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Abstract

Context: The ultimate goal of Continuous Integration (CI) is to support de-

velopers in integrating changes into production constantly and quickly through

automated build process. While CI provides developers with prompt feedback

on several quality dimensions after each change, such frequent and quick changes

may in turn compromise software quality without Refactoring. Indeed, recent

work emphasized the potential of CI in changing the way developers perceive

and apply refactoring. However, we still lack empirical evidence to confirm or

refute this assumption.

Objective: We aim to explore and understand the evolution of refactoring

practices, in terms of frequency, size and involved developers, after the switch to

CI in order to emphasize the role of this process in changing the way Refactoring

is applied.

Method: We collect a corpus of 99,545 commits and 89,926 refactoring

operations extracted from 39 open-source GitHub projects that adopt Travis CI

and analyze the changes using Multiple Regression Analysis (MRA).

Results: Our study delivers several important findings. We found that the

adoption of CI is associated with a drop in the refactoring size as recommended,

while refactoring frequency as well as the number (and its related rate) of de-
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velopers that perform refactoring are estimated to decrease after the shift to CI,

indicating that refactoring is less likely to be applied in CI context.

Conclusion: Our study uncovers insights about CI theory and practice

and adds evidence to existing knowledge about CI practices related especially

to quality assurance. Software developers need more customized refactoring

tool support in the context of CI to better maintain and evolve their software

systems.

Keywords: Continuous Integration, Refactoring, Exploratory Study, Mining

Software Repositories, Multiple Regression Analysis

1. Introduction

A major challenge in modern software engineering is ensuring the quality

of increasingly large and complex software systems. To this end, software de-

velopment companies have massively adopted Continuous Integration (CI) in

order to deliver software with fewer defects and shorter release cycles. CI aims5

at supporting developers in integrating changes, into a shared repository, more

frequently (and even daily) and the key to making this possible, according to

Fowler [14], is automating the build and test processes. For its valuable benefits,

such as significant improvements in productivity [46], CI has been promoted as

the leading edge of software engineering practices [20].10

To take full advantage of CI, a set of guiding principles have been intro-

duced to support developers adopting CI in practice [34, 10, 49, 48, 58]. For

instance, as advocated by Duvall et al. [10], CI users should continuously in-

spect code quality, which includes performing Static Code Analysis (SCA), in

order to maintain the code of good health. Another key principle is Continuous15

Refactoring (CR) [7, 49] which consists of “searching for refactoring opportuni-

ties at every completed change and to perform refactoring immediately, without

postponing it” [49]. Indeed, as an Agile method, the incremental nature of CI

requires the code to be continuously refactored in order to maintain high qual-

ity [37] and keep the quality gates, steps required to ensure the reliability of20
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code changes [33], always green [49]. Otherwise, it may be hard for develop-

ment teams to understand, maintain and extend their code [40]. Moreover, the

absence of CR may result in the need for large refactorings [37] that, like any

other complex change, may hinder the CI build progress and requires more de-

bugging effort [59]. Hence, it is encouraged to partition the large change into25

many smaller ones of few hours each [60].

From the academic side, the adoption of refactoring techniques for CI has

received some attention and automatic tools were proposed [54, 2], while others

used the outcome of SCA tools to detect refactoring opportunities [52]. However,

in practice, there is a lack of empirical knowledge of how refactoring is applied30

in CI context. The only preliminary study was conducted by Vassallo et al. [49]

through a survey with CI developers. Their findings point out the potential of

CI to change the way developers adopt refactoring as it is commonly known that

the late is often not applied [28, 35, 27] and performed only by specific developers

[42]. However, there is no empirical evidence confirming this assumption.35

In this paper, we want to investigate the possible impact of CI on the way

refactoring is applied in practice. First, we study whether CI adoption has

increased the likelihood of applying refactoring more frequently to answer the

following question (RQ1): Does CI impact the refactoring frequency? . Second,

we study whether the size of refactoring changes would decrease after the switch40

to CI. This leads us to our RQ2: Does the adoption of CI affect the refactoring

change size? Third, we study the relationship between adopting CI and the

involvement of developers in refactoring activities. Particularly, we ask our last

research question (RQ3): How are developers involved in code refactoring before

and after the adoption of CI?45

We present an extension of Vassallo et al. [49] work and conduct the first

exploratory study involving a benchmark of 99,545 commits and 89,926 refactor-

ing operations during four year development of 39 Open-Source Software (OSS)

projects centered around the adoption of Travis CI, a widely used CI service

[46]. Using Multiple Regression Analysis (MRA), we show that the adoption of50

CI is associated with a drop in the refactoring size, which aligns with the “small
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refactoring” guideline [37], while refactoring frequency as well as the number

(and its related rate) of developers that perform refactoring are estimated to

decrease after the shift to CI, indicating that refactoring is less likely to occur

and, in contrast with the earlier findings [49], refactoring is not spread in CI55

context. Our MRA also indicates that these trends will continue over time but

with different variations between projects with different sizes, ages and releasing

frequency. Based on these findings, we conjecture that software developers may

need more customized refactoring tool support in the context of CI to better

maintain and evolve their software systems.60

In summary, this paper makes the following contributions:

1. Empirical evidence of the impact of CI on refactoring: We de-

signed three novel research questions and conducted an empirical study

that allowed us to provide the first in-depth answers to questions about

the impacts of CI adoption on refactoring practices.65

2. Data collection and analysis: We collected and analyzed a benchmark

of 99,545 commits and 89,926 refactoring operations from 39 long-lived

OSS projects. Then, we analysed the data using MRA to capture any

effects of CI adoption.

3. A research roadmap: We provide practical implications of our findings70

for future research on the refactoring of modern systems. We believe that

novel techniques should be innovated to (i) raise developer’s awareness of

refactoring in the context of CI, (ii) recommend micro-refactoring oper-

ations in order to avoid build failure and (iii) support newcomers when

performing code quality tasks.75

Replication Package. The dataset used in our study is publicly available

for future replication and extension purposes [32].

