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Abstract Testing represents a crucial activity to ensure software quality.
Recent studies have shown that test-related factors (e.g., code coverage) can be
reliable predictors of software code quality, as measured by post-release defects.
While these studies provided initial compelling evidence on the relation between
tests and post-release defects, they considered different test-related factors
separately: as a consequence, there is still a lack of knowledge of whether these
factors are still good predictors when considering all together. In this paper,
we propose a comprehensive case study on how test-related factors relate to
production code quality in Apache systems. We first investigated how the
presence of tests relates to post-release defects; then, we analyzed the role
played by the test-related factors previously shown as significantly related to
post-release defects. The key findings of the study show that, when controlling
for other metrics (e.g., size of the production class), test-related factors have a
limited connection to post-release defects.

Keywords Software Testing · Test Code Quality · Empirical Study

1 Introduction

Software testing is the activity that allows developers to check that the source
code works as expected [79]. In the past, a number of researchers have inves-
tigated the properties that make test code more effective [9, 13, 33, 60, 61]
as well as their relation to the ability of catching defects in production code
[12, 13, 50]. Researchers have successfully demonstrated that the quality of
test suites has a strong correlation with the post-release defects that appear in
the production classes they test [13, 48], i.e., the higher the test quality the
lower the likelihood that the corresponding production code will be affected
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Listing 1 Example of test case considered in our study.

1 @Test
2 public void testAdd () {
3 SparseGradient x = SparseGradient.createVariable(0, 1.0);
4 SparseGradient y = SparseGradient.createVariable(1, 2.0);
5 SparseGradient z = SparseGradient.createVariable(2, 3.0);
6 SparseGradient xyz = x.add(y.add(z));
7
8 checkFOFl(xyz , x.getValue () + y.getValue ()
9 + z.getValue (), 1.0, 1.0, 1.0);

10 }

by defects. For instance, Kochhar et al. [48] have shown that having a higher
assertion density (measured as the number of assert statements per test lines
of code) relates to a significantly lower number of defects in production code.
Similarly, other studies have investigated the correlation between different
types of code coverage and post-release defects metrics [9, 13] as well as test
smells [90] on software quality, always reporting that test-related factors are
relevant to explain the number of post-release defects in production code. It
should be noted that by test-related factors we mean the set of metrics that
can characterize the quality of tests, e.g., their design quality rather than their
ability to cover the production code.

To provide the reader with a clearer understanding of how researchers in
the past have studied the relation between the characteristics of tests and
post-release defects, let consider the example reported in Listing 1.1 It concerns
with the test case named testAdd, which belongs to the SparseGradientTest
test suite of the Apache Commons Math 3.3 system—one of the projects
considered in our study. The test aims at verifying that the add method of
the corresponding production class SparseGradient correctly sums a set of
numbers; to this aim, it instantiates the variables to be added (lines #3, #4,
and #5 of Listing 1) and sums them using the add method (line #6). Finally, it
calls the method checkF0F1, implemented in the same test suite, that verifies
the sum and checks for the first order derivative passed as additional parameters
(line #9). The test case is able to entirely cover the corresponding production
method (line coverage=100%) and, similarly, the entire test suite has a line
coverage of 98%. In the subsequent release of Apache Commons Math, the
class SparseGradient did not exhibit any defect: a possible reason lies in the
ability of the corresponding test suite to provide developers with an effective
instrument to verify the presence of defects and, as a matter of fact, previous
work in literature have discovered a correlation between code coverage of tests
and post-release defects in production code, i.e., the higher the coverage the
lower the number of defects in subsequent releases of system [9, 13].

Despite the effort made by the research community in understanding the
relations between test quality and post-release defects, we identify a key

1 The suite to which the test case belongs has 1,128 lines of code - we report only an
exemplary test case for the sake of understandability.
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common limitation in previous work: they analyzed the impact of various
test-related factors in isolation, controlling neither for other test-related factors
nor for additional known phenomena affecting the quality (measured in terms
of post-release defects) of production code (e.g., product metrics [3, 10]).

To clarify the practical effect of this common limitation, let consider again
the example reported in Listing 1. While the code coverage was very high
and suggested that the test suite could effectively help developers in spotting
post-release defects, the fact that the class SparseGradient was actually defect-
free in the subsequent release of Apache Commons Math might have and
might not have been due to the high code coverage of SparseGradientTest.
Other factors, for instance the low amount of maintenance activities performed
on the production class, may have played a role. This is what actually hap-
pened to SparseGradient: it did not undergo any modification in Apache
Commons Math 3.4 and, therefore, this was the reason making it defect-free—
independently from the high value of code coverage of the corresponding test
suite. Should this example be generalizable, it would mean that the findings
reported in literature would not depict a clear picture on the relation between
the characteristics of tests and their ability to foresee post-release defects.

In this article, we aim at addressing this limitation by proposing a case
study on eight systems of the Apache ecosystem in which we explore how
test-related factors identified in literature are related to software quality. As
done in the previous studies, we operationalize software quality at software
component level (in our case, file level) and by measuring the component’s
post-release defects. The main challenge of our work is represented by the
extraction of a comprehensive set of test-related factors possibly influencing
post-release defects. To address it, we first conduct a multivocal literature review
on the test-related factors that have been associated to post-release defects in
both white and gray literature, in an effort of eliciting a comprehensive set of
metrics to consider in our study. Then, we build statistical models to study
how the factors identified, i.e., (i) presence and executability of test suites, (ii)
statically computable test code factors, and (iii) dynamically computable test
code factors, relate to the number of post-release defects in production code,
when also considering several product and process metrics. The main finding of
our study is that most of the test-related factors do not have a direct relation
with software quality, as opposed to factors such as production class LOCs and
pre-release changes. Finally, dynamically computable test characteristics like
code coverage have a relation to post-release defects, but only marginal. To
sum up, this paper makes the following three main contributions:

1. A multivocal literature review on test-related factors known in white and
gray literature to be related to post-release defects;

2. An empirical study investigating the role of the identified test-related factors
on production code quality;

3. An publicly available online replication package, containing both dataset
and scripts used in our analysis [78].
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Structure of the paper. Section 2 discusses the related literature; in Section
3 we report the methodology and results of the multivocal literature review
we conducted. Section 4 reports design and results achieved when studying
the relation between test-related factors and software quality, while Section 5
discusses the main findings of the study, along with limitations and implications.
Finally, Section 6 concludes the paper and highlights our future work.

2 Related Work

The main goal of our study is to assess the relationship between test-related
factors and post-release defects. As such, in this section we discuss the research
literature that in the past has proposed similar investigations.

Nagappan et al. [60] used the Software Testing and Reliability Early
Warning (STREW-J) metric suite [60] to investigate the relation between
in-process testing metrics and software quality. This suite includes a variety
of test metrics belonging to three categories: (1) Test quantification, e.g.,
presence of test cases or assertion density, (2) Complexity and OO metrics, e.g.,
complexity and coupling of tests, and (3) size, i.e., the lines of code of tests.
Their investigation—conducted on 54 small to large industrial companies—
showed a significant relation between metrics in the suite and the emergence
of post-release defects. These findings were later confirmed by Rafique and
Misic [82], who pointed out that these metrics are even more effective in the
context of test-driven development. With respect to these papers, ours aims to
contextualize their results when considering a wider set of test-related factors
known in literature to impact post-release defects. At the same time, we aim
to shed lights on how much the power of test-related factors increases/reduces
when additional factors related to production code are taken into account.

Other studies found a relation between test effort and product quality
[61, 93] based on other testing metrics such as code coverage [9, 13, 61] and
other static metrics (e.g., number of assertions) [60]. Kudrjavets et al. [50]
showed the existence of a high correlation between assertion density and defect-
proneness of production code, while Catolino et al. [12] showed that this relation
may be due to the experience of the testing teams. In the experimental setting,
these papers verified the relation of the considered test-related factors to post-
release defects by considering the former alone, i.e., without controlling for
possible confounding factors influencing the results. As such, the setting might
lead to a limited view of the phenomenon: our paper addresses this limitation.

Chen and Wong [13] used code coverage for software failures prediction and
showed that this metric influences code quality. Later, Cai and Lyu [9] confirmed
this result. Nevertheless, a recent work by Kochhar et al. [48] contradicts those
findings, reporting that coverage has an insignificant relation with the number
of post-release defects. This cluster of papers shares the analysis methods
employed: they relied on linear and logistic regression to understand how
the considered test-related factors were correlated to the presence of defects
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in future software releases. Also in this case, the test-related factors were
considered alone and without additional confounding factors.

Spadini et al. [90] and Qusef et al. [81] studied the relation between test
smells and software quality in terms of post-release defects. The former set
the problem from a statistical perspective: test smells were controlled for the
presence of code smells in production code as well as additional CK metrics
computed on the exercised classes. While the key results of the study showed
that smelly test suites make the production code more fault-prone, Spadini et
al. [90] did not consider the effect of test smells when other test-related factors
are included. The latter first analyzed the evolution of test smells in Apache
Ant; then, they used correlation analysis to study the relation between test
smells and post-release defects, finding a positive correlation. This paper shares
the same limitations of the other previous works, hence not considering neither
other test-related nor confounding factors - which is the object of our study.

To sum up, the papers discussed above report on the effectiveness of tests
to reveal the likelihood of post-release defects. As such, they represented
the ground based on which we built the empirical study presented herein.
Nonetheless, we aim at making a further step ahead toward the understanding
of the relation between test-related factors and software quality: as discussed in
the remainder of the paper, we considered the metrics used by previous work
as independent variables of our empirical study.

As a final note, the first author of this paper recently published an extended
abstract [76] reporting some preliminary results of this work on three software
systems, which are extensively confirmed in our journal paper. Indeed, unlike
our new contribution, the previous publication (1) did not systematically gather
test-related factors, i.e., the multivocal literature review was not part of the
extended abstract, (2) did not consider many of the confounding factors that
may potentially influence the results (e.g., code smells), (3) did not perform a
three-level analysis, i.e., impact of presence/executability, of static and dynamic
factors, (4) did not analyze the achieved findings in detail, and (5) did not
provide insights and discussion about the potential impact that this work has
for further research opportunities.

