
1

The Secret Life of Software Vulnerabilities:
A Large-Scale Empirical Study

Emanuele Iannone, Roberta Guadagni, Filomena Ferrucci, Andrea De Lucia, Fabio Palomba

Abstract—Software vulnerabilities are weaknesses in source code that can be potentially exploited to cause loss or harm. While
researchers have been devising a number of methods to deal with vulnerabilities, there is still a noticeable lack of knowledge on their
software engineering life cycle, for example how vulnerabilities are introduced and removed by developers. This information can be
exploited to design more effective methods for vulnerability prevention and detection, as well as to understand the granularity at which
these methods should aim. To investigate the life cycle of known software vulnerabilities, we focus on how, when, and under which
circumstances the contributions to the introduction of vulnerabilities in software projects are made, as well as how long, and how they
are removed. We consider 3,663 vulnerabilities with public patches from the National Vulnerability Database—pertaining to 1,096
open-source software projects on GITHUB—and define an eight-step process involving both automated parts (e.g., using a procedure
based on the SZZ algorithm to find the vulnerability-contributing commits) and manual analyses (e.g., how vulnerabilities were fixed).
The investigated vulnerabilities can be classified in 144 categories, take on average at least 4 contributing commits before being
introduced, and half of them remain unfixed for at least more than one year. Most of the contributions are done by developers with high
workload, often when doing maintenance activities, and removed mostly with the addition of new source code aiming at implementing
further checks on inputs. We conclude by distilling practical implications on how vulnerability detectors should work to assist developers
in timely identifying these issues.

Index Terms—Software Vulnerabilities, Mining Software Repositories, Empirical Software Engineering.

F

1 INTRODUCTION

Software vulnerabilities are flaws in the design, implemen-
tation, or operation management of a software system that
can be exploited to break through security policies [1], pos-
sibly causing loss or harm [2], [3], [4]. The risks associated
with vulnerabilities on software systems are extreme: for
instance, in 2017, the WannaCry Ransomware Attack [5]
exploited a vulnerability to infect more than 200,000 com-
puters across over 150 countries within a day, with total
damages in the range of hundreds of millions USD. Perhaps
more importantly, it is estimated that by 2021 vulnerabilities
will cost businesses and users over six trillion USD [6]
and will affect an even larger variety of software systems,
ranging from public physical tests [7] to data-intensive ap-
plications [8], and more. For these reasons, keeping software
security under control is still one of the main concerns of
developers and organizations [9], [10].

To address this concern, software organizations and
teams are adopting the McGraw’s [11] advice to “build
security in” rather than waiting until vulnerabilities are
discovered in running software [12]. At the same time,
researchers have been proposing novel methods and tools
to facilitate the identification of software vulnerabilities [13],
[14], [15], [16]. Nevertheless, recent empirical studies [17],
[18], [19], [20], [21] provided evidence that developers are
concerned with vulnerabilities and their potential effects,
but such vulnerabilities still often occur in practice.

A possible reason behind the diffuseness of vulnerabil-
ities may be the lack of empirical knowledge of their life

• E. Iannone, R. Guadagni, F. Ferrucci, A. De Lucia, and F. Palomba are
with the Software Engineering (SeSa) Lab of the University of Salerno,
Fisciano, Italy. E-mails. {r.guadagni1}@studenti.unisa.it, {eiannone,
fferrucci,adelucia,fpalomba}@unisa.it

cycle, i.e., when developers introduce vulnerabilities, during
which development activities vulnerabilities are more prone
to be introduced, or how developers remove vulnerabilities
in practice. An improved understanding of these aspects
may inform the software engineering community and tool
vendors on how to better support developers in both the
vulnerability identification and fixing process [22], for in-
stance, by devising novel mechanisms or adapting currently
available detection approaches to identify vulnerabilities
when they are typically introduced. Moreover, the analysis
of the life cycle of vulnerabilities can uncover patterns that
would be helpful for the deployment of best practices [23]
that help improving security processes [24].

To bridge this knowledge gap, this article presents a
large-scale empirical study on the life cycle of software vul-
nerabilities. We mine the National Vulnerability Database
(NVD) [25] (the U.S. government repository of standard
vulnerability management data) to extract a set of vulnera-
bilities for which their fixing commits are public. Overall, we
study 3,663 vulnerabilities of 144 categories across 1,096 dif-
ferent GITHUB projects. We first automatically identify the
corresponding vulnerability-contributing commits (VCCs)—
i.e., the set of commits that contribute to the introduction
of a vulnerability [26]—to investigate (i) how vulnerabilities
are contributed to, (ii) by whom, and (iii) under which
circumstances. Then, we conduct a survival analysis to
evaluate how long they remain in the considered software
systems and verify, adopting an open coding methodology,
how the fixing process takes place.

The key results of our empirical study show that devel-
opers mostly contribute to vulnerabilities while doing main-
tenance activities, such as fixing bugs. Furthermore, vulner-
abilities remain in a project’s codebase for long time—half of



2

them for at least 511 days passing through 9 changes—and
are removed by developers with simple code changes, such
as escaping HTML entities. Our findings provide evidence
that developers, even the most expert ones, do need help
to detect vulnerabilities earlier, for example, through better
tool support. In addition, vulnerability detectors should be
context-dependent and take into account what a developer
is doing when suggesting potentially vulnerable code. To
sum up, the paper provides the following main contribu-
tions:

1) A large-scale empirical investigation on how and under
which circumstances vulnerabilities are contributed to,
how long they survive, and how they are removed on
thousands of projects written in different programming
languages and concerning different application domains;

2) A large curated dataset on software vulnerabilities [27],
along with the whole set of scripts used to perform our
analyses, that can be exploited by other researchers to
build upon our study and further explore the problem of
software vulnerabilities;

3) A research roadmap describing the next steps and chal-
lenges that the software engineering research community
should face to provide better support to practitioners.

Structure of the paper. Section 2 describes the research
questions driving our empirical study and the methodology
to address them. Section 3 presents the results, while Sec-
tion 4 overviews the main implications and lessons learned.
Section 5 discusses the limitations of our paper and how
we mitigated them. Section 6 reports the related literature.
Finally, Section 7 concludes the paper.

2 RESEARCH METHODOLOGY

This section describes the methodology employed to ad-
dress the research goals driving our investigation.

2.1 Research Goals and Questions
The goal of the study was to investigate the life cycle of
software vulnerabilities, with the purpose of assessing when
and how they are introduced and fixed by developers. The
perspective is of researchers and practitioners: the former are
interested in better understanding the phenomenon of soft-
ware vulnerabilities and explore the characteristics behind
vulnerability-contributing and fixing commits; the latter are
interested in acquiring information that may be useful to
inform and improve their security process.

Our study was structured around four main research
questions (RQs). We started analyzing how vulnerabilities
are contributed to, particularly to understand whether the
contribution takes place with the creation of a new file or
during maintenance and evolution activities performed on
existing files. Such an analysis provide a general overview
on the nature of vulnerability-contributing commits, which
could be valuable for vulnerability detectors designers to
comprehend the properties that characterize VCCs; for ex-
ample, should vulnerabilities be mainly contributed when
the affected file is created, an approach pinpointing po-
tential vulnerabilities when a new file is introduced in the

repository would be worthwhile [28], [29]. This reasoning
led to our RQ1:

RQ1. How contributions to vulnerabilities are made into the
source code?

Second, we studied under which circumstances vulner-
abilities are more likely to be introduced by developers. We
focused on three aspects: (1) commit goal, i.e., the intended
action that a developer was performing when contributing
to vulnerabilities, e.g., the implementation of new features
or a refactoring activity; (2) project status, i.e., the proximity
of a VCC to new releases and to the project’s startup; and
(3) developer status, i.e., considering the authors’ experiences
and workloads when they contributed to the introduction
of a vulnerability. These three aspects are key to describe
the context and the situations in which developers are more
prone to introduce vulnerabilities, two pieces of informa-
tion that may be exploited by vulnerability detectors and
refactoring recommenders to output more precise sugges-
tions [30], [31], but also to provide developers with details
that can help to understand the reasons leading to a vulner-
ability introduction [32], [33]. Hence, we asked:

RQ2. What is the context in which contributions to vulnera-
bilities are made into the source code?

After describing the circumstances leading to the intro-
duction of vulnerabilities, we moved toward the under-
standing of their longevity by means of a survival analysis
method [34]. This helped to describe the lifespan of vulner-
abilities: on the one hand, this is useful to understand for
how long such vulnerabilities can be exploited by attackers,
thus challenging previous findings in the field [23]; on the
other hand, we can gather insights on the reaction time
of developers, which may suggest the need for additional
instruments to alert practitioners of the presence of unfixed
vulnerabilities [35], [36]. Thus, we asked:

RQ3. What is the survivability of vulnerabilities?

Finally, we investigated the vulnerability fixing pro-
cess. Such an analysis can help researchers understanding
how to better support developers with (semi-)automated
techniques to remove vulnerabilities or to mitigate their
effect [37], [38], [39], e.g., by defining a novel catalog of
vulnerability-specific refactoring operations. We asked:

RQ4. How are known vulnerabilities removed from the source
code?

The following sections describe the context of the inves-
tigation and how we addressed those research questions.

2.2 Context Selection
The context of the study was composed of vulnerabilities
and change history of the affected software projects.
Vulnerabilities. We analyzed vulnerabilities from the Na-
tional Vulnerability Database (NVD) [25], which was created



3

TABLE 1: Distribution of CVEs with respect to the 2020 CWE Top 10 Most Dangerous Software Weaknesses.

Name Description Total
CWE-79 – Cross-site Scripting The software does not properly neutralize user-controllable input

before it is placed on a web page served to other users.
12.45%

CWE-787 – Out-of-bounds Write The software writes data beyond the bounds of a buffer. 2.87%
CWE-20 – Improper Input Validation The software does not properly check whether the input can be

processed safely and correctly.
7.45%

CWE-125 – Out-of-bounds Read The software reads data beyond the bounds of a buffer. 7.54%
CWE-119 – Improper Restriction of Opera-
tions within the Bounds of a Memory Buffer

The software perform operations (such as reads or writes) beyond
the bounds of a buffer.

8.98%

CWE-89 – SQL Injection The software does not properly neutralize special elements when
building an SQL command using externally-influenced input.

2.84%

CWE-200 – Exposure of Sensitive Informa-
tion to an Unauthorized Actor

The software exposes sensitive information to an actor that is not
explicitly authorized to have access to that information.

4.83%

CWE-416 – Use After Free The software references memory after it has been freed. 2.79%
CWE-352 – Cross-Site Request Forgery The web application does not properly verify whether a valid

request was intentionally provided by the requesting user.
1.56%

CWE-78 – OS Command Injection The software does not properly neutralize special elements when
building an OS command using externally-influenced input.

0.96%

52.27%

by the U.S. NIST Computer Security Division [40] to collect
and provide public information about known vulnerabilities
affecting software systems and their causes. We relied on
NVD for three main reasons:

1) it includes a comprehensive set of publicly known vul-
nerabilities, each described through CVE (Common Vul-
nerabilities and Exposure) [41] records, enriched with
additional information, such as external references, the
severity (Common Vulnerability Scoring System - CVSS),
the related weakness type (Common Weak Enumera-
tion - CWE) and the known affected software configu-
rations (Common Platform Enumerations - CPEs);

2) it aggregates data coming from multiple sources;

3) it has been exploited by various research communities in
the past [42], [43], [44], [45].

We selected the vulnerabilities having both the fixing
commit (i.e., the one that officially patched a publicly dis-
closed vulnerability) and the project’s GITHUB repository
available—otherwise, we could not address our research
questions, as explained later in this section. As a result,
the initial set of 142,546 CVEs was reduced to 3,663 CVEs,
belonging to 144 distinct weakness types (CWEs). Further
details on how they were collected are described in Sec-
tion 2.3. Table 1 gives an overview on the distribution of the
CVEs grouped by their CWE appearing in the 2020 CWE Top
10 Most Dangerous Software Weaknesses [46] (henceforth, CWE
Top 10). This widely-known list describes the most common
and impactful security issues affecting software systems. We
relied on it to enrich the analyses linked to our RQs and so
providing additional insights on peculiar characteristics of
specific types of vulnerabilities.

Systems Histories. The considered vulnerabilities pertain
to 1,096 GITHUB projects. These projects have an average
of 10,214 commits, 240 contributors (i.e., developers who
contributed with at least one commit) and 3.34 CVEs. The
full list of projects, along with their main characteristics, is
reported in our online appendix [27].

2.3 Data Extraction

Figure 1 overviews our data extraction process, which we
describe in the following.

Mining NVD. We exploited CVE-SEARCH [47], an open-
source tool that imports the entire set of CVE Records
(a.k.a., CVEs) from the NVD repository into a MONGODB
database for easier search and processing. We obtained the
full JSON dump of the extracted records on the date of
1st November 2020, which comprised a total of 142,546
CVEs. We filtered out those records that did not report any
GITHUB link to a commit—in these cases we could not iden-
tify the affected project nor any vulnerability-contributing
commit. We also discarded the CVEs that reported commits
to different GITHUB projects, since we could not know
where the vulnerability was effectively residing. These two
steps caused the removal of 137,470 (96.44%) and 74 (0.05%)
CVEs, respectively. Moreover, we ensured that the fixes
were not merging commits, which, by their nature, do not
apply any modification in the project history and merely
incorporate the changes (i.e., a set of commits) from a branch
into another [48]. We could not consider them as actual
patches since we are interested in the moments when fixes
are added into the history rather than the moment in which
they are sent into the main branch (Step 1 in Figure 1). This
filter removed an additional set of 814 (0.57%) CVEs whose
referenced commits were all flagged as merging commits.

Mining GITHUB repositories. We mined the GITHUB
repositories of the projects in which the selected vulnerabil-
ities appeared so that we could access their history informa-
tion; in this case, we had to discard the vulnerabilities whose
projects’ repository were unavailable (e.g., the access was
restricted to authorized users only), this caused the removal
of 525 (0.37%) CVEs. For this reason, we ended up with 3,663
CVEs pertaining to 1,096 projects (see Step 2 in Figure 1).

