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Abstract

Background. Software vulnerabilities are weaknesses in source code that might be exploited to cause harm or loss.
Previous work has proposed a number of automated machine learning approaches to detect them. Most of these tech-
niques work at release-level, meaning that they aim at predicting the files that will potentially be vulnerable in a future
release. Yet, researchers have shown that a commit-level identification of source code issues might better fit the de-
veloper’s needs, speeding up their resolution. Objective. To investigate how currently available machine learning-based
vulnerability detection mechanisms can support developers in the detection of vulnerabilities at commit-level. Method.
We perform an empirical study where we consider nine projects accounting for 8,991 commits and experiment with
eight machine learners built using process, product, and textual metrics. Results. We point out three main findings:
(1) basic machine learners rarely perform well; (2) the use of ensemble machine learning algorithms based on boosting
can substantially improve the performance; and (3) the combination of more metrics does not necessarily improve the
classification capabilities. Conclusion. Further research should focus on just-in-time vulnerability detection, especially
with respect to the introduction of smart approaches for feature selection and training strategies.
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1. Introduction

Software security plays a crucial role in modern soft-
ware development [1]. In software engineering terms,
this has to do with the implementation of programs that
can continue working under malicious circumstances [2].
Specifically, the source code should be designed to be re-
silient to external attacks: unfortunately, software vulner-
abilities represent threats to security that may potentially
be exploited by externals to cause loss of data, privilege es-
calation, race conditions, and other undesired effects that
may affect the source code [3, 4].

The research community has been addressing the prob-
lem of vulnerabilities under different perspectives, by
proposing empirical studies aiming at characterizing them
and their impact on source code [5, 6, 7], but more impor-
tantly by devising automated techniques that could sup-
port their identification [8, 9, 10].

Most of the approaches defined so far are based on
source code and/or dynamic analysis [11, 12, 13, 14], sym-
bolic execution [15, 16, 17], and fuzz-testing [18, 19]. Some
of them are also implemented within automated tools,
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e.g., SonarQube1 and Eclipse Steady2 that are widely
adopted in practice [20].

Despite the research and industrial effort spent so far
for building techniques and tools able to identify software
vulnerabilities, the current solutions are still rarely effec-
tive in practice as they suffer from high false positive rates
and/or scalability issues [21, 22, 23].

For these reasons, the research around vulnerability de-
tection is still highly active. The last years have seen a
growing interest in the application of artificial intelligence
algorithms to software security [24, 25]. Techniques based
on machine learning, in particular, have reached promising
results: starting from a set of vulnerability data collected
through the change history analysis of files over previous
releases of an application, these techniques train machine
learning algorithms (e.g., Decision Tree) in order to pre-
dict the likelihood of new, unseen source code files to be
affected by vulnerabilities in future releases [26].

While the performance reported in previous studies
[27, 28, 29, 30, 31] highlighted the suitability of machine
learning approaches to predict vulnerabilities on future re-
leases, it is still unclear how these approaches support de-
velopers in finding the exact location of the vulnerable

1SonarQube: https://www.sonarqube.org.
2Eclipse Steady: https://projects.eclipse.org/

proposals/eclipse-steady.
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code. As a matter of fact, traditional vulnerability predic-
tions [29, 30, 27, 32] would produce a large set of poten-
tially vulnerable files or binaries, that should be manually
inspected to establish the actual presence of the flaw, re-
quiring a non-negligible amount of extra work. Moreover,
such a task requires the selection of the most appropri-
ate group of developers that can comprehend the rationale
behind the last changes applied to the files. These limita-
tions calls for novel solutions that better suits real case sce-
narios. Specifically, contemporary pull-based development
practices [33] make long-term recommendations, like those
given by release-based predictions, not really suitable [34].
Shorter-term recommendations, also known as just-in-time
or commit-level predictions, should be preferred instead as
they allow developers to receive an immediate feedback on
the newly committed work and improve code quality while
having the context of the modification still fresh in mind
[35, 36]. In addition, techniques able to work at this gran-
ularity become not only suitable at commit-time, but also
while developers perform code review [37]. As a conse-
quence of these recent advances, vulnerability detection
mechanisms should be re-assessed at a lower granularity.

Hence, this paper proposes an empirical investigation
into the performance of just-in-time software vulnerability
detection techniques. We mine nine Java projects avail-
able in the National Vulnerability Database (NVD)3 in
order to collect known vulnerabilities that affected them
during their change history. Afterwards, we experiment
with eight machine learning algorithms that we train us-
ing three different sets of features based on code, change,
and textual metrics—both algorithms and features were
previously employed in the context of vulnerability detec-
tion research. In addition, we employ a set of machine
learning engineering steps [38] aiming at improving the
performance of the experimented models, such as drop-
ping correlated features [39], balancing the dataset [40],
and tuning hyper-parameters [41].

