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Abstract These days, over three billion users rely on mobile applications
(a.k.a. apps) on a daily basis to access high-speed connectivity and all kinds of
services it enables, from social to emergency needs. Having high-quality apps is
therefore a vital requirement for developers to keep staying on the market and
acquire new users. For this reason, the research community has been devising
automated strategies to better test these applications. Despite the effort spent
so far, most developers write their test cases manually without the adoption
of any tool. Nevertheless, we still observe a lack of knowledge on the quality of
these manually written tests: an enhanced understanding of this aspect may
provide evidence-based findings on the current status of testing in the wild
and point out future research directions to better support the daily activities
of mobile developers. We perform a large-scale empirical study targeting 1,693
open-source Android apps and aiming at assessing (1) the extent to which
these apps are actually tested, (2) how well-designed are the available tests,
(3) what is their effectiveness, and (4) how well manual tests can reduce the
risk of having defects in production code. In addition, we conduct a focus
group with 5 Android testing experts to discuss the findings achieved and
gather insights into the next research avenues to undertake. The key results
of our study show Android apps are poorly tested and the available tests
have low (i) design quality, (ii) effectiveness, and (iii) ability to find defects
in production code. Among the various suggestions, testing experts report the
need for improved mechanisms to locate potential defects and deal with the
complexity of creating tests that effectively exercise the production code.

* Corresponding author: Fabiano Pecorelli, fpecorelli@unisa.it

Fabiano Pecorelli, Filomena Ferrucci, Andrea De Lucia, Fabio Palomba
SeSa Lab - University of Salerno, Italy
E-mail: fpecorelli@unisa.it, fferrucciQunisa.it, adelucia@unisa.it, fpalomba@unisa.it

Gemma Catolino
Jheronimus Academy of Data Science & Tilburg University, The Netherlands
E-mail: g.catolino@uvt.nl



2 Fabiano Pecorelli* et al.

Keywords Software Testing - Mobile Applications - Empirical Studies.

1 Introduction

The year 2020 has dramatically changed the way people interact with each
other. The rise of social distancing has increased more than ever the need
for mobile applications that could connect people and support them when
performing any kind of activities [I]; as a matter of fact, these days we have
more connected mobile devices (77.94 billion) than people [2] [3].

The quality of mobile applications plays a central role for developers to
ensure that their apps stay on the market, keep gaining users, and have a high
commercial success [4, Bl [6].

Software testing is among the most relevant and well-established methods
to control for source code quality [7]. Its relevance is even more critical in mo-
bile computing [8], where continuous releases increase the risk of introducing
defects [9], [10]. Furthermore, mobile applications have peculiar characteristics,
e.g., apps have multiple sensors and users interact with them through touch-
screen, that make testing different and more challenging than those of tradi-
tional systems [LI]. For the above mentioned reasons, the research community
has been actively looking for solutions that could improve the way developers
test their applications: these efforts produced the definition of several Graph-
ical User Interface (GUI) testing approaches [5l, 2] [13] and frameworks able
to ease the verification of both functional and non-functional requirements
[14, 15] that can be used to automate some of the developer’s activities.

While these approaches have shown to be somewhat actionable, there are a
number of limitations, e.g., poor ability to generate valid test data to exercise
specific program executions [I6], that do not allow the definition of compre-
hensive, effective, and practical automated testing approach [I7]. These limi-
tations make mobile developers reluctant to use automated testing tools and
more prone to keep writing tests manually [I7) 18], [19].

Unfortunately, the nature of manually written tests has been barely an-
alyzed in literature: empirical studies focused on the characteristics of au-
tomated tests [I8, 20), 2], while little is known on (1) the extent to which
mobile applications contain manual tests, (2) how many of them can be actu-
ally executed, (3) what is their quality, considering either test code design and
effectiveness metrics, and (4) what is their capabilities in foreseeing defects in
production code. An improved understanding of mobile app testing from the
perspective of manually written tests may provide important insights to the
research community. In fact, should mobile apps be well-tested and/or man-
ually written tests be already effective, the urgency of designing automated
approaches could be toned down while focusing on how to complement man-
ually written tests and provide developers with information useful to make
tests more effective (e.g., which test data should be used to exercise certain
boundary conditions). On the other side, the empirically-grounded results may
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serve to practitioners as an additional proof of the need for using automatic
solutions as well as further supporting the testing research community.

For these reasons, in our previous paper [22] we proposed a large-scale
empirical study on the prominence, quality, and effectiveness of the tests man-
ually written by mobile developers. Starting from a dataset composed of 1,693
open-source ANDROID apps, we first extracted manually written test cases and
computed how many and which types of tests are actually available as well
as which kinds of production classes are more exercised. Secondly, we focused
on the design quality of those tests, computing test code quality metrics and
smells. Finally, we measured test code coverage and assertion density as proxy
metrics to assess test code effectiveness. The study revealed that mobile ap-
plications are not sufficiently tested, e.g., we found a median of just 2 test
suites per app. Most of the available tests were at unit-level and related to the
verification of the application logic, while GUI-related classes and storage of
the considered apps were mostly untested. In addition, we discovered that the
majority of tests have design issues, as measured by test smells, even though
their metric profile would not suggest a low design quality. Finally, both the
effectiveness metrics computed were low.

In this paper, we extend the previous work by providing additional insights
into the nature of manually written tests of ANDROID apps. More specifically,
we deliver the following novel contributions:

1. We conduct an additional analysis into the relation of test cases to the
actual defects in production code, with the aim of shedding lights into the
practical usefulness of manually written tests with respect to the discovery
of issues in production;

2. We include a new qualitative investigation, in which we recruit five AN-
DROID testing experts and ask them to be part of a focus group [23] aimed
at commenting our findings and eliciting what are the current limitations
that led to them, in an effort of providing concrete insights into the new
research avenues that need to be undertaken by both testing community
and tool vendors to better assist developers in their daily activities;

3. We include more metrics when investigating the design aspects of test
cases, with the aim of improving the view on the matter. Specifically, we
complement the metrics previously taken into account with those available
in a comprehensive taxonomy of metrics deemed significant by developers
for test code quality [24];

4. We provide a GITHUB repository [25] where we make data, scripts, and
transcripts of the focus group publicly available. It provides material that
can be used by other researchers to further understand our findings and
build upon our work.

Our additional investigation reports that manually written tests have a
low ability to foresee defects in production code. Furthermore, the focus group
allows us to distill a number of challenges that the research community should
face: as an example, testing experts report the need for improved mechanisms
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to locate production defects in a timely manner and deal with the complexity
of creating effective tests.

Structure of the paper. The remainder of the manuscript is as follow.
Section [2| presents the research questions driving our study and the dataset
exploited. Sections [3| to [7] describe the methodological details and results of
the five research questions formulated. In Section [§] we further discuss the
main findings achieved, the implications of our study as well as its limitations.
Section[Joverviews the related literature, while Section[I0]concludes the paper
and outlines our future research agenda.

2 Research Questions and Context Selection

The goal of the empirical study is twofold: on the one hand, it aims to assess
prominence, quality, and effectiveness of test cases written by mobile devel-
opers; on the other hand, it aims at identifying the key limitations of mobile
testing as perceived by experts when commenting the current status of testing
in mobile applications. These two goals have the purpose of understanding
testing practices, properties, and limitations in the wild, i.e., to what extent
mobile apps are tested in practice, what is the outcome of such testing, and
what are the factors influencing it. The perspective is of both practitioners
and researchers: the former are interested in observing how effective are their
testing practices, while the latter are interested in understanding whether de-
velopers need new instruments to improve the quality of their test suites. In
this section, we provide an overview of the research questions driving our em-
pirical investigation and present the dataset employed to address them.

2.1 Research Questions

Our study was structured around five main research questions (RQs). We
started by considering some recent findings in the field of mobile software
testing [8] M1 13| 17, 26, [27], which showed that writing tests may be chal-
lenging for developers because of (i) the lack of appropriate testing tools and
(ii) limited knowledge of testing practices or even willingness of developers to
write tests. As such, we first analyzed the prominence of test cases in mobile
applications, particularly looking at how many tests are actually developed,
which types of tests are implemented and what are the kind of production
classes whose functionalities tend to be exercised more. Thus, we asked:

RQ:. To what extent are test suites developed in mobile apps?

It is worth noting that, by addressing the first research question, we also
provided a larger ecological validity to some preliminary findings [17, 20] on
the extent to which mobile apps are tested. After this first analysis, we started
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a finer-grained investigation of test cases. First, we considered their design,
as measured by test code readability and quality metrics [28], 29 [30] and test
smells [31], B2, [33]. Second, we took into account the effectiveness of test cases
in terms of code coverage [34] and assertion density [35, [36]. Third, we assessed
the relation between test cases and post-release defects [37, [38, [39, [40], in an
effort of understanding how well can tests prevent the introduction of defects in
production code. For these reasons, we defined the following research questions:

RQs. What is the design quality of test cases developed in mobile apps?
RQg3. What is the effectiveness of test cases developed in mobile apps?

RQ4. What is the relation between test cases and post-release defects in
mobile apps?

The analyses of these research questions allowed us to provide a detailed
overview of the extent, quality, effectiveness, and fault detection capabilities
of tests available in mobile applications. Such an overview was then presented
to testing experts with the goal of assessing the quantitative findings against
their opinion/expertise and identifying the major reasons behind the current
state of testing in mobile applications. This led to our final research question:

RQs5. What is the developer’s take on the current state of mobile apps
testing?

By definition, our methodology followed a mixed-method research approach
[41] where the insights derived by mining mobile app data are complemented
with qualitative cues coming from experts working on mobile app testing on
a daily basis and that can contribute to the development of a comprehensive
state of the practice on the matter.

2.2 Context of the Study

The contezt of the empirical study consisted of mobile application data (RQ;-
RQ,) and testing experts (RQ5).

As for the former, we considered a set of 1,693 open-source ANDROID apps
gathered by mining F—DROIDE a repository of free and open-source mobile
applications that has been widely employed in the past [16} [42] 43}, [44] [45] and
that contains a set of applications that enables a good generalizability of the
findings with respect to the overall population of free and open-source mobile
apps [15, 18] [46] [44]. It is important to note that, while F-DROID contains over

1 https://f-droid.org
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3,000 apps, we narrowed our selection in order to only consider repositories
on GITHUBH furthermore, we manually excluded duplicated apps and forks
of those already existing in the repository. Based on these filters, we ended
up with the final 1,693 open-source mobile apps, whose names, description,
and characteristics are reported in our online appendix [25]E| Our analyses
have been conducted on test cases written in Java. We are aware that this
is not the only language available to develop tests in mobile applications but
it is certainly among the most diffused. In order to reinforce the validity of
our study, we sift through our dataset in order to count the number of tests
written in Kotlin, a language that has continued to gain adoption in mobile
apps testing over the last year [47]. As a result, we found that only 139 out
of the 1,693 applications (< 1%) contain at least one Kotlin test. Even if a
few applications contain a reasonably high number of Kotlin tests (x100), we
decided not to conduct further analyses, since these just represent rare and
isolated cases over the considered dataset.