Structure of the paper. The remainder of this paper is organized as

follows. Section 2 places this work with respect to the existing literature. We

present our research methodology in section 3, while present and analyze the80

obtained results in Section 4. In Section 5, we discuss the obtained results and
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their implications. Then, we review threats to validity in Section 6, and finally

we address the conclusions to draw in Section 7.

2. Related Work

In the following subsections, we present the work most related to our study.85

It is worth pointing out that this section does not aim at providing a systematic

overview of the related literature, but rather that of discussing the most relevant

papers to our subject. As such, we selected relevant works through a hybrid

process: (i) performing a query in Google Scholar and (ii) searching in the cited

papers of the related work previous SLR about refactoring and CI. Based on90

our search, we divide and discuss the prior work into three main areas: work

related to CI impacts on software quality and development practices, works on

the challenges, barriers and bad practices in CI and finally studies related to

code refactoring.

2.1. Studies about the impacts of CI adoption95

In this context, a number of research works have focused on studying the

outcomes of the adoption of CI on teams’ productivity, development practices

and code quality thanks to the increasing availability of publicly hosted Travis

CI data [5]. These works represent those that are more connected to the goals of

our empirical study: for the sake of clarity and completeness of the reporting, we100

summarise them in Table 1, presenting their key information, e.g., year of pub-

lication and studied impact, along with a brief description of the methodology

employed to address their objectives and the results achieved.

Vasilescu et al. [46] have found, using multiple regression modeling, that

CI improves the number of processed Pull Requests(PRs), i.e., a submitted105

candidate code change to be merged into the mainline repository, and reduces

the quantity of rejected ones, indicating a significant improvement in the team’s

productivity, and this without affecting code quality measured as the number

of closed bugs per month. Hilton et al. [20] claimed also that CI improves
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team’s productivity. Indeed, they found that after adopting CI (i) the studied110

CI projects release twice more than those that do not use CI and (ii) the PR

is accepted faster. Yu et al. [57] studied the acceptance and latency of PR in

CI context. Using regression models in a sample of 10 GitHub projects that

use Travis CI, the authors found that the availability of the CI pipeline is a

dominant factor in hastening the PR evaluation process. Yu et al. [56] studied115

the nature of CI detected defects and social factors are associated with them and

how they relate to eventual bugs. To this end, they performed both quantitative

and qualitative analysis: regression modeling and a qualitative study of 50 PRs.

The main results of their work are (1) CI failures are not highly correlated

with eventual bugs, (2) A mature CI process is associated with better fault120

detection and (3) The use of CI in a PR doesn’t necessarily mean having a

request of good quality. Zhao et al. [60] used regression discontinuity design [21]

to quantitatively evaluate the effect of adopting CI on development practices,

such as code writing and submission, issue and PR closing. The main result

of their study is that CI practice aligns with the “commit often” guideline [14]125

while merged commits seem to be getting smaller as recommended by Fowler.

While studies mentioned above suggest that the adoption of CI increases

the release frequency of a software project, other works did not observe such

an increase in their quantitative analyses. For instance, Bernardo et al. [6]

have observed, by training regression models, that CI does not always reduce130

the time for delivering merged PRs. Their models also reveal that PRs, that

are merged more recently in a release cycle, experience a slower delivery time.

Rahman et al. [31] have observed for the studied OSS projects some CI benefits

e.g.improvements in bug and issue resolution. However, for the proprietary

projects, they could not make similar observations.135

2.2. Studies on the challenges, barriers and bad practices of CI

Despite its valuable benefits, previous studies have pointed out challenges

and barriers characterizing CI adoption. For instance, Hilton et al. [19] have

found that developers face trade-offs between speed and assurance, between bet-
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ter access and information security, and between more CI configuration options140

and better flexibility in use.

Build failure is considered a major challenge that developers face [19] as it

requires immediate actions to resolve it. In addition, the build resolution may

take hours or even days to complete, which severely affects both, the speed of

software development and the productivity of developers [1] and may lead to CI145

abandonment [53].

Another CI barriers are due to social processes within the team, the frequent

turnover of developers after introducing CI and the wide variations in their

coding experiences is one of challenges for CI process’s success. For instance, Lu

et al. [25] results show that the casual contributors introduced greater quantity150

and severity of code quality issues than the main contributors.

Research efforts also reported some bad practices that developers usually

incur, limiting the effectiveness of CI. For instance, Vassallo et al. [48] revealed

a strong dichotomy between theory and practice in CI context as they found

that developers do not perform continuous code inspection but rather control155

for quality only at the end of a sprint and most of the times only on the release

branch.

Felidré et al. [12] have investigated a set of CI bad practices including in-

frequent commits, poor test coverage and broken builds for long periods. By

inspecting 1,270 OSS projects that use Travis CI, they observed that (i) 60%160

of the studied projects face infrequent commits, (ii) the average code coverage

was 78% among 51 projects in which they were able to find code coverage and

(iii) 85% of the studied projects have at least one broken build that takes more

than four days to be fixed.

Zampetti et al. [58] compiled a catalog of 79 CI bad smells belonging to 7165

categories related to CI pipeline management and process. As the main result,

they found some CI bad smells related to quality assurance. For example, a

branch is not tested before merging it, quality test thresholds are fixed on what

reached in previous builds and quality gates are set without being relevant for

developers and/or customers.170
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The closest work to ours is by Vassallo et al. [49]. They provide a prelim-

inary overview of the way refactoring is applied in CI. The authors conducted

a survey study that involved 31 developers to understand (i) how developers

perform refactoring and (ii) what are the pros and cons of adopting Continu-

ous Refactoring (CR). Their findings showed that developers tend to perform175

refactoring at every new build and they need CR. Still they face several barriers

while refactoring especially with the lack of time. In this paper, we presented

an extension of Vassallo et al. [49] work, we showed to which extent refactoring

is performed in practice.

