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Abstract

Community smells represent sub-optimal conditions appearing within software development communities (e.g.,
non-communicating sub-teams, deviant contributors, etc.) that may lead to the emergence of social debt and increase
the overall project’s cost. Previous work has studied these smells under different perspectives, investigating their nature,
diffuseness, and impact on technical aspects of source code. Furthermore, it has been shown that some socio-technical
metrics like, for instance, the well-known socio-technical congruence, can potentially be employed to foresee their
appearance. Yet, there is still a lack of knowledge of the actual predictive power of such socio-technical metrics. In this
paper, we aim at tackling this problem by empirically investigating (i) the potential value of socio-technical metrics as
predictors of community smells and (ii) what is the performance of within- and cross-project community smell prediction
models based on socio-technical metrics. To this aim, we exploit a dataset composed of 60 open-source projects and
consider four community smells such as Organizational Silo, Black Cloud, Lone Wolf, and Bottleneck. The
key results of our work report that a within-project solution can reach F-Measure and AUC-ROC of 77% and 78%,
respectively, while cross-project models still require improvements, being however able to reach an F-Measure of 62%
and overcome a random baseline. Among the metrics investigated, socio-technical congruence, communicability, and
turnover-related metrics are the most powerful predictors of the emergence of community smells.
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1. Introduction

Software engineering is de-facto a social activity [1, 2]
which involves often thousands if not more stakeholders
arranged globally, and often separated by physical and
cultural distance (i.e., different cultures and culture
clashes [3, 4, 5]), expertise or power distance [6, 7, 8, 9],
and more). Literature calls the sum of the negative
and unforeseen costs and consequences of such conditions
community smells, namely sub-optimal organizational
and socio-technical situations that hamper or altogether
impede the straightforward production, operation, and
evolution of software [10, 11, 12]. Previous work
established the interaction between community smells and
their technical counterparts (i.e., code smells such as
Spaghetti Code, God Class and more [13, 14, 15]) as well
as, more generally, technical debt in its various forms
[16, 17]. At the same time, community smells have been
connected to all sorts of nasty phenomena, e.g., employee
turnover [12], bad architecture decisions [11], and more,
which often go beyond causing technical issues in software
code but may well cause organizational turmoil or even
decline [18] of software projects’ organizational stability,
if not project failure. Therefore, predicting community
smells before they manifest along software projects’

timelines may prove critical in anticipating sub-optimal
organisational and socio-technical conditions before they
become unmanageable. In summary, on the one hand,
these conclusions from the state of the art indicate that
community smells represent a first-class phenomenon to
be considered when managing large-scale software systems
from an organizational and socio-technical perspective.

On the other hand, previous experience reports and
empirical evidence from the state of the art [10, 11, 12]
also remarked that predicting community smells at large
and anticipating their existence is challenging, because
of their socio-technical and evolutionary nature tied to
the types and characteristics of the organisational-social
structure around [19, 20, 21]. Yet, the early prediction
of their emergence is highly desirable for both developers
and project managers in order to take informed decisions
and possibly re-organize the community structure to avoid
them [22, 21, 23, 24]. In our previous work [22], we
investigated various aspects related to community smells,
including their correlation with well-known socio-technical
metrics (e.g., socio-technical congruence or turnover). Our
results showed the existence of a number of correlations
that lead us to believe that socio-technical metrics could be
potentially useful for the prediction of community smells.
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Hence, in this paper we aim at empirically exploring the
actual predictive power of socio-technical metrics as well
as the extent to which their adoption within machine
learning solutions can lead to accurate prediction of
community smells.

To address our research goals, we conduct a
large-scale empirical study involving 60 open-source
software communities and measure how well a set of 40
socio-technical metrics can predict 4 community smells
that have been shown to create harmful forms of both
social and technical debt. First, we employed an
information gain measure [25] to estimate the contribution
given by each metric to the prediction and, in the second
place, we built within- and cross-project community
smell prediction models that exploit the considered
socio-technical metrics. Our assumption when testing
cross-project solutions is that similar working conditions
in other smelly projects could be used to anticipate
community smells. In so doing, we face a number of key
aspects of machine learning modeling like, for instance,
data normalization and balancing. Also, we verify the
performance of five different machine learning algorithms
for the task of community smell prediction.

The key findings of our study report that: (1)
Socio-technical congruence, communicability, and
turnover-related metrics are top-factors to consider
when predicting the emergence of community problems;
(2) Within-project models can effectively be employed
for predicting community smells—in particular when
Random Forest is used as classifier—since they reach
a median F-Measure of 77%; and (3) A cross-project
approach leads to a median F-Measure of 62%, being
therefore a promising alternative despite some further
improvements would be required.

To sum up, this paper offers three main contributions:

1. The first, large-scale empirical exploration of
predictive models for community smells—this
exploration is entirely novel in the state of the art
in software engineering research;

2. The analysis of within- vs. cross-project community
smells prediction, that provides insights into the
different ways practitioners can exploit machine
learning for early detection of community-related
issues and whether working conditions ot other
smelly projects could be exported and used to
anticipate community smells on other projects;

3. A benchmark dataset for researchers to proceed
along this line of research and compare novel
mechanisms with the devised models;

Structure of the paper. The rest of this paper is
structured as follows. Section 2 outlines the related work.

Section 3 outlines our research design while Sections 4 to
5 showcase our results. In Section 6 we discuss possible
threats to validity of our results and explain how we
mitigated them. Finally, we conclude the paper and report
our future research agenda in Section 7.

2. Related Work

In this section, we discuss the literature related to
community smells as well as the research conducted on
other socio-technical aspects.

2.1. Community smells and related research

The work we outlined in the previous pages
addresses the application of machine-learning techniques
to the prediction of community smells, that is, nasty
organisational and socio-technical phenomena. Related
work mostly resides in the domains of Machine-Learning
and Big Data analytics for social-networks motif mining
[26, 27, 28] as well as organization networks’ analysis
[29, 30]. For example, Trucco et al. [29, 31]
use Bayesian models to elicit organization factors for
risk engineering; however, the case-study presented by
Trucco et al. is well beyond the state of the art
in software engineering and provides reasonably large
organization networks but reflecting mostly the domain
of Supply-Chain Management. Conversely, previously
in software engineering research, Russo [27] has used
learning techniques and motif mining for the purpose
of profiling system call changes as part of software
evolution. This latter work is closer to our own in
terms of focusing on software artifacts and predicting
anti-patterns in their key characteristics; however, Russo
focuses purely on a specific technical aspect of software
evolution, rather than the organization structure around
it and the anti-patterns that might emerge as its
operations unfold. From another perspective, but still
focusing on the use of motif analysis for anti-patterns
mining in organization networks, Argentieri et al. [32]
provide an overview of search-based techniques dedicated
to cross-motif analysis and prediction; specifically, the
authors look at combinations and mutual relations
between motifs.

In comparison to the aforementioned works, we do
not take the motif analysis angle at all; rather, we focus
on state-of-the-art and practitioner-friendly metrics as
predictors of community smells presence and severity. Our
intent is to provide pre-trained models for practitioners to
use in their own projects, e.g., as part of retrospectives,
risk-analysis, decision-making, and more.

Beyond the above, from a rule-based perspective,
community smells have seen intense research around
the tool CodeFace, originally presented by Joblin et
al. [33]. More specifically, the aforementioned tool
was augment and experimented with for the detection
[12] and evaluation of the impact of community smells
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over code smells [10]. More specifically, Palomba et al.
discover that community smells are the top factor when
it comes to predicting specific code smells; these works
provide fundamental motivations for our work as well
as groundwork to establish the ground-truth behind our
baseline dataset. Similar works on community smells
have concentrated on establishing their impacts on other
dimensions of software engineering (e.g., Architecture
Debt [16], organization structure types [21], and more).
With the contributions in this work we aim at providing
a basic predictive mechanism for, on the one hand,
practitioners to embed in their own DevOps pipelines,
hopefully using the produced insights to avoid needless
waste and, on the other hand, academics willing to improve
beyond our results and current accuracy levels.

