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SUMMARY

A broken snapshot represents a snapshot from a project’s change history that cannot be compiled. Broken
snapshots can have significant implications for researchers, as they could hinder any analysis of the
past project history that requires code to be compiled. Noticeably, while some broken snapshots may be
observable in change history repositories (e.g., no longer available dependencies), some of them may not
necessarily happen during the actual development. In this paper we systematically study the compilability
of broken snapshots in 219,395 snapshots belonging to 100 Java projects from the Apache Software
Foundation, all relying on Maven as an automated build tool. We investigated broken snapshots from two
different perspectives: (i) how frequently they happen and (ii) likely causes behind them. The empirical
results indicate that broken snapshots occur in most (96%) of the projects we studied and that they are
mainly due to problems related to the resolution of dependencies. On average, only 38% of the change
history of project systems is currently successfully compilable.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A broken snapshot represents a snapshot from a project’s change history that cannot be compileda.
The problem of having incompilable snapshots can have significant implications for researchers
preventing the use of tools working on byte code as well as any sort of dynamic analysis. Other
than representing problems for developers, as previous work has shown [14, 32, 38, 19, 29],
broken snapshots represent a strong limitation for researchers interested in running Mining Software
Repositories (MSR) studies. To better illustrate the problem, let us consider the following scenarios.

Gabriele is a researcher studying the impact of refactoring activities on code smells. To this aim,
Gabriele is using a smell detector, JDeodorant [36, 11] and a refactoring detector, RefFinder [27].
All these tools work on byte code, hence require source code to be compiled. When trying to compile
all 1,000 revision snapshots of a project A, Gabriele realizes that there are 400 snapshots that failed
to compile, hence, creating gaps in the observed project history, because JDeodorant and RefFinder
cannot work on these snapshots. Gabriele feels that these gaps would seriously impact his analysis,
especially because some of them occur in periods where release notes announced major projects’
restructuring. Certainly, Gabriele could decide to conduct the whole study at release level; however,
refactoring actions can be precisely identified only at commit level granularity. Indeed, differencing

aIn this paper we focus on broken snapshots based on compiling software, while other broken snapshots could be the
result of test failures, deployment failures, etc.
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2 TUFANO ET AL.

two releases would introduce noise because multiple changes, not only refactorings, have likely
occurred on the same artifacts. This represents a significant threat to validity for such analysis [4].

A similar situation occurs to Alex, a researcher studying how the quality of test suites changes
over time. Alex is interested in measuring the code coverage of the test suites in a project after each
commit, to analyze the phenomenon at a fine-grained level (e.g., to understand the characteristics
of commits that lead to a strong decrease in code coverage). To measure the code coverage Alex
is using Coberturab. Unfortunately, this tool also works on byte code, requiring the compilation of
each project’s snapshot that Alex is interested in analyzing. Alex is unable to compile about 450
out of the 900 projects’ snapshots, i.e., half of them. He performs a deep investigation to identify
the likely causes of lack of compilability and, for 100 snapshots, he realizes that the build script is
unable to solve library dependencies, either because they refer to local files, or because the libraries
are no longer available in the Maven central repository. He is able to solve the problem for 80 of
them, by manually searching for the needed library version. However, (i) the whole investigation
took two days of Alex’s effort, and still the achieved compilability rate is not enough for the analysis
to be performed. As a consequence, Alex decides to change his plan, shifting the focus of the study
to a coarser-grained level, only studying the quality of the test suite in each issued release (already
compiled) of the analyzed project.

Clearly, the higher the rate of broken snapshots in the project, the higher the chances that Gabriele
and Alex will not be able to derive useful (actionable) insights for the projects they are studying,
since they will not be able to run the needed tools on those broken commits.

Paper contribution. While broken snapshots is a significant research problem, there has been
little effort in empirically exploring and understanding the root causes and implications of these
problems. The goal of this paper is to fill this gap by systematically studying the compilability
of Java project snapshots downloaded from Version Control Systems (VCS), with the purpose of
understanding:

1. how frequently compile broken snapshots (in the following referred to as simply “broken
snapshots”) occur, and how long they last before the snapshot becomes compilable again
in post-mortem analysis (noteworthy, we focus on compilability “here and now” for mining
purposes, as opposed to compilability in the past for development purposes).

2. why broken snapshots occur, i.e., what are the typical reasons behind their introduction.

The study has been conducted in the context of 100 Java open source projects by relying on Maven
as an underlying build system. Overall, we downloaded, attempted to compile and analyze 219,395
snapshots of these 100 projects.

Motivations and Implications. The results of our study can be used from multiple perspectives.
One straightforward perspective is the one of a researcher—or somebody interested in gaining
actionable analytical insights for an evolving software project—mining change histories for various
purposes [6]. Broken snapshots can hinder any analysis performed at commit level, because many
such tools require byte code to work [9, 2, 10, 35], while specific analyses, e.g., related to dynamic
analysis or test suite assessment, require the system to be executed. From this perspective, the
higher rates of broken snapshots would either trigger tedious and costly repair activities (assuming
they are even possible), or force the researcher to perform the analysis at a coarse-grained level,
i.e., limit the analyses to compilable releases (and potentially loose useful data at commit level
granularity). However, there are numerous examples in the research literature showing that the
choice of granularity (commit vs. release) is an important design decision, since analysis at different
granularity may produce different or even contradictory results. For instance, the evolutionary study
of code clone genealogies at commit level by Kim et al. showed that a significant number of clones
in software was short-lived [16]. However, another study of code clone genealogies at release level
by Saha et al. demonstrated contradictory results, finding that many code genealogies persisted in
follow-up releases [31, 5].

