [46]. In addition, considering that larger

classes tend to be more bug-prone [62, 87], the effort re-
quired to identify the defective part in these classes is even
more pronounced [5, 48, 84, 99].

To tackle this limitation, Menzies et al. [74] and To-
sun et al. [120] conducted the first investigations on a
finer granularity, i.e., function-level. Successively, Hata et
al. [54] applied this idea to the context of object-oriented
systems, proposing a method-level prediction model built
using a set of historical metrics and that reported promis-
ing performance. Giger et al. [46] went even further and
investigated the value of both product and process met-
rics for method-level prediction model. Specifically, Giger
et al. devised three prediction models based on the com-
bination of the two sets of features and evaluated how well
they could classify which methods would have at least a
bug (binary classification) within a specified time frame.
They considered single snapshots of 21 open source soft-
ware (OSS) projects in Java and reported promising re-
sults: 84% precision and 88% recall.

In this paper, we present a work that continues on
this line of research.1 First, we replicate the investiga-
tion conducted by Giger et al. [46] on bug prediction at

1The work presented here is an extension of the conference paper
‘Re-evaluating Method-Level Bug Prediction’ [97], appeared in the
proceedings of the 25th IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2018. pp.
592-601.
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method-level. We use the same features and classifiers as
the reference work, but on a different dataset to test the
generalizability of their findings. While our results show
similar performance as the reference work, we observed two
key limitations that may possibly bias the interpretation of
the achieved findings. On the one hand, Giger et al. [46]
took the change history and predicted bugs from the same
time frame (which could lead to incorrect results) and used
cross-validation (which have been reported as at the risk of
producing biased estimates in certain circumstances [118]).
On the other hand, they did not consider a number of al-
ternative features that have been proved to impact the
performance of class-level bug prediction models, namely
textual, code smell-related, and developer-based metrics
[10, 58, 93]. We tackle these limitations by (1) estimat-
ing the models’ performance using data from subsequent
releases (as done by more recent studies, which did it at
a coarser granularity [104]), and by (2) adding a set of
new alternative features to the considered method-level
bug prediction model.

Our results show that—when evaluated on a release-by-
release strategy—all the existing method-level bug predic-
tion models present lower performance, close to that of a
random classifier. As a consequence, even though we could
replicate the reference work, a more realistic evaluation
lead to negative results. Furthermore, all the alternative
features we experiment with only marginally improve the
performance, suggesting that method-level bug-prediction
is still not a solved problem.

2. Background and Related Work

Research in the field of bug prediction is highly ac-
tive [50, 56] and can be roughly divided in two sets: On
the one hand, researchers focused on the characteristics
relating to source code being more defect prone [102,
62, 87, 2, 3, 6, 23, 86, 89, 112]; on the other hand, re-
searchers defined bug prediction techniques based on un-
supervised [35, 80, 126] and supervised [18, 38, 59, 92, 128]
approaches. More recently, the concept of just-in-time
bug-prediction has been introduced—techniques with the
purpose of recommending defective files as developers com-
mit them [60, 110, 125, 97, 20, 21, 55].

The current paper presents a work that focuses on in-
vestigating how well supervised approaches can identify
bug-prone methods. In this section we discuss the litera-
ture related to class-/method-level bug prediction and de-
scribe the role of textual information for software quality.

2.1. Class-level Bug-Prediction

The approaches in this category differ from each other
mainly for the underlying prediction algorithm, e.g., Lo-
gistic Regression vs Random Forest, and for the considered
features, e.g., product (e.g., lines of code) or process met-
rics (e.g., number of changes performed to a class).

Product metrics. Basili et al. [5] found that five CK
metrics [27] can help one to determine defective classes
and that Coupling Between Objects (CBO) is the most re-
lated to bugs. These results were re-confirmed in further
studies [48, 61, 113]. Ohisson et al. [83] focused on de-
sign metrics (e.g., ‘number of nodes’) to identify bug-prone
modules, revealing the applicability of such metrics for the
identification of buggy modules. Nagappan and Ball ex-
ploited two static analysis tools to predict the pre-release
bug density for Windows Server [77]. Nagappan et al. [78]
experimented with code metrics for predicting buggy com-
ponents across five Microsoft projects, finding that no sin-
gle metric is the best across all projects. Zimmerman et al.
[128] investigated complexity metrics for bug-prediction
and reported a positive correlation between code com-
plexity and bugs. Nikora et al. [81] showed that mea-
surements of a system’s structural evolution (e.g., ‘num-
ber of executable statements’) can serve as bug-predictors.
More recently, Dam et al. [31] reported an experience re-
port of using product metrics and abstract representation
of source code in practice, showing that it is possible to
achieve good prediction accuracy when employing them
within deep learning models.

Process metrics. Graves et al. [119] experimented
with both product and process metrics for bug-prediction,
finding that product metrics are poorer predictors for
bugs. Moser et al. [76, 106] performed two compara-
tive studies, which provided additional corroborating ev-
idence on the superiority of process metrics in predict-
ing buggy code components. Later on, D’Ambros et al.
[34] performed an extensive comparison of bug-prediction
approaches relying on both product and process metrics,
finding that no technique works better in all contexts.

Despite the aforementioned promising results, a study
by Shihab et al. [109] reported that developers consider
class or module level bug-prediction too coarse-grained for
being useful in practice. Also, a study by Lewis et al.
[68] reported similar issues when trying defect prediction
in practice at Google. This situation calls for the creation
of methods able to provide a more fine-grained prediction
(e.g., at method-level), re-evaluating and adapting what
has been learned in the preceding work.

Alternative metrics. Despite product and process
features have been the most widely used for bug predic-
tion purposes, researchers have been also investigating the
value of alternative metrics. In this category, several re-
searchers exploited developer-related factors. For exam-
ple, Hassan investigated a technique based on the entropy
of developers’ code changes [53], finding that it has better
performance than models based on changes to code com-
ponents. Ostrand et al. [10, 85] proposed the use of the
number of developers who modified a code component as
a bug-proneness predictor: however, the performance of
the resulting model was poorly improved with respect to
existing models. Later on, Di Nucci et al. [37] defined
a bug-prediction model based on a mixture of code, pro-
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cess, and developer-based metrics outperforming the per-
formance of existing models. As part of their experimen-
tation, Di Nucci et al. also re-assessed the contribution
given by the metric proposed by Ostrand et al. [10, 85],
showing that in certain circumstances the number of devel-
opers may represent a relevant factor to characterize the
bug-proneness of classes. Bird et al. [14] found that the
addition of an information related to the code ownership
of classes can make bug prediction models more accurate;
these findings were later confirmed by other researchers
[47, 103]. On a similar line of research, socio-technical
factors have been also exploited for bug prediction: for
instance, Posnett et al. [102] proposed two novel met-
rics based on the developer’s social-network that may be
used as predictors of faults in production, while Bird et
al. [13] studied how developers contribute to source code
and found that lack of collaboration and coordination are
associated with an increase of the number of bugs.

Other researchers focused on improving bug prediction
capabilities using the information coming from code smells
[43], i.e., sub-optimal design implementations applied by
developers. Khomh et al. [62] and Palomba et al. [87]
indeed reported that such smells have a strong, negative
impact on the bug proneness of source code. Following
these findings, Taba et al. [114] studied how the addi-
tion of variables characterizing the presence of 13 different
types of code smells can improve the performance of bug
prediction models built using standard product metrics:
they reported an improvement close to 13% in terms of
F-Measure. Later on, Palomba et al. [93] showed that the
intensity of code smells, namely a measure of their sever-
ity, can further improve bug prediction capabilities with
respect to the work of Taba et al. [114].

