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Abstract

Context. Code smells are sub-optimal design choices that could lower software main-
tainability. Objective. Previous literature did not consider an important characteristic
of the smell detection problem, namely data imbalance. When considering a high number
of code smell types, the number of smelly classes is likely to largely exceed the number of
non-smelly ones, and vice versa. Moreover, most studies did address the smell identifica-
tion problem, which is more likely to present a higher imbalance as the number of smelly
classes is relatively much less than the number of non-smelly ones. Furthermore, an ad-
ditional research gap in the literature consists in the fact that the number of smell type
identification methods is very small compared to the detection ones. Research gap.
The main challenges in smell detection and identification in an imbalanced environment
are: (1) the structuring of the smell detector that should be able to deal with complex
splitting boundaries and small disjuncts, (2) the design of the detector quality evaluation
function that should take into account data imbalance, and (3) the efficient search for
effective software metrics’ thresholds that should well characterize the different smells.
Furthermore, the number of smell type identification methods is very small compared
to the detection ones. Method. We propose ADIODE, an effective search-based engine
that is able to deal with all the above-described challenges not only for the smell detec-
tion case but also for the identification one. Indeed, ADIODE is an EA (Evolutionary
Algorithm) that evolves a population of detectors encoded as ODTs (Oblique Decision
Trees) using the F-measure as a fitness function. This allows ADIODE to efficiently
approximate globally-optimal detectors with effective oblique splitting hyper-planes and
metrics’ thresholds. Results. A comparative experimental study on six open-source
software systems demonstrates the merits and the outperformance of our approach com-
pared to four of the most representative and prominent baseline techniques available in
literature. The detection results show that the F-measure of ADIODE ranges between
91.23 % and 95.24 %, and its AUC lies between 0.9273 and 0.9573. Similarly, the iden-
tification results indicate that the F-measure of ADIODE varies between 86.26 % and
94.5 %, and its AUC is between 0.8653 and 0.9531.

Keywords: Code smells detection, Smell type identification, Imbalanced data
classification, Oblique decision tree, Evolutionary algorithm.
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1. Introduction

Over the lifecycle, software systems are subject to many changes that are meant to
maintain high their business level (Palomba et al., 2014)). Regrettably, these changes
are often carried out under time pressure and thus push software developers to set aside
good programming guidelines. The deadline respect requirement, called the technical
debt (Cunningham) |1993)), may cause the immaturity of the developed software. Code
smells (a.k.a., anti-patterns) (Fowler & Beck|, [1999), i.e., symptoms of poor design and
implementation solutions (Palomba et al., [2018b)), represent the principal factor leading
to serious issues regarding the maintenance of software (Catolino et al., [2019; |Vassallo
et al| [2019; Palomba et al., 2018c; Palomba & Zaidman) [2019). Unfortunately, the
existence of smells could deteriorate essential code quality aspects such as understand-
ability and changeability, which could cause the introduction of faults (Yamashita &
Moonen|, 2013a)). For instance, the code smell " Long Parameter List" could deteriorate:
(1) readability since it may be difficult to read many parameters simultaneously and
(2) changeability because time-consuming modifications could be needed especially if
the concerned method is frequently called. Moreover, this smell type could also push
the developer to introduce defects, since it is more likely to make mistakes when a
method call contains a high number of parameters. Such code smell could be removed
using one of the appropriate refactoring techniques (Yamashitaj, |2012). Unfortunately,
this choice heavily depends on the definition of the code smells, which is still so far
a challenging issue due to the subjectivity of software engineers in framing each smell
definition (Mantyla & Lassenius, 2006). A considerable number of studies have been
conducted to investigate the effects of code smells on non-functional properties such as
understandability (Yamashita & Moonen, 2013b)) as well as change- and fault-proneness
(Khomh et al.| 2012 |Palomba et al. [2018b; [Tufano et al., 2016; Spadini et all [2018),
which are among the main requirements for software evolution (Sjoberg et al., 2013; Ya-
mashita & Moonen, 2013c). Based on these studies, several smell detection tools have
been proposed and used to detect refactoring opportunities (Palomba et al., |2015; dos
Santos Neto et al.l 2015; [Palomba et al., [2018d}, 2016, 2017} |Crasso et al., [2009; Vidal &
Marcos| [2012). In fact, most approaches were proposed for the detection case, while only
a much reduced number of approaches have focused on the identification task (Rasool
& Arshad| 2017} Liu et al., [2015)).

Anti-pattern detection tools could be classified into two main categories: (1) Rule-
based tools and (2) Search-based ones. The former tools use a set of predefined rules
that are based on the combination of metrics and thresholds (Sharma & Spinellis, 2018)).
Unfortunately, such kind of detectors suffers from the problem of threshold calibra-
tion; which has been reported to push the software developers to ignore the outputted
anti-patterns (D1 Nucci et al., 2018). It is worth noting that the threshold calibration dif-
ficulty dramatically increases with the number of the considered smell types. The latter
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tools, i.e., search-based ones, do not face such difficulties as they have the ability to au-
tomatically calibrate the different thresholds based on a base of good and/or bad pattern
examples (Mansoor et al., 2017). Such detectors have demonstrated very interesting re-
sults thanks not only to the adaptive threshold tuning but also to their capacity to escape
local optima; and hence providing the user with a set of globally-optimal detection rules
as possible (Ouni et al., [2013)). Despite their ability to automatically calibrate metrics’
thresholds through the evolutionary optimization process, the search-based approaches
could generate ineffective (meaningless) thresholds’ values that negatively influence not
only the effectiveness but also the efficiency of the search process. This serious issue
will be detailed and then solved in Section as illustrated later by Figure [ It
is important to note that, in some cases, the software engineer would like to interact
with the system to specify his/her thresholds’ values based on his/her knowledge and
experience. The interaction is just optional in ADIODE and it is the software engineer
who decides the interaction instant(s) (e.g., after a user-specified number of generations
of the evolutionary process). During the interaction, the user is assisted with the set of
effective thresholds for each node and for each tree. It is up to him/her to decide to:
(1) either choose an already generated threshold by the Kretowski-&-Grzes method or
(2) define a different threshold based on not only his/her expertise but also the set of
already generated effective thresholds that may assist him/her. This means that there
are no specific circumstances under which the user chooses one of the two alternatives.
Eventually, once the interaction is terminated, ADIODE continues its execution using
its default effective threshold definition strategy.

Unfortunately, almost all the available tools and works did not consider the data
imbalance problem (Haixiang et all [2017). Table |§] shows that all existing approaches
have not consider the data imbalance problem in their algorithmic behaviors. In fact,
the smell detection problem corresponds to a binary classification problem where there
are two data classes (we use the term "data class" to denote a set of instances, in order
to avoid confusion with the term "software class"): (1) the majority data class and (2)
the minority one. When the number of considered smell types is low, e.g., a detector
considers the detection on only Blob classes, it is more likely that the minority data
class corresponds to the one containing smelly software classes, and vice versa. The fact
that the cardinality of the minority data class is usually much less than the cardinality
of the majority one (Haixiang et al., 2017; |Obregon et al., [2019; Devarriya et al., 2020))
could significantly deteriorate the performance of the detection tools. The imbalance
issue could be even higher in the smell type identification problem, which corresponds
to a detection problem while considering only a unique type of anti-patterns. This could
be explained by the increase of the imbalance ratio (Pecorelli et al., 2019a)), which is
defined in the identification task as the ratio of the number of smelly classes to the
number of non-smelly ones. In summary, most existing works (Rasool & Arshad| 2017
Sharma & Spinellis, 2018) do not consider the data imbalance issue, which depends on
the number of considered smell types. Besides, the number of works dedicated for smell
type identification, which is usually a more imbalanced problem, is very small.

Motivated by these observations, we consider, in this paper, the code smells detection
problem as an imbalanced binary data classification problem. To solve this latter, we
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propose ADIODE (Anti-pattern Detection and Identification using Oblique Decision
tree Evolution) as a new method to detect and/or identify code smells. Our ADIODE
takes as input a base of anti-pattern examples and then evolves a set of ODTs (Oblique
Decision Trees) using an EA (Evolutionary Algorithm). Our choice is justified by:

1.

The performance of ODTs in imbalanced data classification through the machine
learning literature could be explained by the use of oblique splitting hyper-planes
in addition to orthogonal ones (Murthy et al.| [1994; [Wickramarachchi et al., 2016;
Das et al., [2018) as detailed in Appendix C;

. The ability of EAs to escape local optima in the ODT search space (Barros et al.|

2012), which is not the case of greedy machine learning algorithms such as OC1
(Murthy et al., 1993) and CART-LC (Breiman et al., 1984) that usually output a
locally-optimal classifier (Please, refer to Appendix D);

. The good structuring of the smell detectors as ODTs; which is not the case of

existing search-based detection approaches that evolves a set of ad-hoc rules; and

. The ability of ADIODE to be used with one or several smell types; which makes

it useful for both cases: detection (i.e., considering simultaneously many smell
types) and identification (i.e., considering a single smell type). As ADIODE uses
two main concepts from the artificial intelligence field, namely the evolutionary
computation and the ODT (i.e., a machine learning concept), it could be seen as
an intelligent expert system (Hawes| |2011) that evolves a set of IF-THEN rules
(encoded as ODTs) using a base of labelled smell examples (knowledge base), with
the aim to support the software engineers in the detection and identification of
code smells. Appendices C and D details the motivations behind the use of these
artificial intelligence concepts.

We evaluated the performance of ADIODE in an empirical study involving six open-
source systems, comparing it with four state-of-the-art baseline approaches. The results
of our study clearly highlight that the proposed solution has better detection and iden-
tification accuracy with respect to all the considered baselines.

To sum up, the main contribution of this paper could be summarized as follows:

1.

2.

3.

Demonstrating that smell detection (and also identification) corresponds to an
imbalanced binary data classification problem:;

Proposing ADIODE as a new method and tool to detect and identify code smells;

Demonstrating the ability of ADIODE in dealing with data imbalance thanks to
its three main distinctions: (a) the solution encoding as ODT, (b) the use of an
insensitive metric to data imbalance in binary classification that is the F-measure
as a fitness function, and (c) the use of Kretowski-&-Grzes method to find effective
thresholds for the efficacious definition of oblique splits of ODTs;
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4. Showing the performance of our ADIODE method on a set of detailed and sta-
tistically analyzed comparative experiments on six commonly-used open source
projects with respect to four existing recent and prominent works.

Structure of the paper. Section [2| presents the main motivations behind our
work and describes in detail our proposed approach ADIODE. Section [3| reports the
comparative experimental results with respect to the state-of-the-art approaches, while
Section [4] discusses the main findings of the study as well as the implications of our work
for researchers and practitioners. In Section[5] we discuss the different threats that could
affect the validity of our experimentations. Section [f] summarizes the state-of-the-art of
code smells detection. Finally, Section [7] concludes the paper and gives some avenues for
future research.