The results of our study reveal a number of findings.
In the first place, we observe that basic machine learning
algorithms, e.g., Support Vector Machine, have low
performance when applied for the task of detecting vul-
nerabilities at commit-level, in contrast with previous work
on vulnerability prediction. Moreover, the use of ensemble
techniques do not necessarily provide benefits, even tough
approaches based on boosting, like AdaBoost, seems
promising and might be further investigated. Finally, we
point out the limitations of existing metrics: for instance,
we observe that previously devised textual metrics based
on a raw bag-of-words source code representation lead the
machine learners to have high variability and low predic-
tion accuracy.

To sum up, we provide the following contributions:

1. Empirical evidence on the limited capabilities of
commit-level vulnerability prediction models built

3The National Vulnerability Database: https://nvd.nist.gov/.

using traditional techniques without proper setup;

2. A set of insights into the likely causes of failure of the
current solutions, which forms the future research
direction on the matter;

3. An online appendix4 providing all data and scripts
used to conduct our study and that can be used by
the research community to replicate and build upon
our empirical study.

Structure of the paper. Section 2 discusses the related
literature and motivates our work. In Section 3 we report
the methodology employed to address our goals, while Sec-
tion 4 analyzes the achieved results. The key implications
of the study are presented in Section 5. The discussion of
the threats to validity and how we mitigated them is re-
ported in Section 6. Finally, Section 7 concludes the paper
and outlines our future research agenda on the matter.

2. Related Work

Research on software vulnerability prediction models
(VPMs) mainly focused on identifying the best set of pre-
dictors correlated with the presence of vulnerabilities. Al-
most all works involved software product metrics directly
computed on the source or binary files, such as size (e.g.,
Lines of Code) or structural metrics [53]. Among these,
complexity metrics (e.g., McCabe’s Cyclomatic Complex-
ity [54]) are the ones that have received more atten-
tion. Shin et al. [55, 28, 48], in the context of Mozilla
Firefox, found a strong positive correlation between the
number of decisions in the code and the vulnerability-
proneness of a file. Specifically, the VPMs—built using
complexity metrics as predictors—achieve higher precision
scores if the predictions are restricted to the top vulner-
able files only, hinting that the files that were subject
to many vulnerabilities in the past have high complexity
values. This finding is further confirmed in other stud-
ies [46, 29, 49, 32]. Similarly, coupling and cohesion met-
rics have been shown to be, respectively, positively and
negatively correlated with vulnerabilities, corroborating
the common wisdom that poor quality code raised the risk
of introducing flaws [46]. Moreover, Nguyen and Tran [45]
exploited a set of metrics extracted from the Component
Dependency Graphs (CDG) to predict vulnerable C++
files in JS Engine of Firefox, observing an improve-
ment in both accuracy and recall with respect to mod-
els built considering complexity metrics only. Neuhaus et
al. [42] found a correlation between the number of imports
and functions with vulnerabilities in C functions, hinting
their usefulness in a VPM. In particular, they devised a
Support Vector Machine (SVM) relying on the number of
past vulnerabilities on the imported C files in the context

4Our online appendix: https://figshare.com/s/
0ef0f484a058e2297df4.
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Table 1: Comparison with previous works concerning vulnerability prediction models. The focus is on the granularity level (i.e., the components
that is subject to the predictions), the set of metrics used as predictors, the involved systems and the mined vulnerability data sources.

Study Granularity Predictors/Features Context Data Sources
Neuhaus et al. [42] Function Past vulnerable imports Firefox MFSA
Sultana et al. [43] Class/Method Product metrics 4 Java systems Vendor Advisories
Zimmermann et al. [29] Binary Process and Product metrics Windows Vista NVD
Theisen et al. [30] Binary/File Past crashes, Process and

Product metrics
Windows 8 Microsoft Error

Reporting
Theisen and Williams [31] Binary/File Past crashes, Process and

Product metrics, Bag-of-words
Firefox MFSA

Morrison et al. [44] Binary/File Product metrics Windows 7 and 8 NVD
Nguyen and Tran [45] File Product metrics Firefox JS Engine MFSA, Bugzilla,

NVD
Chowdhury et al. [46] File Product metrics Firefox MFSA, Bugzilla
Smith and Williams [47] File SQL Hotspots, LOC WordPress,

WakkaWiki
Bugzilla

Shin et al. [28] File Process and Product metrics Firefox, RHEL MFSA, RHSR,
Bugzilla

Shin et al. [48] File Past faults, Process and
Product metrics

Firefox Bugzilla

Scandariato et al. [27] File Bag-of-words 20 Android apps Fortify SCA
Walden et al. [49] File Product metrics, Bag-of-words 3 PHP systems Vendor Security