2.3. Studies about code refactoring180

A series of interesting works in the field of refactoring have been published

to made strides into understanding the practice of refactoring. For instance,

Negara et al. [28] provided a detailed breakdown on the manual and automated

usage of refactoring, using continuous code change analysis of Eclipse IDE users.

Their main findings are (i) more than half of the refactorings are performed185

manually (52%) (ii) except for renaming refactorings, the automated refactor-

ings are underused. Tsantalis et al. [42] investigated refactoring activity as part

of the software engineering process. They have identified that the refactoring

application is often performed by specific developers. They also found a strong

alignment between refactoring activity and release dates and revealed that the190

development teams apply a considerable amount of refactorings during releasing

periods.

Many studies have investigated the relationship between refactoring and soft-

ware quality. Kim et al. [22] conducted a survey performed with professional

software engineers working at Microsoft and a quantitative analysis of version195

history data, to understand refactoring benefits and challenges. The main find-

ings of this study are: (i) the most important motivation that pushes developers

to perform refactoring is to enhance the readability of source code and (ii) the

quantitative analysis revealed a significant reduction in the number of defects

indicating a visible benefit of refactoring. Szóke et al. [40] analyzed the source200
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code of five software systems to investigate the relationship between refactor-

ing and code quality. They found that atomic refactoring operations performed

in isolation make a small change. However, when refactoring is performed in

sequence, we can perceive a significant increase in quality. Moser et al. [26] con-

ducted a case study in an industrial software project aimed at investigating the205

impact of refactoring on reusability. The achieved results sustain the hypothesis

that refactoring enhances quality and reusability of classes.

3. Study Design and Methodology

The goal of this study is to investigate the possible impact of CI adoption on

refactoring activities by analyzing how developers change the way they refac-210

tor their software systems in practice. In this section, we define our research

questions and present the design of our study.

3.1. Research questions

The study aims at addressing the following research questions:

RQ1. Does CI impact the refactoring frequency? In this first RQ,215

we are particularly interested in investigating how frequently developers refac-

tor their software systems after the adoption of CI. Our motivation is based

on the fact that the aim of CI is to get changes into production as quickly as

possible, without compromising software quality. We speculate that without

continuous refactoring, such frequent and quick changes during the CI process220

may negatively affect some quality attributes such as readability, understand-

ability, flexibility, etc. [48]. Indeed, refactoring is known to have a paramount

importance to deliver a high-quality software product, by removing defects and

reducing technical debt [16] which are introduced by quick and often unsystem-

atic development [37].225

RQ2. Does the adoption of CI affect the refactoring change size?

In this research question, we want to assess the size of the changes related

to refactoring through the software system before and after the adoption of CI.

10



Indeed, refactoring is recommended to be small in size [37] as this would (i) help

developers track the progress, (ii) reduce the risk of introducing complexity or230

defects during refactoring and (iii) avoid breaking the build [59]. Hence, we

expect that after adopting CI, developers would integrate refactoring related

changes with smaller chunks.

RQ3. How are developers involved in code refactoring before and

after the adoption of CI? The motivation of this research question stems235

from previous research works [42] confirming that refactoring is performed by

specific developers that usually have a key role in the management of the project.

In this study, we want to analyze whether CI raises the code authorship, i.e.,

motivation to program the code with high quality by performing the refactoring

[51].240

3.2. Methodology

Figure 1 provides an overview of our research methodology to address our

defined research questions. Our methodology comprises three main steps: (i)

context selection, (ii) refactoring data extraction, and (iii) analysis method. In

the following, we present the details of each of these three steps.245

TravisTorrent
Dataset

Result
of script

List of
Projects

Clone GitHub
projects

Commit activity
extraction

History of
99,545 

commits

Step 1: Context Selection Step 2: Refactoring
Data Extraction

Refactoring Miner

89,926 
Refactoring
Instances

Step3: Analysis
Method

Metrics Collection

Multiple Regression
AnalysisGoogle BigQuery

Figure 1: An overview of our research methodology to study the refactoring practices in CI.

3.2.1. Step 1: Context Selection

We gather our dataset from 39 OSS projects hosted on GitHub which have

switched to Travis CI, a widely used CI system, at some point during their

11



life-cycle. To answer our research questions, we mined these projects based on

the latest TravisTorrent dump dated on 2017/02/081 and using the Big Query250

Google Tool 2 to query pieces of information such as the programming language

and the repository URL. The choice of the subject systems was driven by the

following criteria:

• Projects with sufficiently long historical code change records, i.e., at least

two years before and after the adoption of CI to get deep insights into the255

possible impacts and feed our regression models with sufficient data.

• Projects that have a consistent change activity during the studied period

i.e., having at least one merged commit in the mainline branch each month

for the studied period. We chose a monthly partition following previous

studies on the impact of CI [56, 17, 31, 46, 60] because (i) it leads to260

more meaningful results than providing only one value per year and (ii)

to fit our regression models and control for time variable. Hence, we avoid

biasing our results with zero values due to projects not being active during

some months (thus no refactoring activities will take place).

• We also restricted our analysis to Java projects as we rely on the Refactor-265

ingMiner tool [43], an automated tool for detecting refactoring activities

applied in software projects during their development life-cycle (Section

**-B).

Thereafter, we cloned all project repositories and extracted all their commits

change history to be used in next steps. We recorded a total of 99,545 commits270

on the mainline branch for the studied projects. Table 2 reports the analyzed

projects, the number of commits, refactoring related commits and contributors.

Moreover, we report other historical statistics about the projects such as the

age in months and the number of releases. All the data collected and used

1https://travistorrent.testroots.org/
2https://cloud.google.com/bigquery
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in our exploratory study is publicly available for replication purposes in our275

comprehensive replication package [32].