bhttp://cobertura.github.io/cobertura/
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THERE AND BACK AGAIN: CAN YOU COMPILE THAT SNAPSHOT? 3

More studies, related to fix-inducing refactorings [4] or to changes occurring on design patterns
[1] have been performed by detecting refactorings and design patterns at release level. However, in
the first case [4] it would have been desirable to perform a more precise detection of refactorings
at commit level, and, in the second case [1], to study how design patterns were introduced by
developers in specific commits. Yet, the refactoring detector [27]c and the design pattern detector
[37] work on byte code. Similarly, a study on the evolution of test cases performed by Zaidman
et al. [40] could have been performed at fine-grained level aiming at observing specific activities
triggering the need to augment test suites, as well as changes leading to better test suites achieving
higher coverage. Of course, there are also cases (see the clone studies above) for which analysis at
release level [31] can be easier and probably more meaningful [5]. All these considerations outline
the need for the study presented in this paper: An empirical investigation into the phenomenon of
broken snapshots is needed aiming at shedding some light into the reasons on when and why such
changes happen.

Main results. The results of our study indicate that broken intervals (i.e., time periods including
one or several consecutive broken snapshots) occur in 96% of the projects we analyzed with a
median number of four in each system. Broken intervals are mostly small, with a median size of
three subsequent broken snapshots. However, they can severely impact the compilability of software
systems. As a matter of fact, on average, only 38% of the change history of a project system is
successfully compilable today. The substantial number of broken snapshots shows their potential
to hinder commit-based analysis of the project’s change history when this requires compiling a
snapshot of a system (e.g., in the context of MSR-driven research). Moreover, broken snapshots
are in most of the cases related to dependency resolution problems. Finally, snapshots’ age highly
impacts the likelihood of a successful compilation. Indeed, Recent Snapshots (i.e., snapshots
referring to commits performed recently in the change history) are almost 3.76 times more likely to
compile with respect to Early Snapshots (i.e., early snapshots in the change history of the project).

Paper structure. Section 2 describes the study definition, research questions and planning.
Results are reported and discussed in Section 3, while the threats to its validity are discussed in
Section 4. Section 5 discusses the related literature on the analysis of build systems, while Section
6 concludes the paper and outlines directions for future work.

2. EMPIRICAL STUDY DEFINITION AND DESIGN

The goal of the study is to analyze the change history of open source software projects, with the
purpose of investigating the extent to which broken snapshots occur and which are the typical errors
that a miner can observe when automatically compiling change history code snapshots. The quality
focus of the study is on compiling projects’ snapshots downloaded at commit-level granularity. The
perspective is of researchers interested in performing mining studies over project histories using
approaches and tools requiring to compile the project. The context consists of 100 Java open source
projects using a Maven-based build infrastructure.

More specifically, the study aims at addressing the following Research Questions (RQs):

• RQ1: How many snapshots are currently compilable in the change history? This research
question aims at quantifying the relevance and magnitude of the observed phenomenon by
investigating the frequency with which broken snapshots occur over time, and to what extent
automatically compiling the complete change history of software project can be successful.
We also investigate whether the size of the change history and the snapshot’s age impact the
likelihood of a successful compilation. We have chosen to study the effect of these two factors
because it is possible that recent snapshots could be less affected by the problem, e.g., because
dependencies are still available.

cThis tool is reported as an example, as refactoring detection tools working on source code also exist.
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4 TUFANO ET AL.

Table I. 100 projects considered in the study.

#Classes KLOC #Commits Mean history Min-max
length history length

4-6,027 0-887 219,395 5.21 0-13

The output of RQ1 will provide a quantification of the possible problems researchers could
experience in mining and compiling the change histories of open source systems.

• RQ2: Which types of errors can be observed by automatically compiling code snapshots?
The second research question sheds the light on the possible causes behind broken snapshots,
by categorizing the compilation errors we identified in our study. Knowing why a broken
snapshot happens can help in understanding if it could be automatically/manually fixed with
a reasonable effort while mining the software change history.

2.1. Context Selection

The context of our study consists of 100 open source projects from the Apache ecosystemd. Our
choice of focusing on these software projects is not random but aimed at considering systems that
are (i) widely used in mining studies and, more generally, in studies carried out in the software
engineering community [12, 22, 3, 30], (ii) using state-of-the-art build systems, and (iii) having a
considerable change histories to analyze. Overall, to date the Apache ecosystem is composed of 249
software projects. Among those, we only selected the ones fully written in Java (187 projects) and
relying on Mavene as an automated build tool. As we will explain later, the use of a fully automated
build tool is a requirement for considering a system in our study, while the focus on systems written
in Java is dictated by the fact that Maven is mainly used in the context of Java-based projects. As
of today, Maven is one of the most popular build systems for Java projects. According to a survey
(performed in mid 2013)f Maven is being used by 71% of the interviewed developers, while 35%
use Gradleg and 17% Anth. Note that the sum is beyond 100% as there are developers using multiple
tools. In summary, we decided to focus on Maven not only because of its popularity (especially in the
case of the Apache ecosystem [20]), but also because of its capability to resolve dependencies (e.g.,
a broken snapshot for an Ant-based project could just be due to the need for manually downloading
a library and putting it in a specific location). Moreover, as it will be explained in Section 2.2,
Maven generates error codes for different kinds of compilation errors, which allows us to address
RQ2 without the risk of introducing a subjective or error-prone classification.

