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Summary

Forges are online collaborative platforms to support the development of distributed open-

source software. While once mighty keepers of open-source vitality, software forges are rapidly

becoming less and less relevant. For example, of the top 10 forges in 2011, only one survives

today—SOURCEFORGE—the biggest of them all, but its numbers are dropping and its community

is tenuous at best. Through mixed-methods research, this manuscript chronicles and analyze the

softwarepractice andexperiencesof theproject’s history—inparticular its architectural and com-

munity/organizational decisions.We discovered a number of sub-optimal social and architectural

decisions and circumstances that, may have led to SOURCEFORGE’s demise. In addition, we found

evidence suggesting that the impact of such decisions could have been monitored, reduced, and

possibly avoided altogether. The use of socio-technical insights needs to become a basic set of

designand software/organizationmonitoringprinciples that tell a cautionary tale onwhat tomea-

sure and what not to do in the context of large-scale software forge and community design and

management.
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1 INTRODUCTION

Over the years the open source software movement has contributed to a dramatic reduction of software costs and release times, while increasing

general quality [18]. At the same time, theway inwhich open source software is built has changed radically, from thedomain of just a few, to an enor-

mous economic force. Now entire open source software ecosystems have become subject of flourishing research and practice [34, 32]. However,

one of the phenomena that played a role in this change is the failure of software forges. A software forge provides a platform for hosting soft-

ware projects and usually offer code hosting and bug tracking. While many software forges existed in 2011, only one seems to still be in existence:

SOURCEFORGE.1 SOURCEFORGE was the biggest of all forges by count of projects, commits, and participants, but these numbers have dramatically

declined in recent years.

In this study, we aim to understand the shape and indicators on the Canary in the Coal Mine, namely, we examine potential early indicators of

trouble in SOURCEFORGE using mixed-methods empirical software engineering research [54]. To do this, we adopted a mixed-method research

approach, by (1) conducting interviews to learn about teammembers’ perceptions on the project and community health during the duration of the

project and (2) analysing nine years of commit activity and four years of issue reports and mailing lists. Our analysis subjects are SOURCEFORGE

itself, and its supporting software infrastructure.

Members of the original team perceived various social and technical issues that contributed to the decline of SOURCEFORGE. Paired to that,

in the quantitative analysis, we also observed a lack of organisational stability in SOURCEFORGE. This instability occured at the same time as an

1Link: http://sourceforge.net/. Note that other more timely platforms like GITHUB provide additional collaboration tools and enable various social
network analyses. They are, therefore, more advanced than classical forges; this is the reasonwhywe do not consider them as forges.

http://sourceforge.net/
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increasing number of changes to the code base that resulted in huge increases of technical debt whose introduction may be due to the lack of

communications/coordination among the contributors. Thus, a variety of social and technical factors contributed to the downfall of SOURCEFORGE

and its supporting infrastructure.

Structure of thepaper. Section2describes the research setting andoverviews the researchmethodology adopted to address the posed research

questions. Section 3 reports our cautionary tale on SOURCEFORGE and ALLURAand its supporting infrastructure. In Section 4 we discuss the key

findings and lessons learned fromour study,while Section 5 summarizes the possible threats to the validity of the study andhowwemitigated them.

Section 6 discusses the related literature on the topic; finally, Section 7 concludes the paper.

2 METHODOLOGY

2.1 Research Setting

This study investigates SOURCEFORGE and its supporting software infrastructure, theAPACHE ALLURA.2 SOURCEFORGEwas createdbyVASoftware

and was first launched in 1999. It was one of the first to offer free code hosting for open source software projects, a revolutionary service at the

time. It offered free access to Concurrent Versioning System (CVS), a bug tracker, and mailing lists to open source projects. For many years, it was

the biggest open source software development and collaboration website [56, 14].

In 2009, SOURCEFORGE initiated the APACHE ALLURA platform. ALLURA is “an Open Source, extensible, web-based platform that provides integrated

software tools for collaborative software development [5]”. ALLURA provides an integrated issue tracker, built-in discussion forums, a code repository,

and more. It was submitted to the Apache Incubator in 2012 and became a Top-Level Project in 2014 [5]. Originally, the project stems from the

codebase that sustained developer tools for SOURCEFORGE (in PHP) andwas redesigned using leaner programming languages and frameworks such

as Python. Although it is best known as being the platform behind SOURCEFORGE, ALLURA also powers several software-intensive platforms such

as theOpen Source Projects Europe 3, the DLRGerman Aerospace Center 4, and DARPA’s VehicleForge.5

2.2 Research Problems andQuestions

In this study, we aim to understand how socio-technical factors contributed to the decline and downfall of SOURCEFORGE. We do this by consider-

ing the team member perceptions around the decline of SOURCEFORGE and examining the social and technical structures of the APACHE ALLURA

software community, which is responsible for the development of SOURCEFORGE.We formulate three research questions:

• RQ1.What were the perceptions of the SOURCEFORGE team on the project and its community health?

• RQ2. Is there evidence of problems in the community and technical structures of SOURCEFORGE?

• RQ3. Is there evidence of architectural problems in SOURCEFORGE?

To answer RQ1, we interviewed members of the SOURCEFORGE team to learn about their perceptions on the project and community health

during the duration of the project 6. To answerRQ2, we analyzed nine years of commit activity of the SOURCEFORGE/ALLURA project to identify the

evolutionof the source codeand its structure.Wealsoanalyzed the last 4yearsworthof datadescribing its community andorganisational structure.

To answerRQ3we analyzed the architecure of eight versions of APACHE ALLURA, focusing on its Decoupling Level (DL) and its architectural flaws.

2.3 InterviewData

We interviewed four members of the SOURCEFORGE team. Our participants covered 25 years of SOURCEFORGE history. The participants were

SOURCEFORGE developers, managers and analysts. Participants included junior (<2 yrs experience), senior (3-5 yrs experience), and expert (6+

yrs experience) members, in terms of SOURCEFORGE expertise. Our participants had varied backgrounds including business informatics, software

operations, software engineering, management, and digital IT marketing.

2https://allura.apache.org/
3https://opensourceprojects.eu/
4http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10002/
5https://cps-vo.org/group/avm/vehicleforge
6interviewees kindly asked to share interviews selectively and therefore, interview transcripts are available uponwritten request.

https://allura.apache.org/
https://opensourceprojects.eu/
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10002/
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FIGURE 1 High-level representation of the Developer Social Network (DSN) structure we used for community smell detection showing both

communication and collaboration graphs.