Finally, a less explored yet worth to discuss bug pre-
diction angle concerns the usage of textual metrics. In
the first place, the use of textual information has repre-
sented a promising and orthogonal dimension to improve
software quality assessment [52, 71, 123]. For instance,
textual information has already been used in several soft-
ware engineering tasks or activities such as information
retrieval [70, 71, 94], code smell detection [88, 91, 89],
refactoring [7, 8, 9], and meaning extraction [96]. Perhaps
more importantly, the addition of textual-related informa-
tion has been proved to enhance the performance of bug
prediction models. Marcus et al. [71] defined the Concep-
tual Cohesion of Classes (C3) and added it within a bug
prediction model based on product metrics, finding that
textual information can provide a boost of ≈23% in terms
of F-Measure. Walid et al. [58] provided initial compelling
evidence that a lack of coherence between code comments
and corresponding source code (due to the missing up-
date of code documentation) impacts the bug-proneness of
code elements. Aman et al. [1] further explored the prob-
lem and found that certain types of code comments (e.g.,
those explaining functionalities implemented in a class)
are associated with a higher bug-proneness of the code.
Later on, Buse and Weimer [16] found that poor readabil-

ity of source code contributes to the identification of buggy
classes. These findings were also confirmed by Binkley et
al. [12], who showed that a lower source code readability
is often associated to an increase of the production code
fault-proneness; When employed within predictive models,
readability metrics provide an additional contribution that
allow these models to perform ≈10% better than models
built without using them.

Inspired by the results of these previous studies, in this
work we aim at evaluating the effect of characterizing bug-
prone methods considering alternative features, thus pro-
viding a wider overview of the performance achievable with
method-level bug prediction.2

2.2. Method-level Bug-Prediction

While the seminal idea of lowering the granularity of
bug prediction is to attribute to Menzies et al. [74] and
Tosun et al. [120], the work by Giger et al. [46] was
the first explicitly aimed at predicting bugs at method-
level in object-oriented software systems. Giger et al. de-
fined a set of product and process metrics to characterize a
method and evaluated these metrics in three method-level
bug prediction models, respectively based on: (i) product
metrics, (ii) process metrics, and (iii) their combination.
Giger et al. [46] found that both product and process
metrics contribute to the identification of buggy methods
and their combination achieves the best performance (i.e.,
F-Measure=86%). To produce the dataset used in their
evaluation, Giger et al. took the following steps [46]: they
(1) considered a large time frame in the history of 21 Java
OSS systems, (2) focused on the methods present at the
end of the time frame, (3) computed product metrics for
each method at the end of the time frame, (4) computed
process metrics (e.g., number of changes) for each method
throughout the time frame, and (5) counted the number
of bugs for each method throughout the time frame, re-
lying on bug fixing commits. Finally, they used 10-fold
cross-validation [64] to evaluate the three aforementioned
models, considering the presence/absence of bug(s) in a
method as the dependent (binary) variable. Similarly to
the paper discussed above, Hata et al. [54] proposed a
fine-grained prediction model in which they computed a
number of historical metrics to predict the bug-proneness
of Java methods. Their results reported that method-level
predictions are more effective than file- and package-level
ones when considering the effort required by developers to
locate and debug a potential defect in source code.

In this work, we re-evaluate the paper by Giger et al.
[46] using data from subsequent releases (i.e., a release-
by-release validation), which better models a real-case sce-
nario where a prediction model is updated as soon as new
information is available.3 The choice of focusing on the

2This part is a novel contribution of this paper.
3This part was previously presented at an academic software en-

gineering conference [97].
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work of Giger et al. [46] rather than the one of Hata et
al. [54] is motivated by the fact that Giger et al. exper-
imented with both code and process metrics (as opposed
to Hata et al. who only considered process metrics), thus
giving us the opportunity of providing a wider overview of
the performance of method-level defect prediction.

3. Research Goals and Context

In this section, we define both the research questions
guiding our study and the context of our investigation.

3.1. Research Questions

The goal of the empirical study is to re-evaluate how
bug prediction can be applied at method-level, with the
purpose of understanding the performance of models built
using different sets of features. We start our investigation
by replicating the study conducted by Giger et al. [46] on
a partially overlapping set of software systems (but con-
sidering different moments in time) to evaluate the gener-
alizability of their findings. Thus, we ask:

RQ1. How effective are existing method-level bug pre-
diction approaches when tested on new systems/times-
pans?

While replicating the methodology proposed by Giger
et al. [46], we detected some limitations concerning the
validation approach: (1) it uses 10-fold cross-validation,
which is at the risk of producing biased estimates in certain
circumstances [118], (2) product metrics are considered
only at the end of the time frame (while bugs are found
within the time frame), and (3) the number of changes and
the number of bugs were both considered in the same time
frame (this time-insensitive validation strategy may have
led to biased results). Thus, in the second part of our study
we try to overcome the aforementioned limitations by re-
evaluating the performance using data from subsequent
releases. A release-by-release validation better models a
real-case scenario where a prediction model is updated as
soon as new information is available. Our expectation is
that the performance is going to be weaker in this setting.
This leads to our second research question:

RQ2. How effective are existing method-level bug pre-
diction models when validated with a release-by-release
validation strategy?

A second limitation we identify is related to the inde-
pendent variables exploited by Giger et al. [46]. While
they performed an extensive analysis of product and pro-
cess metrics, the role of other types of information—that
have been shown to boost the performance of bug predic-
tion models in the past [12, 58, 71]—was not assessed. In
the context of our study, we assess the impact of three

families of metrics such as: (1) textual features, whose
aim is to capture the readability of the considered code as
well as its alignment with code comments and their types;
(2) code smells [43], which describe potential design flaws
in source code; and (3) developer-related factors, that an-
alyze properties related to the developers working on a
system. Hence, we ask:

RQ3. How effective are method-level bug prediction
models built using alternative features?

Table 1: Overview of the projects used in this study.

Projects LOC Developers Releases Methods Buggy Methods
Ant 213k 15 4 42k 2.3k
Checkstyle 235k 76 6 31k 4.1k
Cloudstack 1.16M 90 2 85k 13.4k
Eclipse JDT 1.55M 22 33 810k 3.3k
Eclipse Platform 229k 19 3 7k 2.7k
Emf Compare 3.71M 14 2 9k 0.7k
Gradle 803k 106 4 73k 4.6k
Guava 489k 104 17 262k 1.2k
Guice 19k 32 4 9k 0.5k
Hadoop 2.46M 93 5 179k 5.8k
Lucene-solr 586k 59 7 213k 8.7k
Vaadin 7.06M 133 2 43k 11.3k
Wicket 328k 19 2 30k 4.9k
Overall 19M 782 91 1.8M 63.5k

3.2. Subject systems

The context of our work consists of 13 software sys-
tems whose characteristics are reported in Table 1. For
each system, the table reports its size (in terms of LOCs)
and how many developers contributed over the entire his-
tory, as well as the number of releases, methods, and buggy
methods. In particular, we focus on systems implemented
in Java (i.e., one of the most popular programming lan-
guages [39]), since both the metrics previously defined by
Giger et al. [46] and the alternative features proposed in
this study mainly target this programming language. In
addition, we select projects whose source code and change
history are publicly available (i.e., open-source software
projects using a version control system) to enable the ex-
traction of product, process, and alternative metrics.