2.2. Research on other socio-technical aspects

The socio-technical nature of software engineering has
been explored for years and from several perspectives.
The seminal work by Nagappan et al. [34] showed in
practice the influence of organizational structure and other
“human” aspects over software quality. This and similar
works (e.g., Repenning et al. [35] or Viana et al. [36]) bring
evidence that motivates our study of social communities in
organizations and the debt connected to them. On the one
hand, while Nagappan et al. established the correlation
between organizational structures and software quality,
we aim to predict patterns of sub-optimality across said
structures, e.g., to allow for preventive action by means of
social networks analysis [37] or predictive organizational
rewiring. Finally, seminal studies on on socio-technical
congruence, first defined by Cataldo et al. [38] can support
the predictive modeling and analytics around community
smells. On one hand, socio-technical congruence is the
degree to which technical and social dependencies match,
when coordination is needed. On the other hand, STC
may require further elaboration as well as different degrees
of granularity for it to play a key role in anticipating
and correcting sub-optimal organisational behavior. From
a more recent perspective, the social aspects playing a
key role in either code community hosting platforms (e.g.,
GitHub) or closed-source software engineering have been
investigated from a social coding perspective (e.g., see
Trockman et al. [39]) as well as from the developer
attraction and retention perspective (e.g., see Qiu et al.
[40]). These and other recent theories around social
software engineering factors and relations are fundamental
to refine predictive models such as the ones proposed in
this paper.

3. Empirical Study Setup

The goal of the study is to investigate if and
to what extent the emergence of community smells
can be predicted by socio-technical metrics, with the
purpose of providing practitioners with an automated

mechanism able to promptly pinpoint the possible
presence of issues within the organization community of
software development teams. The perspective is of both
researchers and practitioners: the former are interested
in understanding how much community smells can be
predicted by lightweight socio-technical indicators, while
the latter aim at finding methods to automatically identify
and possibly avoid the emergence of community-related
problems.

3.1. Research Questions and Methodological Overview

Our study is driven by three main research questions
that aim at exploring the problem of community smell
prediction under three different perspectives. First, in
our previous work [22] we studied the correlation between
a number of socio-technical metrics and the amount of
community smells in open-source projects, finding that
these metrics can foreseen community-related problems.
As such, our first research question aims at understanding
more closely the predictive power of socio-technical metrics
for community smell prediction. Thus, we ask:

RQ1. What is the predictive power of socio-technical
metrics when it comes to community smell prediction?

In other words, RQ1 has a preliminary/descriptive
nature: indeed, while in our previous study [22] we
only observed correlations, the first research question has
the goal of taking a closer look into the potential of
socio-technical metrics for the prediction of the emergence
of community smells. In this sense, the idea is to have
a preliminary investigation aimed at characterizing the
amount of information provided by each metric before
employing them in machine learning models able to
predict the emergence of community smells in general and
individual smells in particular. Furthermore, RQ1 serves
as a way to corroborate the correlation findings we have
previously discovered.

Once assessed which metrics can be actually used as
predictors of community smells, we then proceed with the
definition of a supervised learning technique. As part of
the second research question, we train the devised model
using data coming from previous history of individual
projects, i.e., using a within-project strategy, with the
aim of assessing how much information directly coming
from the considered projects can be used for prediction of
future community-related issues. Thus, we formulate the
following RQ:

RQ2. What is the performance of a community smell
prediction model built using socio-technical metrics
when trained using within-project data?

As a final step, we evaluate whether and to what extent
can we exploit socio-technical information of external
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projects to train a community smell prediction model, i.e.,
we assess the performance of a cross-project approach. In
this case, our goal is to measure how effectively can new
projects that lack of community smell and socio-technical
data use external information to find potential problems
within their development communities. Hence, we ask:

RQ3. What is the performance of a community smell
prediction model built using socio-technical metrics
when trained using cross-project data?

In short, we address RQ1 by quantifying the relevance
of each socio-technical metric for the prediction of
community smells; in this respect, we employ an
Information Gain measure [25], which is a statistical
technique that can estimate the gain provided by each
independent variable to the prediction of the dependent
one, giving a ranking of the features based on their
importance. In the context of RQ2 and RQ3 we
follow well-established guidelines [41, 42] to devise within-
and cross-project models, respectively. As such, we
consider and address common modeling problems such
as (1) data normalization, (2) data balancing, and (3)
testing of different machine learning algorithms, properly
configured with respect to their hyper-parameters. Finally,
we interpret the results achieved by considering various
evaluation metrics (e.g., F-Measure or AUC-ROC [43])
that can provide a broad vision of the strengths and
weaknesses of using supervised learning for community
smell prediction. Sections 4, 5 present more details on
the methodology adopted and discuss the results.

3.2. Context of the Study and Dataset Preparation

The context of the study consists of a publicly available
dataset that we built in our previous study [22] and
publicly available on Github.1. It contains labeled
data related to four types of community smells identified
over 60 open-source software communities, whose basic
data are reported in Appendix A. More specifically,
all systems are hosted on Github2 and their selection
was originally driven by two main factors: first, we
focused on communities having at least 30 contributors
and 1,000 commits—this was needed to actually observe
community smells, which are problems usually occurring
in large projects [44, 45, 20] ; similarly, the rationale
for the selection of the 30/1000 rule reflects previous
work in organisations and social networks research [46]
which points out that SNs which reflect a total of 1̃00
nodes exhibit the organisational and community structure
behavior of so-called non small-world topology networks
and therefore are considered “large”. Considering that in
software organizational structures every single developer

1Dataset: https://github.com/maelstromdat/codeface4smells TR
2Link: http://github.com/

commits to and caters for about 2-3 software artefacts
across the Developer Social Networks in our dataset, we
fixed the total minimum of 30 contributors to characterise
“large” software projects. Second, we only considered
systems for which at least ten commits were performed
during the last observed month, with the aim of mitigating
threats due to outdated phenomena. As such, starting
from all projects respecting these two conditions, we
randomly picked 60 of them.

Once selected the objects, we identified and validated
community smells. To this aim, we first restricted our
focus to four community smells that have been shown
by previous research [45, 47] to be (1) among the most
problematic community-related issues to deal with and
(2) a potential threat to the emergence of technical debt.3

Specifically, these are:

1. Organisational Silo Effect: This refers to the
presence of siloed areas of the developer community
that do not communicate, except through one or two
of their respective members;

2. Black Cloud Effect: This reflects an
information overload due to lack of structured
communications or cooperation governance;

3. Lone Wolf Effect: This smell appears in
cases where the development community presents
unsanctioned or defiant contributors who carry out
their work with little consideration of their peers,
their decisions and communication;

4. Bottleneck or “Radio-silence” Effect: This
is an instance of the “unique boundary spanner” [48]
problem from social-networks analysis: one member
interposes herself into every formal interaction across
two or more sub-communities with little or no
flexibility to introduce other parallel channels.

To identify them, we relied on our tool
CodeFace4Smells [22], a fork of CodeFace [49]
which was originally designed to extract coordination
and communication graphs mapping the developer’s
relations within a community. Our tool builds on top of
CodeFace and applies a rule-based approach to identify
instances of the four community smells described above.
For example, the identification pattern for Lone Wolf
is based on the detection of development collaborations
between two community members that have intermittent
communication counterparts or feature communication
by means of an external “intruder”, i.e., not involved in
the collaboration.

A basic example is given in Figure 1. In this example
two developers, “1” and “2”, are collaborating on some

3Please note that, even though other community smells have been
observed in literature (e.g., [45]), there is still no way to identify
them. Therefore, we cannot consider a larger set of community smells
in our study.
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Figure 1: Lone Wolf Community Smell identification pattern - image
taken from [22].
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Figure 2: Distribution of community smells in our dataset - image
taken from [22]

code, but they are not connected by any communication
link other than developer “3”, who is not co-committing on
a shared file. In this case, either developer “1” or developer
“2” (or both) can develop a Lone Wolf community smell.
The full list of identification rules as well as more examples
are available in our online appendix [50].