As for the testing experts, we recruited five professional mobile developers
with an ANDROID programming experience ranging between 5 and 10 years.
They all work in industry and, on average, they have been developing or con-
tributing as testers to the creation of 25 apps each. While all the participants
currently work in industry, two of them still contribute to open-source AN-
DROID applications, while the other three have worked on open-source applica-
tions in the past. The size of the population of developers considered was driven
by the specific research approach employed to address RQj5: focus groups are
a form of qualitative research that involves a small number of people sampled
conveniently and that can provide expert judgments on the subject of interest
[23]. According to well-established guidelines, the ideal size of a focus group
is five to eight participants [48]: indeed, larger focus groups are difficult to
control and, more importantly, limit each participant’s opportunity to share
insights and observations [48]. More details on the selection of this research
approach as well as on the methodology employed to recruit participants are
reported in Section [7]

3 RQ; - On the Prominence of Test Cases in Mobile Apps

This section discusses the research methodology and the results achieved when
investigating the prominence of test cases in the considered set of mobile apps.

3.1 Research Methodology

To address RQ1, we first quantified the number of test classes available for each
of the apps in our dataset. Starting from their GITHUB repositories, we cloned

2 https://github.com

3 With respect to our previous conference paper [22], the number of apps considered
decreased from 1,780 to 1,693 because 87 of them were not available anymore at the time
of the journal extension.
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the apps locally and, afterwards, we performed an exhaustive search through
their packages in order to extract classes having “Test” as prefix or suffix.
As a result of this search process, we computed the number of test classes
and methods per app, which corresponds to the number of test suites and
test cases available in a mobile application. Furthermore, we proceeded with a
more detailed analysis of test suites that aimed at classifying them according
to their granularity (e.g., unit vs. integration) and type (e.g., performance).
As an automatic classification was not possible, we manually analyzed all the
5,292 extracted test suites using a grounded theory-based methodology [49]
which involved two of the authors of this paper (from now on, the inspectors).
It is worth noting that, in order to exclude false positive tests, during this
manual investigation we also checked if the considered classes were actually
test classes. No false positives came out from this analysis.

The process consisted of two steps:

Tuning phase. Initially, the inspectors independently classified the same set
composed of 500 test suites and annotated in a spreadsheet their granularity
and type(s). Whenever possible, the inspectors relied on the available doc-
umentation (e.g., code comments) to understand the properties of a certain
test: for instance, if developers explicitly stated that the test suite covered
the corresponding production class, then the inspectors marked it as a unit
test. In the other cases, the inspectors relied on the name of the class as well
as analyzed its content to check if (i) only a production class was exercised,
i.e., it was a unit test, (ii) more classes were involved to verify the interac-
tions among components, i.e., it was an integration test, or (iii) otherwise,
it was a system test. A similar strategy was employed when classifying the
type: whenever possible, the inspectors relied on the documentation, while
in other cases they manually went over the code to understand which func-
tional or non-functional requirement was exercised. Particularly hard was
the case of energy-related tests, for which the inspectors verified whether
the test code contained any identifier, API of a third-party library, or profil-
ers of the ANDROID platform connected to energy management. To provide
the reader with a concrete example of the classification made, let consider
the case of the ProgramMemoryTest class of the FINNEYPOKER app. This
test suite aims at assessing the memory consumed by the animations imple-
mented in the Animator class, which is used by the PokerActivity, i.e., the
main UT class of the app. As such, the (i) granularity of the test suite was
categorized as ‘integration’, since it did not involve one class in isolation nor
the system as a whole, and (ii) the type was associated to ‘performance’; as
the goal was to assess the consumption of the app in certain conditions.
Through the classification of the same test suites, the inspectors could tune
their judgments, find a common way to classify granularity and type of the
considered test suites, and discuss their disagreements to better understand
the reasoning done by the other inspector. Furthermore, they could com-
pute an initial coding agreement using the Krippendorft’s alpha Kr, [50].
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This measured to 0.92, that is considerably higher than the 0.80 standard
reference score [51] for Kr,,.

Classification phase. Once completed the tuning phase, the inspectors clas-
sified the remaining 4,795 test suites, by analyzing 2,397 and 2,398 each. The
outcome allowed the creation of a test suite granularity and type taxonomy
for ANDROID apps, which we discussed in Section

As an additional analysis aiming at addressing our first research question,
we quantified how many and which types of production classes are tested. In
this way, we could understand whether developers tend to test only certain
specific types of classes (e.g., Activity or Fragment classes) as well as how
much of the production code is covered by a test suite.

To enable this analysis, we first needed to link production to test classes.
We relied on the pattern-matching approach designed by Van Rompaey and
Demeyer [52]: for each test class, it removes the string “Test” from its name
and search the production class that matches the remaining part of the name.
For instance, using this strategy the test suite MainActivityTest would be
linked to the production class named MainActivity. It is worth mentioning
that this linking approach is lightweight in nature and can scale up to the
number of apps considered in our study; yet, it has shown similar performance
with respect to more sophisticated test-to-code traceability techniques [52].

Afterwards, we computed the number of production classes having a corre-
sponding test suite. As for the type of production classes tested, we performed
a first automatic classification, based on keywords, and then we double-checked
the classification manually. Specifically, we defined a set of keywords that can
distinguish GUI, application logic, and storage components of an ANDROID
app. For instance, the GUI keywords included “activity” and “fragment”,
which generally characterize Activity and Fragment classes used by develop-
ers to develop the graphical interface of the app. We included the complete list
of keywords used in this stage in our online appendix [25]. Since this automatic
classification may be erroneous in some cases, one of the authors of the paper
double-checked it and corrected the labels assigned whenever required.

Table 1 Descriptive Statistics of the mobile apps analyzed.

#Test Suites #Test Cases

Min 0 0
Max 205 2045
Average 3.24 63.30
Median 0 5
Standard Deviation 14.07 202.80

% Apps Tested | % Apps Not Tested
40 60
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3.2 Analysis of the Results

Table[I]reports descriptive statistics on the number of test suites and test cases
available in the considered dataset as well as the overall number of mobile
applications containing at least one test class. As shown, the first thing that
leaps to the eye is that 60% of apps do not present any test case: as such, we can
confirm the results obtained by previous work which proved that mobile apps,
and in particular ANDROID ones, generally lack tests [I8] 20, 21]. This finding
reinforces the need for further research on the topic of mobile app testing and,
specifically, how to convince developers—who may be non-experienced with
the development of source code [53]—of the importance of testing their apps,
e.g., by means of empirical evidence showing how lack of testing may worsen
the quality of mobile apps. For instance, our results motivate and promote
investigations aimed at relating test code quality to change/fault-proneness of
the apps [44] [54] or the commercial success of mobile applications [6] 55].

Narrowing our attention to the applications that are actually tested, i.e.,
the 40% of the apps in our dataset, we computed descriptive statistics related
to both test suites and test cases. Table [1| reports the results of this analysis.
Looking at the minimum and maximum number of test cases, we found a high
variability among the considered applications: indeed, the minimum size of
test suites is zero, while it reaches 205 in the best case, with a mean of about
three test classes. This result clearly highlights that even apps having Java test
suites are in general poorly exercised and would need further support in this
activity. The standard deviation value (202.80) confirms the high variability
among the considered apps.

Table 2 Granularity and type of test suites developed in the dataset.

Granularity

Name Abs.  Rel.

Unit 3,872 73%

Integration 1,273 24%

System 147 3%
Type

Name Abs.  Rel.

Functional 4,619 8%
Performance 190 4%

Energy 145 3%
Portability 133 3%
Security 104 2%
Usability 101 1%

As a second part of our analysis aimed at addressing RQ;, we classified
test suites according to their granularity and type. Table [2| summarizes our
results. In the first place, we can notice that most of the test suites analyzed
are at unit-level: 73% of the tests in our dataset are indeed at this granularity.
Interestingly, we discovered that 3,605 of them are directly related to a single
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production class, while the remaining 268 unit tests exercise more classes at
the time. For instance, tests named IntentTest or SwipeTest indicate generic
tests that exercise common functionalities of certain classes without focusing
on some of them specifically.

Furthermore, we found that 24% of the test suites pertain to integration
testing and aim at exercising how components behave when working together.
Finally, a small portion of the considered tests (3%) consists of system tests
that aim at testing the application as a whole. Perhaps more interestingly,
our investigation into the types of test classes written by developers revealed
the existence of a taxonomy composed of six types. As expected, most of
the test suites refer to functional tests (87%), namely tests that exercise the
input/output of production code classes: this confirms the findings of previous
researchers who found that functional testing is the most widely spread type of
testing [50] [57]. Subsequently, our categorization shows that performance tests
represent the 4% of the available tests: while this number is way lower than
the functional tests, this seems to indicate that (1) developers care, even if in a
lower extent, of performance of mobile apps, thus confirming previous findings
in the field [58, [59] and (2) performance testing is a more delicate problem
than for traditional applications [60} [61], suggesting the need of more research
to understand better why this happens and what are the consequences.

Furthermore, we found the energy testing is the third more popular type of
exercising mobile apps. Also in this case, the number of tests is substantially
lower than the one of functional tests; these results are in line with previous
findings that highlighted that more automated support to this type of testing
would allow developers to better exercise the energy aspects of mobile apps
[62, [63]. A small percentage of test suites in our dataset relates to portability
testing, namely the types of tests that verify whether the functionalities of an
application is compatible with previous versions of the ANDROID operating
system [64]: the small amount of tests in this category suggests that more
research would be needed in order to understand the reason behind these
achievements [65]. Finally, security and usability testing represent the least
prominent types of tests in the exploited dataset. On the one hand, the very
small amount of tests in these categories clearly highlight that developers are
not properly aware of how to cover these aspects [14}[66] [67]: this is particularly
worrying in the case of security, also considering the recent data provided by
NOWSECUREEL which showed that (i) 35% of communications sent by mobile
devises are un-encrypted, (ii) 25% of apps have high-risk security flaws, e.g.,
expose private or sensitive data about a user or their activity, and (iii) 82%
of ANDROID devices use an outdated version of the operating system. On the
other hand, our findings support and motivate the research done on usability
and GUI testing [12 [13], which has been an active field over the last years.