Starting from the 81, 327, 803 open-source systems
written in Java available at the time of the analysis on
Github,4 we first filter out those having less that 1, 000
commits and more than 5, 000 methods: this filter gives
us a total of 6, 753, 654 systems. Finally, we randomly
select 13 of them. Compared to Giger et al. [46], we
consider fewer, but larger systems, which are composed of
a much larger number of methods (1.8M vs 112,058) and
bugs (63,400 vs 23,762). This choice allows us to test the
effectiveness of method-level bug prediction on software
systems of a different scale.

4https://github.com
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Table 2: List of releases with the related information on buggy meth-
ods used in the first research question.

Projects
Release

Tag
Files

Buggy
Files

Methods
Buggy

Methods
Ant ANT 190 1,574 459 11,326 3,201
Checkstyle checkstyle-8.0 2,362 1,864 8,626 6,523
Cloudstack 4.10 62,627 16,275 47,430 12,311
Eclipse JDT v 710 618 235 34,438 12,063
Eclipse Platform R3 0 6,513 4,489 4,408 2,983
Emf Compare 2.0.0 6,613 1,356 4,547 1,021
Gradle REL 2.2 3,603 308 20,414 1,722
Guava v23.0 883 449 23,439 10,221
Guice 4.0 1,638 1,000 3,485 2,001
Hadoop branch-3.0 56,338 4,622 76,281 5,247
Lucene-solr 7.0.0 61,259 5,412 50,033 3,420
Vaadin 8.0.0 57,319 22,290 28,647 11,028
Wicket wicket-7.0.0 963 131 15,729 2,174
Overall 262k 59k 329k 79k

4. RQ1. Replicating Method-Level Bug Prediction

Our first research question aims at replicating the
study conducted by Giger et al. [46] on a different set
of systems and time spans.

4.1. RQ1 - Research Method

To answer our first research question, we (i) build a
method-level bug prediction model using the same features
as Giger et al. [46] and (ii) evaluate its performance using
the original evaluation strategy and applying the model
to our projects. To this aim, we follow a set of method-
ological steps such as (i) the creation of an oracle reporting
buggy methods in each of the projects considered, i.e., the
dependent variable to predict, (ii) the definition of the in-
dependent variables, i.e., the metrics on which the model
relies on, (iii) the assessment of the performance of differ-
ent machine learning algorithms, and (iv) the definition of
the validation methodology to test the performance of the
models devised in the reference paper.

Extraction of Bug Data. For each system we need
to detect the buggy methods contained at the end of the
time frame, i.e., in the last release Rlast, to do so we use
a methodology in line with that followed by Giger et al.
[46]. Given the tagged issues available in the issue track-
ing systems (i.e., Bugzilla or Jira) of the subject sys-
tems, we use ReLink [124] to identify links between issues
and commits.5 Afterwards, we consider as buggy all the
methods changed in the buggy commits detected by Re-
Link and referring to the time period between the Rlast−1

and Rlast (i.e., the ones introduced during the final time
frame). We discarded test cases because tests may be mod-
ified with the production code without being implicated in

5ReLink considers several constraints: (i) a match must exist
between the committer and the contributor who created the issue in
the issue tracking system, (ii) the time interval between the commit
and the last comment posted by the same contributor in the issue
tracker is less than seven days, and (iii) the cosine similarity between
the commit message and the last comment referred above, computed
using the Vector Space Model (VSM) [4], is greater than 0.7.

a bug. Table 2 reports the release tags together with the
number of files, methods, and defective methods used to
answer RQ1.

Table 3: List of method-level product metrics used in this study

Metric name Description (applies to method-level)
FanIN # of methods that reference a given method
FanOUT # of methods referenced by a given method
LocalVar # of local variables in the body of a method
Parameters # of parameters in the declaration
CommentToCodeRatio Ratio of comments to source code (line based)
CountPath # of possible paths in the body of a method
Complexity McCabe Cyclomatic complexity of a method
execStmt # of executable source code statements
maxNesting Maximum nested depth of all control structures

Independent variables. To characterize source code
methods, we compute the set of 9 product and 15 process
features previously defined by Giger et al. [46].

Table 4: List of method-level process metrics used in this study

Metric name Description (applies to method level)
MethodHistories # of times a method was changed
Authors # of distinct authors that changed a method
StmtAdded Sum of all source code statements added
MaxStmtAdded Maximum StmtAdded
AvgStmtAdded Average of AvgStmtAdded
StmtDeleted Sum of all source code statements deleted
MaxStmtDeleted Maximum of StmtDeleted
AvgStmtDeleted Average of StmtDeleted
Churn Sum of stmtAdded - stmtDeleted
MaxChurn Maximum churn for all method histories
AvgChurn Average churn per method history
Decl # of method declaration changes
Cond # of condition changes over all revisions
ElseAdded # of added else-parts over all revisions
ElseDeleted # of deleted else-parts over all revisions

• Product Metrics: Existing literature demonstrated
how effective product metrics are in characterizing
the extent to which a source code method is diffi-
cult to maintain, possibly indicating the presence of
defects [5, 27, 83, 34]. Giger et al. [46] proposed
the use of the metrics reported in Table 3. The fea-
tures regard different method characteristics, e.g.,
number of parameters or McCabe’s cyclomatic com-
plexity [72]. Although this may introduce a threat
to the validity of our results, we had to re-implement
all of the metrics due to the lack of available tools.

• Process Metrics: According to previous litera-
ture [106, 115], process features can complement the
capabilities of product predictors for bug prediction.
For this reason, Giger et al. [46] relied on the change-
based metrics described in Table 4. These metrics
characterize the life of source code methods (e.g., by
considering how many statements were added over
time or the number of developers that touched the
method). As we did for product metrics, we had to
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re-implement the proposed process metrics defined
at method-level by Giger et al. [46].

In line with Giger et al. [46], in the context of RQ1,
we build three different method-level bug prediction mod-
els relying on (i) only product metrics, (ii) only process
metrics, and (iii) both product and process metrics.

Preprocessing The Training Data. Once obtained
the subject dataset, we tackle two common problems that
may affect machine learning algorithms: (i) data unbal-
ance [26]6 and (ii) multi-collinearity [82].7 We address
the former problem by applying the Random Over-
Sampling algorithm [25] implemented as a supervised fil-
ter in the Weka toolkit.8 The filter re-weights the in-
stances in the dataset to give them the same total weight
for each class maintaining unchanged the total sum of
weights across all instances. We address the second prob-
lem by filtering out the unwanted features. Specifically,
we apply the Correlation-based Feature Selection [49] algo-
rithm implemented as a filter in the Weka toolkit. It com-
putes the correlation between each pair of features and, if
this is higher than 0.7, removes one of them by considering
their individual predictive power.

Machine Learner. Once the training data is pre-
processed, we need to select a classifier that best lever-
ages the independent variables to predict buggy methods
[44]. To this aim, we investigate the four classifiers used
by Giger et al. [46]: Random Forest, Support Vector Ma-
chine, Bayesian Network, and J48. Afterwards, we com-
pare the different classification algorithms using the vali-
dation strategy and metrics described later.