Advisories, NVD
Zhang et al. [50] File Product metrics, Bag-of-words 3 PHP systems Dataset from [49].
Jimenez et al. [32] File Bag-of-words, Process and

Product metrics
Linux, OpenSSL
and Wireshark

NVD

Perl et al. [51] Commit Process and Product metrics 66 C/C++ systems CVE DB
Yang et al. [52] Commit Process and Product metrics Firefox MFSA
Our study Commit Process and Product

metrics, Bag-of-words
9 Java systems NVD

of Mozilla Firefox achieving a high precision of 70%, at
the cost of a lower recall of 45%. Furthermore, Scandari-
ato et al. [27] were the first to investigate on the predictive
power of text mining techniques. Namely, they used the
bag-of-words method [56, 57] to extract the most frequent
terms (i.e., words) from source code Java files to predict
the presence of vulnerabilities on 20 Android apps. They
managed to score a high performance in within-project
predictions (i.e., making prediction on files belonging to
the same project in which the model was trained), but
failing in cross-project scenario (i.e., making prediction
on files not belonging to the projects in which the model
was trained), as further confirmed by Walden et al. [49].
Later, Zhang et al. [50] combined the above bag-of-words
method with traditional product metrics, achieving higher
F-measure value with respect to the VPM in [49]. On the
other hand, Zimmermann et al. [29] analyzed the impact
of organizational (e.g., the number of developers) and code
churn (i.e., the rate of changes applied to binaries) met-
rics to vulnerabilities in Windows Vista, achieving high
precision but low recall, in line with the findings of later
studies [28, 32, 51, 58]. Smith and Williams [47] tested the
usage of warnings of possible SQL Injections as predictors
in two VPMs for WordPress and WakkaWiki, finding a
positive correlation with many vulnerability types—other
than SQL Injection. All the above findings are mixed to-
gether in the study of Theisen and Williams [31], in which
the authors claimed that the best prediction models are the

one encompassing many different set of metrics (namely,
product, process, text metrics and past faults).

Regarding the model selection, vulnerability prediction
have been based on different supervised machine learning
models, such as Decision Trees [28, 27, 50, 32, 31], Sup-
port Vector Machines (SVM) [42, 45, 29, 27, 30, 51,
44], Naïve Bayes [45, 28, 27, 44, 50, 31] and Random
Forests [28, 27, 49, 44, 50, 32, 31]. Among these, Naïve
Bayes resulted in higher recall values (which means lower
false negative rate), while Random Forests regularly
score high precision (meaning low false positive rate) in
different contexts. Such models are also popular in similar
tasks, e.g., defect [48, 59] and exploitability prediction [60].

Most studies have been conducted on predicting vul-
nerabilities at source code file level [45, 46, 47, 55, 28, 27,
49, 50, 32], which means that the VPM tells whether a
given file is or is not affected by a vulnerability. In such
a scenario, the developers can invest their effort on in-
specting and testing the problematic files with dedicated
attention. The same concept is applied for VPMs work-
ing on binary files [29, 30, 31, 44], which contain ma-
chine code produced by a compiler. Neuhaus et al. [42]
designed a tool, Vulture, that predicts the vulnerabili-
ties in C/C++ functions, whereas Sultana et al. [43] do
this on Java methods, instead. To the best of our knowl-
edge, only few works have considered the predictions at
commit-level. Perl et al. [51] devised a method for obtain-
ing the vulnerability-contributing commit on 66 C/C++
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open-source projects. They essentially relied on the git
blame command that reaches the commits that changed
last the deleted lines of a public fixing commit of known
vulnerabilities reported in NVD. Then, they labelled the
most blamed commit as a vulnerability-contributing com-
mit. Finally, they trained a Support Vector Machine on
this dataset, outperforming the detection capabilities of
equivalent static analysis tools. The entire pipeline was
replicated some years later by Riom et al. [61], in which
the authors, among other things, delve into the possibil-
ity to improve VPM provided by Perl et al. [51] by ex-
perimenting on a different feature set containing metrics
capturing more security-related aspects—e.g., the number
of sizeof operators, which are known to be closely linked
to improper sizing of dynamically-allocated buffers [62].
However, they could not fully replicate the experiment [51]
as the datasets and scripts were not available anymore, and
the original paper did not provide sufficient detail on how
to re-implement the features extraction step. For these
reasons, Riom et al. could not provide a faithful compari-
son. Yang et al. [52] considered the case of web vulnerabil-
ities arising in Mozilla Firefox, and, using a large set
of process and product metrics drawn by Kamei et al. [35],
they provided a VPM that achieved high precision (over
90%), at the cost of having a very low recall score (below
15%) at the best possible configuration.