To identify which of the 187 Java projects make use of Maven we cloned their Git repositories
and verified the presence of pom.xml in the last systems’ snapshot. This selection resulted in
identifying 136 projects (72% of the total) using Maven. Due to the very computationally expensive
analysis that we needed to perform to answer our two research questions, we decided to limit our
study to 100 randomly selected projects. Table I reports the characteristics of the subject systems,
and in particular (i) the size ranges in terms of the number of classes and KLOC, (ii) the overall
number of commits analyzed, and (iii) the average, minimum, and maximum length of the projects’
history (in years) analyzed. All the considered projects are hosted in Git repositories. The list of 100
projects considered in our study can be found in our replication package (see Section 2.4).

In order to assess the extent to which the chosen set of projects represents a large body of open
source Java projects (in terms of code size, team size, and project activity), we used the diversity
metric proposed by Nagappan et al. [23]. We matched the list of the systems in our study against the
projects available in Boa [8], and ended up with only ten out of 100 projects that were matched by

dhttp://www.apache.org
ehttp://maven.apache.org
fhttp://arhipov.blogspot.it/2013/08/java-build-tools-survey-results.html
ghttps://gradle.org
hhttps://ant.apache.org
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THERE AND BACK AGAIN: CAN YOU COMPILE THAT SNAPSHOT? 5

name. The diversity metric calculated on this subset was 0.4984, which means that only 10% of our
dataset covers almost half of the open-source projects according to four dimensions: developers,
project age, number of committers, and number of revisions. The scores for each dimensions are
0.89, 0.99, 0.92, 0.91 respectively, indicating that our subset covers relevant dimensions for our
analysis.

2.2. Data Extraction Process

The first step needed to answer the two research questions is to identify, for each analyzed project
Pi, the time interval Tb during which it used the Maven building tool. To identify Tb for each Pi

we mined Pi’s complete change history looking for the commit Cstart introducing the Maven build
file pom.xml. Then, we verified that there was no commit in the Pi’s history deleting the build file
from the versioning system until the last commit considered in our study (we cloned the repositories
during September 2014). Thus, Tb for each of the considered projects begins at the date in which
Cstart was performed and ends at the date in which the last commit was performed in the cloned
repository. This process resulted in the exclusion, on average, of 0.79 years of change history across
the 100 systems (i.e., ≈ 3 years). Overall we analyzed 437 cumulative years of change history for
all the projects.

Once the portion Tb of change history to analyze was defined for each project, the steps detailed
in the following subsections have been performed to extract the data needed to answer our RQs.
The overall data extraction process took eleven weeks despite being distributed across three Linux
servers of which two were equipped with 8 ten-core 3.2 GHz CPU (80 cores) and 192 Gb of RAM
and one with 40 quad-core 2.13GHz CPU (160 cores) and 160 Gb of RAM.

RQ1 and RQ2: Compiling Snapshots for each Commit. The basic data needed for answering
the two research questions is the information about the compilability of each snapshot present in
the change history (Tb) of each project Pi. To extract such information we built a mining tool using
Maven to automatically compile the system at each snapshot in Tb. During this phase each snapshot
S is classified as compilable or not compilable.

If a snapshot S is not compilable it is classified as a broken snapshot. We define a broken interval
as a series of continuous broken snapshots Si, Si+1, . . . , Sj−1, Sj , such that Si−1 and Sj+1 are
either compilable snapshots or not part of the change history (i.e., Si−1 and/or Sj+1 do not exist).
The snapshot Si is the broken interval starting point represented with BIstart, while the snapshot
Sj is the broken interval ending point represented with BIend. We limited our analysis to the
master branch (including merges of other branches) for several reasons. First of all, according to
the guidelines provided by Giti, the master branch always reflects a production-ready state. Thus, it
can be considered as the most stable one and, therefore, it is worth investigating the phenomenon of
broken snapshots on such a branch. We also verified this conjecture applies to the analyzed projects
by analyzing the documentation page of 10 randomly selected Apache projects. Secondly, most
of the mining studies are conducted through the analysis of the master branch (e.g., [24, 40, 37]).
Since our goal is to analyze how the phenomenon of broken snapshots can impact the activities of
researchers interested in compiling code snapshots, we decided to focus our attention only on this
branch.

Also, note that for our perspective of researcher interested to perform fine-grained historical
analysis of compilable commits, we are interested in the compilability of each single commit. This
might not be the case when looking at the same phenomenon from a developer’s perspective, for
which what matters is the compilability before performing a push or pull request.

In order to compile all the 219,395 snapshots in our study, the tool that we built relies on Maven
3.2.3 (the latest version available as of September 2014, which ensures backward compatibility
with previous versions), by programmatically invoking it through the Java API provided by Apachej.
More specifically, our tool creates an Invoker of type InvocationRequest setting compile

ihttps://git-scm.com/doc
jorg.apache.maven
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6 TUFANO ET AL.

as the building goal. The InvocationResult returned by the Invoker reports the compiling’s
results, including its success (i.e., the snapshot was compilable) or failure (i.e., the snapshot was not
compilable).