2.4 Contribution and Communication Data

The APACHE ALLURA software repository was mined in its entirety by using the CODEFACE tool [27]. We elicited all 4 years worth of data for

ALLURA about: (a) file change quantities and commit statistics; (b) total quantity of changes over time; (c) commit-message sizes and page-ranking

of contents. A total of 8,902 commits were analyzed. Finally, in terms of communication data, we scraped ALLURA issue-tracking and mailing-lists,

computing 3-month community structure snapshots from both sources and for all the 4 years of data currently available for ALLURA.7 A total of 32

community sociograms [23] were generated, visualized, and analyzed using time-series analysis.

A discussion of the analyses conducted on the above data is contained in the respective results sections for each research question (see Sections

3.1, 3.2, and 3.3).

2.5 Operationalisation andDataMining

To attain our results, we exploited previous work in community analysis and socio-technical measurement of software development networks [44,

39]. Both works report respectively on the operationalisation and re-application of community smells and other relevant socio-technical metrics

(see Table 4 from Tamburri et al. [39]) for the qualities of software processes and products. Furthermore, both works reflect extensions to the well-

known CodeFace tool, a Siemens tool for Application Lifecycle Intelligence (ALI) originally introduced by Joblin et al [27]. More specifically, the

following operationalisation is used in the scope of this work (tailored from Palomba et al. [39, 44]).

Starting from the developer networks built by CODEFACE, we detect instances of smells according to the formalisation below. For all of them, a

premise is needed:

Premise. LetGm = (Vm,Em) be the communication graph of a project andGc = (Vc,Ec) its the collaboration graph.

More precisely, for communication we mean the relation by which two or more developers communicate with each other through any channel:

for example, a communication link between two developers is established in case they reply to the same discussion within a mailing list or they

comment on the same issue in the issue tracker. As for collaboration, we mean the relation for which two or more developers have worked on the

same source code elements. This is established by considering the change history of a project, looking for caseswhere two ormore developers have

modified the same code entities.

7As an example, ALLURA mailinglists are available here: http://mail-archives.apache.org/mod_mbox/allura-dev/

http://mail-archives.apache.org/mod_mbox/allura-dev/


TAMBURRI ET AL. 5

FIGURE 2 Organisational Silo Effect Community Smell identification pattern.

2.5.1 Organisational Silo Effect

The Organisational Silo effect occurs when the developers break into isolated sub-communities with little or no coordination between the sub-

communities [48, 46]. That is, there are two sub-teams that cannot properly communicate with each other. In the communication graph this

manifests itself as two (relatively isolated) sub-graphs with just one or two people connecting them. With the occurrence of Organisational Silo

effects, social debt manifests as decaying communication across sub-communities and consequent negative effects on developers’ situational

awareness [25] as well as degradation of projects’ socio-technical congruence [48, 40]. Also, according to recent findings [48], the Organisational

Silo effect may lead to tunnel-vision, since participants may focus their cooperation and communication solely on other members of their nar-

row sub-community rather than on the broader community. Finally, community members belonging to anOrganisational Silomay exhibit egotistical

behaviour leading to unsanctioned architectural decisions [49] as well as defiance of the decisions of others [48].

Based on this definition, we define the set ofOrganizational Silo pairs S as follows:

{(v1, v2)|v1, v2 2 Vc, (v1, v2) 62 E⇤
m}

where E⇤
m is the transitive closure of Em. With transitive closure we indicate the transitive closure of a graph. More specifically, given a directed

graph, the operation finds out if a vertex j is reachable from another vertex i for all vertex pairs (i, j) in the given graph.With reachablewemean that

there is a path fromvertex i to j. The reach-abilitymatrix is called transitive closureof a graph. For the sakeof precision,we capture theOrganisational

Silo Effect at the finest grain possible, i.e., that of collaboration dyads: pairs of co-committing developers. An example is shown in Figure 2. Here

theOrganisational Silo effect is reflected on developer “1", who does not communicate with developer “2" even though “1” is collaborating with “2".

Conversely, developer “2" is communicating with (at least) one other developer, “3", who belongs to a sub-community other than “1". Considering

the example proposed in Figure 1, an operationalisation of the identification pattern for the Organisational Silo effect has two steps. In the first

step, the identification mechanism compares the collaboration network (bottom half of Figure 1) with its communication counterpart (top half of

Figure 1). Then it verifies that the developer identified by the letter A is present in the collaboration network, i.e., A commits to files co-committed

by others, but is not present in the communication DSN reflecting those files.

2.5.2 LoneWolf Effect

The LoneWolf community smell reflects circumstances in which communication may indeed be present but insufficiently addressing project needs

[48, 46]. The result is developer free-riding and unsanctioned architectural decisions that cause nasty ripple effects such as code duplication and

churn [25]. Thus, we define the set of Lone Wolf pairs L as the set of collaborators that do not directly or indirectly communicate with each others.

More formally:

{(v1, v2)|v1, v2 2 Vc, (v1, v2) 2 Ec, (v1, v2) 62 E⇤
m}. By definition L ✓ S.

The identificationpattern for the LoneWolf smell is basedon thedetectionof development collaborationsbetween twocommunitymembers that

have intermittent communication counterparts or feature communication bymeans of an external “intruder", i.e., not involved in the collaboration.

A simple example is given in Figure 3. In this example two developers, “1" and “2", are collaborating on some code, but they are not connected by any

communication link other than developer “3", who is not co-committing on a shared file. In this case, either developer “1" or developer “2" (or both)

can develop a LoneWolf community smell.

This smell reflects the presence of possible side effects generated by theOrganisational Silo such as communication decay or negative influence

on developer awareness and heavy socio-technical congruence degradation.Our conjecture is that the occurrence of theOrganisational Silo effect is
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FIGURE 3 LoneWolf Community Smell identification pattern.

not negative per se. Butwhen that occurrence is compounded by the occurrence of LoneWolves, extra attentionmust be paid to avoid negative con-

sequences such as delays and unmanageable social debt. The Lone Wolf smell reflects dyads of co-committing (collaborating) software developers

who exhibit uncooperative behaviour andmistrust by not appropriately communicating.