Our work and contribution. Table 1 summarizes
and compares the works in the vulnerability prediction
field, other than highlighting the main differences of our
contribution. Our research aims at shedding lights on the
capabilities of a large variety of machine learning mod-
els for just-in-time vulnerability detection. Hence, with
respect to most of the papers discussed, our study has a
different level of granularity and aims at assessing whether
and how the promising research on machine learning for
vulnerability detection can be applied at commit-level.

In particular, our study can be considered complemen-
tary with respect to previous works by Perl et al. [51] and
Yang et al. [52] that targeted a commit-level granularity.
First, we exploited multiple machine learning algorithms
with the aim of providing a broader overview of how effec-
tive these techniques are for the just-in-time vulnerability
detection, instead of employing only a single learner (e.g.,
SVM or Random Forest). Then, we employed a set
of techniques to improve the model performance, such as
removing features exhibiting multi-collinearity [39], bal-
ancing the dataset [40], and fine-tuning the model hyper-
parameters [41]. Such techniques were not always con-
sidered in the past when building VPMs, as also pointed
by [32]. We also considered the role of textual metrics,
which have been shown as highly relevant by Scandari-
ato et al. [27]. In particular, we wanted to asses whether
the raw use of the textual metrics actually provides an
improvement in terms of predictive performance when
considered with other features, as show by Theisen and
Williams [31]. Finally, we targeted a different program-

ming language, like Java, which has its own peculiarities
and, more importantly, vulnerabilities. Indeed, a large
part of the current body of knowledge covered types of
weaknesses strictly tied to the programming language, e.g.,
the Buffer Overflow [62] vulnerability predominantly af-
fecting C/C++ code.

On the basis of these considerations, the main contri-
butions of our study pose an additional ground for soft-
ware engineering researchers working on the identification
of vulnerabilities, who can exploit our results to under-
stand and build upon the current limitations and chal-
lenges connected to the application of machine learning-
based vulnerability detectors at commit-level.

3. Research Methodology

In this section we provide a formulation of the design of
our study according to the Goal-Question-Metric (GQM)
paradigm [63]. In Section 3.1 we define the goal of our
study and the consequent research question. Then, we de-
scribe the context of our empirical study, i.e., the projects
we selected (Section 3.2), the procedures behind the au-
tomated extraction of vulnerability-contributing commits
(Section 3.3), and the computation of software metrics
(Section 3.4). All these data are required to build the
dataset exploited by our machine learning pipeline, for
which we provide a detailed description (Section 3.5). We
conclude the section by presenting the evaluation methods
we employed to answer our research question (Section 3.6).

3.1. Goal and Research Question
The goal of this empirical study was to investigate

the performance of machine learning methods when em-
ployed for the task of just-in-time vulnerability detection,
with the purpose of assessing their suitability in a pull-
based development scenario. The perspective is both of
practitioners and researchers: the former are interested
in understanding whether and to what extent machine
learning-based vulnerability detectors can be used during
their daily activities; the latter are interested in evaluat-
ing strengths, weaknesses, and challenges for the use of
machine learning for just-in-time vulnerability detection
and that can be investigated further in future research.

We analyzed how well different machine learners can
identify commits contributing to vulnerabilities. In this
respect, we were inspired by previous research on vulner-
ability prediction [31] and assessed the impact of three
families of software metrics on the performance of differ-
ent machine learning algorithms. We asked:

RQ. How well do machine learning algorithms perform
when employed in the context of just-in-time vulnerabil-
ity detection?
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We set up a machine learning pipeline that imple-
ments well-established guidelines for to the creation of un-
biased supervised learning techniques [64, 38]. As further
explained in the next sections, we considered and miti-
gated common pitfalls related to feature selection, hyper-
parameter configuration, data balancing, selection of per-
formance metrics, and statistical tests. When designing
and reporting our study, we adopted the guidelines by
Wohlin et al. [65] and followed the ACM/SIGSOFT Em-
pirical Standards [66].5

Table 2: Summary of projects considered in this study. These statis-
tics are related to the period before 8th Match 2021.

Project #Commit LOC #Sample Commits #VCCs

Conversation 5,810 16,035 1,000 10
Candlepin 8,646 30,875 300 3
Hawtio 8,354 3,705 1,200 12
Jboss-Negotiation 299 505 191 2
Jenkins 25,867 29,080 4,400 44
Jolokia 1,573 3,685 1,100 11
Junrar 221 1,325 100 1
Litemall 990 3,500 100 1
Struts1-Forever 4,526 4,025 600 6

56,286 92,735 8,991 90

3.2. Context of the Study
The context of the empirical study was composed of

nine Java projects, whose main characteristics are re-
ported in Table 2. These projects account for a total of
56,286 commits but, due to computational reasons, we ran-
domly sampled 8,991 of them (16% of the total commits).
When selecting the commits to analyze, we made sure not
to discard commits containing vulnerabilities, whose col-
lection is explained later in Section 3.3.