3.2.2. Step 2: Refactoring Data Extraction

We use in our study the tool RefactoringMiner3, a commit-based refactor-

ing detection tool that is based on the UMLDiff algorithm [55] for computing

the differences between object-oriented models [44]. Table 3 presents the list280

of refactoring operations that can be detected by RefactoringMiner with their

respective number of refactoring instances identified in the 39 projects involved

in our study. We selected the refactoringMiner tool as it provides high precision

of 98% and recall of 87% [43], implements the detection of over 32 refactoring

operations, and has been widely used in recent empirical studies [41, 35, 47, 3].285

3https://github.com/tsantalis/RefactoringMiner
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Table 2: Systems involved in the study

Project Description
Historical Statistics Considered in the study

Age
Total

Commits

Total

Contributors

# of

releases

# of

commits

# of ref.

commits

airlift/airlift Framework for building REST services 37 2,371 73 227 905 114

apache/pdfbox Mirror of Apache PDFBox 75 8,120 24 49 4,340 801

apache/storm Mirror of Apache Storm 42 7,321 477 39 4,722 412

aws/aws-sdk-java The official AWS SDK 36 1,835 188 787 291 110

chocoteam/choco3 A Java library for Constraint Programming 35 3,819 30 28 2,328 565

dropwizard/dropwizard A library for RESTful web services 26 3,905 444 143 2,240 290

druid-io/druid A real-time analytics database. 25 7,330 381 428 5,308 881

DSpace/DSpace A digital asset management system 134 9,209 213 95 2,370 236

FasterXML/jackson-databind Data-binding package 25 4,237 184 115 2,225 545

FenixEdu/fenixedu-academic Student Information System 123 36,934 162 345 5,517 644

geoserver/geoserver Open source software server 27 7,568 295 123 3,562 575

GeoWebCache/geowebcache Caching server 101 2,134 75 122 461 80

google/error-prone Static analysis tool 35 3,597 222 31 1,497 307

google/guava Google core libraries 61 4,995 319 87 2,383 393

grails/grails-core Grails Web Application Framework 106 16,152 329 189 5,513 405

igniterealtime/Openfire A XMPP server 115 7,931 183 158 1,377 201

jOOQ/jOOQ Light database-mapping software library 23 7,135 84 73 4,137 697

jpos/jPOS Open source library/framework 179 4,378 74 49 713 62

junit-team/junit A testing framework 155 2,002 207 23 843 137

lenskit/lenskit Recommender toolkit 40 5,884 50 52 3,575 588

maxcom/lorsource Website engine 64 6,759 89 1 3,500 415

mybatis/mybatis-3 SQL mapper framework 32 2,399 142 29 1,220 146

nutzam/nutz Web Framework 47 5,379 94 57 1,897 256

oblac/jodd An open-source Java utility library 53 5,055 63 54 2,446 597

orbeon/orbeon-forms Open source web forms solution 90 22,092 36 50 4,844 304

owncloud/android Android App 28 6,141 91 92 3,607 511

perfectsense/brightspot-cms Enterprise user experience platform 32 5,678 49 23 4,557 298

proofpoint/platform Security Awareness & Education Platform 49 3,132 69 216 1,203 187

sparklemotion/nokogiri Web parser 36 4,013 195 147 1,585 81

spring-data-commons shared infrastructure across the Spring Data 47 1,891 91 155 714 147

tananaev/traccar GPS Tracking System 58 5,214 113 37 3,162 388

TGAC/miso-lims An open-source LIMS for NGS sequencing centres 58 3,209 25 219 2,908 450

tinkerpop/blueprints A Property Graph Model Interface 28 1,532 64 19 1,414 322

tinkerpop/rexster A Graph Server 26 1,476 26 17 1,400 259

twall/jna Java Native Access 171 3,112 170 52 1,272 125

Unidata/thredds A middleware 86 9,780 63 60 3,739 1,122

weld/core Integrations for Servlet containers and Java SE 71 7,534 108 160 2,351 501

xtreemfs/xtreemfs Distributed Fault-Tolerant File System 66 4,742 52 20 2,175 255

zxing/zxing Barcode scanning library 74 3,434 143 27 1,244 118

Median 49 4,995 94 60 2,328 307

Average 64.5 6,395.6 146.1 117.9 2,552.4 372.4

Total - 249,429 5,697 4,598 99,545 14,525
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Table 3: Analyzed Refactoring operations statistics with their different levels.

Refactoring Operation Level Instances Projects

Move Class Class 13,312 38

Rename Method Method 10,749 39

Rename Variable Block 9,527 39

Rename Attribute Field 7,341 39

Rename Parameter Block 6,706 39

Extract Method Method 6,154 39

Pull Up Attribute Field 5,780 38

Move Method Method 5,527 39

Move Attribute Field 3,691 39

Pull Up Method Method 3,414 39

Extract Variable Block 2,964 39

Rename Class Class 2,855 39

Inline Method Method 2,009 39

Push Down Method Method 1,077 36

Extract Class Class 997 39

Move And Rename Class Class 915 37

Move Source Folder Package 655 31

Inline Variable Block 653 39

Push Down Attribute Field 602 30

Extract Super-class Class 553 37

Parameterize Variable Method 479 38

Replace Variable With Attribute Block 461 36

Extract Interface Class 324 32

Change Package Package 305 28

Extract Subclass Class 126 32

Move And Rename Attribute Field 32 13

Replace Attribute Field 24 8

Total 89,926 39

3.2.3. Step 3: Analysis Method

Used Metrics:

To address RQ1, we define two measures including the number of refactoring

commits per month (NRC) and the refactoring rate (RRC) as follows:
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• NRC: Number of Refactoring Commits. It counts the number of commits290

that have at least one refactoring operation applied, in each month. In

this study, we only consider commits that are merged into the mainline

development branch as local git commits may not be subjected to CI by

Travis as stated by previous works [60, 46]

• RRC: Rate of Refactoring Commits which computes the ratio of refactor-295

ing commits (NRC) among the total number of merged commits (NC) per

month. This measure gives insights about the extent to which developers

tend to refactor their code during the development of their projects.