2.5.3 Black-cloud Effect

The Black Cloud Effect leads to negative social interactionswithin a software development community featuring: (a) communitymembers’ inability

to cover knowledge and experience gaps between two different software products developedwithin the same software community [48]; (b) lack of

periodic and official opportunities to share and exchange knowledge between all communitymembers [48, 46].Whenever these two circumstances

occur together, they can generate a “black-cloud" of misinformation (e.g., confusing, delayed, or unnecessary communication that generates com-

munication overload) within the community. The main consequence of the Black Cloud effect is to obfuscate project vision, compromising progress

[48, 46]. The occurrence of this community smell can be generated or worsened by several socio-technical triggers:

• absence of ad-hoc protocols for knowledge sharing;

• lack of boundary spanners;

• presence of inefficient communication filtering protocols.

Moreover, the Black Cloud Effect smell is associated with several other side effects such as: lowering of trust between developers, information

obfuscation, as well as inception of theOrganisational Silo Effect, due to the rise of egoistic behaviour. The identification pattern for the Black Cloud

Effect smell reflects sub-communities that in subsequent release windows do not communicate, with the exception of two community members

(i.e., boundary spanners in social-network jargon [53]), one belonging to each sub-community. The detection of the Black Cloud instances starts

with the identification of vertex clusters as already implemented in CODEFACE. More specifically, let P = {p1, . . . , pk} be a mutually exclusive and

completely exhaustive partition of Vm induced by the clustering algorithm. From the partition, Black Cloud is the set of pairs of developers C that

connect otherwise isolated sub-communities, more formally:

{(v1, v2)|v1, v2 2 Vm, (v1, v2) 2 Em, 8i, j(((v1 2 pi ^ v2 2 pj) ) i 6= j) ^ 8vx, vy((vx 2 pi ^ vy 2 pj ^ (vx, vy) 2 Em) ) vx = v1 ^ vy = v2))}

The smellmanifests if the above condition holds for at least two consecutive organisational time-windows (fixed to 3-month intervals, in the case

of CODEFACE4SMELLS). An example is presented in Figure 4. Here the occurrence of Black Clouds reflects two developers, “3" and “4", who are the

lone boundary spanners across two different sub-communities and over time—at least two subsequent analysis windows (3months, in our case).

Detecting black clouds requires eliciting the communication network and applying known community detection algorithms [36] to identify sub-

community structures and boundary spanners across them. For example see Figure 1 where two sub-communities (previously specified) can be

detected by considering the density of communication links.
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FIGURE 4 Black-cloud Effect Community Smell, an identification pattern.

2.5.4 Bottleneck Effect

The Bottleneck community smell is characterised by the occurrence of the following sub-optimal characteristics within a software development

community: (a) proposed changes within every software development phase require an extraordinary quantity of time to be implemented [48]; (b)

timewaste [46]; (c) hidden or counterintuitive information (and broker) locations [48]; (d) highly formal or complex organisational structure [48]; (e)

highly regularized procedures [48, 46].

The fundamental side-effect generated by this community smell is a massive delay that characterises key organisational processes within the

community such as decision-making, due to personnel unavailability or communication overload. The identification pattern of this smell is based on

the detection of unique knowledge and information brokers in different sub-communities.

In our attempt to define an automatic identification pattern for this community smell we focused on the analysis of project communication

networks. We considered the six key factors around Bottleneck as reflecting the presence, within a project organisational structure, of a unique

boundary spanner across several different sub-communities (i.e., more than 2). The social-network analysis concept of unique boundary spanner

[53] has, in fact, a remarkable similarity to Bottleneck. A unique boundary spanner interposes him/herself into every formal interaction across two

or more sub-communities and if the organisational structure of the project is complex and characterised by highly formal procedures, it will not be

possible to incept parallel information channels between other members of the sub-communities. From a formal perspective, we define the set of

Bottlenecks as:

{v|v 2 Vm, 9i(v 2 pi ^ 8vx(vx 2 pi ) v = vx))} [ {v|v 2 Vm, 9vx, i, j(v 2 pi ^ vx 2 pj ^ (v, vx) 2 Em ^ 8vy, vz((vy 2 pi ^ vz 2 pj ^ (vy, vz) 2
Em) ) vy = v)}

To further elaborate on the definition of this community smell, let consider the example proposed in Figure 5. As shown, detecting Bottle-

neck requires the identification of community members who are the only members of their sub-community that communicate with (at least) two

other sub-communities. Therefore, assuming a communication link was present between developer “A" and “B", then developer “B" is the pivot of

Bottleneck.

2.6 CodeFace4Smells Extension

From the perspective of the CODEFACE tool, a community is operationalised as a densely connected set of nodes within the community group (i.e.,

the members that make up a development community) which is sparsely connected to all other nodes in the network. To identify and properly

characterise the community structure, theCODEFACE tool enacts two community detection strategies, defined as follows, paraphrasing from Joblin

et al. [27]:

1. Function—To recover a community structure, CODEFACE uses a heuristic for identifying when two developers are engaged in a coordinated

effort using a fine-grained heuristic based on code structure, where developers are considered to be coordinated when they actually con-

tribute code to a common function block. Furthermore, CODEFACE uses the commits’ timestamp for identifying the appropriate directions

of the edges in the recovered community structure.
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FIGURE 5 Bottleneck Community Smell.

2. Committer-Author — In this method, the tool uses tags to identify relationships between all people that contributed to a common com-

mit, including authors, reviewers, and testers. For example, sign-off tags are self-reported acknowledgments of participation on a commit,

therefore the tag-based networks undoubtedly capture real-world collaboration [27].

3. Community-Verification— to verify the recovered community structure, CODEFACE uses a random null-model to compute the probability of

observing the identified community in an equivalent class of null-model graphs that lack a community structure. The tool generates the null-

model using a standard approach called the configuration model for random graphs, where nodes are joined uniformly at random under the

constraint that the degree distribution is identical to the observed graph [21].

To the above heuristics, we add a systematic implementation of the operationalisation provided in the previous section, to allow for automated

detection of community smells at the same time as CODEFACE operates community structure recovery. The output of the tool is represented by a

CSV file containing the community smell instances identified over a social structure representation known as a Developer Social Network (DSN), a

notation previously used for bug prediction and error-proneness [41, 4].

3 ANALYSISOF THE RESULTS

3.1 Perceptions of TeamMembers

ToaddressRQ1,we interviewed four key forgemanagers, designers, developers, andoperatorswho, together, cover theentire25yearhistoryof the

forge.We supplemented this data through the analysis of blogs and news articles that documented the history of SourgeForge. This supplementary

data was used to obtain specific details of events described by the participants (e.g. to identify the details of a change in ownership). In cases where

details were obtained from news articles or blogs, they are referenced.