3 Collecting Test-Related Factors: A Multivocal Literature Review

A critical challenge in this study concerns with the definition of a comprehensive
set of test-related factors to experiment with. We approached this challenge
by conducting a Multivocal Literature Review (MLR) [31] to identify the
test-related factors that might influence the quality of the exercised production
code. An MLR is an enhanced version of systematic literature reviews that not
only considers white papers, i.e., those that have been published in conferences
and journals, but also gray documentation, i.e., the knowledge that can be
extracted from online unpublished sources like websites and blog posts. Next,
we describe methodology and results achieved from the literature review.



6 Fabiano Pecorelli et al.

3.1 Research Methodology

The goal of the multivocal literature review is to collect the test-related factors
that have been analyzed and/or discussed in both previously published work and
online unpublished sources, with the purpose of providing a comprehensive view
of which factors have been associated to post-release defects. The perspective
is that of researchers who are interested in gaining knowledge of test-related
factors and their relation with software quality.

3.1.1 Research Question

To address the goal of our study, we set up the following research question:

RQ0. What are the test-related factors related to post-release defects, ac-
cording to the available white and gray literature?

As further reported in this section, we followed well-established research
guidelines to conduct systematic and multivocal literature reviews [31, 46].

3.1.2 Search Query Definition

The search query represents the set of keywords that are used to search reliable
sources on the phenomenon of interest [46]. In our case, we made two main
considerations before defining it. First, we noticed that multiple terms could
be used as synonym of ‘defect’: these are ‘bug’, ‘fault’, and ‘failure’.2 Secondly,
the term ‘post-release’ could also be referred to in different ways, namely
‘post-production’, ‘post-delivery’, and ‘post-verification’. According to these
considerations, we defined the following search query:

(‘test’) AND (‘post-release’ OR ‘post-production’ OR ‘post-delivery’ OR
‘post-verification’) AND (‘defect’ OR ‘bug’ OR ‘failure’ OR ‘fault’)

3.1.3 Selecting the Source Engines

The selection of relevant sources is a crucial activity to provide a comprehensive
description of the state of the art [31, 46]. In our context, this step consisted
of selecting search engines that could cover both white and gray literature.
As for the former, we selected all major databases indexing published papers:
these are (1) the IEEEXplore Digital Library,3 (2) the ACM Digital
Library,4 (3) Science Direct,5 (4) SpringerLink,6 and (5) Scopus.7

2 We did not include the term ‘error’ since it refers to the action performed by a developer
to introduce a defect in source code rather than to the defect itself [79].

3 Link: https://ieeexplore.ieee.org/Xplore/home.jsp
4 Link: https://dl.acm.org
5 Link: http://www.sciencedirect.com
6 Link: https://link.springer.com
7 Link: https://www.scopus.com
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The selection of these search engines was driven by our willingness to
consider as many sources as possible when conducting our literature search.
These databases are widely recognized as the most representative for research
in the field of software engineering [8, 42] and contain a massive amount of
resources, i.e., journal articles, conference and workshop proceedings, books,
etc., concerned with the research question we posed.

As for the gray literature, we followed a similar approach as other multivocal
literature reviews (e.g., [30, 39]) and exploited the Google search engine.8

3.1.4 Exclusion and Inclusion Criteria Definition

Exclusion and inclusion criteria report the characteristics that a retrieved source
must not (or must) have to be considered useful for addressing the research
question [31, 46]. Also in this case, we needed to define criteria depending
on whether a resource comes from the white or the gray literature, as some
characteristics might not be applied for gray resources.

As for the white literature, we adopted the following exclusion criteria:

– Articles that were not focused on investigating the relation between test-
related factors and post-release defects, e.g., papers studying how test smells
relate to mutation coverage;

– Articles that have later been extended; particularly, in case of a conference
paper has been extended to journal, we only considered the journal article
as it is more complete.

– Articles not reporting any empirical validation of the relation between
test-related factors and post-release defects, e.g., non-validated conjectures
of the existence of a relation between test smells and code coverage;

– Articles that were not written in English;
– Articles whose full text was not available;
– Articles that did not undergo a peer-review process, e.g., M.Sc thesis;
– Duplicate papers retrieved by multiple databases.

We set one main inclusion criterion:

– Articles reporting an empirical validation of the relation between test-related
factors and post-release defects, e.g., papers studying how test smells relate
to post-release defects.

It is worth noting that we did not set any temporal limit to our search, as we
were interested in retrieving all possible sources for conducting a comprehensive
analysis of test-related factors and post-release defects.

Turning the attention to the gray literature, the main challenge was rep-
resented by the assessment of the reliability of a source. Indeed, among the
resources retrieved, there might be some that did not have the minimum quality

8 Link: https://www.google.com
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to be considered reliable for our literature review. To take this aspect into
account, we assessed the reliability of gray resources by relying on the guidelines
provided by the University of Wisconsin9 and, according to them, excluded
unreliable resources. In particular, these guidelines are:

– Author. Information on the internet with a listed author is an indication
of a credible site. If an author is willing to stand behind the information
presented (and in some cases, include his or her contact information) is a
good indication that the information is reliable.

– Date. The date of any research information is important, including informa-
tion found on the Internet. By including a date, the website allows readers
to make decisions about whether that information is recent enough for their
purposes.

– Sources. Credible websites, like books and scholarly articles, should cite the
source of the information presented.

– Domain. Some domains such as .com, .org, and .net can be purchased and
used by any individual. However, the domain .edu is reserved for colleges
and universities, while .gov denotes a government website. These two are
usually credible sources for information. Websites using the domain .org
usually refer to non-profit organizations which may have an agenda of
persuasion rather than education.

– Site Design. This can be very subjective, but a well-designed site can be an
indication of more reliable information. Good design helps make information
more easily accessible.

– Writing Style. Poor spelling and grammar are an indication that the site
may not be credible. In an effort to make the information presented easy
to understand, credible sites watch writing style closely.

Of course, we only considered resources written in English and that were
fully available for reading. At the same time, to include a resource in our study
we defined the following two criteria:

– The resource must report on practitioner’s experiences and/or discussion
of using test-related factors to establish the likelihood to have defects in
production code;

– The resource must describe the test-related factor(s) it refers to, i.e., it
must clearly mention that the test executability represents an important
factor to assess post-release defects.

3.1.5 Execution of the Multivocal Literature Review

Once defined the ground for our multivocal literature review, we proceeded with
its execution. Figure 1 overviews the process, reporting the inputs/outputs of

9 Link: https://uknowit.uwgb.edu/page.php?id=30276
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Figure 1 Steps performed when conducting the multivocal literature review.

each stage as well as summarizing the number of resources retrieved from each
search engine and considered for our study. For the sake of understandability,
the figure reports in white background the steps referring to the white literature
review, while in gray the parts related to the gray literature.

The entire process was jointly executed by the first two authors of the paper
in the period between May 11 to June 10, 2020. Whenever possible, the two
authors met physically to perform the tasks; otherwise, they conducted the
review through Skype. The entire execution took around 80 person/hour: the
inspectors started analyzing the white literature, as this was supposed to take
longer. Upon completion, they then focused on the gray literature.

As shown, when executing the search query on the white literature search
engines, we obtained a total of 8,671 hits: most of them came from Science Di-
rect and SpringerLink, which returned 3,834 and 3,773 results, respectively.
The other databases were instead more restrictive when returning results.

The inspectors applied the exclusion criteria on the initial set of papers
retrieved. In so doing, they mainly focused on title and abstract; nevertheless,
in cases where the exclusion criteria could not be applied solely looking at
these pieces of information, they explored the content of the paper more, for
instance by reading the research questions, methodology, or conclusion of the
paper. The exclusion criteria led to the removal of the vast majority of the
initial sources (8,599 papers), giving as output a candidate set of 72 papers.
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At this point, the inspectors adopted a backward and forward snowballing
approach as recommended by Wohlin [102]. This was based on one iteration
which consists of examining (i) the outcoming citations, namely the list of
papers cited by the article under investigation and (ii) the incoming citations,
namely the list of papers citing the article under investigation, with the aim of
augmenting the candidate set of papers with additional resources that were not
identified through the search engines. In the first case, the inspectors went over
the citations reported in the candidate papers. In the second case, they used
Google Scholar10 to retrieve the list of papers citing the candidate ones. As
previously done, the inspectors first focused on the title of a cited/citing paper:
if it was not possible to establish the actual relevance of a new resource, they
downloaded it and started reading its content. At the end of this stage, the
inspectors included 16 papers to the candidate set, which reached 88 sources.

Finally, the inclusion criterion was applied: 11 papers passed the examina-
tion, forming the final set of white resources to be considered in our study.

As for the gray literature review, the inspectors followed a similar method-
ology. When executing the search query on Google, it returned a total of
210 results, distributed on 21 pages. It is worth noting that the inspectors
performed the entire gray literature identification process using the ‘incognito’
mode to avoid that their personal navigation history could bias the results of
the search process. Given the limited amount of results, the inspectors could
browse each of them and apply the specific exclusion criteria established for
the gray literature search. The joint work allowed them to immediately discuss
the suitability and reliability of the resources analyzed: as an outcome, they
identified a set of 26 candidate resources. Interestingly, all of them passed the
inclusion criteria, composing the final set of gray resources and contributing to
the grand total of 37 sources included in our multivocal literature review.

3.1.6 Quality Assessment and Data Extraction Process

As a final step of our multivocal literature search, we assessed the quality of
the retrieved literature sources and extract data about the test-related factors
associated with post-release defects.

In particular, after the selection process of both white and gray literature,
we defined a checklist to assess the reliability and thoroughness of the selected
sources. The checklist included the following questions, which have been defined
with the goal of determining whether the considered sources actually treated
test-related factors and their relation with software quality:

1. Are the test-related factors mentioned in the source clearly defined?
2. When considering white papers, are the test-related factors actually assessed

against post-release defects?
3. When considering white papers, is the research methodology clearly stated?

10 Link: https://scholar.google.com
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4. Are the conclusions stated supported by data (for white papers) or clear
motivations (for gray sources)?

To each of these questions, the inspectors could reply with ‘Yes’, ‘No’,
‘Partially’. The inspectors considered a study as partial in cases where the
methodological details could have been derived from the text, even if they
were not clearly reported. These answers were scored as follows: ‘Yes’=1,
‘Partially’=0.5, and ‘No’=0. For each primary study, its quality score was
computed by summing up the scores of the answers to all the four questions.
At the end of the process, the inspectors classified the quality level into High
(score = 4 for white papers, score = 3 for gray articles since they did not
include point 3 of the quality assessment), Medium (2 ≤ score < 4 for white
papers, score = 2 for gray literature), and Low (score = 1). According to our
assessment, 2 resources were classified as Medium and 34 as High. Therefore,
we could be able to extract data from all the selected sources.