To answer RQ2, we capture the change size of a refactoring commit. For

this aim, we define the following measures. Note that each mean value bellow300

is computed over all refactoring commits in the considered month.

• RB: Refactoring Breadth. The average number of files where at least one

refactoring operation was applied per commit. To compute this metric, we

used a predefined method of RefactoringMiner called “detectAtCommit”

which returns all the needed information about the involved classes.305

• RBR: Refactoring Breadth Rate. The average rate of refactoring breadth

per commit. The rate refers to the number of files related to refactoring

divided by the total number of modified files.

To answer RQ3, we assess the extent to which developers are involved in

refactoring activities before and after the adoption of CI by defining the following310

metrics:

• NRefDev: Number of Refactoring Developers. Counts the number of

developers who applied at least one refactoring per month.

• RRD: Rate of Refactoring Developers. The ratio of the number of com-

mitters who applied refactoring in their commit changes divided by the315

total number of committers.
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Multiple Regression Analysis

To evaluate the effects of the adoption of CI (RQs 1-3), we use Multiple

Regression Analysis (MRA) [11] as a method for analyzing the relationship

between a set of explanatory variables (predictors, e.g.the time in months) and

a response (outcome, e.g.the rate of refactoring commits), while controlling for

known covariates (e.g., project age) that might influence the response. Solving

the regression gives us the coefficients for each predictor. If the coefficient is

significant, it can help us reason about the treatment (e.g., the adoption of CI

in our case) and its effects, if any, while controlling for confounding variables.

In our study, we perform our MRA to estimate the trends in our set of metrics

(Section 3.2.3) marked as Y before the adoption of CI, and the changes in the

trend after the adoption CI as follows:

yt = α+ β ∗ time before cit + γ ∗ time after cit + δ ∗ ci is adoptedt + ε

Here yt is the trend (i.e.the predicted value) in the the outcome variable Y

in each time t; time before ci indicates the time in months at time t from the

start of the observation and coded 0 after CI adoption(i.e., from -24 to -1);320

time after ci counts the number of months at time t after the CI adoption

and coded 0 before the adoption (i.e., from 1 to 24); ci is adopted indicates

whether CI is adopted at time t (ci is adopted = 1) or not (ci is adopted =

0). Using this model, we can capture any divergence (regression) in the slopes

(decrease/increase) before and after the adoption of CI. Moreover, we consider325

the following confounding variables (ε):

• Total number of commits (TotalComm). Following Zhao et al. [60],

we consider the total number of commits in a project’s history as an

indicator for project activity/size.

• Total number of developers (TotalDev). We also consider the total330

number of developers as a proxy for the project’s community size.

• Project age at the time of CI adoption (AgeAtCI) in months.
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Mature projects may be less affected by the adoption of CI than other

projects [60].

• Number of releases (NReleases) We manually checked the timeline335

of each project to collect its number of releases. We want to inspect the

releasing frequency on refactoring practice as it is known that projects

with frequent releases may have the chance to fix bugs faster [18] and

hence apply more refactorings.

We implement the MRA using the function lm from lmerTest4 package in R.340

Log transform predictors [8] are used to stabilize the variance and improve model

fit. To avoid multicollinearity phenomenon in which one predictor variable can

be linearly predicted from the others [8], we consider the Variance Inflation

Factor (package car5 in R). To improve robustness, the top 3% of the data was

filtered out as outliers in order to avoid inflating the model’s fit [46]. For each345

model, we report (i) the coefficients that describe the mathematical relationship

between each independent variable and the dependent variable and higher values

suggests higher effect, (ii) ρ − values that provide the significance level of the

coefficients, (iii) the sum of squares which computes the variance explained

by each variable, and (iv) the standard error which indicates how wrong the350

regression model using the units of the response variable; smaller values are

better to provide evidence of the fitted model.

4. Study Results

In this section, we present and discuss the results of our study to answer

our research questions RQ1-3. All the data collected and used in our study is355

publicly available for replication and extension purposes in our comprehensive

replication package [32].

4https://cran.r-project.org/web/packages/lmerTest/index.html
5https://cran.r-project.org/web/packages/car/car.pdf
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For the sake of clarity, the key metrics used in our study are shown in Table

4. The results of our MRA are presented and discussed in the next section.

Table 4: Summary of the study measures.

Metric Description

NRC Number of Refactoring Commits

RRC Rate of Refactoring Commits

RB Refactoring Breadth

RBR Refactoring Breadth Rate

NRefDev Number of Refactoring Developers

RRD Rate of Refactoring Developers

TotalComm Total number of commits

TotalDev Total number of developers

AgeAtCI Project age at the time of CI adoption

NReleases Number of releases

4.1. RQ1: Trends in refactoring frequency after the adoption of CI360

We start by quantifying the trends in the number of refactoring commits

(NRC) and Rate of Refactoring Commits (RRC) using the Multiple Regression

Analysis (MRA) as described in Section 3.2.3. Table 5 summarizes the regression

analysis results for refactoring frequency measures. For each variable, we report

its coefficients (Coeff ) and corresponding sum of squares (Sum Sq), a measure of365

variance for each variable and the standard error of the regression (Error) which

represents the average distance between the observed values and the regression

line. The statistical significance is indicated by stars symbols. We consider

coefficients to be important if they are statistically significant (ρ < 0.05).

From the obtained results in Table 5, the NRC model confirms a statisti-370

cally significant negative baseline trend in the response with ci is adopted which

means that the number refactoring commits would decrease after introducing

CI. The coefficient for time is negative, suggesting a decreasing baseline trend
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Table 5: MRA results for refactoring frequency in terms of Number of Refactoring Commits

(NRC) and Rate of Refactoring Commits (RRC).