RQ2: Classifying Compile Errors. While the classification of snapshots as compilable or not
compilable and the identification of breaking intervals is sufficient to answer RQ1, in the context
of RQ2 we need to analyze the issues observed when compiling broken snapshots. To this aim, we
mapped the errors captured while compiling not compilable snapshots into four possible categories
related to different building actions that may fails into one of these categories:

• Resolution: errors related to the resolution of artifacts (e.g., download of dependencies);

• Parsing: errors due to the parsing operation (e.g., malformed build files);

• Compilation: errors occurring during the compilation phase (e.g., syntactic errors in the source
code);

• Other: generic errors that cannot be mapped to any of the above listed actions (e.g., Maven
itself crashes during the run).

These four categories have been iteratively defined by two of the authors that manually analyzed the
errors stored by our mining tool for each snapshot tagged as not compilable. The errors thrown by
Maven during the snapshot compilation have been manually and independently analyzed by each
of the two involved authors, who classified them into categories of errors related to the different
compiling actions. Specifically, the two authors manually mapped the exceptions thrown by Maven
into the corresponding action categories. To accomplish this task, they read the Maven exceptions’
documentation available onlinek. After having independently mapped the errors into categories,
the two authors met to resolve the conflicts and to refine their classification, leading to the four
categories listed above.

2.3. Data Analysis

To answer RQ1 we report descriptive statistics about the number of broken intervals found while
attempting to automatically compile the change history of the analyzed software systems and the
length of such broken intervals. Also, we measure the length of broken intervals BI in terms of the
number of broken snapshots between BIstart and BIend (considering BIstart and BIend too).

Since we want to report absolute values as they are easier to be interpreted than percentages
of commits over the total history length, we need to take into account the different size of the
change histories of the subject systems. To this aim, we classified projects in short, medium and
long history length, on the basis of the available, observed history. This also allows us to verify the
impact of the history length on the likelihood of observing broken snapshots. To classify the projects
into the above categories, we compute the first (Q1) and the third (Q3) quartile of the distribution
representing the change history length of the subject systems. We classify systems into the following
categories: (i) short history length if they have a number of commits Cn lower than Q1; (ii) medium
history length if Q1 ≤ Cn < Q3, and (iii) long history length for which Cn ≥ Q3. We report and
discuss results on the number and size of broken intervals for the three categories separately as
well as for all categories together. In order to provide an overall view of the extent to which broken
snapshots are found in the change history, we show the distribution of the compilability (that is,
the percentage of snapshots successfully compilable in the change history of each of the analyzed
systems). This analysis complements the previous one performed with absolute numbers.

Moreover, we determine whether the number of broken intervals and project’s compilability is
correlated with the history’s length. We show scatter plots, compute Kendall’s rank correlation, and
also check, using a Kruskal-Wallis test, whether the number of broken intervals differs across the
three categories.

khttp://tinyurl.com/ja4ncal
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THERE AND BACK AGAIN: CAN YOU COMPILE THAT SNAPSHOT? 7

Finally, we analyzed whether the age of the snapshot in a software project is an important factor
characterizing its likelihood of successful compilability. We classified the snapshots of each project
in accordance to their position in the change history. Similarly to what previously was done for the
change history length, we use quartiles to define the categories of snapshots. In particular, given a
software project’s change history CH = {S1, S2, . . . , Sn} we compute the first (Q1) and third (Q3)
quartile of the distribution of the snapshots over time. We classify the snapshot of each project CH
in the following categories:

• Early Snapshots: snapshots belonging to the early stage of the change history (Si|i < Q1).
Representing the first 25% of the snapshots in the CH .

• Intermediate Snapshots: snapshots belonging to the middle stage of the change history
(Si|Q1 ≤ i ≤ Q3). Representing the middle 50% of the snapshots in the CH .

• Recent Snapshots: snapshots belonging to the recent stage of the change history (Si|i > Q3).
Representing the last 25% of the snapshots in the CH .

We report and discuss the results on the distribution of compilability for such categories of
snapshots. The intuition behind this analysis is that we expect that snapshots belonging to the early
stage of a project’s change history are less likely to be successfully compilable with respect to more
recent snapshots, given the fact that references to dependencies might have been changed, missing
or deprecated. To verify the statistical significance of such a hypothesis, also in this case we apply
the Kruskal-Wallis test.

For RQ2 we report the results of classifying non-compilable snapshots according to the possible
causes behind those errors (see Section 2.2).

2.4. Replication Package

The data set used in our study is publicly available at http://www.cs.wm.edu/semeru/data/breaking-
changes/. Specifically, we provide: (i) the list of analyzed systems with links to their versioning
system and GitHub page; (ii) the raw data collected for the two research questions; and (iii) the
R scripts and working data sets used to run the statistical tests and produce the figures and tables
presented.

3. EMPIRICAL RESULTS

This section reports the analysis of the results aimed at answering two research questions formulated
in Section 2.

3.1. RQ1: Occurrence of Broken Snapshots

We divided the projects in three categories based on the length of the change history using the
quartiles of such distribution as described in Section 2.3. The quartile values are: Q1 = 235 and
Q3 = 1, 968 commits. Note that these quartiles refer to the portion of the change history in which
we identified a build file. Since we are using Q1 and Q3 to define our sets, the number of projects
for each category is 25, 50 and 25 respectively for projects in the short, medium and long history
category.