As for the actual extraction process, the inspectors proceeded as follow.
For white papers, they looked at the experimental design in order to identify
(1) the test-related metrics used as independent variables and (2) the depen-
dent variable adopted (i.e., post-release defects). Hence, in this case the data
extraction was only based on these two elements. As for gray sources, the
inspectors looked at the entire text to interpret the practitioner’s opinions and
elicit the test-related factors they were referring to. For example, let consider
the following case, which comes from the source [S03] in the Appendix A:

“Under the assumption that tests are of good quality, [code coverage] can
uncover which parts of the software have a known level of defects vs. unknown.”

As reported, in the text above the practitioner refers to code coverage and
how it can be used as an indicator for the location of faults in production code.

3.2 Analysis of the Results

This section summarizes the results of our multivocal literature review. It is
worth remarking that we report the entire list of sources considered when
performing the review in Appendix A.

Figure 2 depicts the distribution over years of the resources retrieved in our
review. There are two key observations to report by looking at the figure. In
the first place, we observe that the number of papers published on this topic
is particularly low (11) and most of them are rather recent: indeed, in the
last three years we observe a slightly increasing trend. In the second place,
it is surprising to see that the number of gray resources is higher than the
one of white literature papers: this aspect seems to suggest that the problem
of assessing the power of test-related factors to forecast post-release defects
has been neglected by the research community, while it represents something
important for practitioners. Also in this case, we notice that the number of
gray articles increases in the last few years. Intuitively, this aspect may be due
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Figure 2 Total number of articles retrieved over years. Red bars refer to the gray resources,
blue ones to white papers.

to the steady raise of development models that require the frequent execution
of tests (e.g., continuous integration) and that somehow enforce developers in
keeping the characteristics of tests into consideration, hence creating a growing
interest into the relation between tests and software quality.

Turning the attention to the types of test-related factors mentioned in
the retrieved resources, Figure 3 overviews the themes extracted by analyzing
each of them. Interestingly, most of the gray articles mentioned presence and
executability of test classes: in particular, a number of practitioners point
out that having a properly set environment represents a crucial factor that
enables the prompt identification of defects in source code. As an example, in
the resource [S25], the Chief Technology Officer of the Cockroach Labs—
a well-known company that develops relational databases for cloud-native
applications—reports on a two-year experience with using an open-source
framework for testing distributed databases, i.e., Jepsen.11 He explains that
an effective method to make tests actionable is to have a strong environment
and, indeed, quoting from [S25]: “every night we start up a 5-node cluster and
run each test+nemesis combination for 6 minutes each”.

Another aspect deemed as important by most practitioners is represented
by dynamic factors, e.g., code coverage. We can notice that this type of factors
has attracted most of the attention of the research community, which frequently
investigated how these factors can influence post-release defects. At the same
time, from the gray literature emerged the value of static factors, e.g., test code

11 Link: https://jepsen.io
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Figure 3 Total number of retrieved articles divided per theme. Red bars refer to the gray
resources, blue ones to white papers.

metrics—an aspect that seems to be overlooked by the research community. For
instance, in the resource [S16], the founder of SoftwareTestingMaterial—
a blog reporting and discussing on testing practices and methodologies—reports
that test code metrics can “monitor and control process and product. [They]
help to drive the project towards our planned goals without deviation”.

Finally, the last type of test-related factor emerging from our multivocal
literature review concerns with test smells, namely sub-optimal design or
implementation solutions applied when developing test code [55]. This aspect
was, however, only mentioned and investigated by researchers in the past, while
we did not observe gray literature reporting on it. This possibly corroborates
previous findings in the field reporting that practitioners do not perceive test
smells as actual problems [94].

To conclude the discussion of the results for the multivocal literature review,
Table 1 reports the specific metrics identified for each category of test-related
factors. As shown, we identified 14 test-related factors. First, we extracted
metrics related to presence and executability of test classes, which are connected
to the testing environment. Secondly, we identified structural metrics [14] such
as test lines of code (LOC), test complexity (WMC), test coupling (EC),
and assertion density. Also, we found classical metrics like line and mutation
coverage [2]. Finally, we found five test smell types, i.e., Assertion Roulette,
Eager Test, Indirect Testing, Resource Optimism, and Mystery Guest : these
were the test smells associated to defect-proneness in previous work [81, 90].
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Table 1 Test-related factors resulting from the multivocal literature review.

Group Name Description

Presence and Executability

Availability of test classes The availability of a test suite for a
production class.

Executability of test classes The ability to run a test case for a given
production class.

Static factors

TLOC Number of lines of code of the Test
Suite.

TWMC Weighted Method Count of the Test
Suite.

TEC Efferent coupling of the Test Suite.
Assertion Density Percentage of assertion statements in

the test code (i.e., number of assertions
/ T_LOC).

Test smells

Assertion Roulette A test containing several assertions
with no explanation.

Eager Test A test case testing more methods of the
production target.

Indirect Testing A test interacting with the target via
another object.

Resource Optimism A test that make optimistic assump-
tions on the existence of external re-
sources.

Mystery Guest A test that use external resources (e.g.,
files or databases).

Dynamic factors

Line Coverage Percentage of statement in production
class that are covered by the test.

Branch Coverage Percentage of branches in production
class that are covered by the test.

Mutation Coverage Percentage of mutated statement in pro-
duction class that are covered by the
test.

RQ0 - Findings

From the multivocal literature review, we discovered four categories of test-
related factors that have been associated to post-release defects in white
and/or gray literature. These are connected to presence and executability
of tests, static and dynamic test code metrics, and test smells.

4 Studying the Relation between Test-Related Factors and
Post-Release Defects

Once collected the set of test-related factors to investigate, we proceeded with
the definition of an empirical study to verify their relation with post-release
defects. In the following sections, we describe the methodological choices done
as well as the results achieved.

4.1 Research Methodology

The goal of the empirical study is to investigate how test-related factors are
related to post-release defects, with the purpose of measuring the explanatory
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Figure 4 The three levels of investigation considered in our empirical study, by research
question.

power of having a good test suite on software code quality. The perspective is
of both researchers and practitioners: the former are interested in assessing the
relation between test-related factors and post-release defects, while the latter
are interested in understanding the extent to which good quality test suites
can help them to reduce post-release defects.

4.1.1 Research Questions and Methodological Sketch

Our study is structured around three main research questions. Figure 4 synthe-
sizes the levels of our analyses. In an ideal scenario, all production classes in a
software project have corresponding tests that can be successfully executed.
However, in practice this is rarely the case, which represents an interesting
scenario for us, because it creates a natural experiment where we can compare
software quality (measured as post-release defects) in both tested and untested
classes. Therefore, we started our empirical study by investigating the role
played by the presence of test classes and their executability with respect to
software quality.

RQ1. How do presence and/or executability of test classes relate to post-
release defects of production code?

We further investigated the role of testing on source code quality at a finer
level of granularity. We restricted our analysis to those test-related factors that
can be statically computed (e.g., test size)

RQ2. How do statically computable test code factors relate to post-release
defects of production code?
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The final part of our empirical study was focused on the understanding of
how dynamic factors (e.g., code coverage [2]) relate to software quality. This
maps a scenario in which production classes are exercised by executable tests.

RQ3. How do dynamically computable test code factors relate to post-release
defects of production code?

From an experimental design perspective, for each research question we
established a set of subjects, factors, and treatments - as also illustrated in
Figure 4. As for RQ1, we considered all the classes of the considered systems
as subjects, taking into account the presence and executability of tests as
factors, with the aim of assessing the extent to which they affect source code
quality (i.e., the treatment). In RQ2, we narrowed the subjects of the study so
that we could only consider the classes having at least one test associated to
compute factors computable using static analysis (i.e., metrics and code quality
indicators) and assess their impact on post-release defects. Finally, in RQ3,
the subjects are represented by the set of classes having at least one executable
test, while the factors are the dynamically computable metrics: these are used
to establish a relation between dynamic test factors and software quality. The
following sections report on the subject dataset as well as the steps conducted
to answer our RQs.

4.1.2 Context selection

The context of the study consisted of eight open-source software systems, whose
characteristics are shown in Table 2. Their selection was driven by three main
requirements of both our tooling and data analysis procedures. In the first
place, we focused on Java because most of the test-related factors experimented
can be only computed for this programming language (e.g., test smells are only
defined and validated by our community for Java [97]). Secondly, we restricted
our analyses to systems having a large change history information, as it is our
willingness to have projects with (i) a number of post-release defects to allow
significant analyses—we excluded systems with less than 50 defects reported in
the corresponding issue tracker12—and (ii) a number of previous changes—we
excluded systems with less than 500 commits—that can be used to control
for our results, as detailed in Section 4.1.5. Finally, we required the selected
systems to have at least one compilable release to use for our study [95], as some
of the considered test-related factors can only work with compilable source
code (e.g., dynamic information like line and mutation coverage). Moreover, to
allow the application of the state-of-the-art tool for line and mutation coverage
(i.e., PiTest), we checked for projects having no sub-modules and built with
Maven, using the default Maven directory structure (i.e., the production classes
are located in the ‘src/main’ package, while the test classes are in the ‘src/test’

12 We retrieve the link to the issue tracker adopted by a certain project through the analysis
of the developer’s contribution guidelines.
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package). As a result of this selection procedure, we found a family of eight
projects that met all the aforementioned requirements, i.e., apache-commons.
In our online appendix [78] we provided an Excel sheet where we detailed the
context selection and filtering procedure.

In an effort of providing more details about the context of our study, as
recommended by a recent work [6], we manually dived into the information
reported in the repositories analyzed, particularly looking at (1) contribution
guidelines, which may indicate some relevant information of how contributors
are supposed to perform testing as well as on the development process in place
and (2) the change history, which reports data related to frequency of releases,
number of contributors, and so on. In cases where contextual information were
not minable looking at the above mentioned sources (e.g., testing type), we
also analyzed online documentation (e.g., guidelines of the Apache Software
Foundation) or directly looked at the source code and extracted the remaining
data. As a result, we discovered that the eight selected projects share similar
characteristics as well as a similar development community—as somehow
expected, since they belong to the same family of projects. Apache Commons
is a commit-then-review community, so developers who want to contribute
should follow Apache’s code of conduct13 and announce their intentions and
plans on the developers mailing list before committing code. Releasing a
new version of the system requires the vote of a PMC (Project Management
Committee) according to the Apache Release Creation Process.14 For this
reason, new code is not released at regular time intervals but its release depends
on several aspects. Tests are written and committed together with production
code indicating that developers adopt a test-as-you-write development strategy.
All the tests available in the considered systems are written at unit-level,
following a black box strategy.