Identification of Vulnerability-Contributing Commits. For
each vulnerability, we extracted the set of VCCs by fol-
lowing the principles of the SZZ algorithm [49], which
fetches the commits that last changed the deleted lines
in a given bug-fixing commit. Since traditional bug fixes
follow different mechanisms from the ones adopted for



4

Fig. 1: Process for extracting the data needed to answer our research questions.

software vulnerabilities due to their nature, we opted for
defining our data extraction procedure to mine the VCCs to
improve the performance of basic SZZ (Step 3 in Figure 1).
Specifically, for each file A in the set of files modified within
a vulnerability-fixing commit f , the algorithm (1) obtains
the git-diff with respect to the previous commit, (2)
retrieves the list of modified—deleted or added—lines in
A, (3) blames all the deleted lines in A using git-blame
command to obtain the commits where those lines were
changed last, (4) blames the contextual lines (up to three
lines before and after) of continuous blocks of changes
made only of added lines. On the one hand, blaming the
deleted lines allows fetching those commits that are likely
the ones that added the flawed lines—so, contributing to
the vulnerability; on the other hand, continuous blocks of
new lines may represent the addition of checks (e.g., if or
try-catch constructs) whose absence enabled the vulner-
ability, and so the blames of the contextual lines retrieves the
commits that added those code snippets that lacked proper
controls mechanisms. When running the algorithm, we care-
fully avoided blaming empty and comment lines [50], as
well as irrelevant non-source code files (e.g., documentation,
build, blob, and test files), since their changes are unlikely
to contribute to a vulnerability—before excluding the build
files, we made sure not to have any build-related vulner-
abilities in our dataset. In this respect, we adopted some
filters based on the use of regular expressions onto the entire
file path. For instance, we did not consider files having
‘test’ suffix placed in a directory named test. In addition,
we did not consider merging VCCs, as they do not report
any actual modifications (thus, applying the same rationale
used to discard invalid fixing commits from NVD). What is
more, we avoided blaming the contextual lines of change
blocks made only of new functions or methods, as they
could be placed anywhere in the source code. Specifically,
we obtained the list of functions and methods added within
the commit by parsing the diff content via LIZARD,1 a library
that offers parsing capabilities of source code files written in
many different programming languages, such as C, PHP,
RUBY, SCALA, JAVASCRIPT. This heuristic was not applied
to files whose language was not supported by LIZARD.
Whenever a vulnerability required multiple commits to be
patched, the full set of VCCs was determined by the union
of the results returned by our extraction procedure on each
fixing commit. It is worth noting that git-blame is able to
automatically follow the origin of the blamed lines across
file renames—i.e., when the file changes its path, but its
content does not. The limitations of this mechanism are

1https://pypi.org/project/lizard/

described in Section 5. The identification of VCCs relied on
the PYDRILLER repository mining library [51], which offers
an implementation of standard SZZ algorithm, on which
we added our heuristics. We implement the algorithm as
a set of PYTHON scripts, that we released in our online
appendix [27]. Overall, the VCCs extraction procedure was
able to identify a total of distinct 12,256 VCCs.

2.4 Data Validation
Most of the analyses needed to address our research ques-
tions depend on the precision of the VCCs identification
mechanism. Recent work has criticized the capabilities of
SZZ [52]; for this reason, we manually validated the ef-
fectiveness of our VCCs mining procedure on our dataset
before proceeding (Step 4 in Figure 1), as it is based on the
same assumptions used by SZZ about the git-blame ca-
pabilities to fetch the contributing commits. Since the VCCs
extraction procedure mapped a set of VCCs to each CVE
in our input dataset, the complete output of the algorithm
can be described as a list of pairs (v, c), where v represents
a CVE, and c one of the VCCs extracted from v. This list
represents the population to be evaluated, made of a total
of 17,239 pairs. Two of the authors manually labeled the
validity of the pairs, i.e., given a pair (v, c), the inspectors
had to understand whether the changes applied by the VCC
v actually contributed to the introduction of the vulnerabil-
ity associated with the CVE c. In other words, a positive
classification means that, according to the inspectors’ views,
the algorithm was able to mine a real contributing commit
of that vulnerability. To this end, the two inspectors were
given access to both the GITHUB link to the VCC, and
the NVD link to the CVE description—in which the fixing
commit(s) could be found as well. In this respect, it is
worth remarking that the inspectors did not limit their
analyses to the given VCCs, but also navigated back from
them intending to verify that these commits were not false
positives—this is an operation recommended by previous
works that validated the performance of SZZ [50]. The entire
process was conducted on a statistically significant sample
of 376 pairs (confidence level = 95%, margin of error = 5%).
Before starting, the two authors held an initial round of
alignment on a separate set of 126 pairs (equal to 1/3 of
the sample size), so that the two could similarly label the
pairs. After this phase, the two inspectors compared their
assessments, finding an agreement in 119 cases, representing
the 94.44% of the total. To account for the possibility of
agreements made by chance, we also computed Cohen’s
κ statistic [53], which measures the inter-rater agreement of
the inspection task. We observed κ = 0.817 (p = 0.05),
indicating a strong agreement [54], allowing us to equally

https://pypi.org/project/lizard/


5

distribute the sampled 376 pairs between the two inspectors.

The precision scored by our VCCs mining algorithm
was 68% (namely, 254 correct mappings). The inspectors ob-
served that most of the failures were not attributable to the
algorithm itself but to how the fixing commits were made
by developers. Indeed, they discovered many cases in which
fixing commits were made of unrelated code changes [55],
i.e., mixing vulnerability fixing changes with other activ-
ities, such as implementing new features or doing code
refactoring. Such commits are known as tangled changes,
characterized by a large number of touched files—ranging
from dozens to hundreds. For example, the vulnerability
described by CVE-2015-2861 and affecting project VESTA
CONTROL PANEL, is patched by the commit 527e4a9a,2

which both solves a CSRF vulnerability—by implementing
a token validation mechanism—and update the graphical
user interface, as stated by the commit message ‘UI update’.
Such tangled commits caused our VCCs mining procedure
to blame a large set of contributing commits, likely un-
related with the actual patch applied, so hindering the
precision of our approach.

In any case, our validation and the above considerations
report that the quality of the exploited dataset is still good
enough to allow a valid reporting of the life cycle of software
vulnerabilities.

2.5 RQ1. How - Research Methodology
To address RQ1, we first computed the number of VCCs re-
quired to introduce each vulnerability, presenting the results
via descriptive statistics (Step 5 in Figure 1). We also investi-
gated the typical duration of the “insertion window”—i.e.,
the time ranging from the first and last VCCs (henceforth,
the turning point)—for those vulnerabilities requiring more
than one commit to be introduced in the source code. In this
way, we could provide a high-level overview on the basic
characteristics of VCCs.

Then, for each file affected by a vulnerability, we com-
puted the number of commits between their creation and the
first VCC, as well as between the creation and the turning
point. This lets us verify whether certain files contributed to
the activation of a vulnerability since their introduction or
only as a side effect of multiple changes during maintenance
and evolution. In addition, we analyzed the common size of
VCCs, both in terms of touched files and code churn.

We also made these two-perspective analyses from the
point of view of the CWE Top 10 in order to identify the
existence of particular vulnerability types that exhibit trends
diverging from the general one. To provide high-focused
discussions, we only report and discuss the results coming
from the CWE Top 10. Our online appendix [27] reports the
raw results for the entire CWE Top 25.

2.6 RQ2. Context - Research Methodology
To study the context in which developers contribute to the
introduction of vulnerabilities, we automatically classified
each VCC to one or more of the categories described by Tu-
fano et al. [22] (see Table 2). These categories are divided into

2https://github.com/serghey-rodin/vesta/commit/
527e4a9a62204be9b34c1338fadfe959b0fd3974

TABLE 2: Tags assigned to VCCs to answer RQ2.

Tag Description Values
COMMIT GOAL
New feature The VCC aimed at implement-

ing a new feature in the system.
[true, false]

Bug Fixing The VCC aimed at fixing a bug. [true, false]
Enhancement The VCC aimed at enhancing

the system.
[true, false]

Refactoring The VCC aimed at performing
refactoring operations.

[true, false]

PROJECT STATUS
Working on Release The VCC was performed

[value] of issuing a minor or
major release.

[the same day, the day before,
within the week, within the
month, over one month before]

Project Startup The VCC was performed
[value] the starting of the
project.

[the same week of, the week
after, the month after, over one
year after]

DEVELOPER STATUS
Commit Workload The developer had a [value]

workload, in terms of commits,
when the VCC was performed.

[low, medium, high]

Churn Workload The developer had a [value]
workload, in terms of code
churn, when the VCC was per-
formed.

[low, medium, high]

Tenure The developer was a [value]
when the VCC was performed.

[newcomer, medium, expert]

three groups: (1) the commit goal, i.e., the task the developer
was performing when contributing to a vulnerability; (2)
the project status, i.e., the development phase of the project
when the contribution to a vulnerability was made with
respect to releases and the repository creation date; (3) the
developer status, i.e., the characteristics of the developer who
contributed to a vulnerability. The classification of the VCCs
allowed us to analyze the typical circumstances leading to
the introduction of vulnerabilities. When performing this
analysis, we had to discard 403 VCCs (hence considering
11,853 out of the total 12,256) for two reasons. On the
one hand, not all repositories make use of releases (i.e.,
git-tag mechanism) and, therefore, we could not assign
the project status tags to commits belonging to those projects.
On the other hand, we could not consider the cases where a
contributing commit was amended or rebased since these
operations change the original commit date, leading to
negative distances in days. In our online appendix [27] we
explicitly marked those commits for the sake of replicability.
We point out that the removal of these 403 VCCs led
to the removal of 607 vulnerabilities (as the set of their
contributing commits overlap). In addition, we provided a
closer inspection on the CWE Top 5 due to space limitations.
The remainder of the CWEs is reported in our online ap-
pendix [27]. The automatic classification approach works
as follows (see Step 6 of Figure 1):

Commit Goal. We relied on a previously proposed approach
that analyzes commit messages to check for the presence
of keywords indicating specific development activities [56],
[57]. For instance, a commit was classified as bug fixing if
the corresponding message contained keywords like ‘bug’,
‘defect’, ‘fix’, etc. With this approach, it is possible to have
commits belonging to multiple goals—the complete list of
keywords used is available in our appendix [27].

Project Status. For each VCC, we computed the number
of days separating it from the date of the nearest minor
or major release and assigned the proper working on release
category. We followed a similar procedure for project startup
category, computing the number of days between the first
commit onto the repository and the VCC [57].

Developer status. We considered two different perspectives.

https://github.com/serghey-rodin/vesta/commit/527e4a9a62204be9b34c1338fadfe959b0fd3974
https://github.com/serghey-rodin/vesta/commit/527e4a9a62204be9b34c1338fadfe959b0fd3974


6

First, we computed the workload [22] of the developers
who made the VCCs. To compute such value, we chose
two different proxy metrics: (1) number of commits, rep-
resenting the number of different contributions made by
developers, and (2) code churn, representing the size of
the code changes. In other words, the higher the number
of commits—or code churn analogously—the higher the
workload the developer had on a given time window.
Specifically, given a VCC performed by a developer c at date
d, we computed the workloads distributions—both in terms
of commits and code churn—for all of the developers of the
project within the 30 days before the date d. Then, we apply
a min-max scaling [58] on the two distributions to scale their
ranges in [0, 1]. At this point, the commit workload of c was
assigned ‘low’ if her number of commits was strictly lower
than 0.25, ‘medium’ if between 0.25 and 0.75, and ‘high’
when higher than 0.75. An analogous mapping was applied
for the code churn workload.

Secondly, we computed the tenure of the developers with
respect to the project [59], [60], which is an experience metric
that counts the number of months from the developer’s first
contribution to the project to the moment in which she made
a given VCC. Similarly to the two workload metrics, we scale
the distribution of all developers’ tenures, and remapped
the values ‘newcomer’, ‘medium’, ‘expert’ by using the
same splitting criterion. We also correlated the experience
of developers to the CVSS score [61]—i.e., the de-facto
standard to measure the overall severity of a vulnerability—
of the CVEs to which they had contributed, by exploiting the
Spearman’s rank correlation test [62]. Such a test can detect
the presence of correlations between two ordinal variables
without making any assumption on their distribution.

2.7 RQ3. Survivability - Research Methodology

By the use of contributing and fixing commits, we could
analyze the survivability of each vulnerability. In the case of
vulnerabilities with more than one VCC, we considered the
turning point commit (i.e., the last VCC) for this analysis, as
it marks the moment in which a vulnerability starts living;
while in the case of multiple fixing commits, we considered
the last one, as it is the moment in which a vulnerability
ceased to exist. Given a vulnerability, we defined the time in-
terval between its turning point and its last fixing commit as
the vulnerable period. We performed a survival analysis [34],
employing a statistical method modeling the time duration
of a subject until one or more events of interest happen. The
survival function S(t) = Pπ(T > t) indicates the proba-
bility that a vulnerability (i.e., our subject) survives longer
than a time t. The survival function does not increase as t
increases; also, it is assumed that S(0) = 1 at the beginning
of the observation period, and, for time t → ∞, S(t) → 0.
The survival analysis aims at estimating a survival function
from data and assessing the relationship of explanatory
variables to survival time. In the context of our study,
the subject population consists of vulnerability instances
while the event of interest is represented by their last fixing
commit (i.e., their ‘death’). Thus, the lifetime (or time-to-death)
of a vulnerability is the duration of the vulnerable period,
measured by both (1) the number of elapsed days and (2)
the number of commits touching the files involved in the

fixing commits (Step 7 in Figure 1). We considered only the
changes applied onto the files responsible for the vulnera-
bility as we were interested in the number of opportunities
the developers had to identify and fix the security flaw but
failed. If we had considered the total number of commits
we would risk making wrong conclusions for repositories
with a high-frequency contribution rate, such as LINUX.
Ultimately, both these metrics complement each other: for
instance, two changes may occur in a short interval of days,
but with a high number of changes in-between, so analyzing
only one of the two would have been limiting.

