
The Do’s and Don’ts of Infrastructure Code:
a Systematic Grey Literature Review

Indika Kumara, Martín Garriga, Angel Urbano Romeu, Dario Di Nucci,
Damian Andrew Tamburri, Willem-Jan van den Heuvel

Jheronimus Academy of Data Science, The Netherlands

Fabio Palomba
University of Salerno, Italy

Abstract

Context. Infrastructure-as-code (IaC) is the DevOps tactic of managing and

provisioning software infrastructures through machine-readable definition files,

rather than manual hardware configuration or interactive configuration tools.

Objective. From a maintenance and evolution perspective, the topic has picked

the interest of practitioners and academics alike, given the relative scarcity

of supporting patterns and practices in the academic literature. At the same

time, a considerable amount of grey literature exists on IaC. Thus we aim to

characterize IaC and compile a catalog of best and bad practices for widely used

IaC languages, all using grey literature materials.

Method. In this paper, we systematically analyze the industrial grey literature

on IaC, such as blog posts, tutorials, white papers using qualitative analysis

techniques.

Results. We proposed a definition for IaC and distilled a broad catalog summa-

rized in a taxonomy consisting of 10 and 4 primary categories for best practices

and bad practices, respectively, both language-agnostic and language-specific

Email addresses: i.p.k.weerasingha.dewage@tue.nl, m.garriga@uvt.nl,
angeluromeu88@gmail.com, d.dinucci@uvt.nl, d.a.tamburri@tue.nl,
w.j.a.m.vdnheuvel@uvt.nl (Indika Kumara, Martín Garriga, Angel Urbano Romeu,
Dario Di Nucci, Damian Andrew Tamburri, Willem-Jan van den Heuvel), fpalomba@unisa.it
(Fabio Palomba)

Preprint submitted to Information and Software Technology Journal April 3, 2021

ones, for three IaC languages, namely Ansible, Puppet, and Chef. The practices

reflect implementation issues, design issues, and the violation of/adherence to

the essential principles of IaC.

Conclusion. Our findings reveal critical insights concerning the top languages

as well as the best practices adopted by practitioners to address (some of) those

challenges. We evidence that the field of development and maintenance IaC is in

its infancy and deserves further attention.

Keywords: Infrastructure-as-code, DevOps, Grey Literature Review.

1. Introduction

The current information technology (IT) market is increasingly focused on

“need for speed”: speed in deployment, faster release-cycles, speed in recovery,

and more. This need is reflected in DevOps, a family of techniques that shorten

the software development cycle and intermix software development activities

with IT operations [1, 2]. As part of the DevOps, infrastructure-as-code (IaC) [3]

promotes managing the knowledge and experience inside reusable scripts of

infrastructure code, instead of traditionally reserving it for the manual-intensive

labor of system administrators, which is typically slow, time-consuming, effort-

prone, and often even error-prone.

IaC represents a widely adopted practice [3, 4, 5]. However, little is known

concerning its code maintenance, evolution, and continuous improvement in aca-

demic literature, despite increasing traction in most if not all domains of society

and industry: from Network-Function Virtualisation (NFV) [6] to Software-

Defined Everything [7] and more [8].

However, little academic literature exists on infrastructure code since research

on IaC is still in its early phases. At the same time, companies are working day-

by-day on their infrastructure automation, as also witnessed by the considerable

amount of grey literature on the topic. Hence, we can observe a gap between

academic research and industry practices, mainly to figure out the technical,

operational, and theoretical underpins and the best and bad practices when

2

developing IaC in the most popular languages.

This paper aims at addressing this gap with a systematic grey literature

review. We shed light on the state of the practice in the adoption of IaC by

analyzing 67 high-quality sources and the fundamental software engineering

challenges in the field. In particular, we investigate: (1) how the industrial

researchers and practitioners characterize IaC, and (2) the best/bad practices

during general (i.e., language-agnostic) and language-specific (e.g., Puppet, Chef,

Ansible) IaC development.

Specifically, we derived a more rigorous definition for infrastructure code. We

identified a taxonomy consisting of 10 primary categories for best practices and 4

for bad practices, with all practices reflecting key improvements for DevOps pro-

cesses around IaC. The practices reflect a range of scenarios: (a) implementation

issues (e.g., naming convention, style, formatting, and indentation), (b) design

issues (e.g., design modularity, reusability, and customizability of the code units

of the different languages); (c) violation of/adherence to the essential principles

of IaC (idempotence of configuration code, separation of configuration code from

configuration data, and infrastructure/configuration management as software

development). Overall, these issues highlight that the field of development and

maintenance of IaC deserves further attention and further experimentally-proven

tooling.

The rest of this paper is organized as follows. Section 2 provides a back-

ground on IaC. Section 3 poses our motivation and problem statement based

on related work in the field. The research design and the research questions are

presented in Section 4, while the results are provided in Section 5. In particular,

Section 5.1 summarizes the selected sources; Section 5.2 focuses on IaC definition,

classification, and features; Section 5.3 and Section 5.4 present best and bad

practices of IaC development. We discuss the implications of our findings in

Section 6 and the threats to validity in Section 7. Finally, Section 8 concludes

the paper.

3

2. Background

class uniapache {

if $::osfamily == 'RedHat' {

$apachename = 'httpd'

}

elsif $::osfamily == 'Debian' {

$apachename = 'apache2'

}

package { 'apache':

name => $apachename,

ensure => 'present',

}

}

node 'webs1' {

class { 'uniapache': }

}

node 'dbs1' {

mysql::db { 'mydb':

user => 'myuser',

password => 'mypass',

host => '127.0.0.1'

}

}

node["lamp_stack"]["webs1"].each do

case node[:platform]

when 'RedHat'

apachename = 'httpd'

when 'Debian'

apachename = 'apache2'

end

package apachename do

action :install

end

end

node["lamp_stack"]["dbs1"].each do

mysql_database 'mydb' do

connection(

:host => '127.0.0.1',

:username => 'myuser',

:password => 'mypass'

)

action :create

end

end

- name: Configure webservers

hosts: webservers

roles:

- web

- name: Configure databases

hosts: dbservers

roles:

- db

- name: Create database user

mysql_user: user=myuser password=mypass

- name: Create database

mysql_db: db=mydb state=present

- name: Install httpd

yum: name=httpd state=latest

when: ansible_os_family == 'RedHat'

- name: Install apache2

apt: name=apache2 state=latest

when: ansible_os_family == 'Debian'

[webservers]

webs1

[dbservers]

dbs1

(b) (c)(a)

playbook inventory

role "web"

role "db"

Figure 1: Snippets of IaC scripts for installing Apache and MySQL in (a) Ansible, (b) Puppet,

and (c) Chef

Infrastructure-as-code (IaC) is a process of managing and provisioning com-

puting environments in which software systems will be deployed and managed,

through the reusable scripts of infrastructure code [3]. In this section, we briefly

introduce the three IaC technologies considered in this paper: Ansible [9], Pup-

pet [10], and Chef [11]. We consider these IaC technologies because they are the

most popular languages amongst practitioners according to our previous sur-

vey [12]. Below we present only a subset of the constructs of each IaC language,

and will introduce the other constructs when we discuss about the best and bad

practices of each language.

2.1. Ansible

In Ansible, a playbook defines an IT infrastructure automation workflow

as a set of ordered tasks over one or more inventories consisting of managed

infrastructure nodes. A module represents a unit of code that a task invokes.

A module serves a specific purpose, for example, creating a MySQL database

and installing an Apache webserver. A role can be used to group a cohesive

set of tasks and resources that together accomplish a specific goal, for example,

installing and configuring MySQL.

4

Figure 1(a) shows an Ansible snippet for setting up a MySQL database and

an Apache webserver. The two roles web and db define the required tasks such

as Install httpd and Create database. Each task uses a module to achieve its

objective, for example, the task Install httpd uses the module yum. The inventory

file defines the webserver node webs1 and the database server node dbs1. The

playbook applies the two roles to the two nodes.

2.2. Puppet

In Puppet, there are four key types of building blocks: (i) Resources, (ii)

Classes, (iii) Manifests, and (iv) Modules. Resources define the properties

of the system components (e.g., files, users, and groups) managed in a node,

while classes are collection of resources. Puppet files containing definitions

or declarations of Puppet classes are called manifests. Finally, modules are

reusable and shareable units of Puppet codes performing a specific infrastructure

automation task. A module can include artefacts such as manifests and other

configuration files.

Figure 1(b) shows a Puppet snippet. The class uniapache uses the resource

package to install the Apache web server. The node webs1 declares this class to

add its resources to the node. while the dbs1 node creates a MySQL database

employing the resource mysql::db.

2.3. Chef

In Chef, a cookbook represents an IT automation workflow. It consists of a

set of recipes, which are a collection of resources to be created and managed

on a node. A resource declares a system component and the actions to create

and manage the component, for example, installing the package Apache. Chef

recipes are written using Ruby.

Figure 1(c) shows a Chef recipe with two resources. The resource package

is used to install Apache web server on the node webs1, and the resource

mysql_database is applied to create a MySQL database on the node dbs1.

5

3. Related Work and Research Goals

In this section, we discuss the related work and set forth our research goals.

3.1. Prior Research on IaC

Rahman et al. [13] recently performed a mapping study on IaC research

and classified the existing work into several categories, which we summarize by

providing an overview on framework and tools, empirical studies, and antipattern

catalogs for IaC. Finally, we provide a summary of previous literature reviews

on IaC-close topics.

3.1.1. Framework and Tool for IaC

The mapping study reported several tools/frameworks that extend the func-

tionality of IaC for assessing and improving the quality of IaC scripts. Recently,

Wurster et al. [14] developed TOSCA Lightning. This integrated toolchain

enables modeling the deployment topology of an application using a subset of

the TOSCA (Topology and Orchestration Specification for Cloud Applications)

standard and converting such models into the artifacts used by production-ready

deployment technologies such as Kubernetes and Ansible. Similarly, to support

the quality assurance of IaC artifacts, several tools have been recently proposed.

Dalla Palma et al. [15, 16, 17] proposed a set of tools to calculate quality metrics

for Ansible scripts and projects and use them for predicting defective scripts.

Kumara et al. [18] proposed a tool to detect smells in TOSCA scripts using an

ontology-based approach. Borovits et al. [19] developed a tool to predict linguis-

tic antipatterns in IaC using deep learning. Cito et al. [20] detected violations

of Docker best practices, while Dai et al. [21] leveraged static code analysis and

rule-based reasoning to detect risky IaC artifacts. Finally, Sotiropoulos et al. [22]

crafted a tool to identify missing dependencies and notifiers in Puppet manifests

by analyzing system call traces.

3.1.2. Empirical Studies related to IaC

According to the mapping study, IaC has been used to support the automated

provisioning and deployment of applications on different infrastructures and

6

implement DevOps and continuous deployment. Several empirical studies focus

on testing and quality assurance and the evolution of IaC artifacts to analyze how

practitioners adopt this technology. IaC has been used to support the automated

provisioning and deployment of applications on different infrastructures and

implement DevOps and continuous deployment. Guerriero et al. [12] identified

further insights on the challenges related to the IaC development and testing in

industrial contexts by surveying 44 practitioners. Sandobalín et al. [23] focused

on the effectiveness of IaC tools, while Rahman et al. [24, 25] on testing and

security practices mined from grey literature. With similar goals, the latter

analyzed the development practices that contribute to defective IaC scripts [26]

and replicated previous studies [27]. Finally, Opdebeeck et al. [28] analyzed

the adoption of semantic versioning in Ansible roles, while Kokuryo et al. [29]

examined the usage of imperative modules in the same language.

3.1.3. Antipattern and Practices Catalogs for IaC

No previous systematic literature analyzed good and bad practices that

developers adopt when implementing IaC. Although no studies defined and

characterize the concept of IaC using gray literature, some previous work [30, 31]

leverage grey literature to compile code smells catalogs for different languages.

