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Abstract—Infrastructure-as-code (IaC) is the DevOps practice enabling management and provisioning of infrastructure through the
definition of machine-readable files, hereinafter referred to as IaC scripts. Similarly to other source code artefacts, these files may
contain defects that can preclude their correct functioning. In this paper, we aim at assessing the role of product and process metrics
when predicting defective IaC scripts. We propose a fully integrated machine-learning framework for IaC Defect Prediction, that allows
for repository crawling, metrics collection, model building, and evaluation. To evaluate it, we analyzed 104 projects and employed five
machine-learning classifiers to compare their performance in flagging suspicious defective IaC scripts. The key results of the study
report RANDOM FOREST as the best-performing model, with a median AUC-PR of 0.93 and MCC of 0.80. Furthermore, at least for the
collected projects, product metrics identify defective IaC scripts more accurately than process metrics. Our findings put a baseline for
investigating IaC Defect Prediction and the relationship between the product and process metrics, and IaC scripts’ quality.

Index Terms—Infrastructure-as-code; Defect Prediction; Empirical Software Engineering.
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1 INTRODUCTION

Modern software relies on the use of automation at both
development and operations levels, an engineering strategy
known as DevOps [1]; the software code driving such
automation is collectively known as Infrastructure-as-Code
(IaC). Infrastructure-as-Code “promotes managing the knowl-
edge and experience inside reusable scripts of infrastructure code
instead of traditionally reserving it for the manual-intensive labor
of system administrators, typically slow, time-consuming, effort-
heavy, and often even error-prone” [2].

IaC tactic emphasizes consistent, repeatable routines for
provisioning, deploying, and orchestrating systems. Infras-
tructure managers can build systems that automatically
change the infrastructure. Specifically, they can develop,
test, and deploy these systems using the same engineering
practices and tooling proven effective for application de-
velopment, such as version control systems and automated
testing. On the one hand, this requires an infrastructure
to cope with continuous and rapid changes common in
established software development practices, like Agile de-
velopment. On the other hand, this opens the door to exploit
development practices such as test-driven development,
continuous integration, and continuous delivery.

Although IT infrastructures are constantly evolving and
growing in size and complexity, little is known concerning
how to maintain best, speedily evolve, and continuously im-
prove infrastructure code, and yet it is picking up more and
more traction in different domains [3]. This is problematic
for organizations where software is essential. Infrastructure
failures are even more demanding in environments where

IT systems are more than just business-critical and where
there is no tolerance for downtime. For example, Amazon’s
systems handle hundreds of millions of dollars in transac-
tions every day. In that context, only in 2012, the estimated
average cost of one-minute service downtime for Amazon
alone was $66,0001, even after extensive manual and semi-
automatic service continuity practices such as service hot
stand-by [4], or elastic provisioning [5].

Software Defect Prediction [6] supports the software de-
velopment life-cycle testing process by identifying the parts
of the system that are failure-prone and require extensive
testing. As shown by previous research in the field, like
any other source code artifact, infrastructure configuration
management scripts can be failure-prone [7], [8], [9]. The
effective prediction of failure-prone IaC scripts may enable
organizations embracing the DevOps methodology to focus
on such critical scripts during Quality Assurance activities
and allocate effort and resources more efficiently.

Therefore, this work aims to help software practitioners
prioritize their inspection efforts for IaC scripts by proposing
prediction models of failure-prone IaC scripts and investigating
the role of product and process metrics for their prediction.

To this end, we propose the RADON FRAMEWORK
FOR IAC DEFECT PREDICTION, a fully integrated Machine-
Learning-based framework that allows for repository crawl-
ing, metrics collection, model building, and evaluation.
The HORIZON-2020 RADON project (https://radon-h2020.
eu/) [10] aims to unlock the benefits of serverless Function-
as-a-Service (FaaS) for the European software industry by

1. As determined by Forbes based on Amazon’s 2012 net sales

https://radon-h2020.eu/
https://radon-h2020.eu/
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developing a model-driven DevOps framework for creating
and managing applications based on serverless computing.
RADON applications consist of fine-grained and indepen-
dent microservices that can efficiently and optimally exploit
FaaS and container technologies. In this context, our frame-
work for IaC Defect Prediction strives to tackle correctness
in designing such applications.

The framework assessment led to the definition of sev-
eral research questions, namely:

RQ1 To what extent does the classifier selection impact the perfor-
mance of Machine-Learning models to predict the failure-
proneness of IaC scripts?

RQ2 How is the prediction performance affected by the choice of
the metric sets?

RQ3 Which metrics are good defect predictors? That is, what
are the most selected predictors and their combinations?

RQ1 aims at identifying the effect that the choice of
classifiers (e.g., Naive Bayes and Random Forest) has on
the prediction performance. We gathered a comprehensive
and meaningful set of failure-prone IaC scripts and metrics
to implement and assess different classifiers for predicting
the failure-proneness of an IaC script. Afterward, we com-
pared their performance and focused on RANDOM FOREST
as the best performing model. The contribution is a set of
classifiers suitable for the detection of suspicious failure-prone IaC
scripts. RQ2 aims at identifying the effect that the choice
of metric sets (i.e., code and process metrics, and groups
thereof) has on the prediction performance. Finally, RQ3

aims to identify and rank the measures that highly affect
the prediction performance. A recursive feature selection
method is performed to find the optimal number of features
and to rank them according to their importance for the
prediction. The contribution is a set of metrics for the detection
of suspicious failure-prone IaC scripts that DevOps engineers
and researchers can use to further understand and assess
the quality of IaC scripts.

To evaluate the RADON FRAMEWORK FOR IAC DEFECT
PREDICTION, we trained and tested five Machine-Learning
techniques on 104 open-source Ansible-based projects. We
focus on Ansible as (i) it is the most popular IaC language
on GitHub to date2 and in industry [11], and (ii) at the best
of our knowledge, there is no previous work on predicting
defects in the Ansible language.

Results show high prediction performance, with a me-
dian AUC-PR of 0.93 and an MCC of 0.80. Results also
indicate that, at least for our data, product metrics identify
defective IaC scripts more accurately than process metrics.
Contribution. The contribution of this work is the RADON
FRAMEWORK FOR IAC DEFECT PREDICTION. We released a
first implementation open-source on Github3, along with (i)
a dataset of 4,937 mined defect-fixing commits of Ansible
scripts; (ii) a dataset of 4,434 mined Ansible scripts; (iii) 104
defect prediction models for Ansible, obtained through the
framework, and their evaluation4. The shared material can

2. Stemming from https://github.com/search using as search terms
’ansible’, ’puppet’ and ’chef’

3. https://github.com/radon-h2020/radon-defect-prediction-api
4. The dataset and material used to evaluate the framework

is publicly available on Kaggle: https://www.kaggle.com/stefadp/
ansibledefectsprediction

be used as a baseline for DevOps and the research commu-
nity for a better understanding of failure-prone IaC scripts
and enable the comparison between competing approaches
for defect prediction.

Structure of the paper. Section 2 presents background
information on defect prediction and Infrastructure-as-Code
focusing on Ansible. Section 3 describes the empirical frame-
work of the study and reports details on the data collection.
Section 4 describes the empirical study on Ansible code
and outlines the methodology for each research question.
Results are also discussed. Section 5 discusses the paper’s
insights, limitations, and threats to validity. Section 6 dis-
cusses the related literature. Finally, Section 7 concludes the
paper and outlines future work.

2 BACKGROUND

This section provides a brief grounding and definitions on
defect prediction and Infrastructure-as-Code.

2.1 DevOps and Infrastructure-as-Code

The DevOps methodology is radically changing the way
software is designed and managed. DevOps entails adopt-
ing a set of organizational and technical practices, e.g.,
continuous integration, continuous deployment, blending
development, and operation teams, to survive as an organi-
zation in the modern digital ecosystem and digital market,
which demands fast and early releases, continuous software
updates, constant evolution of market needs, and adoption
of scalable technologies such as Cloud computing.

In this context, IaC is the DevOps practice of describ-
ing complex and (usually) Cloud-based deployments using
machine-readable code. The main enabler for IaC has been
the advent of Cloud computing, which has made the pro-
grammatic provisioning, configuration, and management of
computational resources common practice.

Subsequently, many languages and platforms have been
developed, each dealing with specific aspects of infrastruc-
ture management, from tools able to provision and orches-
trate virtual machines (Cloudify, Terraform), to those doing
a similar job for container technologies (Docker Swarm,
Kubernetes), to machine image management tools (Packer),
to configuration management tools (Chef, Ansible, Puppet).
Ansible is gaining traction in the last years as a simple and
agent-less (i.e., no master node) alternative to other more
complex IaC technologies such as Chef and Puppet.

Ansible is an automation engine based on the YAML
language that automates cloud provisioning, configuration
management, and application deployment, among others. It
works by connecting to nodes and pushing out scripts called
Ansible modules, which describe or change the system state.
Then, Ansible executes these modules when needed.

However, while modules allow for the proper function-
ing of Ansible scripts, playbooks make possible the orches-
tration of multiple slices of the infrastructure topology, with
very detailed control on the scalability of the architecture
(e.g., how many machines to tackle at a time). Playbooks are
essential for configuration management and multi-machine
deployment in Ansible. They can declare configurations
and orchestrate steps of any manual ordered process by

https://github.com/search
https://github.com/radon-h2020/radon-defect-prediction-api
https://www.kaggle.com/stefadp/ansibledefectsprediction
https://www.kaggle.com/stefadp/ansibledefectsprediction
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launching tasks within one or more plays. A play maps
hosts to some well-defined roles, represented by Ansible
tasks which in sum are calls to Ansible modules.