More in general, we considered all the Java projects
having public software vulnerability data stored on the Na-
tional Vulnerability Database (NVD). This database was
originally created by the U.S. NIST Computer Security Di-
vision [67] with the aim of collecting and disclosing known
vulnerabilities affecting software systems and their causes.
It includes a comprehensive set of publicly known vulner-
abilities: each of them is described through CVE (Com-
mon Vulnerabilities and Exposure [68]) records and is en-
riched with additional pieces of information such as ex-
ternal references, severity (computed using the Common
Vulnerability Scoring System - CVSS), the related weak-
ness type (Common Weakness Enumeration - CWE), and
the known affected software configurations (Common Plat-
form Enumerations - CPEs). NVD aggregates informa-
tion from multiple data sources and is widely considered
a reliable data source [69, 70, 71]. As a matter of fact,
vulnerability reports must fulfill a well-defined set of re-
quirements6 before being added into NVD. As an exam-
ple, vendors requesting for the creation of a CVE record

5Given the nature of our study and the currently available em-
pirical standards, we followed the “General Standard” and “Data Sci-
ence” definitions and guidelines.

6https://www.cve.org/ResourcesSupport/AllResources/
CNARules#section_8-1_cve_record_information_requirements

have to provide a prose description of the issue, contain-
ing enough information for readers to understand which
are the known products affected (e.g., application, oper-
ating system, or hardware). Such a description has to be
supported by at least one accessible reference, e.g., a pub-
lic mailing list. Moreover, a CVE describes one and only
one independently fixable vulnerability, meaning that each
record describes a single instance of an issue concerning a
violation to the security policy of a product. This makes
us confident enough about the validity and quality of the
information contained in NVD.

Our focus on Java was motivated by the fact that pre-
vious research on software vulnerabilities did not exten-
sively targeted this programming language (see Table 1):
as such, our study can be considered as the first investiga-
tion of the capabilities of just-in-time detection approaches
for the identification of known Java vulnerabilities. In ad-
dition, our choice was based on the availability of metrics
that could characterize different aspects of Java source
code, as well as the tools that could automate the data
collection procedures.

3.3. Collecting Vulnerability-Contributing Commits
When collecting software vulnerabilities, we mined

data exploiting CVE-Search,7 an open-source tool that
imports the entire set of CVE records from NVD into a
MongoDB database for easier search and processing. We
performed some additional filtering steps with the aim of
removing incomplete/incorrect data that might have bi-
ased our conclusions: (1) we discarded CVEs that reported
commits pointing to more than one GitHub repository,
since we could not establish which project was involved
in the first place; (2) we filtered out vulnerabilities whose
fixes were marked as merge commits, as these do not apply
any modification in the project history but simply incorpo-
rate the changes from a branch into another, i.e., we could
not consider them as actual patches since we were inter-
ested in getting precise information about the time when
fixes were added into the history rather than the time when
they were sent into the main branch. After these filtering,
we ended up with a total of 27 vulnerabilities (CVEs) of
12 different types (CWEs).

Afterwards, we implemented a mining procedure based
leveraging the well-known SZZ algorithm [72] to fetch the
vulnerability-contributing commits (VCCs) [73], i.e., the
commits that are likely to have contributed to the intro-
duction of a vulnerability. To this purpose, we started
from vulnerability-fixing commits that we mined from
NVD. Specifically, for each file fi touched by the fixing
commit cfix, our algorithm runs the git-diff command
to extract the list of modified lines in fi with respect to the
previous commit cfix−1; then, it runs the git-blame com-
mand on the deleted lines in order to retrieve the commits
where these were changed last. We consider these commits

7https://github.com/cve-search/cve-search
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as VCCs of the vulnerability fixed in cfix. As a result, for
each vulnerability we obtain a set of VCCs as more than
one commit might contribute to its introduction.

To improve the precision of this procedure, we applied
some additional adjustments to reduce the risk of catching
false positive VCCs. We excluded files from cfix that were
(1) non-source Java files, (2) test classes, (3) build files,
(4) documentation and blob resources (the entire list of
blacklisted files is available in our online appendix4). We
also filtered out the VCCs that appeared as merge com-
mits, as they do not report any actual modifications to
the project’s history—indeed, we were interested in the
moments in which the patches were added in the history
for the first time, not when they were merged into the main
branch [74]. Finally, we managed the cases where the fix-
ing commit cfix consisted only of added lines. In these
situations, there are no lines to blame and we assumed
that the files involved in the commit were born vulnera-
ble: as such, we marked the commits that introduced the
files as vulnerable. Overall, we managed to obtain a total
of 90 distinct VCCs among the nine projects—a detailed
list reporting these commits is available in our online ap-
pendix.4 Whether or not a commit contributes to a vul-
nerability represents the dependent variable of the models
built, i.e., the information that we aimed at predicting us-
ing machine learning techniques.