2. Proposed approach: ADIODE

This section is devoted to describe and detail our ADIODE approach for code smells
detection and identification. It is worth noting that both tasks are performed using the
same mechanism, but using different bases of examples. For the case of detection,
this base could contain a high number of smells or the opposite; while for the case of
identification, the base contains just a single smell type. We conclude that identification
is a special case of detection where the tool works only on a single anti-pattern type.
To ease the understanding of our approach, we first give the main motivations behind
the design of our ADIODE method. Second, we illustrate the global schema of our
detection method. Third, we detail how the detector, which corresponds to an ODT,
is encoded and then decoded within the EA. Fourth, we show how the population of
detectors (ODTS) is varied and optimized using the EA (i.e., a Genetic Algorithm (GA))
and this is done by means of the fitness evaluation, selection, crossover and mutation
modules. Finally, we describe how the generated detectors by the EA could be used for
detection and identification using the ensemble machine learning technique of majority
voting.

2.1. Main ideas and motivations

Motivated by all these weaknesses, our proposed ADIODE method optimizes a set of
ODTs, where each one of them is evaluated using the AUC' (Area Under Curve) metric
(Baeza-Yates et al., [1999)) with respect to a base of smell instances. The main merits of
our approach are detailed next. First, we adopt the ODT as solution representation (i.e.,
detector encoding) in ADIODE since the ODT is able to generate any kind of decision
boundaries: oblique and axis-parallel. This is thanks to the node representation in ODTs,
which corresponds to a weighted combination of features, where features are the used
software metrics. This detector encoding allows ADIODE to be more fitted to detect
minority instances, including small disjuncts (Das et al., 2018)) (Please, refer to Appendix
C for details); which is not the case of existing search-based approaches. Second, the
fitness measures used by almost all search-based tools are not well-suited to imbalanced
classification, which may introduce a significant bias in their obtained results. For this
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reason, we have chosen the AUC as a fitness function in ADIODE since it is reported
that it is an effective metric in the case of class imbalance through the machine learning
literature. In regard to rule-based tools, our ADIODE method has the advantage of
finding automatically optimized values for the software metrics’ thresholds. Finally, we
should note that our approach could output specific detectors for each smell type when
the BE contains a single type smells. All these motivating characteristics of ADIODE
will be next discussed and shown in the comparative experimental study.

2.1.1. Main Schema

As illustrated by Figure [I the ADIODE method is composed of two major mod-
ules: (1) The smell detectors generation module and (2) The smell detectors application
module. The first one outputs a set of optimized ODTs, while the second one applies
these ODTs to detect or identify the code smells on an unseen software system (i.e., a
set of unseen software classes). It is important to mention that, in the detection pro-
cess, all detectors are merged together into a single base of detectors. However, for the
identification case, ADIODE outputs a set of specialized detectors that were trained on
the considered smell type. In this way, we obtain a base of detectors for each smell
type (Blob, Data Class, Feature Envy, etc.). Thus, once the user would like to analyze
an unseen software class, the latter is examined with the specific detectors using the
majority voting strategy to decide the smell types it contains. This process is further
detailed later in Section 2.3]

2.1.2. Individual encoding

To ease the ODT representation, we have chosen to use a two-array encoding with
breadth-first order as recommended by (Jankowski & Jackowski, [2014). Figure [2| details
this encoding for both cases: internal node and leaf node. For the case of an internal
node, the first array contains the weights’ vectors of the different considered metrics in
each visited node; while the second array contains the splitting rule threshold. For the
case of a leaf node, the first array has the same composition as the case of an internal node
but it ends with an additional cell containing a NU LL value to indicate that the current
node is a leaf; while the second array is the same as the case of an internal node but just
it ends with a boolean cell where 1 means a smelly class and 0 means the opposite. In
summary, supposing that a node has an index ¢ in the breadth-first order, its left child
is located at index 2i and its right child is located at the (2i+1) position. It is worth
noting that the metrics’ weights (i.e., features’ weights) are defined in the interval [-10,
10] and the threshold is settled according to an efficient discretization strategy inspired
by (Kretowski & Grzes| [2005), which is detailed next in subsection [2.2.1] Such setting is
adopted based on the recommendations of ODT users (Bot & Langdon, [2000)). Another
important characteristic of our adopted encoding is that feature (metric) selection is
performed in an implicit way since ignored metrics are assigned a weight of zero. In
other words, the selection of metrics intervenes at the node level. Indeed, each node of
the ODT is a combination of weighted metrics. Thus, if a node combines two metrics,
then each of the other (non-selected) metrics are implicitly assigned a zero as weighting
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Figure 1: The global schema of the ADIODE approach.

coefficient. According to Di Nucci et al| (2018), the software metrics (features) do
not equally contribute in the detection of code smells. Moreover, as the ODT has a
maximum depth (that is equal to 7 in this work according to Table |3)), it is frequent
to face the case that some metrics are not selected in all nodes of the ODT, and thus
each of them is implicitly assigned a weight of zero in all nodes. It is worth noting that
any metric could be selected in one ODT and not selected in another. This could be
seen as an implicit selection of features (metrics) performed by crossover and mutation
(and random initialization at the genesis step of the EA). More specifically, the EA
defines in a guided stochastic way the oblique hyper-planes by selecting and weighting
the adequate features in each node during the ODT induction optimization. Asthe ODT
induction process is guided by the F-measure, the obtained detectors would be able to
detect smells with imbalanced data. Similarly, for the identification case, each smell
type involves a subset of metrics and not all of them. In our study, we considered the
detection of eight smell types; each requiring a specific set of metrics. From a software
engineering viewpoint, this implicit selection of metrics could be very useful because the
detection of a particular smell (e.g., Blob) may need a set of metrics that is considerably
different from the set of metrics needed for the detection of another (e.g. Data Class).
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2014).

2.2. GA evolution operators

The adaptation of the GA to our code smell detection problem requires to define a set
of operators that are: (1) Population initialization, (2) Fitness Assignment, (3) Mating
selection, (4) Crossover, and (5) Mutation. It is important to note that the reproduction
operators should ensure the feasibility of the generated offspring ODTs and the fitness
function should be robust to the data imbalance problem. Also, we notice that the
evaluation of an ODT necessitates its execution on the BE and then its performance is
computed using a 5-fold cross-validation strategy.

2.2.1. Population initialization and threshold generation

The GA starts by the initialization of N detectors (ODTs) as follows. The metrics’
weights are within the interval [-10, 10] as previously noted in subsection where
ignored metrics are assigned a weight of zero. For the case of detection, labels take
either 1 or 0 to refer to a smelly-class or not, respectively. For the identification case,
each label contains an integer indicating the smell type. For both tasks, detection
and identification, the left leaf-node (corresponding to a less-or-equal operator "<") is
assigned randomly a label, which indicates the existence of the smell or not. Eventually,
the corresponding right leaf-node is assigned the opposite label.

One of the main issues in existing smell detection approaches is the threshold def-
inition. To the best of our knowledge (Ouni et al., |2013; Sahin et al., |2014; Mansoor|

et all 2017), most existing works did not detail how to specify the threshold value and
just report that it is optimized, from one iteration to the next, during the detectors
generation process. Unfortunately, such strategy could generate ineffective (meaning-
less) thresholds (cf. Figure [d)), which deteriorate not only the effectiveness but also the
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efficiency of the tree induction process. To solve this issue, we use in ADIODE an adap-
tation of an existing discretization method, proposed by (Kretowski & Grzes, 2005,
for efficacious threshold definition. This method has already shown interesting results
when embedded within the DT induction algorithm C4.5. The working principle of this
discretization technique is as follows. Once a weighted-feature combination is generated
within a particular node, we consider this combination as a new (constructed) feature
in the dataset and we compute all its values for every instance (software class). This
computation should be done for both: smelly-classes and non-smelly ones. Afterwards,
all instances are sorted in an ascending order with respect to the (constructed) feature
values. Besides, boundary thresholds are identified as shown by Figure 4. Indeed, a
boundary threshold for the considered feature is defined as a midpoint between such a
successive pair of examples in the sequence sorted by the increasing value of this feature,
so that one of the examples is positive and the other is negative. Finally, the threshold
value of the considered node is randomly selected from the set of effective generated
thresholds as depicted by Figure 4 It is worth noting that this discretization strategy
is executed whenever a new feature combination is generated within a particular node.
This means that the execution of this strategy could be called either at the initialization
step or at the offspring generation process through crossover or mutation.




Table 1: Outcomes of two different classifiers behaving differently on the same BE.
Predicted class

Actual class Classifier A \ Classifier B
Positive Negative Positive Negative
Positive (Smelly) =10 1 9 9 1

Negative (Non-smelly) = 10000 | 3000 7000 7000 3000

2.2.2. Fitness assignment operator

This operator assigns a quality value to each ODT of the GA’s population. It is
triggered after the initialization of the population and whenever a new offspring ODT
is born using crossover or mutation. The quality (fitness) value will be later used in the
selection process. Many researchers have used the accuracy metric (shown by Eq )
as a fitness function in evolutionary classification (Ma & Wang, 2009). Formally, T'P
(True Positives) is the number of actual smelly classes correctly classified, TN (True
Negatives) is the number of actual non-smelly classes correctly classified, FN (False
Negatives) is the number of actual non-smelly classes misclassified as smelly ones, and
FP (False Positives) is the number of actual smelly classes misclassified as non-smelly

ones.
TP+ TN

T TP+ FP+TN+FN

B (TP = 1) + (TN = 7000) B
Accld) = B 1) T (PP =3000) + (TN =7000) - (PN =9y 00 @

(TP =9)+ (T'N = 3000)

AceB) = rp =9y (PP = 7000) + (TN = 3000 + (PN =1) 2% )
When facing imbalanced data, the adoption of the accuracy as a fitness function is
not a good choice at all for the following reason. Assuming we have two classifiers A
and B (i.e., detectors), we compute the confusion matrices for each of these classifiers as
represented by Table [I We note that the exhibited example considers only three smell
types (i.e., the minority instances are the smelly classes). From an accuracy viewpoint,
the two classifiers A and B behave differently as their accuracy values are 70% and 30%
(as shown by Eq. and Eq. respectively). However, from an AUC' viewpoint (Eq.
), there is a very significant difference between the behaviors of the two classifiers.
For instance, the AUC values of A and B are 0.015 and 0.315 (shown by Eq. and
Eq. respectively). We observe that A is slightly better than B in terms of accuracy,
while B is much better than A in terms of AUC. This could be explained by the fact
that A has a quite good performance on the classification of the non-smelly (majority)
instances and a very poor performance on the detection of smelly (minority) instances;
which makes A unsuitable for smell detection. The opposite observation is seen for

classifier B as it detected 9 smells out of 10.