We investigated survivability from two different per-
spectives. On the one hand, we analyzed the general sur-
vivability of all of the vulnerabilities against the survival
distributions provided by the vulnerabilities grouped by the
CWE Top 10 (the comparison with the entire CWE Top 25 is
available in our online appendix [27]). On the other hand,
we compared the general survivability with the trends of the
vulnerabilities grouped by the main programming language
of the affected repository. To this end, we relied on the
GITHUB API for detecting the predominant language, so
there could be cases in which the projects have no specific
language (i.e., N/A), which we still included in this analysis.
The analyses were conducted exploiting the Kaplan-Meier
estimator [63], a non-parametric survival analysis method,
suitable to our survival periods as we could not assume
any particular distribution. We relied on the implementation
provided by LIFELINES3 package for PYTHON.

2.8 RQ4. Removal - Research Methodology

To address RQ4 (Step 8 in Figure 1), we conducted an open
coding process [64] over the pairs (f, v), where f represents
one of the fixing commits that patched the vulnerability
described by the CVE v. This process consisted in assigning
a label (i.e., the code) to each pair to summarize the actions
the developer undertook to resolve the vulnerability. A
complete inspection of all the population of 3,983 pairs
would have been impractical, so we decided to carry out
the coding process on a statistically significant sample made
of 351 pairs (confidence level = 95%, margin of error = 5%).
These pairs were equally distributed between two authors
of the paper who independently and manually categorized
the kinds of actions performed by developers (e.g., the
addition of a precondition check) by relying (i) on the
commit message, (ii) on the CVE description, and (iii) on
the diff content. Afterward, the authors opened a discussion
aimed at clarifying and standardizing the analysis process,
which led to the joint re-analysis of all classifications made
so far. The outcome of this process consisted of the definition
of a taxonomy of methods explaining how known vulner-
abilities are removed from the code. Finally, we zoomed
into each fixing categories, by reporting the descriptive
statistics for the main characteristics of the sample fixing
commits, such as the average number of touched files.
We also connected this taxonomy to both the CWE Top 10
and the projects’ language, to find relationships describing
strong connections between fixing methods and weakness
types/languages.

3https://pypi.org/project/lifelines/

https://pypi.org/project/lifelines/


7

TABLE 3: Summary of descriptive statistics of both the number of VCCs (N = 12, 256) of each vulnerability (left), and the
number of files touched by each VCC (right). All of the vulnerabilities are also grouped by the CWEs belonging to the Top
10 Most Dangerous Software Weaknesses.

CVEs VCCs per CVE VCCs Files per VCC
Mean Min Med Max Mean Min Med Max

Overall 3,663 4.706 1 2.0 205 12,256 1.426 1 1.0 819
CWE-79 456 5.094 1 2.0 134 1,767 1.452 1 1.0 26
CWE-787 105 5.114 1 2.0 200 489 1.337 1 1.0 34
CWE-20 273 4.103 1 2.0 60 936 1.439 1 1.0 33
CWE-125 276 3.362 1 2.0 20 675 1.153 1 1.0 11
CWE-119 329 3.146 1 2.0 22 823 1.140 1 1.0 19
CWE-89 104 18.356 1 4.0 205 991 3.054 1 1.0 819
CWE-200 177 3.701 1 2.0 59 584 1.233 1 1.0 16
CWE-416 102 2.677 1 1.5 19 255 1.177 1 1.0 22
CWE-352 57 9.088 1 3.0 100 498 1.456 1 1.0 25
CWE-78 35 5.257 1 3.0 50 181 1.088 1 1.0 4

3 ANALYSIS OF THE RESULTS

This section presents the results of our research questions.

3.1 RQ1: How contributions to vulnerabilities are made
into the source code?

The vulnerabilities’ perspective. Among all 3,663 vul-
nerabilities, our VCCs extraction procedure found a total
of 12,256 VCCs among the 1,096 projects. Analyzing the
number of contributing commits needed to fully introduce a
vulnerability, we observed that the average number of VCCs
per vulnerability was 4.71 (median = 2). In particular, 2,232
out of 3,663 vulnerabilities (corresponding to the 60.93%)
required more than VCCs to be introduced. This first result
lets us see that, in the majority of the cases, software
vulnerabilities are not added within a single commit, but
may require a variable number of evolutionary activities.
Zooming into these 2,232 vulnerabilities, we discovered that
the size of the “insertion window” ranges from 0 to 8,566
days (i.e., over 20 years), with an average of 1,520 days
(about 4 years). This means that the first contribution to a
vulnerability may happen way before the final contribution
that enabled it. In summary, vulnerabilities are not generally
introduced because of a single mistake of a developer, but
rather, due to an accumulation of errors that introduced
weak code elements—which, together, made up the vulner-
ability in the form with which it was discovered and fixed.

There is no shortage of extreme outliers: the vulnerability
with the largest number of VCCs is an SQL Injection (CWE-
89) in the project EXPONENT CMS (CVE-2016-8897),4 reach-
ing the value of 205. By inspecting its only fixing commit,
we found that the amount of both added and deleted lines
was very high (over 26,800,000 and 52,000, respectively),
spanning across over 40 different files. Indeed, its commit
message states ‘iniitial effort to greatly enhance system secu-
rity (xss, sql inject, file exploit, rce, etc...)’, clearly indicating
its goal to reimplement the security checks in many different
files. This may explain why our algorithm was able to dis-
cover over 200 contributing commits. Going more in-depth,
the CVE associated with this vulnerability mainly refers to

4https://nvd.nist.gov/vuln/detail/CVE-2016-8897

the file helpController.php, but actually, the same type
of defect was found to be spread across multiple source files
(e.g., expSettings.php, donation.php), which did not
properly manage the user-supplied data for the execution
of SQL queries. What is more, this fix patches other flaws
related to improper input validations, such as XSS vulner-
abilities, outside the scope of CVE-2016-8897. By inspecting
its VCCs, we can see that they consisted of additions of
new SQL queries not carefully protected against possible
injections. This large number of weak queries suggests a
lack of awareness by the contributors of EXPONENTCMS
about the problem of SQL injection.

Table 3 shows on its left side the main descriptive
statistics on the number of contributing commits needed
to introduce each vulnerability. The table also focuses on
the vulnerabilities belonging to the CWE Top 10. In this
respect, CWE-89 (‘SQL Injection’) is confirmed to be the
vulnerability type that generally requires a large number
of VCCs to be fully introduced. This result is somehow
unexpected. Although SQL injection is one of the most
studied security issues [65], [66], it is often neglected by
developers [67], who are very likely to add many instances
of SQL injections across different evolutionary activities,
as shown by CVE-2016-8897. Nonetheless, as soon as the
problem is discovered, patching the weak queries happens
to be an effort that can be done within the context of a single,
despite large, change. The whole story is quite similar
for CWE-352 (‘Cross-Site Request Forgery’), likely because
CSRF vulnerabilities are caused by the improper or the lack
of checks to establish whether HTTP requests—related to
sensitive actions such as a money transfer transaction—are
sent intentionally or not. Hence, it is quite reasonable that
fixes of CSRF may touch many files, and so increasing the
number of discovered VCCs.

The files’ perspective. We identified a total of 7,318 files
changed within the 12,256 VCCs. Most of the times, vulner-
abilities are (partially) introduced in commits where devel-
opers apply changes on a few files—indeed, on average, the
number of files modified per VCC is 1.43 (median = 1), while
in 62 cases (0.51%) the VCCs modified more than 10 files.
This is somehow in contrast with the findings of Hindle et
al. [68], who reported that commits involving more than
10 files are more prone to introduce defects. Conversely,

https://nvd.nist.gov/vuln/detail/CVE-2016-8897


8

our findings corroborate the hypothesis that vulnerabilities
are different from other types of software defects, as also
pointed out by Morrison et al. [24]. In particular, VCCs tend
to add new lines rather than delete existing ones. Indeed, the
median numbers of added and deleted lines were 110 and
26, respectively. This result indicates that the contributions
to a vulnerability seem to be caused by the insertion of
new code rather than the removal of existing code, which is
reasonable considering the nature of implementation-level
vulnerabilities—i.e., the ones considered in this study—
occur when new and flawed code is added.

Table 3 shows on its right side the main descrip-
tive statistics on the number of files touched by each
vulnerability-contributing commit. Similar to what we have
seen with the vulnerabilities’ perspective, the VCCs of
type CWE-89 are further confirmed to be the ones with
the largest number of outliers. For example, the commit
6e1f4e2b of GENIXCMS,5 which contributed to CVE-2016-
10096, touched 819 different files (2,056 if we consider the
ones we discarded from the study). Interestingly enough,
despite its large size, this commit only contributed to the
introduction of CVE-2016-10096, without affecting any other
vulnerability. By analyzing the git-diff we can see that
most of the new files are actually open-source libraries
included within the source code. This is confirmed by the
commit message, stating ‘Update Summernote, Jquery-UI,
Bootstrap, Vendor Library via Composer. Add new Vendor’.
However, the commit was not restricted to updating li-
braries, but also to other different types of changes, explain-
ing why only a single vulnerability was introduced.

If we take into account the moment in which the files
were added the first time in the project, we see that on a
median the number of previous changes a file before being
involved in the first VCCs is 0, raising to 29 if we consider
the previous changes before the turning point commit. In-
deed, 3,506 out 7,318 files (47.91%) turned out to be created
within a VCC, of which in 456 of the cases (13.01%) that VCC
is the only contribution that fully introduced the related
vulnerability. All of this has to important implications: (i)
half of the involved files are introduced already flawed,
and (ii) in a non-negligible number of cases the vulnera-
bilities are caused by the addition of a flawed file. On the
other side of the spectrum, we found files that underwent
substantial modifications before they became part of the
vulnerability. Specifically, a set of 58 out of 7,318 files (0.79%)
were changed in more than 500 commits before they started
becoming vulnerable. This happened, for example, in TO-
TAL.JS framework where the file index.js—a very large
file containing the core login of the entire framework—was
involved in a VCC of CVE-2019-8903 after 1947 commits
since its creation. The issue was caused by an improper
definition of a regular expression contained in REG_TRAVEL
global variable intended to prevent path traversal attacks.

5https://github.com/semplon/GeniXCMS/commit/6e1f4e2b

Main findings for RQ1

On average, 4.71 VCCs were made to fully introduce
a vulnerability. In most cases (60.93%), more than one
VCC was made, spanning over about 4 years on aver-
age. SQL Injection was the vulnerability type that re-
quired the largest number of VCCs (18.36). Almost half
of the files involved in the VCCs considered (47.91%)
were created in the context of those commits, supported
by the fact that, on a median, a VCC adds 110 lines and
deletes 26 existing ones. However, VCCs seem not to
touch many files (1.43 on average).

3.2 RQ2: What is the context in which contributions to
vulnerabilities are made into the source code?

Table 4 reports the frequency distribution of all 11,853 VCCs
with respect to the categories defined by Tufano et al. [22],
grouped by the CWE Top 5 (the full results are available in
our online appendix [27]). For this research question, we had
to discard 607 CVEs—as explained in Section 2.6—resulting
in considering 3,056 vulnerabilities.

Commit Goal. Out of the considered 3,056 vulnerabilities,
2,648 of which received at least one commit goal tag among
the respective VCCs; as a consequence, the remaining 408
did not receive any commit goal. The missing categorization
was either due to (i) empty commit messages (e.g., in the
case of the commit 3ed852ee contributing to CVE-2019-
15141) or (ii) no matching keywords (e.g., in the case of the
commit c2348ef6 contributing to CVE-2013-2091 where
the message was ‘Uniformize field country id country code
country’ ). At least half of the vulnerabilities match with 2
different categories, but we also experienced 569 vulnera-
bilities that matched all four categories, such as CVE-2017-
17897, where two of its six VCCs state: (1) ‘New: Super
clean of permissions checks’, and (2) ‘Fix option STOCK -
SUPPORTS SERVICES’. As reported in Table 4, when con-
sidering all vulnerabilities we see a quasi-uniform distribu-
tion among the four commit goals (with a slightly greater
value for the bug fixing goal), indicating that a commit
may contribute to a vulnerability during any development
or maintenance activity. Specifically, the three maintenance
goals (i.e., bug fixing, enhancement and refactoring) together
form the great majority of the total (69.50%), in line with
previous findings achieved when understanding how main-
tainability issues are introduced in open-source projects [22],
[57], especially when they impact on several code entities
and/or lines of code. More surprisingly, refactoring oper-
ations constitute the 19% of the total of VCCs, meaning
that developers may fall into errors and introduce security-
related problems while trying to improve the source code
quality. While this may indicate that the side effect of
refactoring might also include security issues [69] (besides
maintainability problems [70]), we could not determine any
cause-effect relations as the opposite ratio shows that out
of all the refactoring commits mined, only the 0.07% were
vulnerability-contributing commits. This is something that
would deserve further investigation. From the point of
view of the CWEs, the commit goal distributions follow the
general trend, with only a notable difference for CWE-787

https://github.com/semplon/GeniXCMS/commit/6e1f4e2b


9

TABLE 4: Percentage of VCCs (N = 11, 853) having the tags produced for answering RQ2. All of the VCCs are also
grouped by the CWEs belonging to the Top 5 Most Dangerous Software Weaknesses.