Table II shows the number of broken intervals observed during the change history of the studied
systems. We found that 96% of projects experienced at least one broken interval in their history.
Also, the value for the first quartile (2.00) for all the projects indicates that at least 75% of the
analyzed projects experienced at least two broken intervals. Also the median (4.00) and the mean
(8.99) values confirm that, generally speaking, the phenomenon of broken snapshots cannot be
ignored by researchers interested in mining (and compiling) the change history of a software system.
When looking at the data for projects belonging to the three groups, on the one hand, we can notice
that the median and mean number of broken intervals slightly increases in case of projects with

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
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8 TUFANO ET AL.

Table II. Number of broken intervals for projects having different length of change history.

Projects Min 1st Qu. Median Mean 3rd Qu. Max SD
Short history 1.00 2.00 3.00 3.12 4.00 7.00 1.56
Medium history 0.00 1.00 5.00 7.84 9.00 32.00 8.35
Long history 0.00 1.00 7.00 16.50 26.00 62.00 18.96
All 0.00 2.00 4.00 8.99 9.00 62.00 12.26

Table III. Size of broken intervals.

Projects Min 1st Qu. Median Mean 3rd Qu. Max SD
Short history 1.00 1.00 5.00 18.96 16.00 139.00 33.20
Medium history 1.00 1.00 4.00 53.09 30.00 1212.00 150.39
Long history 1.00 1.00 2.00 184.00 26.00 6955.00 676.01
All 1.00 1.00 3.00 110.50 25.75 6955.00 478.03

Table IV. Percentage of Compilable Snapshots

Projects Min 1st Qu. Median Mean 3rd Qu. Max SD
Short history 0.00 24.44 44.00 48.91 79.61 97.01 33.63
Medium history 0.00 5.44 29.60 39.46 72.50 100.00 34.69
Long history 0.00 0.00 18.54 23.78 33.26 100.00 28.38
All 0.00 5.43 29.60 38.13 66.00 100.00 33.79

medium or long history. On the other hand, the scatter plot in Figure 1a shows that there is no clear
correlation between the size of the change history and the number of broken intervals found. This
result is confirmed by the correlation value (τ = 0.29), which indicates a low correlation between
the phenomenons. Note that even though we obtained a low correlation value, this is definitely
not negligible, therefore worth to further investigate using different dataset. Finally a statistical
comparison among the three groups performed using the Kruskal-Wallis test indicates a lack of
statistically significant difference (p-value=0.06).

To get a better idea of what these numbers mean in practical terms (i.e., to what extent these
broken intervals affect the compilability of the subject systems), Table III shows the descriptive
statistics summarizing the length of the broken intervals (i.e., the number of commits performed
between a BIstart and its corresponding BIend —see Section 2.3). The median length of broken
intervals is 3.00, showing that at least half of the broken intervals only affect few commits (less than
four). However, relatively high values of the mean (110.50) and standard deviation (478.03) tell
another part of the story, highlighting the presence of very long broken intervals. For instance, we
identified in our dataset a very long breaking interval in the Apache Oozie system. The BIstart
snapshot is dated Sep 2, 2011 and its corresponding BIend is found on Jul 17, 2012 for a total
of 408 broken snapshots. In order to understand the reason behind this long breaking interval we
manually analyzed what was the change that actually broke the compilation, finding that it was
related to the update of a dependency, i.e., org.slf4j, that cannot be resolved. As for the end of
the broken interval, we found that it corresponds to a commit in which a developer updated most of
the dependencies of the project, likely resolving the org.slf4j dependency.

The effect of broken intervals on compilability of the analyzed systems’ snapshots is described
in Table IV, which reports the percentage of compilable snapshots. The process adopted to verify
the snapshots’ compilability is the one described in Section 2.2. Surprisingly, the percentage of
compilable snapshots is quite low (mean=38%, median=70%). This clearly poses strong limitations
on the kind of analysis one can carry out on these non-compilable snapshots, for instance, the
kinds of analyses outlined in the introduction. On 18 projects we were not able to compile any
of the snapshots available. We manually investigated such cases in order to understand the possible
reasons behind this result. We found that all of them are actually sub-projects belonging to parent

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr



THERE AND BACK AGAIN: CAN YOU COMPILE THAT SNAPSHOT? 9

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●

●
●●●

●
●

●

●

●●

●

●

●

●

●
●

●
● ●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●

●

0 2000 4000 6000 8000 10000

0
10

20
30

40
50

60

Change History Length (commits)

B
ro

ke
n 

In
te

rv
al

s

(a) # Breaking Intervals

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Change History Length (commits)

C
om

pi
la

bi
lit

y

(b) % Compilability

Figure 1. Scatter plots of (a) size of broken intervals per change history length; and (b) compilability rate
per change history length.

projects. Even if they have their own pom.xml file, their compilation depends on the compilation
of the parent projects. As an example, Log4j-receivers is part of the Log4j project. In one of
the first commits, a developer moved the build plugin configuration to the parent projectl, making it
impossible to compile any of the snaphots of the system. Note that we do not look at the relationships
among the software projects since our goal is to systematically investigate the compilability of
Apache projects, actually simulating the behavior of a researcher interested in performing a large
scale mining study.