Ace (1)

N-1
1
AUC =) 5 % (FPRiyy — FPR;) x (TPRyyy + TPR;) (4)
=1

10
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TP
TruePositi TPR) = ———
ruePositiveRate(T PR) TPLEN (5)
. FP
FalsePositiveRate(FPR) = TPETN (6)
AUC(A) = 0.5 % [(0.3 — 0) x (0.1 +0)] = 0.015 (7)
AUC(B) = 0.5 x [(0.7— 0) x (0.9 + 0)] = 0.315 (8)

A similar observation has been detected for the opposite case where the minority
instances correspond to the non-smelly classes and in this case eight smell types were
considered.

2.2.3. Mating selection operator

As previously noted, one of the main advantages of our ADIODE method, is its
ability to escape local optima and hence to approach the globally-optimal detectors.
The main mechanism that ensures such behavior is the mating selection operator that
we have adopted, i.e., the binary tournament selection operator (Brindle, [1980). The
working principle of this operator is as follows. In order to select (IN/2) parents for
reproduction where N is the population size, we execute a loop of (NN/2) iterations,
where in each iteration two individuals (ODTs) are randomly selected (with replacement)
and then only the fittest one is inserted into the mating pool. Such selection strategy
allows good and bad individuals to be selected (e.g., two bad ODTs could be selected
for tournament) with a preference bias towards good individuals. In this way, the GA

11
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probabilistically accepts fitness degradations; which allows it to escape local optima and
converge towards the globally-optimal ODT(s) (Barros et al., 2012).

2.2.4. Crossover and mutation operators

To crossover solutions, we adopt the one-point operator, which is illustrated by Figure
for our case. First, a cut-point is randomly generated with the aim to locate a subtree
in each of the two parents. Then, both subtrees are exchanged. For the mutation
operator, we may have two kinds of changes:

e Weight change: The operator varies the weights of the metrics by allowing the
possibilities of introducing a new metric (its weight passes from zero to non-zero
value) and removing an existing metrics (its weight becomes zero) (See Figure

[6(a)).

e Label change: The operator switches a pair of labels, which corresponds to an
exchange between two leaf-nodes (see Figure [6(D)).

Three levels of mutation are possible. The first level applies only a weight change. The
second level applies only a label change. The third level applies both changes. Each level
of mutation corresponds to level of degree of a randomly generated probability p such as:
Low degree (0 < p < 0.3) for the first level of mutation, Middle degree (0.3 < p < 0.6)
for the second level of mutation, and High degree (0.6 < p < 1) for the third level of
mutation.

2.3. Smell detectors application module

Once the detectors are generated by the GA, the ADIODE tool is ready to be applied
on unseen software systems for both cases: detection and/or identification. Figure m
illustrates the process of labelling the N classes of a particular software system. As the
generated detectors could output different labels, the majority voting strategy (Suen,
1990; Suen et al., [1992)) is applied to have a robust decision, as described by Figure
[7(a)l To help the software engineer to identify the smell type with more precision, it
is recommended to apply the identification task on the already detected smelly classes.
Figure represents such process, which uses also the majority voting strategy. As
we have type-specific detectors, a smelly class could be assigned multiple labels; which
means that the analyzed class has more than one smell type.

3. Experimental Validation

This section is devoted to assess the performance of our ADIODE approach with
respect to the state of the art. To do so, we address the following research questions
through a series of comparative experiments on six commonly-used software systems:

e RQO: How the data imbalance problem could occur in code smells detection? To
answer this question, we show how the number of smells in a particular software
system increases not only with the raise of the number of considered smell types
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Figure 6: Mutation

but also the choice of the smell types, as some smell types are more frequent then
others. We study the evolution of the number of smells on six open-source software
systems using 1, 2, 4, 6, and 8 smell types.
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Figure 7: Illustration of the application of ADIODE on an unseen software application.

e RQ1: How is the performance of ADIODE when facing the data imbalance prob-

lem in code smells detection? To answer this question, we show the performance of
the use of optimized oblique splitting and the guided automated definition of the
threshold through a set of comparative experiments with respect to four state-of-
the-art approaches. To do so, we consider the two following research sub-questions:

— RQ1.1: How does ADIODE perform when the minority class is composed
of smelly instances? We conduct a set of experiments with only three smell
types that are Blob, Spaghetti Code, and Functional Decomposition.

— RQ1.2: How does ADIODE perform when the minority class is composed
of non-smelly instances? We perform a set of comparisons with eight smell
types that are described next (cf. Table .

RQ2: How does ADIODE perform in smell type identification especially that such
task is characterized with a higher imbalance ratio than the detection one? 1t is
important to study the performance of our approach when the data imbalance
significantly increases with the smell type specification. In this setting, ADIODE
is compared also to the four considered state-of-the-art approaches.



Table 2: Used Software in the experimentation

Systems Releases #Classes KOLC Description
GanttProject V 1.10.2 245 41 Platform for the projects scheduling
ArgoUML V 0.19.8 200 300 A tool for UML modeling
Xerces-J V270 991 240 Software for XML parsing
JFreeChart V 1.0.9 521 170 Java Library for the generation
Ant-Apache 'V 1.7.0 1,839 327 Java Library for the charts Java applications
Azureus V 2.3.0.6 1,449 42 Peer to Peer (P2P) client program for sharing files

e RQ3: Is ADIODE able to identify the eight studied code smells described in Table

[10¢ Tt is interesting to show the versatility of our approach with the respect to

the ability of covering different types of code smells, with the aim to generalize the

335 application of ADIODE with other smells types that are not considered in this
research work.

3.1. Context of the Empirical Validation

We conduct a set of experiments on commonly used open-source Java software sys-
tems that are: ARGOUMIJY, XERCES-JF, GRANTTPROJECTP], ANT-APACHH! AZUREUS}
00 and JFREECHARIP} Table [2| reports the characteristics of the used systems, namely
the release number, the description, and the size in terms of the number of classes
(#classes) in addition to the number of lines of code (KLOC: thousands of code Lines).
JFREECHAT is a powerful Java chart library specialized in the generation of profes-
sional quality charts. GANTTPROJECTS is a platform devoted to scheduling projects.
a5 ARGOUML tool is a popular open-source project for UML modeling. Ant-Apache is a
Java library and is a build tool specifically designed for Java applications. XERCES-J is
an open-source system, which is dedicated to XML files parsing. AZUREUS is an end-
to-end (a.k.a., peer-to-peer) program for sharing files between users. We have chosen
these systems as they are rich in terms of the number of existing code smells and they
0 are frequently used in the empirical studies of smell detection (Fontana et al., [2016b}
Palomba et al., [2018b; Azeem et al., 2019)).

3.2. Parameter configuration for ADIODE

An important aspect that is often neglected in metaheuristic search algorithms is the
adjustment of the algorithm parameters. It is important to know that the parameter

355 setting remarkably affects the performance of an algorithm on a specific problem. For this
reason, the default parameters of ADIODE employed in the simulations part (described

in Table (3|) are fixed using the trial-and-error technique, which is is a common practice

Thttp://argouml.tigris.org/

http:/ /xerces.apache.org/xerces-j/

3https://sourceforge.net /projects/ganttproject /files/OldFiles/
“4http://ant.apache.org

Shttp://vuze.com/

Shttp:/ /www.jfree.org/jfreechart /
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Table 3: Parameter settings of ADIODE and its competitor algorithms.

Parameters ADIODE GP MOGP BLOP
Crossover rate 0.9 0.9 0.8 0.8
Mutation rate 0.1 0.5 0.20 0.05
Population size 200 100 100 30
Tree depth 7 7 7 7

so far in the evolutionary computation and SBSE fields (Karafotias et al., 2015; |Boussaid
et al., 2017; Ramirez et al., 2018)). Furthermore, the stopping criterion is set to 250,000
fitness evaluation for all the approaches (including ours) in order to ensure fairness of
comparisons.

3.3. Selection of the baseline approaches

With the aim of comparing ADIODE with state of the art techniques, we selected
four baselines: these are GP (Ouni et al., [2013]), MOGP (Mansoor et al., [2017)), BLOP
(Sahin et all [2014), and DECOR (Moha et al., [2010). The selection of these baseline
approaches was based on two main reasons. On the one hand, there are three categories
of search-based methods: (1) Mono-objective methods, (2) Multi-objective ones, and
(3) Bi-level ones; GP, MOGP, and BLOP are three effective representative methods
from these categories, respectively, and allow us to have a wider overview of how our
technique works in comparison to existing approaches. On the other hand, DECOR is
chosen to be the representative of the heuristic rule-based category; we included such as
baseline because of our willingness to understand whether ADIODE is actually able to
outperform a basic detection approach which relies on heuristics computed on the basis
of the values of source code metrics. In what follow, we give a short description of the
working principle of each baseline method:

1 - GP: This method evolves a set of IF-THEN rules using the genetic programming
metaheuristic that communicates with a BE of code smells. Each solution is rep-
resented as a tree of detection rules; where internal nodes contains the metrics and
their corresponding thresholds, while leaf nodes indicates the class labels. These
rules are evolved by maximizing the number of detected defects in comparison to
the expected ones in the BE. According to the reported precision and recall values
by the authors, GP achieved an average F-measure of 88% on six software systems,
while considering only three smell types. In the same paper, the authors proposed
a multi-objective refactoring method based on NSGA-II to remove as possible the
detected smells.

2 - MOGP: This method is selected as a representative of the multi-objective ap-
proaches. From a solution representation viewpoint, the MOGP uses the same
encoding as GP. The main difference with GP is related to the fitness function. In
fact, in MOGP NSGA-II is used to evolve the trees by optimizing two conflicting
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objectives: (1) Maximizing the detection of code smells of the BE and (2) Minimiz-
ing the detection of well-designed code fragments. To achieve this goal, NSGA-II
communicates with two BEs. The first one contains smells and the second one
contains well-designed codes. The authors justified the use of the good codes by
the fact that the use of smells alone does not allow the coverage of all smells.
Thus, by maximizing the distance to a good code example, a code fragment could
be considered as a suspicious anti-pattern. According to the reported precision
and recall results, the average F-measure is 87 % on seven software systems while
considering five smell types.

3 - BLOP: This method was proposed to solve the issue of the lack of diversity that
could have a BE. To do so, the authors proposed to model the code smell detection
as a bi-level optimization problem as follows. The upper level evolves a set of
detection of rules, while the lower level generates a set of artificial code smells.
From a fitness viewpoint, the upper level maximizes the detection of real and
artificial code smells, while the lower level minimizes the likelihood of the event
that the artificial smells would be detected by the upper level rules. In this way,
there is a competition between both levels that aims to: (1) generate rules with
important detection ability and (2) produce unseen artificial smells that diversify
the BE. Based on the reported precision and recall values, the average F-measure
is 90 % on nine systems while considering seven smells.