Finally, we focused on the production classes that are actually exercised.
Table |3| reports the results achieved: specifically, we split the classes based
on their role in the system and, according to this classification, we identified

4 A well-known security company targeting mobile apps: https://tinyurl.com/rdhrszc
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Table 3 Types of production classes tested. Abs. = Absolute number; Rel. = Relative
number.

Activity Intent Fragments Storage Application Logic
Abs. Rel. | Abs. Rel. | Abs. Rel. | Abs. Rel. | Abs. Rel.
202 6% 9 1% 52 1% 114 3% 3,228 89%

Table 4 Percentage of tested classes per production class type.

# tests # production_classes | tests/production_classes %

Activity 202 8,202 2%
Intent 9 38 24%
Fragments 52 5,362 1%
Storage 114 1,713 7%
Application Logic 3,228 14,109 23%

three main categories, namely, GUI, Storage, and Application Logic: the first
refers to production classes implementing the logic behind the graphical user
interface of mobile apps, the second to the classes that manage the storage
of the apps, while the latter to the classes having the single responsibility of
implementing business logic of the apps. For the sake of comprehensibility,
we split the GUI category in the three main class types, namely Activity,
Intent, and Fragment. These are the class types that ANDROID developers
use to develop the user interface of their applications.

Looking at Table [4] we can observe that most tests in the dataset exercise
the application logic of mobile apps. Behind this result, there might be dif-
ferent explanations: First, developers are not properly supported nor aware of
current techniques when it comes to the testing of other aspects of their apps
[20]. Second, mobile developers are sometimes junior or with less experience
than programmers working in other domains and, as shown by previous re-
searchers, they might be less aware of the importance of testing, hence limiting
themselves to exercise a limited amount of classes [66].

Finding 1. Mobile applications contain very few java tests, indeed,
only 40% of the apps contain at least one test suite. As for the tested
apps, most of the tests pertain to unit tests that exercise the function-
alities of the app, while other aspects are not widely considered, like for
instance, performance of GUI testing.

4 RQ2 - On the Design Quality of Test Cases in Mobile Apps

This section reports methodology and results of our analyses to address RQs.
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4.1 Research Methodology

Given our original dataset, we had to exclude all the apps without tests from
this second research question. This process led us to focus on 673 mobile apps.
To assess the design of the considered test cases we covered three macro-aspects
that can characterize their maintainability and understandability. Table 5]sum-
marizes the metrics adopted to address RQs, while a detailed description is
reported in our online appendix [25]. The selection of these metrics was based
on the findings reported by Grano et al. [24], which presented a taxonomy of
metrics deemed significant by developers to measure test code quality. More
specifically, such a taxonomy includes behavioral, structural, and execution
high-level concerns that developers consider relevant when developing tests
and that can be mostly quantified using the metrics in Table

Table 5 List of factors considered in order to measure the design quality of test cases.

Group ‘ Name Description

LOC Number of lines of code of the Test

Class

WMC Weighted Method Count of the Test
Code Metrics Class.

RFC Response for a Class.

IFC Information Flow Coupling.

LCOM5 Lack of Cohesion of Test Methods.

TCC Tight Class Cohesion.

LCC Loose Class Cohesion.

Readability The readability level of the test.

Textual Metrics

Comment ratio

Ratio between lines of comments and
lines of source code.

Test smells

Eager Test

Indirect Testing

A test exercising more methods of the
production target.

A test interacting with the target via
another object.

Resource Optimism

Mystery Guest

Assertion Roulette

A test that makes optimistic assump-
tions on the existence of external re-
sources.

A test that uses external resources
(e.g., files or databases).

A test method containing several as-
sertions with no explanation.

In the first place, we considered test code quality metrics, relying on the
metric suite originally defined by Chidamber and Kemerer [28] and other met-
rics related to code quality. According to Grano et al. [24], this set of metrics
addresses or helps addressing aspects like scope, size, reusability, and inde-
pendence of test cases. We computed the Lines of Code (LOC): according to
previous achievements [68] [69] [70], having higher size may cause issues for
developers with respect to the maintainability of tests as well as to their fault-
proneness [71], [72]. For similar reasons, we computed cohesion metrics such
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as Lack of Cohesion of Test Methods (LCOMS5 [73]), Tight Class Cohesion
(TCC), and Loose Class Cohesion (LCC) [74]; we measured different metrics
as they can provide orthogonal information that may be useful to analyze
the cohesion of tests better [75]. Furthermore, we considered the coupling be-
tween tests, which is one of the most critical problems when comprehending
test code [24] [76]. To this aim, we computed the Information Flow Coupling
(IFC), a metric that captures the relations between tests in terms of informa-
tion exchanged [75] and is among the best suited for assessing the quality of
tests [77]. Finally, we considered the complexity of test code. In this case, the
rationale comes from previous studies [24] [78] [79] [80] which showed that com-
plexity metrics may be related to both scope and defectiveness of test code as
well as may lower the overall understandability of the target of tests [76]. We
quantified complexity by computing Weighted Methods per Class (WMC) and
Response for a Class (RFC): the former represents the sum of the complex-
ity of the test cases included in a suite, while the latter estimates complexity
by considering the number of methods that can potentially be executed in
response to a message received by an object of a class. All the metrics were
computed at test suite-level, as they can be only extracted at this granularity.

The second set of metrics relate to textual aspects of source code. These
can be helpful when quantifying the readability and diagnosability (i.e., the
ability of developers to understand faults detected by a test) of test code
[24]. First, we computed the overall readability of test cases by relying on the
automated approach proposed by Buse and Weimer [81] - we employed the
original tool proposed by the authors. Such an approach employs a machine
learning-based solution that internally computes 19 metrics covering various
aspects of source code that may influence its readability, like the number of
keywords or the number of spaces in a piece of code to name a few. The output
of the readability tool consists of a readability index ranging between 0 and
1, where 0 indicates an unreadable code and 1 a perfect readability. We also
computed the comment ratio, namely the percentage of comments per test
method lines of code - the higher this ratio the higher the documentation
available for developers and, therefore, the higher its understandability.

Table 6 Descriptive statistics for all metrics considered in RQ2. Outliers have been removed
from distributions.

15t Qu._Median 8rd Qu._Max.
14.00 32.00

LOC 2.00 46.40 66.00 | 181.00
WMC 0.00 2.00 4.00 4.80 7.00 17.00
RFC 0.00 6.00 17.00 26.30 39.00 | 112.00

IFC 0.00 0.19 0.36 0.37 0.53 1.00
LCOM 0.00 0.27 0.50 0.50 0.75 1.00
TCC 0.00 0.00 0.00 0.26 0.50 1.00
LCC 0.00 0.00 0.50 0.50 1.00 1.00
Readability 0.00 0.00 0.00 0.13 0.01 1.00
Comment ratio 0.00 0.00 0.00 0.04 0.03 0.40
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To complement the analysis of test code quality metric profiles, we con-
sidered test smells, i.e., poor design or implementation choices applied by
programmers during the development of test cases [32]. On the one hand, test
smells make test code more change- and fault-prone [71] as well as harder to
comprehend and maintain [82]. On the other hand, test smells have been shown
to be one of the primary causes behind test instability, thus making them ex-
tremely harmful for developers [83]. We focused on five forms of test smells
widely investigated by the research community, namely Mystery Guest, Re-
source Optimism, Eager Test, Assertion Roulette, and Indirect Testing. Their
definitions are provided in Table [5| To detect them, we employed the code
metrics-based tool developed by Bavota et al. [82], which has shown to have
high accuracy, close to 86% of F-Measure [82] [84] and has been validated sev-
eral times in previous work [85, 86l [30] [7T], thus making us confident of its
suitability for our study. The detector identifies test smells at class-level gran-
ularity, which is the same as the other considered metrics. In particular, for
each test suite and test smell type, the detector provides a boolean value re-
porting whether the suite contains at least one instance of the test smell type
under investigation.

Table 7 Absolute and relative number of test smells detected. AR = Assertion Roulette;
ET = Eager Test; MG = Mystery Guest; RO = Resource Optimism; IT = Indirect Testing.

AR RO
Abs. Rel. | Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.
2,508  50% 1,556  31% 439 9% 123 3% 371 7%

4.2 Analysis of the Results

Table [6] reports the distributions for all the quality metrics considered in our
second research question—note that outliers have been removed from the table
for the sake of comprehensibility.

Looking at the table, we first noticed that the LOC metric, which com-
putes the size of test suites, has a median value of 32.00, meaning that the
vast majority of the considered tests have a limited size. There are, however,
several outliers: we manually analyzed them to better understand how are
they composed. From this analysis, we found that all the outliers refer to
apps having only one big test class containing several test methods that ex-
ercise production code belonging to different classes. As an example, the test
MainActivityTest, belonging to the package opencamera.test of the OPEN-
CAMERA app, has 12,637 lines of code and implements 1,188 test methods.

When considering complexity metrics like WMC and RFC, our findings
suggest that the complexity of tests is generally low (median of 4.00 and 17.00
for WMC and RFC, respectively). The discussion for coupling is more inter-
esting: indeed, the IFC metric has a median of 0.36: this indicates that there
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exist a non-negligible number of test suites containing methods that depend
on other methods of the same class. Besides making such tests less compre-
hensible [76], this phenomenon may potentially lead to undesired issues like,
for instance, potential flakiness due to a test ordering problem, which arises
when the execution of a test depends on the execution of another one [87].

Turning the attention to the test case cohesion, we can provide a number of
observations. First, the LCOM is almost equally distributed over the spectrum
of possible values for this metric. Given its definition, this result indicates that
there is a fairly similar amount of test cases that use and not use instance
variables defined in the test suite; from a practical perspective, this possibly
indicates that the design of tests and their inter-dependence may be affected
by the way specific developers implement test cases (e.g., their experience or
knowledge of the domain [35 [66]).

The analysis of TCC and LCC provided us with further insights into the
cohesion of tests. While the former measures the number of test pairs that
directly share instance variables of the test suite, the latter indicates how
many of them are either directly or indirectly connected (i.e., share the same
variables or are directly connected to the same test). The distribution of those
metrics tell us that, while test methods are not always directly connected,
they have more often an indirect connection. As such, they follow a similar
trend as the one shown in previous studies done on the code quality profile
of production classes [88]—there seems to be no peculiarities of these metrics
that distinguish tests written by mobile developers.

Finally, we could observe that both the textual metrics considered have
a median equals to 0, with a third quartile of 0.01 and 0.03 for readability
and comment ratio, respectively. On the one hand, these results suggest that
mobile developers spend almost no time addressing documentation concerns
in test cases: the low distribution of values for the comment ratio, indeed,
reports that only in a few cases developers add comments that explain the
responsibilities of the test. On the other hand, the analysis of readability is
somewhat even more worrisome: not only tests are not documented, but also
potentially hard to comprehend for developers - note that previous literature
has shown that poor test readability is often connected to a decrease of bug
detection capabilities [29] [89).