On the other hand, we also observed several exceptions to the general low compilability trend, like
the Apache Quid-proton project that reported 100% compilability for all the snapshots despite
the relatively long change history (1,759 mined commits). Interestingly, during its change history
this project only established dependencies toward two libraries, i.e., JUnit and org.mockito.
However, it is worth noting that developers always declared dependencies with major releases of
such libraries.

Moreover, we investigated whether the length of the change history (negatively) correlates with
the compilability of the project. The scatter plot in Figure 1b clearly shows a very low correlation,
which is confirmed by the Kendall’s τ = −0.25.

Finally, we analyzed the impact of the snapshots’ age on the compilability. Table V shows the
distribution of compilability for the three categories of snapshots based on their age in the software
project. The trend is clear - the age of the snapshots is an important factor characterizing the
likelihood of a successfully compilation. Indeed, looking at the median values, Recent Snapshots
are almost two times more likely to compile than Intermediate Snapshots and 3.76 times more likely
to compile with respect to Early Snapshots. The result is statistically significant (p-value<0.01) as
highlighed by the Kruskal-Wallis test.

lhttp://tinyurl.com/hodp7fu
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Table V. Percentage of compilable snapshots based on snapshots’ age.

Snapshots’ Age Min 1st Qu. Median Mean 3rd Qu. Max SD
Early Snapshots 0.00 0.00 12.39 36.20 83.93 100.00 41.06
Intermediate Snapshots 0.00 0.00 23.60 36.42 71.01 100.00 38.62
Recent Snapshots 0.00 0.46 46.56 43.89 75.69 100.00 38.51

Table VI. Likely causes behind broken snapshots.

Action %
Resolution 58%
Parsing 10%
Compilation 4%
Other 28%

Summary for RQ1. Among the analyzed systems, 96% exhibit at least one broken interval in
their history, and this phenomenon is not necessarily more severe for projects with a longer change
history. Most of the broken intervals only result in a few uncompilable commits, while the others
persist in the system for a long time resulting in a high number of snapshots (median 30%) that
can not be properly compiled or built. Snapshots’ age in a software system represents an important
factor characterizing the likelihood of a successful compilation, with recent snapshots being more
compilable than early snapshots.

3.2. RQ2: Likely Causes for Broken Snapshots

Table VI reports classification results of the causes behind the compiling errors that we identified
in the subject projects (see Section 2.2). A large number of the errors (58%) raised during the
Resolution of an artifact, usually representing a dependency to be solved (e.g., a library linked by the
project under analysis). Indeed, the most frequently raised exceptions we found during the Maven
building were DependencyResolutionException (32%) and ArtifactResolution-
Exception (26%). The former is raised, for example, during the compilation of an Apache
Oltu’s snapshot SB , due to the problem of downloading the OAuth library, responsible for the
implementation of a secure authorization protocol via HTTP. This error has been fixed after 193
commits in a commit SF by modifying the reference pointing to the OAuth library in the pom.xml
file. It should be noted that the compilation error we identified during these 193 commits could be
the result of two scenarios having different implications:

1. The compilation error was actually present at the time T in which SB was committed. This
means that the developers actually put a wrong reference to the OAuth library inside the
build file. Thus, starting from T , it was not possible to compile the system for the subsequent
193 commits, when SF fixed the issue. If this is the scenario behind SB , this change clearly
resulted in a long broken interval for Apache Oltu, with all possible consequent problems.

2. The compilation error was not present when SB was committed. Suppose that the reference to
the OAuth library present in the build file after SB was valid at that time, and has remained
so until SF , in which the developers updated the OAuth’s reference to a new one, given the
unavailability of the previous reference. Clearly, by mining the OAuth’s versioning system
today, the old reference is no more available since the time in which SF has been committed
results in compiling issues during the 193 commits between SB and SF . In this scenario, the
SB commit did not cause any issues for developers during the broken interval we observed,
but it only represents a problem for people interested in post-mortem analysis — compiling
snapshots of a system for each commit, which is a typical use case in the field of mining
software repositories. It is worth noting that it is not obvious to determine to what extent
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this phenomenon occurs, because we cannot determine whether the URL was valid when the
pom.xml file was committed. However, it must be pointed out that on our interpretation this
still constitutes a broken interval for researchers interested to analyze the past history of a
project or use such data to build a recommender.

Parsing and Compilation errors account only for a small fraction of broken snapshots identified
in the projects (10% and 4%, respectively), showing that the build and the source code files are
generally correct from a syntactic point of view. One example of such broken interval is the one
we observed in the Apache Jackrabbit system due to compilability problems in one of the
libraries it exploited. Such a problem was fixed after three commits with a commit reporting the
following message: “Bundle plugin 2.3.5 requires Java 6. Downgrade to 2.3.4 that works with Java
5”. The problem was due to the different Java versions exploited by the client project (i.e., Apache
Jackrabbit, requiring Java 5) and the specific version of the exploited library (i.e., Bundle
plugin 2.3.5, requiring Java 6). The problem was solved by downgrading the dependency to
a previous version of the library requiring Java 5. Unlike the example discussed for the Apache
Oltu system, in this case we can observe that the broken interval has been directly observed by the
developers of the Apache Jackrabbit project.

The remaining 28% of errors fall in the Other category, containing errors that we were not able
to map to a specific compile action.