4 - DECOR: This method is a heuristic-approach rather than a search-based solution.
More specifically, DECOR uses a set of rules, called "rule card"[} that describe the
intrinsic characteristics of a class affected by a smell. As an example, a Blob class is
detected when a class has an LCOMS5 (Lack of Cohesion Of Methods) (Henderson-
Sellers, [1995) higher than 20, a number of methods and attributes higher than 20,
a name that contains a suffix in the set { Process, Control, Command, Manage,
Drive, System }, and it has a one-to-many association with data classes. The
authors of this technique showed that DECOR can identify smells with an average
F-measure of ~80% (Moha et al., 2010)).

3.4. Performance metrics

As we are solving an imbalanced data classification problem, the used performance
metrics should be able to evaluate a detection method in such setting. To achieve this
goal, we have chosen the F-measure (Van Rijsbergen, 1979) and the AUC metrics. The
F-measure is given by equation (9) and corresponds to harmonic mean of Precision
(Eq. and Recall (Eq. [1I). This choice is justified by the fact that for the case
where the minority instances are the smelly classes a high F-measure value means high
precision and recall values on the minority data. In this way, a high F-measure value
means that a high number of detected classes are really smelly and a high number of real
smells are covered by the rules. The same justification is applicable for the case where

Thttp://www.ptidej.net /research /designsmells/
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the minority instances are the non-smelly classes. In fact, in case where the non-smelly
classes are the minority ones, a high F-measure value means that a high number of
detection are really non-smelly classes and a high number of real non-smelly ones are
detected. As the F-measure is a threshold-dependent measure (Azeem et al., [2019), we
complement our experimental analysis by a threshold-free metric that is the AUC' (cf.
equation (4))), which depicts how well a classifier approximates the trade-off between the
minority (rare) instances and the majority (prevalent) ones over various classification
thresholds. The AUC' is well-suited for the class imbalance problem since it is a function
of the true positive rate ad the false positive one, where the positive class is the minority
class (Palomba et al., 2018a.b}; Fontana et al.| 2016b).

(Precision x Recall)
(Precision + Recall)

TP

F — measure = 2 x

(9)

recision = o s (10)
TP

- 11

Recall = 5T FN (11)

3.5. Adopted statistical testing methodology

Since GAs are stochastic optimizers, they usually output different results on the same
software system (or problem) from one run to another. In such settings, the comparison
between stochastic smell detection approaches becomes difficult as the winning approach
may vary from one run to another. To cope with the stochastic nature of results,
researchers have proposed the use of statistical tests to detect any significance between
the obtained results (Arcuri & Briand| 2014). Two kinds of tests are possible: (1)
Parametric tests which require data normality and (2) Non-parametric tests. To avoid
the issue of data normality, we have chosen to use the Wilcozon test (Conover & Conover,
1980) in a pairwise fashion, with the goal to reject the null hypothesis Hy; which means
that both median values of both compared algorithms over the number of runs are not
significantly different. We use a significance rate « equals to 5%, which means that
there is only a probability of 0.05 for rejecting Hy while it is true. In addition to
significance, it is important to report the effect size to quantify the difference between
algorithms’ results. Unfortunately, the Wilcoxzon test allows verifying whether the results
are statistically different or not. However, it does not give any idea about the difference
magnitude. The effect size could be computed by using the Cohen’s d statistic (Cohen,
1988)). The effect size is considered: (1) small if 0.2 < d < 0.5; (2) medium if 0.5 < d <
0.8, or (3) large if d > 0.8.

3.6. Analysis of the Results

This subsection is devoted to report and explain the obtained comparative results
with the aim to answer the three above research questions and show the effects of the
main characteristics of our ADIODE approach that are: (1) the use of oblique splitting
hyper-planes, (2) the ability to escape local optima, (3) the good structuring of smells

18



465

470

475

480

GanttProject Xerces-) Ant-Apache
09
= = =

07

0s %
| T | F | T
= : = . o

ADIODE BLOP MOGP GP ADIODE BLOP MOGP GP ADIODE BLOP MOGP GP

F-measure
F-measure
F-measure

GanttProject Xerces-) Ant-Apache

DE% DQ% 09?

| = i :
} . == ==
' = . = . T =

ADIODE BLOP MOGP [ ADIODE BLOP MOGP GP ADIODE BLOP MOGP P

Figure 8: Box plots of F-measure and AUC values for the detection of three code smells on three
different systems: GanttProject (small size), Xerces-J (medium size), and Ant-Apache (large size).

detectors, and (4) the informed process of threshold definition. Moreover, we show how
ADIODE could be used for both tasks: detection and identification.

3.6.1. Results for RQO

The detection of code smells mainly depends on the number of considered smell
types. Table [4] presents the distribution of the number of smells per type in the six
considered software systems while considering only three smell types that are among the
most frequently encountered and studied (Palomba et al., 2018b). These smell types are
Blob, Spaghetti Code, and Functional Decomposition. We observe from this table that
the minority instances are the smelly classes, while the majority instances are non-smelly
classes. According to the data imbalance ratio values given in the last column, we see
that the data distribution is significantly imbalanced. This could be explained by the
fact that the number of non-smelly classes largely exceeds the number of smelly ones. For
small-size systems (GattProject and ArgoUML), the ratio varies between 19.80 % and
21.00 %. For medium-size systems (JFreeChart and Xercess-J) and large-size systems
(Ant-Apache and Azureus) the ratio respectively belongs to [16.69 %, 17.25 %| and
[09.35 %, 10.79 %]|. It is worth noting that the lower the ratio is, the higher the data
distribution imbalance is, since the ratio could be seen as the percentage of minority
instances with respect to all instances. Based on the imbalance ratio analysis, we could
say that the imbalance is higher when the system size is larger. This could be explained
by the fact that the introduction of new classes to an existing software system version
increases the probability of introducing new anti-patterns; which makes the patterns
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Table 4: Results of the detection task in the case of three smell types (Blob, Spaghetti Code (SC), and
Functional Decomposition (FD)).

Imbalance ratio with 3

Blob SC FD Classes Smelly classes Non-smelly classes smell types (Blob, SC, FD)

GranttProject 11 16 17 245 44 201 17.95 %
ArgoUML 30 0 0 200 30 170 15.00 %
Xercess-J 100 23 16 991 139 852 14.02 %
JFreeChart 40 18 10 521 68 453 13.05 %
Ant-Apache 130 13 0 1839 143 1696 07.77 %
Azureus 100 21 19 1449 140 1309 09.66 %

Overall ¢ ; 10.75 %

Table 5: Results of the detection task in the case of eight smell types (Blob, Data Class (DC), Feature
Envy (FE), Long Method (LM), Duplicate Code (DuC), Long Parameter List (LPL), Spaghetti Code
(SC), and Functional Decomposition (FD)).

Blob DC FE LM DuC LPL SC FD Classes

Smelly Non-smelly Imbalance ratio with

classes classes 8 smell types
GranttProject 11 35 8 29 50 32 16 17 245 198 47 19.18 %
ArgoUML 30 20 15 53 0 40 0 0 200 158 42 21.00 %
Xercess-J 100 201 105 90 190 95 23 16 991 820 171 17.25 %
JFreeChart 40 100 72 54 115 25 18 10 521 434 87 16.69 %
Ant-Apache 130 240 317 247 360 360 13 O 1839 1667 172 09.35 %
Azureus 100 300 260 120 210 200 81 19 1449 1290 159 10.97 %

Overall

more complex for software engineers.

Table [5] exhibits the same statistics as Table [4 but for a different case consisting in
considering eight smell types. According to the statistics values, the situation is now the
opposite: The minority instances are non-smelly classes and the majority ones are the
smelly classes. The imbalance ratio, consisting in this case as the number of non-smelly
classes divided by the total number of classes, lies within the interval [09.35 %, 21.00
%|. Again, the larger the system is, the more probable the imbalance increases. The
incorporation of new classes within a particular system version increases the probability
of new smells occurrences; thereby making the number of non-smelly classes lower, which
sharpen the data imbalance.

Both Table {4] and Table [5] illustrate two cases of smells detection. However, if we
consider the smell type identification problem, the imbalance would be much higher.
Let us consider the case of Blob, which is one of the most frequent and studied smell
types in both academy and industry. The imbalance ratio when considering only Blob
lies within [04.48 %, 06.90 %|. Moreover, if consider all software systems simultaneously,
the number of Blob instances is 411 and the total number of classes is 5245. This shows
that data imbalance is higher in identification then in detection. We can imagine the
case of less frequent smells such as Functional Decomposition. In summary, the data
imbalance problem is a frequently encountered issue in code smells detection and needs
special algorithmic methods to be handled.
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3.6.2. Results for RQI.
This section reports the results for our first research question. For the sake of com-
prehensibility, we discuss them by considering each sub-research question independently.

Results for RQ1.1. To answer RQ1.1, we conduct a set of experiments on the six
considered software systems while considering only three smell types (Blob, Spaghetti
Code, and Functional Decomposition), which define an imbalanced environment where
the minority class contains the smelly instances. The rise of the imbalance ratio may
in turn cause the increase of the probability of occurrence of small disjuncts. Figure [9]
illustrates the small disjuncts that correspond to underrepresented sub-groups within a
particular class (Holte et al.;|1989)). These subgroups are usually difficult to classify espe-
cially when using orthogonal splitting hyper-planes. The results are analyzed in terms of
the above-described metrics that are the F-measure and the AUC. Table [6] presents the
values of these two metrics for the five compared methods in addition to the statistical
significance and effect sizes. Based on this table, our ADIODE method outperforms all
the three considered peer search-based approaches in addition to DECOR. For instance,
ADIODE F-measure values span between [89.21, 93.80| while the second-best method
(BLOP) values are between 37.6 and 56.81. The MOGP outputted results are simi-
lar to BLOP ones. The GP did not perform well in such an imbalanced environment
as its F-measure values lie within [20.61, 38.74]. The AUC values are conform to the
F-measure results in terms of significance and magnitude.

The above results confirm the outperformance of ADIODE over the three considered
search-based methods. These results could be explained as follows. First, the used fitness
functions of BLOP, MOGP, and GP are not well-suited for the case of imbalanced data,
which may mislead the detection rules’ search process. Second, the threshold definition
in these three methods is randomly generated, which may conduct to ineffective splitting
values. Indeed, when the threshold is randomly defined, it is highly probable that such
a threshold gives rise to an empty sub-class or to a sub-class containing all the instances
of the parent node. Finally, these three methods implicitly use axis-parallel splitting
hyper-planes, which is not efficient in an imbalanced classification environment.