3.1.1 ResearchMethods

We performed semi-structured interviews. The goal was to understand their perspectives on project and community health. Each interview lasted

about one hour. The interviews were transcribed by an independent third-party. Thematic content analysis was used to analyze the interview

transcripts [6].

3.1.2 Results for RQ1

Early Success.We asked the intervieweeswhat factors they perceived to have led to the early success of SOURCEFORGE. The interviewees described

threemain factors:

• Emerging Need. SOURCEFORGE addressed an emerging need. Offering free code hosting when SourgeForge launched in 1999 was revolu-

tionary. One participant said “we wanted like 1,000 projects in the first year, and we had 1,000 projects in the first month.” By 2007, there

weremore than 150,000 users and over 1.5million projects [52]. Thus, SOURCEFORGE grewmuch larger and faster than expected.

• First To Move. Similarly, SOURCEFORGE was the first to offer free and versioned code-hosting. As the demand for this service grew,

SOURCEFORGE’s popularity exploded. This can largely be attributed to the fact that they were the only ones offering this service in the

beginning.
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• Skunkwork Team. Interviewees also suggested that the Skunkworks nature of SOURCEFORGE contributed to its aggressive expansion of

popularity. Skunkwork teams are a small group of people whowork on a project in an unconventional way; the group’s purpose is to develop

solutions quickly with minimal management constraints. In the case of SOURCEFORGE, there was no direction from management on what

should be developed. The project itself happened by happenstance. The team of four developers were given the goal of generating online

traffic. The developers came up with the idea of creating what would eventually become SOURCEFORGE because of their passion for open

source software and their belief that it would attract traffic. New features originated within the team. One participant said “we did the

development of SOURCEFORGE on SOURCEFORGE. So as we needed a feature ourselves we would write it.” Thus, the team had significant

freedom in deciding what to develop.

The early success of SOURCEFORGE was not seen to be related to the technical competitiveness of the project, but rather being the first to fill an

emerging need.

Eventual Downfall. We also asked the interviewees about the project and team health throughout the project and what (if anything) they would

have done differently.We identified several factors that interviewees believe eventually led to the downfall of SOURCEFORGE:

• NotConsideringROI.Due to the Skunkwork nature of the project, the teampaid little attention to howmuchmoneywas being spent or how

much money was coming in. One participant said “it was never part of the plan to make money.” However, after the company went public,

interviewees described an emerging need to track the return-on-investment (ROI) that the forgewas producing (if any). For example, one of

the interviewees mentioned that “[...] a lot of hardware was coming in and nothing was coming out, so people in the high places started to

ask questions”. Another interviewee said “once we were public and nowwe had responsibilities to shareholders and things like that, people

obviously started wanting to know where all this money was being dumped into, and wanted to know how we were going to return on

investment and things like that. And so six, eightmonths later is whenwe started actually getting pressure from executives to figure out how

wewere going tomakemoney.”

• Deceit. Due to the push to increase ROI, in July 2013, SOURCEFORGE introduced a new program, called DevShare. This program bundled

third-party software with project downloads, following themodel of the widely knownCNET download network.8

DevShare was conceived as a way for open source software projects to monetize their efforts while still keeping the software open source

and free. The ad revenue would be shared with the projects [20]. The developers thought that enabling ways for the OSS projects to make

moneywas a good goal, but the wayDevShare was implementedwas too dishonest, putting ROI over trustworthiness. One participant said,

“SOURCEFORGE has been trying to help projects to sustain what they were doing with dubious initiative like Devshare. Might have been a

good thing if that was run the right way. As amatter of fact today projects still needmoney and they don’t have the solve for that.”

While DevShare was an opt-in service, some projects complained that SOURCEFORGE bundled third-party adware in their downloads with-

out their consent [43]. Ads were added to project download pages with fake download buttons to trick users into clicking on the ad. Often,

clicking on these ads resulted in the download of adware. At this time, many projects announced they were abandoning SOURCEFORGE, cit-

ingDevShare as one of themain reasons. TheGNU Image Processor (GIMP)was the first big project to announce it was leaving inNovember

2013 [43].

• Two-Masters Syndrome.Part of the reasonDevSharewas implementedwas driven by someof the biggerOSS projects using SOURCEFORGE

at the time. Many large projects called SOURCEFORGE home, including VLCMedia Player and GIMP. At this point, there were plenty of com-

petitors providing source-codehosting, andSOURCEFORGEwanted to keep theprojects.Oneparticipant said “Wehada lot of bigger projects

on the site, and then we had lots and lots of little projects right. So the bigger projects, they wanted some kind of revenue sharing. ... we

started catering to the really big projects and trying to implement enough of the little features that the smaller projects wanted to stay as

well.”

The two-masters syndrome [24] is a partially unknown organisational effect [13] where the team needs to work to satisfy two “masters”

while makingmoney out of both, but both end up having a conflicting agenda that creates an impasse.

• Organizational instability and disconnect betweenmanagement / developers. SOURCEFORGE changed ownershipmany times. One partic-

ipant said “every 18months we’ll have a new owner and a new set of managers. At one point in time we all got together for beers and wrote

them down, and it was almost every 18months on the dot.”With these changes in ownership, therewere also changes in direction and a dis-

connect between management and the development team. A participant complained that “by 2008 we had already actually changed hands

of who owned us and what we had been doing two or three times, that the new people that had come in and acquired us, they didn’t care

about the open source ethos, they didn’t care about anything except for makingmoney back.”

8http://cnet.com/

http://cnet.com/
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DevShare was introduced after one of the changes of ownership without much consideration for the opinions of the developers, causing

many to leave the team. One participant said “Because the company was sold one of the many times it was. But it was sold at that time, so

changing hands, the newowners decided to try to give a spin using theDevshare programamongother things. So this is not a teamdecision, it

wasn’t a teamdecision, it was of course a company decision. So the ideawas, let’s try to do this and see if thatmight help, but if you talk about

the developer team, some of them decided to move on and went to join other initiatives. So not everyone decided to stay at SOURCEFORGE

at that time.”

• SkeletonCrew.Therewere very fewcore contributors to theSOURCEFORGE project.One interviewee said “therewas threemaindevelopers

and themanager type that was also a developer butworking part time.We neededmore people, andwe just couldn’t get people.We needed

more hands.” The unexpected popularity and growth of SOURCEFORGE coupledwith the need to serve twomasterswith conflicting agendas,

meant that the small skeleton crewwas insufficient.