Table 2 Systems from Apache Commons considered in the study

Name # Commits # Releases # Contributors # Production
Classes

# Test
Classes # Defects

Codec 1,792 45 39 26 31 134
Collections 3,091 49 51 270 139 341
DBCP 1,983 62 34 53 21 367
DbUtils 656 29 21 25 20 56
IO 5,400 54 58 100 47 281
Lang 2,141 89 140 119 98 634
Math 6,395 65 34 804 404 684
Pool 1,879 168 38 41 14 205

4.1.3 Dependent Variable

The dependent variable of our study is the number of post-release defects. To
compute it, we first determined whether a commit fixed a defect. This was

13 http://www.apache.org/foundation/policies/conduct.html
14 https://infra.apache.org/release-publishing.html

http://www.apache.org/foundation/policies/conduct.html
https://infra.apache.org/release-publishing.html
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done by employing the textual-based approach proposed by Fischer et al. [27],
which is based on the analysis of commit messages. Such an approach has been
extensively used in the past [41, 45] and was assessed to have an accuracy close
to 80% [27, 71]. Specifically, we searched for issue IDs in commit messages by
finding matches with the prefix used in the bug tracker system. Once retrieved a
commit referencing an issue, we queried the apache issue tracker system’s APIs
in order to filter only issues related to resolved bugs. Then, we searched for
keywords indicating fixing activities in the commit message, such as ‘bug’, ‘fix’,
or ‘defect’, in order to select only the bug-fixing commits. Once we detect all
bug fixing commits, we employed the SZZ algorithm [88] to obtain the commits
where the defect was introduced. In particular, the SZZ algorithm relies on the
annotation/blame feature of versioning systems [88]: given a defect-fix activity
identified by the defect ID k, the approach works as follows:

– For each file fi, i = 1 . . .mk involved in a defect-fix k (mk is the number
of files changed in the defect-fix k) and fixed in its revision rel-fixi,k, we
extracted the file revision just before the defect fixing (rel-fixi,k − 1).

– Starting from the revision rel-fixi,k − 1, for each source line in fi changed to
fix the defect k, we identified the production class Cj to which the changed
line belongs. Furthermore, the blame feature of Git is used to identify the
revision where the last change to that line occurred. In doing that, blank
lines and lines that only contain comments are identified and excluded
using an island grammar parser [57]. This produces, for each production
class Cj , a set of ni,k defect-inducing revisions rel-defecti,j,k, j = 1 . . . ni,k.
Thus, more than one commit can be indicated by the SZZ algorithm as
responsible for inducing a bug.

Once retrieved the list of defect-inducing commits, we computed post-release
defects of a class as the number of defect-inducing activities involving the class
in the period after the selected release rj . To compute the dependent variable,
we use the PyDriller framework [89], which implements the SZZ algorithm.
Some recent work has reported that the SZZ algorithm has a low accuracy, in
particular concerning precision [18, 84]; should these observations be verified
on our dataset, this would threat the validity of our results. For this reason,
we manually validated the performance of the SZZ algorithm on our dataset.
Specifically, the first two authors of this paper (the inspectors) jointly analyzed
all the 251 total defect-inducing commits output by SZZ. In doing so, they
relied on the source code of both defect-fixing and defect-inducing versions
of the projects: the task was performed to understand whether a change in
the defect-inducing version actually introduced the defect that was fixed in
the defect-fixing version. The inspection pointed out a precision of 92% (231
correct defect-inducing commits): this result diverges from previous findings
[84] and suggests that the performance of the algorithm is strongly dependent
on the considered projects. As a consequence of this validation, we excluded
the 20 false positives from the analysis to have a more accurate dataset.
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4.1.4 Independent Variables

We defined a different set of independent variables for the three RQs.
Independent variables for RQ1. In the first research question, we de-

fined two independent variables. The first one was represented by the presence
of a test class for each production class of the selected systems. We defined a
variable named ‘is-tested’ that assumes the value ‘true’ if the production class
has a test class that exercise it, ‘false’ otherwise. With respect to the selection
of this independent variable, there are two observations to be done. Intuitively,
the presence of test classes alone cannot affect software quality—having a
test does not imply the identification of defects. However, having them is a
necessary condition: the conjecture behind the selection of ‘is-tested’ as inde-
pendent variable was that the availability of a test suite may allow developers
to promptly identify defects, hence affecting the number of post-production
defects. Hence, we conjectured an indirect relation and aimed at verifying
it. In this respect, it is also worth noting that the presence of tests was one
of the factors mentioned by practitioners when analyzing the gray literature:
this means that the availability is actually perceived as a relevant factor for
software quality. This supports the idea of an indirect relation of this factor
with post-release defects.

A key point for the computation of the independent variable was related
to linking each test class to each of the considered production class. All the
selected projects rely on Maven as build tool. Thus, to perform the linking,
we relied on the pom file, which contains the rules to identify the test classes
to execute when the projects need to be built or packaged. In particular,
we first identified all production and test classes by scanning the pom file
and looking for the sourceDirectory and testSourceDirectory fields, that
indicate the location of production and test code, respectively. When the
fields were not reported explicitly, we considered the default source and test
directories. Afterwards, we used a pattern matching approach based on naming
conventions to find the production class related to a certain test class, as it has
been done in previous work [32, 52, 94]: given the name of a production class
(e.g., ‘ClassName’) belonging to the sourceDirectory folder, it checks for the
presence of a test class having the same name as the production class but with
the prefix or postfix “Test” in the testSourceDirectory (e.g., ‘ClassNameTest’
or ‘TestClassName’). In case the approach cannot identify a test for a certain
class, the variable ‘is-tested’ for the considered production class is “false”,
“true” otherwise. The accuracy of this linking approach has been previously
assessed [98]: it showed an accuracy close to 85% and is comparable with more
sophisticated (but less scalable) techniques (e.g., slicing-based approaches [80]).

The second independent variable is named ‘are-tests-executable’: it assumes
the value “true” if the tests exercising the production class can be ran, “false”
otherwise. Also in this case, the selection was supported by the results achieved
when analyzing the gray literature: indeed, multiple times practitioners reported
that having tests that can be actually run against the production code is an
important factor to assess post-release defects. In this sense, we aim at providing
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evidence of the effect of having runnable tests on software quality. To determine
the value of the variable, for each considered project we ran the mvn verify
command, which executes all the available tests. If the execution of a test
proceeds without errors,15 then we considered the test as executable. Otherwise
we marked it as non-executable.

With respect to the executability of tests, it is worth noting that we con-
sidered the building environment directly used by developers of the considered
Apache projects. In other words, the methodology we used to run tests is
exactly the same as the one used by the actual developers. Hence, we considered
a real-case scenario of use of the tests, i.e., we considered a natural experiment
that considers what actually happens in practice.

Independent variables for RQ2. In the second research question, we
studied the relation between static test-related factor and post-release defects.
So, we considered test-related factors that can be computed without executing
test classes: these are test code metrics and smells (see Table 1). To compute the
former, we relied on the tool by Spinellis [92]. As for the latter, we used the code-
metrics based tool developed by Bavota et al. [4]. The detector is able to identify
instances of five test smell types, namely Mystery Guest, Resource Optimism,
Eager Test, Assertion Roulette, and Indirect Testing. Detailed definitions of
the smells are given in our online appendix [78]. All the considered smells have
been related to defect-proneness by previous work in the field [81, 90]. The
selection of the test smell detector was driven by the high accuracy it showed
in previous studies, with F-Measure close to 86% [4, 66, 72].

Independent variables for RQ3. In the context of the third research
question, we also included the metrics that can be computed only when execut-
ing the test classes: the dynamic factors (i.e., Line Coverage, Branch Coverage,
and Mutation Coverage). As for line and branch coverage, we used Cober-
tura.16 For mutation coverage, we used PiTest.17 It is worth noting that the
choice of using PiTest was not only driven by the fact that this is the state-of-
the-art tool for mutation testing [32, 51], but also by the relatively low number
of equivalent mutants, i.e., mutants having a semantically similar behavior [1],
it generates: indeed, a recent study by Fernandes et al. [26] reported that only
20% of the mutants generated by PiTest can be considered equivalent, which
is substantially lower than other mutation testing tools available in literature.

4.1.5 Confounding Factors

In addition to the test-related factors we collected from our MLR (see section
3), the number of post-release defects may be due to other factors related to the
structure of production code [3]. Thus, to avoid a biased interpretation of the

15 Note that a Maven error explicitly indicates that the test cannot be run for some reasons,
as opposed to a failure, which instead reports that the test has found an anomalous behavior
in the production code.
16 Link:https://cobertura.github.io/cobertura/
17 Link: http://pitest.org
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results, we introduced a set of well-known source code and process metrics as
confounding factors, which are summarized in Table 3. All of them have been
previously related to defect-proneness, as further explained in the following:

– We considered the Lines Of Code (PLOC) metric, that measures the size
of production classes. According to previous findings [49, 67, 104], the larger
a class the higher its fault-proneness. As such, the number of post-release
defects might be a reflection of the production code size and, therefore, we
computed LOC to control our findings on the impact of the presence of test
suites. To measure PLOC, we used the tool devised by Spinellis [92].

Table 3 List of confounding factors used in the study.

Group Name Description

Static factors
PLOC Number of lines of code of the Produc-

tion Class
PWMC Weighted Method Count of the Produc-

tion Class
PEC Efferent coupling of the Production

class

Code smells God Class A class having a large size, poor co-
hesion, and several dependencies with
other data classes of the system

Class Data Should Be Private A class exposing its attributes, thus vi-
olating the information hiding principle

Complex Class A class presenting a overly high cyclo-
matic complexity

Functional Decomposition A class implemented as a function
Spaghetti Code A class that exhibit a functional-style

programming structure, declaring a
number of long methods without pa-
rameters

Process Metrics Pre-release Changes Number of changes involving the Pro-
duction class before the release date of
the considered snapshot

– We computed Weighted Method per Class (PWMC) [14] as a way to
measure the complexity of production code. A number of previous studies
has shown the metric to be related to the number of defects in which a
production class will incur [22, 62, 105]. The tool by Spinellis [92] was used
to compute the metric on our dataset.