As an example, Figure 1 shows an Ansible code snippet
representing a playbook that provisions and deploys a web-
site.5 To this aim, it configures various aspects such as the
ports to open on the host container, the name of the user
account, and the desired database to deploy. It first targets
the web servers to ensure that the Apache server is at the
latest version, and then the database servers to ensure that
PostgreSQL is at the latest version and started. It achieves
this by mapping the hosts (lines 2 and 13) to their respective
tasks (lines 8-11, 17-20, 22-25). There, yum and service
are modules to manage packages with the yum package
manager and to control services on remote hosts, respec-
tively; name (i.e., the name of the package and the database)
and state (i.e., whether present, absent or otherwise) are
parameters of these modules. In short, by composing a
playbook of multiple plays, it is possible to orchestrate
multi-machine deployments and run specific commands on
the machines in the webservers and databases groups.

Fig. 1: An example of Ansible code.

2.2 Defect Prediction
From the defect prediction point of view, the research litera-
ture mainly focuses on standard applications (i.e., Java and
C applications) and presents several approaches to identify
the location of defective code using both supervised and
unsupervised methods and in both within- and cross-project
contexts [12]; a complete overview of state of the art is
available in the systematic literature reviews conducted by
Hall et al. [6] and Hosseini et al. [13].

5. Adapted from Ansible documentation: https://docs.ansible.com/
ansible/latest/user_guide/playbooks_intro.html (Accessed April 2020)

In this work, we are interested in within-project de-
fect prediction using supervised Machine-Learning tech-
niques [14]. As such, the following concepts require to be
introduced for the sake of understandability of the remain-
ing of the paper:

• Defect - An imperfection or deficiency causing the IaC
script not to meet its requirements or specifications
(adapted from IEEE definition of defect [15]);

• Defect-fixing commit - A commit that takes an action
related to a defect;

• Defect-inducing commit - A commit that contributed
to introduce a defect;

• Failure-prone script - A script that presents defects and
needs to be either repaired or replaced, as opposite of a
neutral script;

Typically, the process for building supervised Machine-
Learning-based defect predictors consists of generating in-
stances from software archives such as version control sys-
tems, in the form of software components, source code files,
classes, functions (or methods), and/or code changes (com-
mits) according to the predefined prediction granularity. An
instance is then characterized using several metrics (a.k.a.,
features) extracted from the software archives or computed
afterward and is labeled as failure-prone or neutral, or with
the number of defects it contains. The labeled instances are
used to build a training set, namely the source of knowledge
exploited by a Machine-Learning classifier to learn the fea-
tures that discriminate and predict the presence (or number)
of defects in a certain source code artifact. In this study, we
focus on the definition of binary classification models to classify
IaC scripts as failure-prone or neutral.

3 THE RADON FRAMEWORK FOR IAC DEFECT
PREDICTION

Figure 2 provides a detailed overview of the proposed
framework consisting of four individual components:

• The GITHUB IAC REPOSITORIES COLLECTOR collects
active IaC repositories on GitHub.

• The REPOSITORY SCORER computes repository metrics
based on best engineering practices, which are used to
select relevant repositories.

• The IAC REPOSITORY MINER mines failure-prone and
neutral IaC scripts from a repository. Then, it gathers
a broad set of metrics from the literature comprising
of traditional application code metrics (e.g., lines of
code), IaC-oriented metrics (e.g., number of config-
uration tasks), and process metrics (e.g., number of
commits to a file), that are computed upon the collected
IaC scripts to predict their failure-proneness.

• The IAC DEFECT PREDICTOR pre-processes the datasets
and trains the Machine Learning models. Given an
unseen IaC script, this component classifies it as failure-
prone or neutral.

The toolset and pipeline described along this section
allowed us to build a meaningful dataset as our source
of truth for the following steps of metrics calculation and
defects prediction.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html
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Fig. 2: The RADON framework for IaC Defect Prediction. The repositories collected by the GITHUB IAC REPOSITORIES
COLLECTOR are passed as input to the REPOSITORY SCORER to pick relevant repositories. Afterward, the IAC REPOSITORY
MINER mines the selected repositories, and its output, consisting of observations of failure-prone and neutral IaC scripts for
the individual repositories, are used by the IAC DEFECT PREDICTOR to build and evaluate the models.

3.1 GITHUB IAC REPOSITORIES COLLECTOR

Prior work on defect prediction for traditional application
code uses datasets extracted from public software data
archives [16], [17]. However, only a handful of IaC datasets
are publicly available [7], and they are limited to Chef
and Puppet scripts. Therefore, we implemented the GITHUB
IAC REPOSITORIES COLLECTOR to search for public candi-
date repositories containing Ansible code through the novel
GraphQL-based GitHub APIs6.

The tool is open-source and available on Github7 and
on the Python Package Index (PyPI)8. It enables tuning
the GraphQL search query to collect metadata, such as

6. https://developer.github.com/v4/
7. https://github.com/radon-h2020/radon-repositories-collector
8. https://pypi.org/project/repositories-collector/

name, description, URL, and root directories, from repos-
itories that match user-defined selection criteria, such as
the minimum number of releases, issues, stars, and watch-
ers. Archived, mirrored, and forked repositories are ex-
cluded. The metadata are used to select Ansible reposi-
tories by checking the word ansible against their name
(e.g., ansible/ansible-examples), description (e.g., A
few starter examples of ansible playbooks9), or directory layout
(i.e., the presence of at least two of the following directories:
playbooks, meta, tasks, handlers, roles.)

The repositories’ metadata are then saved on a Mon-
goDB instance and analyzed to mine only relevant projects.

9. From https://github.com/ansible/ansible-examples

https://developer.github.com/v4/
https://github.com/radon-h2020/radon-repositories-collector
https://pypi.org/project/repositories-collector/
https://github.com/ansible/ansible-examples
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TABLE 1: Criteria to select repositories that contain evidence of engineered software projects.

# Name Description Rationale

1 Push Events The repository must have at least one push event
to its default branch in the last six months

Evidence of recent development activity

2 Releases The repository must have at least 2 releases The proposed defect predictor analyzes files at
each release and between successive releases

3 Ratio of IaC Scripts At least 10% of the files must be IaC scripts Repositories must have a sufficient number of
IaC scripts

4 Core Contributors The project must have at least 2 contributors
whose total number of commits accounts for 80%
or more of the total contributions

Evidence of collaboration

5 Continuous Integration The repository must use a CI service, determined
by the presence of a configuration file required
by that service (e.g., a .travis.yml for TravisCI)

Evidence of quality

6 Comment Ratio The comment ratio must be at least 0.1% Evidence of maintainability
7 Commit Frequency The average number of commits per month must

be at least 2.0
Evidence of sustained evolution

8 Issue Frequency The average number of issue events transpired
per month must be at least 0.01

Evidence of project management

9 License Availability The repository must have evidence of a license Evidence of accountability evolution
10 Lines of Code The repository must have at least 100 lines of code Co-assess and control the criteria 4-9

3.2 REPOSITORY SCORER

A large portion of repositories on Github is not for software
development, i.e., they are mainly used for experimentation,
storage, and academic projects [18]. To mine only relevant
projects, the RADON FRAMEWORK FOR IAC DEFECT PRE-
DICTION verifies several constraints reported in Table 1
along with their description and rationale.

Criterion 1 allows the crawler to discard inactive
projects, while criterion 2 is needed because the target
models are trained at the release-level. These criteria are
evaluated by the GITHUB IAC REPOSITORIES COLLECTOR,
while the remaining criteria are evaluated by the REPOSI-
TORY SCORER, a Python package that we implemented and
made available open-source on Github10 and PyPI11.

More specifically, the ratio of IaC Scripts represents a cut-
off to analyze repositories containing IaC scripts that have
been determined by the previous works [7], [8]. Criteria
4-10 are considered as good indicators of well-engineered
software projects, i.e., “software projects that leverage sound
software engineering practices in one or more of its dimensions
such as documentation, testing, and project management” [19].

The tool takes as input the local path (or remote URL)
to a Git repository, calculate metrics related to the last eight
criteria reported in Table 1, and saves them in the MongoDB
instance along with the repositories’ metadata.

Once the repository is deemed relevant for the analysis,
based on the computed metrics, its history is analyzed using
the IAC REPOSITORY MINER.

3.3 IAC REPOSITORY MINER

IAC REPOSITORY MINER relies on the PyDriller frame-
work [20] to analyze the history of the projects and extract
the failure-prone and neutral IaC scripts needed for the anal-
ysis. To this end, first it applies the Algorithm 1 to identify
defect-fixing commits:

1) Lines 4-7. It extracts the commits linked to issues closed
and related to bugs (i.e., with labels bug, bugfix, etc.).