The DECOR method generated the worst results. Indeed, its F-measure belong
to [10.21, 23.58] and its AUC' varies within [0.11, 0.24]. Such poor results could be
explained by the static a priori definition of the detection rules, which is not effective
at all in the case of imbalanced smell data. In fact, in an imbalanced environment, the
manual metrics’ thresholds definition is a very fastidious and complex task.

In a nutshell, the obtained results of the F-measure and AUC measures for the four
peer considered methods in our experimentation could be explained by the fact that the
TPR (the ratio of correctly detected smelly classes) is low while the F'PR (the ratio of
incorrectly detected smelly classes: false alarms) is high. Such results prove that these
methods are unable to correctly detect the smelly classes. This could be explained by
the fact that the positive data class is the smelly one and consequently such systems
could output false alarms to the developers by recommending smelly classes as non-
smelly ones, which may mislead the software engineer. Moreover, as the number of
non-smelly classes is relatively high, a high F'PR could have a very negative impact on
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Figure 9: Example of small disjuncts problem in the case of imbalanced data.

the software developer task by suggesting non-smelly classes as smelly ones. Such false
suggestions could mislead the developer and push him/her to introduce new smells in
some non-smelly classes.

To have an idea about the difference magnitude, we report the effect sizes in Table
[6l According to this table, ADIODE has, on average, medium effect sizes on small-size
systems (Gantt Project and ArgoUML) and large effect sizes on the other four systems
over the three search-based approaches (BLOP, MOGP, GP). This can be explained
by the fact that ADIODE is able to find good detectors for imbalanced data, while it
is not the case for BLOP, MOGP, and GP especially when the system size increases.
Indeed, the increase in the number of system’s classes and the consideration of a few
smell types usually make the imbalance ratio higher, which makes finding good detectors
harder.

All the experimental results related to RQ1.1 are confirmed by the box plots illus-
trated by Figure [§] on one small-size, one medium size, and one large-size systems. The
observation of these box plots shows the outperformance of ADIODE with respect to
the three search-based methods in terms of significance and effect sizes. Actually, the box
plots of ADIODE are significantly above the three others with a considerable difference,
which confirms the statistical significance and the magnitude. These three methods use
axis-parallel splitting hyper-planes, which is not efficient in an imbalanced classification
environment.

Results for RQ1.2. To answer RQ1.2, we conduct a set of experiments on the
six open source software systems with taking into account eight smell types described
in Table which define an imbalanced environment where the minority instances are
non-smelly. We recall that in this case the data imbalance problem is due to the high-
number of smelly classes with respect to non-smelly ones. As previously noted, the
increase of the imbalance data ratio may in turns entail the rise of the probability of
occurrence of small disjuncts. Based on Table [7, our ADIODE method outperforms all
the three considered peer search-based approaches in addition to DECOR. For instance,
ADIODE F-measure values span between [91.23, 95.24| while the second-best method
(BLOP) values are between 37.6 and 55.80. The MOGP results are similar to BLOP
ones. The GP did not perform well in such an imbalanced data environment as its
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Figure 10: Box plots of F-measure and AUC values for the detection of eight code smell types on three
different systems: GanttProject (small size), Xerces-J (medium size), and Ant-Apache (large size).

F-measure values lie within [22.53, 40.56]. DECOR generated the worst results. Indeed,
its F-measure belong to [11.20, 35.34| and its AUC varies within [0.12, 0.04].

The moderate degradation of the F-measure and the extreme degradation of the
AUC for the four peer considered methods could be explained by the fact that the
TPR (the ratio of correctly detected non-smelly classes) and the FPR (the ratio of
incorrectly detected non-smelly classes) are poor. Such poor values significantly degrade
the F-measure results and the AUC values as confirmed by Table [} Although these
peer methods may recommend a high number of smelly classes to the software developer,
such recommendations are just a hazardous result since the majority instances are the
smelly ones.

All the experimental results related to RQ1.2 are confirmed by the box plots of Figure
on three systems with different sizes. The analysis of these box plots demonstrates
the superiority of ADIODE over the three search-based methods in terms of significance
and effect sizes. Actually, the box plots of ADIODE are above the three others with a
considerable difference, which confirms the statistical significance and magnitude.

3.6.3. Results for RQ2.

The aim of this subsection is to asses the performance of the compared methods on
the smell type identification problem. Such a problem is more difficult than the detection
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one because the imbalance ratio value of the identification task is higher than the one
of the detection task. To realize the comparative experiments, for each type smell, we
merge all software systems’ classes into the same BE and then define the smelly classes
that composes the minority class. During this task, we have observed that the number
of non-smelly classes largely exceeds the number of smelly ones, which entails a higher
imbalance in the BE.

Table [§| reports the F-measure and AUC values of ADIODE, BLOP, MOGP,
GP, and DECOR. We observe from this table that our ADIODE method considerably
outperforms the other methods in terms of both performance measures. For ADIODE,
the F-measure values lie between [86.26, 94.50] and the AUC' values belongs to [0.86,
0.95]; while the second-best algorithm, BLOP, has an F-measure value between 20.74
and 43.22 and an AUC value between 0.20 and 0.44. These results could be explained
as follows. When the imbalance ratio increases, the probability of occurrence of small
disjuncts increases too. Hence, for the identification task, we may have a minority
class that is composed of different clusters. To find such minority clusters that could
be geographically dispersed over the feature space, where features correspond to the
software metrics given in Table [I1] the splitting hyper-planes and the thresholds should
be very effective.

As we have adopted the ODT as a structure for our detectors, each node in ADIODE
detectors is a weighted combination of features. Such combinations define oblique par-
titioning splits in the feature space that could be suited to any geometrical shape of the
minority class including the possible disjuncts that may appear. In contrast, BLOP,
MOGP, and GP use only orthogonal splits; which makes finding the smelly class in-
stances more difficult for them. In addition to splitting hyper-planes, the high data
imbalance problem necessitates to quickly finding meaningful and effective splitting
thresholds. This could not be achieved by the peer three search-based approaches as
their thresholds are randomly produced. As previously noted, such random generation
could engender meaningless splits as we may obtain empty data sub-classes or ineffective
splits (that do not separate data subsets) and this could be simulated through Figure
ADIODE does not face such problems since its thresholds are defined using the in-
formed process described by Figure [ which makes all its splits effective. It important
to note that again the fitness functions of BLOP, MOGP, and GP are not well-fitted
to imbalanced data and this issue becomes more serious and critical with the raise of
the imbalance ratio.

Figure [11] displays the box plots of the compared algorithms for three types of smells
that are Blob, Feature Envy, and Functional Decomposition. According to this figure,
we see that ADIODE succeeds to achieve a high performance in terms of F-measure
and AUC on the three different anti-patterns. This figure clearly shows the versatility
of our method with regard to the smell type. The performance of the other methods is
relatively poor and this could be explained by the high imbalance ratio when considering
the detection of a single smell type (i.e., the identification problem). The box plots are
compliant with the effect sizes reported in Table [§l For Blob and Data Class smells,
the ADIODE effect sizes are usually large and sometimes medium. This could be
explained by the important frequency of such kind of smells. For the six other smells,
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Figure 11: Box plots of F-measure and AUC values for the identification of three code smell types
(Blob, Feature Envy (FE), and Functional Decomposition (FD)).

the ADIODE effect sizes are usually large especially for the case of Spaghetti codes and
Function decomposition, since these two smell types’ occurrence frequencies are low.
It is important to note that DECOR obtained the poorest results in the identification
comparisons and this could be due to the use of manually predefined rules.

3.6.4. Results for RQ3

The goal of this subsection is to demonstrate the versatility of ADIODE on the
detection of different kinds of smells. Figure plots two histograms showing the F-
measure and AUC' variations over the eight considered smell types in this study. From
Figure , we observe that the distribution of the F-measure values varies between
86% and 94% without presenting a high variation over the different smell types. The
same observation could be seen for the AUC from the histogram of Figure The
AUC values are between 0.86 and 0.95 and their variance is enough small over the smell
types. We can conclude from these two histograms that our ADIODE method is a
generic tool that could be used with different types of smells.

According to the metrics’ values of both histograms, we could cluster the eight smell
types into three clusters: Blob, Data Class, Feature Envy, Long Method, Duplicate
Code, Long Parameter List, and Spaghetti Code, Functional Decomposition. These
clusters are ranged according to the number of occurrences of the smell types in the
BE. Eventually, if other anti-patterns are considered in ADIODE, this distribution
may change. Nevertheless, even if this change occurs, our ADIODE tool could be
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(b) AUC histogram plot

Figure 12: Median F-measure and AUC scores for the eight code smell types in the identification
process.

applied in a generic manner as it bases the generation of detectors on the BE. The main
characteristics of ADIODE, which are the effective oblique hyper-planes, the efficient
threshold definition, and the imbalance-oriented fitness function (AUC'), are preserved
whatever are the smell types present in the BE.

4. Discussion and Implications

The results of our empirical study provided a number of insights and practical im-
plications for the research community that need further discussion.

- The problem of code smell detection is highly imbalanced. The findings
coming from RQO clearly point out the high imbalance between classes affected
and not by code smells. The problem seems to be independent from the specific
type of code smell, i.e., we identified imbalance for both detection and identification
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tasks, and the imbalance ratio depends on the number of considered smell types.
In the first place, this result confirms what Pecorelli et al.| (2019b)) discovered in the
context of machine learning-based code smell detection mechanisms. Secondly, our
findings lead to a clear implication for the research community: researchers work-
ing in the field of code smell detection have to deal with data imbalance. Indeed, to
create effective solutions, they are required to design intelligent solutions that take
the distribution of code smells into account in their algorithmic behaviors. The
technique proposed in this paper represents a first attempt toward explicitly con-
sidering data imbalance in the code smell detection/identification process, which
indeed leads to better performance with respect to the baselines. Nonetheless, we
believe that further approaches should be devised and, perhaps more importantly,
previously devised techniques might be revisited in order to include an algorithmic
component that could deal with the imbalance information. This would potentially
provide developers with an empowered set of detection/identification techniques
that would allow them to better perform quality assurance of their projects.

Toward adaptive mechanisms for data balancing. When analyzing the re-
sults achieved for RQO, we noticed that the imbalance problem becomes more
evident as the size of a system increases and, indeed, in large systems the imbal-
ance almost doubles the one of small systems. Furthermore, this problem is even
more evident when considering the individual code smell types. While confirming
again the need for considering the data imbalance problem in code smell detec-
tion/identification, these findings may possibly lead researchers to devise brand
new balancing strategies to deal with the problem. As a matter of fact, the num-
ber of code smells affecting a software system may be notably lower than other
kinds of problems like, for instance, software defects - which have been estimated
by previous work in affecting up to 70% of source code classes (Catolino et al.)
2018; Di Nucci et al., 2017; [Pascarella et al., [2019). This aspect directly challenges
the fundamentals of data balancing theories, making the problem of code smells
peculiar and hard to treat. At the same time, it also creates interesting future
research avenues aimed at not only devising specific data balancing approaches for
code smell detection /identification, but also possible adaptive methods that allow
to deal with data imbalance based on the relative size of the codebase analyzed
- this goes along the lines of having dedicated instruments to deal with software
engineering problems, which is at the basis of the rising research area of software
engineering for artificial intelligence (Amershi et al.| 2019; Zhang & Tsai, [2003)).