– We measured the Efferent Coupling (PEC) of production classes be-
cause, as reported by previous research [3, 19, 29, 47, 87], the higher the
coupling of a class the higher its fault-proneness. Also in this case, we
employed the tool by Spinellis [92] to compute PEC.

– We considered code smells, i.e., symptoms of the presence of poor im-
plementation choices [7, 28], since they are reported to be connected to
the fault-proneness of production code [20, 36, 43, 68, 69, 70, 77, 96]. We
considered five code smells from the catalog by Fowler [28] that have dif-
ferent characteristics, namely God Class, Class Data Should Be Private,
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Complex Class, Functional Decomposition, and Spaghetti Code. We provided
a complete definition of those smells in our online appendix [78]. These
code smells have been analyzed by previous work studying their effect on
source code defect-proneness [43, 70]. Therefore, our selection was driven by
these findings. As for the actual detection of these code smells, we relied on
Decor [56], a state-of-the-art detection tool which has shown an accuracy
close to 80% [56]. In our work we re-evaluated the precision of Decor. The
two authors previously involved in the validation of the test smells also
conducted this analysis: they manually validated all the 137 code smell
instances output by the tool. The task was to understand whether a certain
code smell candidate given by Decor actually revealed the existence of a
design problem in source code. After the first assessment, the two inspectors
compared their evaluations, reaching an agreement of 95%. The remaining
5% of cases (i.e., seven code smell candidates) were discussed and, finally,
four of them turned to be real code smells. Following this validation, we (i)
confirmed the good accuracy and the suitability of Decor in our context
and (ii) excluded the false positive smells from our analysis.

– We computed the number of pre-release changes and pre-release de-
fects because metrics capturing the previous history of production classes
can reveal relevant evolution aspects [37, 83]. To compute the number of
pre-release changes, we mined the change log of the considered projects and
count how many times a certain production class has been modified. As for
the pre-release defects, we relied again on the SZZ algorithm implemented
in PyDriller [89].

4.1.6 Statistical Modeling and Data Analysis

After collecting the data for all the considered projects, we defined three groups
of hypothesis, related to the three research questions.
As for RQ1, we defined two pairs of null (Hn) and alternative (An) hypotheses:

Hn1. There is no correlation between the presence of test classes and software
quality, as measured by post-release defects.

An1. There is a correlation between the presence of test classes and software
quality, as measured by post-release defects.

Hn2. There is no correlation between the executability of test classes and software
quality, as measured by post-release defects.

An2. There is a correlation between the executability of test classes and
software quality, as measured by post-release defects.

Regarding RQ2, we defined the following hypotheses:

Hn3. There is no correlation between test code metrics and software quality, as
measured by post-release defects.

An3. There is a correlation between test code metrics and software quality,
as measured by post-release defects.
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Hn4. There is no correlation between test smells and software quality, as measured
by post-release defects.

An4. There is a correlation between test smells and software quality, as
measured by post-release defects.

Finally, we report below the hypotheses to address RQ3:

Hn5. There is no correlation between code coverage metrics and software quality,
as measured by post-release defects.

An5. There is a correlation between code coverage metrics and software
quality, as measured by post-release defects.

Hn6. There is no correlation between mutation coverage and software quality, as
measured by post-release defects.

An6. There is a correlation between mutation coverage and software quality,
as measured by post-release defects.

To test the hypotheses, we built a statistical model relating the independent
and confounding factors to the post-release defects. A first key design decision
regarded the proper choice of the statistical approach to fit our observations.
We built a Generalized Linear Model (GLM) [63]. This method models the
relationship between a scalar response (i.e., number of post-release defects in our
case) and one or more explanatory variables (i.e., the selected set of independent
and confounding factors) by fitting a linear function whose unknown model
parameters are estimated from the data. We use the ‘Gaussian’ family when
implementing the model.

We relied on this approach for two main reasons. First, it simultaneously
analyzes the effects of both confounding and independent variables on the
response variable [35]. Second, it does not require distribution of data to
be normal: indeed, in our case, the Shapiro-Wilk test [86] rejects the null-
hypothesis, i.e., our data is not normally distributed.

To avoid multicollinearity [65], which may bias the interpretation of the
results [58, 65], we first applied a hierarchical clustering based on the Spearman’s
rank correlation coefficient [91] of the studied variables (done using the varclus
function available in the R statistical toolkit18), then, if two variables had a
correlation higher than 0.6, we excluded the more complex one from the model.
We interpreted the output of the Generalized Linear Model by considering the
statistical significant codes it assigns to each explanatory variable, i.e., if a
certain variable is deemed as statistically significant, the chances of the effect
on the number of post-release defects being random is sufficiently low. We
also computed the Adjusted R-squared [23] to assess the goodness of fit of the
model, a metric indicating how close the data is to the fitted regression line.

18 https://bit.ly/2YFltBU
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4.2 Analysis of the Results

For each RQ, we build the models in a progressive manner, so that we can
measure the explanatory power of different factors step-by-step. In particular,
for each analysis we define three models: (i) the first only considers the effects
of test-related factors, (ii) the second considering both production and test
metrics, and (iii) a full model that includes production metrics, test-related
factors and the selected process metric.

4.2.1 RQ1. The presence and executability of tests

Table 4 reports the results of our first analysis. From the total set of variables
employed within the model, we had to exclude (i) PWMC and PEC because
they were too correlated with PLOC and (ii) the one signaling the presence
of the Spaghetti Code smell, which in this case had high correlation with the
presence of Blob instances. In conclusion, the model was composed of a total
of seven metrics whose distributions are described in Table 5. The Adjusted
R-squared measured 0.264: the value can be considered “moderate” [15, 17],
namely the statistical model can fit the data with a moderate precision: ≈ 85%
of variation is still unexplained. Results of the first model led us to reject the
two null hypotheses related to our first research question (i.e., Hn1 and Hn2)
in favor of the alternative hypotheses (i.e., An1 and An2), indicating that
the presence and the executability of test classes have a correlation with the
number of post-release defects. However, when adding confounding factors, the
hypotheses cannot be rejected nor confirmed.

Table 4 Results for RQ1 - The impact of the presence and executability of tests on the
number of post-release defects. N = 1, 457

Test Test + Prod. Full
Estimate S.E. Sig. Estimate S.E. Sig. Estimate S.E. Sig.

Intercept 0.11 0.05 * -0.03 0.05 -0.17 0.04 ***
is-tested 0.57 0.12 *** 0.14 0.12 -0.09 0.11
are-tests-executable -0.49 0.13 *** -0.23 0.12 . -0.05 0.11
PLOC 0.00 0.00 *** 0.00 0.00
isGodClass 0.24 0.16 0.17 0.15
isClassDataShouldBePrivate 0.39 0.38 0.70 0.34
isComplexClass -1.12 0.30 *** -0.29 0.27
pre-release changes 0.05 0.00 ***
pre-release defects 0.10 0.01 ***

Multiple R-squared: 0.268; Adjusted R-squared: 0.264
significance codes: ’***’p <0.001, ’**’p <0.01, ’*’p <0.05, ’.’p <0.1

Looking at the table, the variable which mostly influences post-release
defects is the number of pre-release changes. Thus, we can confirm previous
findings in the field [34, 44] on the relevance of this variable: the information
coming from the past history of a class is a valuable predictor of its future
quality. At the same time, the contribution given by this metric somehow
hides the value of other product-based confounding variables: more specifically,
factors like production code size and code smells—that were found to be highly
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Table 5 Descriptive statistics for variables used in RQ1. N = 1, 457

Variable name Minimum Maximum Mean SD
PLOC 2.00 6291.00 211.00 359.90
isGodClass 0.00 1.00 0.10 0.30
isClassDataShouldBePrivate 0.00 1.00 0.01 0.09
isComplexClass 0.00 1.00 0.02 0.14
is-tested 0.00 1.00 0.49 0.50
are-tests-executable 0.00 1.00 0.38 0.49
pre-release changes 0.00 201.00 7.32 12.26
pre-release defects 0.00 35.00 1.03 3.37
post-release defects 0.00 23.00 0.20 1.33

relevant to explain the future defect-proneness of source code [43, 59, 70]—are
subsumed by this change history-based metric. Indeed, observing the results of
the other two models which do not contain the process metric, we notice that
some aspects related to the production code result to be highly significant (i.e.,
PLOC, Complex Class).

In the full model, the two independent variables selected for RQ1, i.e.,
is-tested and are-tests-executable are not statistically related to the number of
post-release defects that will incur in source code classes. This result suggests
that the mere existence of tests and/or their executability does not affect the
number of post-release defects in the exercised production code.

From another perspective, our results can be also interpreted as a sign that
the quantity of tests is not enough, and that perhaps their quality can serve
as better indicators of post-release defects. In the next research question, we
investigate whether the quality of tests is related to post-release defects.

RQ1 - Findings

Neither the executability nor the presence of tests are statistically significant
variables to explain post-release defects when other confounding factors
are taken under consideration. We confirm that the number of pre-release
changes has the highest explanatory power.

4.2.2 RQ2. The impact of static test code indicators

While in the first research question we considered the entire set of instances
belonging to our dataset, in RQ2 we have to consider on a smaller set of
cases (as also seen in Figure 4), because we focus on the relation of statically
computable test-related indicators to post-release defects, therefore the presence
of tests is required to compute these indicators. The dataset we consider for the
second research question has 774 observations and 184 post-release defects (as
opposed to the 231 of the dataset used inRQ1). The descriptive statistics for all
the variables are reported in Table 6. When removing untested classes from the
dataset, the mean of the considered process metric (i.e., ‘pre-release changes’)
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increases (see Tables 5 and 6). This may suggest that the number of changes
tends to be lower when tests are not available, perhaps because developers
are less confident with modifying the source code in such a circumstance or
because tests are added when more changes are needed on certain files.

The multicollinearity analysis led us to remove (i) PWMC, PEC, TWMC,
and TEC, as they were too correlated with the PLOC and TLOC metrics, and
(ii) the variable related to the Spaghetti Code smell, as this still has a high
correlation with the Blob code smell. Therefore, the model was composed of a
total of 12 variables and reached an Adjusted-R squared of 0.282 (moderate).19
This means that the model only explains ≈ 15% of variation.