In particular, they relied on language style guides (e.g., Puppet style guide) and

smell detection rules implemented in linters (e.g., Puppet-Lint) Sharma et al. [30]

developed a catalog of design and implementation smells for Puppet. These

are well-known violations of best practices for configuration code identified by

analyzing the official documentation, the validation rules of Puppet-Lint, a few

blog entries, and some video tutorials. Similarly, Schwarz et al. [31] compiled a

catalog of smells for Chef, containing violations against the best practices for

Chef, extracted from the official documentation. Kumara et al. [18] presented ten

security and implementation smells for deployment models codified in TOSCA

(Topology and Orchestration Specification for Cloud Applications). Using Docker

Linter, Schermann et al. [20] detected violations of Docker best practices in

open-source projects. Van der Bent et al. [32] defined a measurement model to

7

assess Puppet code quality. These metrics reflect the best practices and their

violations in Puppet. Rahman et al. [33] derived a catalog of seven security smells

in Puppet by analyzing such scripts in open-source repositories. Afterward, they

developed a novel defect taxonomy [34] by analyzing defect-related commits,

which includes eight defect categories, covering IaC source code, documentation,

and IT infrastructure. Furthermore, they qualitatively analyzed Puppet-related

questions that developers ask on StackOverflow [35]. The results of this analysis

allowed them to identify 16 categories of questions that reflect key challenges and

cover different aspects such as code syntax, testing, troubleshooting, security,

resource provisioning, and software installation. In two recent studies, they

have also employed the grey literature to identify five testing practices for IaC

scripts [25] and ten Kubernetes-specific security practices [24]. Guerriero et

al. [12] identified four best practices and seven bad practices from their survey

with practitioners.

3.1.4. Previous Literature Reviews concerning IaC-related topics

Previous grey and white literature surveys analyzed topics related to In-

frastructure as Code such as DevOps tools [36], cloud resource orchestration

techniques [37], and cloud deployment modeling tools [38]. These surveys de-

scribe the general capabilities of IaC tools and their usage scenarios. However,

there is little or no information about the best and bad practices of using such

tools.

3.2. Research goals

Given the work above, it is clear that best and bad practices regarding IaC

should be derived from grey literature. Therefore, our goal is to analyze, assess,

and summarize such literature sources systematically. We aim at compiling a

comprehensive catalog of best and bad practices that developers should follow

when developing and maintaining IaC projects. Please note that our scope is

not limited to source code but compass the analysis of the different aspects of

IaC projects by reporting the practices for three widely used languages, namely

8

Ansible, Chef, and Puppet. Finally, we aim to define and characterize the concept

of IaC comprehensively.

4. Research Methodology

We build our research design upon the SLR guidelines proposed in systematic

literature reviews in software engineering [39, 40]. We also used the recent grey

and multi-vocal SLRs [41, 42, 43, 44] as a reference. Figure 2 shows the steps of

our SGLR process.

Identify GLR Goals

Formulate RQs

Select Data Sources

Define Search Queries

Define Inclusion and

Exclusion Criteria

Define Quality Assessment

Criteria and Process

Study Selection

Pilot Study Coding

Inter-rater Assessment for

Pilot Study

Full Dataset Coding

Inter-rater Assessment for

Full Study

Grouping Codes

Synthesize and Report

Results

Categorization of

Practices

GLR Planning and Design Conducting GLR

Figure 2: An overview of our SGLR process

4.1. Research Questions

We defined three research questions to achieve our research goals, as men-

tioned in Section 3.2.

• RQ1: How is IaC defined and classified by developers? RQ1 aims

to understand and characterize the concept of IaC from the standpoint of

9

a practitioner. There exist different categories of IaC, and practitioners

use several IaC tools, which exhibit common and different functional

capabilities. RQ1 thus defines and classifies IaC and identifies the functional

features of IaC.

• RQ2: Which are the best practices adopted by developers in

developing IaC? By adhering to IaC best/good practices, practitioners

can create IaC artifacts with the desired quality. There exist different IaC

languages, and each language includes common and differing best practices

with others. Hence, RQ2 attempts to compile a unified catalog of IaC best

practices.

• RQ3: Which are the bad practices adopted by developers in de-

veloping IaC? By following bad practices, practitioners inadvertently can

introduce smells into IaC artifacts. As the bad IaC development practices

vary across different IaC languages, while sharing some commonalities,

RQ3 aims to formulate a unified catalog of IaC bad practices.

4.2. Data Sources and Search Strategy

Similar to other multi-vocal and grey literature reviews [41, 42, 43, 44],

we employed the Google search engine to search the grey literature. We only

consider textual sources such as reports, blog posts, white papers, and official

documentation of each IaC language. We first identified the initial set of search

terms on the research questions and created the following query:

Infrastructure as code (bug(s)|defect(s)|fault(s)|(anti-)pattern(s))

We obtained only a few sources; thus, we refined the generic terms of the

query to include the language-specific keywords. In this study, we only considered

three IaC languages such as Ansible, Puppet, and Chef. Two main reasons are

driving this choice. On the one hand, these are the most popular IaC languages

in the industry according to our previous survey [12]. On the other hand, the

inclusion of a larger number of smaller and less popular languages would have

resulted in a prohibitively expensive manual screening.

10

This resulted in the following query:

(ansible|puppet|chef) ((anti-)pattern(s)|(best|good|bad) practices)

We applied the above two queries on the Google search engine, scanning each

resulting page until saturation (i.e., we stopped our search when no new relevant

articles were emerging from search results) (as in [41, 44]). We performed our

search in an incognito-mode so that we avoided our personal search bias.

Table 1: Queries and number of articles found and included.

Query total Incl. 1st round

1 Infrastructure as code 24 13

2 Infrastructure as code bugs 31 13

3 Infrastructure as code defects 27 10

4 Infrastructure as code anti-patterns 27 9

5 puppet anti patterns 17 5

6 puppet best practices 19 7

7 chef anti patterns 15 8

8 chef best practices 23 10

9 ansible anti patterns 19 6

10 ansible best practices 18 11

Total 220 92

After I/E criteria -25

67

Table 1 summarizes the potentially relevant results for each search string in

Column total (220 sources overall), after an initial pre-filtering of e.g., articles

not related to the topic, Wikipedia entries, repeated entries, or paid books. Next,

to select the most relevant candidate articles, we applied the Inclusion/Exclusion

Criteria described in Section 4.3, by reading through the main sources. With

those criteria we filtered out 128 sources, for a final list of 92 relevant sources

(Column include in Table 1).

4.3. Eligibility Criteria and Study Selection

Inclusion/Exclusion Criteria. We considered an article for further analysis only

when it satisfies all inclusion criteria and does not satisfy any of the exclusion

criteria. We included:

11

• Articles in English and the full text is accessible;

• Articles matched the focus of the study, i.e., concepts and characteristics,

best/good and bad practices, bugs/defects/anti-patterns, and challenges

concerning IaC in general or a specific IaC language.

We excluded:

• Articles not matching the focus of the study;

• Articles restricted with a paywall;

• All duplicate articles found from various sources;

• Short elements that do not contain sufficient data for our study, such as

posts in forums and comments;

• Articles that do not provide scope, consequences, and examples of the

proposed best/bad practices and bugs/defects/anti-patterns.

Quality assessment. In addition to the aforementioned inclusion/exclusion cri-

teria, we applied the following criteria for further assessing the quality of the

articles, which were adopted from the existing grey and multi-vocal literature

review studies [41, 45]:

• Is the publishing organization reputable?

• Is an individual author associated with a reputable organization?

• Has the author published other work in the field?

• Does the author have expertise in the area?

• Does the source have a clearly stated purpose?

• Is the source recent enough (i.e., within the last three years)?

The validation was mainly carried out by two of the authors of this paper.

The authors distributed the material between them nearly equally, and they

12

validated only their corresponding instances. In problematic cases, the authors

mutually agreed on whether those specific documents should be considered.

Whenever they did not agree, they discussed with one or more other authors of

the paper to resolve the disagreement. Initially, we considered only the sources

that reached at least 3 of the above criteria, for a total of 50 sources. However,

we could not answer some of the criteria/questions for the rest of the sources. For

example, in some cases, there was no indication of the publishing organization

or author. From the remaining sources, we selected another 15 relevant (given

that they covered the topic of interest), albeit not covering those criteria. All in

all, we proceeded with a final set of 67 selected sources.

4.4. Data Synthesis and Analysis

To attain the results for answering our research questions, we read, synthe-

sized, and analyzed the above selected industrial studies following a qualitative

analysis process [46]. In particular, to obtain codes, groupings, and categories

related to the research questions systematically, we followed a series of steps:

1. Pilot study. The first set of 20 sources were randomly selected and

analyzed independently by two researchers to establish an initial set of

codes, using Structural and Descriptive Coding [47]. The codes were

extracted by conceptualizing all the information stemming from the sources

related to the Research Questions. This phase included a constant back

and forth check of the codes, constantly refining them to sharpen the

growing theory.

2. Inter-rater assessment (pilot study). After the coding phase, the two

researchers started an inter-rater assessment on the codes to appraise each

other’s codes and reach unanimity on their names, types, and categories.

This process led to the change of several codes, reaching uniformity and

rigidness among them.

3. Full dataset coding. The rest of the sources were coded next, following

the consensus reached by the two researchers in the previous step. The

13

sources were split into two halves, each analyzed and coded by one of the

researchers independently.

4. Inter-rater assessment (full study). After the independent code ex-

traction, the researchers looked into each other’s codes to inter-rater assess

the work and make sure everything was coded, as previously stated. All

the discrepancies were solved via discussions.

5. Grouping. The theory led us towards six overarching groups of codes:

best practices, bad practices, IaC definition, IaC advantages, and IaC

challenges. These groups were then analyzed and further decomposed as

necessary. The best/bad practices were grouped into language-agnostic,

Ansible, Chef, and Puppet.

6. Categorization of Practices. We categorized the identified atomic

best and bad practices into coarse-grained categories. For the candidate

practice categories, we used the practice categories proposed in the existing

literature [48, 49, 50, 51, 52, 53]. We also employed the categories proposed

in the Common Weakness Enumeration (CWE)1, which was used by several

studies on smell and bug taxonomies [54, 33]. The first authors of this

paper first compiled a list of candidate categories. Next, the first author

and the fourth author independently assigned the atomic practices into

a subset of the candidate categories. We addressed all the discrepancies

through discussions. When needed, we modified some categories in the

selected candidate categories to reflect the IaC context.

4.5. Replication Package

To enable further validation and replication of our study, we made the related

data available online 2. It contains the full list of sources, the qualitative analysis

(codes, groupings, and analysis) performed with the Atlas.ti tool3, the keywords

1https://cwe.mitre.org/
2https://github.com/IndikaKuma/ISTGrayIAC
3https://atlasti.com/

14

and phrases extracted to define IaC in RQ1, the atomic best/bad practices, and

the final taxonomy derived for RQ2 and RQ3.

5. Analysis of the Results

In this section, we provide an overview of the selected grey literature, and

answer each research question in detail.

5.1. Overview of the Selected Grey Literature

Table 2 shows provide an overview of the selected studies, including contribu-

tion type, content type, IaC language, publication year, and publication venue.

The sources cover the articles from IT companies with high reputation (e.g.,

Microsoft and IBM), official communication channels of the IaC languages/tools

(Ansible, Chef, Puppet), articles on online publishing platforms (e.g., DZone

and Medium), and blogs.