Summary for RQ2. The causes behind broken snapshots are often related to problems encountered
during the resolution of dependencies (58% of cases), while we rarely observed errors due to
syntactic errors in the build and source code files.

4. THREATS TO VALIDITY

Threats to construct validity concern the relationship between theory and observation, and in this
work, they are mainly related to the measurements we performed in our study. As discussed in
Section 3.2 it could be the case that we observe missing dependencies because a library URL
contained in a Maven pom.xml file is no longer valid. While this can be considered as a false
positive while interpreting the results from the perspective of somebody compiling the system at
that time (e.g., a tester), as explained in Section 3.2, this is a true broken interval if one is interested
to analyze the past history of a project, for various purposes. Imprecisions in our study can also be
due, as explained, to the fact that we only observed the evolution history of a project by looking
at the master branch. However, as explained in Section 2.2, this is intentional in order to identify a
specific evolution timeline.

Threats to internal validity are related to factors, internal to our study, that can influence our
results. The main threat to internal validity is related to cause-effect relationships we claim,
especially in RQ2, where we analyze the likely causes of broken snapshots. As explained earlier,
we mainly rely on error messages raised by Maven, which may not necessarily capture the
true underlying causes of a broken snapshot (this is why we refer to them as “likely causes”).
Nevertheless, we must point out that our focus is to observe what breaks the compilability today,
rather than what broke compilability at development time.

As explained in Section 2.2 we limited our analysis to the projects’ history master branch, under
the assumption that it is the main and stable development trunk. However, we could not exclude
that, for some projects, the main development trunk occurs in different branches.

Threats to conclusion validity concern the relationship between experimentation and outcome.
As explained in Section 2.3, wherever possible we have used appropriate statistical procedures,
including effect size measures, to address our research questions.

Threats to external validity concerns the generalization of our findings. Our results are clearly
confined to a specific category of software projects, i.e., Java projects using Maven. Moreover,
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McIntosh et al. [20] found that Maven adoption drops drastically in projects outside of the Apache
foundation. We have explained in Section 2.1 why we decided to focus on such projects. Truly,
nowadays other build tools such as Gradlem are becoming even more popular than Maven, however,
our focus on Maven for a mining past history study like ours is motivated by its popularity in the
past five years or so. Nevertheless, our study definitely needs to be extended on projects using other
build tools and, above all, to projects developed in different programming languages, including
C/C++ programs using Make. Last, but not least, although we have shown that the selected pool of
projects achieve a good level of diversity [23], future studies should look at projects deployed on
different forges or belonging to different open source communities other than the Apache Software
Foundation, because different communities may impose different promotion policies.

5. RELATED WORK

Despite the significant research and practical importance of a problem of broken snapshots, there
have been only few studies aimed at understanding this phenomena and its implications. While there
is some work on studying continuous integration practices [7, 38] and build systems [26, 21], there
are no general recipes on how to handle broken snapshots.

Seo et al. [32] presented an empirical study of 26.6 million builds from Google’s cloud-based
build system used internally for Google projects. The authors analyzed the log of the build system
in order to understand (i) how often compiling actions fail; (ii) why they fail; (iii) how long it
takes to fix them. Although our study appears to be similar to the one conducted by Seo et al.,
there is a fundamental difference between the contexts of these two studies. Indeed, while Seo et
al. investigated the developers’ building activity (i.e., every time a developer attempts to build the
project she is working on), our study analyzed the repository’s history (i.e., the committed source
code). Clearly, compiling activities do not match the activity performed on the repository. Indeed, a
developer could obtain several compile failures using the building tool, before performing a commit
that does not contain any broken snapshot. Also, while the reasons behind a compiling failure and
a broken snapshot can be shared between these two studies, the results regarding the frequency of
compile errors and how long does it takes to fix them cannot be compared since they are related to
different contexts (building vs. committing). Finally, it is worth noting that in our study we perform
our analysis relying on Maven as building tool, rather than using an internal Google’s building
system. This different choice allows us to directly analyze projects typically used in MSR studies.
Thus, our study can be seen as strongly complementary to the one proposed by Seo et al..

The closest work to our is the study by Kerzazi et al. [14], who conducted an empirical study
considering 3,214 builds of an industrial system during a period of six months. They analyzed
(i) the frequency of broken snapshots on one software project, (ii) under which circumstances
builds usually breaks, and (iii) which are the factors impacting broken snapshots. Firstly, the results
indicate that broken snapshots are frequent, i.e., they found a median of 8.3% of broken compilations
per day. Secondly, they conducted semi-structured interviews involving 28 developers with at least
three years of experience and authors of most of the breaking and fixing compiles they found. The
outcome of the interviews showed that developers usually break the compilation when they forget
to commit some files or update dependencies. This happens especially because they were active in
several branches of a system at the same time. Finally, Kerzazi et al., explored the factors that impact
the rate of broken snapshots, demonstrating that the development timeline is the most important
factor causing the breaks. While our study shares similar goals with the one by Kerzazi et al. [14],
the context of our study is much more extensive as we conduct the study on 219,395 snapshots of 100
Java open source projects. In addition to quantitatively studying frequencies of broken snapshots, the
goal of our study is to obtain and in-depth and systematic understanding of the phenomena into how
and why broken snapshots happen. Moreover, it is important to remark that our study is performed
at the commit level, which has important implications for the practical tools and research analyses

mhttps://gradle.org
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that need to be performed at commit level granularity [34, 42, 43, 41, 33, 22, 28, 39, 15, 17]. At the
same time, our paper reinforces some of the findings provided by Kerzazi et al., in terms of broken
snapshots’ diffusion and time windows in which breaks are located.