In the first place, the results, reported in Table 7, show that TLOC, is highly
significant when test-related factors are considered in isolation, thus allowing
to reject Hn3 in favor of An3. However, this relation cannot be extended to the
full model since the addition of confounding factors led to a decrease of the
significance of test code metrics, namely Hn3 cannot be rejected nor confirmed.

Table 6 Descriptive statistics for variables used in RQ2. N = 774

Variable name Minimum Maximum Mean SD
PLOC 13.00 6291.00 311.00 460.00
isGodClass 0.00 1.00 0.17 0.38
isClassDataShouldBePrivate 0.00 1.00 0.01 0.12
isComplexClass 0.00 1.00 0.04 0.19
TLOC 5.00 2210.00 168.00 248.10
Assertion Density 0.00 0.83 0.19 0.15
isAssertionRoulette 0.00 1.00 0.87 0.34
isEagerTest 0.00 1.00 0.61 0.49
isMysteryGuest 0.00 1.00 0.07 0.26
isResourceOptimism 0.00 1.00 0.02 0.14
isIndirectTesting 0.00 1.00 0.06 0.24
pre-release changes 1.00 201.00 10.00 16.21
pre-release defects 0.00 35.00 1.73 4.54
post-release defects 0.00 23.00 0.29 1.65

The results of the full model confirm the previous ones: there is a strong
relation between the process metric we considered (i.e., pre-release changes)
and post-release defects even when adding factors quantifying the properties of
test code. On the one hand, this finding reinforces the idea that the change
process underwent by production classes is among the most valid indicators
for software quality. On the other hand, statically computable properties of
test code do not impact the future defect-proneness of production classes.

The only exception is the variable measuring the presence of the test smell
Mystery Guest, which allowed to reject the null hypothesis Hn4 in favor of the
alternative hypothesis An4. Mystery Guest is a test smell that appears when

19 Note that the three statistical models for the different research questions are not
comparable in terms of R2, since they operate on different datasets (see Figure 4). We report
the values for the R2 only to give an idea of the statistical models’ explanatory power.
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Table 7 Results for RQ2 - The impact of static test-related factors on the number of
post-release defects. N = 774

Test Test + Prod. Full
Estimate S.E. Sig. Estimate S.E. Sig. Estimate S.E. Sig.

Intercept -0.02 0.18 -0.08 0.18 -0.19 0.16
TLOC 0.00 0.00 *** 0.00 0.00 -0.00 0.00
Assertion Density 0.16 0.44 0.02 0.43 -0.38 0.39
isAssertionRoulette -0.06 0.20 -0.04 0.19 0.05 0.17
isEagerTest 0.12 0.14 0.03 0.14 -0.05 0.13
isMysteryGuest -0.19 0.28 -0.20 0.28 -0.54 0.25 *
isResourceOptimism 0.73 0.53 0.54 0.52 -0.22 0.47
isIndirectTesting -0.01 0.27 -0.04 0.27 0.09 0.24
PLOC 0.00 0.00 *** 0.00 0.00
isGodClass 0.36 0.23 0.32 0.21
isClassDataShouldBePrivate 0.27 0.56 0.93 0.50 .
isComplexClass -0.97 0.41 * -0.22 0.38
pre-release changes 0.03 0.00 ***
pre-release defects 0.09 0.02 ***

Multiple R-squared: 0.294; Adjusted R-squared: 0.282
significance codes: ’***’p <0.001, ’**’p <0.01, ’*’p <0.05, ’.’p <0.1

a test relies on external resources (e.g., files) [97]. To understand the reasons
behind this finding, the first two authors of this paper jointly looked at the
tests affected by this smell, trying to understand the characteristics of those
tests that could justify a similar result. In the end, the two researchers come to
the conclusion that there may exist an indirect relation between this smell and
production code quality. Specifically, one of the main negative consequences
of having Mystery Guest instances is the non-deterministic behavior of the
affected test code [97]. Intuitively, test classes that intermittently pass/fail
cannot properly exercise the corresponding production code and find defects:
thus, one likely reason behind the achieved result is the direct relation between
this test smell and test flakiness [97], which therefore turns to be indirect
when considering Mystery Guest and post-release defects. To some extent,
our findings also confirm what reported by Spadini et al. [90] on the relation
between test smells and defect-proneness of production code. This observation
has to be confirmed through further empirical investigations.

The results obtained when considering the first two models (i.e., ‘test’, ‘test
+ prod’) also confirm the ones reported in RQ1; indeed, PLOC and presence
of Complex Class instances are statistically significant factors only when the
process variable is not taken into account.

RQ2 - Findings

The size of the test classes relates to post-release defects only if no pro-
duction and process metrics are considered. We also found that Mystery
Guest is a statistically significant factor, but a fine-grained analysis only
highlighted its possible indirect relation to software quality.

4.2.3 RQ3. The impact of dynamic test code indicators

In the last research question, we measure how dynamically computable test
code indicators are related to post-release defects. To compute these indicators,
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Table 8 Descriptive statistics for variables used in RQ3. N = 577

Variable name Minimum Maximum Mean SD
PLOC 13.00 5077.00 259.00 342.20
isGodClass 0.00 1.00 0.12 0.38
isClassDataShouldBePrivate 0.00 1.00 0.01 0.11
isComplexClass 0.00 1.00 0.02 0.14
TLOC 5.00 2210.00 135.90 194.40
Assertion Density 0.00 0.83 0.20 0.16
isAssertionRoulette 0.00 1.00 0.86 0.34
isEagerTest 0.00 1.00 0.62 0.49
isMysteryGuest 0.00 1.00 0.06 0.23
isResourceOptimism 0.00 1.00 0.02 0.12
isIndirectTesting 0.00 1.00 0.04 0.20
Line Coverage 0.00 1.00 0.90 0.14
Branch Coverage 0.00 1.00 0.75 0.32
Mutation Coverage 0.00 1.00 0.70 0.32
pre-release changes 1.00 139.00 8.49 10.91
pre-release defects 0.00 29.00 1.37 3.66
post-release defects 0.00 23.00 0.19 1.23

Table 9 Results for RQ3 - The impact of dynamic test-related factors on the number of
post-release defects. N = 577

Test Test + Prod. Full
Estimate S.E. Sig. Estimate S.E. Sig. Estimate S.E. Sig.

Intercept 0.17 0.38 -0.16 0.37 -0.18 0.36
Line Coverage 0.27 0.45 0.41 0.44 0.21 0.43
Branch Coverage -0.08 0.17 -0.08 0.17 -0.17 0.16
Mutation Coverage -0.55 0.18 ** -0.35 0.19 . -0.12 0.18
LOC (test suite) 0.00 0.00 *** -0.00 0.00 -0.00 0.00 *
Assertion Density 0.38 0.36 0.15 0.35 -0.12 0.34
isAssertionRoulette -0.10 0.17 -0.04 0.16 0.01 0.16
isEagerTest 0.09 0.12 0.03 0.12 -0.04 0.11
isMysteryGuest -0.14 0.27 -0.02 0.27 -0.22 0.26
isResourceOptimism 0.67 0.50 0.54 0.49 0.32 0.47
isIndirectTesting 0.23 0.26 0.16 0.26 0.18 0.25
LOC (production class) 0.00 0.00 *** 0.00 0.00 **
isGodClass -0.08 0.23 -0.14 0.22
isClassDataShouldBePrivate 1.22 0.54 * 1.49 0.52 **
isComplexClass 0.26 0.45 0.37 0.43
pre-release changes 0.03 0.01 ***
pre-release defects 0.04 0.02 *

Multiple R-squared: 0.244; Adjusted R-squared: 0.225
significance codes: ’***’p <0.001, ’**’p <0.01, ’*’p <0.05, ’.’p <0.1

we needed to analyze tests that are executable. This restricted the scope to
a dataset including 103 post-release defects. To study the effect of dynamic
test code indicators, we computed and integrated them in the model coming
from RQ2, thus building a Generalized Linear Model with 15 variables whose
descriptive statistics are reported in Table 8. To avoid collinearity, we had to
exclude PWMC, PEC, TWMC, TEC, and Spaghetti Code. The goodness of
fit of the resulting full model was 0.225, which indicates that the model has
a weak explanatory power—this because the percent by which the standard
deviation of the errors is less than the standard deviation of the dependent
variable is pretty low: ≈ 13%.
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Table 9 reports the results. When analyzing the model that only includes
test-related factors, Test LOCs and Mutation Coverage are statistically sig-
nificant. On the one hand, this result may indicate that larger test classes,
which likely contain more tests, represent a better guard to the introduction
of post-release defects. On the other hand, mutation coverage measures the
ability of tests to identify artificially created defects; looking at the sign of
the relation, our findings suggest that having a lower mutation coverage is
related to a higher number of post-release defects, which is expected given the
goal of mutation testing. Nevertheless, this variable is significant only when
considering test-related factors in isolation, while its explanatory power de-
creases as additional factors are added to the model. In particular, the number
of pre-release changes is among the most important factors related to software
quality, while line and branch coverage do not relate to post-release defects,
meaning that the amount of production code lines touched by a test does not
reduce the likelihood to have faults in source code: this is in line with the recent
findings of Kochhar et al. [48].

Line and branch coverage are not significant, regardless of the model
considered. This does not allow us to reject the null hypothesis Hn5. Mutation
coverage, instead, is significant only when test-related factors are considered in
isolation. Also in this case we cannot reject the null hypothesis Hn6.

In this part of the dataset, with the addition of dynamic factors and process
metrics, some of the previously not significant statically computable variables
assumed a higher relevance. This is the case of LOC of production and test code.
We extensively analyzed and discussed our data to understand the reasons
behind this result and further discuss them in the following.

In RQ2, we considered both tests that could and could not be executed (see
Figure 4): as such, the dataset possibly included non-executable tests having
a large size which, clearly, could not exercise the production code and find
defects. This might have limited the effect of TLOC on the dependent variable;
conversely, when considering only executable test suites (RQ3), the variable
turned to be significant. This statement is supported by the fact that 71% of
the tests excluded from RQ2 have a LOC higher than the third quartile of the
distribution of all test LOCs of the dataset.