Metric
NRC Model RRC Model

Coeff Error ρ Sum Sq. Coeff Error ρ Sum Sq.

Intercept -11.76 6.39 . 0.34 0.11 **

ci is adopted -2.20 0.51 *** 548.9 -0.01 7.9∗10−3 * 0.041

time before ci 0.01 0.02 9.25 -7.9∗10−4 4.0∗10−4 . 0.027

time after ci -0.12 0.02 *** 631.8 -7.9∗10−4 4.0∗10−4 . 0.027

log(TotalComm) 4.07 0.72 *** 947.4 -0.01 0.01 0.004

log(TotalDev) -0.72 0.61 42 -0.01 0.01 0.019

log(AgeAtCI) -3.12 0.83 *** 423.1 -0.02 0.01 0.013

log(NReleases) 0.09 0.43 1.51 0.01 7.7∗10−3 0.016

R2 0.17 0.07

***: ρ < 0.001, **: ρ < 0.01, *: ρ < 0.05, ‘.’: ρ < 0.1, ‘ ’: ρ ≥ 0.1

in terms of refactoring commits after the adoption of CI. However, the model

does not detect any effect for the time before the adoption of CI since the coef-375

ficient time before ci is not statistically significant. Overall, the trend remains

descending (the sum of the coefficients for time after ci and ci is adopted is

negative): less refactoring commits after the adoption of CI.

Next, we assess the confounding variables namely the project size in terms

of total number of commits, developers, project age, and number of releases. As380

reported in Table 5, the NRC model confirms a statistically significant, positive,

baseline trend in the response with project size (TotalComm) which explains

an important amount of variability in the response (Sum Sq. = 947.4). This

finding suggests that refactoring is performed more frequently within bigger

projects as they are more active and have larger codebase. For example, in385

Unidata/thredds project for which we recorded a 9,780 of commits, developers

merged 20 refactoring commits per month on median, while in airlift/airlift

project with 2,371 commits, developers tend to merge about 2 refactoring com-

mits per month on median for the studied period. Also, the model reveals a
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particular trend for older projects (AgeAtCI) to apply less code refactorings.390

This finding is quite surprising since it is commonly admitted that as projects

age, the maintenance focus is generally shifted to bug-fixing [60] or quality

assurance to master the increasing software complexity [24] which is usually

performed through the assistance of refactoring [15]. Moreover, we observe that

the team size (TotalDev: the total number of commit authors over the entire395

history) has no statistically significant effect which means that projects with

larger committers base do not necessarily apply more the refactoring (cf. Table

5). For example, apache/storm project which has the larger base of contribu-

tors in our dataset with 477 contributors, developers tend to merge 6 refactoring

commits per month while in TGAC/miso-lims with 25 contributors, we recorded400

a median number of refactoring commits of 9 in the studied period. Further-

more, we found no evidence for the releasing frequency (NReleases) to affect

refactoring frequency estimators which means that, for the studied projects,

a higher releasing frequency does not necessarily imply that developers apply

more refactoring.405

Looking at the rate of refactoring commits, i.e., the RRC model, we see that

the only significant predictor is the CI adoption variable suggesting that the rate

of refactoring commits would decrease after introducing CI with a slight decrease

trend of 0.01. The model reveals no evidence for time variables to be effective

as the coefficients are not significant. With regard to the confounding variables,410

we observe that all the studied project characteristics have no significant effect.

Our MRA study results suggest that the adoption of CI can result

into a decrease in terms of refactoring frequency. However, the

regression analysis reveals that projects with larger size are less

sensitive to this trend. Moreover, the MRA models suggest the

more aged is the project, the less performed is the refactoring.

4.2. RQ2: Trends in refactoring change size after the adoption of CI

In this research question, we are particularly interested in exploring the

possible effects of CI on refactoring breadth. Hence, we analyze by using MRA415
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Table 6: MRA analysis results for the refactoring breadth (RB) and the refactoring breadth

rate (RBR).

Metric
RB Model RBR Model

Coeff Error ρ− value Sum Sq. Coeff Error ρ− value Sum Sq.

Intercept 1 1.9 0.3 0.2

ci is adopted -0.6 0.2 ** 51.6 -0.04 0.02 * 0.22

time before ci 5∗10−3 0.01 1.1 9∗10−4 10−3 0.03

time after ci -0.02 0.01 * 33.8 -2∗10−3 10−3 * 0.24

log(TotalComm) 0.4 0.2 . 22.75 0.04 0.02 0.13

log(TotalDev) -0.1 0.1 2.1 -∗10−3 0.02 2∗10−3

log(AgeAtCI) -0.6 0.2 * 36.8 -0.02 0.02 0.02

log(NReleases) 0.2 0.1 14.7 -0.03 0.02 *

R2 0.05 0.05

***: ρ < 0.001, **: ρ < 0.01, *: ρ < 0.05, ‘.’: ρ < 0.1, ‘ ’: ρ ≥ 0.1

models the relationships between CI related variables and metrics related to

refactoring churn and breadth while controlling for confounding variables. The

MRA models for refactoring breadth are summarized in Table 6.

First, Table 6 reveals a significant drop in the number of changed files related

to refactoring after the adoption of CI since ci is adopted variable is statistically420

significant but with no significant effect for the time which indicates that this

trend may change over time. This result reveals that refactoring tends to be

less diffused after the adoption of CI. Looking at the confounding variables, we

see through the RB model that in aged projects, refactoring changes tend to

affect fewer files since the relative coefficient (-0,6) is negative while in the RBR425

model, this effect was not significant. Additionally, we found no evidence for

the project size to affect the refactoring breadth. Moreover, we see that the

rate of refactoring breadth slightly decreases after CI with a higher frequency of

releasing as suggested in the RBR model indicating that NReleases predictor

has a significant effect on the response variables.430
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Our MRA results reveal that the refactoring tend to affect less

files after the adoption of CI. Additionally, our model suggests

a slight drop in the the relative rate after the adoption of CI but

with different variations between projects especially with higher

releasing frequency.