It is important to note that the dataset contains
community smells for each release of the considered
projects, meaning that they have been detected over their
entire life span—this is a key detail for this study, as it
enables the execution of a release-by-release strategy when
training the devised within-project model (as described
in Section 5). The distribution of the community smells
per release is shown in Figure 2: as visible, for three
of them, i.e., Organizational Silo, Lone Wolf,
and Bottleneck, the median number of occurrences
for each release is around 10, while Black Cloud is

much lower (2). This aspect clearly affects the way a
machine learning algorithm aiming at predicting them
should be setup. Last, but not least, it is important
to comment on the reliability of this dataset when used
as ground-truth by a machine learning solution. Unlike
other types of software engineering information that can
be more easily verified (e.g., defects or design flaws
[51, 52, 53, 54]), it is not possible to create a “tangible”
oracle of community smells since (1) they involve teams
and (2) are not tracked by organizations and cannot be
without an automated solution [45]. As such, we are
not able to compute common measures like precision and
recall when evaluating the tool. Alternatively, to evaluate
the identification rules adopted by CodeFace4Smells,
in our previous works [22, 45], we conducted surveys
and/or semi-structured interviews with both the original
industrial and open-source practitioners belonging to the
communities we considered, showing them the results of
the tool and asking for confirmation. More specifically,
we first mined the community smells appearing in the 60
software projects also used in the context of this paper as
well as the email addresses of the most active developers of
those communities (i.e., the ones who committed at least
10 changes during the year before the release dates taken
into account), ending up with 172 developers who were
willing to participate in the study. Secondly, we inquired
the developers about the existence and perception of the
community smells considered. Finally, we performed a
follow-up confirmatory study involving 35 developers (of
those who participated already to the survey), in which
we openly discussed about community smells and the
performance of the tool. As an outcome, we discovered
that the problem of community smells is highly recognized
in practice, with them being considered as the main source
of social debt. Furthermore, all the survey respondents
and interviewees reported the validity and usefulness
of CodeFace4Smells, without pointing out additional
problematic situations occurred in their communities. In
other words, according to developers, the community
smells output by the tool are all true positives; as for
false negatives, if they exist, these were not pointed out by
original developers. This makes us confident of the high
reliability of the tool.

Once identified the smelly community structures in
our dataset, the final step required to conduct our study
consists of the identification of the non-smelly ones,
namely those community structures that are not affected
by smells and that, therefore, can be used to complement
the smelly ones and train a machine learner. For each
release of the 60 projects, we consider as non-smelly all
those parts of the developer’s social network that are not
detected as smelly by CodeFace4Smells.
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4. RQ1. On the Predictive Power of
Socio-Technical Metrics

This section describes methodology and results that
address our first research question.

4.1. Research Methodology

The first step of our empirical study consists of
understanding the predictive power of socio-technical
metrics when it comes to the prediction of community
smells. Such an analysis derives from the results
of our previous study [22], where we discovered a
number of correlations between socio-technical metrics
and community smells: for this reason, in the context
of this paper we take into account exactly the same
set of metrics previously analyzed, which are briefly
reported in Table 1. This set consists of 40 different
metrics belonging to five main categories that capture
community-related aspects under different perspectives,
e.g., the turnover of developers rather than their overall
closeness. The rationale behind the selection of those
metrics is summarized in Section 2. Although the
aforementioned rationales reflect a considerable amount
of metrics, there exist as many as 350+ factors that may
play a key role in predicting and managing sub-optimal
organizational conditions, as well as software project
success and failure as we ourselves highlighted in previous
research [56]. With this first work, we aim at laying
foundations (i.e., by conducting a first analysis and
providing a dataset) for future work in the area.

As anticipated in Section 3, we then address RQ1 by
running an information gain measure [25] able to quantify
the gain provided by each feature to the prediction.
More formally, let M be a supervised learning model,
let S = {s1, . . . , sn} be the set of socio-technical metrics
composing M , an information gain measure [25] applies
the following formula to compute a measure which defines
the difference in entropy from before to after the set M is
split on an attribute si:

InfoGain(M, si) = H(M)−H(M |si) (1)

where the function H(M) indicates the entropy of the
model that includes the predictor si, while the function
H(M |si) measures the entropy of the model that does not
include pi. As for entropy, this is computed using the
Shannon’s entropy [67], which computes the probability
that the predictor si affects the dependent variable’s
possible outcomes. It is computed as follow:

H(M) = −
n∑

i=1

prob(si) log2 prob(si) (2)

In simpler terms, the algorithm quantifies how much
uncertainty in M is reduced after splitting M on predictor
si. In our work, we implement information gain
through the Gain Ratio Feature Evaluation measure [25]

available in the Weka toolkit [68], in combination with
the weka.attributeSelection.Ranker search method.
This ranks s1, . . . , sn in descending order based on the
contribution provided by si to the decisions made by
M . More specifically, the output of the algorithm is
represented by a ranked list in which the features having
the higher expected reduction in entropy are placed at
the top. With this procedure, we can evaluate the
relevance of each socio-technical metric in the prediction
model. Along with this analysis, we also assess whether
a certain feature mainly contributes to the prediction
of smelly or non-smelly social structures: this is done
through the evaluateAttribute function of the Weka
implementation of the algorithm. We run our analyses
considering each project independently, thus obtaining 60
different ranks. We prefer this option since it allows
us to both assess if certain metrics are more powerful
on specific projects and evaluate the overall relevance of
each metric. To analyze the resulting ranks and have
statistically significant conclusions, we finally exploit the
Scott-Knott Effect Size Difference (ESD) test [69]. This
represents an effect-size aware variant of the original
Scott-Knott test [70] that has been recently recommended
for software engineering research [71, 72, 73] because
it (i) uses hierarchical cluster analysis to partition the
set of treatment means into statistically distinct groups
according to their influence, (ii) corrects the non-normal
distribution of an input dataset, and (iii) merges any two
statistically distinct groups that have a negligible effect
size into one group to avoid the generation of trivial
groups. To measure the effect size, the tests uses the
Cliff’s Delta (or d) [74]. We employ the publicly available
ScottKnottESD implementation4 originally developed by
Tantithamthavorn et al. [69]. Finally, it should be noted
that all metrics we are using as predictors in our machine
learning exercise are independent from the metrics used for
the detection of the golden-set we are using in our dataset
and, as such, there is no risk of over-fitting or misleading
results given by the inter-dependence between dependent
and independent variables.

4.2. Analysis of the Results

An overview of the results for our first research
question is presented in Table 3. As shown, all the
considered socio-technical indicators have some predictive
power and, indeed, the mean information gain is of at
least 0.10. Interestingly, the standard deviation indicates
that the results do not consistently vary from project
to project, meaning that the metrics represent valid
indicators independently from the specificities of a certain
software development community.

Among them, socio-technical congruence and
communicability are the ones providing the highest
information gain for community smell prediction. This

4Link: https://github.com/klainfo/ScottKnottESD
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Table 1: Socio-technical metrics considered in our study. All of them have been shown to be correlated to community smells in our previous
work [22]. Note that the “Devs” or developers are defined as the total sum of members in the developer social network whereas the “core
(either global, code, or ml) developers” are defined as the total sum of developers which are part of the core of the organizational structure
in line with Wallerstein core-periphery network structure theory, which Joblin et al. [55] have shown to be true for Software Communities as
well; conversely, non-core developers reflect the total sum of every other developer not belonging to the structural core.