• Blinded by Technical Debt. The small skeleton crewwas further complicated by the grassroots start of the project. At the timewhenGitHub

was released, the SOURCEFORGE teamwas in themidst of a complete refactoring and redesigning of their code base. One participant said, “A

little bit before that, 2008 or whatever, we had started rewriting the entire site, trying to pay down the almost decade of technical debt that

we’d accumulated.” This effort prevented the team from fully noticing the disruptive change that was occurring in the software landscape

with the advent of collaborative development tools.

• MissedParadigmShift.Meanwhile, new collaborative, highly-distributed software development, hosting, and versioning toolswere disrupt-

ing the market. Interviewees stated they believed these were fads and did not consider modernizing SOURCEFORGE to keep up to date with

this paradigm shift. This was likely the result of having an overworked, skeleton crew who did not have time to really step back and look at

the changing landscape. One interviewee said, “I don’t think we quite got the importance of, you know, of the social element ... we were still

in verymuch a sort of dot com 1.0 framework of content producers and content consumers being very distinct populations.”

The quality of service went down and projects started moving away. The exodus of projects was facilitated by the advent of GITHUB, which

was launched in 2008.GITHUB, a competing code hostingwebsite, differed fromSOURCEFORGE as itwas built on top of git, a distributed ver-

sion control system. GITHUB also offered many collaboration features. In June 2011, ReadWriteWeb reported that GITHUB had surpassed

SOURCEFORGE in total number of commits for the period January toMay 2011.

There weremany factors that seem to have contributed to the downfall of SOURCEFORGE. Yet, all of the factors seem to be connected in various

ways. Fig. 6 offers a chronicle of the SOURCEFORGE story. The figure plots participation (number of users shown by the continuous line) and size

(total lines of code (LoC) added shown by the dotted line) over time. The participation and size numbers were obtained from the SOURCEFORGE

Research Data Archive (SRDA) [52]. The figure also highlights the major external events that pertained to SOURCEFORGE (top part) as well as the

internal re-organizations (bottom part) where we highlight the re-organisation start and finish (forked-line arrow from the bottom). The figure

clearly illustrates a decline in the population and size starting in 2011. In 2013, after the introduction of DevShare, we witness the downfall of

SOURCEFORGE. By downfall, wemean an abrupt, steady, and continuing loss of people and projects.

Summary for RQ1. The results coming from the semi-structured interviews confirm that the decline of SOURCEFORGE has been facilitated by

both social and technical aspects around the software development community.

3.2 Community and Technical Structures of SOURCEFORGE

To addressRQ2, we studied the evolution of APACHE ALLURA from both social and technical perspectives.

3.2.1 Finding Evidence of Social and Technical Debt

Froma socio-technical perspective, we sought out themost established indicators of social debt [49, 48], namely, (1) socio-technical incongruences,

or breaks in socio-technical congruence [8] aswell as (2) the presence of sub-optimal patterns in the community structure, or community smells [45].

Specifically, in this study we considered three of the community smells defined by Tamburri et al. [48]: Organisational Silo Effect, Lone-wolf Effect,

and Bottleneck or “Radio-silence" Effect, which were previously defined.

Furthermore, in addition to the previously defined community smells, we considered two well-established measurements for socio-technical

issues, namely:

1. Smelly-Quitters. This ratio reflects the number of people who were part of a community smell for two subsequent time windows and left

the community for the remaining timewindows in the available range of data [1].
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people and projects) manifests 2 years later.

2. Socio-Technical Congruence.Paraphrased frompreviouswork [51] as “the state in which a software development organisation harbors sufficient

coordination capabilities to meet the coordination demands of the technical products under development” and operationalised in this study as

the number of development collaborations that do communicate over the total number of collaboration links present in the collaboration

network.

Along with community-related information, we also collected technical data. In the first instance, we studied how the quantity and sizes of

file changes applied by developers vary during the evolution of ALLURA. Secondly, we extracted data related to technical debt. In particular, we

considered two different sources of information:

1. Code smells. These represent sub-optimal design or implementation solutions applied by contributors during the evolution of the project

[19]. While the most-known code smell detectors only work for Java programs [17], we needed an automatic tool able to identify design

issues in Python. For this reasonwe employed the detector proposed by Chen et al. [10], which can identify 10 different smell types - includ-

ing both traditional code smells (e.g., Large Class and LongMethod [19]) and Python-specific ones (e.g., Long Ternary Conditional Expression

[10]). We relied on the original implementation of the tool made available by the authors. It is important to note that this detector is the

only one currently supporting the detection of Python smells; its accuracy has been reported to be high (average precision of 98%), being

therefore suitable for our purpose.

2. Self-admitted technical debt (SATD). Potdar and Shihab [42] defined SATD as a practice that developers use to admit the existence of tem-

porary design solutions (at any level, from requirement to code debt) that should befixed. To identify SATD,we exploited regular expressions

to match inside comments the 62 patterns defined by Potdar and Shihab [42]. This list includes a set of keywords that are likely to indicate

the presence of a SATD (e.g., fixme, this is a hack, etc.), and has been defined bymanually analyzingmore that 100,000 code comments [42].

3.2.2 Results for RQ2

Results of our socio-technical data synthesis and analyses are reported inFigures7 to10. In the following,wefirst report on the evolutionof number

of developers as well as community smells in the considered period; furthermore, we decribe how additional socio-technical factors such as the

socio-technical congruence and the smelly-quitter ratio evolved in the same period.

First, Figure 7 outlines the numbers pertaining to core (i.e., contributing to both communication and committing) and periphery contributors (i.e.,

contributing to communications only) to the APACHE ALLURA project. The figure shows a heavy fluctuation of all contributor types across our data

sample, with a standard deviation of 4.6 developers per every 3-month snapshot, meaning that the community acquired and lost an average of 4-5

developers around every considered snapshot.
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Furthermore, Fig. 8 outlines the progression of the reported numbers of community smells in project APACHE ALLURA— thefigure also highlights

in the grey area to the left-hand side, the period we denoted with downfall on Fig. 6. The figure highlights a coincidental drop of community smells

(deviation of -60%) all along the entire period of downfall. The growth of smells begins again between late 2014 and mid 2015, precisely around

the corporate acquisition of SOURCEFORGE/ALLURA by yet another external company, the well known videogame giant GameStop, in this case. The

figure also shows an almost identical drop (standard deviation - is 0,5) of the number of community smells coincidentally to a final acquisition by

SOURCEFORGE/ALLURA between the end of 2015 andmid 2016 by its current owner, private company BIZX.