Evaluation Strategy. The final step to answer RQ1

is the validation of the prediction models. As done in
the reference work, we adopt the 10-fold cross-validation
strategy [64, 116]. This strategy randomly partitions the
original set of data into 10 equal sized subset. Of the 10
subsets, one is retained as test set, while the remaining
nine are used as training set. This validation is then re-
peated 10 times, switching on which subset the model is
tested.

Evaluation Metrics. Once we had run the experi-
mented models over the considered systems, we measure
their performance using the same metrics proposed by
Giger et al. [46] to allow for comparison: precision and
recall [4]. Precision is defined as

precision =
|TP |

|TP
⋃
FP |

(1)

6This frequent issue in bug prediction occurs when the number
of instances that refer to buggy resources (in our case, source code
methods) is drastically smaller than the number of non-buggy ones.

7Independent variables highly correlated cause collinearity that
negatively impacts the reliability of the prediction models [40].

8https://www.cs.waikato.ac.nz/ml/weka/

where TP (True Positives) are methods that are cor-
rectly classified as buggy by the prediction model and FP
(False Positives) are methods that are wrongly classified
as buggy. Recall is defined as

recall =
|TP |

|TP
⋃
FN |

(2)

where FN (False Negatives) are buggy methods mis-
classified as non-buggy by the model. We also compute
F-Measure [4], which combines precision and recall:

F −Measure = 2 · Precision ·Recall
Precision+Recall

(3)

In addition to the aforementioned metrics, we also com-
pute the Area Under the Receiver Operation Characteristic
curve (AUC-ROC) [51]. In fact, the classification chosen
by the machine learning algorithms is based on a threshold
(e.g., all the method whose predicted value is above the
threshold 0.5 are classified as buggy), which can greatly
affect the overall results [118]; precision and recall alone
are not able to capture this aspect. ROC plots the true
positive rates against the false positive rates for all pos-
sible thresholds between 0 and 1; the diagonal represents
the expected performance of a random classifier. AUC
computes the area below the ROC and allows us to have
a comprehensive measure for comparing different ROCs:
An area of 1 represents a perfect classifier (all the defec-
tive methods are recognized without any error), whereas
for a random classifier an area close 0.5 is expected (since
the ROC for a random classifier tends to the diagonal).

4.2. RQ1 - Results

Table 5 reports the median values for precision, recall,
F-measure, and AUC-ROC achieved by models based on
(i) only product, (ii) only process, and (iii) both product
and process features when using different classifiers.9 To
ease the comparison between our replication (‘O’ in Table
5) and the work of Giger et al. [46], in the table we also
report the results achieved by the original work (‘o’ in
Table 5). Overall, from this first analysis we can claim
that the obtained results are in line with those by Giger
et al. [46], yet 10 percentage points lower on average.

The model based on product metrics achieves the low-
est results. For instance, the overall precision is 0.71,
meaning that a software engineer using this model has to
needlessly analyze almost 29% of the recommendations it
outputs. This result is in line with the findings provided
by Giger et al. , who showed that the model only trained
on product metrics offers generally lower performance.

Secondly, our results confirm that process metrics are
stronger indicator of bug-proneness of source code meth-
ods (overall F-Measure=0.80). This finding is in line with
the previous results achieved by the research community

9Our appendix [98] provides a detailed report of the performance
achieved by the single classifiers over all the considered systems.
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Table 5: Median classification results of method-level bug prediction models when validated using 10-fold cross validation. To ease the
comparison between Giger et al. [46] and ours, the table reports the results of both studies: ‘G’ stands for Giger et al. , ‘O’ for ours; we also
used a white background for the results of the previous study, a grey one for the ours.

π = Product Study Precision Recall F-measure AUC-ROC
Π = Process π Π π&Π S Π π&Π π Π π&Π π Π π&Π

Random Forest
O 0.72 0.85 0.86 0.64 0.86 0.86 0.68 0.85 0.86 0.66 0.84 0.86
G 0.84 0.50 0.85 0.88 0.64 0.95 0.86 0.56 0.90 0.95 0.72 0.95

Support Vector Machines
O 0.66 0.74 0.74 0.09 0.80 0.79 0.16 0.77 0.76 0.50 0.51 0.51
G 0.83 0.48 0.80 0.86 0.63 0.96 0.84 0.56 0.87 0.96 0.70 0.95

Bayesian Network
O 0.71 0.77 0.77 0.46 0.68 0.70 0.56 0.72 0.72 0.60 0.72 0.72
G 0.82 0.46 0.81 0.86 0.73 0.96 0.84 0.58 0.87 0.96 0.73 0.96

J48
O 0.73 0.82 0.84 0.60 0.84 0.83 0.65 0.83 0.83 0.60 0.79 0.80
G 0.84 0.56 0.83 0.82 0.58 0.89 0.83 0.57 0.86 0.95 0.69 0.91

Overall
O 0.71 0.80 0.80 0.44 0.80 0.80 0.51 0.80 0.80 0.59 0.72 0.73
G 0.82 0.72 0.75 0.85 0.64 0.91 0.83 0.57 0.86 0.95 0.71 0.88

that report the superiority of process metrics with respect
to product ones [104, 106]. Our results also confirm an-
other finding by Giger et al. [46]: The combination of
product and process metrics does not improve dramati-
cally the prediction capabilities: Results are—at most—
two points percentage higher than the model with process
metrics only. This is surprising, because we expected that
the use of these orthogonal predictors would improve the
overall performance.

With respect to the different classifiers we experi-
mented, Support Vector Machines gives the worst results;
likely, this is due to the extreme sensitivity of the classi-
fier to the configuration [29].10 Future studies could be
setup and conducted to investigate the impact of the con-
figuration on SVM for method-level bug prediction. Other
classifiers provide more stable results. Random Forest and
J48 obtain the best prediction accuracy considering all the
evaluation metrics. The differences are particularly evi-
dent when considering the AUC-ROC values, which are
36% and 29% higher than VSM, respectively. Our results
confirm what was reported by Giger et al. on the capa-
bilities of Random Forest and, more in general, on the
performance of this classifier for bug prediction [38, 69].

We compared the AUC-ROC values of the experi-
mented models using the Scott-Knott Effect Size Differ-
ence (ESD) test [117].11 As a result, process-based models
built using Random Forest and J48 are statistically better
than product-based ones, while they work similarly to the
combined ones.12

10Previous research [29, 57] has shown that the use of the default
configuration might lead to significantly worsen the overall perfor-
mance of the machine learner.

11ESD is an effect-size aware variant of the Scott-Knott test [107]
that improves the original test in three ways: (i) it relies on hierarchi-
cal cluster analysis to partition the set of treatment means into sta-
tistically distinct groups, (ii) it corrects non-normal distributions of a
dataset, and (iii) it merges any two statistically distinct groups that
have a negligible effect size into one group to avoid the generation
of trivial groups. To execute the test, we employ the ScottKnottESD

implementation: https://github.com/klainfo/ScottKnottESD pro-
vided by Tantithamthavorn et al. [117].

12Detailed statistical results are in our appendix [98].

Result 1: Our results, evaluated with the same strat-
egy but on a different set of systems/timespans, con-
firm the findings by Giger et al. [46]: Method-level bug
prediction models based on process metrics outperform
those based on product metrics. Our results are 10 per-
centage points lower than those of Giger et al., yet far
better than random. Combining predictors with differ-
ent nature improves the prediction only marginally.

5. Limitations Of The Existing Approach

By replicating the work by Giger et al. [46], we could
identify two possible major points for improvement: the
evaluation strategy and the set of features employed.