10. https://github.com/radon-h2020/radon-repository-scorer
11. https://pypi.org/project/repository-scorer/

GitHub provides an issue tracker that links commits
and corresponding issue reports, along with labels that
are used to organize issues. IAC REPOSITORY MINER
comes with 22 bug-related labels that were manually
selected from those belonging to the Ansible reposi-
tories in Section 4. Examples include critical-bug,
ansible_bug, bug/bugfix. The complete list is
available on the online Appendix12

2) Lines 9-12. It analyses the commits whose messages
indicate defective scripts. Specifically, as previously
done by Zhang et al. [21], when analyzing the commits
messages, it first removes all words ending with bug or
fix (apart of bugfix), since those terms can be affixes of
other words as "debug" and "prefix". A commit message
is tagged as fixing defect if it matches the following
regular expression that can be tuned by the user:

(bug|fix|error|crash|problem|fail|defect|patch)

Algorithm 1 Procedure to identify defect-fixing commits.
1: procedure GETFIXINGCOMMITS(labels, regex)
2: fixingCommits = []
3:
4: for label in labels
5: for issue in Repo.closedIssues(label)
6: commit = commitClosingIssue(issue)
7: fixingCommits.append(commit.sha)

8:
9: for commit in Repo.commits

10: commit.msg.remove(words ending with ’bug’ or ’fix’)
11: if regex matches commit.msg
12: fixingCommits.append(commit.sha)

13:
14: discard commits that do not modify IaC scripts
15: return fixingCommits

IAC REPOSITORY MINER keeps only the commits that
modify at least one IaC script (lines 14). Afterward, it de-
termines their failure-proneness as follows. First, it applies
Algorithm 2 to identify IaC files touched by a defect-fixing
commit and their defect-inducing commits (or, bug-inducing
commit). We refer to those files as fixed-files. It analyzes

12. https://github.com/stefanodallapalma/TSE-2020-05-0217/
blob/master/LABELS.md

https://github.com/radon-h2020/radon-repository-scorer
https://pypi.org/project/repository-scorer/
https://github.com/stefanodallapalma/TSE-2020-05-0217/blob/master/LABELS.md
https://github.com/stefanodallapalma/TSE-2020-05-0217/blob/master/LABELS.md
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Algorithm 2 Procedure to identify IaC files modified in
fixing-commits and their bug-inducing commits.

1: procedure GETFIXEDFILES(fixingCommits:List[str])
2: fixedFiles = []
3:
4: for commit in fixingCommits[NEWEST : OLDEST]
5: for file in commit.modifiedFiles
6: if file.type != ’IaC’ or file.changeType != ’Change’
7: continue
8:
9: bics = SZZ(commit, file) . Bug-Inducing Commits

10:
11: currentFix = FixedFile(file.filepath,
12: fic=commit.sha,
13: bic=bics[OLDEST])
14:
15: if currentFix not in fixedFiles
16: fixedFiles.append(currentF ix)
17: else
18: existingFix = fixedFiles.get(currentF ix)
19: if currentFix.fic is older than existingFix.bic
20: fixedFiles.append(currentF ix)
21: else if currentFix.bic is older than existingFix.bic
22: existingFix.bic = currentFix.bic
23:
24: return fixedFiles

the commits backward from the most recent to the oldest
(line 4). For each fixed-file (line 5), it relies on the SZZ
algorithm [22] to automatically identify the oldest commit
that introduced a defect in that script (line 9).13

Files that have not already been fixed in the previously
analyzed commits are added to the list of fixed-files (line
15-16). Otherwise, the following procedure applies:

• Lines 19-20. If the current commit (i.e., fic in Algo-
rithm 2) is older than the previously fixed-file’s defect-
inducing commit (i.e., bic in Algorithm 2), then the
current fixed-file is added to the list of fixed-files as
a new object. This scenario is illustrated in Figure 3a.
Here, a file has been fixed by a recent commit C10. It
fixes a defect introduced in C8 (bic), newer than the
current defect-fixing commit C4 (fic). Consequently, a
new FixedFile(file=A, fic=C4, bic=C1) is added to the list
of fixed-files, in addition to the previous FixedFile(file=A,
fic=C10, bic=C8).

• Lines 21-22. If the current commit is more recent
than the previously fixed-file’s defect-inducing commit,
and the latter is more recent than the current defect-
inducing commit, then the existing fixed-file’s bic is
updated with the current one. This scenario is illus-
trated in Figure 3b. Here, a previously analyzed commit
C8 fixes a defect introduced in C5. So far, the file is
considered failure-prone from C5 to C7. Nevertheless,
the current commit C6 fixes a defect in the same file in-
troduced in C4. Therefore, the file is considered failure-
prone from C4 to C7, and the existing FixedFile(file=B,
fic=C8, bic=C5) is updated to FixedFile(file=B, fic=C8,
bic=C4). This window is expanded if any fix to the same
file is found in commits before C5.

Please, note that for the sake of clearness, we omitted
the lines handling file-renaming in Algorithm 2. Once Algo-
rithm 2 ends and the fixed-files list is returned, the labeling

13. The IaC Repository Miner relies on the SZZ implemented in
PyDriller 1.15.

process is straightforward: all the snapshots of a fixed-file
between its bic (inclusive) and the fic are labeled failure-prone.

Failure-prone

C1 C4 C10C8

Failure-prone

(a)

C4 C5 C8C6

Failure-prone
Oldest Newest

(b)

Fig. 3: Two scenarios of the labeling process.

To measure the soundness of the IAC REPOSITORY
MINER in identifying defect-fixing commits of Ansible files,
we uniformly selected and manually assessed a statistically-
relevant sub-sample of the commits identified by Algo-
rithm 1 on the data collected in Section 4. Therefore, we
applied a sampling technique to determine the appropriate
sample size of fixing-commits that meet our confidence
level and confidence interval [23]. The population of An-
sible defect-fixing commits was set to the number of data
points in the dataset obtained in Section 4 (i.e., 4,937). For
this research, an acceptable confidence level was set to the
generally accepted value of 0.05. As a confidence interval
(a.k.a., the acceptable margin of error) the generally accepted
5% was chosen. By applying Cochran’s formula [24], we
obtained a sample size of 357 commits. Please note that
Cochran’s formula requires a parameter representing the
population’s estimated proportion with the attribute in
question. Because we do not know the actual distribution
of defect-fixing commits, we used the worst-case scenario
percentage of 50%, which yields the largest sample size.
We manually assessed the miner precision on the resulting
357 commits. The first author carried out the validation,
while the second author validated 15% of the samples.
Cohen’s Kappa [25] was measured to compute the degree
of agreement between the assessors. In disagreements, the
two assessors met and discussed the disagreed commits to
convey a solution, i.e., label it either as a true positive or
a false positive. If no agreement was reached, the source
was sent to the third author for further evaluation, without
stating the two previous assessors’ decisions, thus avoid-
ing convenience bias. The resulting third-arbiter decision
emerges as the final one, following a simple majority vote.

Following the aforementioned procedure, we obtained a
precision of 74%. We reached a complete agreement in the
resolution phase from an initial Cohen’s Kappa of 0.34 (79%
agreement). We applied the same procedure to evaluate
the precision of Algorithm 2 in identifying bug-inducing
commits. Also in that case, the population of bug-inducing
commits was set to the number of data points in the dataset
obtained in Section 4 (i.e., 4,434). Thus, we validated 354
bug-inducing commits and obtained a precision of 84%. We
reached a complete agreement in the resolution phase from
an initial Cohen’s Kappa of 0.24 (79% agreement).
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TABLE 2: Configurations

Step Options Algorithm

Feature selection Constant variables removal sklearn.feature_selection.VarianceThreshold
Recursive Feature Elimination sklearn.feature_selection.RFECV

Data balancing None
Random under sampling imblearn.under_sampling.RandomUnderSampler
Random over sampling imblearn.over_sampling.RandomOverSampler

Data normalization None
Min-max normalization sklearn.preprocessing.MinMaxScaler
Standardization sklearn.preprocessing.StandardScaler

Classification Decision Tree sklearn.tree.DecisionTreeClassifier
Logistic Regression sklearn.linear_model.LogisticRegression
Naive Bayes sklearn.naive_bayes.GaussianNB
Random Forest sklearn.ensemble.RandomForestClassifier
Support Vector Machine sklearn.svm.SVC

Along with the failure-proneness of the IaC scripts, IAC
REPOSITORY MINER gathers a comprehensive set of 108 fea-
tures to train the defect prediction model whose description
is reported in the online Appendix14. Such features have
been extracted from previous work in defect prediction [26],
[8], [27] and can be classified into three categories:

• IaC-oriented (ICO) metrics are structural properties
derived from the analysis of the IaC source code. Here-
inafter, we will use the terms ICO metrics and product
metrics interchangeably. IAC REPOSITORY MINER uses
the RADON ANSIBLEMETRICS tool [28] to collect the
46 metrics belonging to a recently proposed catalog of
IaC quality metrics [27] that measure and potentially
predict the maintainability of IaC scripts. More par-
ticularly, 8 of them are “traditional” code metrics that
can be adapted for IaC scripts, e.g., the lines of code:
these metrics have been long adopted in the context of
traditional defect prediction and, therefore, we selected
them to assess their role for predicting IaC defects.
Other 14 metrics in this set have been already studied
by Rahman and Williams [8] for predicting defects in
Puppet code: as such, we considered them to verify
their generalizability when employed for predicting
Ansible defects. Finally, the last 24 refer to best and bad
practices and data management of Ansible code: in our
previous work [27], we conjectured that these metrics
could negatively affect the maintainability of IaC code
and increase its failure-proneness. As an example, let
consider the number of distinct modules: IaC scripts
consisting of many distinct modules are naturally less
self-contained and potentially affect the complexity
and maintainability of the system and, therefore, we
considered it among the set of metrics for IaC defect
prediction.

• Delta metrics capture the amount of change in a file
between two successive releases. We collected 46 of
such metrics, one for each IaC-oriented metric. Delta
metrics have been associated with the failure-proneness
of traditional source code by Arisholm et al. [29]. Again,
we selected them to assess their usefulness when em-
ployed in the context of IaC scripts.