Category Metric Description

devs Number of developers present in the global Developers Social Network
ml.only.devs Number of developers present only in the communication Developers Social Network
code.only.devs Number of developers present only in the collaboration Developers Social Network
ml.code.devs Number of developers present both in the collaboration and in the communication DSNs
perc.ml.only.devs Percentage of developers present only in the communication Developers Social Network
perc.code.only.devs Percentage of developers present only in the collaboration Developers Social Network
perc.ml.code.devs Percentage of developers present both in the collaboration and in the communication DSNs
sponsored.devs Number of sponsored developers (95% of their commits are done in working hours)

Developer Social Network metrics

ratio.sponsored Ratio of sponsored developers with respect to developers present in the collaboration DSN
st.congruence Estimation of socio-technical congruence
communicability Estimation of information communicability (decisions diffusion)
num.tz Number of timezones involved in the software development

Socio-Technical Metrics

ratio.smelly.devs Ratio of developers involved in at least one Community Smell
core.global.devs Number of core developers of the global Developers Social Network
core.mail.devs Number of core developers of the communication Developers Social Network
core.code.devs Number of core developers of the collaboration Developers Social Network
sponsored.core.devs Number of core sponsored developers
ratio.sponsored.core Ratio of core sponsored developers with respect to core developers of the collaboration DSN
global.truck Ratio of non-core developers of the global Developers Social Network
mail.truck Ratio of non-core developers of the communication Developers Social Network
code.truck Ratio of non-core developers of the collaboration Developers Social Network
mail.only.core.devs Number of core developers present only in the communication DSN
code.only.core.devs Number of core developers present only in the collaboration DSN
ml.code.core.devs Number of core developers present both in the communication and in the collaboration DSNs
ratio.mail.only.core Ratio of core developers present only in the communication DSN
ratio.code.only.core Ratio of core developers present only in the collaboration DSN

Core community members metrics

ratio.ml.code.core Ratio of core developers present both in the communication and in the collaboration DSNs
global.turnover Global developers turnover with respect to the previous temporal window
code.turnover Collaboration developers turnover with respect to the previous temporal window
core.global.turnover Core global developers turnover with respect to the previous temporal window
core.mail.turnover Core communication developers turnover with respect to the previous temporal window
core.code.turnover Core collaboration developers turnover with respect to the previous temporal window

Turnover

ratio.smelly.quitters Ratio of developers previously involved in any Community Smell that left the community
closeness.centr SNA degree metric of the global DSN computed using closeness
betweenness.centr SNA degree metric of the global DSN computed using betweenness
degree.centr SNA degree metric of the global DSN computed using degree
global.mod SNA modularity metric of the global DSN
mail.mod SNA modularity metric of the communication Developers Social Network
code.mod SNA modularity metric of the collaboration Developers Social Network

Social Network Analysis metrics

density SNA density metric of the global Developers Social Network

was somehow expected since these metrics reflect the
coordination and communication level existing in an
organization, thus covering the two key aspects of
community smells. From a more technical viewpoint, the
results obtained for these two metrics can be interpreted
as follow. Since the information gain measures the
extent to which a certain feature will impact the purity
of the dataset, namely how much the feature will help
discriminating the dependent variable classes of the model,
we can claim that socio-technical congruence and
communicability are the metrics that maximize the
differences between smelly and non-smelly community
structures, meaning that these are the characteristics that
most impact the fact that a community structure will be
smelly—these will likely be the first two features that a
machine learning model will consider when performing
predictions. It is worth noting that both the metrics
mainly support the prediction of smelly communities,

thus confirming that they seem to be good predictors for
community smells. The third relevant factor is represented
by the core global developers turnover with respect to
the previous temporal window (core.global.turnover):
its high relevance may indicate that the emergence of
community-related problems can be accelerated/reduced
when there is a high/low turnover of core developers. This
is in line with findings previously shown in organizational
and social science research [75, 76, 77], and suggests that
software communities can be, to some extent, subject of
similar dynamics as other types of communities. The
high relevance of turnover is also visible when considering
the other metrics aiming at capturing this aspect: for
example, core.mail.turnover, core.code.turnover,
and ration.smelly.quitters have high information gain
values (0.47, 0.37, and 0.37, respectively). Hence, on
the one hand our results indicate that turnover metrics
may potentially provide a notable amount of information
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Table 2: Metrics selection rationale; metrics and rationales follow the same clustering schema from Tab. 1.

Metric
Rationale

Developer Social Network Metrics These metrics are largely derived from the works of Meenly et al. [37, 57] as well as Joblin et al.
[33] who, respectively, (1) introduced the fundamental roles of Developer Social Networks in
predicting failures (both at technical and organizational level) and (2) prototyped technologies for
the verifiable investigation of fully-formed developer communities. Both research groups find
independently that DSN metrics are not only relevant to specify the stability and predictive
characteristics of organisational structures but also that they reflect relevant technical
characteristics in code which reflect socio-technical issues in the organizational structure.

Socio-Technical Metrics These metrics are derived from the state-of-the-art in social software engineering as reflected by
the topics discussed in the “Cooperative and Human Aspects of Software Engineering (CHASE)”
and “Social Software Engineering (SSE)” workshop series investigating the social and
organisational aspects emerging within software communities, and any relation thereto.
Conversely, more mature and prominent sample research exists which highlights the relation
between these metrics and sub-optimal conditions in the organisational structure, e.g., Kwan et
al. [58] who investigate build failures connected to sub-optimal coordination patterns or Tamburri
[11] who studies sub-optimal architectural decision patterns connected to incommunicability.

Core-Community Members Metrics Metrics in this cluster range between the truck-factor (whose relation to sub-optimal
organizational conditions is highlighted by Avelino et al. [59] as well as others [60]) to
core-periphery numbering metrics, which are largely inspired by the work of Manteli et al.
[61, 62] who investigate core-periphery organizational (anti-)patterns and their relation with
community member descriptors as well as core-periphery mismatches.

Turnover Metrics These metrics are derived directly from the original committers of the studies reported in
[10, 11, 12] who desired to investigate their turnover rates across several distributed software
development sites across the world. Such industrial requirement to focus on Turnover as a key
dimension was mapped to all aforementioned core-community members metrics.

Social-Network Analysis Metrics These metrics are derived from the state of the art in organisations’ research and reflect the most
relevant centrality measures recurrently used in connection to sub-optimal organisational
conditions such as prima-donna effects (e.g., see Dekker et al. [63]) or lack of boundary-spanning
[64, 65, 66].

bits to a machine learning model that would allow it to
better discern community smelly patterns. On the other
hand, we can also claim that turnover metrics have a
potentially less predictive power than coordination and
communication ones: in other words, our findings seem to
suggest that keeping socio-technical congruence and
communicability aspects under control is more important
for the emergence of community smells than the fact of
having developers entering/leaving the community—this
is again an indication that the implementation of good
governance mechanisms may increase the health of the
community independently from the specific developers
composing it [76, 21].

According to our findings, also some typical
social-network analysis metrics, like degree.centr

(info gain=0.53) and density (0.41), are relevant
factors to consider, meaning that even the structure
of the community can impact the emergence of
community-related problems. On the other hand, metrics
capturing the truck factor, i.e., the number of team
members that have to suddenly leave a project before it
stalls, provide a lower information gain. As an example,
the code.truck metric have an information gain of 0.16
with a standard deviation of 0.10, which indicates that in
some cases it is almost irrelevant for predicting community
smells. The low amount of information provided by
truck factor metrics seem to confirm, again, that the
emergence of community smells can be ruled by putting
in place effective governance mechanisms that stimulate

the coordination/communication among developers rather
than having an excessive control on factors involving
individual developers that may, in this case, leave the
project at a certain point in time. From a statistical
point of view, the discussion above is confirmed. The
ranking provided by the Scott-Knott ESD test is exactly
the same as the one of the Gain Ratio Feature Evaluation,
meaning that the contribution given by the considered
socio-technical metrics is statistically significant.

To broaden the scope of the discussion, the results
obtained from this research question tell us that
community smells are a multifaceted phenomenon that
is characterized by various aspects not only related to
coordination and communication, but also to turnover
and community structure. As such, we argue that more
research on the topic should be conducted in order to
provide an improved understanding of how these aspects
influence the emergence of community smells.