Tag Value Overall CWE-79 CWE-787 CWE-20 CWE-125 CWE-119
New Feature 30.50% 27.62% 18.97% 29.78% 28.57% 32.23%
Bug Fixing 37.06% 30.24% 52.71% 43.04% 32.94% 35.12%
Enhancement 28.14% 22.01% 26.85% 31.34% 23.70% 27.69%

Commit
Goal

Refactoring 19.23% 15.65% 14.29% 18.08% 17.48% 19.28%
Same day 7.96% 14.90% 3.45% 10.79% 3.36% 4.68%
One day before 2.47% 3.30% 0.99% 2.47% 2.18% 1.24%
Within week 10.36% 10.72% 6.40% 13.00% 6.39% 7.71%
Within month 19.53% 15.59% 21.92% 19.51% 13.45% 19.83%

Working on

Release

Over 1M before 59.68% 55.49% 67.24% 54.23% 74.62% 66.53%
Same week 3.17% 2.99% 1.97% 6.89% 1.85% 3.99%
Week after 1.19% 1.75% 0.25% 2.99% 1.18% 0.55%
Month after 11.65% 10.41% 4.68% 18.86% 9.41% 6.34%

Project

Startup
Over 1Y after 83.99% 84.85% 93.1% 71.26% 87.56% 89.12%
High 59.11% 67.21% 50.99% 58.52% 66.05% 49.59%
Medium 10.79% 13.59% 2.96% 10.27% 9.92% 13.22%

Commit
Workload Low 30.10% 19.20% 46.06% 31.21% 24.03% 37.19%

High 57.13% 65.46% 29.56% 58.00% 62.02% 49.04%
Medium 7.41% 9.35% 7.39% 5.85% 10.25% 7.99%

Churn
Workload Low 35.46% 25.19% 63.05% 36.15% 27.73% 42.98%

Expert 40.04% 42.39% 36.21% 39.40% 40.17% 35.26%
Medium 16.72% 18.39% 19.21% 19.77% 19.83% 18.46%Tenure
Newcomer 43.24% 39.21% 44.58% 40.83% 40.00% 46.28%

(‘Out-of-bounds Write’), where more than half VCCs were
done within the context of a bug fixing activity.

Project Status. Besides the commit goal tags, we discovered
that most of the contributions to vulnerabilities happen
quite distant from a release, with 59.68% of the cases is-
sued more than 30 days before. This might indicate that
their introduction is not strictly connected to the stress
that developers may feel close to deadlines—as opposed
to what happens with code smells [22]. Additionally, the
vast majority of the VCCs (83.99%) are made after more
than one year since the project startup, while only 11.65%
within the first month of a new project. This result implies
that (part of) vulnerabilities tend not to appear in newly-
born projects; at the same time, they become more common
when the project grows, possibly because of software aging
[71]—this also explains why vulnerabilities typically affect
projects after some time from their startup. Here too, CWE-
787 diverges from the general trend, where even more
vulnerabilities start appearing (i) after the first year of the
project, and (ii) at least one month before a release. In
addition, CWE-125 (‘Out-of-bounds Read’) increases these
gaps even more. Both of the weaknesses types are related
to memory management issues, predominantly linked to
C/C++ programming language.

Developer status. Next, we found that the majority of
the cases VCCs’ developers had a high workload when
performing VCCs—both in terms of commits (59.11%) and
code churn (57.13%)—hence corroborating the idea that the
errors are commonly made by developers having a higher
workload [22]. On the other hand, there is an almost equal
distribution of both newcomer (43.24%) and expert devel-
opers (40.04%). While the presence of the formers could
be owed to a lack or poor awareness of the secure coding
practices and the established projects’ security policy [72],

[73], the latter seems to confirm findings reported in the
literature on the source code drawbacks introduced by
expert developers [22], [74]. This may be explained by the
fact that more experienced developers tend to perform more
complex and critical tasks [75], strongly increasing the risk
of introducing defects of any kind, including vulnerabili-
ties [76]. We shed light on this regard by correlating the
developers’ tenure with the severity of the vulnerabilities
they had contributed to, represented by their CVSS score.
The Spearman’s rank coefficient test reports a non-esistent
correlation (ρ = 0.002) with no statistical significance at all
(p = 0.893). This does not allow us to conclude anything
about the relations between the developers’ experience and
the severity of the vulnerabilities to which they contributed,
and further analyses using different metrics are needed.

Main findings for RQ2

The great majority of the VCCs (69.50%) included at
least one maintenance activity (i.e., bug fixing, enhance-
ment or refactoring) in their goal. The vast majority of
vulnerabilities (83.99%) start appearing after the first
year of the project’s creation, generally (59.68%) issued
at least 30 days before releases. There is an equal distri-
bution of newcomer and expert developers (43.24% and
40.04%, respectively); however, over 55% developers
performed VCCs when they had high workload, in
terms of commits and code churn. This trend is not
followed by vulnerabilities of type CWE-787, where
over half of VCCs included bug fixing activities.

3.3 RQ3: What is the survivability of vulnerabilities?

Considering all 3,645 vulnerabilities, we observe that a
median of 9 changes are required to fix a vulnerability,



10

100 101 102 103

Number of Days (Log Scale)

0.0

0.2

0.4

0.6

0.8

1.0

0.5

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Overall
CWE-79
CWE-787
CWE-20
CWE-125
CWE-119

CWE-89
CWE-200
CWE-416
CWE-352
CWE-78

(a) Survival analyses in terms of days.

100 101 102 103

Number of Changes (Log Scale)

0.0

0.2

0.4

0.6

0.8

1.0

0.5

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Overall
CWE-79
CWE-787
CWE-20
CWE-125
CWE-119

CWE-89
CWE-200
CWE-416
CWE-352
CWE-78

(b) Survival analyses in terms of changes.

Fig. 2: Survival analysis of 3,645 vulnerabilities in terms of days (left) and changes (right), reported on a log scale. A subset
of these vulnerabilities were also grouped by CWE Top 10.

100 101 102 103

Number of Days (Log Scale)

0.0

0.2

0.4

0.6

0.8

1.0

0.5

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Overall
C
PHP
C++
Python
JavaScript
Ruby
Java

Perl
Go
N/A
C#
HTML
TypeScript
Shell

(a) Survival analyses in terms of days.

100 101 102 103

Number of Changes (Log Scale)

0.0

0.2

0.4

0.6

0.8

1.0

0.5

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Overall
C
PHP
C++
Python
JavaScript
Ruby
Java

Perl
Go
N/A
C#
HTML
TypeScript
Shell

(b) Survival analyses in terms of changes.

Fig. 3: Survival analysis of 3,645 vulnerabilities in terms of days (left) and changes (right), reported on a log scale. A subset
of these vulnerabilities were also grouped by the Programming Language having at least 10 CVEs.

distributed along 511 days (i.e., about one year and a half).
The story is different if we consider the means. On the one
hand, the needed days increase to 947.66 (i.e., over two
years and a half); on the other hand, the number of changes
reaches 31.77. This phenomenon is due to the presence of ex-
treme outliers, i.e., vulnerabilities whose exposition period
lasts far longer than the others. For instance, the vulnerabil-
ity described by CVE-2014-3158, caused by an improper re-
striction of operations within the bounds of a memory buffer
(CWE-119) in the PPP project, took 7,568 days (i.e., over 20
years) to be fixed. On the other side of the spectrum, CVE-
2018-12684, caused by an exposure of sensitive information
(CWE-200) in the CIVETWEB project, required 1,692 changes
to file civetweb.c before its removal. It is worth noting
that the fixing commit consisted of small program changes,
namely a change of two relational expressions. Thus, it
seems that all those changes were not instrumental for the
patch but were done as part of other kinds of changes,

corroborating the fact that the developers were not aware
of the presence of the vulnerability. As a matter of fact,
the vulnerable file—by the time of the fixing commit—was
made of over 19,000 lines, so probably containing most of
the logic of the entire application, explaining such a large
number of modifications. From the above results, we can
delineate two observations. Firstly, vulnerabilities typically
take years to be fixed and are, therefore, exposed to possible
exploitations for a long time. Secondly, and perhaps more
interestingly, there are cases in which the developers are
neither aware of the presence of vulnerabilities nor have the
proper instruments to identify and refactor them.

Figure 2 depicts both the general survivability of all
vulnerabilities and the individual survivabilities of their
CVEs grouped by the CWE Top 10 (the survival plots for
the CWE Top 25 is available in our online appendix [27]).
Looking at the number of days (Figure 2a), we see that
almost all curves follow the same trend dictated by the



11

TABLE 5: The taxonomy of the recurrent methods used to remove vulnerabilities. The table also reports the overlap with
the Potential Mitigations related to the weakness types of the 351 (fix, CVE) pairs sampled in RQ4.

Method Description CWE Mapping
USERS AND NETWORKING
Hide Sensitive Information Do not allow passwords/tokens/keys to be given to users (e.g., via outputs, stack

traces, or source code).
Unnamed “Architecture and Design”
Strategies at CWE-798

Change User Permissions Change the assignment of either intended or unintended functionalities or ports to
the different users/actors.

“Separation of Privilege” Strategy

Block Untrusted Hosts Remove or block hosts considered untrusted. “Separation of Privilege” Strategy
(partially)

Limit Attempts Limit the attempts to sensitive functionalities, such as logins or payments. N/A
Improve Certificate
Verification

Check the certificate validity (its digital signature and origin). Unnamed “Implementation” Strat-
egy at CWE-295

Improve Session Management Set a session timeout, invalidate the session on logout, or reuse a pre-existing session
only when needed.

N/A

Ask User Confirmation Add a confirm dialog or an extra input to avoid issuing operations unintentionally. Unnamed “Architecture and Design”
Strategy at CWE-352

MEMORY MANAGEMENT
Prevent Access Over Bounds Ensure a pointer’s offset does not go beyond the buffer limit or check if the signed

integer buffer’s length does not overflow, e.g., when used in fread().
Unnamed “Implementation” Strat-
egy at CWE-119

Check Before Dereferencing Check if a pointer is not NULL before dereferencing it, or if a file is not a symlink. Unnamed “Implementation” Strat-
egy at CWE-119, CWE-476

Check Input Size Check the size (bytes) of externally supplied data before placing it in a buffer. “Input Validation” Strategy
Change Buffer Size Increase/decrease the size of a dynamically allocated buffer (e.g., malloc()-like

functions) or statically allocated variable.
“Input Validation” Strategy

Improve Resource
Management

Set a limit to the number of allocated resources (e.g., TCP sack holes, file descriptors,
etc.); avoid opening them when not strictly needed or close them when not needed
anymore; cleanup memory leaks.

Unnamed“Architecture and Design”
Strategy at CWE-400, CWE-401,
CWE-770

Remove Invalid Free Remove free() calls on non-dynamically allocated buffers or avoid doing double
free.

Unnamed “Input Validation” at
CWE-415

Set Pointer to Null After Free Set a pointer to NULL after its use in a free(). Unnamed “Implementation” Strat-
egy at CWE-416

Remove Type Confusion Remove cases where a resource (e.g., a buffer) is accessed improperly (e.g., with unions
or wrong pointer types).

Unnamed “Implementation” Strat-
egy at CWE-20

IMPLEMENTATION
Sanitize External Input Add or improve checks on the content of externally supplied data, either rejecting it

or adjusting the content (e.g., escaping/encoding special characters, remove decimals,
relying on parameterization).

“Input Validation” Strategy

Handle Error Cases Handle exceptions/signals/error return values previously not considered. This com-
prises loop exit conditions, division-by-zero, and integer under/overflows, as well.

Unnamed “Implementation” Strat-
egy at CWE-190, CWE-252 (partially)

Fix Initialization Put objects/structs/buffers in a proper initial state, e.g., when creating an object
starting from another (clone).

N/A

Employ New Algorithm Employ a brand new algorithm/mechanism for checking security-related aspects (e.g.,
CSRF protection), either from scratch or third-party solutions.

Unnamed “Architecture and Design”
Strategies at CWE-352 (partially)

Remove Vulnerable Code Remove the vulnerable feature/file code completely. N/A
Remove Race Conditions Fix concurrency issues, e.g. improving the locks management. Unnamed “Implementation” Strat-

egy at CWE-362
Avoid Deserialization of
Untrusted and Harmful Data

Deserialize only the unharmful part of untrusted data or prevent it at all. N/A

CONFIGURATION
Improve Security
Configuration

Modify security-related configuration (e.g., framework settings, configuration files,
dependencies).

N/A

‘Overall’ one—in which at 511 days there is an equal
probability that the vulnerability is going to be fully fixed
or not. We also observe that weakness types related to
input validation issues (i.e., CWE-79, CWE-20, CWE-89, and
CWE-78) exhibit a trend with lower values, implying the
need for fewer days to fix a vulnerability. This result was
somehow expected, as input validation flaws are far more
common in web applications [77], encouraging researchers
and practitioners to invest efforts on this issue and develop
many automated testing techniques to detect them [78], [79],
[80]. Indeed, the current state-of-the-practice in static ap-
plication security testing (SAST) provides many automated
solutions to detect issues related to the improper validation
of externally-supplied inputs [81]—such as CPPCHECK [82],
FLAWFINDER [83], or SPOTBUGS [84]—likely due to a higher
perceived relevance of this kind of issue with respect to
other security flaws. Such mechanisms enable timely de-
tection of input validation bugs, possibly explaining why
this kind of vulnerability is removed earlier than others.
Things start to be different for the number of changes
(Figure 2b). Here too, the input validation vulnerabilities
survive for fewer commits compared to the general trend.

However, there is also a noticeable deviation for CWE-416
(‘Use After Free’) and CWE-119 (‘Improper Restriction of
Operations within the Bounds of a Memory Buffer’), both
concerning memory management issues. Figure 3, instead,
focuses on the programming language of the project affected
by the vulnerabilities. In terms of days (Figure 3a), almost
all the languages follow the general trend, with the excep-
tion for TYPESCRIPT vulnerabilities that appear to be quite
isolated—in any case, the number of TYPESCRIPT vulnera-
bilities was too low to derive any relevant conclusion. Much
more interesting is the survivability in C projects, which
dominates the ‘Overall’ trend. All of these observations
apply to the number of changes (Figure 3b) as well. An
explanation behind this phenomenon could be the same as
the high rate of survivability of memory management flaws,
which could be due to the strong presence of vulnerabilities
coming from the LINUX kernel project, characterized by a
high rate of contributions. In this regard, we separately
analyzed the survival models of LINUX (whose plots are
available in our online appendix [27]), finding that the trend
in terms of days is in line with the C-language model,
whereas the number of changes’ model exhibit longer sur-



12

TABLE 6: The most recurrent removal methods with respect
to the CWE Top 10 observed in the sample used for RQ4.