14. For the sake of page limitation, we reported the complete list of
metrics at https://github.com/stefanodallapalma/TSE-2020-05-0217/
blob/master/METRICS.md

• Process metrics consider aspects concerning the devel-
opment process rather than the code itself. IAC REPOS-
ITORY MINER extends PyDriller15 to collect 16 measures
that include the number of developers that changed a
file, the total number of added and removed lines, the
number of files committed together. Also in this case,
the selected metrics have been previously associated
with the failure-proneness of traditional code [30], [26]
and was our willingness to experiment with them in a
different context.

These metrics are extracted from every IaC script at
each release and saved on the MongoDB instance for their
analysis or use by the IAC DEFECT PREDICTOR.

3.4 IAC DEFECT PREDICTOR

The IAC DEFECT PREDICTOR relies on the Python frame-
works scikit-learn [31] and imblearn [32] to build the pipeline
that balances and pre-processes the dataset, trains and val-
idates the Machine-Learning models, and uses it to predict
unseen instances. In particular, it uses different configu-
rations in terms of feature selection, normalization, data
balancing, classifiers, and hyper-parameters16, as described
below and in Table 2.

1) Feature selection. The data have been originally intended
for defect prediction in our study. Nevertheless, not all
the dataset features may help the task because they
are constant or do not provide useful information ex-
ploitable by a learning method for a particular dataset.
The RADON framework uses feature selection to re-
duce the dataset’s size and speed-up the training, and
select the optimal number of features that maximize a
given performance criterion.

2) Data balancing. Class imbalance is a major obstacle
for proper classification by supervised learning algo-
rithms [33]. This is particularly true in defect prediction,
where the neutral class outnumbers the failure-prone
class. Balancing the training dataset is a well-known
practice for supervised learning problems to overcome

15. We used the implementation available online at release 1.13. The
process metrics are documented at https://pydriller.readthedocs.io/
en/latest/processmetrics.html

16. Given the number of classifiers and hyper-parameters, we pre-
ferred reporting the latter in the online appendix.

https://github.com/stefanodallapalma/TSE-2020-05-0217/blob/master/METRICS.md
https://github.com/stefanodallapalma/TSE-2020-05-0217/blob/master/METRICS.md
https://pydriller.readthedocs.io/en/latest/processmetrics.html
https://pydriller.readthedocs.io/en/latest/processmetrics.html
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this obstacle. Therefore, once feature selection is fin-
ished, the training data are balanced such that the
number of failure-prone instances equals the number of
neutral instances. The RADON framework uses three
configurations for balancing, namely (i) no balancing;
(ii) random under-sampling of the majority class; and
(iii) random over-sampling of the minority class. Both
techniques (ii) and (iii) are implemented by the imblearn
package in Python17. An attempt was made to balance
data with other techniques (e.g., SMOTE, ADASYN,
TomekLinks, etc.), but in most cases, their impact on
the prediction was small compared to the increase in
computational time. We, therefore, resorted to the faster
random-sampling techniques.

3) Data normalization. In this step, the training data are
normalized, scaling numeric attributes. The RADON
framework uses three configurations for data normal-
ization, namely (i) no normalization; (ii) min-max trans-
formation to scale each feature individually in the range
[0, 1]; (iii) standardization of the features by removing the
mean and scaling to unit variance.

4) Classification. The normalized data and the learning
algorithm are used to build the learner. Before the
learner is tested, the original test data are normalized in
the same way, and the dimensionality is reduced to the
same subset of attributes from step 1. After comparing
the predicted value and the actual value of the test data,
the performance of one pass of validation is obtained.
Note that, in our framework, the classification step can
be applied with any machine learning algorithm, i.e.,
the learner selection is left to the user.

The final output consists of a csv file that reports the
performance of the models for each validation step, and a
joblib file for each trained model to persist them for future
use without having to retrain.

4 A LARGE EMPIRICAL STUDY ON ANSIBLE CODE

This section reports the experimentation we conducted to
investigate the role of IaC-Oriented, delta, and process met-
rics to predict defective IaC scripts. The goal is to evaluate
the RADON FRAMEWORK FOR IAC DEFECT PREDICTION
in a within-project setup, with the purpose of early detecting
defects in IaC scripts, and learning features that characterize
them, from the individual projects considered.

The quality focus is on evaluating which classification
techniques and features the framework should rely on to
achieve the highest detection accuracy. The perspective is
of researchers, who want to evaluate in-vitro the effective-
ness of defect prediction applied to Infrastructure-as-Code.
We share the dataset, metrics, and models as a baseline
for DevOps and the research community to better under-
stand (failure-prone) IaC scripts and compare competing
approaches for defect prediction.18

Context. The context of the study is composed of configu-
ration management systems and failure-prone IaC scripts.

17. https://imbalanced-learn.readthedocs.io/en/stable/api.html
18. Links to supplemental material are made available on

the online Appendix at https://github.com/stefanodallapalma/
TSE-2020-05-0217

TABLE 3: Number of projects discarded for each criterion.

IaC
ratio

Core
contributors

Comments
ratio

Commit
frequency

Issue
frequency LOC CI License

62 406 30 421 607 21 267 136
(6%) (39%) (3%) (40%) (58%) (2%) (25%) (13%)

TABLE 4: Statistics on the number of defective instances for
the 139 repositories containing defect-fixing commits, after
applying the criteria in Table 1.

Quartile Cum. # repos Min Mean Std Median Max

1st 33 1 4 2 3 8
2nd 69 9 17 6 18 27
3rd 103 29 52 21 42 99
4th 139 101 314 367 175 1658

Specifically, we focus on software projects adopting Ansible
for a two-folded reason: (i) Ansible is the most popular IaC
language to date in industry [11], and (ii) at the best of our
knowledge, there is no previous work on predicting defects
in IaC scripts written in such a language.

We searched all the code repositories on GitHub con-
taining Ansible code since 2014 with at least 2 releases and
a push event to their default branch in the last six months19.
Ansible has been developed since 2012, and we assume that
two years is a reasonable amount of time for a new language
to gain popularity. The total number of repositories related
to our search query was 1050, and 850 were discarded
from the dataset after applying the criteria depicted in Ta-
ble 1, through the REPOSITORY SCORER. Table 3 shows the
number of repositories discarded by each criterion. Note
that the order of the criteria is not binding. Therefore, the
sum of the repositories discarded by each policy is greater
than the total number of repositories discarded. It is worth
mentioning that the Issue Frequency criterion is zero when an
organization uses private or external issues tracker. In that
case, we manually investigated the repository to figure out
whether to select it for experiments. Similarly, we applied
the same process when all criteria were satisfied but the
Continuous Integration or License Availability.

We then ran the IAC REPOSITORY MINER on the remain-
ing 200 repositories. During its validation, we manually
removed commits deemed false positives. We also removed
commits that corrected typos in comments or messages, task
names, and lint warnings such as deprecation. At this stage,
61 repositories ended up with no defect-fixing commits, and
therefore they were discarded, leading to 139 repositories.

Finally, we selected the 106 repositories in the last three

19. Starting from March 2020.

TABLE 5: Statistics of the 104 analyzed repositories ac-
cording to the inclusion criteria, and the third and fourth
quartiles in Table 4. License and Continuous integration are
not shown as boolean and true for all the repositories.

Releases IaC
ratio

Core
contributors

Comments
ratio

Commit
frequency

Issue
frequency LOC

Mean 51 67% 5 10% 26 1.50 7585
Std 77 15% 4 8% 86 2.93 14892

Min 2 19% 2 1% 2 0.01 165
Median 29 68% 4 8% 8 0.67 2570

Max 589 97% 18 45% 863 23.97 109565

https://imbalanced-learn.readthedocs.io/en/stable/api.html
https://github.com/stefanodallapalma/TSE-2020-05-0217
https://github.com/stefanodallapalma/TSE-2020-05-0217
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quartiles of Table 4, in which defective instances range
from 9 to 1658. The rationale is that repositories in the first
quartile have a median of 3 defective instances. They would
not practically allow the definition of a within-project model
because even the best data balancing technique would have
problems in generating artificial instances that are represen-
tative of the minority class [33].

Of the 106 repositories, two failed during training. There-
fore, the following research questions are assessed on the
remaining 104 repositories, whose statistics are depicted in
Table 5.
Research Questions. In this paper, we aim at investigating
the role of Machine-Learning classifiers and a broad set of struc-
tural code and process measures for the prediction of failure-prone
IaC scripts. Specifically, the following research questions
steer our research:
RQ1 To what extent does the classifier selection impact the perfor-

mance of Machine-Learning models to predict the failure-
proneness of IaC scripts?

RQ2 How is the prediction performance affected by the choice of
the metric sets?

RQ3 Which metrics are good defect predictors? That is, what
are the most selected predictors and their combinations?

Classifier Selection. We relied on five classification al-
gorithms, namely NAIVE BAYES (NB), LOGISTIC REGRES-
SION (LR), DECISION TREE (CART), RANDOM FOREST (RF),
and SUPPORT-VECTOR MACHINE (SVM) as they have been
widely used for defect prediction [13]. On the one hand,
NAIVE BAYES and LOGISTIC REGRESSION are simple to
understand and interpret and are fast learners, as they
do not require much training data. On the other hand,
DECISION TREE, RANDOM FOREST, and SUPPORT-VECTOR
MACHINE are more flexible and powerful, as they are ca-
pable of fitting many functional forms and do not make
assumptions about the underlying function. Although they
are less efficient at training time due to many parameters,
they can provide high-performance models. Furthermore,
they also have a good level of interpretability. Decision
Tree and Random Forest can be analyzed by observing the
trees’ path and the decision nodes to understand which
feature affected the final decision. Support-Vector Machine
provides a formula that is a weighted sum over features. The
value of each feature can be analyzed to identify the extent
to which it contributed to classifying the given instance.
The five models complement each other in terms of pros
and cons while keeping a good degree of explainability
and are good candidates for our goals. All of the above
techniques were implemented using scikit-learn20, a well-
known Python framework.
Model Validation. To compute the model performance, we
reported the following evaluation measures, as we believe
they are the most suitable for imbalanced data sets where
one class is observed more frequently than the other class:

• Area Under the Curve - Precision-Recall (AUC-
PR). This measure summarizes the precision-recall
(PR) curve. On imbalanced or skewed data sets, PR
curves are a useful alternative to ROC curves to high-
light the performance differences that are lost in ROC

20. https://scikit-learn.org/stable/supervised_learning.html

curves [34], [35]. Please consider that we used AUC-PR
to tune the models when applying cross-validation.