Finding 1. All the considered socio-technical
factors provide some information gain for the
prediction of community smells. Socio-technical
congruence, communicability, and turnover-related
metrics are the most powerful ones, while it seems
that factors aiming at capturing the truck factor are
less relevant for community smell prediction.
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Table 3: Results outline for RQ1; column 1 identifies the analyzed
metric, Column 2 and 3 provide Mean and Standard Deviation
respectively while Column 4 elaborates on smelliness and finally
Column 5 elaborates on results from the Scott-Knott test. The
SK-ESD values reported refer to the percentage of datasets in which
a certain feature appeared to be at the top rank.

Metric Mean St. Dev. Class SK-ESD
st.congruence 0.54 0.05 smelly 74
communicability 0.53 0.03 smelly 67
core.global.turnover 0.53 0.10 smelly 62
degree.centr 0.53 0.07 non-smelly 59
core.global.devs 0.48 0.03 non-smelly 39
perc.ml.only.devs 0.47 0.06 smelly 46
core.mail.turnover 0.47 0.03 non-smelly 46
devs 0.46 0.09 non-smelly 44
ml.code.devs 0.46 0.09 smelly 40
mail.truck 0.44 0.07 non-smelly 40
perc.ml.code.devs 0.43 0.06 non-smelly 38
density 0.41 0.04 smelly 35
code.only.core.devs 0.40 0.06 non-smelly 30
perc.code.only.devs 0.39 0.04 non-smelly 32
sponsored.core.devs 0.39 0.10 smelly 32
core.code.turnover 0.37 0.09 smelly 32
ratio.smelly.quitters 0.37 0.07 non-smelly 32
code.mod 0.37 0.07 non-smelly 31
ratio.mail.only.core 0.36 0.08 non-smelly 29
closeness.centr 0.36 0.06 smelly 27
ratio.sponsored.core 0.34 0.10 non-smelly 24
global.turnover 0.34 0.06 smelly 16
mail.mod 0.34 0.09 non-smelly 9
code.turnover 0.32 0.05 non-smelly 8
sponsored.devs 0.31 0.10 non-smelly 1
ratio.code.only.core 0.31 0.10 non-smelly 1
ratio.ml.code.core 0.30 0.07 non-smelly 1
global.mod 0.30 0.04 non-smelly 1
global.truck 0.26 0.03 smelly 1
betweenness.centr 0.24 0.03 non-smelly 1
core.code.devs 0.22 0.06 non-smelly 1
ratio.smelly.devs 0.22 0.04 smelly 1
ml.only.devs 0.20 0.06 non-smelly 1
code.only.devs 0.20 0.08 smelly 1
ratio.sponsored 0.17 0.06 non-smelly 1
mail.only.core.devs 0.17 0.07 non-smelly 1
code.truck 0.16 0.10 smelly 1
ml.code.core.devs 0.14 0.04 non-smelly 1
num.tz 0.13 0.09 non-smelly 1
core.mail.devs 0.10 0.09 smelly 1

5. RQ2 - RQ3. Assessing Community Smell
Prediction Models

This section overviews the methodological details and
the results for RQ2 and RQ3.

5.1. Research Methodology

To address both research questions, we need to devise
community smell prediction models. This requires the
design and definition of a number of steps, which we
describe in the following.

Dependent Variable. In our work, we have two types
of response variables. In the first case, we consider
a binary variable in the set {true, false}, which

represents the presence/absence of a community smell.
Thus, we first assess how well can a machine learning
model predict the simple presence of a community smell,
independently from its specific type. In the second case,
we consider the problem of classifying the precise smell
affecting a software community: as such, the response
variable is a nominal value that can assume values
in {organizational-silo, black-cloud, lone-wolf,
bottleneck, none}, where none indicates non-smelly
social structures.

Independent Variables. The features used to predict
community smells are the socio-technical metrics
previously presented in Table 1. However, in this context
we take into account the problem of multi-collinearity
[78], which appears when two or more variables of the
model are highly correlated to each other, possibly
leading the machine learner not to distinguish which
of them should consider when predicting the dependent
variable. We compute the Spearman’s rank correlation
[79] between all possible pairs of metrics to determine
whether there are pairs strongly correlated (i.e., with a
Spearman’s α > 0.8). If two independent variables are
highly correlated, we exclude the one having the least
predictive power, as measured in RQ1 through the Gain
Ratio Feature Evaluation measure [25].

Machine-learning Algorithm. To the best of our
knowledge, this is the first work that aims at
predicting the emergence of community smells. As
such, still nothing is known on how different machine
learning algorithms work in this context. For this
reason, we experiment with five different classifiers,
namely Random Forest, J48, Logistic Regression,
Decision Table, and Naive Bayes. These algorithms
make different assumptions on the underlying data as
well as have different advantages and drawbacks in terms
of execution speed and overfitting [80], thus giving us the
possibility to explore deeper the problem of community
smell prediction. It is important to point out that before
running them, we configure their hyper-parameters as
recommended in literature [81]; for this task, we exploit
the Grid Search algorithm [82].

Training Strategy. In the context of RQ2 we aim at
building and evaluating a within-project model. To this
aim, we employ a release-by-release training approach,
where the data of a release Ri is used to train a model
that can predict the emergence of community smells
on the release Ri+1. The process is repeated for each
pair of releases of the considered projects until the
end of the observed history. Of course, we have to
exclude first and last release of each project from the
validation: the former has no previous data to use as
training, while the latter has no future data to use as
testing. We opt for this time-sensitive strategy since our
data follows a temporal distribution: this implies that
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other widely-used validation approaches (e.g., 10-fold
cross [83]) do not represent valid alternatives, as they
would potentially train the model with data coming from
releases that are subsequent with respect to the data
in the test set—thus leading to unrealistic and biased
results [84]. Furthermore, a release-by-release strategy
can actually simulate a real-case scenario where a
prediction model is updated as soon as new information
is available.

When training the experimented machine learning
techniques, we take into account the data imbalance
problem [85], which occurs when the number of data
points available in the training set for a certain class
(e.g., the number of smelly instances) is far less than
the amount of data points available for another class
(e.g., the number of non-smelly instances), possibly
reducing the ability of machine learning algorithms to
learn how to classify the minority class. This problem
eventually occurs in our case, as, on average, only
12% of community structures of the considered releases
are smelly. Hence, we apply the Synthetic Minority
Over-sampling Technique (SMOTE) [85]. We use the
standard implementation of the algorithm available in
Weka: as such, the parameter K, which refers to
the number of nearest neighbors that the algorithm
should use while oversampling the training data, is
equal to 5. When predicting the presence/absence
of community smells, the algorithm creates synthetic
instances of any kind of community smells. Instead,
when predicting the smell type, it is repeated multiple
times so that it can over-sample the instances of each
community smell. More precisely, in the first case the
algorithm has been run once per release—we used a
release-by-release strategy, hence the training set should
have been balanced at each release. In the second case
we run it once per smell per release, i.e., we ensured that
the same proportion of a certain community smell was
available in all the releases considered. In both cases,
the algorithm gives us a balanced training set, where
all classes have a similar amount of instances. For the
sake of completeness, it is important to remark that we
iteratively apply SMOTE on each release Ri used as
training set, leaving the test set intact, so respecting
a real case scenario where the number of smelly and
non-smelly structures is not balanced.

Turning the focus on RQ3, in this case we are interested
in assessing a cross-project model. We employ a
leave-one-out validation strategy [84]: we use a project
Pi as test set, while we train the experimented machine
learning algorithms with data coming from all the
remaining projects. This process is then repeated 60
times, so that we let each project be the test set once.
In a cross-project scenario, there are three problems to
consider. First, the distribution of the socio-technical
metrics can substantially differs from project to project,
meaning that a machine learner could potentially fail in

learning because of the influence of outliers and/or other
anomalies [86]. For this reason, we scale and normalize
the computed metrics using the normalize function
available in the Weka toolkit. Second, cross-project
models can suffer from data unbalance as well: so, also
in this case we iteratively apply SMOTE to balance
the training data—we run it once for each training set
built. Finally, cross-project models are sensitive to the
selection of the training data. Indeed, heterogeneous
information coming from very different projects with
respect to the tested one could have a negative influence
on the predictive ability of the machine learner. While
there is some ongoing research on this topic [87, 88, 89],
we could not find a mature enough and/or publicly
available instrument that could allow us a proper project
selection for training our learners. For this reason, it
can be said that our work sets the lower-bound for
cross-project community smell prediction. Should our
results be already promising, this would imply that
even better prediction performance could be obtained by
practitioners if a more careful selection of the training
data would be performed.