Finally, Fig. 10 plots results for the smelly-quitter ratio across APACHE ALLURA. The figure shows a recurrent pattern clearly appearing twice (see

the greyed-out areas on the figure, degree of isomorphism>80%) in the project’s community structure and, not surprisingly, once again coinciding

with the two subsequent organisational rewirings in the respective periods.

Summary for RQ2, Part a) - Socio-Organizational Perspective. Our evidence shows recurrent organizational turmoil patterns that coin-

cide with organisational rewiring scenarios around the forge. This evidence suggests that a lack of organisational stability in SOURCE-

FORGE/ALLURA.

Furthermore, while organisational change is inevitable, most organisations do not track it. Tracking emerging metrics such as the number of

community smells or the ratio of “smelly" quitters offers a reliable and fine-grained (e.g., see Fig. 10) perspective over the effects andmanifestations

of organisational rewiring. The recurrenceof a drop in smelly-quitters likely indicates a recurring turmoil coincidingwith theorganizational rewiring

taking place around the forge.

The recurrence of the above patterns is reflected partly on socio-technical congruence (see Fig. 9) and even more clearly in the smelly-quitters

ratio (see Fig. 10). In particular, Fig. 9 shows steadily increasing congruence values throughout 2014 and late 2015, when a blatant drop in

socio-technical congruence happens around APACHE ALLURA, at the time of the acquisition by BIZX. This suggests a misalignment between the
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organizational structure of developers and operators with respect to the acquisition by BIZX; the drop likely indicates the turnover surrounding

this acquisition.

From a technical perspective, we analyzed the (i) quantity and sizes for code changes applied and (ii) code smells and self-admitted technical

debt detected on APACHE ALLURA over the entire analysis time-window running from early 2014 until late 2016, extracting essential code quality

metrics to control code quality as well. Figures 11 to 14 outline the achieved findings.

In particular, we observed that the socio-technical observations made in Sec. 3.2.2 recur. For example, in coincidence to the same organiza-

tional rewiring scenarios, code-changes are localized (e.g., the top-right plot from Fig. 11 highlights an series of changes focused on 5-7 files), the

difference-in-size range is almost constant (bottom-left plot on Fig. 11, rangefluctuates around100 lines) and the code-commit tags disappear after

the first 2 periods of our analysis while the size of commit messages is almost constant and quite considerable, between 50 and 100 words — this

evidence seems to denote a constantly changing code-base around anorganization that disconcerts the use of typical Apacheprojects’ coordination

practices such as commit-tagging.

Similarly, Fig. 12 provides another confirmation of our organizational turmoil observations as reflected on the technical artifacts. In particular,

all highest plot “peaks" in the top-most and second plot on Fig. 12, reflect time-ranges coinciding with the afore-mentioned organizational turmoil.
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FIGURE 11APACHE ALLURA Change sizes (Y-Axis) per commit (X-Axis).

Even more importantly, in coincidence with the last organizational acquisition, a massive campaign of code-changes was initiated, as if the forge

system needed again to undergomajor redesign.

Furthermore, Figures 13 and 14 are perfectly in line with the results discussed so far. Indeed, we observe that during the time period referred

as downfall in Fig. 1 both code smells and self-admitted technical debt tended to decrease, while their numbers increase once the organizational

structure of ALLURA became unstable. It is important to remark that, despite the absolute number of code smells and technical debt is not that high

(e.g., at most, we observed 23 Large Class instances), it may still substantially contribute to the drift of the design of a software system, possibly

compromising the overall quality—as demonstrated by previous work in the field [9, 38]. The observations above are especially true when consid-

ering the joint fluctuation between community smells and three particular code smell types, i.e., Large Class, Long Method, and Long Parameter

List. This close relation is confirmed from a statistical point of view: specifically, we applied the Granger causality test [22] to determine whether

one time series (i.e., the introduction/removal of community smells) is useful in forecasting another (i.e., the introduction/removal of code smells).

In otherwords, we testedwhether the presence of a community smell ci can be used to “predict” the presence of a code smell csi. Note thatwe used

the Granger test instead of association rule discovery [2] because we are interested in assessing the statistical significance of the temporal relation

between community and code smells, rather than of just their co-occurrences. As a result, we found that relation between community smells and

the Large Class, LongMethod, and Long Parameter List is significant (all the ⇢�values are< 0.001).

Summary forRQ2,Part b) - Technical Perspective.Ourevidence shows recurrent organizational turmoil patterns influencing technical stabil-

ity. The combined technical and socio-organisational evidence denotes an organisational and technical structure in downfall, featuring major

restructurings and negativemanifestations across both perspectives.

3.3 Architectural Decisions of SOURCEFORGE

To address RQ3 we analysed the software architecture of eight releases of the Apache Allura project covering a four year time-span, from early

2014 to early 2018. These were releases: 1.1.0, 1.2.0, 1.3.0, 1.4.0, 1.5.0, 1.6.0, 1.7.0, and 1.8.1.
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3.3.1 ResearchMethods

We analyzed the software architecture of each of these releases. Or, more precisely, we analyzed the module structure of each of these releases

using a commercial version of the Titan tool suite [33] calledDV8.9 This tool suite allowedus to reverse engineer each release ofAllura, and perform

two analyses:

• measure the Decoupling Level (DL) of themodule structure of each release [35];

• measure the architectural flaws in themodule and package structure of each release[35];

Each of thesemeasures has been shown to be highly correlated withmaintenance effort and bugginess [35].

9https://www.archdia.net/
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TABLE 1DL Scores from Eight Releases of APACHE ALLURA.

Release Date DL Score

1.1.0 1/2014 32%

1.2.0 12/2014 34.6%

1.3.0 6/2015 34.6%

1.4.0 4/2016 33.8%

1.5.0 8/2016 33.7%

1.6.0 12/2016 33.5%

1.7.0 3/2017 33.5%

1.8.1 3/2018 33.5%

3.3.2 Results for RQ3

TheDL scores of all eight releases are shown in Table 1. There are two points to note about these scores:

• The scores are uniformly low. These DL scores place APACHE ALLURA in the bottom 10th percentile of all projects analyzed in [35], where

129 projects, both commercial and open source, weremeasured.

• TheDL scores are relatively stable over time, decreasing slightly from release 1.2.0 to 1.8.1. This suggests that the teamwas not attempting

to address any of the architecture debt [55] that had accumulated.