• Matthews Correlation Coefficient (MCC). This mea-
sure focuses on the quality of binary classifications. A
coefficient of +1 represents a perfect prediction, 0 no
better than a random prediction, and -1 indicates total
disagreement between prediction and observation [36].

The performance is analyzed in terms of mean and
standard deviation. A more comprehensive table containing
all the evaluation measures for each project can be found in
our online Appendix21.

We evaluated the suitability and performance of the pro-
posed classifiers by training them with different configura-
tions in terms of normalization, data balancing, and hyper-
parameters, as shown in Section 3.4. The model selection
was guided by a randomized search on the models’ param-
eters through a walk-forward validation [37]. In walk-forward,
the dataset represents a time series that can be divided
into orderable parts, e.g., a project’s release. Such parts are
chronologically ordered, and in each run, all data available
before the part to predict is used as the train-set, while the
part to predict is used as test-set, thus preventing the test-set
from having data antecedent to the train-set. Afterward, the
model performance is computed as the average among runs.
The number of iterations is equal to the number of parts
minus one. Specifically, we trained each model on the first n
releases and tested on the (n+1)-th release, for every integer
n ∈ [1, |Releases|). This process is illustrated in Figure 4.

Release 1 Release 2 Release 3 Release 4

Training set Test set
Training set

Training set
Test set

Test set

Split 1
Split 2
Split 3

Fig. 4: Walk-forward release cross-validation.

4.1 RQ1 – Impact of Learning Techniques
The framework presented in Section 3 allowed us to gather
a comprehensive and meaningful set of data to implement a
learning-based method for predicting the failure-proneness
of an IaC script, as discussed throughout this section, and
answer the following research question:

RQ1 – To what extent does the classifier selection impact the
performance of Machine-Learning models to predict the

failure-proneness of IaC scripts?

4.1.1 Methodology
We created 104 Machine-Learning models (one per project)
trained and tested on different configurations, as shown in
Section 3.4. At this step, we used all 108 metrics as features
and decided, on purpose, not to use any feature selection
algorithm as we were interested in analyzing the capabilities
of the prediction models using the whole set of metrics, and
considered only releases having at least one defective script.

First, we analyzed the number of times each evaluated
classifier achieved the best performance (i.e., it was the best

21. Available online at https://github.com/stefanodallapalma/
TSE-2020-05-0217/blob/master/METRICS.md

https://scikit-learn.org/stable/supervised_learning.html
https://github.com/stefanodallapalma/TSE-2020-05-0217/blob/master/METRICS.md
https://github.com/stefanodallapalma/TSE-2020-05-0217/blob/master/METRICS.md
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(a) (b)

Fig. 5: (a) Area under the precision-recall curve and (b) Matthews correlation coefficient of each learning technique. The
models trained using RANDOM FOREST perform statistically better than those relying on the remaining classifiers, both in
AUC-PR and MCC. Follows, in order, SUPPORT VECTOR MACHINE, LOGISTIC REGRESSION, and DECISION TREE, albeit
their performance difference is negligible. The only exception is that the DECISION TREE’s MCC is very close to RANDOM
FOREST, with no significant difference.

model in terms of AUC-PR) for a given project. Then, as it
was difficult to make any assumptions about the underlying
distribution with many evaluation measures, we applied a
non-parametric test to assess the differences’ significance.
Specifically, for both AUC-PR and MCC, we reported p-
values from a matched pair Wilcoxon’s rank test [38] for all
pairs of techniques, along with the effect size using Cohen’s
d [39]. Wilcoxon’s rank test determines whether two or more
sets of pairs are different from one another in a statistically
significant manner; while Cohen’s d measures the effect size
for the comparison between two means. A Cohen’s d below
0.2 is considered negligible, between 0.2 and 0.5 it is small,
between 0.5 and 0.8 it is medium, and it is large above
0.8 [39]. Finally, given the number of comparisons being per-
formed, we set the level of significance to α = 0.01 and per-
formed a posthoc Bonferroni’s correction [40]. Specifically,
we adjusted the significance level according to the number
of comparisons (i.e., ten), therefore α = 0.001. Finally, we
reported several statistics (i.e., mean, median, minimum,
maximum, standard deviation) for each evaluation measure
for the classifier achieving the best performance.

4.1.2 Results

TABLE 6: Number of times a model appears among the best-
performing models.

Learning technique Occurrences

Random Forest 98
Support Vector Machine 26
Logistic Regression 17
Decision Tree 16
Naive Bayes 1

Table 6 shows each evaluated model’s occurrences as the
best model for any given project in terms of AUC-PR. As can
be observed, RANDOM FOREST is the classifier that occurs

TABLE 7: Statistical comparison of mean AUC-PR among
learning techniques. Values below the diagonal are the
differences between pairs of techniques (in %, significant
in bold). A negative value means that the model in the row
performed worse than the one in the column. Values above
the diagonal are the effect size.

RF CART SVM LR NB

Effectsize(Wilcoxon (a=0.01))

RF – Medium Small Medium Large
CART -12 – Small Negligible Medium
SVM -8 5 – Negligible Large
LR -10 3 -2 – Large
NB -31 -19 -23 -21 –

TABLE 8: Statistical comparison of mean MCC among learn-
ing techniques. Values below the diagonal are the differ-
ences between pairs of techniques (in %, significant in
bold). A negative value means that the model in the row
performed worse than the one in the column. Values above
the diagonal are the effect size.

RF CART SVM LR NB

Effectsize(Wilcoxon (a=0.01))

RF – Negligible Small Medium Large
CART 2 – Medium Large Large
SVM -9 -12 – Small Medium
LR -15 -16 -5 – Medium
NB -28 -30 -18 -13 –

most (98/104), followed by SUPPORT VECTOR MACHINE
(26/104), LOGISTIC REGRESSION (17/104), and DECISION
TREE (16/104). NAIVE BAYES has been observed among the
best models only once. It is important to mention that the
sum of the occurrences is not equal to 104 as, for some
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projects, multiple models achieved the same performance.
In particular, we observed the co-occurrences (CART, LR,
RF, SVM) four times, (LR, RF, SVM) three times, and the co-
occurrences (CART, LR, NB, RF, SVM), (CART, RF, SVM),
(CART, LR, RF), and (RF, SVM) once.

Figure 5a - Figure 5b and Table 7 - Table 8 show that
the differences among the learning techniques in terms of
mean AUC-PR and MCC are in most cases very high and of
practical significance. The average PR area ranges from 0.56
for the worst-performing technique, namely NAIVE BAYES,
to above 0.87 for the most performing techniques, namely
RANDOM FOREST. RANDOM FOREST is the learning method
with the lowest standard deviation and thus yields the most
stable results regardless of the metrics used; the minimum
is right below 0.14 while the maximum is 1.00, and the
standard deviation 0.16.

Figure 5a and Figure 5b show a clear overview of the
techniques’ performance and differences. According to [41],
although not a formal test, if two boxes’ notches do not over-
lap, there is strong evidence (95% confidence) their medians
differ. Thus, we observed that the median performance of
RANDOM FOREST differs from the remaining techniques.
In contrast, the notches’ overlap between SUPPORT VEC-
TOR MACHINE, LOGISTIC REGRESSION, and DECISION TREE
suggests evidence that their medians performance do not
differ significantly. The only exception is DECISION TREE’s
MCC, which is similar to RANDOM FOREST and significantly
better than the remaining techniques. Significant differences
between pairs of techniques are shown in bold in Table 7
- Table 8. Differences in AUC-PR between DECISION TREE
and SUPPORT VECTOR MACHINE (5%) and between SUP-
PORT VECTOR MACHINE and LOGISTIC REGRESSION (2%)
are not statistically significant (p-value > 0.001). The values
above the diagonal indicate the effect size. The largest effect
size, between RANDOM FOREST and NAIVE BAYES, is 1.40,
meaning that the difference between the two means is
larger than one standard deviation. The effect sizes between
RANDOM FOREST and SUPPORT VECTOR MACHINE (0.44)
and between SUPPORT VECTOR MACHINE and DECISION
TREE (0.23) is small. The effect size between DECISION TREE
and LOGISTIC REGRESSION (0.12) and between SUPPORT
VECTOR MACHINE and LOGISTIC REGRESSION (0.09) are
instead negligible.

Likewise, the average MCC ranges from 0.46 for the
worst-performing technique, namely NAIVE BAYES, to ap-
proximately 0.75 for the best-performing technique, namely
RANDOM FOREST. The latter classifier is also the learning
technique which has the lowest standard deviation (~0.21)
along with DECISION TREE (~0.18); the minimum is around
0, while the maximum is 1.00. In terms of MCC, the differ-
ences between RANDOM FOREST and DECISION TREE (1.8)
and between SUPPORT VECTOR MACHINE and LOGISTIC
REGRESSION (0.05) are not statistically significant. Similarly,
the respective effect sizes (i.e., 0.09 and 0.21) are negligible
and small, respectively.