3.4. Collecting Software Metrics
Once we had collected vulnerability data, we focused

on the independent variables. In this respect, we exploited
three families of metrics that were investigated in previ-
ous studies on software vulnerability detection: process,
product, and textual features. The detail of each of these
metrics, along with the description and the rational behind
their usage, is described in Table 3.

With respect to process metrics, we considered dif-
ferent aspects previously treated in vulnerability research
[55, 29, 28, 51, 58] and able to characterize the change
history of the projects, like the churn metrics (concern-
ing added and deleted lines, methods, conditions, method
calls, and assignments), the extent of contribution made
by the committing author (i.e., the developer implement-
ing the change), the number of files involved in the com-
mit, the scattering of the changes, the number of pre-
vious changes and author of the files, etc. To compute
these metrics, we developed our own tool, available in
our online appendix.4 It is worth point out that most of
these metrics concerns metadata directly extracted from
the commit metadata—e.g., the number of days between
the commit date and the project creation date—while two
of them, namely Mean Days Since Creation and Mean of
Past Changes, were obtained by analyzing the git meta-
data related to each file involved in the commit. For these
metrics, we aggregated the values obtained from each valid
file (with the same filters used in Section 3.3) using the
mean operator to bring them at commit-level, enabling
their use as predictors for the machine learning models.

As for product metrics, we took into account the Chi-
damber & Kemerer suite [53], a set of well-known Object-
Oriented metrics able to quantify different structural prop-
erties of the source code, such as cohesion and coupling.
Similarly, to process metrics, we exploited an ad-hoc tool,
available in our online appendix,4 able to extract struc-
tural metrics from a given parsable Java files. To reach
our goals, we run it against all the Java files involved in
the commits to extract the traditional set of CK metrics
(listed in Table 3); afterwards, we computed the mean of
the metric values to bring them at commit level, similarly
to what was done by Yang et al. [52] for the SLOC metric.

Finally, we extracted the textual features experimented
by Scandariato et al. [27]. For each commit, we selected
the valid files (which underwent to the usual filters de-
scribed in Section 3.3) so that we could make our docu-
ment corpus. Then, we extracted its bag-of-words [56, 57],
which is a compact representation of the documents in the
corpus through the number of occurrences of the words
(a.k.a. terms) appearing in the entire corpus (which con-
stitute the vocabulary). Namely, a file is represented as
a vector of M integers, each representing the counting
of the M words appearing in the vocabulary. At this
point, the bags-of-words of the files involved in a commit
were summed together, so that any commit could have
its own bag-of-words made of the total number of times
each words appeared in the modified valid files only. We
treated each term as an independent variable for our mod-
els. To remove any noise that could damage the models
performance [75, 76], we filtered out the high-frequency
words—removing the ones appearing in more than 80%
documents, as they add poor information to the text; in
addition, we also dropped low-frequency words, appearing
in less than 5% documents, to reduce the dimensionality of
the feature space, which was shown to improve the train-
ing process [77, 78]. All in all, we ended up with 1,318
distinct tokens, each encoded as a numeric feature. In ad-
dition, following the approach adopted by Perl et al. [51],
we extracted the bag-of-words of the sole commits’ patches
to count the terms involved in the actual change, with-
out considering the unaffected code areas. Specifically, for
each commit we obtained the bag-of-words of the added
lines only, and the bag-of-words of the deleted lines shar-
ing the same vocabulary. Then, we computed the absolute
difference between the two vectors, so that we could ob-
tain the number of times each term was involved, either in
an addition or deletion, in the actual patch. Also in this
case we filtered out high- and low-frequency words using
the same filters used for the entire files. In this case, we
ended up with 128 distinct tokens, encoded as 128 integer
features. It is worth remarking that we did not compute
the overlap between these 128 terms and the 1,318 ex-
tracted in the previous step, as they originate from two
different corpuses (i.e., files and patches). Thus, we con-
sidered a total of 1,446 tokens. These two approaches were
implemented in our own scripts, which relied on Scikit-
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Learn’s CountVectorizer class,8 and made it publicly
available into our appendix.4

3.5. Setting the Machine Learning Methods
After having collected dependent and independent vari-

ables to be used, we configured the machine learning mod-
els to detect vulnerable commits. The design of our ma-
chine learning pipeline is described hereafter.