CWE Most Recurrent Method Occurrences Percentage
CWE-79 Sanitize External Input 41/45 91.11%
CWE-787 Prevent Access Over Bounds 6/9 66.67%
CWE-20 Sanitize External Input 13/31 41.94%
CWE-125 Prevent Access Over Bounds 11/26 42.31%
CWE-119 Prevent Access Over Bounds 15/33 45.46%
CWE-89 Sanitize External Input 7/10 70.00%
CWE-200 Prevent Access Over Bounds 5/18 27.78%
CWE-416 Check Input Size 2/7 28.57%
CWE-352 Employ New Algorithm 2/3 66.67%
CWE-78 Sanitize External Input 4/5 80.00%

vivability, possibly due to the development process adopted
by the LINUX community.

As a final step of our analyses, we asked whether the
survival period may be related to the projects’ popularity,
following the idea that a larger user base may accelerate
the vulnerability discovery and fixing times. We correlated
the survival period of all the vulnerabilities—using both the
number of days and changes—with the number of stars as-
signed onto the GITHUB repository [85]—which is a widely
used proxy metric to estimate the popularity of a project.
Our analysis, done by using Spearman’s rank coefficient
test [62], revealed weak correlation values (both ρ2 < 0.1).
This result, however, does not let us derive any relevant
conclusion, hence requiring further investigations involving
additional contributing factors and statistical analyses.

Main findings for RQ3

At least half of the vulnerabilities survive for 511 days
(i.e., the probability of being fixed starts increasing after
more than one year from the last contributing commit),
undergoing to 9 different changes. This trend, however,
is highly influenced by some extreme outliers, e.g., CVE-
2014-3158, which took over 20 years to be fixed, and
CVE-2018-12684, requiring 1,692 commits. Input valida-
tion vulnerabilities are fixed earlier than others, while
memory management issues persist longer in the code.

3.4 RQ4: How are known vulnerabilities removed from
the source code?

The statistically significant sample of 351 (fix, CVE) pairs,
belonging to 66 CWEs, involves 80 different projects. The
median number of files involved in fixing commits is just 1,
with 282 being the highest number of changed files within a
single fix. Additionally, no fix is only made of added lines:
the median number of added and deleted lines is 10 and 4,
respectively. Hence, it seems that a fix mainly requires more
additions than deletions, suggesting that vulnerabilities are
typically caused by the lack of proper control mechanism
(e.g., checking the buffer size before accessing it) rather than
the presence of ill-implemented features.

In general, we found large variability in how develop-
ers remove known vulnerabilities, depending on both the
intrinsic characteristics of a vulnerability and the program-
ming language. Yet, we were able to classify the recurrent
removal methods and provide a taxonomy (reported in
Table 5) where we described how developers fix security

flaws. The most diffused removal method is ‘Sanitize Exter-
nal Input’, which is naturally connected to the resolution of
any code injection vulnerabilities (e.g., SQL Injection, XSS,
etc.) and implements proper sanitization routines of user-
supplied inputs, a very common issue in web applications.
We found that 27.07% of the pairs (95/351) concern vul-
nerabilities fixed by applying such a method, followed by
the 17.38% cases (61/351) in which ‘Prevent Access Over
Bounds’ was applied to solve flaws related to the memory
management in low-level languages, such as C and C++.
Other removal methods are applied with a considerably

lower frequency, but we could delineate a general consid-
eration: most of the methods described in Table 5 refer to
small program transformations that might potentially be
fully automated and used in combination with vulnerability
detection approaches to cover the entire refactoring pipeline,
thus substantially supporting developers when dealing with
security-related issues. It is worth pointing out that our
taxonomy describes the removal methods which have been
used in practice to tackle real software vulnerabilities. In
this sense, it represents, to the best of our knowledge, the
first attempt to provide an empirically grounded list of
guidelines to support researchers in devising automated
tools for vulnerability removal. Although existing mitiga-
tion strategies—such as the one collected by CWE—contains
richer information and tips to avoid introducing weak code,
they happen to be general and sometimes difficult to ap-
ply in real-world scenarios. As a further assessment, we
drew connections between our taxonomy and the “Poten-
tial Mitigations” reported by the 66 CWEs associated with
the sampled 351 (fix, CVE) pairs (Table 5). In most cases,
CWE already provides general guidelines to deal with each
vulnerability type appearing in our sample; however, we
observed some recurrent removal methods that could not
be mapped into any of the potential mitigations reported
in the 66 CWEs. On the one hand, this could be caused
by a limitation of our sample, as it only pertains to a lim-
ited portion of the entire CWE—indeed, ‘Limit Attempts’,
‘Improve Session Management’, and ‘Avoid Deserialization
of Untrusted and Harmful Data’ could be mapped to the
strategies described in CWE-307, CWE-384, and CWE-502,
which did not appear in our sample. On the other hand,
‘Fix Initialization’, ‘Remove Vulnerable Code’, and ‘Improve
Security Configuration’ appears to have no counterpart
within CWE. Thus, our results may improve the current
knowledge base on the matter with additional mechanisms
to deal with software vulnerabilities.

Zooming into the CWE Top 10, Table 6 reports the re-
current methods for removing known vulnerabilities, along
with their frequencies. These results are perfectly in line
with the more general findings discussed so far. On the one
hand, the ‘Sanitize External Input’ method is the preferred
choice for fixing CWE-79 (‘Cross-site Scripting’), CWE-20
(‘Improper Input Validation’), CWE-89 (‘SQL Injection’),
and CWE-78 (‘OS Command Injection’) vulnerabilities. On
the other hand, ‘Prevent Access Over Bounds‘ is done to
fix memory managements flaws (CWE-787, CWE-125, and
CWE-119), but also, surprisingly, CWE-200 (‘Exposure of
Sensitive Information to an Unauthorized Actor’), which is
done to avoid leaking sensitive data using buffer overflows.
Both these removal methods consist in adding additional



13

code (e.g., if or assert statements) to prevent (i) variable
to receive malicious values, and (ii) going over the intended
limits of buffers or files. In the end, we can confirm the
feasibility of automated mechanisms able to fix them.

Main findings for RQ4

The fixing commit generally involves one single file
on which, on a median, the number of added lines is
twice the deleted one. ‘Sanitize External Input’ is the
most recurrent method for fixing input validation issues.
In most cases, such fixes consist of simple program
transformations, e.g., the addition of missing checks in
the source code, even when plenty of files and lines of
code are involved.

4 DISCUSSION AND IMPLICATIONS

The results of our four research questions provided several
insights that need to be discussed, as well as implications for
the software engineering research community. Specifically:

The first phase effect. According to our findings, vulnera-
bilities are often introduced shortly after the creation of new
files (on a median, after 2 commits) and while maintaining
the source code, e.g., when enhancing existing features,
in line with what was already experienced by Meneely et
al. [26]. On the one hand, our findings have implications
for future research on automated solutions aiming at finding
vulnerabilities in source code: we argue that novel tech-
niques can be time- and context-dependent, i.e., analyzing the
timeline as well as the intended actions of developers of
newly committed source code files, could be devised and
experimented. On the other hand, our results possibly indi-
cate the need for additional investments on the educational
side of software maintenance and evolution, especially on
how to comprehend source code and diagnose its potential
issues when a new change request comes in, as well as
how to evolve legacy systems while keeping vulnerabilities
into account, e.g., by teaching security patterns and tools to
control for vulnerabilities when enhancing existing features.

More research on vulnerabilities is needed. Our study
constitutes a large-scale analysis of the software engineering
life cycle of vulnerabilities. Yet, we still have no compelling
empirical evidence on the reasons why vulnerabilities re-
main in a software system for such a long time. Similarly,
we are still unaware of the motivations why certain actions,
e.g., bug fixing operations, are more prone to introduce
vulnerabilities: for example, this may be due to the lack of
proper control mechanisms, a lack of knowledge of basic
security principles, or other undocumented reasons. All
these aspects represent challenges for the software engi-
neering research community. We hope that these results can
stimulate a more comprehensive investigation into software
vulnerabilities and security practices in general.

Increasing the developer’s awareness. The survival anal-
yses conducted in the context of RQ3 revealed two no-
table findings. On the one hand, they suggest a general
lack of awareness with respect to the presence of vul-
nerabilities. This represents a call for researchers working

on the intersection between software maintenance and hu-
man aspects: it would indeed be worth exploring novel
methods able to increase the developer’s awareness about
security issues (e.g., through summarization or visualization
of vulnerability-related information). On the other hand,
we noticed that vulnerabilities related to input validation
issues tend to have a shorter life cycle, possibly indicating
that these can be quickly identified or might be considered
as more harmful—opposed to memory management issues
characterizing low-level programming languages like C or
C++. In this respect, further research around the topic
of vulnerability prioritization, driven by the developer’s
perceived harmfulness, might greatly increase the ability
of developers to deal with security issues—as shown by
recent work targeting design flaws [86]. Researchers are also
encouraged to delve into the effects that highly popular
projects have on vulnerability discovery and fixing times.

On security testing and more. Our results indicate that
the majority of vulnerabilities remain in a system for a
long while. Besides the lack of awareness discussed above,
this finding also suggests that developers do not have
proper mechanisms to verify source code for the presence
of vulnerabilities. Hence, we argue that the definition of
advanced verification mechanisms able to assist develop-
ers when looking for possible security issues should be
devised: this represents a further challenge for the entire
software testing community and, perhaps, even for auto-
matic test case generation [87], [88]. In addition, enabling
alternative strategies—e.g., novel code review practices for
vulnerabilities—could be an interesting path to allow devel-
opers to better spot errors statically [89].

On human aspects and vulnerabilities. As also suggested
by previous work [74], [90], [91], human factors play a role
also when considering the introduction of vulnerabilities.
At first, most security issues are introduced by developers
showing a high workload. Besides, both expert developers
and newcomers have roughly the same chances to incur
security issues. These results call for a more comprehensive
overview of software vulnerability research that includes
human-related considerations: for instance, novel methods
to triage developers’ work by optimizing expertise and
workload could nicely complement the current research on
the topic. Similarly, it is still unknown how more general
social issues among developers, e.g., social debt [60], [92],
influence the introduction of security issues. Lastly, the
Human Error Theory defined by Reason [93] may give
additional insights on what kind of errors developers make
when introducing defects such as vulnerabilities, as in-
vestigated by Nagaria and Hall [94], who discovered that
such errors could be related to the complex development
environments in which developers write their code, as well
as a lack of focus and concentration. Moreover, the severity
of the flaws (e.g., measured using the CVSS score) should
not be neglected when investigating the reasons behind the
introduction of software vulnerabilities.

Automating the removal process. Other valuable results
from our empirical study concern the study of how software
vulnerabilities are removed. From RQ4 we could establish a
taxonomy of removal operations performed by developers



14

when fixing vulnerabilities and discovered that most of
these actions are simple to program transformations (e.g.,
escaping functions) that have the potential to be fully
automated and made available to developers in order to
better support the removal of vulnerabilities as well as to
implement a comprehensive pipeline covering their entire
life cycle, from discovery to fixing.
All these implications represent challenges that we aim at
facing as part of our future research agenda on the matter.

5 THREATS TO VALIDITY

This section discusses the limitations that may have influ-
enced our findings and how we mitigated them.
Construct validity. Our results could be affected by the
wrong identification of both vulnerability-fixing patches
and vulnerability-contributing commits. As for the former,
we relied on the vulnerability fixing commits available in
NVD: while this database is curated and improved con-
stantly, we cannot exclude that a patch may not remove the
vulnerability as intended. Indeed, we discovered that some
projects regularly make tangled fixing commits [55], which
mixes both vulnerability patches with other ordinary devel-
opment or maintenance activities. Such fixes, not only are
difficult to comprehend, but they also damage the perfor-
mance of automated mining techniques based on them, such
as our VCCs mining procedure. As for the latter, we relied
on a technique based on the SZZ algorithm, which analyzes
the previous history of a fixed file to identify the commit(s)
that likely introduced the vulnerability. Previous studies
have shown that this algorithm may frequently produce
false positives [52]; to account for this aspect and control the
reliability of SZZ in our context, we took some precautions.
First, we employed PYDRILLER, a tool implementing a stan-
dard version of the algorithm on which, however, we added
some additional adjustments to reduce the number of false
positives, e.g., discarding the VCCs where only comments,
cosmetic changes, or empty lines are blamed. In particular,
we adopted some filters to discard those files not represent-
ing source code, such as documentation, build or test files.
We employed regular expressions to filter our those files
not fulfilling the most common naming conventions (e.g.,
detecting test files whether they begin or end with the ‘test’
substring). However, this solution could have missed some
exceptional cases (e.g., a test file not having the ‘test’ sub-
string in its name), which might have contributed negatively
to the performance of our VCCs mining validation. Second,
we manually re-assessed the effectiveness of the algorithm
for a sample of 376 pairs (CVE, VCC) in our dataset, finding
a precision of 68%. Aware of the fact that such performance
may have affected the results of our analyses, we re-run
the entire analysis pipeline onto the pairs (CVE, VCC)
labeled as correct by the inspectors. The results we obtained
are in line with the general ones, raising our confidence
in the employed technique—the raw data of this sanity
check were uploaded into our online appendix [27]. Finally,
the git-blame functionality automatically recognizes file
renamings when traversing the history, so we further reduce
the risk of blaming incorrect commits. Specifically, when
a commit changes the path of a file but keeps intact its
whole content, git easily identifies the renaming. Should

a commit apply a renaming alongside other code changes,
git would still be able to recognize the fact that the file
is not a new one. Internally, git compares the renamed
file contents and computes a similarity index—based on
the number of changed lines compared to the file’s size. By
default, git uses a threshold of 0.5, meaning that the new
file is considered a renaming of a pre-existing one if they are
at least 50% similar.6 Although this threshold could be freely
set by the user, we left it to 0.5 as it is the default choice of
diff views, such as the one shown by GITHUB.7

Current mining approaches based on SZZ still suffer
from the cases in which the commit is made only of added
lines [50]. Our algorithm, as well as the ones adopted in [95],
[96], handled these cases by blaming the contextual lines
as well, despite in a different way. We have also avoided
blaming the contextual lines of change blocks made only
of new functions or methods. Yet, we could not apply it
thoroughly, as we were limited by the parsing capabilities
offered by LIZARD library. The work by Sahal and Tosun [97]
proposes an approach to consider the commits that previ-
ously changed the code block (e.g., the statements of a for
loop) that contained the continuous block of added lines.
We decided not to adopt this approach as it has not been
evaluated extensively, and it required parsing source code
files of many different programming languages in order to
map the change blocks to the belonging code block element.