On the value of Oblique Decision Trees. The key idea behind the proposed
technique concerns with the adoption of Oblique Decision Trees, which were pre-
viously shown as effective to deal with data imbalance (Murthy et al., [1994; Wick-
ramarachchi et al| 2016). In our context, we mixed together machine learning
and evolutionary algorithms in order to evolve a set of ODTs that will later form
the instruments enabling the actual detection/identification of code smells. The
peculiarities of ODTs made them particularly suitable for our context—as shown
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in RQ1-RQ3—confirming previous findings reported in literature. Additionally,
we were able to substantially contribute to the field of code smell identification,
which still represents one of the main challenges in research (Fontana et al., 2016a;
Palomba et al., [2018a)). From a practical perspective, our findings lead to two main
implications. First, we provided a new methodology to detect code smells, which
represents one the first combining machine learning and search-based algorithms:
researchers can therefore build upon it to keep improving the way code smells can
be detected and identified or even to measure its ability in dealing with differ-
ent code smell types. Perhaps more importantly, we developed a technique that
engineers can implement within theiwr projects to empower the quality assurance
processes in place.

5. Threats to Validity

This section discusses the factors that influence our empirical study. These factors
can be divided into three categories: internal, external, and construct validity. Threats to
internal validity concern the correctness of the experimentations’ results of our proposal,
while threats to external validity are related to the generalizability of the generated
results. Finally, threats to construct validity are concerned with the relationship between
the theory and the observation.

- Threat to internal validity: Over this work, the main internal threat is related
to the parameter setting of our EA since the latter has a stochastic behavior,
meaning that it outputs different results from one run to another even if we use
the same parameters’ values. This makes the parameter setting a challenging task.
In our work, we have used the commonly adopted method in the literature that is
the trial-and-error method and this is done for all algorithms under comparisons.
It is worth noting that parameter tuning is still so far a major challenge in the
metaheuristics community and the SBSE one (Huang et al.| 2020), because we
cannot predict the performance of a stochastic algorithm before its execution; as
opposed to exact (deterministic) algorithms.

- Threats to external validity: In this work, the experiments are based on six open-
source Java projects with different sizes and domains (cf. Table . However,
we cannot affirm that our ADIODE tool would preserve its performance for the
cases of other programming languages and other software technologies (e.g., Web
services, mobile applications, etc.). As such, further replications of our work in
other contexts might be worthwhile.

- Threats to construct validity: In our experimental study, the BE is built using
three tools that are PMDf| (Gopalan, [2012), DECOR (Moha et all, 2010), and
JDeodorant (Tsantalis & Chatzigeorgiou, |2009)). As the definition (expression) of
any quality metric could change from one tool to another, the metric definition

8https://pmd.github.io/
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could be seen as a source of a construct validity threat. Preliminary experiments
have been conducted in Appendix F to show the versatility of ADIODE with re-
spect to the metrics’ definitions’ changes. This has been done by constructing a
new BE using the inFusion tool )] and then assessing the performance of ADIODE
on this new BE. The preliminary results are promising because modifying the met-
rics’ definitions has a direct impact on the content of the BE and not ADIODE.
However, more detailed experiments with other bases of examples built with di-
versified tools and procedures are needed to further study the possible effects of
metrics’ definitions’ changes. It is important to note that, in industrial contexts,
the BE is usually constructed using not only rule-based tools such as DECOR and
inFusion, but also subjective opinions of human experts that basically rely on their
background knowledge and experiences. This could be the source of another threat
consisting in the disagreement between experts’ opinions about the smelliness of a
particular class or the definition of a particular smell.

6. Related Work

The detection of code smells has been dealt with in several studies from various
perspectives that shows the employment of several detection techniques. The tech-
niques to detect smells could be broadly grouped into four main categories. These are
Rules/heuristic-based approaches, Search-based approaches, Machine Learning-based ap-
proaches, and Others. Notwithstanding, there is almost no attempt on the identification
of code smells in case of imbalanced data. Table [0 summarizes the characteristics and
the hyper-parameters of existing smell detection methods, with the aim to show the
main distinguishing features that makes ADIODE able to deal with imbalanced data
with regard to existing works. Based on this table, the following observations could be
concluded:

e Only two works from the literature have considered the data imbalance issue that
are [Fontana et al| (2016b) and Di Nucci et al.| (2018). Unfortunately, these works
did not propose specific algorithmic strategies to handle imbalance, since they
only used stratified random sampling to rebalance data. Thus, these two works
focused on the data-level by means of data preprocessing and not on the algorithm-
level. It is important to note that data rebalance through under-sampling or over-
sampling is not easy at all and should be performed with a high level of prudence to
avoid misleading the induction process of the classifier (Das et al., 2018). One the
one hand, under-sampling removes some instances from the majority class, which
could incur a considerable loss of information. On the other hand, over-sampling
replicates minority instances or generates new artificial ones to increase the size of
the minority class, which may cause redundancy, information divulgation, and/or
noise.

9 Available at http://www.intooitus.com/products/infusion
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e ADIODE is the only method that is able to deal with data imbalance in an al-

gorithmic manner (without using data preprocessing). This is done through the
evolutionary optimization of a population of ODTs based on the F-measure that is
used as a fitness function. Thus, ODTs are evaluated using a quality function that
is insensitive to the data imbalance in binary classification (He & Garcial, 2009;
Luque et al., 2019; Mullick et al.| 2020).

Traditional methods using the DT as a classifier employ the gain ratio as a feature
selection criterion at a particular node. As this choice is greedy and could lead
to locally-optimal splits, some researchers used the random forest where a set of
DTs are constructed using a random selection of the feature at a particular node;
then, the results over all trees are aggregated. This strategy may also generate
only locally-optimal splits (and trees) because of the random generation process.
However, in ADIODE, at each node of a particular ODT, a feature combination
is selected using the crossover and mutation operators (Neither the gain ratio
nor the random selection is employed. Only the random selection is executed
once at the initialization of the population for the first generation). On the one
hand, the crossover operator exploits the fittest parts of the parents with the
aim to inherit the good feature combinations, which could be seen as a type of
constructed features (Hammami et al.; 2019)). On the other hand, the mutation
operator allows diversifying the feature combinations of the ODTs in order to not
get stuck in locally-optimal choices. We conclude that ADIODE performs a wise
feature selection at DT nodes by means of the process of guided-randomness that
is based on three characteristics: (1) the probabilistic acceptance of worse choices
to escape local optima, (2) the inheritance of fit building blocks from parent trees
for the construction of offspring trees, and (3) the convergence process towards the
globally-optimal DT that is guided by the F-measure. In summary, we can say
that the node feature selection is performed by crossover and mutation.

The column TDM shows the efficient threshold generation performed by ADIODE
thanks to the use of Kretowski-&-Grzes method. In fact, the entropy-based dis-
cretization is greedy and hence leads to locally-optimal thresholds. The use of
the mutation operator for this task is not a wise choice because the probability of
the generation of meaningless and/or ineffective splitting thresholds is high. The
manual definition is still subjective and depending on the expert knowledge and
experience. The choice of the Kretowski-&-Grzes method is motivated by two rea-
sons. On the one hand, as illustrated by figure [d, the execution of this method
at each node of the ODT generates a set of effective thresholds for the related
constructed feature (expressing the oblique split of the feature combination). On
the other hand, the choice of the split is not performed using a greedy selection
based on the gain ratio (such as the case of C4.5), but the threshold is randomly
selected from the set of effective splitting thresholds produced by the Kretowski-&-
Grzes method, thereby allowing escaping locally-optimal thresholds. By default,
this threshold generation mechanism is performed in an automated way using the
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Kretowski-&-Grzes method. However, if the software engineer would like to in-
teract with ADIODE (e.g., after a user-defined number of generations), the set
of effective thresholds for any node of any ODT could be exposed to him/her,
and then he/she could choose or calibrate the threshold based on not only the
exposed thresholds generated by the Kretowski-&-Grzes method but also his/her
personal experience. We recall that there are no specific circumstances to choose
between: (1) generated threshold selection or (2) threshold calibration. The soft-
ware engineer has the freedom to make a choice among these two options. Once the
interaction is up, the ADIODE method continues the ODTs optimization process
until either meeting the stopping criterion or triggering a new interaction.

e Existing SBSE approaches model the detector as an ad-hoc tree of rules and do
not report the tree depth. This is an important factor because the detectors will
be used later by humans and thus a high depth makes the understandability of
the detection rule tree very difficult. In ADIODE, the depth of the ODT is set to
seven. This value is settled after several experiments to get a good compromise
between detection rate and human comprehensibility of the detector.

e Detection methods based on rules use two types of pruning: (1) pre-pruning where
the nodes are pruned during the induction and (2) post-pruning where nodes are
pruned after the whole tree generation. SBSE methods, including ADIODE, im-
plicitly execute pruning by means of crossover. This operator could stop the de-
velopment of branches at any node during the evolution process through sub-tree
exchange. It is important to note that a node is a sub-tree that is composed of a
single root node without children.

e The last column of the table shows that, although many fitness functions have been
proposed to optimize detection rules, all of them are sensitive to data imbalance.
The use of the F-measure as a fitness function in ADIODE is another distinguishing
attribute of our tool thanks to the ability of this classification quality measure to
deal with imbalanced data, as mentioned from the beginning of this paper.