As for the test smells, Table [7]reports the distribution of design issues over
the considered set of mobile apps. In the first place, we can confirm previ-
ous findings in the field [82] 90, O1] and claim that test smells have a high
diffuseness also when considering the mobile context. Most of the instances
found (50%) refer to Assertion Roulette, namely the smell that arises when
there are multiple assert statements without explanation—this smell lowers
understandability and maintainability of test suites [32]. Instances of Eager
Test are also quite diffused and affect 31% of the test suites in our dataset.
According to previous results [71], this smell type is associated with a lower
effectiveness of the affected test in terms of fault detection capabilities. The
other test smells are less diffused: Mystery Guest appears in 9% of the con-
sidered tests, while Resource Optimism and Indirect Testing in 3% and 7%
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of the cases, respectively. These percentages are in line with those found in
traditional systems by Bavota et al. [91] and Grano et al. [90], thus indicating
that test smells have similar diffusion and relevance in both contexts.

More in general, from our empirical analyses we observed that, while the
structural metric profile of tests would not show potential problems affecting
their design, the quality of tests is still threatened by the presence of test
smells [71]. Despite the fact that they capture two different concepts, this
contradiction may potentially indicate that currently available metrics are not
enough to measure the actual quality of test suites and, as such, new, different
test code metrics that better capture the design quality and understandability
of test suites should be further studied and defined.

4 N

Finding 2. The metric profile of the considered test suites does not
always indicate the presence of possible issues in test code. Howewver,
tests are often affected by test smells that may possibly negatively influ-
ence their effectiveness, for instance by leading them to miss faults in
production code. Our findings suggest the need for new test code metrics
that can better measure the actual quality of test suites.

5 RQ3 - On the Effectiveness of Test Cases in Mobile Apps

This section details the methodological steps conducted to address our third
research question and the results achieved.

5.1 Research Methodology

Test code effectiveness can be estimated in different ways. In the context of
our study, we focused on two complementary aspects that have been shown
to influence the ability of tests to catch defects in production code, namely
line coverage [92] and assertion density [36]. The former measures the amount
of code that has been exercised based on the number of Java byte code in-
structions called by the tests: from a practical perspective, we employed the
JAC0CO Android plug-inEI a popular code coverage tool, to compute the
value for each of the considered test suites. As for the assertion density, this
is defined as follow:

#Hassertions(tc)
LOC(te)

where tc is the test case under consideration, #assertions(tc) is the number
of assert statements in tc and LOC(tc) is the number of lines of code of the
test. Note that we employed the definition of assertion density introduced by

assertion.density(tc) =

(1)

5 https://github.com/arturdm/jacoco-android-gradle-plugin
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Kudrjavets et al. [36]. We considered this metrics since it has been associated
in the past with a reduction of defect density in production code [35] [36], hence
providing an indication of how good a test suite can actually be. To compute
assertion density, we developed a tool—available in our online appendix [25].

1.00

0.75

0.50

0.25

0.00
Line Coverage Assertion Density

Fig. 1 Distribution of test code quality metrics in our dataset.

5.2 Analysis of the Results

Figure ]| reports the distribution of line coverage and assertion density among
all the applications of the dataset. As the figure shows, the values of both
the metrics are between 0 and 0.5, excepting for some outliers. The median
for line coverage is equal to 0.23, while the one of assertion density is 0.17.
We also observe a notable number of outliers, especially when considering the
assertion density. Nonetheless, we can claim that these values relate to low
effectiveness [93]: their effect on the post-release defects of mobile applications
is investigated in the context of RQy4.

When considering line coverage, the discussion is similar. The vast ma-
jority of the test suites have low coverage and cannot properly exercise the
corresponding production code. Unlike assertion density, for line coverage we
noticed something peculiar and worth of discussion: in some cases, developers
discuss about code coverage on the issue trackers and, particularly, on the way
they can increase it. For instance, let consider the ANYSOFTKEYBOARD app:
the developers in this case adopt a pull-based development process where all
changes must pass through a pull request before being merged. In most of the
cases where new code is committed, developers explicitly ask to the author
of the change to verify that the code coverage of unit tests is high enough.
As an example, in the issue #551, one developer applied multiple changes to



18 Fabiano Pecorelli* et al.

the test code in order to increase its coverage up to 87%. We found similar
cases when considering other applications, thus leading us to claim that the
developer’s perception of code coverage is sometimes pretty high and reflected
into the way test cases are developed—this result partially contradicts what
reported by Linares-Vasquez et al. [19] through their study on the developer’s
perception of code coverage and indicates that further experiments would be
desirable to understand the real value of code coverage for developers. Never-
theless, our findings suggest that mobile programmers still experience troubles
when developing effective tests.

Finding 3. The median code coverage and assertion density are 0.23
and 0.17, respectively. The effect of these low values is analyzed in the
next research question. Furthermore, we found that in some cases devel-
opers perceive code coverage as highly relevant to accept pull requests.

6 RQ4 - On the Relation of Test Cases to Post-Release Defects in
Mobile Apps

In this section, we describe methodology and results pertaining to RQy, i.e.,
the relation between test cases and post-release defects of mobile apps.

6.1 Research Methodology

In the context of this research question, we adopted a statistical approach
with the aim of relating and assessing how test-related metrics characterizing
the goodness of the manually written test cases in mobile applications can
indicate the statistical likelihood to have defects in production code. In more
practical terms, while in RQs we measured the effectiveness of test cases
only based on metrics computable considering the test code itself, in RQ, we
assessed whether and how the goodness of test cases is reflected to the quality
of production code, as measured by the number of post-release defects.

The statistical approach employed consisted of multiple steps and method-
ological choices. The remainder of this section explains our approach in terms
of model dependent and independent variables as well as of methods applied
to enable valid statistical conclusions and interpretations.

Dependent variable. The dependent variable considered in RQy is the
number of post-release defects, namely the amount of bugs affecting the mo-
bile applications in our study after the snapshot considered for the analysis.
The GITHUB repositories pertaining to those apps offer the entire change
history in form of commits. We first determined if a commit fixed a defect.
In this regard, we searched for issue IDs in commit messages by finding
matches with the prefix used in the bug tracker system. Once retrieved a
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commit referencing an issue, we queried the mobile app’s issue tracker sys-
tem in order to filter only issues related to resolved bugs. Then, we relied
on the keyword-matching technique devised by Fischer et al. [94] to analyze
the commit message and search for the presence of specific keywords, e.g.,
‘bug’, ‘fix’; or ‘defect’, that are typically used by developers to mark defect-
fixing activities. The application of this technique allowed us to filter out all
those commits that referred to issues in the issue tracker but were related to
other maintenance and evolution activities. Despite the technique might be
considered naive, empirical assessments have shown an accuracy of ~80%
[94, [95] and, for this reason, often been used by previous research [96, a7).
After detecting all defect-fixing commits, we applied the Sliwerski-
Zimmerman-Zeller (SZZ) algorithm [98], which is able to identify the defect-
inducing commits, namely those modifications that likely introduced defects.
The algorithm relies on basic Git features such as annotation and blame.
Given a defect-fixing commit k as input, SZZ works as follows:

— For each file f;, i = 1...m; involved in a defect-fix k& (my, is the number
of files changed in the defect-fix k) and fixed in its revision rel-fiz; i, SZZ
extracts the file revision just before the defect fixing (rel-fiz; 1, — 1).

— Starting from the revision rel-fiz; , — 1, for each source line in f; changed
to fix the defect k, SZZ identifies the production class C; to which the
changed line belongs. Furthermore, the blame feature of Git is used to
identify the revision where the last change to that line occurred. In so
doing, blank lines and lines that only contain comments are identified and
excluded using an island grammar parser [99]. This produces, for each
production class C}, a set of n; ;. defect-inducing revisions rel-defect; ; 1,
j =1...n;. As such, more than one commit can be marked by SZZ as
defect-inducing.

Once extracted the defect-inducing commits, we finally computed the post-
release defects of a production class as the number of defect-inducing activ-
ities involving the class after the release date of the snapshot of the mobile
apps considered. From a technical perspective, we employed the SZZ algo-
rithm implemented within PYDRILLERH to compute the dependent variable.

Independent variables. Our aim was to verify the extent to which the good-
ness of test cases implemented by mobile developers relate to post-release
defects. As such, the independent variables of the statistical model comprise
the set of metrics considered in RQy and RQg. This way we could analyze
the impact of various features, i.e., static and dynamic factors, textual met-
rics as well as test code design, on the ability of tests to act as a guard for
the introduction of defects in forthcoming versions of mobile apps.

Confounding factors. Other than to test-related features, the number of
post-release defects might be due to additional aspects pertaining to pro-
duction code quality or the development process. As an example, larger
production code classes might be more defect-prone independently from the

6 Link: https://pydriller.readthedocs.io/.
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Table 8 List of confounding factors used in the study.

Group Name Description
PLOC Number of lines of code of the produc-
Structural metrics tion class.
PWMC Weighted Method Count of the pro-
duction class.
PRFC Response for a production class.
PIFC Information Flow Coupling of the pro-
duction class.
PLCOMS5 Lack of Cohesion of Methods of the
production class.
pPTCC Tight Class Cohesion of the production
class.
PLCC Lose Class Cohesion of the production
class.
God Class A class having a large size, poor co-

Code smells

Class Data Should Be Private

hesion, and several dependencies with
other data classes of the system.

A class exposing its attributes, thus vi-
olating the information hiding princi-
ple.

Complex Class

Functional Decomposition

A class presenting a overly high cyclo-
matic complexity.
A class implemented as a function.

Spaghetti Code

A class that exhibit a functional-style
programming structure, declaring a
number of long methods without pa-
rameters.

Android-specific smells

Durable Wakelock

A class acquiring a wake-lock without
releasing it.

Inefficient Data Structure

Internal Setter

A class that declares a HashMap lo-
cal variable whose first type argument
(i.e., key) is an Integer.

A class containing one (or more) non-
static method(s) that calls a setter
having only a single assignment.

Leaking Thread

Member Ignoring Method

A class exhibiting a Thread that is
started but not interrupted.

A class containing a non-static and
non-empty method that (i) does not
access any instance variable; (ii) does
not use this and super keywords; (iii)
does not override an inherited method.