Reflecting on the evaluation strategy. Figure 1
shows an exemplification of the history of a system and
how the training and testing are done in the approach
by Giger et al. (named ‘10-fold overall evaluation’ in the
figure and depicted using red lines and text) and in the
one we propose in this work (named ‘release-by-release’
and depicted in blue).

The system in Figure 1 has four methods (i.e., Ma,
Mb, Mc, Md) that were changed several times throughout
the history of the system. The changes sometimes were
related to a bug (i.e., the method was involved in a bug fix;
purple dot), sometimes not (i.e., green dot). For example
method Ma was changed four times, two of which involving
a bug fix. This system had at least three releases (i.e., Rx
throughout Rx+1).

The approach applied by Giger et al. collects all the
available information until the ‘data collection point’, then
marks a method as ‘buggy’ whenever the method was in-
volved in a bug fix (hence it was buggy before the bugfix)
in the entire history of the system. Then, each method
would be considered as an instance to classify, where the
independent variable is whether the method was marked as
‘buggy’ or not. In this case, the validation would be done
“vertically”: 10-fold cross validation ensures that the clas-
sifier is trained on a subset of methods (e.g., Ma, Mb, Mc
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Figure 1: Training and testing strategies for method-level bug prediction.

in Figure 1) that is different from that used for the test-
ing (e.g., Md). The limitation of this approach is that it
uses dependent variables (such as most of the process met-
rics, including ‘number of changes’) (1) whose value could
not be known at prediction time in a real-world scenario
(i.e., one would try to predict bugs that still have to oc-
cur, not that have already happened) and that (2) seem to
be highly correlated to the independent variable (for each
bug fix there has to be at least one change). Moreover,
there are moments in which the methods were not buggy,
but if they have been buggy at least once in the lifetime of
the system, they are considered as buggy. Although rea-
sonable for an initial validation, the approach followed by
Giger et al. may lead to unreliable results.

To try to avoid unreliable results, we propose a release-
by-release strategy, similar to one adopted by Kpodjedo
et al. [65]. We train and test “horizontally” instead of
“vertically”: We assume the stakeholder interested in the
prediction to be in the moment of a release (e.g., Rx+1

in Figure 1) and we train on all the information available
from the previous release to this moment (e.g., from Rx);
in this case the dependent variable is whether a method
has been buggy during the considered release. Then, we
consider the next release (e.g., Rx+2) and try to predict
which methods will be buggy in the course of the develop-
ment of this release. We do not consider any information
available from the current release to the next, because this
would not be available in real life. With this strategy we
are going to answer RQ2.

An addition to the release-by-release strategy would be
to consider the SZZ algorithm [111] and consider as buggy
only the methods in which a bug was introduced before

the release (regardless of when the fix happened). We
decided not to follow this path for three reasons: (1) SZZ
could give information that is not available at prediction
time (e.g., when the bug fix happens after the considered
release, but the bug inducing commit happens before the
release), (2) SZZ has been proven to be not reliable [30],
and (3) we want to reduce at a minimum the differences
from the work of Giger et al. we are replicating, so that
the obtained results are not due to unconsidered causes.

Reflecting on the independent variables. As
shown in previous work [104, 63], the choice of the fea-
tures to employ when classifying defective components is
key for the performance of bug prediction. In the work
by Giger et al. [46], the authors investigated a variety of
product and process metrics: while the experimental set-
ting already dealt with the differences among these two
sets of features, it is worthwhile to consider extensions to
it

Looking at the existing literature, textual features have
been shown to be valuable for both software quality as-
sessment in general and class-level bug prediction in par-
ticular. Thus, we propose to investigate the extent to
which features regarding code readability and alignment
of comments can improve existing bug prediction models
at method level. In RQ3, therefore, we define a set of fea-
tures based on previous literature and test whether (i) a
model solely based on those features perform better than
the existing ones and (ii) their addition to a combined
model (which also features process and product metrics)
can give lead to improved performance.
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Table 6: Distribution of defective methods over the releases.

Buggy Methods Stats
Projects Releases Min Max Average Median StdDev
Ant 4 627 3,302 2,061 2,158 1,350
Checkstyle 6 20 6,809 3,083 1,710 3,305
Cloudstack 2 7,323 12,213 9,768 9,768 5,069
Eclipse JDT 33 151 15,551 4,299 3,390 3,684
Eclipse Platform 3 1,194 2,702 1,984 1,984 1,006
Emf Compare 2 932 1,594 1,263 1,263 468
Gradle 4 1,321 1,666 1,467 1,416 178
Guava 17 35 3,709 1,472 1,310 1,163
Guice 4 63 2,127 1,176 1,258 867
Hadoop 5 1,666 3,321 2,467 2,462 828
Lucene-solr 7 661 6,766 3,991 4,698 2,436
Vaadin 2 6,738 11,139 8,938 8,938 3,111
Wicket 2 2,051 3,114 2,434 2,139 589
Overall 91 20 15,551 3,427 2,139 3,231

6. RQ2. Re-evaluating Method-Level Prediction

We seek to evaluate the performance of method-level
bug prediction models in a more realistic setting.

6.1. RQ2 - Methodology

To answer RQ2, we need to (i) extract all the releases
of the considered projects, (ii) identify the buggy meth-
ods in each of the releases, and (iii) build the three bug
prediction models used for RQ1.

Extracting The Major Releases. The first step
to test the performance of method-level bug prediction
models is the identification of the major releases in the
considered systems. To this purpose, we automatically ex-
tract the releases from the list of releases declared on the
Github repository of the subject systems. To discrimi-
nate a major release from the others, we rely on a heuris-
tic based on naming conventions: If the version name ends
with the patterns 0 or 0.0 (e.g., versions 3.0 or 3.0.0), then
we define it as a major release.13

Extraction of Bug Data. Differently from what we
have done in RQ1, in this research question we need to
extract the data about the bugs for all the considered re-
leases. For each release pair rx−1 and rx, we (i) run Re-
Link and (ii) consider as buggy all the methods actually
changed in the buggy commits detected by ReLink and
referring to the time frame between rx−1 and rx. We re-
moved the test cases, as in RQ1. Table 6 summarizes the
distribution of buggy methods considering every inspected
release for each project.

Bug Prediction Models: Setup. As done for RQ1,
we test the performance of three bug prediction mod-
els, i.e., the ones relying on (i) product metrics only,
(ii) process metrics only, and (ii) both product and pro-
cess metrics, built using the same set of machine learn-
ing approaches (i.e., Random Forest, Support Vector Ma-
chine, Bayesian Network, and J48 ). The training data

13We manually verified the performance of this heuristic on one
of the subject systems: We verified that all the major releases of
Lucene-Solr were correctly caught, thus quantifying the actual per-
formance of this approach.

is pre-processed to avoid (i) data unbalance and (ii)
multicollinearity, by using the techniques previously ex-
ploited (i.e., Random Over-Sampling algorithm [25] and
Correlation-based Feature Selection [49], respectively).

Bug Prediction Models: Validation. We test the
performance of the prediction models by applying an inter-
release validation procedure, i.e., we trained the prediction
models using the release rx−1 and tested it on rx. This
technique implies that neither the first release of each sys-
tem can be used as testing set nor the last release can be
used as training. To measure the performance, we com-
puted the same set of metrics previously exploited, i.e.,
precision, recall, F-Measure, and AUC-ROC.