Evaluation Metrics. We assess the goodness of the
experimented models by computing well-known metrics
such as precision, recall, F-Measure, AUC-ROC, and
Matthew’s Correlation Coefficient (MCC) [90]. These
metrics allow us to study the performance of both
within- and cross-project community smell prediction
models under different perspectives.

5.2. Analysis of the Results

As explained above, we experimented with five
different machine learning algorithms such as Random
Forest, J48, Logistic Regression, Decision Table,
and Naive Bayes. Such an experiment revealed that
Random Forest is the technique obtaining the best
performance considering all the evaluation indicators and
overcome J48, i.e., the second best performing technique,
by up to 7% and 5% in terms of F-Measure and AUC-ROC,
respectively. It is also worth remarking that the model
built using Random Forest performed, overall, 11%
better with respect to model built using the same classifier
but using all features: this confirms that the feature
selection process applied actually provided gains in terms
of performance. Based on the observations above, we
therefore decided to focus the discussion on the results
achieved by Random Forest, while a comprehensive
overview of the performance of the other classifiers is
available in our online appendix [50].

Within-project community smell prediction. As
a preliminary methodological step, we verified possible
multi-collinearities among the features of the model.
This led to the removal of five variables, namely
ratio.sponsored (it had a correlation of 0.86 with
ratio.sponsored.core and was removed because it
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Figure 3: Box plots reporting the performance of the investigated within-project community smell prediction model in terms of F-Measure,
AUC-ROC, and MCC.

provides a lower information gain), num.tz (because of its
correlation of 0.82 with code.only.devs), devs (because
of the 0.92 correlation value with perc.ml.only.devs),
ratio.mail.only.core (because of the correlation of 0.87
with ratio.smelly.quitters), and betweenness.centr

(correlation of 0.83 withdegree.centr).
Figure 3 depicts box plots describing the distribution

of F-Measure, AUC-ROC, and MCC when running
the community smell prediction model, trained using
within-project data, over the considered software projects.
The figure reports both the performance of the model
used to predict a binary value reporting presence/absence
of community smells (on the left-hand side) and the
model exploited to predict the types of community smells
appearing in next project releases (on the right-hand
side). Looking at the figure, we can immediately point
out that, overall, the performance of the model is high
when considering all the evaluation metrics. Indeed, it
reaches a median F-Measure is 77% when predicting the
existence of community smells, while the F-Measure is
equal to 63% when trying to identify the exact type of
smell that will occur. The results are consistent among
the other metrics. On the one hand, these results indicate
that a within-project approach allows a pretty accurate
prediction of community smell emergence. On the other
hand, the AUC-ROC values—which measure how well the
classifiers can separate the binary classes [91]—tell us that
within-project models are also robust. As such, we can
answer RQ2 by saying that a within-project solution can
properly support developers and project managers when
assessing the health status of a community. An interesting
observation can be done when considering the MCC values
of the binary model when compared to the one aiming at
predicting community smell types. As shown in Figure
3, we observe that, despite the higher average accuracy,

the variability of the first is larger, meaning that there
exist software projects where it is easier to predict the
exact type of community smells rather than their simple
presence. Differently from the other evaluation metrics,
MCC is computed using the entire confusion matrix and,
therefore, it takes into account the ability of a learner
to classify false and true negatives. The results tell us
that the binary model has sometimes more difficulties
in classifying actual community smells (false negatives)
and smell-free community structures (true negatives) with
respect to the model that classifies community smell types.
This can be explained by considering that the binary
model does not aim at distinguishing the characteristics
of the individual smells. As a consequence, it learns
more general features that define a community smell
structure: based on what we found, this sometimes biases
the model, that cannot properly classify actual community
smells and smell-free community structures. On the
contrary, the finer-grained model is defined to learn the
features characterizing single community smells, possibly
helping the machine learner to use the right features when
classifying true and false negatives.

Going deeper into the results, we noticed that
predicting the existence of community smells in future
releases of a system represents an easier task with
respect to the prediction of the precise type of problem
that will occur, as visible in the difference of 14% in
terms of F-Measure. This was somehow expected (and
reasonable) for various reasons. In the first place, a
binary classification allows the machine learner to have
more data points to learn and, perhaps more importantly,
the task of learning the characteristics of just two classes
is generally easier for machine learning algorithms [92].
Secondly, more community smell types can be determined
by the same set of socio-technical metrics, thus creating
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noise during the classification. This claim is supported
by an additional analysis that we have done on the
features used by Random Forest to predict the different
types of community smells. In particular, we measured
the Gini index [93]—the entropy-based metric used by
the classifier to decide which features it should use for
prediction—obtained by the socio-technical metrics when
used to predict the different types of community smell
types. As a result, we discovered that socio-technical

congruence and core.global.turnover are the main
metrics used for predicting both Organizational Silo
and Black Cloud, while communicability has a high
impact on the decisions made by the classifier when
identifying Lone Wolf and Bottleneck. As such, the
false positive rate increases, thus reducing the accuracy.

Finally, we observed that the performance of both
model types does not vary over different projects; looking
at the shapes of the box plots, which are all narrowed
toward the median of the distributions, we can conclude
that the prediction accuracy is similar independently from
the underlying development community.

Finding 2. It is possible to predict the emergence
of community smells in next releases of a software
project with an F-Measure of 77% (on median),
while the precise type of community problem that
will occur can be predicted with an F-Measure of
63%. The higher false positive rate of latter model is
due to the presence of highly-relevant socio-technical
features that are used for the identification of more
community smell types.

Cross-project community smell prediction. As
previously done, we first controlled for multi-collinearity.
In this case, with the step we removed seven variables,
namely: ratio.sponsored (correlation of 0.93 with
ratio.sponsored.core), num.tz (correlation of 0.81
with code.only.devs), devs (correlation of 0.85
with perc.ml.only.devs), ratio.mail.only.core

(correlation of 0.97 withratio.smelly.quitters),
betweenness.centr (correlation of 0.86 with
degree.centr), perc.code.only.devs (correlation of
0.94 with code.only.core.devs), and core.mail.devs

(correlation of 0.9 with ml.code.core.devs).
Figure 4 reports the results of this analysis. Similarly

to RQ2, we show the performance of cross-project models
when used to predict a binary value on presence/absence
of community smells (left-hand side of Figure 4) and
the exact type of community problem (right-hand side of
Figure 4).

The results are somehow similar to what reported
for within-project models. Also in this case the binary
model works better than the one classifying community
smell types: the median F-Measure of the former reaches
62%, while the one of the latter is 58%. The difference
is similar when considering AUC-ROC (60% vs 57%)

and MCC (59% vs 58%). As clearly visible, however,
the overall accuracy of cross-project models is notably
lower than within-project ones. This is likely due to the
heterogeneity of the data contained in the training set;
this leads us to confirm previous findings in the field on
the lower performance of cross-project prediction models
[52, 94, 95, 96].

At the same time, the performance is still to be
considered promising: even without selecting the data
to use as training, the cross-project model obtains a
prediction accuracy that is higher than the one of a random
model. This statement is supported by an additional
experiment we have performed, in which we compared
the model with a simple classifier that randomly guesses
the smelliness of a community—note that also in this
case we applied SMOTE first to avoid having a too
relaxed baseline. We found that the random model has
an F-Measure close to 46%, being therefore worst than
the cross-project model devised. Based on these findings,
we can argue that more research on the topic could
lead to potential additional benefits when it turns to the
prediction of community smells using cross-project data.