Table 2: Overview of the selected industrial studies

Study Type Content Lang. Year Venue

[S1] Doc Def - 2017 Microsoft

[S2] Blog Def/Features - 2018 Thorntech

[S3] Blog Def/Features - 2019 TechTarget

[S4] Blog
Def/Features

Adv/Challenges
- 2016 ThoughtWorks

[S5] Tutorial Features/Adv Ansible 2018 Hacker Noon

[S6] Blog
Def/Adv/Best

Bad/Features
- 2018 BMC Software

[S7] Article
Def/Best

Features
- 2017 TechBeacon

[S8] Blog
Def/Features

Challenges
- 2018 CloudBees

[S9] Article Best - 2018 DZone

[S10] Blog Def/Features - 2018 IBM

[S11] Blog Features/Adv - 2018 IBM

[S12] Blog
Def/Features/Adv

Best/Challenges
- 2018 Rackspace

[S13] Blog
Def/Features

Best
- 2018 Qualibrate

15

[S14] Blog
Def/Best/Adv

Features
- 2018 IbexLabs

[S15] Blog Def/Adv - 2018 Red Badger

[S16] Blog Def/Adv - 2018 Thorntech

[S17] Blog Best/Challenges Puppet 2016 Puppet

[S18] Blog
Best/Features

Def/Challenges
- 2018 OVO Energy

[S19] Article
Best/Adv

Features
- 2018 Medium

[S20] Blog
Best/Def

Challenges
Puppet 2018 ServerlessOps

[S21] Blog Def/Challenges - 2018 The New Stack

[S22] Blog Best/Feature - 2018 Thorn Technologies

[S23] Article Def/Adv - 2019 Medium

[S24] White Paper Def/Features/Adv - 2018 Risk Focus

[S25] Blog
Def/Features

Adv
- 2017

Tasktop

Technologies

[S26] Blog
Def/Feature/Best

Adv/Challenges
- 2018

Network

Computing

[S27] Blog Best - 2018 OpenCredo

[S28] Slides Def/Bad/Best - 2015 SlideShare

[S29] Article Bad - 2018 DZone

[S30] Blog Best/Bad - 2017 Hacker Noon

[S31] Blog Bad/Best - - Qualysoft

[S32] Blog
Features/Def

Best
- 2018 Pythian Group

[S33] Slides Bad Puppet 2017 GitHub

[S34] Blog Bad Puppet 2016 pysysops

[S35] Blog Best Puppet 2016 blog.danzil.io

[S36] Blog Best Puppet 2014 garylarizza

[S37] Slides Best/Bad Puppet 2016 SlideShare

[S38] Doc Best/Bad Puppet 2018 GitHub

[S39] Slides Best Puppet 2016 SlideShare

[S40] Blog Best/Bad Chef 2017 Chef

[S41] Doc Best/Bad Chef 2015 GitHub

[S42] Blog Best/Bad Chef 2015 LinkedIn

[S43] Slides Best/Bad Chef 2015 SlideShare

[S44] Blog Best Chef 2015 Ragnarson

[S45] Article Best/Challenges Chef 2017 Medium

[S46] Doc Best Ansible 2019 Ansible

[S47] Blog Bad Ansible 2015 GitHub

[S48] Blog Best/Features Ansible 2016 Ansible

[S49] Blog Best Ansible 2018 New Relic Software

16

[S50] Slides Best/Bad Ansible 2017 SlideShare

[S51] Article Best/Bad Ansible 2018 serverraumgeschichten

[S52] Blog Best Ansible 2018 Wordpress

[S53] Tutorial Best Ansible 2017 GitHub

[S54] Blog Best/Features Ansible 2018 juliosblog

[S55] Article Best Ansible 2018 InfinityPP.com

[S56] Blog Best Ansible 2017 OzNetNerd

[S57] Blog Best/Bad Ansible 2017 Andreas Sommer

[S58] Blog Best/Bad Puppet 2017 Puppet

[S59] Blog
Adv/Best

Features
- 2014 DevOps

[S60] Slides
Def/Feature

Challenges/Best
- 2013 OWASP

[S61] Blog Best/Features Puppet 2015 DevOps

[S62] Blog Best Puppet 2013 Radiant3 Productions

[S63] Blog Best/Bad Chef 2015 Chef

[S64] Blog Best Puppet 2013 glennposton.com

[S65] Blog Bad Ansible 2018 oteemo.com

[S66] Doc Best/Bad Chef 2019 Chef.io

[S67] Doc Best/Bad Puppet 2019 Puppet.com

Regarding the overall reach and acceptance of the considered literature,

unfortunately, most of the venues do not offer comments or likes to see if there

is a reaction and whether it is positive or negative. From the few that do so,

the most commented and liked publications come from the blogging platforms

Hackernoon.com (5 comments and 500 likes/claps on average) and Medium.com

(40 likes/claps). Conclusively, we see an increasing trend in the quality and

quantity of IaC grey literature, confirmed by diversification of publication venues,

authors, and their companies.

Figure 3 illustrates the distribution of the selected studies by the contribution

type, specific IaC languages, and key concepts. The blogs followed by the articles

on the online publishing platforms are the predominant publishing media for the

practitioners. The results indicate that the practitioners discuss IaC in general

as well as specific IaC technologies. As IaC is a relatively new concept, more

attention has been paid to understand and characterize IaC. The best and bad

practices that help to develop high-quality IaC have also been a key focus.

17

(a)

(c)

Figure 3: Distribution of selected studies by (a) by contribution type, (b) IaC language, (c)

content focus

Figure 4 shows the outcome of the frequency analysis of the open codes from

the qualitative analysis of the selected literature, highlighting the importance of

the key topics (codes). In general, the IaC patterns have been discussed frequently

as its counterpart. The selected literature has also reasonably considered the

characteristics, advantages, and challenges of IaC.

5.2. RQ1: Definition Proposal for IaC

In this section, we use the definitions, classifications, and features of IaC found

in the selected studies to provide an integrated definition for IaC. We gathered the

definitions of IaC from six different sources in our grey literature and extracted

the keywords and concepts from the corresponding text by manually scanning

the sources. The extracted data is available in the replication package of this

study. We identified three major dimensions to explain IaC: types of management

18

Figure 4: Distribution of code groupings stemming from qualitative analysis

operations (on a computing environment) supported by IaC, principles, and

methods of realizing such management operations with IaC, and the desired

properties of the managed environment. The number of the extracted keywords

and clauses for the three dimensions are 46, 35, and 26, respectively.

5.2.1. Management Tasks

IaC supports the management of the entire lifecycle of a computing environ-

ment consisting of infrastructure, software/platform, and applications.

• Infrastructure includes the fundamental computing resources such as

servers, networks, and storage. The management capabilities include: (1)

definition of the desired state of the infrastructure, (2) provisioning of the

infrastructure by enacting its definition, (3) versioning the infrastructure

by versioning its definition, (4) switching between different infrastructure

variants by switching between their definitions, (5) cloning infrastructure

variants by cloning their definitions, (6) destroying the infrastructure

variants based on their definitions. Versioning of infrastructure includes

adding/removing/updating individual computing resources and updating

their composition topology.

• Software/Platforms are used to deploy, run, and manage applications,

19

such as programming languages, frameworks, libraries, services, and tools.

IaC supports (1) defining the desired state of the software/platform (e.g.,

MySQL is installed with the root user), (2) installing, (re)configuring, and

uninstalling the software/platform based on its definition.

• Applications-specific capabilities are (1) defining the desired state of the

application deployment, (2) deploying, (re)configuring, un-deploying the

application using its deployment definition.

In the selected literature, the IaC tasks are broadly divided into: infrastruc-

ture templating, configuration orchestration, configuration management. The

infrastructure templating generates images of the infrastructure resources such

as virtual machines and containers. The configuration orchestration provides

infrastructure resources, while the configuration management installs software/-

platforms/applications on the provisioned infrastructure and manages their

configurations. The management tasks performed through IaC exhibit the two

key properties:

• Idempotence of a task makes the multiple executions of it yielding the

same result. The repeatable tasks make the overall automation process

robust and iterative (i.e., the environment can be converted to the desired

state in multiple iterations.)

• Transparency of a task is achieved by making the state of the environment

explicit and visible (via code) to the teams managing the environment.

IaC code represents the infrastructure’s documentation, and IaC files are

versioned controlled, providing a clear record of changes made to the

environment.

5.2.2. Methods

IaC replaces the conventional processes used to managing a computing en-

vironment with a process that enables applying software engineering practices.

Instead of low-level shell scripting languages, the IaC process uses high-level

20

domain-specific languages that can be used to design, build, and test the com-

puting environment as if it is a software application/project. The conventional

management tools such as interactive shells and UI consoles are replaced by the

tools that can generate an entire environment based on a descriptive model of

the environment.

There are two main programming models for IaC languages: declarative and

imperative (procedural). In the declarative model, the developers define the

desired end state of the environment and let IaC tools determine how to achieve

the defined state. In the imperative model, the developers need to specify the

process that transforms the current state of the environment to the desired end

state as an ordered set of steps. Puppet uses a declarative style, whereas Chef

and Ansible use an imperative style.

Any software engineering methodology can be used for building and managing

IaC projects. However, on the one hand, most practitioners advocate adopting

DevOps practices to ensure IaC source code is developed, tested, versioned, and

updated continuously by operation and development teams in collaboration. On

the other hand, IaC is considered a critical enabling technology for DevOps

and CI/CD. IaC supports the steps of a CI/CD pipeline, such as packaging

(application) and configuring (the environment, including the application). The

applications can be tested and validated using dynamically provisioned test

environments consistent with the production environment.

5.2.3. Properties of Managed Environments

From the selected literature, we can find the environment properties that

enable IaC and those that IaC induces. Figure 5 depicts the frequency of codes

for those properties.

• Virtualization enables on-demand provisioning of fundamental computing

resources such as virtual machines and containers and is thus consid-

ered a prerequisite for IaC. Virtualization provides an additional layer of

abstraction from provisioning and configuration.

21

Figure 5: Frequency of codes for the key properties for an environment managed by IaC

• Software-defined/Programmable infrastructure consists of abstracted and

virtualized computing resources and offers APIs to create and manage

those resources. It is also a prerequisite for IaC since IaC needs to provide

and configure infrastructure resources on-demand pragmatically. On the

other hand, IaC also makes the systems and processes employed to manage

the infrastructure software-defined as their management functions are now

codified and exposed as APIs.

• Consistency among multiple environments (development, test, production)

can be achieved using IaC. Indeed, IaC eliminates the so-called environmen-

t/configuration drift, a phenomenon that occurs when configuring multiple

deployment environments. It leads to unique, irreproducible configurations

that are due to uncoordinated changes over time. With IaC, the changes

are performed to the IaC source code (environment state definition files)

that is properly versioned controlled.

• Immutability of infrastructure indicates that the infrastructure cannot be

modified once it is provisioned. The only way to change the infrastructure

is to replace it with a new version. Immutable infrastructures eliminate

configuration drift and thus simplify maintaining the consistency between

22

different environments. IaC makes immutable infrastructure feasible and

practical as a new infrastructure can be created, versioned, and destroyed

quickly with IaC.

• Auditability of the computing environment is the ability to track and

trace the changes to the environment. As the changes to the environment

are performed by changing the corresponding IaC source code, a version-

controlled IaC provides a detailed audit trail for changes.

• Reproducibility of the environment indicates the degree to which a given

environment can be easily, rapidly, and consistently recreated. With IaC, a

given version of an environment can be provisioned using the same version

of the environment definition model stored in the source code repository.

5.2.4. An Integrated Definition of IaC

Infrastructure-as-Code (IaC) is a model for provisioning and managing a

computing environment using the explicit definition of the desired state of the

environment in source code and applying software engineering principles, method-

ologies, and tools. IaC DSLs enable defining the environment state as a software

program, and IaC tools enable managing the environment based on such programs.

The managed computing environment comprises three key types of computing

resources (i.e., infrastructure, software/platform, and application) and exhibits

six essential properties (i.e., Virtualized, Software-defined/Programmable, Im-

mutable, Auditable, Consistent, and Reproducible). The management of the

environment encompasses the management of the lifecycles of each computing

resource in the management.

IaC Definition

The term IaC can be comprehensively analyzed and described using three

major dimensions: (1) the three types of management operations supported

by IaC, (2) the methods for implementing such management operations with

IaC, and (3) the six desired properties of the managed environment.

23

5.3. RQ2: IaC Best Practices

In this section, we present IaC best practices extracted from the selected

literature through the mixed-methods approach. Table 3 shows the categories

of the IaC best practices described in the selected studies, extracted using the

qualitative analysis. Each best practice category consists of several sub-categories.

For each sub-category, the sources, the number of related codes (frequency of

codes) in sources, and the number of atomic practices are also shown. The code

frequency of a sub-category is constituted by adding the code frequency of its

atomic practices.