Development process

Pre-release changes

Number of changes involving the pro-
duction class before the release date of
the considered snapshot.

test cases exercising it. To account for this aspect and avoid a biased in-
terpretation of the results, we computed a set of confounding features that

have been shown to influence the defect-proneness of source code. These are
summarized in Table [§] As shown, they cover four main characteristics of
product and process quality:

— Among the structural metrics, we first take the Production Lines Of
Code (PLOC) metric into account. It measures the size of the production
classes. Its selection was driven by the fact that PLOC has been often
associated to an increase of fault-proneness [68] [69] [70]. To compute it,
we employed the automated tool developed by Spinellis [T00].
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The  Weighted Method per Class (PWMC) and Re-
sponse for a Class (PRFC) metrics [2§8] measure the complexity of
production code, which is something that naturally influences the
defect-proneness of source code [78] [79]. The tool by Spinellis [100] is
able to compute this metric too.

Coupling is another aspect strongly connected to software quality [77].
In our work, we computed the Information Flow Coupling (PIFC) of
production classes, i.e., a metric describing the relation between classes
in terms of information exchanged.

Cohesion has also been associated to fault proneness in the past [101].
In this respect, we measured cohesion of production classes by mean of
Lack of Cohesion of Methods (PLCOMS5), Tight Class Cohesion (PTCC),
and Lose Class Cohesion (PLCC).

Code smells are indicators of sub-optimal design/implementation choices
in source code [102]. A number of previous papers have established that
those smells heavily increase the chance of production code being faulty
[103), 104, 105, 106, 107, 108, 109, 110]. On the one hand, we consid-
ered five traditional code smells from the catalog by Fowler [102]. These
have different characteristics and cover various program entities, i.e., God
Class, Class Data Should Be Private, Complex Class, Functional Decom-
position, and Spaghetti Code. On the other hand, we took the peculiarities
of mobile applications into account and computed the so-called Android-
specific code smells, i.e., design flaws that are specific of mobile apps
and that can impact on defect-proneness in different manners, e.g., by
increasing the chance of functional and energy-related defects. In this
regard, we computed the 5 code smells mentioned in Table

As for the actual detection of these code smells, we relied on DECOR [111]
for the traditional ones and on ADOCTOR [112] for the Android-specific
ones. Both tools have been extensively validated by the research com-
munity and showed an excellent accuracy [I13] [112], hence representing
valid tools to use for our purposes.

Finally, we computed the number of pre-release changes. This metric
captures the quality of the development process [114] and can highlight
relevant complementary evolutionary aspects. The metric was computed
by mining the change log of the considered apps and counting how often
a certain production class has been modified.

Statistical approach. As last step to address our research question, we built

a statistical model relating independent and confounding metrics to post-
release defects. We opted for the construction of a Generalized Linear Model
(GLM) [II5]: it models the relationship between a scalar response, like the
number of post-release defects, and one or more explanatory variables, i.e.,
the set of independent and confounding factors, by fitting a linear function
whose unknown model parameters are estimated from the data; we used
the ‘Gaussian’ family when implementing the model. The reason behind the
choice of this statistical approach was twofold. At first, it simultaneously
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analyzes the effects of both confounding and independent variables on the
response variable [I16]. Secondly, it does not require the normality of data
distribution: in our case, the Shapiro-Wilk normality test [I17] rejected the
null-hypothesis, hence indicating that our data is not normally distributed.
To properly interpreting the statistical results, we accounted for possible is-
sues with multicollinearity [118]. In doing so, we run a hierarchical clustering
based on the Spearman’s rank coefficient [I19] to cluster together variables
at different levels of correlation. Afterwards, if two of them had a correlation
higher than 0.6, we excluded the more complex one from the model.

Finally, we interpreted the output of GLM by analyzing the statistical sig-
nificant codes it assigns to each explanatory variable: if a certain metric is
statistically significant, this implies that the chances of the effect on the
number of post-release defects being random is sufficiently low. We also
computed the Adjusted R-squared [120] to assess the goodness of fit of the
model, a metric indicating how close the data is to the fitted regression line.

6.2 Analysis of the Results

Table [0 reports the statistical results obtained. Before discussing them, it is
worth pointing out that from the total set of variables employed within the
model, we had to exclude (i) the variable signaling the presence of the Func-
tional Decomposition code smell because it was too correlated with p_lcc, (ii)
p-wmc due to its high correlation with p_loc, and (iii) t_-wmc and t_rfc, which
in this case had high correlation with t_loc. In addition, the statistical model
could not consider the Member Ignoring Method, Inefficient Data Structure,
and Leaking Thread smells because the Android-specific code smell detector,
i.e., ADOCTOR, did not detect any instance for these smells.

Overall, the model was composed of a total of 24 metrics. The Adjusted
R-squared measured 0.114: the value is pretty low, meaning that the input
variables, i.e., the set of independent and control factors taken into account,
cannot determine well the value of the dependent variable. From a practical
perspective, this means that there might exist additional metrics that cover
peculiar aspects of mobile applications and that can contribute to the expla-
nation of the statistical power of the model—this seems to suggest the need
for more extensive and comprehensive studies on the factors making mobile
applications more defect-prone.

Looking at the table, a first aspect to discuss is the high significance of
PRE_RELEASE_CHANGES (p-value <0.001). The estimate is positive, meaning
that the higher the number of changes done before releasing the higher the
likelihood that classes will be subject to defects. The result is not really sur-
prising since the past history of a class has been found to strongly influence
its future quality in a number of previous work [121] [122]. In this sense, our
findings corroborate what discovered in the available literature.

Analyzing the effects of the other confounding factors, we found that (i) the
presence of code smells and (ii) the size of production code can influence the
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Table 9 Results for RQ4 - Factors influencing post-release defects in mobile apps.

Estimate S.E. Sig.
Intercept -1.18 1.14
TLOC -0.01 0.01
TIFC 1.67 1.11
TLCC 0.04 0.67
TTCC 1.91 0.56 Hokx
Assertion Roulette -0.23 0.53
Eager Test -0.34 0.46
Mystery Guest 1.03 0.81
Resource Optimism -2.73 1.37
Indirect Testing 1.29 0.63
Readability 3.74 2.30
Comment Ratio -15.43  7.07 &
Line Coverage 0.31 0.94
Assertion Density 1.48 1.61
PLOC -0.06  0.02 ok
PIFC 0.60 1.00
PLCC 1.94 1.19
PRFC 0.33  0.99
PTCC -0.51 0.71
God Class 2.51 1.32
Class Data Should Be Private 6.91 5.25
Complex Class 11.49  4.32 o
Durable Wakelock 1.00 4.30
Internal Setter 2.84 3.51
Pre-release Changes 0.78  0.05 rorok

Multiple R-squared: 0.169; Adjusted R-squared: 0.114
significance codes: "***p <0.001, "**'p <0.01, "*’p <0.05, ’.’p <0.1

number of POST_RELEASE_DEFECTS. As for the former, our results still confirm
that the presence of design issues in production code, and of GoD CLASS
and CoMPLEX CLASS instances in particular, leads the affected classes to be
more defect-prone [105], 123]. As for the latter, it is worth noticing that the
estimate is slightly negative (-0.06): this indicates that the lower the number
of production code lines, the higher the number of post release defects. While
at first glance this could sound counter-intuitive, there are two observations
to do. In this first place, the estimate is close to zero and, therefore, there
might not be evident reasons making the metric connected to the dependent
variable. In the second place, however, the result could be explained by a larger
adoption of third-party libraries [44] that has the effect of sensibly reducing the
amount of code in the app but, at the same time, increasing the likelihood of
developers introducing defects because of API misinterpretation or the usage
of defect-prone APIs—as shown in literature [54].
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Turning the attention to our core interest, namely the impact of tests on
POST_RELEASE_DEFECTS in mobile applications, we found that cohesion of test
cases is a very relevant aspect (p-value<0.001) that influences the dependent
variable with a positive estimate, i.e., the higher the cohesion the higher the
number of defects. Also in this case, the result is counter-intuitive. The find-
ings of RQ; have shown that mobile applications are characterized by a few
number of tests with a limited size: having a high cohesion in these cases may
indicate that the test exercises only few and strongly cohesive functionalities
in production code, hence neglecting others. The low coverage observed in
RQj3 seems to confirm that the few tests available are not able to verify the
production code in an appropriate manner.

The significance of test smells confirm previous results achieved in the
context of traditional applications [40} [71]. Interestingly, we noticed that the
INDIRECT TESTING smell has an estimate of 1.29, hence directly affecting the
number of post-release defects. This smell arises when a test exercises multiple
classes of the production code, not being able to focus on a specific target
class. As previously shown [71], the lack of focus is among the key test-related
problems increasing the defect-proneness of production code.

Last but not least, the COMMENT RATIO of test cases was found to be sta-
tistically significant, with an estimate of -15.43. This means that the lower the
amount of documentation in tests the higher the number of defects in produc-
tion. Our results in RQ, revealed that test cases of the considered applications
are indeed poorly documented: the statistical analysis suggests that such a lack
of documentation represents a serious threat to the reliability of source code.
This is in line with previous findings [124] showing that non-commented tests
cause a decrease of program comprehensibility and, for this reason, developers
might encounter difficulties in detecting defects in production code.

4 N
Finding 4. Post-release defects are mainly influenced by the number of
changes performed on production code. A few test-related-factors nega-
tively contribute to the phenomenon as well. The cohesion of test cases
is one of the most significant factors influencing the number of post-
release defects. Other aspects such as the comment ratio and presence
of test smells are still important but with a lower significance.

7 RQs5 - On the Developer’s Opinions on Mobile App Testing

This section reports on methodology and results that address RQs.

7.1 Research Methodology

The analyses done so far provided a quantitative view on the state of the
practice in mobile application testing. While we could provide some additional
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insights through our manual investigation of the considered apps, these are
clearly not generalizable and would require further investigation. Being aware
of that, our last research question sought to elicit the opinions of developers
having a solid experience in the context of mobile app testing.

Previous work in the field have exploited survey research to complement
mining studies (e.g., [6L @]): by nature, surveys provide quantifiable data that
can be used to establish, on a large scale, the maturity of a technology or, in the
software engineering field, of novel instruments. Yet, surveys are not interactive
and the data coming from them are likely to lack details or depth on the topic
being investigated [125]. As the goal of RQs was to gather insights and in-
depth opinions on the findings achieved in the mining study, we then preferred
not to go for a survey, favoring a more qualitative approach like the one of
focus groups, which are rarely large enough to draw definitive conclusions, but
have the advantage of fostering discussions and uncovering ideas that otherwise
would have been missed [23] [125].

More specifically, focus group research is defined as a small group of care-
fully selected participants who contribute to open discussions for research [23].
In the context of our study, a focus group enables a joint discussion on current
testing practices and limitations among the recruited experts. From a method-
ological standpoint, the participants were invited to join an online ZOOM meet-
ingi}note that at the time of the study we were not allowed to run a physical
meeting because of the COVID19 pandemic.