When considering the prediction of community smell
types, the performance drops substantially. In this case,
the heterogeneity issue combined with the ability of certain
socio-technical metrics to influence more community
smells are at the basis of the reduced performance.
Also in this case, we tried to understand how bad
this performance is when compared with the one of a
random model. We found that the devised cross-project
model has an F-Measure 27% higher than the baseline
(which reached a median F-Measure of 31%), confirming
that it still represents a more viable approach for being
used in practice. In conclusion, our model poses the
ground for more research on effective mechanisms to make
cross-project community smell prediction practical.

When comparing the results of within- and
cross-project models, we can notice that the variability
of the performance is larger in the first case—this is
true for all considered evaluation metrics. This means
that, while the performance of within-project models
is generally higher, the latter seem to be more stable.
From a practical standpoint, our findings tell us that
a cross-project setting guarantees similar performance
when employed in different contexts: this result is pretty
promising in our view, since it implies that further
improvement in the way the model is trained (e.g., proper
selection of the projects to be used as training data)
could not only lead to better performance, but also to the
definition of models that can be pragmatically used by
developers in unseen contexts.
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Figure 4: Box plots reporting the performance of the investigated cross-project community smell prediction models in terms of F-Measure,
AUC-ROC, and MCC.

Finding 3. The devised cross-project model
for predicting community smells has a median
F-Measure of 62%, AUC-ROC of 60%, and MCC
of 59%. When trying to predict the type of
community smells, the performance drops to 58%,
57%, and 58% for F-Measure, AUC-ROC, and
MCC, respectively. A comparison with random
models reveal that a cross-project solution still
represent a more performing approach. Yet, the
performance could be improved by reducing data
heterogeneity and finding further features able to
characterize community smells.

5.3. Cross-study Findings

The results outlined in the previous section are
in line with observations made in previous work
[12]. More specifically, in Tamburri et al. [12],
we observed that a restricted set of 18 socio-technical
metrics from the same overview we adopt here,
directly correlated—either positively or negatively—with
community smells; beyond this contribution, the
manuscript proceeded in highlighting all observable
stability thresholds for at least some of the factors we also
adopt in the scope of this work (e.g., a minimum value
of 0.8 for the truck-number of the collaboration DSN was
reported as a prerequisite for stability).

Among the aforementioned 18 factors, three key
forces emerge, namely, socio-technical congruence,
communicability, and truck-factor (as well as connected
turnover metrics) and are reported—both in this work
and in Tamburri et al. [12]— as strongly correlated
with the emergence and prediction of no less than 2

community smells. Said metrics are therefore set to
become first-class citizens in terms of software metrics
needed to track and govern software projects appropriately
(e.g., as augmentations of platforms such as Bitergia or
OpenHub). On the one hand, low numbers across the
board on such metrics indicates that corrective action
needs to be undertaken in the communication and/or
collaboration structure across the project. On the other
hand, high numbers on the aforementioned metrics may
themselves represent conditions whose impact on software
processes remains to be fathomed.

Concerning all remaining metrics, nothing definitive
can be said. While on previous study we reported all
metrics being connected to some form of socio-technical
condition, the observations made in this study—although
confirmative of previous observations—does not exclude
any effect being enacted by the dimensions represented
in those other metrics with respect to the forces at play,
i.e., community smells. Further work into figuring out all
necessary software people metrics to measure, predict, and
manage social debt—and connected forces—is needed.

6. Threats to Validity

There are a number of threats to validity that could
have biased our results.

Construct Validity. The first threat in this category
concerns with the correctness of the dataset exploited
in the study. In this respect, we relied on a publicly
available source that we built in the context of our research
[22], which contained labeled data of both socio-technical
metrics and community smells.

Another potential threat is related to the selection of
the independent variables used to build the experimented
models. We exploited socio-technical metrics that have
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been shown to correlate with the occurrence of community
smells [22] and, therefore, our selection was based on
previous findings. Nevertheless, we cannot rule out that
other metrics, not considered in the study, could provide
additional contribution to the performance of community
smell prediction models. We plan to investigate this aspect
further as part of our future research agenda.

Conclusion Validity. In the context of RQ1,
we measured the predictive power of the considered
socio-technical metrics by means of the Gain Ratio
evaluation measure [25]. The usage of this algorithm
is recommended since it can quantify the amount on
predictive uncertainly that is reduced using a specific
feature [86], providing us with a mechanism able
to rank features based on their importance that we
could use to interpret the predictive power of the
exploited socio-technical metrics. Finally, we backup our
observations through the use of a statistical test, i.e., the
Scott-Knott ESD [73], that confirmed the results given by
the Gain Ratio evaluation measure.

As for RQ2 and RQ3, a first threat is related to
the methodology applied to discard redundant features
from the models built. We first relied on the Sperman’s
correlation coefficient [79] to identify pairs of features
strongly correlated to each other and, secondly, we
excluded one of them by considering the gain they
provided to the model (computed using the information
gain measure). In so doing, we could only take into
account the intra-metric correlation between features, but
not their complementarity: for instance, it would be
possible that two features taken together offer higher gain
compared to the gain obtained by a single feature. While
some recent work has proposed heuristics to identify such
complementarity relations [97], we could not find any
open implementation that would have allowed us to apply
them in our context. Hence, we leave to future research
work the understanding of how this methodological choice
impacts our findings. In the second place, it is worth
discussing the implications of the data balancing method
employed, i.e., SMOTE [85]. The process it uses to
create synthetic instances is stochastic and, therefore, the
particular execution on our dataset could have led to
inconclusive results. To address this potential threat, we
conducted an additional analysis in which we ran SMOTE
multiple times and verified the resulting performance. We
observed that the performance are in line with those
reported in Section 5, with a standard deviation of 0.03,
overall. We could therefore conclude that the performance
discussed in the paper were not obtained by chance.

As for the the interpretation of the performance
achieved by the models built. We mitigated this
problem by considering more than one evaluation metric
(e.g., F-measure, AUC-ROC, and MCC). Also, previous
work has shown the importance of considering data
pre-processing actions to properly set machine learning
models [81, 42, 98, 53]. For this reason, in our research

we considered the application of techniques to deal with
data normalization, feature selection, data balancing, and
hyper-parameters configuration.

In addition, the validation strategy may be object of
discussion: when building the within-project model, we
adopted a release-by-release strategy because our data
follows a temporal order. Furthermore, it simulates a
real-case scenario where a prediction model is updated as
soon as new data from a previous release are available
[47]. Hence, the selected validation strategy was the
only one actually suitable in our context. When building
a cross-project solution, the main threat is related to
the way we train the model. In particular, we could
not deal with the sensitivity of cross-project models to
heterogeneous data and, as such, we use all the projects
(but the tested one) within the training set. We are
aware of this limitation but, unfortunately, there is still
no instrument that allows an accurate selection of training
data for cross-project models and/or that is publicly
available, despite the ongoing research on the topic [87, 88,
89]. Nevertheless, we (i) argue that the reported results
represent a lower-bound, yet promising ground for further
studies on cross-project community smell prediction and
(ii) encourage future research on the matter.

External Validity. With respect to the
generalizability of the results, our study considers 60
open-source communities that are all active but different
in terms of size, scope, number of contributors, and
domain. Yet, we recognize that the performance of the
experimented models may differ on other datasets. Hence,
we encourage replications of our study targeting different
communities as well as closed-source environments.

It is also important to comment the fact that recent
work [99] has shown that the top-ranked metrics from
the Scott-Knott ESD test may vary among instances of
predictions. As a consequence, it is possible that the
results of RQ1 represent a summary of the models, but
not provide specific explanation to the predictions. Hence,
the results may not be generalized to all projects. We
recognize this limitation and, as part of our future research
agenda, we plan to address it by means of explainable AI
methods, which is a rising research field in the context of
software engineering and that may be a useful instrument
to provide more insights into the generalizability of the
results of our study.