Table 3: Best practice categories and their sources (#), code frequencies (C), and number of

atomic practices (P)

Practice
Independent Ansible Chef Puppet

P C # P C # P C # P C

1 Write IaC programs for people, not computers

1a Make names con-

sistent, distinctive,

and meaningful

- - -

S46

S48

S50

S51

S52

S53

S54

S55

S57

5 22

S41

S43

S66

7 8

S38

S39

S67

8 9

1b Make code style

and formatting con-

sistent

- - -

S46

S48

S50

S52

S54

S55

S57

2 10

S41

S45

S66

2 4 S67 5 5

1c Make parameters,

their types, and de-

faults explicit

- - -

S46

S51

S54

2 4 - - -
S38

S67
4 5

1d Use conditionals

properly

- - - - - -

S41

S44

S63

2 3 S67 3 3

2 Do not repeat yourself (or others)

24

2a Modularize IaC

programs

S08

S18

S22

S28

1 5

S46

S47

S49

S55

S57

8 17

S40

S41

S43

S44

5 6

S20

S37

S38

S39

S67

12 15

2b Re-use code in-

stead of rewriting it

S19

S28
3 4

S49

S50

S51

S54

S55

2 6

S40

S41

S42

S44

S63

S66

10 15

S37

S38

S39

9 11

2c Select the right

modules for the job

and use it correctly

- - -

S48

S49

S51

S55

2 9 - - -
S38

S67
2 2

2d Reuse the tools

that the community

use

- - - - - -

S41

S42

S44

2 3

S38

S61

S62

3 7

3 Let the IaC tools do the work

3a Codify everything

S08

S09

S14

S22

1 4 - - - - - - - - -

3b Package applica-

tions for deployment

S28 1 1 - - - - - - - - -

3c Do not violate im-

mutability and repro-

ducibility of your in-

frastructure

S10

S21

S22

S28

S31

2 6 - - - - - - - - -

3d Do not violate

idempotence of IaC

programs

- - -
S49

S57
2 3

S41

S63
2 3 S38 2 2

4 Make incremental changes

25

4a Use a version con-

trol system

S02

S04

S06

S07

S08

S13

S14

S19

S22

S26

S27

S28

S29

S32

S33

S61

2 17 S46 1 1 S41 3 3 S67 1 1

4b Favor versionable

functionalities

- - - - - -

S40

S42

S44

2 3 - - -

5 Prevent avoidable mistakes

5a Use the correct

quoting style

- - -
S50

S57
1 2

S41

S66
2 2 S67 2 2

5b Avoid unexpected

behaviors whenever

possible

S54

S57
2 2 S41 2 2 S67 2 2

5c Use proper values S46 1 1 S66 4 4
S38

S67
1 2

6 Plan for unavoidable mistakes

6a Write tests as you

code

S06

S07

S09

S17

S22

S27

S28

S61

1 12

S50

S54

S57

1 3 S41 2 2

S38

S61

S62

2 3

6b Do not ignore er-

rors

- - - S57 1 1 - - - - - -

6c Use off-the-shelf

testing libraries

- - - - - - S41 2 2 - - -

6d Monitors your en-

vironment

S28 2 2 S47 1 1 - - - S38 1 1

7 Document little but well

26

7a Code as documen-

tation

S07

S09

S20

S22

S28

1 7 - - - - - - - - -

7b Use document

templates

- - -
S50

S51
1 2 - - - S67 2 2

8 Organize repositories well

8a Modularize reposi-

tories

S32 1 1 - - - S41 1 1 S38 3 3

8b Use standard

folder structures

- - -

S46

S51

S54

S57

2 5 S41 2 2
S38

S67
2 3

9 Separate configuration data from code

9a Use configuration

datasource

S28 1 1 - - - S41 2 2

S38

S58

S67

7 9

9b Modularize config-

uration data

- - -

S46

S57

S55

2 5 - - -
S37

S38
1 2

9c Select data

sources wisely

- - - - - -
S41

S43
6 8 - - -

9d Use configuration

templates

S28 1 1
S49

S55
1 3 S41 2 2

S38

S51

S67

2 3

10 Secure configuration data and write secure code

10a Isolate secrets

from code

S28 1 3

S51

S53

S55

1 3
S41

S63
2 3 S61 1 2

10b Protect your

data at rest

S28 1 1 - - - S41 2 2 - - -

10c Use facts from

trusted sources

- - - - - - - - -
S38

S67
2 3

10d Use standard se-

cure coding practices

- - - S57 2 2 - - - S67 2 2

5.3.1. Practice 1 - Write IaC programs for people, not computers

This category includes best practices affecting readability, understandability,

and maintainability of IaC programs.

27

Make names consistent, distinctive, and meaningful (1a). Ansible practices

provide guidelines concerning the naming of tasks and variables. Each task

should have a name that better communicates the purpose of the task to the

users. As the task names are visible in the task execution’s output, they can

be enriched with the variables to help debug tasks. The names of the variables

can include usage context, such as role name, to help the users quickly figure

out the origin of a variable. The use of a single naming style for variables also

improves the readability. In Chef, the name of an application cookbook should

include its usage contexts, such as application name and organization name.

Nodes, attributes, recipes, environments, and roles can be configured using

appropriate naming conventions when defining their attributes. Name collisions

between attributes defined in different cookbooks can be avoided by indicating

the name of owning cookbook in the data bag name. Furthermore, environment

names should always be in uppercase. Puppet practitioners also recommend

using descriptive names that reflect their purpose for Puppet constructs such

as profiles, roles, modules, resource types, and variables. More constraints are

defined for the variables, the legality of the characters used, and the use of

qualified names when referring to them.

Make code style and formatting consistent (1b). For each IaC language, the

proper order of information with different language constructs is recommended.

For example, attribute ordering in a resource declaration and ordering of resources

and parameters with a class (Puppet), and context organization of Ansible

playbooks and inventories. Ansible uses YAML syntax. Thus, IaC developers

need to follow the best practices of YAML, particularly syntax and conventions

(e.g., starting a script with three dashes, two spaces indentation, and using the

map syntax). Regarding Puppet, the formatting best practices provide guidelines

on spacing, indentation, and formatting complex types such as arrays and hashes

to enhance code readability.

Make parameters, their types, and defaults explicit (1c). Each IaC language has

constructs to define and configure parameters (e.g., Ansible tasks, Chef resources,

28

and Puppet classes). The explicit declaration of all necessary parameters,

including their types and defaults, makes their logic readable and understandable

and can reduce errors due to incorrect assumptions concerning behaviors and

parameters.

Use conditionals properly (1d). The improper use of conditionals can make the

code complex and hamper the readability and understandability of codes. When

using Puppet conditionals, there are recommendations to minimize these adverse

effects: separation of conditionals on data assignment from resource declaration,

explicit default clauses, correct alignment of if/else statements, and simple short

logical expressions.

5.3.2. Practice 2 - Do not repeat yourself (or others)

This category relates to the IaC best practices that aim to reduce code clones

and increase the reuse of IaC programs and tools.

Modularize IaC programs (2a). The IaC programs should be decomposed into

modular fragments and stored in a repository to be dynamically discovered and

composed as necessary. This decomposition enables greater control over who

has access to which parts of the infrastructure code and reduces the number of

changes needed for infrastructure configurations. Each IaC language provides

mechanisms to develop module IaC programs.

In Ansible, playbooks can be modularized based on their purposes, such as

web servers and database servers. The top-level (master) playbook refers to the

role-based children playbooks. This practice allows for selectively configuring

the infrastructure. Ansible supports both infrastructure configuration and

application deployment: different playbooks and roles can separate the two

concepts. Furthermore, the parameterized role pattern can be used to provide

configurable (site-specific) behaviors. The default values for the role parameters

can be overridden during the instantiation of the role. To select and execute

a subset of tasks in a play, Ansible supports the concept of tags, which are

task-level attributes. While the tags can ease debugging and testing of a play,

29

they reduce readability and maintainability as the control flow of a play becomes

complex and hidden and can cause the erroneous execution of plays. Hence,

decomposing complex playbooks into a set of smaller task-focused playbooks is

preferred over using tags.

In Chef, both cookbooks and recipes can be modularized and parameterized.

A recipe defines a collection of resources to be created and managed on a node

and provides a public API for cookbooks. Recipes should be created focusing

on related sets of tasks, such as deploying and configuring a specific application

component.

Puppet profiles and roles help build reusable and customizable system configu-

rations by separating component modules into class assignments and nodes using

a two-layer indirection. Profiles use fine-grained reusable component modules

to deploy and configure a logical technical stack, for example, installing and

configuring Apache and deploying and configuring a PHP web application. Roles

use profiles to build a complete system configuration or define the type of server.

For example, a web server includes profiles for installing prerequisites, Apache,

and PHP application deployment. Roles are assigned to nodes (so-called node

classification). To maintain the modularity of Puppet modules, developers can

(i) create different classes for different concerns (e.g., installing software and

configuring the installed software), (ii) hide the private behaviors of the modules

with private classes, (iii) adhere to the single responsibility principle, and (iv)

split the content into files. Similarly, to improve class modularity, developers can

(i) split class files, (ii) parameterize classes, and (iii) define public and private

classes.

Reuse code instead of rewriting it (2b). IaC languages support the reuse of

IaC code units. The Wrapper pattern can be used to extend and customize

Ansible roles to be shared in Ansible Galaxy. Similarly, Puppet resources and

tasks can be shared in Puppet Forge, and Chef cookbooks can be shared in

Chef Supermarket applying the Repository pattern. IaC languages also enable

writing custom codes that are reusable across different computing platforms by

30

encapsulating and simplifying the logic for managing dependencies and accessing

platforms.

Select the right modules for the job and use it correctly (2c). Each IaC language

enables reusing infrastructure management functionalities as modules, for ex-

ample, Ansible modules and roles, Chef resources and cookbooks, and Puppet

modules. Practitioners need to select the appropriate module for a task and

then correctly use and configure it. For example, there are thousands of Ansible

modules with specific focuses (e.g., install a service, download a file, and unzip

a file). Many modules are operating system agnostic, idempotent, and provide

high-level abstractions to ease the automated management of different environ-

ments. Thus, task-specific modules are preferred over the general modules that

execute ad-hoc OS-level commands (e.g., shell and command modules). There

are also recommendations for the usage of specific Ansible modules. For example,

managing the configuration files as whole with template modules is preferred

over making uncoordinated fine-grained changes to the configuration files with

the lineinfile or blockinfile modules. The correct usage of the service module is to

reload the updated configuration settings of system services gracefully without

making the services inactive.

Reuse the tools that the community use (2d). IaC practitioners recommend using

the tools and deployment patterns developed by the respective communities. For

example, Chef recommends specific tools and systems for testing and sharing the

cookbooks, generating data bags, and managing dependencies between cookbooks.

Similarly, there are deployment architectures and development tools approved

by the Ansible and Puppet communities.

5.3.3. Practice 3 - Let the IaC tools do the work

IaC enables seamless deployment of the infrastructure solely based on the

configuration and minimizes or eliminates manual post adjustments. This

category consists of the practices that allow for gaining all benefits and capabilities

of the IaC model.

31

Codify everything (3a). The practitioners recommend codifying everything

needed to provide and manage a computing environment, treat IaC code as

the documentation for managing an environment, and avoid putting additional

instructions in a separate document. All infrastructure specifications should be

explicitly coded in the configuration files, which act as the single truth source of

the infrastructure specifications.

Package applications for deployment (3b). Furthermore, an application needs to

be packaged to ease its deployment and execution, for example, .war file for a

web application or a Docker image for a web server. Packaging can reduce the

amount of code needed in later stages of configuration management.

Do not violate immutability and reproducibility of your infrastructure (3c). As

discussed in Section 5.2, infrastructure immutability simplifies management and

improves predictability. The Environment Template (e.g., Docker and Docker

compose files) simplifies cloning, sharing, and versioning environments.

Do not violate idempotence of IaC programs (3d). Practices defying the idem-

potency of IaC programs are not recommended; for example, skipping tasks in

Ansible plays, using custom imperative resource management code – ruby blocks

and bash commands in Chef recipes. To achieve idempotence, Chef provides

mechanisms called guard properties that can be used to decide if executing or

not a resource based on the current state of the node. In Puppet, Lightweight

resource providers (LWRP) enable creating custom resources by extending the

existing other resources if necessary. When writing an LWRP, it is recommended

to define the actions for managing the complete lifecycle of the custom resources

necessary to maintain idempotence.

5.3.4. Practice 4 - Make incremental changes

This category relates to the practices that aim to ensure managed changes

to the infrastructure configurations.

32

Use a version control system (4a). With IaC, all configuration details are written

in code using a version control system: any changes to the infrastructure config-

uration can be managed, tracked, and reconciled. The version control system

provides an audit trail for code changes, the ability to collaborate, peer-review

IaC code, and easily define and clone configurations and make changes seamlessly

and consistently. Semantic versioning is recommended for each IaC language.

For Chef, additional guidelines were provided. In this language, cookbooks are

the main versioned artifact. The optimistic version constraints in their depen-

dencies make the adoption of newly developed cookbooks easy. Given that the

highest-numbered cookbook is always used, the version of a cookbook should not

be decreased. It is recommended to store every configuration, documentation,

test case, and script under version control. Binary files such as large VM images

or Docker images should be stored in separate locations.

Favor versionable functionalities (4b). As the changes to the non-versionable

functionalities have global effects, the versionable alternatives are preferred. In

Chef, a Role is a logical way to group nodes (e.g., web servers and databases).

Each role can include zero (or more) attributes and a run-list of recipes. Roles

are not versionable. Therefore, they should not be used to keep the recipes

run-lists, which should be assigned as default recipes of cookbooks.

5.3.5. Practice 5 - Prevent avoidable mistakes

This category includes the practices that can be used to prevent introducing

faulty behaviors to IaC codes.

Use the correct quoting style (5a). The improper usage of quotes can also

introduce undesired errors such as erroneous interpolation of values. Thus each

IaC language provides the best practices for using single quotes and double-

quotes.