3.5.1. Design of the models
As we had collected different families of metrics, we

could experiment with various models. We first devised
three supervised techniques that relied, individually, on
product, process, and textual metrics to predict the prone-
ness of the commits to be vulnerable: in this way, we could
assess the contribution given by each metrics set. After-
wards, we started combining them by adopting a stepwise
method: we created models based on product+process,
product+textual, and process+textual features. Finally,
we also considered the model using all the features to-
gether. As a consequence, we designed and experimented
with seven different combinations of features.

3.5.2. Selection of the classifier
We treated the problem as a binary classification task:

determining whether a commit contributed to a vulnerabil-
ity or not. As discussed in Section 2, the related literature
did not pose conclusive results on the machine learning
algorithms that are more suitable for the classification of
software vulnerabilities. For this reason, we experimented
with the following eight learning algorithms:

Support Vector Machine (SVM) [92]. This is a
statistical model that constructs the best hyper-plane out
of the infinite possibilities in a N -dimensional space—with
N being the number of features. The best hyper-plane
is capable of distinctly separate the data points, having
the maximum margin (namely the largest distance to the
nearest training data points of any class).

KNearestNeighbors (KNN) [93]. This a non-
parametric technique that classifies the samples using the
dataset alone (i.e., without building a model). The classi-
fication is made as a majority vote, i.e., based on the class
of the majority of its k nearest neighbors data points.

Decision Tree [94]. This is a classifier with a tree-
like structure, characterized by multiple nodes and leaf.
The nodes are linked through branches, representing a test.
The output is given by the decision path taken. The deci-
sion tree is structured as an if-then-else diagram: given an
input variable (root node), it leads to multiple sub nodes
through branches. The process is iterated until the output
(leaves) is reached.

8https://scikit-learn.org/stable/modules/generated/
sklearn.feature_extraction.text.CountVectorizer.html

Random Forest [95]. This is an ensemble tech-
nique that helps to overcome the overfitting issues of the
decision tree. Ensemble means that this model uses a set
of weak classifiers (decision trees in this case) to solve the
assigned problem. Each individual tree is generated us-
ing a random subset of samples in the dataset. To reduce
the correlation between the individual trees, the splitting
point is chosen using a random subset of the dataset, with-
out replacement. Using this method, a Random Forest
is able to better generalize the data and reduce the over-
fitting problem faced by other classifiers.

Extremely Randomized Trees [96]. Extra-
Trees adds a further randomization to the Random For-
est, as each node of the weak classifiers is split randomly.
This means that instead of relying to specific metrics for
choosing the optimal splitting point, this model randomly
generates a series of splits and choose the one which gives
the best result. This characteristic allows the model to
be less computationally expensive compared to the others,
while maintaining high generalization capabilities.

AdaBoost [97]. This is an ensemble model based
on boosting [98], in which each individual tree is trained
in a sequential fashion. Initially, a single decision tree is
created and the same weight is assigned to all samples in
the training set. Progressively, the weights are increased
for the misclassified samples and another tree is generated.
The whole process continues until a predefined number
of trees has been generated or the accuracy of the model
cannot be improved anymore. With respect to the other
ensemble models, AdaBoost is less prone to overfitting.

Gradient Boosting [99]. As AdaBoost, it uses
an ensemble of individual trees which are generated se-
quentially. A tree is generated after each iteration to min-
imize a differential loss function. The process stops when
the predefined number of trees has been created or when
the loss function no longer improves.

XGBoost [100]. An improved implementation of
Gradient Boosting algorithm, allowing faster compu-
tation and parallelization.

The choice of focusing on these classifiers was driven
by our willingness to investigate the classification perfor-
mance of a large variety of algorithms, including ensemble
methods. It is worth remarking that in our research we
were interested in benchmarking narrow artificial intelli-
gence techniques [101]: the evaluation of other approaches
belonging to the category of strong artificial intelligence,
e.g., deep learning, is part of our future research agenda.

3.5.3. Preprocessing steps
As recommended in literature [38], we performed a

number of steps aimed at building a machine learning
pipeline that could avoid bias in the interpretation of the
results. In the first place, we applied a feature selection
in order to avoid multi-collinearity [39]. This step was
required to remove correlated metrics that provide the
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Table 3: List of metrics extracted from each commit in the dataset, used as independent variables (features) for the machine learners. The
table reports a description, the rationale behind their selection, and related works in which they have been used for VPMs.

Name Description Rationale VPMs
Process Metrics
Added Lines The number of lines added in the commit. A high amount of added lines indicates a large commit,

which has a higher risk of introducing defects [79, 80, 81]
or vulnerabilities [29, 73, 28].

[29, 48, 51, 52]

Deleted Lines The number of lines removed in the commit. Same as Added Lines. [29, 48, 51, 52]
Added Methods The number of new functions/methods added in the commit. New functions or methods may add new security check

or increase the attack surface [82, 52].
[51, 52]

Deleted Methods The number of removed functions/methods in the commit. Deleting security-critical functions or methods may re-
move security checks or reduce the attack surface [82, 52].