DL is a measure of how (de-)coupled the system’s source code files are. A low measure suggests a highly coupled system, one that is likely to

be difficult to understand, debug, and modify. But this is just a single number. To understand these low DL scores more precisely we analyzed the

architectural flaws (also known as “hotspots”) in each of the APACHE ALLURA releases. These flaws have been shown, in several studies ([35, 16]), to

be very strongly correlated with bugs, changes, and churn across a wide variety of projects.

The rationale behind performing this analysis is that we wanted to measure the flaws over time. This would help us understand whether the

developers were attempting to pay down the architecture debt, by removing at least some of the architectural flaws.

As for the DL analysis, the results are summarized in Table 2. In this table we report on the number of instances of four flaw types: Unhealthy

Inheritance (UnhInt), Cliques (Clique), Modularity Violations (ModVio), and Package Cycles (PkgCyc). These flaw types are described in [35]. As can

be seen from the table, number of flaws in this project is large and it remains stable or even increases slightly from release to release. This suggests
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TABLE 2Architectural Flaws in Eight Releases of APACHE ALLURA.

Release UnhInt Clique ModVio PkgCyc

1.1.0 11 5 186 17

1.2.0 13 6 232 17

1.3.0 13 6 238 18

1.4.0 13 4 254 17

1.5.0 13 4 254 18

1.6.0 13 4 256 18

1.7.0 13 4 253 17

1.8.1 13 4 250 18

2014 2015 2016 2017 2018

FIGURE 15APACHE ALLURA activity, in commits per month, 2014-2018— picture was extracted via OpenHub.

that the architecture had a heavy load of debt and that this debt was not being addressed. As such it was increasing slightly with each subsequent

release, making the project harder tomaintain and evolve.

This observation is consistent with the recorded activity, in terms of commits, on the Allura project over the studied time-frame. Over this time-

frame commit activity dropped precipitously, as shown in Figure 15, taken fromopenhub.com. In January 2014 therewere 140 commits permonth.

By January 2018 there were just 28 commits per month.While we can not claim a causal relation here, this change in activity is consistent with our

expectations.

Summary for RQ3. The project had a heavy and continuously increasing load of architectural debt and this debt was never repaid.

4 DISCUSSIONAND IMPLICATIONS

We identified a variety of both social and factors that contributed to the decline and downfall of SOURCEFORGE. These factors were both internal

and external. SOURCEFORGE’s early success was because they were the first to fill a need. At the time, their skunkwork team was a benefit and

enabled them to identify and fill a gap in themarket quickly. However, as the popularity of SOURCEFORGE grew, the skunkworks teamwas no longer

advantageous. The team tried to serve two masters (small projects and large projects) with different and, at times, conflicting needs. The skeleton

crew introducedmoreandmore technical debt as they tried tomeet theneedsof all of their stakeholdersquickly.While they focusedondealingwith

technical debt and continued to try to satisfy the needs of their stakeholders, theymissed a large paradigm shift that was occurring - themovement

to distributed version control systems and more collaborative development tools. GitHub’s growth became exponential while the SOURCEFORGE

team largely dismissed it as a fad.

Meanwhile, SOURCEFORGE changed ownership several times, and a disconnect between the development and management started to cause

major problems.Management focused onROI; SOURCEFORGE was expensive to run and did not have a plan to bring in revenue. This led to the intro-

duction ofDevShare, but sincemanagement did not understand the open source ethos and the development teamwas not included inmanagement

decisions, DevShare was a major failure. It prioritized ROI over trust and bundled adware with project downloads. Many projects started leaving

SOURCEFORGE, citing DevShare as amain reason.

Through analysis of the social and technical structures of the project, we also observed a lack of organizational stability and technical and archi-

tectural debt. There is substantial indicationof community smells presence in theorganizational structure aroundSOURCEFORGE, indicating intense

organizational turmoil and lack of stability [31]; at the same time the architecture of Allura is reportedly highly coupled, replete with flaws. The

team around the forge never attempted to pay down this architecture debt, presumably too focused on paying back themore basic, code-level, and

self-admitted technical debt.
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There are several lessons that can be learned from this cautionary tale. Here we highlight lesson for other software projects and directions for

future research.

Advice: Determine business plan early. One of the key factors that contributed to themajor exodus of projects wasDevShare.While the deceitful

nature of its implementation is largely to blame, it also illustrates how important it is for a software project to identify its ROI strategy early.

DevShare was an effort to increase ROI since the original project did not have a plan.

Advice:Management and development teamsmust be aligned. Another contributing factor to the downfall was themisalignment betweenman-

agement and the development team. The developers clearly indicated that theywere not involved in key decisions, despite havingmore expertise

in thedomain. This disconnect causedanalready small teamto lose valuable talent, but also causedpoordecisions that didnot alignwith theethos

of the community their product served. The aforementioned condition is a known phenomenon in organisations and social networks research

often referred to as “two-masters syndrome" [29, 15], which could itself be a community smellwhichwas not previouslymanifested nor formalised

in software engineering research and practice and may deserve further attention at least to support collaborative and computer supported

cooperative work in the scope of software produciton and operation platforms such as GitHub.

Advice: Be careful of changing paradigms. Thereweremany reasons for themissed paradigm shift, particularly they had an overworked, skeleton

crew who were blinded by technical debt. Yet, one important aspect to discuss is the expertise of the team. The developers of SOURCEFORGE

were designing and developing software for a domain in their own area of expertise - software development. They were very comfortable with

centralized version control systems and did not appreciate the importance of incorporating collaboration into software development tools. This

high level of domain expertise, in away, hindered their ability to appreciate the change thatwas happening since theywere very likely considering

their own needs as a software developer. Given the small size of their own team, collaborative tools may not have seemed important.

Software projects should be careful to continue to assess the landscape in which they operate. Diverse teams can help ensure different

perspectives about changing landscapes are considered.

Future research:More comprehensive project and community healthmetrics are needed. Our evidence showed that SOURCEFORGE suffered

fromavariety of social and technical problems.Wecannot claim that additional project and community health trackingwould have prevented the

downfall of SOURCEFORGE, but we do observe that using some of the community smells and technical and architectural debt metrics we exam-

ined in this study would have revealed problems. Potentially if some of the problems had been revealed earlier, the fate of SOURCEFORGE would

have been different. Future research should develop tools that enable the tracking of more fine-grained metrics related to the community, the

code, and the architecture.

Turnover (e.g., as measured by its earlier manifestations such as the Bus-Factor[12]) and smelly-quitters are the only two quantities that we

investigated which exhibit variability both at the micro-structure (single or small-world network interactions) and at the macro-structure level.