6.1. Rules/heuristic-based approaches

The initial attempts to identify the software classes contaminated by anti-patterns
have concentrated on the definition of rule/ heuristic-based approaches, which depend
upon metrics to catch detours from good OO design practices. First, [Erni & Lewerentz
(1996) employed metrics to assess the performance of frameworks with the aim of enhanc-
ing them. The authors used the concept of multi-metrics where the m-tuple of metrics
represent a quality criterion. Later, Marinescul (2004) suggested a detection strategy
that relies on metric-based method to analyze code source and to detect the defects in
the OO design fragments at different levels such as method, class, and subsystem. In this
context/Lanza & Marinescu| (2007)) express the detection strategy as a combination of a
set of metrics with thresholds to define a set of rules for 11 anti-patterns. These rules are
a set of metric-threshold pairs connected by logical operators(AND/OR). However, these
mentioned heuristics have been implemented in a tool called InCode (Marinescu et al.,
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2010). In another work, Moha et al.| (2010) proposed the DECOR approach that contains
the main steps for the specification and the detection of code smells. This approach be-
gins by describing the symptoms of the defects with the employment of an abstract rule
language. These descriptions imply various concepts (e.g. class roles and structures),
which are mapped to the detection algorithm. Recently, other approaches adopted the
clustering methods to detect code smells. According to this consideration, [Tsantalis &
Chatzigeorgiou (2009) suggested a tool called JDeodorant that could identify the smells
and recommend a set of move method refactoring operations. At the beginning the tool
is tuned to detect the Feature Envy bad smells, then it is able to support other bad
smells (e.g., Blob, Long Method, and State checking) (Tsantalis & Chatzigeorgiou, 2011
Fokaefs et al., 2012). The detection mechanism in JDeodorant tool relies on the code
metrics, which are then linked together according to the supervised clustering methods
and thresholds to cut-off the obtained dendrograms.

6.2. Machine Learning-based approaches

Recently, a new trend is concerned with the use of machine learning methods for
the detection of code smells. The methods in this part are almost supervised category
ones. More specifically, these methods are built using a training data and then they
are performed on software projects to predict the smelliness of a class. Kreimer (2005)
initially proposed an adaptive detection model that combines known methods to find
the occurrences of design flaws viz., God Class and Long Method based on code metrics
as features to train Decision Trees (DTs). The evaluation were performed on two small
software systems: IYC and WEKA. After 10 years, |[Amorim et al.| (2015) confirmed
the preceding findings by assessing the performance of DTs on four different software
systems for the detection of 12 anti-patterns.

Khomh et al.| (2009) proposed the use of Bayesian Networks to identify the occur-
rences of the Blob anti-patterns on open source projects (GanttProject and Xerces-J).
Later, [Khomh et al. (2011) extended their work to a novel approach named BDTEX
(Bayesian Detection Expert) that is validated on God Class, Functional Decomposition,
and Spaghetti Code. The proposed approach relied on the Goal Question Metric to
build the Belief Bayesian Networks (BBNs) in order to derive information from the code
smells’ definition. The detection outputs of BDTEX are likelihoods that are assigned to
the smelly code components rather than boolean values. Besides, Vaucher et al.| (2009)
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relied on the BBNs to study the lifecycle of the Blob’ evolution and thus, differentiating
between truly God Classes from those happened by accident (i.e., bad code).

Maiga et al.| (2012al)b) presented an SVMDetect approach that detects anti-patterns
using Support Vector Machine (SVM). This approach has been validated with four anti-
patterns (Blob, Functional Decomposition, Spaghetti Code and Swiss Army Knife) on
three open-source software systems: ArgoUML, Azureus, and Xerces. Afterward, the
authors extended their previous approach to another more accurate one called SMURF
that considers the participants’ feedbacks.

Hassaine et al.| (2010) applied the immune-inspired approach to detect the Blob
smells. The proposed approach is developed to systematically detect the smells in classes,
which violates the characteristics of some created rules. Similarly, Oliveto et al.| (2010))
proposed an approach called ABS (Anti-pattern identification using B-Splins) that relied
on the numerical analysis technique to detect the smelly instances.

In recent works, the authors studied the performances of various ML methods for
the detection of code smells. Fontana et al. (2016b)) conducted an investigation of the
performances of 16 supervised ML methods accompanied by their boosting variant for
the detection of four different anti-patterns (Blob, Data Class, Feature Envy, and Long
Method) on 74 Java software systems. Additionally, the authors applied the under-
sampling technique through the training and evaluation phases in order to escape the
poor performances produced by the ML techniques in case of imbalanced datasets. In
other paper, Fontana & Zanonil (2017)) performed a classification of code smell severity
based on a multinomial classification and regression technique. However, such approach
can aid the developer for prioritizing or ranking the classes or methods. In contrast,
Di Nucci et al.| (2018]) mentioned the limitations of Fontana et al.| (2016b)) on the way of
constructing the dataset. Based on these limitations, the authors configured Fontana’
datasets and generated new ones that are well-suited for the real case scenarios.

6.3. Search-based approaches

The search-based approaches are applied in the software engineering issues to resolve
several optimization problems using meta-heuristics such as GA, GP, and so on. The
detection phase is considered as the most important phase since it reports to the next
phase (refactoring) the existing code smells in the software projects before starting on
the correction. For instance, the begining was with Kessentini et al. (2011), they de-
veloped an automated approach for detecting code smells in software systems based on
detection rules. These rules are defined as combination of metrics along with thresholds
that were extracted from comparing with various heuristic search algorithm dedicated to
the extraction of rules (Harmony Search, Simulated Annealing, and Particle Swarm Op-
timization). The experimentation was conducted on three different anti-patterns (Blob,
Spaghetti Code, and Functional Decomposition) based on two open source software sys-
tems: GanttProjeject, Xerces-J. Later, Ouni et al.| (2013) introduced a search-based
approach for code smell detection in OO software systems. Such approach was the first
one that derivates the detection rules from the defect examples using Genetic Program-
ming. The authors applied their approach on three anti-patterns (Blob, Spaghetti Code,
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and Functional Decomposition) based on six open source projects with different sizes
viz., GanttProject, Xerces-J, ArgoUML, Quick UML, LOG4J, and AZUREUS.

Boussaa et al. (2013) proposed to employ the competitive co-evolutionary search
aiming to handle the problem of code smell detection. The proposed approach includes
two competing populations that evolve simultaneously; the first population consists on
generating a set of detection rules that maximizes the detection ratio of code smell
examples, while the second one maximizes the generation of artificial created smells
that are not detected by the first population. The experimental study was performed
on three code smell type (Blob, Spaghetti Code, and Functional Decomposition) based
on four software projects with various sizes viz., ArgoUML, Xerces, Ant-Apache, and
Azureus.

Kessentini et al.| (2014) suggested to introduce the parallel way to its approach called
PEA (Parallel evolutionary Algorithm) for code smell detection. Over the proposed
approach, the researches combined the Genetic Programming and Genetic Algorithm
in a parallel way throughout the optimization step to generate a set of detection rules
from examples of various code smells and also the detectors from the non-smelly (well-
designed) examples of code source respectively. The PEA was tested on nine code smell
types (Blob, functional decomposition, spaghetti code, feature envy, data class,long
parameter list, lazy class and shotgun surgery) based on nine open source projects:
JFreechart, Ganttproject, ApacheAnt V1.5.2,ApacheAnt V1.7.0, Nutch, Log4J, Lucene,
Xerces-J andRhino.

Sahin et al.| (2014)) proposed BLOP (Bi-Level Optimization Problem) approach that
relies on the bi-level optimization problem for the production of code smell detection
rules throughout two levels. The first level task, named the upper-level (or the leader), is
responsible for the creation of a set of detection rules in the aim to maximize the coverage
of both code smell examples and the artifical code smells produced by the second level.
The lower level or the follower is responsible to divulge the most possible smells that
are not detected by the generated detection rules from the upper- level. The authors
applied their approach to detect variety of code smells (such as Blob, Feature Envy, Data
Class, Spaghetti Code, Functional Decomposition, Lazy Class, Long Parameter List) on
nine Java software projects with large and medium sizes: JFreeChart, GanttProject,
ApacheAnt, Nutch, Log4J, Lucene, Xerces-J, and Rhino.

Mansoor et al| (2017)) introduced the multi-objective aspect on the process of the
generation of dection rules that are dedicated to the detection of code smells. The
paposed approach called MOGP (Multi-Objective Genetic Programming) that is utilized
to find the best combination of metrics that simultaneously increases the number of
detected code smell examples and reduces the number of detected non-smelly examples.
The researchers evaluated their approach on five code smells (Blob, Feature Envy, Data
Class, Spaghetti Code, Functional Decomposition) based on different open source Java
software projects: ArgoUML v0.26, ArgoUML v0.3, Xerces-J, Ant-Apache v1.5, Ant-
Apache v1.7.0, GanttProject, Azureus.
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6.4. Others

Some researchers have taken into consideration the historical information regarding
the evolution of code source to detect code smells. Initially, the concept starts with Rapu
et al. (2004) that derived historical information from the defected structure. The au-
thors considered a set of history measurements, which represents the evolution of smells.
The obtained results were joined with the initial detection strategies. The researchers
tested their approach on the detection of two code smells (Blob and Data Class) based
on three open source projects which are, two inhouse projects and Jan (3D graphics en-
vironment). In another work, Palomba et al.| (2013, |2015)) have developed an approach
called HIST (Historical Information for Smell deTection). The HIST approach consists
of detecting code smells using the projects’ historical information derived from the re-
vision control system. The researchers used in the experimentation of their approach,
five different code smells (Blob, Feature Envy, Divergent Change, Shotgun Surgery, and
Parallel Inheritance) and eight open source software projects (and 20 software projects
in the later study). Similarly, |Fu & Shen| (2015 proposed an approach (based on asso-
ciated rule mining) that is able to derive information history (related to a modification
or addition, either classes ormethods or packages) from projects where their duration of
growth history is huge. In this work, the authors attempt to validate their approach by
detecting three code smells (duplicated code, shotgun surgery, and divergent change) on
five software projects viz., Eclipse, jUnit, Guava, Closure Compiler, and Maven.

Some authors such as Emden & Moonen| (2002) focused on the visualization of code
smells for complex software analysis as the JCOSMO approach. Such approach consists
on parsing the java source code and displaying the defected code fragments by smells
and their connection using the graphical view. Later, Langelier et al. (2005) presented
a framework named VERSO in which the visualization is based on colors to represent
properties and mainly to support quality analysis in software. Still, on the same features
of the previous approach, Dhambri et al.| (2008)) proposed an approach to detect smells
by automatically detecting a part of symptoms and leaving the rest to the judgment to
the human analyst. The authors applied their approach on three types of design anoma-
lies (Blob, Functional Decomposition, and Divergent Change) based on two software
systems: PMD and Xerces-J.

7. Conclusion and future works

In this paper, we have proposed ADIODE as a new tool for the detection and
identification of code smells. Through this research work, we have tackled a usually
neglected issue in the SBSE community; which corresponds to the fact that smells
detection /identification is an imbalanced binary classification problem. This is justified
by the fact that the number of smelly classes is largely greater than the number of
non-smelly ones in software systems when considering a low number of smell types, vice
versa. Our approach ADIODE, consisting in an EA that evolves a set of ODTs based
on a base of smell examples, have shown its merits thanks to three main features. First,
the use of oblique splitting hyper-planes is more effective and efficient than the use of
orthogonal ones for the case of imbalanced data, especially when small disjuncts occur.
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Second, the adopted data-driven discretization strategy avoids the case of having an
empty sub-class or a sub-class containing all instances. Finally, the AUC' is chosen as
fitness function thanks to its ability to faithfully evaluate detectors on both imbalanced
and balanced data. The statistical analysis of the obtained results has shown the merits
of ADIODE with regard to four state-of-the-art methods.