The performances are generally very high, though we
observed 20 projects where all the models perform badly,
with a median AUC-PR of 0.45 (against the 0.90 of the
remaining). Looking closer at the project’s characteristics
and their inclusion criteria in Table 1, we observed that the
models are trained on a relatively lower number of releases

(a median of 13 against the 32 for the projects with good
models’ performance). Because the models were trained
and validated through a walk-forward validation across
releases, a higher number of releases allows for more runs to
train and validate the model to select the one that maximizes
the AUC-PR. Furthermore, the median ratio of defective
instances to the total instances differs by 13% between
the two groups of projects: 7% and 20%, respectively. The
lack of defective instances in the first group might have
impacted the models’ capabilities to discriminate between
failure-prone and neutral instances, thus leading to bad
performance.

Looking at the metrics, we observed a significant dif-
ference for the metric CHANGESETMAX (a median of 16
in the first group compared to 4 in the second), meaning
that the 20 projects with poor models’ performance have a
median maximum number of files committed together of 16.
Although our analysis considers only Ansible scripts, it is
possible that in those projects, the presence of many Ansible
files committed together led to an imprecise identification of
failure-prone scripts, for the sole reason that a fixing-commit
modified them along with the actual failure-prone file(s).

Concerning to the differences among the models, al-
though the difference between SUPPORT VECTOR MACHINE
and LOGISTIC REGRESSION are tiny, we observed 11 projects
with a high difference in AUC-PR (i.e., a median difference
of ~25%). In those projects, the former model outperformed
the second 8 times. In those cases, the project’s character-
istics were similar. However, we observed that the median
number of commits was higher (14) than the opposite (8).
Similarly, the median number of instances used for train-
ing was almost three times higher in projects where SUP-
PORT VECTOR MACHINE performed better than LOGISTIC
REGRESSION, while the percentage of defective instances
to the total number of instances was approximately the
same (~7%). This might suggest that LOGISTIC REGRESSION
exploited better the projects with a small amount of data,
but that might have been negatively affected by noise in
the data present in larger projects. However, it is not clear
how these attributes affected the models’ performance. Also,
the median CHANGESETMAX was notably lower in the
first case (10) than in the second case (25). Similarly, the
median CHANGESETAVG (i.e., the average number of files
committed together) was 3 in the first case and 4 in the latter,
suggesting that in those projects, SVM is less deteriorated
by the noise in the dataset compared to LR. It is worth
mentioning that, regardless of its importance for the final
classification of IaC scripts’ failure-proneness, the CHANGE-
SET metric suggests that the dataset might contain several
false positives, in the presence of which some models might
perform worse than others.

Finally, RANDOM FOREST outperforms the other models,
regardless of the metrics used or the project’s character-
istics. Therefore, we analyzed in detail the performance
achieved by RANDOM FOREST, i.e., the best performing
classifier according to our findings. Table 9 reports the
average performance for all projects in terms of PR area,
precision, recall, F1, and MCC. Although the minimum
AUC-PR is 0.14, the mean and median are high: 0.87 and
0.93 respectively, with a standard deviation of 0.16, meaning
that, on average, models’ AUC-PR range between 0.71 and
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1. Although the standard deviation might seem high, the
coefficient of variation (CV) is only 0.18. As a rule of thumb,
a CV ≥ 1 indicates a relatively high variation, while a
CV < 1 is considered low. It is worth noting that the high
average MCC (0.74) indicates a strong agreement between
the predictions and the observed values.

TABLE 9: Performance statistics of Random Forest across
the 104 repositories.

AUC-PR MCC Precision Recall F1

Mean 0.87 0.74 0.77 0.84 0.77
Std 0.16 0.21 0.21 0.16 0.20

Min 0.14 -0.01 0.00 0.00 0.00
Median 0.93 0.80 0.82 0.89 0.82

Max 1.00 1.00 1.00 1.00 1.00

RQ1 summary: The models trained using RANDOM FOREST
perform statistically better than those relying on the remaining
classifiers. The difference is statistically different with large effect
size.

4.2 RQ2 – Effect of Metric Sets
While using more features might lead to better performance
because of the increased quality of information fed to the
ML techniques, we are aware that using the whole set of
metrics might decrease the detection performance as more
features could increase noise. Furthermore, extracting all
features could not be feasible in some projects or even cause
more work in the metric collection. Therefore, in RQ2, we
aim at understanding the effect of different type of metrics on
the prediction performance.

RQ2 – How is the prediction performance affected by the choice
of the metric sets?

4.2.1 Methodology
To evaluate the relative prediction power of the metric sets
presented in Section 3.3 (ICO, Delta and Process), the data
was combined to construct seven different candidate metric
sets: ICO, Delta, Process, ICO + Delta, ICO + Process, Delta +
Process, Total.

Then, as for RQ1, to compare the magnitude of the
differences between the metric sets, we reported several
statistics, and we performed statistical analysis. In partic-
ular, for each evaluation measure, we showed the results of
the matched pair Wilcoxon’s rank test for all pairs of metrics
sets aggregated across the best learning method from RQ1,
i.e., RANDOM FOREST, along with the effect size computed
using Cohen’s d. Given the number of comparisons we
performed, we set the significance level to α = 0.01 and
applied the posthoc Bonferroni’s correction.

4.2.2 Results
Figure 6a - Figure 6b and Table 10-Table 11 show that the
differences among the metric sets in terms of mean AUC-
PR and MCC are in most cases very high and of practical
significance. The average PR area ranges from 0.32, for the
Delta metric set, up to 0.90 for the ICO metric set, i.e.,
consisting of solely Infrastructure-as-Code features.

The ICO metrics are also the metrics with the lowest
standard deviation and thus yields the most stable results;
the minimum is right above 0.23, and the maximum is 1.00,
while the standard deviation 0.14. These results align with
those observed in RQ1, suggesting that the results were due
to those metrics. Indeed, there is a significant performance
decrease (shown in bold in Table 10) when adding other
metric sets to the ICO or using them alone.

Like RQ1, this can be caught at a glance from the notched
boxplot analysis in Figure 6a and Figure 6b. On the one
hand, the gap between the models’ performance featuring
ICO and those relying on Process or Delta metrics is evident.
On the other hand, the notches’ overlap between ICO,
ICO+Process, ICO+Delta, and Total suggests that the models’
medians performance using those features do not differ
significantly. Consequently, adding process, delta metrics,
or both to the IaC-Oriented metrics does not significantly
affect the model’s performance.

For example, adding the Delta metrics or the Process met-
rics significantly decreases the performance by 1% and 2%
on average. However, the effect’s magnitude is negligible.
Therefore, those metrics do not contribute to improving the
results. Although, at the same time, they do not worsen
the performance significantly, using them would require an
additional effort for metrics collection. Using the Total set
of metrics decreases the performance similarly (i.e., 6% on
average). Finally, the use of the Process and Delta metrics
alone produce bad results, with a median AUC-PR of 0.31.

Likewise, the average MCC ranges from 0.07 for the
worst metric set, namely Delta, to above 0.80 for the best
metric set, namely ICO. The ICO metrics lead to a model
with the third lowest standard deviation (~0.18, after the
0.13 of Process and Delta metrcs); the minimum ICO’s MCC
is right above 0.12 while the maximum is 1.00, and its
median is 0.92. Similarly to AUC-PR, the difference between
the model trained on the ICO metric set is significantly
higher than the ones trained on the other metric sets.

RQ2 summary: The models which feature IaC-Oriented met-
rics perform statistically better than those relying on the remain-
ing metric sets. The difference is statistically significant with
large effect size.

4.3 RQ3 – Best Predictors

In the previous research question, we observed that a model
trained on the structural source code metrics performs better
than one trained on the other metrics. While the previous
question aimed to study how the prediction performance
is affected by the choice of the metrics as grouped by
their type, with the following research question, we aim at
identifying and ranking the individual metrics based on their
impact on the prediction performance.

RQ3 – Which metrics are good defect predictors? That is,
what are the most selected predictors and their combinations?

4.3.1 Methodology
To answer this research question, we performed a recursive
feature selection to find the metrics that maximize the per-
formance and to rank them according to their importance
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(a) (b)

Fig. 6: (a) Area under the precision-recall curve and (b) Matthews correlation coefficient of each metric set. Models featuring
IaC-Oriented metrics perform statistically better with a large effect size than those not relying on them, both in AUC-PR
and MCC. Adding process, delta metrics, or both, does not significantly affect their performance. Models featuring process
and delta metrics alone, or their combination, perform poorly with almost no difference.

TABLE 10: Statistics of mean AUC-PR among metric sets. Values below the diagonal are the differences between pairs of
metric sets (in %, significant in bold). A negative value means that the model featuring the row’s metrics performs worse
than a model featuring the column’s metrics. Values above the diagonal are the effect size.

ICO ICO + Delta ICO + Process Total Process + Delta Process Delta

Effectsize(Wilcoxon (a=0.01))

ICO – Negligible Negligible Negligible Large Large Large
ICO + Delta -1 – Negligible Negligible Large Large Large
ICO + Process -2 -1 – Negligible Large Large Large
Total -2 -2 0 – Large Large Large
Process + Delta -55 -54 -53 -53 – Negligible Negligible
Process -55 -55 -54 -53 0 – Negligible
Delta -58 -58 -56 -56 -3 -3 –

TABLE 11: Statistics of mean MCC among metric sets. Values below the diagonal are the differences between pairs of
metric sets (in %, significant in bold). A negative value means that the model featuring row’s metrics performs worse than
a model featuring the column’s metrics. Values above the diagonal are the effect size.