The only apparent exception to the turnover and smelly-quitters variability in the organizational structure of the forge under study is in the very

beginning of our sample of observations, namely, the period between early 2014 and mid 2015, where the standard deviation for both drops

by half a point — this period coincides almost identically to the downfall time range from the timeline reported in Fig. 6. The coincidence could

indicate that Forge designers and managers detected the negative trend, trying to pick up the disaster scenario caused by DevShare and sought

external collaboration as well as increasing the number of paid maintainers. On the other hand, the indication in question could have been aided

by automated-tracking of turnover and smelly-quitters [39] emerging from organizational tracking. Further research should be invested in these

factors to correctly establish the feasibility of the aforementioned metrics in this context.

There is also an intrinsic relationship between the social, technical, and architectural factors. Thus, additional comprehensive metrics should be

developed beyond the existingmeasures like socio-technical congruence.While some initial work on this has been carried out [39],more research

is needed on the relation between social and technical debt as well as on the methods for assisting developers in reducing the joint issues coming from

such relation. Some communities are already forming to develop additional health metrics, for example, the CHAOSS initiative10 or the SECO-

health FNRS international project11. Future efforts should develop tools that enable comprehensive analysis of project and community health

that consider the relationships between the social, technical, and architectural components of a project.

Future research: Analysis of failures and Retrospectives. While there has been some recent work that studies the failure of software projects

(described in Section 6), additional investigations are needed to understandmore deeply the reasons for failure of declines of software projects.

Additional case studies could be performed to add to the evidence collected here.

10https://chaoss.community/
11https://secohealth.github.io/

https://chaoss.community/
https://secohealth.github.io/
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5 THREATS TOVALIDITY

Like any study of comparable magnitude and scale, this study is affected by several threats to validity. In what follows we outline the major ones in

our study design and execution.

Internal and Sampling Validity. Internal validity refers to the internal consistency and structural integrity of the empirical research design.

We focused our study on APACHE ALLURA and SOURCEFORGE individually, operating a mixed-methods research approach also adopting several

observer, data, and sample triangulation strategies (e.g., an additional set of our study of the Forge features an interview dataset whose coding was

executed twice andK↵ evaluated) being adopted. This notwithstanding, there are up to 90 factors from the state of the art in organisations research

[47] that may still be affecting our findings and results. Also, the quantities and effect sizes of the factors themselves were not addressed in this

study. Stemming from this limitation, we are planning further study of our target subjects in follow-up quantitative and qualitative research over

the projects hosted on SOURCEFORGE or further interested parties involvedwith the forge (e.g., developers for those projects) thatmay confirm the

validity of this work.

External Validity. External validity is the degree to which results from a study may be generalized to other contexts. One threat to external

validity is the small size of our interviewee pool —just four project members were interviewed. While four is a small number of interviewees,

they represent a large percentage of the core developer team, and so we believe that their opinions are likely to be accurate representations of

the project. Further, our analysis considered only one organisation, SOURCEFORGE, so may not generalize to other projects. Future studies should

investigate if the social and technical factors we identified also contribute to the downfall of other software projects.

Conclusion Validity. Conclusion validity represents the degree to which conclusions about the relationship among variables are reasonable.

In the scope of the discussions of our results we made sure to minimise possible interpretations, designing the study with reference to known

hypotheses. Also, our conclusions were drawn from statistical analysis of our dataset and analysis of the source code of the eight ALLURA releases

we could get grips onto. Further data triangulationmight improve conclusion validity.

6 RELATEDWORK

While the majority of research on OSS projects has focused on their successes, a number of papers have investigated reasons for their failure.

For example, Coelho and Valente [11] report on the results of a survey of 104 developers of failed (deprecated) GITHUB projects. As a result of

this survey they provide 9 reasons for failure, such as: “usurped by competitor” (27 projects), “project is obsolete” (20 projects), or “lack of time

of the main contributor” (18 projects). Khondhu et al. [28] analyzed a set of SOURCEFORGE projects and classified them into “active”, “dormant”,

and “inactive”. They then analyzed the “maintainability index” (MI) [37] of the code form a sample of each of those sets of projects. Their results,

however, were inconclusive; there was not clear trend in theMI between the different sets of projects, and the sample sizes were not large. Yee et

al. [30] conducted a study where they identified “five determinants of OSS success and the relationships among them through a literature review

of previous IS success models”. These factors were: Software quality, OSS use, Community service quality, User satisfaction, and Individual net

benefits. Their key finding was that “usage of OSS is predominantly determined by user satisfaction and software quality”.

There has also been a substantial literature on software project failures:while this research did not specifically focus onOSSprojects, a complete

overview is available in [26]. A number of previous works have investigated factors likely to influence the success/failures of software projects. For

instance, Capiluppi et al. [7] investigated four dimensions, i.e., (i) community of developers, (ii) community of users, (iii) modularity and documenta-

tion, and (iv) software evolution, of 406 projects coming from a deprecated open source repository called FreshMeat. They found that most of the

projects (57%) have one or two developers and that only a few of them (15%) can be considered active. Tourani et al. [50] investigate the impact of

codes of conduct in open source projects, finding that they aim at providing a safe and inclusive community to avoid community-related issues. Ye

and Kishida [57] conducted a study on the motivations leading developers to engage open source development, finding that learning is the major

reason that motivates people to start contributing to open source projects. However, when this need is not satisfied, contributors tend to quit the

project, possibly creating critical issues for its success. As a matter of fact, Avelino et al. [3] found that the survival of popular GITHUB projects

heavily depend on one or two developers.

7 CONCLUSIONS

This paper tells the cautionary tale of the downfall of ALLURA/SOURCEFORGE. We identified both internal and external causes, both social and

technical in nature.Wealso found evidence of socio-technical and architectural problems in project archives. Project and community healthmetrics

could have been used to predict and understand the downfall by tracking its early manifestations. The team reported to be aware of the technical
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debt in the project, yet thiswas insufficient tomaintain the health of the project. Communitymanagers should alsomeasure andmanage themutual

impacts of technical and social debt. Furthermore, our analysis suggests that a combination of managerial and technical flaws doomed this project:

architectural flaws, power-distance, and measurable management mishaps eventually led to the forge’s demise. Practitioners and maintainers of

other software projects can benefit from this cautionary tale, e.g., as indications ofwhat not to do, in the scope of their community and architecture

management infrastructure.
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