6.2. RQ2 - Results

Table 7 reports the median precision, recall, F-measure,
and AUC-ROC achieved by models based on (i) only prod-
uct, (ii) only process, and (iii) both product and process
metrics when using different classifiers and the release-by-
release strategy.14

The performance achieved by all the prediction models
experimented is substantially lower than those found for
RQ1. We observe a lower variance in the results, for each
of the subject systems in our dataset.

In this evaluation scenario, code metrics achieve better
performance than process metrics. This is in contrast with
past literature reporting the superiority of process metrics
for bug prediction [104, 106]. We hypothesize that this
result may be caused both by the different granularity of
the experimented models and by the different validation
strategy. In particular, while the historical information
computed at class-level could better characterize the com-
plexity of the development process followed by develop-
ers while implementing changes in an entire class [53], it
is reasonable to think that the bugginess of source code
methods may be better expressed by the methods’ current
code quality. An additional possible cause that refutes the
observation of previous studies [104, 106] comes from the
irregular distribution of the length of the time frames for
the considered releases. In our analyzed projects, these in-
tervals stretch from a few months to a couple of years and
the distribution of the releases is strictly correlated to the
needs and the approach adopted by developers in a given
historical moment. The higher prediction capabilities of
code metrics are confirmed also when looking at other in-
dicators, i.e., precision, recall, AUC-ROC. Moreover, this
result holds for all the classifiers considered.

Finally, the performance of the different classifiers has
also lower variance. To some extent, this result confirms
previous findings in the field [45, 95] showing that different
classifiers achieve similar performance. Alternatively, this
similarity in results and the low performance may indicate
that no machine learning algorithm detects a valid signal

14Our appendix provides detailed reports [98].
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Table 7: Median classification results of method-level bug prediction models when validated using a release-by-release strategy.

S = Product Precision Recall F-measure AUC-ROC
H = Process S H S&H S H S&H S H S&H S H S&H

Bayesian Network 0.72 0.70 0.70 0.58 0.64 0.65 0.59 0.60 0.61 0.53 0.52 0.53
J48 0.71 0.71 0.71 0.59 0.59 0.59 0.62 0.62 0.63 0.51 0.51 0.51
Random Forest 0.72 0.70 0.72 0.63 0.60 0.63 0.64 0.61 0.63 0.52 0.51 0.52
Support Vector Machines 0.72 0.73 0.72 0.59 0.57 0.60 0.62 0.58 0.62 0.53 0.53 0.53
Overall 0.71 0.71 0.71 0.59 0.60 0.60 0.62 0.60 0.61 0.52 0.52 0.53

from the considered metrics. This result potentially high-
lights the possibility to further study the orthogonality of
classifiers for method-level bug prediction with the aim of
exploiting ensemble methodologies [38, 69].

Result 2: Method-level bug prediction models re-
sulted in much lower performance (up to 20 points per-
centage less) in terms of AUC-ROC and similar preci-
sion when evaluated with the more practical release-by-
release evaluation strategy. The achieved AUC-ROC
scores achieved by all the models, regardless of the ma-
chine learning approach, are close to the results of a
random classification.

7. RQ3. Evaluating Alternative Metrics

Our RQ3 seeks to evaluate the potential of alternative
metrics for method-level bug prediction.

7.1. RQ3 - Methodology

We define a set of metrics based on textual aspects
of source code as well as on code smells, and developer-
related factors, which we include in the method-level bug
prediction models experimented in our previous research
questions. In the following, we first describe the metrics
and the rationale for their choice, and then we detail the
model definition and evaluation process.

Textual Metrics. As summarized in Section 2, previ-
ous work [1, 12, 16, 58] highlighted that textual aspects of
source code could impact its bug proneness and be useful
when considered within bug prediction models. Thus, we
first challenge these findings and explore the role of tex-
tual features when applied to method-level bug prediction.
Table 8 lists the considered metrics. We include:

Code Readability. Based on the findings by Buse and
Weimer [16] and Binkley et al. [12], we compute a mea-
sure of readability of source code. We directly employ
the tool proposed in [16]: This outputs an index, which
is a decimal score ranging between 0 and 1, where 0 rep-
resents unreadable code and 1 refers to easily readable
code. This tool relies on a readability model composed
of 19 metrics (including line length, number and length
of identifiers, number of a predefined list of characters,
branches, loops). To compute it, we rely on the publicly

available version of the tool provided by the authors.15

Code readability is not code complexity, which we al-
ready defined in other metrics previously.

Table 8: List of the considered method-level textual metrics.

Metric name Description (applies to method level)
Readability Source code readability index [16]
Textual
Coherence

Measure of the textual coherence between
source and code comments [58]

Purpose
# of code comments used to describe
the functionality of linked source code

Notice
# of code comments related to the description
of warning, alerts, or messages

Under
Development

# of code comments covers the topics
related to the ongoing and future development

Style&IDE
# of code comments used to logically separate
the code or provide special services

Metadata
# of code comments used to classify comments
that define meta-information about the code

Other
# of code comments that do not fit into
the previously defined categories

Textual Coherence. Based on the findings reported by
Walid et al. [58], we measure the textual coherence,
i.e., the extent to which comment and source code of a
method are aligned. To compute it, we first normalize
comments and source code using a standard Information
Retrieval (IR) process [4].16 Then, we apply the Vector
Space Model (VSM) [4] and measure the textual similar-
ity between comments and source code (i.e., the vectors
of VSM) using the cosine distance.

Comment Classification. Based on the findings by
Aman et al. [1], who reported that different comments
types are associated to different bug proneness, we clas-
sify source code comments exploiting the model pro-
posed by Pascarella and Bacchelli [96]: It analyzes the
text contained in a comment and classifies its semantic.
Specifically, Pascarella and Bacchelli defined a hierar-
chical taxonomy with two levels: the first coarse-grained
contains 6 categories, while the second fine-grained con-
tains 16 sub-categories. In our study, we define 6 new

15URL: http://www.arrestedcomputing.com/readability.
16In detail, we (i) separate composed identifiers, (ii) lower case

the extracted words, (iii) remove special characters, programming
keywords, and common English stop words, and (iv) stem words to
their original roots via Porter’s stemmer [101].
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method-level textual metrics based on the first level, as
described by the last six rows in Table 8.

Code smells. These are poor design or implementa-
tion choices introduced by developers when maintaining
and/or evolving software systems [43, 121]. The addition
of the information on the design quality of classes into ex-
isting bug prediction models has been proved to improve
bug identification capabilities [93, 114]. The contribution
of measures of code smell severity appeared to be partic-
ularly useful in class-level bug prediction [93]. Following
these findings, in the context of our work, we first identify
code smell types that affect methods and then compute
their intensity. We focus on:

Long Method. This smell refers to methods implement-
ing more than one functionalities and is generally de-
tected by considering its size [43]. Methods affected by
this smell are poorly cohesive and possibly impact their
understandability, change- and defect-proneness [87].

Long Parameter List. This smell refers to methods
having a long list of parameters. Instances of this smell
can lower the maintainability of methods and possibly
indicate that the method is poorly cohesive [43].

Message Chains. This smell occurs when a client re-
quests an object; this requires yet another one, and so
on, thus creating a long concatenation of method calls
[43]. This smell has been associated to a higher defect-
proneness of the affected methods [32, 87].