It is worth noting that, despite the metrics to compute
the developers’ workload have been used in the past [22],
[60], these represent only a proxy to the actual amount of
work done, as commits may require different amounts of
work, and developers may work on various projects.

The Working on Release metric uses absolute time ref-
erences to determine the proximity to a deadline, ranging
from ‘the same day of’ to ‘over one month before’ a release.
We recognize the fact that this choice does not take into
account project-specific release cycles—i.e., the number of days
elapsing between the major releases of a project—which
would better describe the actual release process. However,
to the best of our knowledge, there is no tool able to infer
the actual release cycle of a given project only by looking
at the dates of the releases. Any approximate solution—
such as computing the average of days elapsed between
releases—would have introduced even more biases in our
observations. Hence, we opted for a simple and general
implementation of this concept that suits our large context,
as was done by Vassallo et al. [57], leaving additional
interpretation of the results to the reader.

Internal validity. To address RQ2, we implemented a script
to automatically characterize VCCs. To study the ‘com-
mit goal’ category, we re-implemented a previously pro-
posed keyword-matching approach [98], [99], which has
been shown to be highly accurate [56]. As for the other
categories, we re-implemented previously proposed algo-
rithms [22], [59], [60] following the exact description re-
ported in those papers; despite the extensive testing phase,
we cannot exclude possible implementation errors. For the
sake of replicability, we made all data and scripts employed

6https://git-scm.com/docs/git-diff
7https://github.blog/2010-01-12-improved-commit-diffs/

https://git-scm.com/docs/git-diff
https://github.blog/2010-01-12-improved-commit-diffs/


15

publicly available [27]. A particularly interesting point to
comment upon is connected to the fact that a number of
VCCs were tagged as both refactoring and other operations
(i.e., new feature, bug fixing, or enhancement). This reflects
what has been reported by previous research: developers
tend to perform floss refactoring actions [57], [100], [101],
that is, the application of refactoring operations during
other maintenance and evolution activities. The keyword-
matching approach could actually identify multiple actions
that developers normally perform in practice. This provides
further confidence in the validity of the approach.

Conclusion validity. In addressing our research questions,
we provided some insights coming from outliers, such as
vulnerabilities whose introduction was caused by many
contributing commits (RQ1). While these data points still let
us distill some valuable findings, we could have been sub-
ject to possible wrong inteprations of the statistics extracted
from the datasets employed in each RQ. For this reason, we
re-ran the entire analysis pipeline without considering the
extreme outliers, observing that these new results—which
can be found in our online appendix [27]—were in line with
the ones observed during the main study.

In the context of RQ2, we characterized VCCs by con-
sidering a number of aspects, i.e., commit goal, project-,
and developer-status. While this allowed us to contextualize
the contributions to the introduction of vulnerabilities, it is
important to point out that recent work [102] has shown that
not all defects are due to development activities performed
within a project and that, instead, some defects are inherited
by third-party libraries. This might be potentially true in our
case as well. Nevertheless, there are three key observations
to be done in this respect. First, the vulnerability types
considered in our study are by definition due to errors when
developing source code: for instance, if we consider the
CWE Top 10 presented in Table 1, it is pretty straightforward
to observe that all of them are due to improper control mech-
anisms implemented by developers. As such, the influence
of the so-called extrinsic defects on our results must be neces-
sarily limited. In the second place, it is worth remarking that
CWE marks such inherited defects with a special category,
i.e., ‘Using Components with Known Vulnerabilities’ : our
dataset does not include this type of issues, hence not being
affected by extrinsic vulnerabilities. Of course, there would
still be the case that some vulnerabilities in our dataset
might have been mislabeled. While we cannot exclude this
possibility, (1) we argue that this is quite unlikely given the
accuracy with which NVD is managed; and (2) a precise
estimation of how many vulnerabilities are mislabeled is not
practically feasible since this analysis would require the re-
compilation of the considered commits: besides being time-
consuming, this analysis might be notably biased by the
presence of broken snapshots [103].

We reported our findings under the perspective of the
CWE Top 10 Most Dangerous Software Weaknesses. Although
the CWE taxonomy is a tree made of weakness types with
parent-children relationships, the CWE Top 10 reports a
list of CWEs at different abstraction levels. For example,
CWE-787 (‘Out-of-bounds Write’ ) and CWE-119 (‘Improper
Restriction of Operations within the Bounds of a Memory
Buffer’ ) occupy the second and fifth place of the Top 10,

respectively, but CWE-787 is a subtype of CWE-119 (in other
words, CWE-119 is labeled as ‘class’ abstraction type, while
CWE-787 as ‘base’ abstraction type). This could bias the
conclusions we made on the results divided by the CWEs,
as the Top 10 does not take the parenthood relationships
into account. We chose not to re-classify the CVEs into
many CWEs, but only consider the single CWE provided
by NVD. Additional research on the matter would improve
the interpretation of the results we obtained.

Survival analysis (RQ3) is a standard approach for in-
vestigating lifetime expectancy [104], [105], yet a possible
threat concerns the metrics we used to determine the vul-
nerability survival, i.e., the number of days and changes
from their introduction to the removal. We recognize that
project activity or developers’ availability may influence the
two variables. In addition, it is worth remarking that the
survival analysis takes into account the vulnerable period
between the last vulnerability-contributing (turning point)
and vulnerability-fixing commits: however, a vulnerability
might have been disclosed or the related patch made avail-
able by NVD way later than the introduction or just before
the removal and, for this reason, developers might not have
had the entire vulnerable period to discover a vulnerability
and apply the fix. Our RQ3 only takes the change history
of the considered projects into account, without considering
external events that might have influenced the vulnerability
identification and fixing process; nevertheless, we argue
that our findings are still extremely relevant because they
report on the lifespan of vulnerabilities in the considered
projects, presenting the period in which they were actually
exploitable by external attackers. Of course, replications that
consider external events would complement our findings.

Concerning RQ4, we conducted a manual investigation
to determine how vulnerabilities are removed: more inspec-
tors were involved in the process to increase the accuracy
of the classification of the fixing strategies. Nevertheless, we
cannot exclude imprecision and subjectiveness. Replications
are, therefore, still desirable.
External Validity. We considered 3,663 of 144 different types
coming from 1,096 open-source projects. As such, the size of
our dataset is comparable with other large-scale software
engineering studies (e.g., [22], [29]). However, the life cycle
of vulnerabilities affecting other systems (e.g., developed
in closed-source settings) may differ. Still, it is important
to point out that our study does not cover all instances of
vulnerabilities affecting the subject systems, but rather it is
limited to those for which a fixing commit was available.
Similarly, we are aware that not all vulnerabilities may have
been reported to the CVE (especially if discovered internally
by a developer and not publicly disclosed). On the one hand,
the large-scale nature of our study makes us confident that
similar results would have been achieved when considering
the vulnerabilities that were missed in our analyses. On
the other hand, we highlight that replications of our study
would be desirable as they may provide additional insights
into the life cycle of software vulnerabilities.

6 RELATED WORK

Our study aims at integrating the current knowledge on the
life cycle of software vulnerabilities. One of the first works



16

that shed light on this topic is the one by Meneely et al. [26],
who analyzed and described the properties of vulnerability-
contributing commits. The authors traced 68 vulnerability
reports of APACHE HTTP SERVER—obtained from different
data sources—to the VCCs over the entire history of the
software system. The mined VCCs were investigated pre-
dominantly from a quantitative point of view, focusing on (i)
the size of changes in terms of various code churn metrics,
(ii) the amount of changed code that was previously added
by different contributors (i.e., interactive churn), (iii) the
author’s expertise with respect to the modified files, (iv) the
vulnerability exposure time in terms of days and commits,
(v) the file’s past vulnerability rate, and (vi) the community
dissemination via release notes. The main results showed
that VCCs are at least twice larger than non-VCCs, and
are more likely to be done by developers touching code
parts of which they have no prior knowledge. Moreover,
vulnerabilities are regularly spread across the entire project
history, i.e., there are no specific project phases in which vul-
nerabilities tend to appear more or less. This work also led to
the creation of VULNERABILITY HISTORY PROJECT,8 which
aims at keeping a curated dataset of accurate descriptions of
the entire life cycle of known software vulnerabilities. These
results integrate our findings, with the only exception to the
expertise of developers that contributes to the introduction
of a vulnerability. This may be explained by the fact that
Meneely et al. classified as ‘unexperienced’ a developer who
committed to files on which she never wrote a single line,
while our study relies on the number of months elapsed
since the developer’s first contribution to the project. In
order to detect the VCCs, the author relied on a manual
code inspection methodology driven by the git-bisect
functionality. In summary, given a vulnerability: (1) identify
its fixing commits from the collected vulnerability reports,
(2) write an ad-hoc vulnerability detection script that stati-
cally searches for the vulnerable code snippets in the code
version before the fix, (3) run git-bisect, which runs a
binary search of all the commits before the fix, and launches
the detection script at each step, gradually narrowing down
the search space. The commits returned by git-bisect
at each round were manually inspected, and corrections to
the detection script were applied when needed to reduce
the risk of false positives. The main difference between this
methodology and our VCCs extraction algorithm is that our
proposed solution is a fully automated solution that starts
from the collection of vulnerability reports from NVD to the
estimated set of VCCs. Another difference in our work lies
in the way we analyze the properties of VCCs. Indeed, our
goal was not to delve into the characteristics of VCCs alone,
but rather give a general overview of the entire life cycle
of software vulnerabilities, from their introduction to their
resolution in the source code. For this reason, we have left
out the comparison with non-VCCs, as it would have been
out of the scope of this paper.

Other studies have proposed automated techniques to
detect vulnerability-contributing commits. Perl et al. [95]
proposed a machine learning-based approach, named VC-
CFINDER, to automatically classify commits as suspicious
vulnerability-contributing, based on several process soft-

8http://vulnerabilityhistory.org/

ware metrics. The dataset they employed to train and evalu-
ate the model was made of 170,860 commits coming from 66
C/C++ projects. The labeling of the commits as either VCCs
or non-VCCs they adopted was based on an automated
technique that fetches the VCCs of a vulnerability starting
from its fixing commits reported in the vulnerability report.
They implemented a set of heuristics based on the results
returned by the git-blame command, which was run on
(1) each of the deleted lines in the commit, and (2) blame
the lines before and after continuous blocks of code made
only of added line. The authors also provided a manual
evaluation of the 15% sample of all VCCs flagged by their
heuristics, scoring an error rate of 3.1%. These heuristics
share many similarities with the ones we have adopted in
this work. The main differences lie in the corrective factors:
we excluded empty lines and lines containing comments,
as well as irrelevant files, such as documentation files.
Moreover, we did not blame the contextual lines of blocks
of added lines when they were made only of new functions
or methods, as they could be inserted anywhere in the
code. These corrections were also adopted in the heuristics
proposed in the work by Yang et al. [96], which currently
represent the state-of-the-practice of automatic VCCs detec-
tion. Their manual validation of 112 (fixing commit, VCC)
pairs scored an error rate of 4.5%. Their algorithm, however,
returns only the VCC that has been blamed most during
the various runs of git-blame for a specific vulnerability.
Our work deliberately ignored this choice, as returning only
a single VCC would have underestimated the actual set of
VCCs.

Morrison et al. [24] investigated the differences between
vulnerabilities and non-security defects in source code,
finding the former to be introduced later in the develop-
ment process and fixed by means of different mechanisms.
They extended the well-known Orthogonal Defect Classi-
fication [106], a scheme to classify defect data, proposing
the ODC + Vulnerabilities (ODC+V) taxonomy. Our study
complements on a large-scale the Morrison et al.’s work [24]
not only by enlarging the available body of knowledge
on vulnerabilities through a systematic analysis of how
they are introduced and removed but also by presenting
additional insights on their longevity and the circumstances
around their introduction: these can be more pragmatically
employed by the research community to device novel in-
struments to deal with vulnerabilities.

Canfora et al. [107] studied the vulnerability fixing pro-
cess, comparing it with the one adopted for traditional
defects. Their findings reported that vulnerabilities typically
require more re-assignments in the triage phase and specific
skills to be fixed. Our study does not focus on the fixing
process, but rather on the entire vulnerability life cycle, from
the introduction to removal. However, the results of our
study—especially those of RQ2—corroborate and enlarge
the findings by Canfora et al. [107] on the importance of
human factors for the management of vulnerabilities.

Shahzad et al. [23] conducted an exploratory study to
investigate the life cycle of 46,310 vulnerabilities. Similarly
to our study, the authors investigated the various phases of
the life cycle, e.g., the evolution of vulnerabilities during
the years. The main findings of the paper showed that
the percentage of remotely exploitable vulnerabilities has

http://vulnerabilityhistory.org/


17

increased over the years and that, on average, the time taken
by hackers to exploit a vulnerability is lower than the one
taken by vendors. With respect to this paper, our work has a
different granularity: Shahzad et al. [23] considered that the
life cycle of a vulnerability starts when it is discovered by
the vendor, a hacker, or any third-party software analyst and
ends when all users of the software install the vulnerability
fixing patch; our work, instead, considers as life cycle the
period between the vulnerability introduction into and its
removal from the code. In other words, while the previous
work aimed at providing insights from a more managerial
perspective, we lowered the level and considered the life
cycle of a vulnerability within software repositories with
the goal of suggesting possible improvements in the tools
made available to developers. As such, the types of analyses
performed and the methodological steps conducted are
necessarily different and provide complementary findings
to those reported by Shahzad et al. [23].