Avoid unexpected behaviors whenever possible (5b). Some best practices aim

at preventing the introduction of unexpected problematic behaviors. Persis-

tent node attributes are not explicit in Chef, leading to unexpected behaviors;

33

thus, they should be avoided. Instead, Roles or environments can contain the

attributes shared by several cookbooks. External attributes make managing

dependencies and refactoring cookbooks problematic. Hence, minimizing their

usage and making them visible are recommended. Using separate attribute

files for capturing those attributes, which recipes override, makes explicit the

attributes’ purpose. This solution reduces the undesired errors that can occur

due to the unknown execution orders of recipes at design time. In these cases,

changes to attribute values caused by overriding attributes will lead to erroneous

or inconsistent values. For this reason, arrays are not recommended to define

composite attributes as merging their attributes is trickier than merging hashes.

The misuse of variables and their precedence is a common cause of unexpected

errors. Variables should be defined a close as possible to their usage, for example,

Ansible role variables under roles and host variables in inventory files. group_vars

and host_vars enable scoping variables to particular groups or systems.

Use proper values (5c). Each IaC languages have constraints on the values

allowed for specific variables/parameters/properties (e.g., file modes and file

paths). For example, a valid 4-digit octal value or symbol should be used for file

modes.

5.3.6. Practice 6 - Plan for unavoidable mistakes

Mistakes are inevitable; therefore, some practices aim at verifying and main-

taining the validity of code over time.

Write tests as you code (6a). Standard testing practices such as static code

analysis with Lint tools, unit testing, integration testing, functional testing, and

test automation should also be applied to IaC testing. Lint tools can be used to

detect syntactical/structural errors and bad coding practices. Unit testing can

validate the units of infrastructure codes (e.g., downloading software, installing

software, enforcing a password policy, and configuring a firewall). Integration

testing can validate the collective behavior of multiple IaC units (e.g., deploying

a 3-tier web application). Functional testing can test higher-level assertions

34

concerning installed applications and services (e.g., check if a system user can log

in to the environment and perform some operations). Automated tests can be

configured to allows for continuous testing of configuration code. The changes to

production servers can be tested with dry-run redeployments. As the developers

identify issues, they can add new test cases to the test suites to be automatically

invoked.

Do not ignore errors (6b). The errors during task execution should not be

ignored but handled with the error handling capabilities of Ansible to ensure

that the execution of a task leaves the node/infrastructure in the desired state.

The states of some resources (e.g., services or daemons) can also be checked

explicitly to verify the task execution.

Use off-the-shelf testing libraries (6c). Each IaC language offer tools to be used

for automated testing of IaC codes. For example, in Puppet, the test cases for

classes and resource types should be developed using its testing framework (i.e.,

rspec). Tools like Vagrant allows for easy creation of virtual test environments

compatible with production environments.

Monitors your environment (6d). Practitioners recommend continuous monitor-

ing of the environment managed by IaC. This practice can be supported by APIs

and query languages to retrieve the state of the environment automatically. For

example, PuppetDB collects data generated by Puppet. The collected data can

be queried using a REST API. For similar purposes, Puppet provides a module

for collecting metrics about the managed environment.

5.3.7. Practice 7 - Document little but well

This category includes the guidelines for appropriately document IaC pro-

grams.

Code as documentation (7a). Source code should be treated as documentation.

This practice ensures that documentation is always current because it is part

of the code and stored in a central repository. The inclusion of additional

35

configuration instructions for users in a manual is discouraged as it can lead to

infrastructure-documentation inconsistencies and non-reproducible environments.

Use document templates (7b). Templates and tools can be used to produce

consistent documents. For example, as the roles are created to be shared across

different projects typically using Ansible Galaxy, the recommendation is to

document the roles consistently and sufficiently by using the template generated

by Ansible Galaxy.

5.3.8. Practice 8 - Organize repositories well

This category of the best practices focuses on the proper organization of the

IaC code repositories to foster improved and secured collaboration among users

of repositories and to improve the understandability and predictability of the

repository.

Modularize repositories (8a). The general recommendation is to use a single

versioned-control IaC code repository (per organization) separated from the

application source code repository. Chef considers cookbooks as standalone,

self-contained applications, and thus a separate repository for each cookbook is

desired. In Puppet, a control repository is a version-controlled repository that

stores code, data, and modules or references to locations in other repositories.

Different repositories, per each artifact, can allow separate access and develop-

ment cycles of artifacts, such as complex Puppet modules, global data about the

organization, and Puppet profiles.

Use standard folder structures (8b). Each IaC language recommends a specific

directory layout while allowing some variations for their IaC projects. The

recommended structure for the top-level directory of an Ansible project consists

of inventory directories, variable (group and host) directories, custom module

and plugin directories, master (top-level) playbook rile, role playbook files, and

role directories. A Chef project includes three main sub-directories: cookbooks,

data_bags, and policyfiles (i.e., groups of cookbooks and settings for specific

36

systems). The recommended structure for a Puppet module includes data, files,

functions, hiera.yaml, lib, manifests, metadata.json, plans, and tasks.

5.3.9. Practice 9 - Separate configuration data from code

This category concerns the practices that aim to improve the management of

configuration data.

Use configuration datasource (9a). When the number of the managed components

exceeds a certain amount, the recommendation is to use a separate storage system

to keep configuration data about those components (e.g., user names and server

IPs). Ansible and Chef use file systems and version-controlled repositories (i.e.,

inventory files and data bags), and Puppet has Hiera, a key-value data store.

The data configuration stores can also avoid hard-coding parameter defaults and

private data in IaC programs.

Modularize configuration data (9b). The configuration data can also be modu-

larized to improve their maintainability and usage. The environments such as

test, development, and production exhibit differences in the number and configu-

rations of resources, and thus environment-specific data are needed. In general,

the same set of IaC code scripts deploys these environments. Building a reusable

IaC code requires making the code configurable for many sites/environments.

Using a separate data source (e.g., Ansible inventory files) for each environment

minimizes the errors that can occur due to mixing configuration data from

different environments. Moreover, the host data can be grouped based on the

hosts’ roles (e.g., web server and database server) to improve the modularity

of an inventory file. In Puppet, Hiera hierarchy can represent the hierarchical

organization of an environment.

Select data sources wisely (9c). IaC languages provide different options to store

configuration data, and there exist guidelines for making appropriate choices

considering different trade-offs. In Ansible, an inventory file defines the nodes in

one or more target environments. The number and the properties of the nodes

37

can be static or can change at runtime, for example, in elastic environments such

as public clouds. Thus, the best practices are related to the content organization

for maintaining modularity and separation of concerns. Dynamic inventories

can help to separate different environments in a dynamic and loosely-coupled

way. In Chef, both data bags and environment files can store configuration

data. Compared to data bags, accessing data from environment files incurs little

or no overhead and thus is preferred over data bags for environment storing

specific settings. While an environment file is a natural place to keep the

server IP addresses, using service discovery tools is recommended due to the

dynamic nature of server IP addresses. Recipes use conditionals on environment

names or attributes to apply different resources in different environments. As

the attributes can be overridden per-environment basis, they can implement

environment-specific changes without the complexity added by conditionals.

Use configuration templates (9d). The configuration template pattern is the best

practice for managing configuration files. It is recommended to externalize all

template variables as input parameters (i.e., defining a public API) to write a

self-contained, reusable template without directly referring to the attributes of

either of the IaC codes using the template. The best practice is to create the

parameterized reusable templates using variables and conditional logic to cater

to variations in the site-specific configurations, such as using Apache for test

and production environment.

5.3.10. Practice 10 - Write secure code

This category concerns secure data and software management.

Isolate secrets from code (10a). The key recommendation is to isolate secrets

(sensitive information) such as passwords and private ssh keys from IaC code.

Then, the isolated secrets should be injected into the deployment workflow as

necessary during its execution.

Protect your data at rest (10b). The sensitive data should be encrypted when

they are stored. Each IaC language supports a Vault for isolating and storing

38

secrets securely.

Use facts from trusted sources (10c). IaC programs may use the information or

facts about the environments to make decisions such as classifying nodes and

selecting suitable modules to manage nodes. Some IaC systems, for example,

Puppet, provides the mechanisms to collect and access facts securely (i.e., $trusted

fact array).

Use standard secure coding practices (10d). IaC developers also recommend

secure coding practices such as secure logging and the principle of least privilege.

In Ansible, to prevent displaying or logging decrypted data, the tasks’ output

should be selectively logged. The executions of some tasks need special privileges

like root user or some other user (e.g., installing software). Enforcing fine-grained

access control at the levels of a task or a block of tasks instead of globally at

playbook or role levels is also recommended. The best practices for writing

Puppet tasks include following the secure programming practices related to a

given task and use the task parameter meta-data to declare if it holds sensitive

data explicitly.

IaC Best Practices

We identified 10 primary categories of IaC best practices, sub-categorized in

33 lower-level categories. The practices cover each of the key constructs/ab-

stractions of IaC languages. They reflect both implementation issues (e.g.,

naming convention, style, formatting, and indentation) and design issues

(e.g., design modularity, reusability, and customizability of the code units of

the different languages).

5.4. RQ3: IaC Bad Practices

In this section, we present the IaC bad practices reported in the selected

grey literature. Table 4 shows the categories and sub-categories of the IaC

bad practices. For each sub-category, the sources, the number of related codes

39

(frequency of codes) in sources, and the number of atomic practices are also

shown.

Table 4: Bad practice categories and their sources (#), code frequencies (C), and number of

atomic practices (P)

Practice
Independent Ansible Chef Puppet

P C # P C # P C # P C

1 Violation of IaC principles

1a Not letting IaC do its

work

S28 4 4
S54

S65
2 3 - - - S34 1 1

1b Violating Idempo-

tence

- - -
S54

S65
2 4 - - - S38 2 2

1c Using non-

reproducible images

and environments

S6

S28

S31

2 3 - - - - - - - - -

2 Not writing IaC programs for people

2a Violation of naming

and styling conventions

S28 1 1
S51

S65
2 2 - - - S38 2 2

2b Favor complexity - - - S54 2 2 S63 2 2 - - -

2c Insufficient modular-

ity

- - -

S47

S48

S50

S65

4 9
S43

S63
3 5

S34

S38
2 3

3 Improper project organization

3a Improper repository

usage

- - - - - - - - -

S30

S34

S36

S38

3 5

3b Improper version

control

S18

S28
2 2 - - -

S40

S42

S63

3 5
S34

S38
2 2

4 Insecure configuration data and coding practices

4a Hard coding informa-

tion

S28 1 1 S57 1 1 - - - S58 1 1

4b Not using built-in se-

curity tools and mecha-

nisms correctly

- - - - - - S63 1 1 S38 2 2

40

5.4.1. Practice 1 - Violation of IaC principles

This category includes the bad development practices that violate the basic

principles of IaC.

Not letting IaC do its work (1a). All manual procedures should be automated

using the IaC source code. Configuration code (logic) and the data have different

cycles and dynamics. Thus, keeping data along with code (in the same control

repository) is not recommended. IaC languages provide high-level abstractions for

managing the configuration settings of specific resources, such as an abstraction

for configuring Apache servers. Thus, the overuse of low-level general abstractions

such as file and package tools is considered an anti-pattern. As IaC, Ansible

DSL source code should document itself, and the overuse of inline comments

requires undue maintenance efforts.

Violating idempotence (1b). The violation of the idempotence property and the

gradual creation of configuration drifts due to ad-hoc changes not managed by

IaC can result in non-reproducible environments. In Ansible, imperative modules

such as command and shell that execute ad-hoc operating system commands

can break idempotence. Thus, the execution of the tasks using such modules

should be guarded using conditionals that check the state of the infrastructure

and its components. In Puppet, imperative statements (such as the resource

type exec to run ad-hoc OS commands) can break one of the key philosophies

of the language: the declarative configuration model [30].

Using non-reproducible images and environments (1c). Images for application

components are generally created by extending a base or foundation image. If

the base images are crafted manually without explicit specifications (e.g., Docker

files), and such images get lost, updating and using those base images becomes

difficult. The environments can also become non-reproducible due to manual or

external updates outside automated IaC workflows.

41

5.4.2. Practice 2 - Not writing IaC programs for people

This category consists of the bad development practices that reduce readabil-

ity, understandability, and testability of IaC scripts.

Violation of naming and styling conventions (2a). Improper naming and in-

consistent formatting styles hinder the readability and maintainability of the

IaC programs. For example, Ansible syntax is YAML-based, and hence the

violation of YAML style guidelines and inconsistent use of such styles reduces

the readability of the code. Similarly, in Puppet, roles and profiles should not be

named, contradicting the abstractions they offer (e.g., having a role for managing

technology and a profile for managing a server type).