The rationale behind the selection of these code smell
types is twofold. In the first place, these have been re-
ported to occur in software projects [87]. Perhaps more
importantly, they influence the bug-proneness of the af-
fected methods [87, 32], thus perfectly fitting the goal of
our paper.

To detect them we rely on Decor [75], a method to
define code smell detection rules using a Domain-Specific
Language. The approach uses a set of rules, called “rule
cards”,17 which describe the intrinsic characteristics that a
method should have to be affected by a certain code smell
type. In the case of Long Method, Decor identifies it by
considering the number of lines of code of a method: If
this is higher than 80, then a code smell is detected. As
for Long Parameter List, it considers a method affected by
this smell if it has more than three parameters. Finally,
Message Chains instances are detected if a method con-
tains a statement in which more than three method calls
are performed.

According to several empirical studies [88, 89, 100], the
accuracy of Decor is relatively high both in terms of pre-
cision and recall, with typical values of F-Measure around

17http://www.ptidej.net/research/designsmells/

75%. This makes the detector more accurate than other
available tools [41] and, therefore, suitable for our study.

Once detected code smell instances, we compute their
intensity. We follow a similar approach as previous work
[89, 90]: as Decor classifies a method as smelly if a specific
condition is satisfied, for instance, if its lines of code > 80,
we can say that the higher the distance between the actual
code metric value and the fixed threshold, the higher the
intensity of the smell. We use this approach to compute
the intensity of all the three smells considered.

Developer-related factors. Aspects capturing how
developers work on source code and what is the change
process they apply when performing software maintenance
and evolution activities have been often successfully ap-
plied in bug prediction as they showed a great potential
for improving predictive models [14, 24, 37, 53, 85].

These previous findings lead us to consider how
developer-related factors work when employed in the con-
text of method-level bug prediction. In particular, we fo-
cus on three orthogonal aspects such as:

Number of developers. In the first place, for each
method of the considered dataset, we compute how many
distinct developers worked on it over the history of the
project. The contribution of this metric to bug predic-
tion capabilities was firstly assessed by Ostrand et al.
[10, 85], who reported that individual developer’s data
provides a limited boost to bug prediction models; Nev-
ertheless, Di Nucci et al. [37] performed a larger empir-
ical evaluation of the value of this metric, showing that
it can improve the performance of these models by up
to 10%. This is the reason why we seek to understand
its value at a finer-level. We compute the metric by (i)
mining all commits in the change history that changed
a method m and (ii) counting the number of develop-
ers who made changes to it. To distinguish different
developers, we consider the e-mail address they left on
Github—we are aware that this computation may be
imprecise in cases where a developer uses multiple e-
mails when working on the project, however there is no
practical way to solve this problem.

Code ownership. According to Bird et al. [14], develop-
ers having a higher experience on the source code they
touch are less prone to introduce bugs. The authors
assessed this relation by computing the code ownership
of classes and measuring its impact on the performance
of bug prediction models, finding that models including
this metric have an accuracy that is 24% higher than
those not including it as a feature. In our work, we com-
pute code ownership at method-level by following the
same approach of Bird et al. [14]: given a method m, we
compute the ratio of number of commits that a contrib-
utor c has made on m with respect to the total number
of commits made by c. Once computed the metric for
all developers who contributed to m, we assign to the
method the maximum ownership computed.
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Entropy of code changes. Finally, we take into ac-
count the way developers make changes in a system
and compute the entropy of changes originally defined
by Hassan [53] for class-level bug prediction. This met-
ric has been shown to strongly impact on the perfor-
mance of predictive maintenance models [22, 53]. Fol-
lowing the algorithm of Hassan [53], we first identify
all commits which modified a method m and then run
a pattern-based technique that can detect the so-called
feature-introduction modifications, namely changes ap-
plied to introduce new or enhancing existing features.
Afterwards, the entropy of changes on m is computed
exploiting the concept of Shannon entropy [108] as in
the following equation:

entropy(m,α) = −(pm,α · log2 pm,α) (4)

where pm,α indicates the probability that m was
changed received feature introduction modifications over
its change history. This probability is computed consid-
ering the fraction between the number of feature intro-
duction modifications applied on m in the change history
over the total number of feature introduction modifica-
tions applied by developers.

It is important to remark that other alternative met-
rics have been proposed by researchers in the bug predic-
tion field, like for instance socio-technical [37, 102] or code
coverage features [15]. Being aware of those alternative
metrics, we decided to exclude them from our study as
they cannot be easily computed at method-level. For in-
stance, let consider the case of socio-technical congruence
[19]: this measures how much the organizational structure
of a development community reflects the actual techni-
cal organization among developers. While the metric has
been defined in terms of how much the developers’ so-
cial network matches the modularization of packages, no
definition is available with respect to the socio-technical
congruence between developers’ social network and divi-
sion of methods among classes. Thus, we preferred to be
conservative and not define any novel metric that would
have deserved a separate validation before being used in
our context. Rather, we relied on metrics that can be di-
rectly computed at method-level, e.g., the considered code
smells are all directly computable at method-level.

Model Definition and Data Analysis. To test the
contribution given by the considered families of features,
we build five classes of method-level bug prediction models
on the basis of those defined for RQ1. Our methodology
is inspired by the one of Bird et al. [14]: starting from the
baseline one, namely the product + process one defined by
Giger et al. [46], we progressively fed up the model with
additional features, so that we can measure the contribu-
tion given by each family of features to the capabilities
of method-level bug prediction (if any). Hence, we build
models relying on (i) product + process + textual features,
(ii) product + process + textual + code smell-related fea-

tures, and (iii) product + process + textual + code smell-
related + developer-related features. Furthermore, we also
build models relying on the various families of features in-
dependently so that we can assess the independent value
of each of them for method-level bug prediction.

As done in the context of the previous research
questions, we apply the Random Over-Sampling and
Correlation-based Feature Selection [49] algorithms to deal
with data balancing and multicollinearity. The perfor-
mance of all experimented method-level bug prediction
models are evaluated using the same validation strategy
(i.e., release-by-release) and evaluation metrics (i.e., pre-
cision, recall, F-Measure, and AUC-ROC) used in the con-
text of the previous research question. We also conduct a
statistical comparison of the performance of the prediction
models considered. The Mann-Whitney test [28] is not rec-
ommended in the case of comparisons of multiple models
over multiple datasets, since the performance of a spe-
cific model might vary between two datasets [36]. Thus,
we compared the AUC-ROC values of the experimented
models over the different systems using the Scott-Knott
Effect Size Difference (ESD) test [117].

7.2. RQ3 - Results

Figures 2 and 3 show the distribution of F-Measure
and AUC-ROC, respectively, achieved by the prediction
models built progressively using the various families of
features considered in our study. We also report on the
performance achieved by the models only relying on in-
dividual sets of features. Consistently with the method-
ology adopted for the first research question, we analyze
how their performance varies when considering different
classifiers (i.e., Simple Logistic, Logistic, Multilayer Per-
ceptron, Random Forest, J48, Decision Table, and Naive
Bayes). However, we limit the discussion of the results
to Random Forest because it was the classifier providing
slightly better performance (see Table 5).18

When looking at the figures, we can see that the mod-
els built using individual sets of features have poor per-
formance: for instance, the AUC-ROC of the only tex-
tual model is close to 53%, which indicates that it is just
slightly better than a random classifier. A similar discus-
sion can be drawn for the other individual models, thus
confirming that taking those features alone does not give
advantages when it comes to the prediction of defective
methods. These results confirm what has been previously
reported in the literature on the importance of combining
multiple features to boost the performance of bug predic-
tion models [5, 37, 104].