7. Conclusion

In this paper, we aimed at studying how well
can community smells be predicted using a set of
socio-technical metrics that previous work [22] has shown
to be correlated with the phenomenon. To this aim,
we carried out an empirical investigation—involving 60
open-source projects—in which we (1) measured the actual
predictive power of socio-technical metrics and (2) assessed
the performance of within- and cross-project models for
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community smell prediction. As a side effect of our
study, we also verified the capabilities of various machine
learning algorithms. The main results of our study
showed that socio-technical congruence, communicability,
and turnover-related metrics are top-factors to monitor
when predicting the emergence of community-related
problems. Furthermore, within-project models can be
effectively exploited by practitioners to predict community
smells, especially when trained using Random Forest
as classifier. Indeed, our experiment showed that it is
possible to achieve an F-Measure of 77%. Finally, in case
of lack of historical data, cross-project models represent a
promising solution (F-Measure of 62%), yet they still need
improvement, e.g., by means of the adoption of proper
techniques for selecting training data.

These findings represent the main input for our future
research agenda, which includes a replication of our
study in an industrial context as well as the definition
of ad-hoc mechanisms able to improve the performance
of community smell prediction models (e.g., though the
use of explainable AI methods to improve the model
explainability [99]). Furthermore, we will consider the
design of empirical studies aiming at understanding the
impact of different feature selection methods, able to
capture the complementarity relation among features (e.g.,
the adaptive heuristic proposed by Singha and Shenoy
[97]), on the reported results. We also plan to investigate
other features that can be used to boost the performance

obtained: for instance, we plan to investigate whether and
how pure technical-related metrics (e.g., the number of
packages) can be used to inform our models and better
predict the emergence of community-related issues. At
the same time, the major limitation we perceive in terms
of actionability of our results—to be addressed in the
future—is that, on the one hand, we obtained a useful
and usable ML model which is fully reproducible but,
on the other hand, we do not provision the model on
a DataOps pipeline that practitioners could use. We
plan this DataOps-based increment of our ML modelling
exercise as a future work.
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Appendix A. Characteristics of the considered
projects

In this appendix, we report the characteristics of the
open-source communities analyzed in our work.
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Table A.4: List of analyzed projects.

# Project Source code repository Development mailing list
1 LibreOffice http://anongit.freedesktop.org/git/libreoffice/core.git gmane.comp.documentfoundation.libreoffice.devel
2 Firefox https://github.com/mozilla/gecko-dev.git gmane.comp.mozilla.firefox.devel
3 FFmpeg git://source.ffmpeg.org/ffmpeg.git gmane.comp.video.ffmpeg.devel
4 Cassandra http://git-wip-us.apache.org/repos/asf/cassandra.git gmane.comp.db.cassandra.devel
5 Git https://github.com/git/git.git gmane.comp.version-control.git
6 OpenSSL git://git.openssl.org/openssl.git gmane.comp.encryption.openssl.devel
7 GRUB git://git.savannah.gnu.org/grub.git gmane.comp.boot-loaders.grub.devel
8 nginx https://github.com/nginx/nginx.git gmane.comp.web.nginx.devel
9 Audacity https://github.com/audacity/audacity.git gmane.comp.audio.audacity.devel
10 VLC git://git.videolan.org/vlc.git gmane.comp.video.videolan.vlc.devel
11 Tomcat git://git.apache.org/tomcat.git gmane.comp.jakarta.tomcat.devel
12 GIMP git://git.gnome.org/gimp gmane.comp.video.gimp.devel
13 Guix git://git.savannah.gnu.org/guix/dhcp.git gmane.comp.gnu.guix.devel
14 Mahout git://git.apache.org/mahout.git gmane.comp.apache.mahout.devel
15 CXF git://git.apache.org/cxf.git gmane.comp.apache.cxf.devel
16 Rails https://github.com/rails/rails.git gmane.comp.lang.ruby.rails.core
17 AngularJS https://github.com/angular/angular.js.git gmane.comp.lang.javascript.angularjs
18 libuv https://github.com/libuv/libuv.git gmane.comp.lang.javascript.nodejs.libuv
19 Bitcoin https://github.com/bitcoin/bitcoin gmane.comp.bitcoin.devel
20 Scala https://github.com/scala/scala gmane.comp.lang.scala
21 matplotlib https://github.com/matplotlib/matplotlib gmane.comp.python.matplotlib.devel
22 Qt git://code.qt.io/qt/qtbase.git gmane.comp.lib.qt.devel
23 NodeJS https://github.com/nodejs/node.git gmane.comp.lang.javascript.nodejs
24 GitLab https://github.com/gitlabhq/gitlabhq.git gmane.comp.version-control.gitlab
25 Tornado https://github.com/tornadoweb/tornado.git gmane.comp.python.tornado
26 Arduino https://github.com/arduino/Arduino.git gmane.comp.hardware.arduino.devel
27 ipython https://github.com/ipython/ipython gmane.comp.python.ipython.devel
28 Lucene git://git.apache.org/lucene-solr.git gmane.comp.jakarta.lucene.devel
29 Capistrano https://github.com/capistrano/capistrano gmane.comp.lang.ruby.capistrano.general
30 Django https://github.com/django/django.git gmane.comp.python.django.devel
31 Salt https://github.com/saltstack/salt.git gmane.comp.sysutils.salt.user
32 mongoose https://github.com/Automattic/mongoose.git gmane.comp.lang.javascript.mongoose
33 APR git://git.apache.org/apr.git gmane.comp.apache.apr.devel
34 Jackrabbit git://git.apache.org/jackrabbit.git gmane.comp.apache.jackrabbit.devel
35 Gnome-shell git://git.gnome.org/gnome-shell gmane.comp.gnome.shell
36 Krita git://anongit.kde.org/krita.git gmane.comp.kde.devel.krita
37 Blender https://git.blender.org/blender.git gmane.comp.video.blender.devel
38 Vagrant https://github.com/mitchellh/vagrant.git gmane.comp.tools.vagrant
39 NetworkManager git://anongit.freedesktop.org/NetworkManager/NetworkManager.git gmane.linux.network.networkmanager.devel
40 Eclipse CDT https://git.eclipse.org/r/cdt/org.eclipse.cdt gmane.comp.ide.eclipse.cdt.devel
41 Enlightenment https://git.enlightenment.org/core/enlightenment.git gmane.comp.window-managers.enlightenment.devel
42 libva git://anongit.freedesktop.org/git/libva gmane.comp.freedesktop.libva
43 JDO http://svn.apache.org/repos/asf/db/jdo gmane.comp.apache.db.jdo.devel
44 Jena git://git.apache.org/jena.git gmane.comp.apache.jena.devel
45 OpenNLP git://git.apache.org/opennlp.git gmane.comp.apache.opennlp.devel
46 Cayenne git://git.apache.org/cayenne.git gmane.comp.java.cayenne.devel
47 Pig git://git.apache.org/pig.git gmane.comp.java.hadoop.pig.devel
48 Calligra git://anongit.kde.org/calligra.git gmane.comp.kde.devel.calligra
49 Wine git://source.winehq.org/git/wine.git gmane.comp.emulators.wine.devel
50 Mallet https://github.com/mimno/Mallet.git gmane.comp.ai.mallet.devel
51 Gstreamer git://anongit.freedesktop.org/gstreamer/gstreamer gmane.comp.video.gstreamer.devel
52 U-boot http://git.denx.de/u-boot.git gmane.comp.boot-loaders.u-boot
53 LLVM http://llvm.org/git/llvm gmane.comp.compilers.llvm.devel
54 gPhoto svn://svn.code.sf.net/p/gphoto/code/trunk gmane.comp.multimedia.gphoto.devel
55 Emacs git://git.savannah.gnu.org/emacs.git gmane.emacs.devel
56 QEMU git://git.qemu.org/qemu.git gmane.comp.emulators.qemu
57 Python https://github.com/python/cpython.git gmane.comp.python.devel
58 Mesa git://anongit.freedesktop.org/mesa/mesa gmane.comp.video.mesa3d.devel
59 Sympy git://github.com/sympy/sympy.git gmane.comp.python.sympy
60 Okular git://anongit.kde.org/okular gmane.comp.kde.devel.okular
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