The first two authors of the paper acted as moderators. At the beginning of
the meeting, a 2-minute presentation of the participants was allowed, so that
all of them got to know the others. Then, the first author of the paper provided
an overview of the main goals of the study, a brief explanation of the research
methods employed, and a detailed discussion of the results achieved in the con-
text of RQ1-RQ4. To this purpose, a 10-minute slideshow was prepared: the
last slide was designed to contain a summary of the main findings of the study
and was kept shared with the participants till the end to allow them to always
bear in mind the achieved results. It is worth noting that, while summarizing
the results, the first author highlighted that these came out exclusively from
open-source applications—this was done with the aim of setting the partici-
pants’ expectations on the open-source side. The presentation provided to the
participants is available in our online appendix [25].

In the second part of the focus group, participants were asked to comment
on the results and report experiences with respect to the testing of mobile
applications that might explain the quantitative results of the study. This
part of the meeting lasted 45 minutes and was kept by the moderators highly
interactive: they did not simply leave the word to each participant, but asked
others to comment and reflect on the possible reasons behind what s/he was
reporting. The entire discussion was recorded and stored for analysis.

Upon completion of the recording, ZOOM provided as output both the video
registration and a text file reporting the transcript of the meeting. The first

7 https://www.zoom.us/en/
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two authors of the paper reviewed the transcript together in order to identify
the main insights and comments left by the participants. We finally addressed
RQj5 by reporting the most relevant insights from the focus group.

Table 10 Background of the focus group participants.

Mobile Exp. | Working context

P1 13 10 Software Corporation

P2 11 6 Airline company

P3 | 11 6 Mobile Software House

P4 | 10 6 Researcher & Spin-off CTO
P5 11 6 Testing researcher

7.2 Analysis of the Results

Table reports the background of the five experts to the focus group. As
shown, all of them have a similar development experience and, since at least
five years actively work on the development of mobile applications. Three
participants (P1, P2, and P3) have a full-time appointment in large software
companies of different nature: P1 works within a well-known US software and
technology corporation founded in 1975, P2 is employed in a Dutch airline
company, while P3 works for a multinational corporation that develops mobile
applications. The fourth participant (P4) is a Senior Research Associated in
an Italian university, but also has a partial appointment as Chief Technology
Officer of a technological spin-off operating in the context of big data analytics.
Finally, P5 is a researcher in the field of software testing having, however,
experience in the development of mobile applications, i.e., P5 was employed
within a mobile software company before starting the academic career.

For the sake of readability, in the following we report the key insights com-
ing from the focus group by discussing each research question independently.

Commenting RQ;. After the introductory part, the two moderators
started the focus group by asking whether the presented results were in line
with the participant’s expectations of how mobile testing is applied in practice.
All participants agreed on the fact that, based on their experience, mobile apps
are poorly tested and that, unfortunately, our results for RQ; provide a repre-
sentative overview of what happens in practice. In this respect, P1 commented
that “the majority of mobile developers have poor testing skills and, indeed,
they mostly perform manual testing by adding pre- and post-conditions in the
production code”. In other words, according to P1’s opinion, developers tend
not to develop test cases but verify the behavior of their apps by crafting spe-
cific statements within the production code to verify pre- and post-conditions
while developing or evolving the code. It also turned out that these state-
ments might be even opportunistically disabled, i.e., test code is activated
for debugging purposes and then commented when the app is finally released.
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The other participants agreed with the P1’s take, yet they also pointed out
that this is a typical behavior observed with small applications developed by a
few number of developers having low or no software engineering skills. P4 also
found another motivation for the low amount of tests: in some cases, s/he said,
“testing specific usage scenarios is challenging, since mobile apps can interact
with various hardware components and sensors (like the Bluetooth)”. Hence,
the overall discussion not only highlighted education challenges, e.g., how to
address the problem of testing mobile applications at an education level, but
also that developers sometimes need specific test beds or mocking strategies
to simulate the behavior of external hardware components.

When it comes to the classification of test cases reported in RQ; (see Ta-
ble , the participants unanimously agreed that the higher percentage of unit
tests discovered in our study is due to the higher simplicity of performing unit
testing with respect to the other types. Furthermore, P1 pointed out that “the
lower amount of integration and system tests might be also explained with de-
velopers writing tests that cover very specific, domain- and context-dependent
use cases of their applications”. Reasoning around this statement, it seems
that the small number of integration and system tests may not necessarily
be a problem in practice, since developers might have a deeper knowledge
of the use cases that users will more frequently apply. Perhaps more impor-
tantly, P2 and P5 highlighted that mobile developers have the opportunity to
test apps as a whole by employing established behavioral testing framework
like CUCUMBERH and others—which are actually widely used in practice [I1].
Interestingly, however, P2 reported that: “behavioral tests provide developers
with the perception that everything is working properly, but there must still be
uncaught bugs. Nevertheless, in most cases developers accept those bugs since
the cost of writing integration and system tests would be excessive”. These
observations allowed us to provide two main conclusions. On the one hand,
having a few integration and system tests might not necessarily be an issue
as long as they are complemented with testing frameworks that can exercise
the app in different manner. On the other hand, our findings further support
the work done by the research community around automatic test case genera-
tion: as a matter of fact, writing tests remain a costly activity that should be
appropriately supported with automated mechanisms, especially in a context
where continuous releases are expected to be delivered.

Our participants also actively discussed the results reporting non-
functional attributes to be poorly tested. P3 argued that “while there exist
some frameworks to assist developers while exercising, for instance, perfor-
mance and energy constraints, software companies do not often care about
these types of testing”, i.e., companies focus on functional requirements, ne-
glecting non-functional ones. Moreover, P3 explained that “it is hard to cre-
ate non-functional tests because the definition of oracles is challenging and
developers do not often have expertise to deal with the complezity of these
tests”. The other participants also pointed out a lack of tools able to measure

8 https://cucumber.io
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non-functional aspects. To draw a conclusion, the discussion raised two main
challenges for researchers: the need for more research on oracles and the need
for more techniques/tools able to properly assess non-functional attributes of
mobile applications - especially when these depend on external events.

Commenting RQ>. Moving the attention to the developer’s take on the
results achieved when considering the design quality of the manual tests ob-
ject of our investigation, the participants were quite interested in commenting
on the documentation of those tests. P2 pointed out that “is it not really
surprising that amount of comments is low. There is a growing trend in indus-
try for which developers should not spend too much time in documenting test
cases since they will not frequently change over time”. P5 confirmed this line
of thinking and added that “in the company I worked, the governance used to
employ a strict naming convention to enforce developers write test names that
clearly define the goals of the test and its target; in this way, failing tests could
be easily retrieved and diagnosed”. These observations led us to first argue
that the documentation strategies for test cases are drastically different from
those of production code, i.e., the focus is on names that can quickly evoke
the responsibilities of the tests rather that on code comments that are more
costly to write and may possibly become outdated. At the same time, we still
see room for better assisting developers by means of improved automatic code
comment generators as well as refactoring instruments that can update tests
and their documentation when new changes to production code are applied.

When addressing the readability of test code, participants were instead re-
luctant to consider this as a relevant aspect for design quality. In this respect,
P2 reported that “the readability of tests is much lower than the one of pro-
duction code, but this is quite normal given the different goal that testing has”.
In other words, the participant argued that the main objective of test cases is
to find defects, independently from how good the test code is readable. Addi-
tionally, P4 claimed that “the readability values are really low considering that
tests are usually short pieces of code. Perhaps, the metric employed does not
appropriately capture the readability of tests”. This statement led to the for-
mulation of a hypothesis: the currently available test metrics do not properly
measure the desirable properties of test cases. We further investigated such a
hypotheses in the remainder of the discussion.

The participants also had concerns when discussing the structural code
metrics. P3 reported that “in my experience, low cohesion and high coupling
in tests indicate that there is something wrong in production code”; the other
participants agreed with this statement and confirmed that the status of test
cases often simply reflects the quality of production code. Going deeper into
the discussion of the specific metrics, P2 added that “the coupling values are
particularly worrisome, it is likely that tests only exercise a few methods of
the production code”, while P1 reported that “the test cohesion must not nec-
essarily be high, yet this may indicate that there exist poorly cohesive test
suites exercising more production classes”. Based on these observations, it
seems clear that there is a strong relation between production and test quality
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and, therefore, our results can reflect the more general poor quality of mobile
applications—hence corroborating the findings by Linares-Vasquez et al. [126].

To conclude the discussion on RQ2, the moderators explicitly asked partic-
ipants whether the available test code metrics are actually suitable to provide
developers with relevant information about the design quality of tests. In re-
sponse, P2 explained that “there are some good metrics, like LOC, while others
are quite meaningless in practice, like the comment ratio”. More in general, P1
reported that “the level and goal of the metrics that we expect to assess tests is
different from those of production code”. Although our findings in this respect
are not conclusive, we believe they raise the need for further investigations
into the real usefulness of the current metrics.

Commenting RQgs. The participants went through the results achieved
when computing code coverage and assertion density. In the first place, all
participants agreed that the results are not surprising: these are, indeed, in
line with their expectations since “it is a standard, yet unhealthy practice that
of considering test cases as second-class citizens”, said P5.

P2 added that “most of the tests analyzed are at unit-level, which makes the
low coverage even more worrisome: they are likely to exercise only the easiest
parts of the production code”. More in general, P3 commented that “even if the
coverage is objectively low, this metric does not necessarily imply that the tests
cannot catch defects”.On the one hand, this confirms recent findings by Grano
et al. [24], i.e., test case effectiveness is a multifaceted concept that should be
assessed by combining multiple metrics. On the other hand, the participants’
opinions led us to further push the need for additional investigations into the
definition of novel metrics to assess test code quality and effectiveness.

The discussion on assertion density led to a similar conclusion. P1 reported
that “some tests might be useful even when they have no assertions; the as-
sertion density is a metric, but not necessarily good”. In addition, P1 and P4
observed that the metric computation is naturally biased by the amount of
code required to setup the test environment, i.e., if a test requires more code
to prepare the environment the denominator will be higher, leading to a lower
density that does not necessarily indicate the poor quality of the test.

Concluding the discussion for these results, we could confirm that the gen-
eral feeling of our participants was that the available testing metrics are not
enough to provide a comprehensive view of test code effectiveness.

Commenting RQ,. When discussing the results on the relation between
test code properties and post-release defects, participants basically confirmed
the opinions given for the previous research questions. In the first place, they
pointed out that test cases of such a poor quality cannot provide any sig-
nificant indication to developers and are, naturally, going to fail in catching
defects in production code. They also clarified how the continuous changing
nature of mobile apps make the testing development process particularly chal-
lenging, since tests must be frequently updated and, as a matter of fact, there
is typically not enough workforce, time nor experience to write effective tests
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and deal with the intrinsic complexity given by the environmental constraints

(e.g., hardware components and sensors).

a I
Finding 5. The quantitative results of our study reflect the expec-
tations that developers have of the status of mobile app testing. The
participants provided further explanations and insights into the matter,
e.g., by raising specific education and technical challenges that the re-
search community should carefully look at. In addition, our focus group
let emerge the need for additional/novel metrics able to better measure
both quality and effectiveness of test cases.