A similar discussion can be done when considering the statistical significance
of production code LOC. The dataset employed in RQ3 may have filtered out
small classes exercised by non-executable tests that lead to post-release defects.
To verify this hypothesis, we performed an additional analysis in which we
assessed how the results of RQ3 change when running a model only based on
statically computable test code indicators (i.e., the setting used in RQ2): as
a result, we found that PLOC remains significant, meaning that the different
statistical findings are indeed due to the specific composition of the exploited
dataset. Another interesting observation concerns the relation between test and
production size metrics. The directions of the two distributions (i.e., column
“Estimate” in Table 9) are opposite, which means that: (i) the larger the TLOCs,
the fewer the number of post-release defects, and (ii) the larger the PLOCs, the
higher the number of post-release defects. This result is quite expected and can
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be better explained analyzing two relevant qualitative examples. The first one
is the class ClassDerivativeStructure belonging to the Commons-Math
project; it shows a high number of PLOCs (i.e., 1,011) but at the same time
a high number of TLOCs (i.e., 1,172). This class has no post-release defects,
perhaps due to the robustness of the test suite. The second example is the class
BaseGenericObjectPool in the project Commons-Pool; like the previous
one, it is characterized by a high PLOCs (i.e., 849) but, the low number
of TLOCs (i.e., 43) may have led to 23 post-release defects (the maximum
number of defects among the instances we analyzed). These two examples,
together with the results of the statistical model, suggest that the size of
test suites can be a proxy metric to assess how robust a test is. Differently
from the other research questions, the considered variables remain significant
across the four models. Indeed, also adding the process metrics, the PLOC and
‘isClassDataShouldBePrivate’ are still significant.

RQ3 - Findings

Mutation coverage statistically relates to post-release defects only when
test-related factors are considered in isolation. When considering both
static and dynamic test code indicators, we observed production and test
code size to be statistically significant in explaining post-release defects.
Furthermore, our findings suggest that TLOC can be a proxy metric to
assess the quality of the test.

5 Discussion, Implications, and Threats to Validity

In this section we further discuss the main outcomes of our work, describe the
implications of the study for both researchers and practitioners, and examine
the threats that might have influenced the validity of the results.

5.1 Discussion

The results of the study provided two main findings to be further discussed.

On the (limited) importance of test-related factors for software
code quality. The main outcome of our research reports that—surprisingly—
most of the considered test-related factors do not have a significant explanatory
power with respect to post-release defects. Despite this could seem strange,
it is possible to reason on why this could happen. Let consider a scenario
in which tests have good quality and effectiveness: these tests are likely to
accurately identify defects present in the same snapshot of the production code,
however they do not necessarily predict the future defect-proneness of the class
under test. So, probably the test-related factors commonly known and used
in literature are not appropriate enough to catch the defect proneness of the
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exercised code. Proposing new metrics able to describe the relation between
tests and software quality could be an interesting cue for future works.

From another point of view, there are some exceptions that may allow us
to claim that keeping test code design under control might still help developers
in reducing the number of post-release defects. In the first place, looking at
the results of RQ3, the test LOC metric not only appears as highly significant,
but it is also inversely proportional to the dependent variable: this indicates
that larger tests (that are likely to exercise deeper the production code) reduce
the risk of having defects in future versions of the system. Thus, our findings
seem to indicate that the lines of code of a test suite may represent a proxy
measure for test-code effectiveness.

Furthermore, while other test-related factors investigated in the study (e.g.,
line coverage or assertion density) are not correlated enough to test LOC
to cause collinearity, it is reasonable to believe that they have some sort of
relations with the size of the test: for instance, the assertion density generally
tends to increase with the size of the test [50]. On the one hand, these relations
should be further assessed in the future. On the other hand, this observation
may further suggest that high-quality tests lead to post-release defect reduction:
the results achieved in RQ2 on the role of test smells, particularly Mystery
Guest, also go toward this conclusion.

In order to better comment on our results, we performed an additional
qualitative analysis in which we contacted the top contributors of the considered
projects. In so doing, we followed a similar experimental design as Mäntylä
et al. [54]. In particular, we sent direct e-mails to the two top developers of
the systems, i.e., the two having the highest amount of commits, asking them
to comment on our findings and provide feedback on some boundary cases
we discovered when analyzing their systems—this means that developers were
inquired only on the matters related to their own projects. Unfortunately, we
received an answer for just one of the considered systems—even tough they
were insightful to better contextualize and understand the findings of the study.
The answers was related to Commons-Pool. In this specific case, we asked
the developer to comment on the release 2.3 of the project, in which the class
named BaseGenericObjectPool had 849 lines of code, while the corresponding
test suite BaseGenericObjectPoolTest had just 43 lines of code. After release
2.3, the class BaseGenericObjectPool had 23 defects. At a first sight, this may
suggest that the test suite was not robust enough in preventing or diagnosing the
introduction of defects. However, the developer found that just considering the
test suite BaseGenericObjectPoolTest could potentially be not enough. He
pointed out to us that when code is refactored, the tests are left in the original
test suites to help detect regressions during the refactoring. So, there could
exist a subset of tests in other classes, that we did not consider, which exercise
the production class BaseGenericObjectPool—the test-to-code traceability
technique exploited in the study may have under-estimated the number of tests
connected to the production class.

To sum up, our findings reveal that the problem of understanding the
effect of tests on post-release defects is still open and would require further
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investigations—especially in the lights of the potential threat to validity related
to the test-to-code traceability technique raised by the involved developer
(Section 5.3 further discusses this point). At the same time, the results provide
some hints of the importance of (i) test-related factors for software quality,
even though other aspects, e.g., the number of changes to production code, are
still primarily connected to post-release defects and (ii) continuously keep test
suites up to date with the changes applied to production code.

On the comparison with previous studies. As explained in Section 2,
a number of researchers have investigated the role of test-related factors on
post-release defects in the past, finding them as highly relevant. While our
results do not tell the opposite, we found that most of the considered factors
have a lower explanatory power than the one previously reported.

The key to explain the difference between our outcomes and the ones
previously provided is in the presence of confounding factors that possibly
balanced the effect of test-related factors. This is particularly true in the case
of LOCs of production class and pre-release changes, that are the most relevant
metrics to explain the future defect-proneness of source code and are directly
proportional to the dependent variable, i.e., the higher the size and the number
of pre-release changes, the higher the number of post-release defects. This
suggests a pretty straightforward interpretation: classes having large size or
being involved in several changes over the history are more prone to have
defects in the future.

5.2 Implications

Our results have a number of implications for both research community and
practitioners.

Keep the change process under control. The most important finding of
our study is the very high influence of pre-release changes on post-release
defects. This relation indicates that the change frequency of classes impacts
the future defect-proneness of production code more than other aspects,
confirming previous findings on the relationship between change- and defect-
proneness [16, 37]. In this respect, it may be possible that high-quality pre-
release changes prevent the emergence of post-release defects: in the context
of our RQ3, we indeed noticed that the LOC of production code—which has
been often used as a proxy metric for code quality—and pre-release defects are
statistically significant factors for the future defect-proneness of source code.
Based on these observations, we can claim that keeping the change process
under control would be worthwhile and that the definition of mechanisms
supporting developers when dealing with software evolution represents a
key challenge for the research community. While a number of attempts in
this direction have been performed during the last years, e.g., through the
definition of of just-in-time quality assurance mechanisms [11, 41, 75, 73], we
believe that further research effort should be invested. In particular, most
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of the approaches developed so far should be considered as prototypes and,
as such, are still not mature enough to be used in practice. For example,
researchers have been working on just-in-time defect prediction models (e.g.,
[41, 75]), but up to now there are no fully-available tools that enable their
practical usage. This clearly represents a key threat to the adoption of these
tools in practice that the research community should investigate more. As
a consequence, we argue that continuous integration pipelines as well as
typical software development practices should be empowered with additional
instruments that allow developers to promptly assess the quality of the
changes made on production code: for instance, we refer to defect localization
tools that can be integrated within CI environments or code smell detectors
and refactoring recommenders that allow an agile quality improvement of
source code during the code review process.
At the same time, tool vendors have been spending effort in providing
developers with tools that can help them spotting defects. The main outcome
is represented by automated static analysis tools, which are generally used
in open-source systems as highlighted by a number of papers in literature
[101, 100, 103]. One of these tools is FindBugs, which is the one employed
by the Apache Software Foundation and, as a consequence, by the
projects considered in our paper (this tool is configured within the Apache
Continuum server they have in place). On the one hand, static analysis
tools suffer from a high rate of false positive alerts [40]: this aspect has the
effect of reducing the trust of developers with respect to the outcome of these
tools, possibly leading them to ignore relevant defect warnings. On the other
hand, it has been shown that open-source systems (including those of the
Apache Commons family) do not apply continuous code quality practices
[99], meaning that they do not run quality checks at every build they do:
this is an additional limitation of the current quality assurance practices.
According to these observations, our work further stimulates the research
effort around the definition of techniques able to reduce the number of false
positives given by static analysis tools as well as mechanisms enabling the
adoption of continuous code quality.

Test-related factors and defect prediction. The results of the study re-
vealed that, in some cases, test-related factors are related to post-release
defects. While we cannot speculate on whether there exist specific types of
defects that can be better analyzed through the exploitation of test-related
factors, we still see some value in this finding. More specifically, from our
study we observed that test-related factors become relevant especially when
process metrics are not considered. This represents an interesting case for
defect prediction: indeed, new projects interested in deploying these models
might not have enough historical data to enable the computation of process
metrics. In these cases, there are two solutions. On the one hand, developers
may rely on cross-project information to train defect prediction models [106]:
nevertheless, the adoption of this strategy does not still provide accurate
results, hence limiting its applicability. On the other hand, developers can
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Figure 5 The results for Random Forest.

create prediction models based on product information coming from the
analysis of their own systems: our results can be useful in this context, as
test-related factors may complement other product metrics and potentially
improve the quality of the predictions. In the recent past, researchers have
started looking at the role of tests in defect prediction [5], however we believe
that our study may inspire further research on the matter, especially based
on the factors that turned to be important for post-release defects, e.g., test
size or presence of five test smells considered in the paper.

Test-related factors and automatic test case generation. Our findings
point out that other test-related factors, namely test size and test smells,
are more related to post-release defects than metrics generally considered
relevant, i.e., code or mutation coverage. This seems to suggest that the design
of test suites matter. This may possibly pave the way for the next generation
of automatic test case techniques that do not consider anymore (or decrease
the importance of) code and mutation coverage as main metrics to optimize
during the creation process: such a generation mechanism would possibly
allow automatic tools to focus on the creation of tests around factors that are
more connected to post-release defects (as also proved by Kochhar et al. [48]).
Furthermore, our results also highlight the existence of production-related
factors, and specifically production code size and presence of code smells, that
have a relation with post-release defects. It would be worth to consider how
these production-related factors can contribute to the generation of effective
test classes: for example, existing automated tools may exploit these metrics
within their fitness function and balance them with other metrics with the
aim of refining or further optimizing the generated test suites around the
metrics that are more connected to post-release defects.