Turning the attention to the combined models, we no-
tice that the progressive addition of metrics only gives
marginal contribution to the overall classification accuracy.
Specifically, the inclusion of textual metrics into a model

18A complete overview of the results achieved when using other
classifiers is available in our appendix [98].
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Figure 2: Comparison of the distribution of F-measure values considering the combination of product, process and textual metrics.
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Figure 3: Comparison of the distribution of AUC-ROC values considering the combination of product, process and textual metrics.

containing product and process metrics allows the model
to have 4% and 5% more F-Measure and AUC-ROC. In
the first place, this indicates that these metrics provide a
limited amount of additional information to predict future
bugs. At the same time, our findings represent a negative
result with respect to the findings reported by all prior
studies that we exploited to derive the textual features
[1, 12, 16, 58]; indeed, we could not find any textual mea-
sure able to significantly increase the performance of the
experimented prediction models.

The discussion is similar when considering the addition
of code smell-related information. According to previous
findings in the field [93, 114], including a measure of code
smell severity within models relying on a combination of
process and product metrics provides an increase of ≈15%
in terms of F-Measure. Unfortunately, this is not the case
when lowering the granularity of the predictions. In our
case, indeed, the F-Measure of the product + process +
textual + code smell-related model is even lower than the
one not including any smell-related information (-2% ).
This may indicate that code smells computed at method-
level have a limited predictive power when compared to
class-level code smells. Thus, our findings are again nega-
tive with respect to previous work [93, 114]. Perhaps more

importantly, we could not confirm the results of D’Ambros
et al. [32], in which the authors reported that one of the
considered smells, i.e., Message Chains, is the one that
mostly affects the bug-proneness of source code methods.

As for the developer-related factors (named All metrics
in Figures 2 and 3), their inclusion provides an increase of
4% with respect to the second best performing model (the
product + process + textual one). So, also in this case, we
claim that the contribution is marginal and that we could
not confirm the role of developer-related factors for bug
prediction when the granularity is that of methods.

The results discussed so far are all statistically signif-
icant. According to the ranking of the performance pro-
vided by the Scott-Knott ESD test [117], there is no model
performing statistically better than the others, thus indi-
cating that the addition of alternative metrics does not
boost the performance of bug prediction.19

To conclude the discussion, based on the findings dis-
cussed so far we argue that the research on method-level
bug prediction still needs notable steps to do for better
supporting developers. Our paper provides initial com-
pelling evidence of the need of novel, specific metrics able

19Detailed statistical results are reported in our appendix [98].
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to capture method-level information that actually relate
to the bug-proneness of methods.

Result 3: The addition of alternative features based
on textual, code smells, and developer-related factors
improves the performance of the existing models only
marginally, if at all.

8. Threats to Validity

We describe the factors that can affect the validity of
our empirical results.

Threats to Construct Validity. A first factor influ-
encing the relationship between theory and observation is
related to the dataset exploited. In our study, we relied on
the same methodology previously adopted by Giger et al.
[46] to build our own repository of buggy methods, i.e., we
first retrieved bug-fixing commits using the textual-based
technique proposed by Fisher et al. [42] and then con-
sidered as buggy the methods changed in that commits.
While we cannot exclude possible imprecision and/or in-
completeness of the data used in this study, we have re-
evaluated the performance of the tool by Fisher et al. in
our context finding that it could detect buggy commits
with a precision of 84% correctly. Still in this category,
we re-implemented the product and process metrics used
to build the experimented models. This was due to the
lack of a publicly available tool. When re-implementing
such metrics we faithfully followed the descriptions pro-
vided by Giger et al. [46]. As for the alternative metrics,
instead, we used available tools whenever possible (e.g., in
the case of the comment classification [96] or when detect-
ing method-level code smells [75]). To enable and stimu-
late the replicability of our study, we made all tools and
scripts exploited publicly available in our online appendix
[98]. As for the selection of the classifier to use when build-
ing the bug prediction model, we tested the performance
of different classifiers, finding Random Forest to be the
one providing the best performance. All the tested clas-
sifiers use the default parameters, since finding the best
configuration for all of them would have been too expen-
sive [11]. Future work can be devised to investigate the
impact of parameters’ configuration on our findings.

Threats to Conclusion Validity. A first point
of discussion regards the data pre-processing techniques
adopted before the construction of the experimented bug
prediction models. To ensure that the results would not
have been biased by confounding effects such as data un-
balance [26] or multi-collinearity [40], we adopted formal
procedures aimed at (i) over-sampling the training sets
[26] and (ii) removing non-relevant independent variables
through feature selection [49]. As for the evaluation of
the models, we complemented the results concerning the
F-measure by relying on a threshold-independent metric
such as the AUC-ROC. Furthermore, we supported our

findings with an appropriate statistical test like the Scott-
Knott ESD one [117].

Threats to External Validity. This category refers
to the generalizability of our findings. While in the context
of this work we analyzed software projects having differ-
ent size and scope, we limited our focus to Java systems
because some of the tools exploited to compute the con-
sidered metrics only work for this programming language
(e.g., certain code smells have been only defined for Java
[43]). Thus, we cannot claim generalizability concerning
systems written in different languages as well as to projects
belonging to industrial environments. Similarly, we con-
sidered a subset of the available metrics in each of the
five families of features considered: in particular, we lim-
ited ourselves to the analysis of the metrics which previous
works have analyzed, while we cannot exclude that differ-
ent results could be achieved when considering different
metrics (e.g., other method-level code smell types).

9. Conclusion

We investigated (i) the performance of different types
of method-level bug prediction models when applied in a
real-case scenario and (ii) the contribution given by tex-
tual features to existing bug prediction models. The main
contributions made by our study are:

1. A re-evaluation on different systems/timespans of
previously defined method-level bug prediction mod-
els. The results confirm previous findings in the field
[46].

2. An empirical analysis of how the performance of ex-
isting method-level bug prediction models change
when applied to a more realistic, release-by-release
scenario. Our results provide evidence that current
method-level bug prediction models do not dramati-
cally outperform a random classifier; hence we reveal
the need for further research in this area.

3. An empirical analysis of whether the performance of
existing method-level bug prediction models can be
improved by considering a set of 8 textual features.
Our results reveal that the overall prediction capa-
bilities lead to negligible improvements.

4. An online appendix [98] that reports the dataset and
all the additional analyses performed in the work
described in this paper.

Based on the results achieved so far, our future agenda
includes (i) the replication of our study on a broader set
of systems also considering ensemble methods [38, 69], (ii)
the investigation of novel metrics to properly work for
method-level bug prediction, and (iii) an in-vivo analysis
of the capabilities of method-level bug prediction models,
involving practitioners during their daily activities [66].
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G. 2012. An exploratory study of the impact of antipatterns on
class change-and fault-proneness. Empirical Software Engineer-
ing 17, 3, 243–275.

[63] Kim, S., Zhang, H., Wu, R., and Gong, L. 2011. Dealing with
noise in defect prediction. In Software Engineering (ICSE), 2011
33rd International Conference on. IEEE, 481–490.

[64] Kittler, J. et al. 1982. Pattern recognition. a statistical ap-
proach.

[65] Kpodjedo, S., Ricca, F., Galinier, P., Guéhéneuc, Y.-G.,
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