Favor complexity (2b). For each IaC languages, the use of the complex conditions

with many branches are discouraged as they are general untestable and reduce the

readability of the code. The use of some language features that lead to complex

unexpected behaviors, are discouraged. Ansible uses handlers to monitor and

respond to the changes in the resources managed. A common usage of handlers

is for restarting services (daemons) after an update to their configurations. If a

handler causes a changed state (in the target infrastructure or node) in a handler

chain, it notifies the next handler. The chain stops if a handler fails or does not

change a resource, leading to unexpected behaviors that are difficult to debug

and identify. Chef provides a publish-subscribe model of notifying and reacting

to resource changes. However, the overuse of resource changes notifications

creates a complex management workflow, which is extremely hard to follow and

verify.

Insufficient modularity (2c). Having a single playbook or a few multifaceted

playbooks hinder the separation of concerns, leading to code that is unnecessarily

hard to test and maintain and slowing down the deployment process. In Ansible,

this bad practice entails complete playbook executions for each infrastructure

change. Using tasks without or along with roles in playbooks is discouraged as

it makes the code less reusable and modular. Mixing-up abstractions reduce

42

the readability and testability. Defining variables in inventory files without

logically organizing them (e.g., using groups that reflect the hosts) makes the

inventories less modular. In Chef, too many attributes in a cookbook indicate

that the cookbook has too many responsibilities and lacks proper abstractions

and modularity. This violation is evident when writing recipes that result

in many unrelated configuration functions (i.e., God Recipe anti-pattern),

which undermines the recipe modularity. A similar issue occurs in Puppet,

where multiple manifests should decompose the configuration logic into focused

manifests.

5.4.3. Practice 3 - Improper project organization

This category concerns the wrong usage of repositories and version control

systems.

Improper repository usage (3a). Using a single directory to keep all Puppet

modules is discouraged. It leads to mixing up locally developed modules and

upstream modules. The lifecycles of individual modules can be different, and

hence, multiple systems may deploy different versions of modules. The separation

of key Puppet artifacts such as component modules, roles, profiles, and Hiera

data is recognized as a best practice. However, this practice can lead to multiple

repositories and branches with different codebases and different module versions.

In Puppet, the data in the profile modules specify profile defaults. Keeping these

data in the same repository of the code is discouraged. It makes it difficult to

delegate the development of profiles and their defaults to different teams (e.g.,

profile team and module team).

Improper Version Control (3b). Forking a community module/library without

wrapping it or copying and pasting code to implement the same application in

multiple environments is not recommended. The use of non-versionable codes

such as Chef roles is also discouraged as changes have global effects.

43

5.4.4. Practice 4 - Do not write secure code

This category concerns violations of security practices for data and software

management.

Hard coding information (4a). . Postponing the separation of secrets from the

code and hard-coding sensitive information makes the code less reusable, less

customizable, and more vulnerable.

Not using built-in security tools and mechanisms correctly (4b). Puppet offers

several security functions, such as secure fact access and a module for auto signing

certificates. Not relying on this built-in support is a bad practice. However,

the users should evaluate the security vulnerabilities of the selected tools or

mechanisms before deciding to use them. For example, Chef provides data bags

as a way to manage secrets within Chef. However, using data bags is discouraged

as a single decryption key is used for all secret information, and that key is

distributed to every node.

IaC Bad Practices

We identified 4 primary categories of IaC bad practices, sub-refined in 10

categories. While most of these practices concern design and implementa-

tion issues related to key constructs/abstractions of IaC languages, they

also reflect the violations of the essential principles of IaC: idempotence of

configuration code, separation of configuration code from configuration data,

and infrastructure/configuration management as software development.

6. Discussion, Highlights, and Observations

This section compares our work with existing academic literature and provides

some observations on performing systematic grey literature reviews.

6.1. Comparison with IaC Practices Reported in the Existing Academic Literature

As discussed in Section 3, several studies [30, 31] on IaC smells have used

best/bad practices as the sources of the smells. However, these studies considered

44

only a subset of the atomic practices: 32 practices for Puppet [30], and a similar

amount for Chef [31]. We also observed that the reported best/bad practices

are related only to a subset of the constructs/concepts of a given IaC language.

For example, in Spinellis et al. [30], the practices concerning Puppet constructs

roles, profiles, tasks, configuration files, and Hiera (configuration datastore) have

not been used. We found 10 and 4 primary categories of IaC best and bad

practices and considered each construct in three different IaC languages. Thus,

our findings imply that new types of IaC smells are recognized, categorized, and

detected.

Our survey with the industrial researchers and practitioners revealed seven

IaC bad practices and four best practices [12]. Interestingly, all of those practices

are also part of our catalog, albeit a few are only indirectly related. We found

that little documentation is a best practice as IaC code should act as the

documentation, which reduces the potential for occurring inconsistencies between

code and documentation. However, that survey states that IaC code poor

documentation is a bad practice.

Rahman et al. [33] identifies seven security smells for IaC by qualitatively

analyzing IaC (Puppet) code scripts, which also reflect the insecure coding

practices. Our catalog includes only two of those seven smells: admin by

default and hard-coded secrets. Smells such as empty passwords, suspicious

comments, and weak cryptography algorithms have not been reported in our

selected industrial studies. However, we found new security best practices: (1)

secure logging (not showing decrypted secrets in logs); (2) using facts (node

properties) from a secure in-memory data store (a secure fact array); and (3)

explicitly indicating if the value of a parameter contains sensitive information

using parameter meta-data.

By qualitatively analyzing defect-related commits, Rahman et al. [34] com-

piled a taxonomy of eight IaC defects: (1) violation of idempotency property; (2)

misconfigurations; (3) inconsistencies between documentation and IaC code; (4)

erroneous conditional logic; (5) missing or incorrect dependencies; (6) security

vulnerabilities; (7) incorrect use of service/daemon resource; and (8) syntax

45

defects. Interestingly, each of these bugs was indicated by at least one of the

best/bad practices in our catalog. For example, the improper use of imperative

commands/modules (e.g., shell and command modules in Ansible, and bash

resource in Chef) can result in non-idempotent IaC code, and thus is discouraged.

Hence, the violation of best practices and the application of bad practices are

potentially good early indicators of bugs.

6.2. Observations on Systematic Grey Literature Reviews

In this section, we observe the major difficulties and potentials of conducting

systematic grey literature reviews.

Assessing quality of Grey Literature. White literature typically conforms to a

pre-specified format, including abstract, keywords, introduction, methodology,

results, evaluation, and page limitation. However, this statement does not hold

for grey literature review, where there are different unique types of sources such as

blogs, white papers, slides, and language guides. It is also worth highlighting that

we observed that extracting data from slide decks is even more challenging because

they usually lack details and the corresponding video or audio presentations.

Please consider that grey literature cannot rely on the criteria used to assess

white literature sources (i.e., ranking, h-index, and acceptance rate with the

relevant research community). We found that the additional content of grey

sources such as comments, likes, dislikes, and sharing are good indicators of their

quality. However, most sources in our study did not have sufficient auxiliary

content. Therefore, we applied a set of quality assessment criteria that focus

on the reputation of the venues, the expertise of authors, and the clarity of the

content of the article to address these challenges of selecting quality grey articles

(see Section 4.3).

Lessons learned from applying Natural Language Processing techniques. Applying

NLP techniques for the automated analysis of grey literature can complement

the manual qualitative analysis to strengthen its importance and relevance. We

initially attempted to apply topic modeling and topological data analysis.

46

In topic modeling, the main idea is to extract the latent topics from the data

in an automated and unsupervised way. We compared the obtained topics with

the codes and groups resulted from qualitative analysis. Then, we established a

mapping (groups and topics) that allowed us to confirm the qualitative analysis

findings and further refine them.

Topological Data Analysis (TDA) presents the shape of the unstructured

data through a topological network. This technique provides a map of all the

data set points: the closer the points, the closer their meanings. In our study, the

points in the topology graph represent distributions of words. Simultaneously,

the clusters are treated and interpreted separately to find their meaning and

compare the topic modeling and manual qualitative analysis findings.

Most selected grey literature contained both text and code. In some cases,

there was no clear separation between text and code using a special notation,

preventing programs from differentiating them correctly. Moreover, many arti-

cles contain different content types, such as practices, features, examples, and

concepts. Thus, it was problematic to separate the content belonging to different

topics pragmatically accurately. These deficiencies in the pre-processing of grey

literature resulted in low-quality data and less meaningful and broad topics.

Thus, we decided to rely on manual qualitative analysis solely. We claim that

more research is needed to derive methodologies and guidelines for NLP and

data-driven techniques in systematic grey literature reviews.

Investigation approaches for handling fast growing materials. As grey literature

resources are generally published more often than white literature resources, we

observe that methodologies and tools for coping with fast-growing grey literature

would be valuable. For example, a tool to (semi-)automatically update the

literature review results or predict their relevance. Such tools may also have

implications on how the review results are recorded. For example, a taxonomy

could also be codified as an ontology [55], which can be shared, reused, and

semi-automatically updated.

47

7. Threats to Validity

In this section, we outline the threats to validity that may apply to our study.

7.1. Threats to External Validity

External validity concerns the applicability of a set of results in a more

general context [46]. Since our primary studies are obtained from many online

sources, our results and observations may be only partially applicable to the

broad area of practices and general disciplines of IaC, hence threatening external

validity.

There is a risk of having missed relevant grey literature because concepts

related to those included in our search strings are differently named in such

studies. Some studies may refer to patterns, anti-patterns, or smells instead of

best/bad practices. To mitigate this, we have explicitly included all relevant

synonyms and similar words in our search strings. We have also exploited the

features offered by search engines, which naturally support considering related

terms for all those contained in a search string. Items found using the search

terms have been assessed thoroughly based on various dimensions of quality [56].

Finally, while there are many IaC tools, we could study only three IaC tools

due to practicality. To partially mitigate this threat, we selected the three

most relevant tools that the practitioners currently use. We recognize that a

comparison between the three selected tools and other home-grown solutions

would lead to additional insights. We leave, however, such an analysis for future

research work.

7.2. Threats to Construct and Internal Validity

Construct validity concern the generalizability of the constructs under study,

while internal validity concerns the validity of the methods employed to study

and analyze data (e.g., the types of bias involved) [46].

We organized at least four feedback sessions during our systematic analysis.

We analyzed the discussion following-up from each feedback session, and we

exploited this qualitative data to fine-tune both our research methods and the

48

applicability of our findings. We also prepared an online appendix containing all

artifacts we produced during our analysis, including the full list of sources, codes,

groups, and distilled best/bad practices (see Section 4). We are confident that

this can help make our results and observations more explicit and applicable in

practice.

Furthermore, we adopted various triangulation rounds, inter-rater reliability

assessment, and quality control factors (recall Section 4). We applied inter-rater

reliability assessment in at least two phases, both for the pilot study and the final

study, with the full set of sources: primary sources selection and coding process.

We added new studies and codes in the respective stages – although without

performing a further inter-rater assessment. All in all, the risk of observer bias

is always present when using this method.

7.3. Threats to Conclusions Validity

Threats to conclusions validity concern the degree to which the study conclu-

sions are reasonably based on the available data [46].

To mitigate this threat, we again exploited theme coding and inter-rater

reliability assessment to limit observer bias and interpretation bias, with the ulti-

mate goal of performing a sound analysis of the data we retrieved. Additionally,

the conclusions drawn in this article were independently drawn by the different

authors. They were then double-checked against the selected industrial studies

and/or related studies in one of our feedback rounds.

Overall, we know that our empirical investigation is limited to analyzing

the practitioners’ perception distilled from the grey literature. These findings,

however, are in line with the ones stemming from focus groups with DevOps [12],

and we are currently working to complement those studies with a large-scale

mining software repository [57] (GitHub) investigation of how DevOps treat

infrastructure code.

49

8. Conclusions

DevOps is a family of tactics that accelerate the deployment and delivery of

large-scale applications. DevOps automation is driven by infrastructure code:

the series of blueprints laying out the application infrastructure, its dependencies,

and middleware across a DevOps pipeline.

This paper investigated infrastructure code language/tools and best/bad

practices from a practitioner perspective by addressing grey literature in the

field, stemming from 67 selected sources, and systematically applying qualitative

analysis. We distilled a taxonomy consisting of 10 and 4 categories of best and

bad IaC practices, respectively. We believe that this catalog, along with the

categorization we provide, can be valuable for both practitioners and researchers.

The former can benefit from comprehensive guidelines of "do’s and don’ts" when

developing IaC scripts. The latter can find foundations for further research e.g.,

on IaC patterns and anti-patterns/smells, which is part of our future work.

Our findings reveal critical insights concerning the top languages and the

best practices adopted by practitioners to address (some of) those challenges.