5.3 Threats to Validity

The results of our study might have been biased by a number of factors. In this
section, we overview the main threats to validity and how we mitigated them.
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Construct validity. Threats in this category are concerned with the
relation between theory and observation. A key point in this regard is related
to the accuracy of the tools used to compute the explanatory and dependent
variables of the study. First, we are aware of the possible limitations of the
SZZ algorithm highlighted in recent works [84]: in this respect, we conducted a
manual validation of the results of the SZZ algorithm that aimed at excluding
false positives. Of course, we are aware that this analysis could not cope
with false negatives: we made all data of our study available to make other
researchers able to replicate and possibly extend our work with additional
findings. Similarly, possible issues with the measurement of the exploited
independent variables have been mitigated by the selection of tools that are (i)
well established in the field (e.g., Decor [56] for the detection of code smells)
and (ii) accurate enough for conducting our study, according to the manual
validations conducted in the context of our work. Also in this case, however,
it is worth mentioning that the manual analyses could only deal with false
positives but not with false negatives.

A partially different discussion should be made when considering test smells.
To detect them, we relied on the detector made available by Bavota et al. [4].
While previous studies have shown that its F-Measure is close to 86% [4, 66, 72],
the detector could have had a different accuracy in our context. Recognizing this
as a possible threat to validity, we conducted an additional investigation aimed
at measuring the precision of the detector.20 Unlike the case of code smells, we
could not validate all the 1,217 instances output by the test smell detector as a
manual analysis would have been excessively expensive. Instead, we focused on
a stratified statistically significant sample (confidence level=95%, confidence
interval=5%) composed of 169 instances. The task was jointly conducted by
the two first authors of the paper and consisted of assessing whether each test
smell candidate presented a certain design issue. At the end of the process,
86% of the instances were considered as real test smells - thus confirming the
high precision of the detector.

Another discussion point relates to the methodology employed to link
production classes to test cases: in particular, we employed a traceability
technique based on naming conventions, i.e., it identifies the test corresponding
to a certain production class by looking at the name of the test and verifying
whether it is the same as the production class expect with the prefix ‘Test’.
While the accuracy of the technique has been previously assessed [98] showing
a good compromise between accuracy and scalability, the linking procedure
may have introduced some bias in cases tests exercising a production class are
not all included in the test suite retrieved by the technique but put in other
test suites. In our case, this may have been happened, as mentioned by the
interviewed developer of Apache Commons-Pool who commented on our
findings in the context of our additional qualitative analysis (see Section 5.1).

There are two observations to make with respect to this potential bias. First,
it has been pointed out by only one developer and was related to only one of

20 The recall cannot be assessed because of the lack of an oracle.
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the considered projects: as such, we are not able to estimate the extent of this
bias in other systems as well as to verify whether this may have represented a
general problem for Commons-Pool or if it was instead focused on a subset
of classes of the project—it is worth noting that a manual examination of
this bias would have not only been prohibitively expensive, but also error-
prone given our lack of expertise on the project. Second, we could not identify
an alternative traceability technique which may have provided better results
than the one employed: indeed, while some more sophisticated test-to-code
traceability techniques have been proposed [74], these are likely to suffer from
similar issues as the one based on naming convention. As an example, the slicing-
based approach proposed by Qusef et al. [80] exploits slicing and conceptual
coupling to identify the set of test suites associated with a production class.
By design, this approach may have higher recall, since it is able to model
the case in which more test suites exist for a production class. At the same
time, however, this may not be enough. The involved developer mentioned a
finer-grained problem where specific test cases are included in other suites, as
opposed to the existence of multiple test suites for a production class. As such,
the technique by Qusef et al. [80] may lead to overestimate the number of tests
for a certain class, decreasing the precision of the analysis. In other words, such
a fine-grained linking between test suites and production classes would have
needed a traceability approach able to cluster the test cases connected to a
production class: unfortunately, to the best of our knowledge, such a technique
is not available in literature—we hope that this additional finding may serve
as an input for the software traceability research community.

Finally, to extract a comprehensive list of test-related factors to experiment,
we applied a MLR [31]. In this regard, possible threats refer to the soundness
and completeness of the review. With respect to the former, the first two
authors of this paper followed well-established guidelines [46, 102] to search,
analyze, and select relevant sources; moreover, the joint work conducted by the
two authors have reduced the risk of subjective evaluations of the resources
to include as well as allowed a quick solving of possible disagreements. As
for the latter, we defined a search query targeting the research goals of the
paper; at the same time, we targeted databases that allow searching for most
of the white papers published in our community. Furthermore, we analyzed all
the relevant Google pages when gathering gray literature, also performing it
using the incognito mode to avoid biases due to previous navigation history.

Internal validity. Threats to internal validity concern with intrinsic factors
of our study that could have influenced the reported results. In this regard, there
are some intrinsic issues when computing some of the test-related factors, like
mutation coverage. In particular, there are two relevant aspects when measuring
this metric: the problem of equivalent mutants and the one of live mutants.
As for the former, it arises when two generated mutants are semantically
equivalent. Unfortunately, determining whether a mutant is equivalent is an
undecidable problem. Furthermore, detecting them is also hard - there is still
no mature tool available for this task [53] - and computationally expensive
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[64]. For these reasons, equivalent mutants represent a common threat to the
validity of the results of studies concerned with mutation testing. In our study
setup we took into account the equivalent mutants problem when selecting the
mutation testing tool. Among the available ones, PiTest has shown better
performance than others: specifically, less than 20% of the mutants generated
by the tool are deemed to be equivalent, which represents an important step
forward in the context of mutation testing [26]. Other control mechanisms,
e.g., manual removal of equivalent mutants, would not be feasible in our case
because of the high number of mutants generated by PiTest.

As for the live mutants, these represent the mutants generated by the tool
but not detected by the available tests. Live mutants allow the mutation score
computation (i.e., mutants detected over mutants generated). On average, these
mutants represent around 30% of all mutants generated, as shown in Section
4.2.3, meaning that most of the tests in our dataset have a rather high mutation
score. This suggests that the study takes into account valuable tests that can
actually be used to investigate post-release defects.

Conclusion validity. As for the relationship between treatment and out-
come, a first possible threat is connected to the statistical models built in our
RQs. Throughout our research, we controlled the impact of test-related factors
for possible confounding effects due to the characteristics of production code,
considering both product and process metrics that have been shown to be
connected with the dependent variable. Furthermore, depending on the specific
research question posed, we included in the statistical model the most suited
test-related factors. Another threat is related to the actual suitability of the
employed statistical method, i.e., Generalized Linear Model. In this regard,
before selecting it we verified the assumptions that the model makes on the
underlying data. Nevertheless, it may still be possible that the statistically
significant variables discovered through the use of linear regression may be due
to the specific data manipulation and analysis done by the statistical model
[38]. To better investigate this aspect and test the robustness of our findings,
we completely repeated our analyses by using a different statistical model,
namely Random Forest [85], that makes no assumptions on the underlying data
and is robust to overfitting [38]. A summary of the results of this additional
analysis is shown in Figure 5, where we show the relevance of the variables
experimented in each RQ with respect to post-release defects. Specifically, we
computed the Mean Decrease in Impurity (also known as the Gini index) [85],
an entropy-based metric that is used by Random Forest to elicit the variables
providing the higher contributions to the explanation of the dependent variable.
As shown, the results are in line with those reported in Section 4.2, with
(i) pre-release changes and production class LOCs being the most important
variables to explain post-release defects and (ii) the other explanatory variables
having a significance similar to the one identified by Generalized Linear Model.
This strengthen our confidence on the validity of the results.

External validity. With respect to the generalizability of our findings, we
analyzed eight open-source Java projects. Analyzing only a small number of
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systems could threat the external validity of our study. However, during the
context selection, we had to deal with a set of constraints that have significantly
limited the list of candidate systems. In particular, we restricted our search
to Maven projects with no sub-modules and a standard Maven structure. We
made this choice to allow the employment of the PiTest command-line tool
for the calculation of the dynamic factors (i.e., line and mutation coverage).
Nevertheless, further replications of our study, conducted in different contexts
overcoming the constraints mentioned above (e.g., by aggregating the results
of multiple submodules) might be worthwhile to corroborate our findings.

Moreover, it is worth remarking that the statistical models were built over
the specific independent, control, and dependent variables adopted in the study.
Despite our effort in taking into account all factors known to have an impact
on post-release defects, we are aware that different results may arise when
considering different/additional variables. Similarly, our findings on the relation
between test smells and software quality are deemed to be valid for the five
test smell types considered in the paper: other results may be achieved with
other design issues.

Another aspect to consider when interpreting our results is that some
post-release defects may be discovered with unit testing, while others can be
found only at higher-levels (e.g., with integration or system testing) [21]. We
are aware of this point and recognize that our study is limited to the analysis
of the behavior and the relation that unit tests have with post-release defects.
Replications of our study targeting different test levels would provide a more
comprehensive view of how tests can forecast post-release defects. On a similar
note, our study investigated the role of the tests actually available in the
considered software projects: it may be possible that different results could be
achieved in cases where the diversity of test cases, i.e., the extent to which a
test is different from the others in the suite [24, 25], is higher. Understanding
the impact of diversity on both test and production code quality is part of our
future investigations.

6 Conclusion

In this paper, we have presented an empirical study we conducted to investigate
the role of test-related factors on software quality, operationalized as the
number of post-release defects of production source code files. We considered
eight Apache-Commons systems as our case study, as they satisfy important
selection criteria. We found that neither the executability nor the presence of
tests is a significant factor to explain post-release defects in a statistical model.
In addition, other, finer-grained test-related factors seem to have a limited
effect on the number of post release defects, while we confirm the value of
process factors as indicators of future software quality.

Our findings represent the input of our future research agenda, which
is focused on enlarging the scope of our analyses and defining methods to
better support developers when evolving test suites. Furthermore, we aim at
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(i) replicating our study by considering a larger amount of systems as well as
integration and system tests and (iii) considering the role of test diversity on
software quality.
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