McIntosh et al. [19] studied, on the one hand, how frequently source code changes require
changes to the build file, and, on the other hand, the proportion of developers responsible for build
maintenance. The study involved ten open source systems and showed that a good percentage
of source code items (ranging between 4% and 27%) requires an accompanying build change.
Moreover, about 79% of source code developers and 89% of test code developers are involved
in build maintenance activities. Cataldo and Herbsleb [7] studied major factors behind integration
failures in distributed software projects, whereas Hassan and Zhang [13] defined a model for
predicting the outcome of the compilation process. Unlike these works, in this paper we do not
provide methods that a researcher can use for assessing the output of the compilation process, but
we have the main goal of systematically investigating to what extent the phenomenon of broken
snapshots can impact the ability to conduct a mining software repository study.

Phillips et al. [25] designed and executed the study aimed at studying how release engineers
and managers make integration decisions. The work by Kwan et al. [18] investigated the effect of
socio-technical congruence (i.e., the alignment between work and social relationships between team
members) on the outcome of the compilation process on a large industrial software project. Their
findings suggest that congruence affects build success probabilities for different types of builds. Our
work does not take into account social factors, but it is focused on the analysis of the likely causes
behind broken snapshots.

Broken snapshots have been studied from a completely different perspective by Raemaekers et al.
[29]. Specifically, they investigated seven years of library releases on the Maven central repositories,
to understand the phenomenon of incompatibility caused by new versions of such libraries. They
found that the “semantic versioning”, i.e., the strict usage of major and minor release numbers do
not provide developers with enough information about the compatibility of the library interfaces.
Differently from our study, they looked at a very specific problem more related to the evolution of
library interfaces, while we are interested in investigating various kinds of compilability problems,
from dependencies to parsing errors.

6. CONCLUSION

This paper presents a study aimed at investigating compile broken snapshots in 100 Java projects
from the Apache Software Foundation, all of them relying on Maven as an underlying build tool.
More specifically, the study aims to investigate (i) the magnitude of the phenomenon, i.e., frequency
of broken intervals and their length in terms of the number of broken snapshots, (ii) the likely causes
of broken snapshots, as identified from the Maven’s error messages.

In summary, the main results of the study are that the size of broken intervals is relatively short,
with a median of three commits, although the long-tailed distribution highlights some cases in which
the broken intervals can be very long. Looking at the percentage of snapshots that could not be
compiled (median 30%), we can easily understand that compilability breaks can seriously affect
any kind of research activity studying the evolution of software projects and needing compiled
snapshots. Also, similar problems arise for recommender systems requiring code to be compiled
and/or executed and at the same time exploiting projects’ past history.

The causes behind the majority of the compile broken snapshots can be mostly attributed to the
problems with dependencies. While Maven is considered to be one of the most advanced build
tools in terms of handling dependencies, the problems still arise, especially when observing the
past change history of a project, e.g., libraries are no longer available or URLs are outdated. Again,
while this may not be a problem during actual development, this phenomenon can seriously affect
any kind of post-mortem analysis either in research or practice.

Results of our study clearly highlight—at least within the investigated set of projects, language
(Java), and build tool (Maven)—the major challenges of performing mining studies at commit level
should such studies require source code to be compiled. One of the main reasons for that is to

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr



14 TUFANO ET AL.

be found in dependency resolution problems. In some cases, dependencies are resolved through
resources available online whose URLs are outdated at present time. For this reason, a possible way
to circumvent this problem would be to resolve the dependency with an updated link to the missing
resource. Therefore, researchers interested in performing software evolution analysis could tweak
such references in order to successfully compile the project under analysis.

Finally, we found that the snapshots’ age highly impacts the likelihood of a successful
compilation. Indeed, Recent Snapshots are almost twice more likely to compile than Intermediate
Snapshots and 3.76 times more likely to compile with respect to Early Snapshots.

In summary, if we observe one project’s past change history today, it is likely that many of
the snapshots at the commit level are likely to be incompilable. If compilation is required for
our analyses, then we would have to seek the first compilable snapshot. Clearly, this could make
our studies less precise because we are no longer observing all the changes (although, fortunately,
systems are often not compilable just for few consecutive snapshots). Alternatively, compile broken
snapshots (and outdated/missing dependencies in particular) have to be manually fixed, which
makes the analysis effort-prone.

Researchers could maximize the number of snapshots successfully analyzed while minimizing
the operational costs by focusing only on the recent snapshots of each system under analysis (if the
desired analysis allows to discard part of the change history).

In our future work we are planning on enlarging the study, especially with the aim of considering
the impact of different types of build tools and, consequently, the projects developed in different
programming languages (or even mixes of programming languages), e.g., C/C++ projects using
Make as a build tool. Moreover, it is interesting to analyze whether the phenomenon of broken
snapshots is different when analyzing branches different from the master branch. In addition, we are
also planning on empirically assessing the impact of broken snapshots on reliability of observations
when studying past change history of software projects. Last, but not least, we will investigate
how the lack of a detailed, compilable history analysis can affect the accuracy of some previously
conducted mining studies.
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