ICO ICO + Delta ICO + Process Total Process + Delta Process Delta

Effectsize(Wilcoxon (a=0.01))

ICO – Negligible Negligible Small Large Large Large
ICO + Delta -3 – Negligible Negligible Large Large Large
ICO + Process -3 -1 – Negligible Large Large Large
Total -6 -4 -3 – Large Large Large
Process + Delta -71 -7 -68 -65 – Negligible Negligible
Process -72 -72 -69 -66 -1 – Negligible
Delta -73 -73 -69 -66 -1 -1 –

for the prediction. Given an external estimator that assigns
weights to features (e.g., the importance of each feature
in a Random Forest model), the goal of recursive feature
elimination (RFE) is to select features by recursively con-
sidering smaller and smaller sets of features that optimize
the performance criteria. The algorithm trains the estimator
on the initial set of features and ranks the features by
importance. The least important features are pruned from
the current set. The procedure is recursively repeated on
the pruned set until the algorithm eventually reaches the
desired number of features to select.

However, RFE requires to select the number of features
to keep, which is often not known in advance. To find
the optimal number of features, we need to apply cross-

validation to score the different feature subsets and select
the best scoring collection of features. To this end, we used
the RFECV method available in sklearn22 along with the
RANDOM FOREST model from RQ1 as estimator and walk-
forward as cross-validation.

4.3.2 Result

The results of RFECV show a median of 11 optimal features
per model, with a mean test PR area and standard deviation
of 0.89 and 0.14, respectively. The average AUC-PR aligns
with the results observed in RQ1. However, the lower

22. https://scikit-learn.org/stable/modules/generated/sklearn.
feature_selection.RFECV.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
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TABLE 12: Ten most recurring features.

Rank Predictor Type Occurrences

1 NUMTOKENS ICO 84
1 TEXTENTROPY ICO 84
1 LINESCODE ICO 84
2 NUMKEYS ICO 78
3 AVGTASKSIZE ICO 64
4 LINESBLANK ICO 58
5 NUMPARAMETERS ICO 57
6 NUMUNIQUENAMES ICO 55
7 NUMDISTINCTMODULES ICO 54
8 NUMCONDITIONS ICO 49

TABLE 13: Ten most recurring combinations of features.

Rank Predictor Occurrences

1 NUMTOKENS, LINESCODE 79
2 NUMTOKENS, TEXTENTROPY 76
3 LINESCODE, TEXTENTROPY 75
4 LINESCODE, NUMKEYS 72
4 NUMKEYS, TEXTENTROPY 72
4 LINESCODE, NUMTOKENS, TEXTENTROPY 72
5 NUMKEYS, NUMTOKENS 71
6 LINESCODE, NUMKEYS, NUMTOKENS 69
7 LINESCODE, NUMKEYS, TEXTENTROPY 68
8 NUMKEYS, NUMTOKENS, TEXTENTROPY 67

number of optimal features suggests that most of them are
redundant and decrease the overall performance.

Table 12 and Table 13 show a ranked list of the most ten
recurring features and their combinations. NUMTOKENS,
TEXTENTROPY and LINESCODE are the three features that
occur most among the features selected by the RFECV.

It is interesting to note that the most recurring process
metrics, namely CHANGESETMAX, CHANGESETAVG and
CODECHURNCOUNT only occur 42, 30 and 29 times, re-
spectively, and are at rank 11, 17 and 18; while the most
occurring delta metric is DELTATEXTENTROPY at rank 20
with 27 occurrences, and most of them are between rank 26
and 42 (i.e., the last rank).

RQ3 summary: IaC-oriented metrics tend to maximize the
prediction performance. In particular, NUMTOKENS, TEXTEN-
TROPY and LINESCODE are the most occurring predictors.

5 DISCUSSION, IMPLICATIONS, AND LIMITATIONS

In RQ1, we found out that the collected metrics have a high
prediction power for the failure-proneness of IaC. Regard-
less of the metrics used, RANDOM FOREST provided the
best results in predicting, over-performing other learning
techniques, reaching a median AUC-PR of 0.93, an MCC of
0.80, and an F1-score of 0.82.

We observed that the performance difference between
SUPPORT VECTOR MACHINE and LOGISTIC REGRESSION,
and between LOGISTIC REGRESSION and DECISION TREE is
not statistically significant, although the former provided
better results most of the time. Consequently, depending
on the desired model flexibility and the available compu-
tational resources, one can choose them interchangeably
without significantly negatively affecting the prediction.

The results achieved in the context of RQ2 and RQ3 are
surprising. In RQ2, we found that models trained on process

metrics have poor performance, as opposed to code metrics.
In RQ3, we observed that the top 13 predictors (in terms
of occurrences among the most critical features resulted
from the recursive feature elimination) include IaC-Oriented
metrics only. Therefore, we conclude that, for the collected
Ansible-based projects, structural code metrics outperform
process metrics, although the latter is often more effec-
tive when predicting the failure-proneness of source code
instances in traditional Defect Prediction [30], [26]. We
conjecture that this result is due to the lower number of
infrastructure code changes than application code, limiting
the information exploitable by the process metrics.

5.1 Implications for Research and Practice

• Implications for researchers: There is still room for
further research in this area. Our findings put a baseline
to investigate which prediction models should be used
based on the characteristics of the software project to
analyze (e.g., the number of core contributors, size in
terms of commits, lines of code, and the ratio of IaC
files). This aspect is of particular interest in the context
of Cross-Project Defect Prediction, where the lack of
historical data forces organizations to use pre-trained
models built on similar projects. Further research is
needed to understand the relationship between the
failure-proneness of Infrastructure-as-Code and the col-
lected metrics. These results can lead to a better under-
standing of which features to utilize to improve defect
prediction of IaC.

• Implications for practitioners: Practitioners that still do
not use prediction models for IaC can build upon our
findings to implement novel models by extracting only
subsets of features such as the ones that we showed
in RQ3. This aspect will reduce the number of features
to collect, reduce the number of tools required to mine
them, and speed-up the training phase.
For each project on which we trained our models, we
report several statistics such as the size, number of
commits, and core contributors to allow practitioners
to compare their projects with those used in this study
and use our pre-trained models.

5.2 Threats to Validity

This section describes the threats that can affect the validity
of our study.

5.2.1 Threats to Construct validity
Threats to construct validity concern the relation between the
theory and the observation, and in this work are mainly
due to the repositories we collected and the measurements
we performed. Such a threat is the most occurring in our
study, and it is related to:

• Imprecise identification of relevant repositories: it is pos-
sible that some repositories relevant for the analysis
are missing or that some repositories are not relevant
(e.g., too small for practical significance). We filtered
out repositories based on ten criteria to identify active,
IaC-related, and well-engineered software projects to
mitigate this threat.
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• Imprecise identification of the failure-prone scripts: it is
possible that some scripts were imprecisely identified
or not identified at all as “failure-prone”. To mitigate
this threat, we considered the developers’ intent where
possible (i.e., by analyzing issues’ labels) and selected
a state-of-the-art strategy to analyze the commit mes-
sages. Although using commit messages to mine defect
information might be biased, Rahaman et al. [42] re-
ported that increasing the sample size can leverage the
possible bias in defect data. We also ignored renamed
files without modification to the source code, added or
removed by the defect-fixing commits. Besides, failure-
prone scripts were extracted from a set of ~5,000 defect-
fixing commits. Although our selection reflects a set
that is statistically-relevant for our available data, we
acknowledge this may not be the complete population
of publicly available defect-fixing commits; we confer
the validity of our study to the systematicity of the
approach utilized for data collection, which warrants
reasonable certainty that a large part of the available
fixing-commits was considered.

• Undocumented bugs present in the system: we relied on the
issue trackers to identify bugs fixed during the change
history. Undocumented bugs (i.e., no issues related to
the bug) could be present in some scripts, leading to
classify failure-prone scripts as “neutral” mistakenly. To
mitigate this threat, we took into account the commit
messages, too.

• Approximations due to identifying fix- and defect-inducing
changes using keywords and the SZZ algorithm: we relied
on ad-hoc sets of issue labels, keywords to identify
defect-fixing commits, and the SZZ implementation
available in PyDriller to identify defect-inducing com-
mits. A diverse combination of labels, keywords, and
SZZ algorithm may bring different results. To the best
of our knowledge, we selected the most common rep-
resentative keywords used by developers to indicate
fixes (while analyzing commit messages). Furthermore,
we collected the labels related to bugs by manually
analyzing the labels of each project.

• Imprecise computation of process and code metrics: poor im-
plementation of the metrics might lead to the imprecise
computation of their values, thus making the predictor
wrongly believe a metric is more important than others.
To mitigate this threat, we implemented the metrics fol-
lowing their documentation and adopting a test-driven
approach. First, we documented the metrics with the
intended behavior and examples. We implemented the
test cases beforehand the production code to improve
our confidence in the metric miners.

5.2.2 Threats to Internal Validity
Threats to internal validity concern internal factors we did
not consider that could affect the investigated variables.
In particular, the choice of the metrics (e.g., product vs.
process metrics) might positively or negatively influence
the classification. We mitigated this threat by considered a
comprehensive set of metrics gathered from the literature
comprising of

• metrics that take into account the structural properties
of infrastructure code;

• metrics that track the changes between two successive
releases for each of the structural metrics;

• complementary metrics that take into account the de-
velopment process rather than the structural character-
istics of the code.