Several interesting perspectives have been detected through this work. First, we are
planning to handle the problem of disparity, which means that a particular class could
be assigned several smell types. Such situation introduces a problem of uncertainty
and imprecision about anti-patterns types for a particular software class. Ignoring the
uncertainty issue may negatively impact the detectors classification performance and
consequently incurs bad decisions regarding the choice of the refactoring operation se-
quences that should be applied to remove as possible the detected anti-patterns. Second,
another uncertainty problem in this direction is the presence of imprecision not only in
target instances’ labels but also within the features (i.e., metrics) of the training set.
These imprecision problems are due to the absence of a clear precise rule for each smell
type. Thirdly, an important issue that could occur in the smell type identification prob-
lem is the absence of target labels for a considerable part of the base of anti-pattern
examples. This corresponds to a semi-supervised learning task and specific mechanisms
should be designed to solve such special classification problem.
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Appendix A. Description of the handled code smells

In this research work, we considered eight code smell types described by Table
[10] which are among the most studied anti-patterns in the software maintenance field
(Fontana et al., 2012), (Fowler & Beck| 1999), (Lanza & Marinescu, 2007), (Martin,

120 [2002)), (Ounil 2014), (Wirfs-Brock & McKean, 2003):

Table 10: List of commonly used code smells for the detection process in the literature
Code Smell / Antipattern | Description
God Class (aka Blob) It appears when a large class centralizes
most of the behavior of a system while other
classes mainly include data.

Data Class It occurs when a class stores data but not
complex functionalities.

Feature Envy It arises when a method calls much more
methods from another class than their own.

Long Method This smell refers to a method that has grown
too long regarding lines of code.

Duplicate code This smell happens when the same code
structure is redundant in many classes.

Long Parameter List This smell occurs when a method contains a
long parameter list.

Spaghetti Code This smell arises when the control structure

of the code becomes complex and tangled.
Functional Decomposition | It happens when a class is conceived with the
aim of performing a single function. Such
bad practice is performed in the code by OO
developers without experience.

47



Appendix B. Description of the used metrics

The used metrics through this work are presented in Table (Chidamber & Kemerer|,
1994)),(Lanza & Marinescu, 2007)),(Marinescu, 2002), (Ouni, 2014):

Table 11: List of the used metrics

Metric

Description

ANA - Average Number of Ancestors

This measure means the average number of classes
from which every class inherits information.

AQOFD - Access Of Foreign Data

This metric is used to count the attributes’ number
from unrelated classes, which are accessed directly
or by invoking accessor (i.e. getter) methods.

CAM - Cohesion Among Methods of Class

This metric is used to compute the relatedness be-
tween methods of a class, calculated by applying
the intersection of parameters of a method with the
maximum independent set of all parameter types
in the class.

CBO - Coupling Between Objects

It counts the number of classes that invoke a func-
tion or access a variable of a specific class.

CIS - Class Interface Size

It is used to count the number of existing public
methods in a class. It is interpreted as the mean
of the whole classes in a design.

CM - Changing Method

It counts the number of distinct methods, which
call the measured method.

DAM - Data Access Metric

It is the ratio of the number of private (or pro-
tected) attributes to the total number of attributes
declared in the class.

DCC - Direct Class Coupling

It counts the number of the various classes, and
which class is directly related to. The metric con-
tains classes, which are directly related by the at-
tribute declarations and message passing (i.e. pa-
rameters) in the methods.

DSC - Design Size in Classes

This measure is used to count the total number of
classes in the design without considering the im-
ported library classes.

LOC - Lines of Code

It measures the size of a program by counting the
number of the instructions in a class or method.

MPFA - Measure of Functional Abstraction

This measure is the ratio of the number of methods
inherited by a class to the entire number of meth-
ods reachable by member methods of the class.

MOA - Measure of Aggregation

This measure counts the number of data declara-
tion where their types are classes defined by the
user.

NOA - Number of Attributes

It is used to count the number of attributes for a
given class in the program.

48




1325

1330

1335

Metric

Description

NOAM - Number of Accessor Methods

This metric is used to count the number
of accessor (i.e. getter) and mutator
(i.e. setter) that belong to a given class.

NOF - Number of Fields

It counts the number of classes fields.

NOH - Number of Hierarchies

This metric is used to count the total

number of class hierarchies in the de-
sign.

NOM - Number of Methods This measure counts the number of

methods defined by a class.

NOPA - Number of Public Attributes | It is used to count the number of public
attributes for a given class in the pro-

gram.

NPA - Number of Private Attributes It is used to measure the number of pri-

vate attributes for a given class.

TCC - Tight Class Cohesion It is used to count the relative number
of method pairs of a class that access
in common at least one attribute of the

measured class.

WMC - Weighted Methods per Class This measure is used to compute the
complexity of a class according to the
number of existing methods in the

class.

WOC - Weighted Of Class This measure represents functional (i.e.
non-accessor) methods in a class di-

vided by the total number of members

of the interface.

Appendix C. Motivations for the use of ODTs over axis-parallel trees in
imbalanced classification

This appendix is devoted to motivate and justify the adoption of ODTs over axis-
parallel trees for the case of imbalanced data. In fact, there are mainly three arguments
that defend our choice (Das et al., 2018). First, ODT use oblique splitting hyper-planes
that could be adapted to any geometrical shape of class boundaries, which is not the case
of axis-parallel trees. Indeed, the latter could produce a considerable number of small
disjuncts, which makes the classification task more difficult. Second, as illustrated by
Figure[I3] the use of oblique hyper-planes is more effective and efficient for an efficacious
splitting of instances over classes. We observe that the axis-parallel tree needs 11 hyper-
planes to separate the two classes, while the ODT requires only a single oblique hyper-
plane that fits the boundary. This makes ODTs more efficient and even more effective
than orthogonal trees. It is worth noting that an ODT could generate an orthogonal
hyper-plane in addition to the oblique ones, when it assigns a unique feature a weighting
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Figure 13: Hlustration of the appropriateness of the ODT over the axis-parallel tree in imbalanced
binary classification.

coefficient of one and all the other attributes are assigned null weights. We conclude
that the axis-parallel tree could be a (rare) subcase of the ODT, which makes the latter
more flexible with respect to the data splitting boundaries. Third, imbalanced data
already contain small disjuncts, which correspond to small clusters of a particular class
instances scattered over the feature space as illustrated by Figure [0 To detect and
delimit these small disjuncts, it is wiser to use oblique splits instead of orthogonal ones
as the former are more adapted to the geometrical form that could present the small
clusters than the latter. Eventually, for the case of small disjuncts, the number of needed
orthogonal hyper-planes is much higher than the one of oblique ones. Furthermore, axis-
parallel trees could generate additional small disjuncts in such case, which makes the
classification task more complex and difficult.
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search based on the F-measure.

Appendix D. Evolutionary design versus greedy induction of ODTs

The goal of this appendix is to demonstrate how designing an ODT (or any kind
of DTs) using EAs is better than inducing it using greedy machine learning algorithms
(Barros et al., 2012; |Al-Sahaf et al., [2019). Figure presents a possible example of
the F-measure function landscape. For simplicity of visualization, each point from the
x-axis corresponds to an ODT configuration, while the y-axis presents the F-measure
(configuration quality) value. Based on this figure, if the greedy algorithm starts from
solution (configuration) A, in will converge to one of the two globally-optimal ODT
structures (G; or Go. Similarly, if it starts the induction from solution B, it may either
approximate the local optimum G5 or the global one G3. Hence, the probability that a
greedy ODT induction algorithm find a near globally-optimal configuration is very small,
which is not the case of EAs thanks to two characteristics. On the one hand, the EA has a
global search ability thanks to the evolution of a whole population (set of configurations)
simultaneously instead of a single configuration, which is allows it to locate the promising
regions in the search space (i.e., regions near G, G, and G3). On the other hand, EAs
has the ability to escape from local optima (e.g., solutions near GG; and G3) thanks to the
probabilistic acceptance of worse configurations (of F-measure deterioration) using the
binary tournament operator for mating selection. Indeed, to select (N /2) children for
reproduction, this operator performs (N /2) iterations, where in each iteration two ODT
configurations are randomly selected with replacement and the best one is saved in the
mating pool. In this way, when selecting two ODT configurations as parents for crossover
from the mating pool, these parents could contain deteriorated ODT configurations in
addition to good ones. In this way, the EA allows the deterioration of the fitness function,
which makes it able to: (1) escape local optima such as solution G5 and then (2) direct
the search towards the globally-optimal ODT configuration Gj.
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Appendix F. ADIODE versatility with respect to metrics’ definitions

The goal of this appendix is to show the insensitivity of ADIODE to the software
quality metrics’ definitions in code smells detection. Indeed, any metric could have more
than one definition (expression) (Méantyla & Lassenius, |2006]) and this could be seen as
one of the subjectivity facets of software engineers in defining not only quality metrics
but also smell types. To assess the performance of ADIODE with other quality metrics’
definitions, we have a conducted an experiment with a BE that is constructed using
the inFusion tool [[7 This rule-based tool is adopted because its metrics’ definitions are
different from those used in our experimental study. Five smell types are considered that
are Blob, Data Class, Feature Envy, Long Method, and Long Parameter List. Table
reports the F-measure and AUC values of ADIODE on the new BE (built with
inFusion). We observe from this table that the performance of ADIODE is preserved.
In fact, the F-measure lies within [87.02, 93.24] and the AUC varies within [0.8815,
0.9470]. These interesting results, with other metrics’ definitions stemming from the
inFusion tool, reveal that ADIODE performance is insensitive to the change of metrics’
expressions. Indeed, it is the BE that depends on the metrics’ definitions and not
ADIODE itself. Thus, once the BE is build with the help of one or several tools in
addition to the knowledge and experience of software engineers, ADIODE could be
used to generated a set of optimized detectors whatever are the definitions of quality
metrics. It is important to note that any software company has the freedom to choose any
tools, metrics’ definitions, and experts’ opinions in building its base of smell examples.
This motivates the need for ADIODE as a black-box tool that generates a set of high
performing smell detectors based on the BE, independently of the tools and opinions
employed in the development of this base.

Table 12: F-measure and AUC median scores of ADIODE

ADIODE
Code Smell F-measure % AUC
Blob (God Class) 93.24 0.9470
Data Class 90.20 0.9107
Feature Envy 89.15 0.8996
Long Method 87.02 0.8815

Long Parameter List 87.16 0.8830

10 Available at http://www.intooitus.com/products/infusion
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