Overall, the most direct conclusion stemming from our evidence is that the

field of software maintenance, evolution, and security of IaC is in its infancy

and deserves further attention. On the one hand, several best practices exist,

but they mostly concern the complexities inherent within IaC. On the other

hand, many challenges exist, such as conflicting best-practices, lack of testability,

security/secrets management issues, and monitoring.

Our future research agenda is based on the main findings of our grey literature

review. We plan to provide automated mechanisms to recommend when and

how to apply best practices in IaC code and pinpoint the bad practices affecting

it. Furthermore, we also plan to replicate our investigation by considering more

different IaC tools.

50

Acknowledgments

This research has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No 825480

(H2020 SODALITE) and No 825040 (H2020 RADON). Fabio acknowledges the

support of the Swiss National Science Foundation through the SNF Project No.

PZ00P2_186090 (TED).

Appendix A. Selected Industrial Studies

S1 Sam Guckenheimer. What is Infrastructure as Code?. Mi-

crosoft, 2017. https://docs.microsoft.com/en-us/azure/devops/

learn/what-is-infrastructure-as-code

S2 Mike Chan. 15 Infrastructure as Code tools you can use to automate your

deployments. Thorntech, 2017. https://www.thorntech.com/2018/04/

15-infrastructure-as-code-tools/

S3 Stephen Bigelow. What is infrastructure as code?. TechTarget,

2019. https://searchitoperations.techtarget.com/definition/

Infrastructure-as-Code-IAC

S4 Jafari Sitakange. Infrastructure as Code: A Reason to Smile.

ThoughtWorks, 2017. https://www.thoughtworks.com/insights/blog/

infrastructure-code-reason-smile

S5 Artem Starostenko. Infrastructure as Code Tutorial.

Hacker Noon, 2018. https://medium.com/hackernoon/

infrastructure-as-code-tutorial-e0353b530527

S6 Dan Merron. Infrastructure as Code (IaC): An Introduction. BMC Soft-

ware, 2018. https://www.bmc.com/blogs/infrastructure-as-code/

S7 Christopher Null. Infrastructure as code: The engine at the heart of

DevOps. TechBeacon, 2017. https://techbeacon.com/enterprise-it/

infrastructure-code-engine-heart-devops

51

S8 Eric. Infrastructure as Code: Everything You Need to Know. CloudBees,

2018. https://www.cloudbees.com/blog/infrastructure-as-code/

S9 Vikram Nallamala. What Is Infrastructure as Code?. DZone,2018. https:

//dzone.com/articles/what-is-infrastructure-as-code-2

S10 Steve Strutt. Infrastructure as Code: Chef, Ansible, Puppet,

or Terraform?. IBM, 2018. https://www.ibm.com/cloud/blog/

chef-ansible-puppet-terraform

S11 Steve Strutt. Infrastructure as Code Accelerates Application

Deployment. IBM, 2018. https://www.ibm.com/cloud/blog/

infrastructure-as-code

S12 Campbell. Infrastructure as Code: Seems Easy, But Best Left to Ex-

perts. Rackspace, 2019. https://www.rackspace.com/en-gb/blog/

infrastructure-as-code-seems-easy-but-best-left-to-experts

S13 Krunal Sabnis. Infrastructure-as-code. Qualibrate, 2018. https://www.

qualibrate.com/blog/infrastructure-as-code

S14 Vikram Nallamala. How To Leverage Infrastructure-As-Code With De-

vOps Best Practices. IbexLabs, 2018. https://www.ibexlabs.com/

leverage-iac-with-devops-best-practices/

S15 Red Badger Team. What’s Infrastructure as Code (IaC)?.

Red Badger, 2018. https://blog.red-badger.com/2018/7/23/

whats-infrastructure-as-code-iac

S16 Mike Chan. Infrastructure as Code: 5 Reasons Why You Should Imple-

ment IaC Now. Thorntech, 2018. https://www.thorntech.com/2018/

01/infrastructureascodebenefits/

S17 David Schmitt and Igor Galić. Hitchhiker’s guide to testing infrastructure

as/and code — don’t panic!. Puppet, 2016. https://puppet.com/blog/

hitchhikers-guide-to-testing-infrastructure-as-and-code/

52

S18 Mike Brooks. Complexity in Infrastructure as Code.

OVO Energy, 2018. https://tech.ovoenergy.com/

complexity-in-infrastructure-as-code/

S19 Ricardo Matsui. Infrastructure as Code at Tile.

Medium, 2018. https://medium.com/tile-engineering/

infrastructure-as-code-at-tile-da0be83682a2

S20 Tom McLaughlin. Serverless DevOps: Infrastructure As Code With AWS

Serverless. ServerlessOps, 2018. https://www.serverlessops.io/blog/

serverless-ops-infrastructure-as-code-with-aws-serverless

S21 Roy Feintuch. New Security Challenges with

Infrastructure-as-Code and Immutable Infrastructure.

The New Stack, 2018. https://thenewstack.io/

new-security-challenges-with-infrastructure-as-code-and-immutable-infrastructure/

S22 Mike Chan. Infrastructure as Code: 6 best practices to get the most out of

IaC.Thorn Technologies, 2018. https://www.thorntech.com/2018/02/

infrastructure-as-code-best-practices/

S23 Raj Bissessar. DevOps and Infrastructure as Code. Medium, 2019. https:

//medium.com/faun/devops-automation-and-iac-c007c3c0d172

S24 Oded Nahum. Infrastructure as Code: Driving Software Delivery

Performance. LinkedIn, 2018. https://www.linkedin.com/pulse/

infrastructure-code-driving-software-delivery-oded-nahum

S25 Tasktop. Software-Defined: DevOps Automation using Infrastructure as

Code. Tasktop Technologies, 2017. https://www.tasktop.com/blog/

software-defined-it-automation-using-infrastructure-as-code/

S26 Brett Johnson. Introduction to Infrastructure as Code. Network

Computing, 2018. https://www.networkcomputing.com/networking/

introduction-infrastructure-code

53

S27 Will May. Self-testing infrastructure-as-code. OpenCredo, 2018. https:

//opencredo.com/blogs/self-testing-infrastructure-as-code/

S28 Andrey Adamovich. Patterns for Infrastructure-as-Code.

SlideShare, 2015. https://www.slideshare.net/aestasit/

patterns-for-infrastructureascode

S29 Badri N. Srinivasan. Eleven Continuous Delivery Anti-

Patterns. DZone, 2018. https://dzone.com/articles/

eleven-continuous-delivery-anti-patterns

S30 Jonah Horowitz. Configuration Management is an An-

tipattern. Hacker Noon, 2018. https://hackernoon.com/

configuration-management-is-an-antipattern-e677e34be64c\

\#.pjuxtl98h

S31 Walter Pindhofer. Introduction Part 1: CI/CD Antipat-

terns. Qualysoft, 2018. https://www.qualysoft.com/en/blog/

introduction-part-1-cicd-antipatterns

S32 Aiman Najjar. A Look at Aurrent “infrastructure as code”

Trends. Pythian Group, 2018. https://blog.pythian.com/

look-current-infrastructure-code-trends/

S33 Andrew Beresford. Puppet Anti-patterns. GitHub, 2018. https://

github.com/beezly/puppet-antipatterns-presentation

S34 Tim Birkett. Puppet Anti-Patterns, 2016. https://www.pysysops.com/

2016/11/10/1123-Puppet-Anti-Patterns.html

S35 David Danzilio. Puppet Design Patterns: The Factory Pattern, 2016. http:

//blog.danzil.io/2016/05/20/puppet-design-patterns-factory.

html

S36 Gary Larizza. Building a Functional Puppet Workflow Part 1: Mod-

ule Structure. 2014. http://garylarizza.com/blog/2014/02/17/

puppet-workflow-part-1/

54

S37 David Danzilio. Puppet Design Patterns. SlideShare, 2016. https://

github.com/beezly/puppet-antipatterns-presentation

S38 PuppetLab. CS Best Practices Repository. GitHub, 2018. https://

github.com/puppetlabs/best-practices

S39 PuppetLab. Best Practices: Roles & Profiles. SlideShare,

2016. https://www.slideshare.net/PuppetLabs/

puppetconf-2016-puppet-best-practices-roles-profiles-gary-larizza-puppet

S40 Nick Rycar. Chef 101: The Road to Best Practice. Chef, 2017. https:

//blog.chef.io/chef-101-the-road-to-best-practices

S41 Chef. Chef Style Guide. GitHub, 2017. https://github.com/

pulseenergy/chef-style-guide

S42 Virendra. Chef workflows: patterns and anti-patterns.

LinkedIn, 2015. https://www.linkedin.com/pulse/

chef-workflows-patterns-anti-patterns-virendra-bhalothia

S43 Eric Krupnik. Chef Cookbook Design Patterns. SlideShare,

2015. https://www.slideshare.net/EricKrupnik/

chef-cookbook-design-patterns

S44 Stanisław Tuszyński. Chef best practices. Ragnarson, 2017. https:

//blog.ragnarson.com/2015/06/01/chef-best-practices.html

S45 Bruce Cutler. Testing your Chef Code: It’s All About Confi-

dence. Medium, 2017. https://medium.com/slalom-technology/

testing-your-chef-code-its-all-about-confidence-fd4b9d969a7e

S46 Ansible Community. Tips and tricks. Ansible, 2019. https:

//docs.ansible.com/ansible/2.8/user_guide/playbooks_best_

practices.html

S47 Michel Blanc. Laying out roles, inventories and playbooks. GitHub, 2017.

https://leucos.github.io/ansible-files-layout

55

S48 Timothy Appnel. Inside Playbook Ansible Best Practices: The

Essentials, Ansible, 2016. https://www.ansible.com/blog/

ansible-best-practices-essentials

S49 Kat Dober. New to Ansible? Check Out Our Best Practices Guide.

New Relic Software, 2018. https://blog.newrelic.com/engineering/

ansible-best-practices-guide/

S50 Jiri Tyr. Best practices for ansible roles development.

SlideShare, 2017. https://www.slideshare.net/jtyr/

best-practices-for-ansible-roles-development

S51 Sebastian Gumprich. Ansible Best practices. T-Systems, 2018. https://

blog.t-systems-mms.com/tech-insights/ansible-best-practices

S52 Manosh Malai. Ansible Best Practices. Wordpress, 2018. https://

mydbops.wordpress.com/2018/04/07/ansible-best-practices/

S53 Engin Yöyen. Ansible Best Practices. GitHub, 2017. https://github.

com/enginyoyen/ansible-best-practises

S54 Julio Villarreal Pelegrinoa. Ansible and Ansible Tower: best

practices from the fields. 2018. https://juliosblog.com/

ansible-and-ansible-tower-best-practices-from-the-field/

S55 Soroush Atarod. Ansible Best Practices explained. 2018. https://www.

infinitypp.com/ansible/best-practices/

S56 Will Robinson. The Anatomy of an Ansible Playbook. 2017. https:

//oznetnerd.com/2017/04/09/anatomy-ansible-playbook/

S57 Andreas Sommer. Ansible Best Practices. Ansible best practices, 2017.

https://andidog.de/blog/2017-04-24-ansible-best-practices

S58 Gary Larizza. Hiera, data and Puppet code: your path to the

right data decisions. Puppet, 2017. https://puppet.com/blog/

hiera-data-and-puppet-code-your-path-right-data-decisions/

56

S59 Lori Macvittie. The Dark Side of Infrastructure as Code. DevOps, 2014.

https://devops.com/dark-side-infrastructure-code/

S60 Andrés Riancho. Secure infrastructure as code:How I built w3af.org.

OWASP, 2015. https://owasp.org/www-pdf-archive/8-Secure_

infrastructure_as_code_-_How_I_built_w3af.org_-_v0.4.pdf

S61 Sudhi Seshachala. Ansible Best Practices. DevOps, 2015. https://

devops.com/puppet-best-practices/

S62 David Marquis. A few Puppet best practices. Radiant3

Productions, 2013. http://blog.radiant3.ca/2013/09/17/

a-few-puppet-best-practices/

S63 Chef Community. Emerging Anti Patterns in Chef. GitHub, 2015.

https://github.com/chef-boneyard/community-summits/wiki/

Seattle2015-Emerging-Anti-Patterns

S64 Glenn Poston. Puppet Best Practices: Environment specific configs,

2013. http://www.glennposton.com/posts/puppet_best_practices_

_environment_specific_configs

S65 Oteemo Team. Organizing Ansible. Oteemo, 2019. https://oteemo.com/

organizing-ansible/

S66 Chef Team. Patterns To Follow. Chef.io, 2019. https://docs.chef.io/

ruby/#patterns-to-follow/

S67 Puppet Team. The Puppet language style guide. Puppet, 2019. https:

//puppet.com/docs/puppet/7.4/style_guide.html

References

[1] L. J. Bass, I. M. Weber, L. Zhu, DevOps - A Software Architect’s Perspec-

tive., SEI series in software engineering, Addison-Wesley, 2015.