4.3. RQ3: How are developers involved in refactoring activities?

In this research question, we analyze using MRA whether the adoption of

CI impacts the way developers are involved in refactoring activities. The sta-

tistical model for the number of refactoring developers and its relative rate are435

summarized in Table 7.

Table 7: The MRA analysis results for the Number of Refactoring Developers (NRefDev) and

the Rate of Refactoring Developers (RRD).

Metric
NRefDev Model RRD Model

Coeff Error ρ− value Sum Sq. Coeff Error ρ− value Sum Sq.

Intercept -4.4 1.8 * 0.82 0.28 **

ci is adopted -0.39 0.1 *** 17.2 -0.12 0.02 *** 1.83

time before ci 0.01 5*10−3 *** 17.4 -2*10−3 10−3 * 0.33

time after ci -0.02 5*10−3 *** 19.6 -5*10−3 10−3 *** 1.12

log(TotalComm) 0.7 0.2 *** 17.5 0.04 0.03 0.14

log(TotalDev) 0.2 0.1 2.05 -0.1 0.02 *** 0.88

log(AgeAtCI) -0.39 0.2 3.3 -0.08 0.03 * 0.29

log(NReleases) 0.14 0.12 1.66 7*10−3 0.01 0.01

R2 0.2 0.14

***: ρ < 0.001, **: ρ < 0.01, *: ρ < 0.05, ‘.’: ρ < 0.1, ‘ ’: ρ ≥ 0.1

Looking at the number of refactoring developers (NRefDev) model, we ob-

serve that the time after ci and ci is adopted predictors exhibit negative co-

efficients scores of -0.02 and -0.39, respectively. We first note such a slight

increasing trend in the number of refactoring developers prior to the adoption440

of CI, although the trend slows down following the adoption of CI. In addi-

tion, our model results indicate that the variable counting for the project size
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(TotalComm) behaves consistently with NRC model 5: bigger projects tend to

have larger base of refactoring developers. Moreover, we found no evidence for

the contributor base (TotalDev) to have any effects which indicates that a large445

number of contributors does not imply having more developers to apply refac-

toring. Neither the age nor the releasing frequency seems to have any significant

effect.

With regard to RRD model, we observe a significant negative for time vari-

able before the adoption of CI which remains decreasing after the switch to CI450

considering its related predictors. When we look at the confounding variables,

we observe also a significant negative trend for the variables accounting for the

age. Another important result to highlight is the significant negative effect of

the contributor base (TotalDev) on the rate of refactoring developers which

indicates that the more involved developers are in the project, the less is the455

rate of those who apply refactoring. Overall, this model suggests that the rate

of refactoring developers tends to decrease as the time passes and this trend is

slightly accelerated after the adoption of CI.

To get more insights, we provide an example extracted from our dataset

namely mybatis-3 project6 which is an SQL mapper framework for Java. Dur-460

ing its development, the Mybatis project version control system involves, for

the studied period, 8 developers before the adoption of CI and 40 developers

after its adoption. Figures 2a and 2b show the percentage of the refactoring

operations performed by Mybatis developers before and after the adoption of

CI, respectively. While all the developers have applied at least one refactoring465

before CI (8/8 developers), refactoring activities were performed by a limited

number of developers after the adoption of CI (7/40 developers). Additionally,

the top-one refactoring developer, namely “developer1” (a core team member),

performed 72% of the refactoring commits before and after the adoption of CI.

He is also the top-one committer with 67% and 52% of the commits before and470

after the adoption of CI, respectively. These observations are consistent with

6https://github.com/mybatis/mybatis-3
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previous results [42] claiming that most of the applied refactorings are generally

performed by specific developers (usually core team members). Moreover, we

can confirm a previous assumption about developers attraction in the context

of CI [46].475
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Figure 2: Distribution of refactoring contributors in the project mybatis/mybatis-3.

MRA results reveal a decreasing trend for the rate of refactoring

developers especially with the adoption of CI with a considerable

negative effect for aged projects and those with larger number of

contributors. This may be due to the fact that the refactoring is

usually performed by particular developers and as the contrib-

utors base gets larger after the adoption of CI, the refactoring

rate will decrease.

5. Discussion

In this section, we further discuss the main findings of our study along with

outlining their practical implications for future research on the refactoring of480

modern systems.

Refactoring is less applied in CI. Our results reveal that the refactor-

ing frequency tend to decrease after the shift to Travis CI. This finding was
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surprising as CI principles may suggest developers to refactor their code more

frequently to improve software quality. This may be due to the fact that CI de-485

velopers may not consider quality degradation to affect the success of the build

process as stated by Vassallo et al. [50]. Based on this finding, we believe that

future research effort should be devoted to build techniques able to increase the

developer’s awareness of refactoring in the context of CI, for instance through

improved visualization approaches that may graphically show to developers how490

a certain refactoring action, conducted at build-time, would be beneficial for the

quality of source code.

Towards Just-In-Time refactoring recommendation. Our results for

RQ2 reveal that developers tend to make smaller refactoring changes to soft-

ware projects, as they have a lower refactoring breadth, which is consisting with495

“refactor smaller” [37] and “commit smaller” [14] guidelines. We believe that

this finding would encourage tool builders to conceive refactoring recommenda-

tion systems that can be adopted in a CI environment and able to recommend

micro-refactoring operations or, even better, small local refactoring operations

that targets specific files touched by developers during a code change (i.e., com-500

mit). These just-in-time refactoring tools would (i) avoid changing the program

design radically, and (ii) allow developers reviewing the recommendations, and

their relative impacts and hence easily decide whether to apply or ignore them.

Such tools could be in the form of refactoring recommendation systems or bots

that can be integrated into existing CI systems. While some preliminary re-505

search has been conducted toward this direction [23, 30, 45, 2, 54], we believe

that additional effort is needed to build refactoring tools that more properly

reflect the developer’s needs in the context of CI development.