The nature of data could hinder the accuracy of the
models. In this context, multicollinearity is a condition where
two or more independent variables are highly correlated.
Although this aspect is particularly relevant for LOGISTIC
REGRESSION, to guarantee a fair comparison with the other
models, we did not take it into account. However, our
results suggest that the multicollinearity effect could be
significant. To assess this, we have conducted an additional
analysis23, where we reduce the multicollinearity by dis-
carding the features having a Variable Inflation Factor (VIF)
larger than 10 [43]. Our results show that the models where
we apply VIF have a median MCC and AUC-PR 21% and
10% lower than those not including it; albeit, the effect’s
magnitude of these differences is negligible. The relatively
small difference might indicate that our methodology did
not influence too much the achieved results. Similarly, data
balancing is a critical aspect of defect prediction. Class
imbalance and the proposed framework’s balancing tech-
niques could affect the model’s performance. Although we
observed that no balancing is the balancing technique oc-
curring the most (followed by Random Over-Sampling and
Random Under-Sampling), we acknowledge that the impact
of other state-of-the-art balancing techniques (e.g., SMOTE,
ROSE, etc.) should be investigated as well. Nevertheless,
we feel that the exhaustive analysis of the impact of feature
selection and balancing techniques is out of scope for this
study: a careful evaluation of such aspects would require
dedicated studies, which we plan as future research.

5.2.3 Threats to External Validity
Threats to external validity concern the generalization of
results. First, we analyzed 104 Ansible-based systems from
different application domains and having different charac-
teristics (number of contributors, size, number of commits,
etc.). However, systems from different ecosystems (e.g.,
Chef, Puppet) and orchestration language (e.g., TOSCA)
should be analyzed with the same framework to corrobo-
rate our findings. Our framework can be easily extended
to other configuration management and orchestration lan-
guages. In particular, process metrics are language agnostic,
and therefore they can be extracted from any versioning
control system regardless of the language. Many of the
structural metrics we collected can also be extended to
other languages, as they have a general-scope and/or can
be extracted by any plain text file (e.g., NUMTOKENS and
TEXTENTROPY).

Second, our work revolves around within-project defect
prediction, and, as such, we aim at learning features that
characterize failure-prone IaC scripts from the individual
projects considered. Repositories having no defects or a
small number of defective instances were not used in this
context: indeed, the absence of defects would not allow any
machine-learner to distinguish failure-prone from failure-
free scripts, while projects having a tiny amount of de-

23. Available on the online Appendix.
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fective instances would not practically allow the defini-
tion of a within-project model because even the best data
balancing technique would have problems in generating
artificial instances that are representative of the minority
class [33]. For these reasons, our framework might not
generalize on projects with either zero or small amounts
of defective instances. Those projects would be enforced to
use a cross-projects strategy, where information is gathered
from external projects so that a learner could be used in
their own environments. Nevertheless, the investigation of
the proposed framework performance in cross-project defect
prediction is part of our future research.

Finally, another threat is related to the classifier selection.
We chose five classifiers widely used in previous studies on
bug prediction (e.g., [44], [45]).

5.2.4 Threats to Conclusion Validity
Threats to conclusion validity concern the relation between
the treatment and the outcome. The metrics used to evaluate
our defect prediction approach (i.e., AUC-ROC, precision,
recall, F-Measure, and MCC) are widely used in the evalua-
tion of the performances of defect prediction techniques [6],
[13], [16], [17], [44]. Moreover, we used the AUC-PR, an
alternative and more conservative measure than the AUC-
ROC, to evaluate the models’ overall performance for highly
imbalanced problems.

Furthermore, since we needed to exploit change-history
information to compute the metrics we collected, our
study’s evaluation design differs from the k-fold cross val-
idation generally exploited while evaluating defect predic-
tion techniques. In particular, we used the whole history
of a system for the evaluation by adopting a walk-forward
validation and assuring that new data (i.e., new releases)
used to evaluate the model were never antecedent to those
used to train it.

6 RELATED WORK

IaC has recently received increasing attention in the research
community, mainly due to the paradigm shift in software
design and development. Various work relates to our study
by empirically investigating the adoption, challenges, and
particularly defects of IaC.

In the field of IaC defects and smells, various works have
appeared in very recent years. Jiang and Adams [46] ana-
lyzed the co-evolution between infrastructure and produc-
tion code, finding that the former is tightly coupled with test
files, leading testers to change infrastructure specifications
often when modifying tests.

Sharma et al. [47] looked for code smells in the source
code of configuration management tools (e.g., Puppet,
Chef). As a result, they proposed a catalog of 13 imple-
mentation and 11 design configuration smells. Then they
benchmarked the catalog against 4,621 Puppet open source
repositories. Interestingly, design smells showed higher av-
erage co-occurrence than implementation smells. That is,
one wrong or non-optimal design decision introduces many
quality issues in the future.

Rahman et al. [48] investigated the challenges in de-
veloping IaC, specifically in the context of configuration
management tools. They looked for the questions that

were more asked by programmers on Stack Overflow to
help IaC developers. Also in this case, the focus was on
Puppet-related questions. By applying qualitative analysis,
they identified the three most common question categories:
syntax errors, provisioning instances, and assessing the
Puppet’s feasibility to accomplish specific tasks. The three
categories of questions that yielded the most unsatisfactory
answers were installation, security, and data separation. The
authors then classified IaC defects according to standard
non-IaC defects categories by doing qualitative analysis of
commit messages and issue report descriptions in open
source projects, limited to Puppet code.

Furthermore, Rahman et al. [49] investigated the re-
search challenges in IaC through a Systematic Literature
Review. The main goal was to identify the various research
areas surrounding the field of IaC. The four main topics that
have been identified are (i) framework/tool for IaC; (ii) use
of IaC; (iii) empirical studies related to IaC; and (iv) testing
in IaC. They concluded that, while several studies exist on
framework and tools, research in the context of IaC defects
and security flaws is still at its early stages. Subsequently,
Rahman et al. [50] proposed a catalog of seven security
smells in IaC. Such smells were extracted from qualitative
analysis of Puppet scripts in open source repositories. The
identified smells comprise: (i) granting admin privileges by
default; (ii) empty passwords; (iii) hard-coded secrets; (iv)
invalid IP address binding; (v) suspicious comments (such
as ’TODO’ or ’FIXME’); (vi) use of HTTP without TLS; and
(vii) use of weak cryptography algorithms. However, this
is again limited to Puppet scripts, and not all smells are
generalizable to other languages or tools. Later on, Van
der Bent et al. [51] defined another measurement model to
assess the quality of Puppet code.

Our work can be seen as complementary to those men-
tioned above, as it aims at studying the impact of structural
code and process characteristics when predicting the failure-
proneness of IaC scripts. For our goal, the closer articles
are recently proposed by Rahman et al. [7], [8]. The former
uses text mining techniques, such as bag-of-word, upon
textual features extracted from IaC (Puppet) scripts and
reports a median F-Measure of 73% for both techniques and
three different datasets (Mozilla, OpenStack, and Wikime-
dia Commons). These results are not directly comparable
with ours, being different datasets and languages. However,
both approaches can be combined, leveraging both textual
features and information from product and process metrics.
The latter uses ten source code properties that correlate with
defective IaC (Puppet) scripts to construct defect prediction
models and reports a precision of 0.70~0.78 and a recall of
0.54~0.67. Our work is complementary to these two. First,
rather than focusing on textual metrics, we aim at deeply
investigating the value of a broad set of structural and process
metrics; secondly, we focus on Ansible and not on Puppet.

7 CONCLUSION

We presented our approach for within-project defect pre-
diction of Infrastructure-as-Code, based on product and
process metrics. The approach is suited to work on IaC
scripts, enabling us to analyze code and detect defects at
the implementation level.
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Although our study and implementation targets particu-
larly Ansible, we believe the models may be easily portable
to other languages (Chef, Puppet), as many of the most
recurring features are general-purpose metrics.

Afterward, we compared five machine learning methods
for defect prediction: Decision Tree, Logistic Regression,
Naive Bayes, Random Forest, and Support Vector Machine.
We crafted a dataset of publicly available Ansible-based IaC
scripts extracted from relevant and active GitHub reposito-
ries to train the models. We classified scripts as failure-prone
or neutral and then analyzed the predictive power of the
models. Results show that RANDOM FOREST outperforms
other models, with a median AUC-PR = 0.93.

Moreover, the dataset served also as a validation artifact
for existing and upcoming approaches focusing on IaC.

Both DevOps and researchers can benefit from our con-
tributions. Effective prediction of failure-prone IaC scripts
enables organizations embracing the DevOps methodology
to focus on such critical scripts during Quality Assurance
and allocate effort and resources more efficiently [7]. Re-
searchers gain valuable knowledge of novel IaC languages
and tools, a comprehensive dataset and metrics set, and pre-
diction models. Our work puts a clean baseline for existing
and future approaches.

As future work, we plan to leverage the general-purpose
metrics to extend our approach to configuration orches-
tration languages, starting from TOSCA [52], a YAML-
based OASIS standard for defining infrastructure topolo-
gies. TOSCA was initially designed as an open standard
for formatting templates, so tasks, such as cloud resource
deployment and orchestration, could be translated into a
generally readable form and become more portable across
platforms. Overall, the standard aims to make it easier to up-
date, extend or move cloud-based resources, thus opening
up opportunities for building a universal defect-prediction
framework for configuration orchestration languages. With
such ultimate goal, we are also considering semi-supervised
and unsupervised learning as our research agenda and their
comparison with the proposed approach, and more gen-
erally to standard approaches based on supervised binary
defect prediction.
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