57

[2] M. Artac, T. Borovsak, E. D. Nitto, M. Guerriero, D. A. Tamburri, Model-

driven continuous deployment for quality devops., in: D. Ardagna, G. Casale,

A. van Hoorn, F. Willnecker (Eds.), QUDOS@ISSTA, ACM, 2016, pp. 40–41.

[3] K. Morris, Infrastructure As Code: Managing Servers in the Cloud, Oreilly

& Associates Incorporated, 2016.

[4] M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero, D. A. Tamburri, Devops:

introducing infrastructure-as-code, in: 2017 IEEE/ACM 39th International

Conference on Software Engineering Companion (ICSE-C), IEEE, 2017, pp.

497–498.

[5] M. Hüttermann, Infrastructure as code, in: DevOps for Developers, Springer,

2012, pp. 135–156.

[6] M. Jarschel, Network function virtualization: Towards the commoditization

of middle boxes (2013-11-05).

[7] D. Soldani, B. Barani, R. Tafazolli, A. Manzalini, I. Chih-Lin, Software

defined 5g networks for anything as a service [guest editorial], IEEE Com-

munications Magazine 53 (9) (2015) 72–73.

[8] P. Lipton, D. Palma, M. Rutkowski, D. A. Tamburri, Tosca solves big

problems in the cloud and beyond!, IEEE cloud computing 5 (2) (2018)

37–47.

[9] L. Hochstein, R. Moser, Ansible: Up and Running: Automating Configura-

tion Management and Deployment the Easy Way, " O’Reilly Media, Inc.",

2017.

[10] J. Loope, Managing infrastructure with puppet: configuration management

at scale, " O’Reilly Media, Inc.", 2011.

[11] M. Marschall, Chef infrastructure automation cookbook, Packt Publishing

Ltd, 2015.

58

[12] M. Guerriero, M. Garriga, D. A. Tamburri, F. Palomba, Adoption, support,

and challenges of infrastructure-as-code: Insights from industry, in: 2019

IEEE International Conference on Software Maintenance and Evolution

(ICSME), IEEE, 2019, pp. 580–589.

[13] A. Rahman, R. Mahdavi-Hezaveh, L. Williams, A systematic mapping study

of infrastructure as code research, Information and Software Technology

108 (2019) 65–77.

[14] M. Wurster, U. Breitenbücher, L. Harzenetter, F. Leymann, J. Soldani,

Tosca lightning: An integrated toolchain for transforming tosca light into

production-ready deployment technologies, in: N. Herbaut, M. La Rosa

(Eds.), Advanced Information Systems Engineering, Springer International

Publishing, 2020, pp. 138–146.

[15] S. Dalla Palma, D. Di Nucci, F. Palomba, D. A. Tamburri, Toward a catalog

of software quality metrics for infrastructure code, Journal of Systems and

Software 170 (2020) 110726.

[16] S. Dalla Palma, D. Di Nucci, D. A. Tamburri, Ansiblemetrics: A python

library for measuring infrastructure-as-code blueprints in ansible, SoftwareX

12 (2020) 100633.

[17] S. Dalla Palma, D. Di Nucci, F. Palomba, D. A. Tamburri, Within-project

defect prediction of infrastructure-as-code using product and process metrics,

IEEE Transactions on Software Engineering (2021) 1–1.

[18] I. Kumara, Z. Vasileiou, G. Meditskos, D. A. Tamburri, W.-J. Van

Den Heuvel, A. Karakostas, S. Vrochidis, I. Kompatsiaris, Towards se-

mantic detection of smells in cloud infrastructure code, in: Proceedings

of the 10th International Conference on Web Intelligence, Mining and Se-

mantics, WIMS 2020, Association for Computing Machinery, 2020, pp.

63–67.

59

[19] N. Borovits, I. Kumara, P. Krishnan, S. D. Palma, D. Di Nucci, F. Palomba,

D. A. Tamburri, W.-J. van den Heuvel, Deepiac: Deep learning-based

linguistic anti-pattern detection in iac, in: Proceedings of the 4th ACM

SIGSOFT International Workshop on Machine-Learning Techniques for

Software-Quality Evaluation, MaLTeSQuE 2020, Association for Computing

Machinery, 2020, pp. 7–12.

[20] G. Schermann, S. Zumberi, J. Cito, Structured information on state and

evolution of dockerfiles on github, in: Proceedings of the 15th International

Conference on Mining Software Repositories, MSR ’18, ACM, 2018, pp.

26–29.

[21] T. Dai, A. Karve, G. Koper, S. Zeng, Automatically detecting risky scripts

in infrastructure code, in: Proceedings of the 11th ACM Symposium on

Cloud Computing, SoCC ’20, Association for Computing Machinery, 2020,

pp. 358–371.

[22] T. Sotiropoulos, D. Mitropoulos, D. Spinellis, Practical fault detection in

puppet programs, in: Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering, ICSE ’20, Association for Computing

Machinery, 2020, pp. 26–37.

[23] J. Sandobalín, E. Insfran, S. Abrahão, On the effectiveness of tools to

support infrastructure as code: Model-driven versus code-centric, IEEE

Access 8 (2020) 17734–17761.

[24] M. S. Islam Shamim, F. Ahamed Bhuiyan, A. Rahman, Xi commandments

of kubernetes security: A systematization of knowledge related to kubernetes

security practices, in: 2020 IEEE Secure Development (SecDev), 2020, pp.

58–64.

[25] M. M. Hasan, F. A. Bhuiyan, A. Rahman, Testing practices for infrastructure

as code, in: Proceedings of the 1st ACM SIGSOFT International Workshop

on Languages and Tools for Next-Generation Testing, LANGETI 2020,

Association for Computing Machinery, 2020, pp. 7–12.

60

[26] A. Rahman, E. Farhana, L. Williams, The ‘as code’ activities: development

anti-patterns for infrastructure as code, Empirical Software Engineering

25 (5) (2020-09-01) 3430–3467.

[27] A. Rahman, M. R. Rahman, C. Parnin, L. Williams, Security smells in

ansible and chef scripts: A replication study, ACM Transactions on Software

Engineering and Methodology (TOSEM) 30 (1) (2021-01).

[28] R. Opdebeeck, A. Zerouali, C. Velázquez-Rodríguez, C. D. Roover, Does

infrastructure as code adhere to semantic versioning? an analysis of ansible

role evolution, in: 2020 IEEE 20th International Working Conference on

Source Code Analysis and Manipulation (SCAM), 2020, pp. 238–248.

[29] S. Kokuryo, M. Kondo, O. Mizuno, An empirical study of utilization of

imperative modules in ansible, in: 2020 IEEE 20th International Conference

on Software Quality, Reliability and Security (QRS), 2020, pp. 442–449.

[30] T. Sharma, M. Fragkoulis, D. Spinellis, Does your configuration code smell?,

in: Proceedings of the 13th International Conference on Mining Software

Repositories, MSR ’16, ACM, 2016, pp. 189–200.

[31] J. Schwarz, A. Steffens, H. Lichter, Code smells in infrastructure as code,

in: 2018 11th International Conference on the Quality of Information and

Communications Technology (QUATIC), 2018, pp. 220–228.

[32] E. Van der Bent, J. Hage, J. Visser, G. Gousios, How good is your puppet?

an empirically defined and validated quality model for puppet, in: 2018

IEEE 25th International Conference on Software Analysis, Evolution and

Reengineering (SANER), IEEE, 2018, pp. 164–174.

[33] A. Rahman, C. Parnin, L. Williams, The seven sins: security smells in

infrastructure as code scripts, in: 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE), IEEE, 2019, pp. 164–175.

[34] A. Rahman, E. Farhana, C. Parnin, L. Williams, Gang of eight: A defect

taxonomy for infrastructure as code scripts, in: Proceedings of the 42nd

61

International Conference on Software Engineering, ICSE, Vol. 20, 2020, pp.

752–764.

[35] A. Rahman, A. Partho, P. Morrison, L. Williams, What questions do

programmers ask about configuration as code?, in: Proceedings of the 4th

International Workshop on Rapid Continuous Software Engineering, RCoSE

’18, ACM, 2018, pp. 16–22.

[36] L. Leite, C. Rocha, F. Kon, D. Milojicic, P. Meirelles, A survey of devops

concepts and challenges, ACM Computing Surveys (CSUR) 52 (6) (2019-11).

[37] D. WeerasiriTaxonomyCloud, M. C. Barukh, B. Benatallah, Q. Z. Sheng,

R. Ranjan, A taxonomy and survey of cloud resource orchestration tech-

niques, ACM Computing Surveys (CSUR) 50 (2) (2017-05).

[38] A. Bergmayr, U. Breitenbücher, N. Ferry, A. Rossini, A. Solberg, M. Wim-

mer, G. Kappel, F. Leymann, A systematic review of cloud modeling

languages, ACM Computing Surveys (CSUR) 51 (1) (2018-02).

[39] S. Keele, et al., Guidelines for performing systematic literature reviews in

software engineering, Tech. rep., Technical report, Ver. 2.3 EBSE Technical

Report. EBSE (2007).

[40] V. Garousi, M. Felderer, M. V. Mäntylä, Guidelines for including grey liter-

ature and conducting multivocal literature reviews in software engineering,

Information and Software Technology 106 (2019) 101–121.

[41] J. Soldani, D. A. Tamburri, W.-J. Van Den Heuvel, The pains and gains of

microservices: A systematic grey literature review, Journal of Systems and

Software 146 (2018) 215–232.

[42] R. Verdecchia, I. Malavolta, P. Lago, Guidelines for architecting android

apps: A mixed-method empirical study, in: 2019 IEEE International Con-

ference on Software Architecture (ICSA), 2019, pp. 141–150.

62

[43] V. Garousi, B. Küçük, Smells in software test code: A survey of knowledge

in industry and academia, Journal of systems and software 138 (2018) 52–81.

[44] C. Islam, M. A. Babar, S. Nepal, A multi-vocal review of security orchestra-

tion, ACM Computing Surveys (CSUR) 52 (2) (2019-04).

[45] B.-J. Butijn, D. A. Tamburri, W.-J. v. d. Heuvel, Blockchains: a systematic

multivocal literature review, ACM Computing Surveys (CSUR) 53 (3) (2020)

1–37.

[46] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,

Experimentation in software engineering, Springer Science & Business Media,

2012.

[47] J. Saldaña, The coding manual for qualitative researchers, Sage, 2015.

[48] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis,

R. T. Guy, S. H. D. Haddock, K. D. Huff, I. M. Mitchell, M. D. Plumbley,

B. Waugh, E. P. White, P. Wilson, Best practices for scientific computing,

PLoS Biol 12 (1) (2014-01) 1–7.

[49] G. Wilson, J. Bryan, K. Cranston, J. Kitzes, L. Nederbragt, T. K. Teal,

Good enough practices in scientific computing, PLoS computational biology

13 (6) (2017-06) 1–20.

[50] M. Taschuk, G. Wilson, Ten simple rules for making research software more

robust, PLoS computational biology 13 (4) (2017-04) 1–10.

[51] M. Graff, K. R. Van Wyk, Secure coding: principles and practices, " O’Reilly

Media, Inc.", 2003.

[52] J. Varia, Best Practices in Architecting Cloud Applications in the

AWS Cloud, John Wiley & Sons, Ltd, 2011, Ch. 18, pp. 457–490.

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470940105.ch18.

63

[53] F. Zampetti, C. Vassallo, S. Panichella, G. Canfora, H. Gall, M. Di Penta,

An empirical characterization of bad practices in continuous integration,

Empirical Software Engineering 25 (2) (2020-03-01) 1095–1135.

[54] I. Abal, J. Melo, Ş. Stănciulescu, C. Brabrand, M. Ribeiro, A. Wąsowski,

Variability bugs in highly configurable systems: a qualitative analysis, ACM

Transactions on Software Engineering and Methodology (TOSEM) 26 (3)

(2018) 1–34.

[55] N. Guarino, D. Oberle, S. Staab, What is an ontology?, in: Handbook on

ontologies, Springer, 2009, pp. 1–17.

[56] C. Wohlin, Guidelines for snowballing in systematic literature studies and a

replication in software engineering, in: Proceedings of the 18th international

conference on evaluation and assessment in software engineering, Citeseer,

2014, p. 38.

[57] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,

D. Damian, The promises and perils of mining github, in: Proceedings

of the 11th working conference on mining software repositories, ACM, 2014,

pp. 92–101.

64