Support for newcomers to better practice refactoring. To survive

and thrive, a software project must attract, support and retain new developers510

and help them be productive. However, our findings show that newcomers

may be reluctant to practice refactoring activities in the project: these are

perfectly in line with the results reported by previous studies on the barriers
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that newcomers face when joining a new project [39, 38]. However, our study

shows that an additional barrier consists of newcomers not being able to refactor515

source code to improve its quality. Based on this result, we envision a novel

category of tools that may support newcomers when performing code quality

tasks: more specifically, tool builders should provide development teams with

more practical tools and/or techniques for supporting newcomers during the

integration in the development team as well as instruments that community520

shepherds may use to identify the developers having adequate skills to properly

guide the newcomers in their refactoring phases.

6. Threats to validity

A number of possible threats might affect the validity of our empirical study.

Threats to Internal validity concern factors that could have influenced525

our results [29]. From the list of Cook [9], we consider that one threat to inter-

nal validity can be related to instrumentation: We opted for RefactoringMiner,

an open-source tool, to collect refactoring data. This tool has a high F1-score

of 81% according to recent experiments conducted in [41]. To alleviate any po-

tential threats with RefactoringMiner, we are planning to replicate our study530

with other existing tools such as RefDiff, a state-of-the-art refactoring detection

tool that has shown a high accuracy [36]. More interestingly, to enable other

researchers to verify and extend our study, we provide our replication package

along with detailed results available for the research community [32]. Another

threat is related to confounding variables. To mitigate this issue, we included535

controls in our models, to capture project size, age, community base and releas-

ing trends that could have confounded the relationship between CI adoption

and Refactoring practice.

Construct threats to validity are mainly related to the fact that some

projects may leave CI systems after its adoption [53]. To address this issue, we540

manually checked whether Travis-CI was disabled/abandoned by investigating

all the commits in which the CI configuration file was modified and found that
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none of our studied projects has abandoned CI during the studied period. An-

other potential threat could be related to selecting projects that used another

CI system before adopting Travis-CI. Hence, we mitigated this issue by inspect-545

ing the existence of any other CI configuration file (e.g.,“.appveyor.yml” for

AppVeyor CI system) before the adoption of Travis-CI. In this investigation, we

considered AppVeyor,7 Circle-CI,8 and Drone.9 Additionally, we checked that

our studied projects never used a self-hosted CI system (i.e., using their CI ser-

vice locally) like Jenkins,10 Team-city,11 or Easy-CIS,12 by inspecting whether550

the commit messages contained the name of the above mentioned CI systems.

Conclusion threats to validity refer to issues that affect our ability to

draw the correct conclusions and the way we estimated refactoring practice. The

fact that developers did not apply more frequently/intensively refactoring, this

does not mean that they did not search for refactoring opportunities. In other555

terms, developers could have some recommendations of refactoring (or checked

manually refactoring opportunities) but find them not relevant, so they may end

up not applying them. It is worth remarking that we have studied refactoring

practice by looking at the actions actually performed by developers over the

history of the considered software projects. Yet, we cannot exclude that devel-560

opers still employed refactoring recommendation tools (e.g., JDeodorant [13] or

Aries [4]) to get suggestions on how to improve source code quality. However,

we were interested in understanding how the actual application of refactoring

changes from before to after the adoption of CI. As such, the investigation of

whether refactoring recommendation tools have been used is out of the scope of565

our paper.

External threats to validity concern the generalizability of our results.

7https://www.appveyor.com/
8https://circleci.com/
9https://drone.io/

10https://jenkins.io/
11https://www.jetbrains.com/teamcity/
12http://easycis.aspone.cz/
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First, we conducted this study based on a large dataset of 99,545 commits from

39 GitHub projects consistently active during our 48-month observation period.

This filtering was required to fit our models and control for time variable as570

well as to avoid biasing our conclusions due to an inflation of zero values in our

data. We also made restrictions, since we depend on RefactoringMiner, to Java

projects. To our knowledge, current available refactoring detection tools are

dedicated to Java language [41]. Moreover, we only-considered Travis CI, the

most popular CI service on GitHub [20]. These three constraints allowed the575

statistical investigation of active projects that have introduced CI since years:

as such, the results of our study apply to projects having similar characteristics

and might therefore be used by developers of those projects to reason about

continuous integration has changed the way they apply refactoring.

We cannot speculate on the validity of our results when considering projects580

having different characteristics, e.g., non-active projects, or written in different

programming languages. Similarly, we would like not to raise opinions on the

applicability of the results to software systems following different programming

practices. Our future research agenda includes a replication of our study on a

different and more varied set of software projects.585

7. Conclusion

We presented in this paper the first empirical study that investigates the pos-

sible impacts of continuous integration (CI), a quality-driven process, on chang-

ing the way developers practice refactoring. To analyze potential CI impacts,

we (1) employed different heuristics estimating refactoring commits frequency,590

size and involved developers, (2) used Multiple Regression Analysis (MRA) to

estimate CI impacts on refactoring practice while controlling for different con-

founding variables and (3) analyzed the change in refactoring tactics two years

before and after the adoption of CI.

Based on data extracted from a sample of 39 GitHub projects deploying595

CI, our results revealed that the refactoring change size tends to decrease as
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recommended. However, the frequency and refactoring authors tend to drop

during the two years following the CI adoption. These findings lend support

to previous research efforts claiming the presence of barriers, related especially

to lack of time and knowledge, preventing developers from adopting refactoring600

techniques/tools in CI context. We believe that software developers need more

customized refactoring tool support in the context of CI to better maintain and

evolve their software systems.

Our future work will include extending our study to other open-source and

industrial projects from different programming languages and application do-605

mains. We also plan to conceive refactoring tools that can support CI developers

in their quality enhancement efforts.
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