Smith et al. [108] investigated how developers use
security-focused static analyses to solve security defects,
finding that to effectively use them developers would like to
have contextual information (e.g., classes possibly present-
ing side-effects). These findings have been later confirmed
by Muniz et al. [20]. In this sense, our paper can actually
help understanding which circumstances lead to the intro-
duction of vulnerabilities, possibly informing developers of
existing tools on how to create a context while detecting
them. Besides the empirical studies, it is also worth men-
tioning the existence of a large amount of papers targeting
the definition of automated solution to identify and remove
vulnerabilities. Previous work [13], [14], [15], [16] has indeed
evaluated a number of security tools, reporting that most of
them suffer from false positives. Clearly, our work cannot
be compared to these ones, yet our empirical findings might
again be useful to improve existing techniques.

7 CONCLUSION

We presented a large-scale empirical study conducted over
the life cycle of 3,663 of 144 weakness types belonging
to 1,096 open-source projects. We aimed at understanding
how and under which circumstances vulnerabilities are
contributed to, what is their survivability, and how they are
removed. These results provide several findings: (i) contri-
butions to vulnerabilities are made shortly after the creation
of new files; (ii) developers contributes to vulnerabilities
while maintaining source code; (iii) developers with higher
workload contribute to most security flaws; (iv) vulnerabil-
ities have high survivability rates in terms of days they stay
in the source code. Based on those findings, we presented
a set of implications and open challenges that the research
community should embrace to improve the support given to
practitioners when identifying and fixing software vulnera-
bilities in practice. The set of challenges identified are all
part of our future agenda, which will aim at investigating in
greater detail the phenomenon of software vulnerabilities,
how to detect them automatically, and how certain devel-
opment theories (e.g., the Human Error Theory [93]) apply
to the problem. All these findings we presented should be
compared and related to the ones already reported into
known vulnerability repositories, such as the one curated

by the VULNERABILITY HISTORY PROJECT.8 Indeed, we
plan to design an automated tool that periodically mines
data from the National Vulnerability Database, processes
them, and subsequently contributes to the VULNERABILITY
HISTORY PROJECT. We also plan to integrate our empirical
findings—particularly the ones regarding the vulnerability
removal methods (RQ4)—into CWE, which accepts content
suggestions to further improve the quality of its knowledge
base. Moreover, there is need to improve the performance
of VCCs mining heuristics with additional experimentations
to (i) understand what makes the mining algorithms prone
to errors, and (ii) learn to automatically remove the noise
from vulnerability fixes. Finally, the relations between the
findings we observed, e.g., the high rate of newly-created
files in VCCs (RQ1) and their pronesses to remove bugs
(RQ2), deserve additional investigations to understand how
traditional and security bugs are fixed by developers [107].

ACKNOWLEDGMENTS

Fabio is partially supported by the Swiss National Science
Foundation - SNF Project No. PZ00P2 186090 (TED). The
authors would like to sincerely thank the Associate Editor
and anonymous Reviewers for the insightful comments and
feedback provided during the review process.

REFERENCES

[1] R. Shirey, “Internet security glossary, version 2,” 2007.
[2] S. Frei, D. Schatzmann, B. Plattner, and B. Trammell, Modeling the

security ecosystem - the dynamics of (In)security. Springer US, 2010,
pp. 79–106.

[3] M. Finifter, D. Akhawe, and D. Wagner, “An empirical study
of vulnerability rewards programs,” in USENIX Conference on
Security, 2013, pp. 273–288.

[4] C. Pfleeger and S. Pfleeger, Security in computing. Prentice Hall
Professional Technical Reference, 2002.

[5] “Wannacry ransomware attack,” https://en.wikipedia.org/
wiki/WannaCry ransomware attack.

[6] “Mediacenter,” https://www.pandasecurity.com/mediacenter/
security/consequences-not-applying-patches/.

[7] D. Aranha, P. Barbosa, T. Cardoso, C. Araújo, and P. Matias,
“The return of software vulnerabilities in the brazilian voting
machine,” Computers & Security, 2019.

[8] M. Castro, M. Costa, and T. Harris, “Securing software by en-
forcing data-flow integrity,” in Symposium on Operating Systems
Design and Implementation, 2006, pp. 147–160.

[9] S. Ardi, D. Byers, P. Meland, I. Tondel, and N. Shahmehri, “How
can the developer benefit from security modeling?” in Interna-
tional Conference on Availability, Reliability and Security, 2007, pp.
1017–1025.

[10] S. Mirhosseini and C. Parnin, “Can automated pull requests
encourage software developers to upgrade out-of-date depen-
dencies?” in International Conference on Automated Software Engi-
neering, 2017, pp. 84–94.

[11] G. McGraw, Software Security: building security in. Addison-
Wesley, 2006.

[12] P. Morrison, B. Smith, and L. Williams, “Surveying security
practice adherence in software development,” in Hot Topics in
Science of Security: Symposium and Bootcamp, 2017, pp. 85–94.

[13] A. Austin and L. Williams, “One technique is not enough: A com-
parison of vulnerability discovery techniques,” in International
Symposium on Empirical Software Engineering and Measurement,
2011, pp. 97–106.

[14] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis
tool for detecting web application vulnerabilities,” in Symposium
on Security and Privacy, 2006, pp. 258–263.

[15] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in
java applications with static analysis,” in Conference on USENIX
Security Symposium, 2005, pp. 18–18.

https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://www.pandasecurity.com/mediacenter/security/consequences-not-applying-patches/
https://www.pandasecurity.com/mediacenter/security/consequences-not-applying-patches/


18

[16] M. Martin, B. Livshits, and M. Lam, “Finding application errors
and security flaws using pql: A program query language,” in
Conference on Object-oriented Programming, Systems, Languages, and
Applications, 2005, pp. 365–383.

[17] I. Chowdhury and M. Zulkernine, “Using complexity, coupling,
and cohesion metrics as early indicators of vulnerabilities,” Jour-
nal of Systems Architecture, vol. 57, no. 3, pp. 294 – 313, 2011.

[18] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Conference on Computer and
Communications Security, 2007, pp. 529–540.

[19] F. Li and V. Paxson, “A large-scale empirical study of security
patches,” in Conference on Computer and Communications Security,
2017, pp. 2201–2215.

[20] R. Muniz, L. Braz, R. Gheyi, W. Andrade, B. Fonseca, and
M. Ribeiro, “A qualitative analysis of variability weaknesses in
configurable systems with #ifdefs,” in International Workshop on
Variability Modelling of Software-Intensive Systems, 2018, pp. 51–58.

[21] M. di Biase, M. Bruntink, and A. Bacchelli, “A security perspec-
tive on code review: The case of chromium,” in International
Working Conference on Source Code Analysis and Manipulation, 2016,
pp. 21–30.

[22] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta,
A. De Lucia, and D. Poshyvanyk, “When and why your code
starts to smell bad (and whether the smells go away),” Transac-
tions on Software Engineering, vol. 43, no. 11, pp. 1063–1088, 2017.

[23] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale ex-
ploratory analysis of software vulnerability life cycles,” in Inter-
national Conference on Software Engineering, 2012, pp. 771–781.

[24] P. Morrison, R. Pandita, X. Xiao, R. Chillarege, and L. Williams,
“Are vulnerabilities discovered and resolved like other defects?”
Empirical Software Engineering, vol. 23, no. 3, pp. 1383–1421, 2018.

[25] “National vulnerability database,” https://nvd.nist.gov/.
[26] A. Meneely, H. Srinivasan, A. Musa, A. Tejeda, M. Mokary, and

B. Spates, “When a patch goes bad: Exploring the properties of
vulnerability-contributing commits,” in International Symposium
on Empirical Software Engineering and Measurement, 2013, pp. 65–
74.

[27] E. Iannone, R. Guadagni, F. Ferrucci, A. De Lucia, and F. Palomba,
“The secret life of software vulnerabilities: A large-scale em-
pirical study - online appendix,” https://github.com/sesalab/
OnlineAppendices/tree/main/TSE21-VulnerabilityLifecycle.

[28] L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-grained just-
in-time defect prediction,” Journal of Systems and Software, vol. to
appear, 2019.

[29] Y. Kamei, E. Shihab, B. Adams, A. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time
quality assurance,” Transactions on Software Engineering, vol. 39,
no. 6, pp. 757–773, 2013.

[30] N. Sae-Lim, S. Hayashi, and M. Saeki, “Context-based code
smells prioritization for prefactoring,” in International Conference
on Program Comprehension, 2016, pp. 1–10.

[31] B. Kitchenham, “Evaluating software engineering methods and
tool part 1: The evaluation context and evaluation methods,”
Software Engineering Notes, vol. 21, no. 1, pp. 11–14, 1996.

[32] B. A. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-based
software engineering,” in International Conference on Software En-
gineering, 2004, pp. 273–281.

[33] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, and T. Zimmermann, “Local versus global lessons for
defect prediction and effort estimation,” Transactions on Software
Engineering, vol. 39, no. 6, pp. 822–834, 2013.

[34] R. Miller, Survival Analysis. John Wiley and Sons, 2011.
[35] N. Baddoo and T. Hall, “De-motivators for software process

improvement: an analysis of practitioners’ views,” Journal of
Systems and Software, vol. 66, no. 1, pp. 23–33, 2003.

[36] G. Canfora and L. Cerulo, “Impact analysis by mining software
and change request repositories,” in International Software Metrics
Symposium, 2005, pp. 9–29.

[37] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba,
“An experimental investigation on the innate relationship be-
tween quality and refactoring,” Journal of Systems and Software,
vol. 107, pp. 1–14, 2015.

[38] B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring-improving
coupling and cohesion of existing code,” in Working Conference on
Reverse Engineering, 2004, pp. 144–151.

[39] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[40] “U.s. nist computer security division,” https://www.nist.gov.

[41] “Common vulnerabilities and exposures,” https://cve.mitre.
org/.

[42] O. Alhazmi, Y. Malaiya, and I. Ray, “Measuring, analyzing and
predicting security vulnerabilities in software systems,” Comput-
ers & Security, vol. 26, no. 3, pp. 219–228, 2007.

[43] P. Mell, K. Scarfone, and S. Romanosky, “Common vulnerability
scoring system,” Security & Privacy, vol. 4, no. 6, pp. 85–89, 2006.

[44] S. Huang, H. Tang, M. Zhang, and J. Tian, “Text clustering on
national vulnerability database,” in International Conference on
Computer Engineering and Applications, vol. 2, 2010, pp. 295–299.

[45] S. Zhang, D. Caragea, and X. Ou, “An empirical study on using
the national vulnerability database to predict software vulnera-
bilities,” in International Conference on Database and Expert Systems
Applications, 2011, pp. 217–231.

[46] “2020 cwe top 25 most dangerous software weaknesses,” https:
//cwe.mitre.org/top25/archive/2020/2020 cwe top25.html.

[47] “Cve search tool,” https://github.com/cve-search/cve-search.
[48] “Git - git-merge documentation,” https://git-scm.com/docs/

git-merge.
[49] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes

induce fixes?” in International Workshop on Mining Software Repos-
itories, 2005, pp. 1–5.

[50] D. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and
A. Hassan, “A framework for evaluating the results of the SZZ
approach for identifying bug-introducing changes,” Transactions
on Software Engineering, vol. 43, no. 7, pp. 641–657, 2017.

[51] D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python
framework for mining software repositories,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering - ESEC/FSE 2018. New York, New York,
USA: ACM Press, 2018, pp. 908–911. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3236024.3264598

[52] G. Rodrı́guez-Pérez, G. Robles, and J. González-Barahona, “Re-
producibility and credibility in empirical software engineering:
A case study based on a systematic literature review of the use
of the szz algorithm,” Information and Software Technology, vol. 99,
pp. 164–176, 2018.

[53] J. Cohen, “A coefficient of agreement for nominal scales,”
Educational and Psychological Measurement, vol. 20, no. 1,
pp. 37–46, 1960. [Online]. Available: https://doi.org/10.1177/
001316446002000104

[54] M. McHugh, “Interrater reliability: The kappa statistic,” Bio-
chemia medica : časopis Hrvatskoga društva medicinskih biokemičara
/ HDMB, vol. 22, pp. 276–82, 10 2012.

[55] K. Herzig and A. Zeller, “The impact of tangled code changes,”
in 2013 10th Working Conference on Mining Software Repositories
(MSR), 2013, pp. 121–130.

[56] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lu-
cia, “The scent of a smell: An extensive comparison between tex-
tual and structural smells,” Transactions on Software Engineering,
vol. 44, no. 10, pp. 977–1000, 2018.

[57] C. Vassallo, G. Grano, F. Palomba, H. Gall, and A. Bacchelli, “A
large-scale empirical exploration on refactoring activities in open
source software projects,” Science of Computer Programming, vol.
180, pp. 1–15, 2019.

[58] S. G. PATRO and D.-K. K. Sahu, “Normalization: A preprocessing
stage,” IARJSET, 03 2015.

[59] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Sere-
brenik, P. Devanbu, and V. Filkov, “Gender and tenure diversity
in github teams,” in Conference on Human Factors in Computing
Systems, 2015, pp. 3789–3798.

[60] F. Palomba, D. Tamburri, F. Fontana, R. Oliveto, A. Zaidman, and
A. Serebrenik, “Beyond technical aspects: How do community
smells influence the intensity of code smells?” Transactions on
Software Engineering, 2018.

[61] “Vulnerability metrics,” https://nvd.nist.gov/vuln-metrics/
cvss.