8 Discussion, Implications, and Limitations

In this section, we present the main insights coming from the results of the
study and the limitations that might have affected the validity of the study.

8.1 Discussion and implications

The results of our empirical study provided a number of insights and practical
implications for the research community that need further discussion.

Mobile apps contain very few numbers of Java tests. The first evi-
dent, worrisome result of our study clearly indicated the lack of tests in
mobile applications: not only the mean number of tests is ~ 3, but also the
percentage of apps without any test is rather high (60%). There are multiple
factors possibly contributing to this finding. First, our dataset is composed
of open-source mobile applications that can be developed under different
conditions with respect to other applications: as an example, they can be
developed by inexperienced or novice programmers with little knowledge
on testing practices [53]. During the focus group discussion, our partici-
pants also raised this point and commented on how the lack of software
engineering/testing expertise can have a significant impact on how mobile
applications are tested. At the same time, the developers involved in RQs5
reported that test cases are typically seen as second-class citizens, especially
in a dynamic environment like the one of mobile development, where a con-
tinuous release model might soon make tests outdated other than increasing
the cost required to maintain and evolve them. In this respect, our findings
corroborate previous results obtained by Beller et al. [127] on the lack of
developer’s willingness in successfully evolving tests. As an exemplary case
appearing in our dataset, let consider the case of ACASTUS PHOTONE| an
online address/POI search for navigation apps. Looking deeper at its issue
tracker and the developer’s comments, we noticed that the developers of the

9 https://f-droid.org/en/packages/name.gdr.acastus_photon/
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app have consciously postponed some testing activities with the aim of en-
tering the market faster or because of the lack of time to dedicate to testing.
For instance, in one of the issues still open on the issue tracker (#2), one of
the core developers of the app posted the following comment:

“l...] I'm probably going to merge the build changes later on too.
[...] I don’t have time to test them right now so just merging master.”

As shown, in this case the developer decided not to test the newly committed
code change because of the need to other modifications to the production
code. Even without an extensive search, we found similar cases in other
apps of our dataset. Finally, our findings can be also due to the limited
automated support that developers have when testing their apps. As pointed
out in the context of our focus group, mobile developers experience very
specific challenges when developing test cases, like the need for considering
external events coming from hardware components or sensors. By looking
at the state of the art, there exist a number of tools to automate GUI
testing (e.g., MONKEY or SAPIENZ [12]), other than some frameworks for
behavioral-driven testing (e.g., the CUCUMBER tool mentioned in RQj),
yet only a few automated and practical mechanisms are available for the
generation of functional and non-functional test cases (e.g., EvOsUITE [128]).
In addition, these tools do not explicitly take into account the problem of
mocking hardware components. As such, our findings do not only support
the research in the field of automatic test case generation, but also call for
the definition of mobile-specific instruments.

& Developers typically see test cases as second-class citizens, thus post-
poning testing activities in favor of other aspects perceived as more impor-
tant (e.g., time-to-market). Mobile-specific automatic test case generation
techniques are needed to support developers during testing activities.

On integration and system testing. According to our findings, most of
the test suites present in mobile apps pertain to unit testing, while we dis-
covered only a limited amount of them referring to integration and system
testing [129]. This result might be due to various reasons. While the lack of
automated tools and/or support mechanisms might influence the way mo-
bile developers verify their apps for integration- and system-level faults, it
is also worth remarking that different verification mechanisms, like manual
validation, crowd-testing [130], or even the use of external tools that can
exercise the apps to verify certain specific properties (e.g., energy consump-
tion [I5, 131]), might be put in place. As an example, our study highlighted
that, depending on the context, the lack of automated integration and sys-
tem JAVA tests might not necessarily be a problem because developers may
want to test the use cases that users perform more often when using the app,
hence leading to the application of non-systematic or opportunistic testing
strategies that are not automated, e.g., crowd-testing [130]. On the one hand,
our findings may possibly pave the way for novel smart techniques that can
analyze runtime usage logs to recommend when to add test cases or suggest
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modifications to the current ones. On the other hand, we point out the need
for additional investigations into the methodologies employed by developers
to perform integration and system testing.

&, Test cases in mobile applications are mainly developed at unit-level
granularity. This could be possibly due to the adoption of other types of
testing techniques for integration- and system-level, such as automatic or
crowd testing.

Enabling testing of non-functional attributes. Most of the tests devel-
oped in mobile apps relate to functional aspects of production code, while
few of them refer to testing of non-functional attributes like, for instance,
energy consumption, security, or performance. The developers involved in
our focus group clearly pointed out how hard the development of these tests
can be. There are two key limitations of the state of the art in this respect.
In the first place, defining an oracle for these types of test is a challenging
or even a non-deterministic task, e.g., the oracle of an energy test must nec-
essarily take into account the non-determinism of energy measurements. In
the second place, our study highlighted a worrisome lack of instruments that
support developers when measuring non-functional aspects: these have been
often connected to the commercial success of mobile applications [54) [43] ],
making the lack of testing a threat for the overall sustainability of these apps.
On the basis of these results, we therefore argue that more methods to man-
age the complexity of non-functional attribute testing should be designed:
while the research community has been working already on the measurement
side (e.g., [I5]), to the best of our knowledge there is no study targeting the
oracle problem when considering non-functional testing.

& The great majority of tests developed in mobile applications relate
to functional aspects rather than non-functional ones. More methods that
support testing of non-functional attributes are needed.

The design quality of mobile apps is low. Our findings report that most
of the tests analyzed are affected by some form of test smells. Previous
researches have shown how these problems can turn into critical threats to
the effectiveness of tests [40} [71]. To identify them, some test smell detectors
have been developed in the past [132] 133, B4] and experimented in the
context of mobile applications [134,[135]. Yet, there is no empirically-assessed
technique available to automatically refactor test code. As such, the practical
support provided to mobile developers is still very limited.

& Test cases in mobile apps are characterized by a low design quality. Mo-
bile developers need to be supported by the definition of novel techniques
for automatically identifying and refactor design issues.

On the need of novel metrics for test code quality. When analyzing
the quality of test suites, we also computed code metrics capturing cohesion,
coupling, complexity, and documentation aspects. Our quantitative analyses
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(RQ2) revealed a contradiction between the metric profile of tests and the
actual presence of design issues. While the values of the metrics would not
indicate problems with the design of test cases, we discovered that test
smells are often present and lower the maintainability and understandability
of tests. By contrasting these results with those achieved in our qualitative
investigation (RQs), we discovered that the meaningfulness of these metrics
is limited. The involved developers not only presented practical scenarios
where the metrics could not be relevant (e.g., companies may implement
guidelines for naming conventions, discouraging developers to write code
comments), but also pointed out that the level and scope of test metrics
are different from those of production code. Our findings indicate that
researchers should go beyond the currently available code metrics and
define novel indicators that can better quantify the quality of test cases.
Furthermore, on the basis of our results we argue that both available
and prospective quality metrics should be re-contextualized for mobile
applications, for instance by providing an easy way to quantity how much
the quality of tests depend on the quality of production code.

& Current test metrics seem to be not very related to the actual presence
of design issues. Therefore, researchers should spend more effort in defining
novel indicators having higher explanatory power for test case quality.

On the effectiveness of test suites. Another relevant finding is the low ef-
fectiveness of the test cases analyzed when considering both code coverage
and assertion density. On the one hand, these metrics have been previously
positively correlated to the fault detection capabilities of tests [40]: as such,
their low value is somewhat worrisome and depict a critical situation for
the mobile applications considered. On the other hand, however, developers
raised some practical critiques to those metrics: the assertion density com-
putation might be biased by the amount of code required to setup the test
environment, while the coverage only provides a part of the whole story.
These observations further confirm the need to establish novel methods to
evaluate test cases. Moreover, the results corroborate recent findings showing
that the effectiveness of tests represent a phenomenon that goes way beyond
the currently available methods [24]: as such, we argue that newly proposed
metrics should consider the aspects deemed important for developers and,
more importantly, possibly be directly assessed against the developer’s per-
ception of test code effectiveness.

&, Test cases in mobile applications have low effectiveness. While one
could immediately think that this represents a criticality for mobile appli-
cation, it could be also possible that the metrics on which our consider-
ations are based cannot fully explain test effectiveness. Also in this case,
the definition of new metrics could help for further and deeper analyses.

Teaching software testing. To some extent, both the quantitative and
qualitative findings of our study showed that mobile developers do not have
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proper testing skills. This is even worse when considering the constraints
that mobile apps might have, e.g., the interaction with sensors. As a con-
sequence, our study highlights the need for interventions on an educational
level. This concerns both software engineering courses covering basic testing
skills, and more sectoral courses on mobile development providing students
with specific mobile-oriented skills: we not only argue that the focus on test-
ing practices should increase from a technical perspective, but educators
should further pushed on the value of having quality and effective test suites
in practice, for instance by showing the extent to which testing is connected
to the failure of software engineering projects [I36] or by designing additional
seminars on the matter, trying to engage students with practitioners.

& Mobile developers do not have proper testing skills. Educators should
consider giving more importance to design quality and effectiveness of test
cases rather than only focusing on the technical perspective.

8.2 Threats to Validity

Some possible limitations could have biased our findings; this section discusses
how we mitigated them.

Threats to construct validity. This category refers to the relation-
ship between theory and observation. A first point of discussion concerns the
dataset of mobile apps exploited in the study. Previous work has found that
some of the applications available in the F-DROID repository are very basic
projects [137, [138], thus possibly biasing the conclusions of empirical stud-
ies. To overcome this limitation, we manually went over each of the initially
downloaded apps in order to discard those that appeared to be too trivial to
be considered. In particular, we looked at their repository in order to check
whether they result active, e.g., in terms of commits, conjecturing that trivial
apps are not updated and actively developed, e.g., since could be part of a
university project for an exam.