[62] C. Spearman, “The proof and measurement of association
between two things,” International Journal of Epidemiology,
vol. 39, no. 5, pp. 1137–1150, 10 2010. [Online]. Available:
https://doi.org/10.1093/ije/dyq191

[63] E. L. Kaplan and P. Meier, “Nonparametric estimation
from incomplete observations,” Journal of the American
Statistical Association, vol. 53, no. 282, pp. 457–481, 1958.
[Online]. Available: https://www.tandfonline.com/doi/abs/10.
1080/01621459.1958.10501452

https://nvd.nist.gov/
https://github.com/sesalab/OnlineAppendices/tree/main/TSE21-VulnerabilityLifecycle
https://github.com/sesalab/OnlineAppendices/tree/main/TSE21-VulnerabilityLifecycle
https://www.nist.gov
https://cve.mitre.org/
https://cve.mitre.org/
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://github.com/cve-search/cve-search
https://git-scm.com/docs/git-merge
https://git-scm.com/docs/git-merge
http://dl.acm.org/citation.cfm?doid=3236024.3264598
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://doi.org/10.1093/ije/dyq191
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501452
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501452


19

[64] H. Hsieh and S. Shannon, “Three approaches to qualitative
content analysis,” Qualitative health research, vol. 15, no. 9, pp.
1277–1288, 2005.

[65] B. Smith and L. Williams, “Using sql hotspots in a prioritization
heuristic for detecting all types of web application vulnerabil-
ities,” in 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation, 2011, pp. 220–229.

[66] L. K. Shar, H. Beng Kuan Tan, and L. C. Briand, “Mining sql
injection and cross site scripting vulnerabilities using hybrid pro-
gram analysis,” in 2013 35th International Conference on Software
Engineering (ICSE), 2013, pp. 642–651.

[67] D. Oliveira, M. Rosenthal, N. Morin, K.-C. Yeh, J. Cappos,
and Y. Zhuang, “It’s the psychology stupid: How heuristics
explain software vulnerabilities and how priming can illuminate
developer’s blind spots,” in Proceedings of the 30th Annual
Computer Security Applications Conference, ser. ACSAC ’14. New
York, NY, USA: Association for Computing Machinery, 2014, p.
296–305. [Online]. Available: https://doi.org/10.1145/2664243.
2664254

[68] A. Hindle, D. M. German, and R. Holt, “What do large commits
tell us?: a taxonomical study of large commits,” in International
Working Conference on Mining Software Repositories, 2008, pp. 99–
108.

[69] C. Abid, M. Kessentini, V. Alizadeh, M. Dhouadi, and R. Kazman,
“How does refactoring impact security when improving quality?
a security-aware refactoring approach,” IEEE Transactions on Soft-
ware Engineering, pp. 1–1, 2020.

[70] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto,
and O. Strollo, “When does a refactoring induce bugs? an empir-
ical study,” in 2012 12th International Working Conference on Source
Code Analysis and Manipulation, 2012, pp. 104–113.

[71] D. L. Parnas, “Software aging,” in Proceedings of 16th International
Conference on Software Engineering. IEEE, 1994, pp. 279–287.

[72] S. Bartsch, “Practitioners’ perspectives on security in agile de-
velopment,” in 2011 Sixth International Conference on Availability,
Reliability and Security, 2011, pp. 479–484.

[73] A. Poller, L. Kocksch, S. Türpe, F. A. Epp, and K. Kinder-
Kurlanda, “Can security become a routine? a study of
organizational change in an agile software development
group,” in Proceedings of the 2017 ACM Conference on
Computer Supported Cooperative Work and Social Computing,
ser. CSCW ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 2489–2503. [Online]. Available:
https://doi.org/10.1145/2998181.2998191

[74] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto,
and A. De Lucia, “A developer centered bug prediction model,”
Transactions on Software Engineering, vol. 44, no. 1, pp. 5–24, 2017.

[75] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann Publishers Inc., 2005.

[76] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford, “Security
during application development: An application security expert
perspective,” in Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, ser. CHI ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 1–12. [Online].
Available: https://doi.org/10.1145/3173574.3173836

[77] T. Scholte, D. Balzarotti, and E. Kirda, “Have things changed
now? an empirical study on input validation vulnerabilities in
web applications,” Computers & Security, vol. 31, no. 3, pp.
344–356, 2012. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167404811001684

[78] A. Avancini and M. Ceccato, “Security testing of web applica-
tions: A search-based approach for cross-site scripting vulner-
abilities,” in 2011 IEEE 11th International Working Conference on
Source Code Analysis and Manipulation, 2011, pp. 85–94.

[79] M. Ceccato, C. D. Nguyen, D. Appelt, and L. C. Briand, “Sofia: An
automated security oracle for black-box testing of sql-injection
vulnerabilities,” in 2016 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2016, pp. 167–177.

[80] M. Liu, K. Li, and T. Chen, “Security testing of web
applications: A search-based approach for detecting sql
injection vulnerabilities,” in Proceedings of the Genetic and
Evolutionary Computation Conference Companion, ser. GECCO
’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 417–418. [Online]. Available: https:
//doi.org/10.1145/3319619.3322026

[81] B. Aloraini, M. Nagappan, D. M. German, S. Hayashi, and
Y. Higo, “An empirical study of security warnings from static

application security testing tools,” Journal of Systems and Software,
vol. 158, p. 110427, 2019. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0164121219302018

[82] “Cppcheck,” http://cppcheck.sourceforge.net/.
[83] “Flawfinder,” https://dwheeler.com/flawfinder/.
[84] “Spotbugs,” https://spotbugs.github.io/.
[85] H. Borges, A. Hora, and M. T. Valente, “Understanding the

factors that impact the popularity of github repositories,” in
2016 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2016, pp. 334–344.

[86] F. Pecorelli, F. Palomba, F. Khomh, and A. De Lucia, “Developer-
driven code smell prioritization,” in Proceedings of the 17th Interna-
tional Conference on Mining Software Repositories, 2020, p. 220–231.

[87] G. Fraser and A. Arcuri, “Whole test suite generation,” Transac-
tions on Software Engineering, vol. 39, no. 2, pp. 276–291, 2012.

[88] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lu-
cia, “Automatic test case generation: What if test code quality
matters?” in 25th International Symposium on Software Testing and
Analysis, 2016, pp. 130–141.

[89] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and A. Bac-
chelli, “Information needs in contemporary code review,”
Human-Computer Interaction, vol. 2, p. 135, 2018.

[90] G. Catolino, F. Palomba, A. De Lucia, F. Ferrucci, and A. Zaid-
man, “Enhancing change prediction models using developer-
related factors,” Journal of Systems and Software, vol. 143, pp. 14–
28, 2018.

[91] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding
and detecting real-world performance bugs,” ACM SIGPLAN
Notices, vol. 47, no. 6, pp. 77–88, 2012.

[92] G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik, and
F. Ferrucci, “Gender diversity and women in software teams:
How do they affect community smells?” in 41st International
Conference on Software Engineering: Software Engineering in Society,
2019, pp. 11–20.

[93] J. Reason and C. U. Press, Human Error. Cambridge University
Press, 1990. [Online]. Available: https://books.google.it/books?
id=WJL8NZc8lZ8C

[94] B. Nagaria and T. Hall, “How software developers mitigate their
errors when developing code,” IEEE Transactions on Software
Engineering, no. 01, pp. 1–1, nov 5555.

[95] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck,
S. Fahl, and Y. Acar, “Vccfinder: Finding potential vulnerabilities
in open-source projects to assist code audits,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 426–437. [Online]. Available:
https://doi.org/10.1145/2810103.2813604

[96] L. Yang, X. Li, and Y. Yu, “Vuldigger: A just-in-time and cost-
aware tool for digging vulnerability-contributing changes,” in
GLOBECOM 2017 - 2017 IEEE Global Communications Conference,
2017, pp. 1–7.

[97] E. Sahal and A. Tosun, “Identifying bug-inducing changes
for code additions,” in Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering
and Measurement, ser. ESEM ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3239235.3267440

[98] Y. Fu, M. Yan, X. Zhang, L. Xu, D. Yang, and J. Kymer, “Au-
tomated classification of software change messages by semi-
supervised latent dirichlet allocation,” Information and Software
Technology, vol. 57, pp. 369–377, 2015.

[99] A. Hindle, D. M. German, M. Godfrey, and R. Holt, “Automatic
classication of large changes into maintenance categories,” in
International Conference on Program Comprehension, 2009, pp. 30–
39.

[100] E. Murphy-Hill and A. P. Black, “Refactoring tools: Fitness for
purpose,” IEEE software, vol. 25, no. 5, pp. 38–44, 2008.

[101] E. Murphy-Hill, C. Parnin, and A. Black, “How we refactor, and
how we know it,” Transactions on Software Engineering, vol. 38,
no. 1, pp. 5–18, 2011.

[102] G. Rodriguezperez, M. Nagappan, and G. Robles, “Watch out for
extrinsic bugs! a case study of their impact in just-in-time bug
prediction models on the openstack project,” IEEE Transactions
on Software Engineering, 2020.

[103] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto,
A. De Lucia, and D. Poshyvanyk, “There and back again: Can you
compile that snapshot?” Journal of Software: Evolution and Process,
vol. 29, no. 4, p. e1838, 2017.

https://doi.org/10.1145/2664243.2664254
https://doi.org/10.1145/2664243.2664254
https://doi.org/10.1145/2998181.2998191
https://doi.org/10.1145/3173574.3173836
https://www.sciencedirect.com/science/article/pii/S0167404811001684
https://www.sciencedirect.com/science/article/pii/S0167404811001684
https://doi.org/10.1145/3319619.3322026
https://doi.org/10.1145/3319619.3322026
https://www.sciencedirect.com/science/article/pii/S0164121219302018
https://www.sciencedirect.com/science/article/pii/S0164121219302018
http://cppcheck.sourceforge.net/
https://dwheeler.com/flawfinder/
https://spotbugs.github.io/
https://books.google.it/books?id=WJL8NZc8lZ8C
https://books.google.it/books?id=WJL8NZc8lZ8C
https://doi.org/10.1145/2810103.2813604
https://doi.org/10.1145/3239235.3267440


20

[104] R. Henderson, M. Jones, and J. Stare, “Accuracy of point predic-
tions in survival analysis,” Statistics in Medicine, vol. 20, no. 20,
pp. 3083–3096, 2001.

[105] P. Heagerty and Y. Zheng, “Survival model predictive accuracy
and roc curves,” Biometrics, vol. 61, no. 1, pp. 92–105, 2005.

[106] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus,
B. Ray, and M. Wong, “Orthogonal defect classification-a concept
for in-process measurements,” Transactions on Software Engineer-
ing, vol. 18, no. 11, pp. 943–956, 1992.

[107] G. Canfora, A. Di Sorbo, S. Forootani, A. Pirozzi, and C. A. Visag-
gio, “Investigating the vulnerability fixing process in oss projects:
Peculiarities and challenges,” Computers & Security, vol. 99, p.
102067, 2020.

[108] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. Richter,
“How developers diagnose potential security vulnerabilities
with a static analysis tool,” Transactions on Software Engineering,
vol. XX, no. XX, pp. XX–XX, 2018.

Emanuele Iannone is a Ph.D. student at Univer-
sity of Salerno, Italy. His main research focuses
on the analysis of software vulnerabilities, partic-
ularly in the broader context of software security
testing. His research interests also include the
development of novel tools and techniques of
Mining Software Repositories and Search-based
Software Testing. He also served as a reviewer
for the main international conferences and jour-
nals of the software engineering field.

Roberta Guadagni received the M.Sc. degree
at the University of Salerno, Italy, in 2019.
She is currently a Machine Learning Engineer
at Senseledge, where she develops machine
learning and MLOps solutions for real-world
problems. Formerly, she was a Data Scientist at
Whitehall Reply.

Filomena Ferrucci is a Professor of Software
Engineering and Software Project Management
at the University of Salerno, Italy. Her main re-
search interests include software metrics, ef-
fort estimation, empirical software engineer-
ing, search-based software engineering, and
human-computer interaction. She co-authored
over 150 publications in international journals,
book chapters, and conferences. She took part
in the program committees of many international
conferences in the field of software engineering.

Andrea De Lucia is a Professor of Software En-
gineering at the University of Salerno, Italy. His
research interests include software maintenance
and testing, reverse engineering and reengi-
neering, source code analysis, and traceability
management. He has published more than 250
papers in international journals, books, and con-
ference proceedings. Prof. De Lucia is co-editor
in chief of Science of Computer Programming
(Elsevier) and serves on the editorial board of
Empirical Software Engineering (Springer) and

Journal of Software Evolution and Process (Wiley). He is a senior mem-
ber of the IEEE and was member-at-large of the executive committee of
the IEEE Technical Council on Software Engineering.

Fabio Palomba is an Assistant Professor at
the University of Salerno, Italy. He received the
European PhD degree in Management & Infor-
mation Technology in 2017. His research inter-
ests include software maintenance and evolu-
tion, software testing, empirical software engi-
neering, and source code quality. He serves and
has served as an organizing and program com-
mittee member of various international confer-
ences and as editorial board member of flagship
software engineering journals.


	Introduction
	Research Methodology
	Research Goals and Questions
	Context Selection
	Data Extraction
	Data Validation
	RQ1. How - Research Methodology
	RQ2. Context - Research Methodology
	RQ3. Survivability - Research Methodology
	RQ4. Removal - Research Methodology

	Analysis of the Results
	RQ1: How contributions to vulnerabilities are made into the source code?
	RQ2: What is the context in which contributions to vulnerabilities are made into the source code?
	RQ3: What is the survivability of vulnerabilities?
	RQ4: How are known vulnerabilities removed from the source code?

	Discussion and Implications
	Threats to Validity
	Related Work
	Conclusion
	References
	Biographies
	Emanuele Iannone
	Roberta Guadagni
	Filomena Ferrucci
	Andrea De Lucia
	Fabio Palomba