In all our research questions, we relied on some automatic tools for various
reasons. In RQ; we employed the test-to-code traceability approach defined
by Van Rompaey and Demeyer [52] to find the production classes exercised
by the considered tests, as well as we used a keyword-based tool to classify
production classes according to their role in the system. While the test-to-code
traceability approach has been validated several times in the past showing a
very high accuracy, we manually double-checked the classifications done by our
own keyword-based tool in order to fix them whenever needed. In RQs, we
employed an automatic test smell detector: its accuracy has been previously
assessed [82] [84] showing to be close to 86% in terms of F-Measure. Such
an accuracy makes us confident of the reliability of the instrument and its
suitability for the purpose of the study. Nonetheless, it is worth pointing out
that we employed the test smell detector at test suite-level, i.e., it outputs a
boolean value indicating the presence of at least one instance of the various test
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smell types considered: additional analyses, conducted at a finer granularity,
would be desirable for corroborating our results. Finally, in RQs we exploited
JACOCO and our own tool to compute code coverage and assertion density,
respectively. The former has been widely used in the past by the research
community and, therefore, can be considered as de-facto standard. The latter
is a simple tool computing the ratio between assertions and test class KLOC,
that we tested before exploiting it in our study. For the sake of verifiability,
we also made the tool available in our appendix [25].

Threats to conclusion validity. Limitations of this type concern the
relationship between experimentation and outcome. In principle, our study
should be considered as an evidence-based experiment in which our observa-
tions and findings come from the analysis of the actual evidences left by mobile
developers with respect to their testing activities. The large-scale nature of the
study allows us to provide the research community with results and findings
having a large ecological validity; in addition, we also contrasted the quantita-
tive findings with the results obtained from a qualitative study conducted in
the form of focus group. Such a mixed-method approach allowed us to not only
discuss overall findings from a large set of mobile apps, but also to describe
the main underlying reasons under them.

The metrics used to address our RQs are all well-established in the re-
search community and allowed us to overview the status of mobile testing
in a comprehensive manner. However, it is worth discussing that, in RQs,
we estimated test code effectiveness by looking at line coverage and assertion
density, without considering another well-known indicator such as the muta-
tion score [139], i.e., the amount of artificially created production faults that
a test can detect. We are aware that this metric could have provided an ad-
ditional view of the effectiveness of tests, but unfortunately all the available
mutation tools (e.g., PI’IED do not scale up to the size of our empirical study
and, therefore, the computation of mutation coverage would have been pro-
hibitively expensive. Nevertheless, it is also worth remarking that Gopinath
et al. [140] reported line coverage to be the coverage-criterion that is more re-
lated to test case effectiveness and, perhaps more importantly, it has a direct
relation with mutation operators that act at line-level. Given such a relation,
we are confident that the results discussed in the paper would have not drasti-
cally changed if mutation coverage would have been included in our empirical
study. At the same time, we recognize that replications targeting this aspect
would be beneficial to provide a further view on the matter.

In the context of RQ1, we performed a manual analysis to classify granu-
larity and type of tests in our dataset. To this aim, we followed a grounded-
theory approach [49] where two authors first classified an identical set of tests
in order to tune their judgment and proceeded with the classification process
smoothly. Of course, we still cannot exclude the presence of some imprecision
in the classification, however the high agreement reached by the inspectors
makes us confident of the reliability of the process conducted.

10 https://pitest.org
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In RQ4, we designed a statistical model to relate test code metrics to post-
release defects. In this respect, we controlled test-related factors for possible
confounding effects due to the characteristics of production code, considering
both product and process metrics as well as Android-specific code smells,
that have been shown to be connected with to post-release defects. Another
threat is related to the actual suitability of the employed statistical method,
i.e., Generalized Linear Model. It is worth recalling that, before selecting it,
we verified the assumptions that the model makes on the underlying data.
Nonetheless, it may still be possible that the statistically significant variables
discovered through the use of linear regression may be due to the specific data
manipulation and analysis done by the statistical model [I15].

As a final remark, our RQs has been designed to follow a focus group
methodology. This is a qualitative research method that, by nature, does not
require the participation of a large amount of experts — it is explicitly de-
signed to have a small group of participants able to foster discussion and
provide insights/recommendations on the phenomenon of interest [23] [125].
The conclusions reached might not be definitive: we are aware of that, yet
we preferred to have in-depth opinions on the findings achieved in the mining
study rather than more generic results that might have achieved using other
instruments, e.g., surveys. As usual, however, replications are desirable and
might provide complementary insights into the testing of mobile applications.

Threats to external validity. As for the generalizability of the results,
our study targeted a large set of open-source applications, thus allowing the
verification of the characteristics of tests on a large scale. Nevertheless, it is
worth pointing out that our findings may differ in different contexts, e.g., in
closed-source apps testing practice results different, as well as settings, e.g.,
when considering test smells other than those taken into account. As such,
further replications of our study would be desirable and are already part of
our future research agenda.

9 Related Work

The ever increasing complexity of mobile applications, given by their pecu-
liarities (e.g., ensuring that the application is downloadable, works seamlessly,
and gives the same experience across various devices and users) as well as by
their differences with respect to standard applications [53] [I41], has pushed
the research community to define methods to support developers with testing
activities [8]. Researchers have been investigating how developers test their
mobile applications in comparison to standard systems [8], showing dissimilar-
ities, peculiarity and possible effective practices. Given the goals of our paper,
in this section we mainly focus on the studies aiming at analyzing testing prac-
tices of mobile developers by (i) surveying and/or interviewing practitioners
[19, 18] and (ii) performing mining software repository studies [20] [18].
Linares-Vésquez et al. [I9] surveyed 102 open-source ANDROID developers
on their habits when performing testing, focusing on (i) their practices and
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preferences, (ii) automated testing methods employed, and (iii) perception of
code coverage as indicator of test code quality. As a result, they found that de-
velopers rely on usage models (e.g., use cases, user stories) of their applications
when designing test cases and perceive code coverage not necessarily important
for measuring the quality of test cases. Subsequently, the same authors [I1]
investigated current tools and frameworks that support mobile testing prac-
tices, including benefits and trade-offs between different approaches/tools. A
similar work has been done by Choudhary et al. [I6], which benchmarked au-
tomated test input generation tools, discovering that MONKEY, the random
testing tool integrated within ANDROID STUDIO is still among the best ones.

Along the same direction, the work of Kochhar et al. [I8] surveyed 83
ANDROID developers and 27 WINDOWS app developers at MICROSOFT to study
techniques, tools, and types of testing used in the mobile context. At the same
time, they also analyzed 600 ANDROID apps in terms of the extent to which
they are tested, assessing line and block coverage. The results showed that
ANDROID apps are not properly tested (i.e., 86% do not present any test
cases), and this seems to be in line with the perception of developers, who are
not aware of many existing testing tools.

Erfani et al. [I7] interviewed 191 mobile developers asking about current
testing practices. Results showed that there is a lack of robust monitoring,
analysis, and testing tools. The work of Silva et al. [2I] showed similar re-
sults. Indeed, they studied 25 open-source ANDROID apps in terms of test
frameworks adopted, highlighting that mobile apps are not properly tested; a
possible reason behind this result may be related to the lack of effective tools
[21]. A recent study by Cruz et al. [20] investigated working habits and chal-
lenges when testing mobile apps. In particular, they analyzed 1,000 ANDROID
apps, showing that testing technologies (e.g., JUNIT) are absent in the 60% of
the cases; however, when a mobile application is tested, the authors observed
an increment of contributors and commit, moreover they noticed that mobile
apps with tests have got an high number of minor code issues. Finally, the
most recent work was performed by Lin et al. [142]; in particular, they con-
ducted a large-scale analysis, over 12.000 mobile apps, to understand how test
automation works in this context, i.e., tendency to write tests and practice
itself. Moreover, they analyzed how test automation impacted the popularity
and surveyed 148 developers to have feedback about automation test adoption.

With respect to the papers discussed above, our work can be seen as com-
plementary. In the first place, our study is more focused on the analysis of both
the presence and quality of tests of mobile apps rather than the usage of the
testing tool and the perception of developers[T]2]: thus, we analyze the actual
tests written by mobile developers and not their perception with respect to
testing practices. In the second place, we provided a larger ecological validity
to some previous studies which investigated how much mobile apps are tested
[18, 20]: our dataset was indeed composed of over 1,600 mobile applications,
which allowed us to provide more concrete conclusions than previous studies.
Third, our study included a large-scale analysis of the design quality of test
cases and considers both test smells and code quality metrics, which represent
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a key novelty of our work. Finally, when comparing our work with the one by
Kochhar et al. [18], it is important to point out that we analyzed the effec-
tiveness of tests by not only considering traditional coverage indicators, but
also taking into account assertion density, which has been shown to impact
the ability of tests to find defects in production classes [306] [35].

10 Conclusion

In this paper, we conducted a large-scale investigation into the characteristics
of test suites written by developers of mobile applications under four perspec-
tives, namely (1) whether and to what extent these apps are tested and which
kind of tests are developed, (2) what is the design quality of the test suites, in
terms of code metrics and test smells, (3) what is the effectiveness of tests, con-
sidering assertion density and code coverage, and (4) how test-related metrics
are associated to the defect-proneness of production code. The quantitative
insights coming from the analysis of these aspects were then discussed in the
context of a focus group involving 5 mobile testing experts, who commented
the achieved results and provided practical explanations and experience re-
ports useful for understanding the status of testing in mobile as well as the
key limitations that must be addressed.

The main results of the study highlight that 40% of the considered apps
have at least one test suite; developers mostly test source code to exercise its
functionalities, while other types of testing are less widespread. Test smells
represent a key problem for most of the test suites, since some of them ex-
hibit characteristics making them possibly flaky. Their effectiveness is low
when considering all the computed metrics. Finally, the characteristics of test
cases lead to a negative impact on production code and, indeed, most of the
statistically significant test-related factors in our study are correlated to a
higher defect-proneness of the corresponding classes. These findings reflected
the expectations that the involved experts had when thinking of the status
of mobile testing. Furthermore, from the focus group discussion we could de-
lineate a number of education and technical challenges that future research
should address. To sum up, our paper made the following contributions:

1. A large-scale empirical study on the prominence, design quality, effective-
ness, and capabilities of test cases manually written by developers in the
context of mobile applications;

2. Insights coming from a focus group composed of five testing experts that
highlighted critical aspects to further consider that the research on mobile
testing should further consider;

3. An online appendix [25] containing data and scripts used to conduct our
study, and which can be used to further understand our findings and build
upon our work.

Our future research agenda follows the roadmap defined in Section [8.1]and
includes the definition of new test metrics as well as new techniques that can
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automate some of the testing processes of mobile developers. At the same time,
we aim at studying the aspects treated in this paper on an even larger scale,
by considering applications coming from different domains and contexts (e.g.,
closed-source apps), test cases written in other languages (e.g., Kotlin), as well
as datasets containing open-source mobile applications that are also available
on the GOOGLE PLAY STORE—this would increase the generalizability of the
findings reported in our paper when considering datasets collected cross-listed
set of apps across both GOOGLE PLAY and GITHUB. Finally, we also plan
to investigate additional test-related and mobile-specific metrics that can be
correlate with the presence of defects in production code.
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