[51, 52]

Modified Methods The number of changed functions/methods in the commit. The removal of security-critical functions or methods may
modify the security profile [82, 52].

[51, 52]

Added Conditions The number of added conditional expressions in the commit. Same as Added Methods. [52, 61]
Removed Conditions The number of removed conditional expressions in the commit. Same as Removed Methods. [52, 61]
Added Method Calls The number of added function or method call in the commit. Same as Added Methods. [52, 61]
Removed Method Calls The number of removed function or method call in the commit. Same as Removed Methods. [52, 61]
Added Assignments The number of assignments added in the commit. Adding new assignments may improve or drop security

constraints [82, 52].
[52, 61]

Removed Assignments The number of assignments removed in the commit. Same as Added Assignments. [52, 61]
Mean Days
Since Creation

The mean number of days elapsed from the creation dates of
each modified file to the commit date.

The “age” of each file could be correlated with the pres-
ence (or absence [81]) of vulnerabilities.

N/A

Mean of
Past Changes

The mean number of previous changes (i.e., commits) of each
touched file.

A file that was changed many times is more prone to
defects [80] and vulnerabilities [29, 28, 51].

[29, 28, 51, 52]

Past Different
Authors

The size of the set of distinct authors that touched the files
modified in the commit.

A file touched by many different developers is more prone
to defects [80] and vulnerabilities [29, 28, 51, 79, 73].

[29, 28, 51, 52]

Author Past
Contributions

The number of commits done by the author before the commit. Inexpert developers may involuntarily contribute to vul-
nerabilities [73].

[52]

Author Past
Contributions Ratio

Author Past Contributions divided by the total number of com-
mits made to the entire project.

Same as Author Past Contributions. [51]

Author 30-days
Past Contributions

The number of commits done by the author within 30 days
before the commit date.

Same as Author Past Contributions. N/A

Author 30-days Past
Contributions Ratio

Author 30-days Past Contributions divided by the total num-
ber of commits made 30 days before the commit date.

Same as Author Past Contributions. N/A

Author Workload The amount of work that an author has invested within a 30-
days time window. Given a commit x performed on date d, we
considered the distribution of commits done by the developers
involves within 30 days before d, scaled to [0..1] range, and
assigned its percentile value [83].

A developer with high workload could implement poor
quality code [83], defects [84] or vulnerabilities [29].

N/A

Days After Creation The number of days elapsed from the project’s repository cre-
ation (i.e., the first commit) date to the commit date.

The “age” of the repository has an impact on the general
code quality [83] and the introduction of errors [85].

N/A

Fix Whether or not the commit had the goal to fix an issue or
a defect. This is done by looking at specific keywords in the
commit message (reported in our online appendix).

Fix commits may cause collateral damages of introducing
new bugs [35] or vulnerabilities [86].

[52]

Touched Files The number of files modified in the commit, excluding the
irrelevant ones (test, documentation, build, and blob files).

A commit touching many files lacks of cohesion and may
have a higher risk of introducing defects [51, 87, 52].

[52, 61]

Entropy of Changes Distribution of changes across each modified file, measured us-
ing the Normalized Static Entropy, as used by Kamei et al. [35].

A high entropy indicates a highly-fragmented commit,
i.e., scattered changes touching many files, which indi-
cates a highly-complex commit [88, 35, 89].

[52]

Number of Hunks The number of continuous blocks of changes in the commit diff. Similar to Entropy of Changes. [51]
Product Metrics
LOC Lines of Code, counting both source and comment lines. Large files tend to have higher risk of becoming vulnera-

ble [90, 29, 79, 51, 30].
[29, 46, 48, 50]

SLOC Source Lines of Code, i.e., LOC without comment and docu-
mentation lines.

Same as LOC. [46, 52]

WMC Weighted Methods per Class, i.e., the sum of the complexities
(i.e., McCabe’s Cyclomatic Complexity) of all the methods in
a class [53].

Complex code is difficult to maintain and test [28, 46, 54]
and thus has higher chance of having vulnerabilities [28,
46, 29].

[29, 46, 50]

CBO Coupling Between Object, i.e., the number of dependencies a
class has with other classes [53].

Highly coupled code makes input from external sources
harder to trace [28], and has positive correlation with
vulnerabilities [46].

[29, 46]

RFC Response For a Class, i.e., the number of methods (including
inherited) that can potentially be called by other classes [53].

Same as CBO. [46, 28, 50]

DIT Depth of Inheritance, i.e., the depth of the class within its
inheritance tree [53].

A deep class is likely to have a larger number of inherited
methods, making it more complex to predict its behavior
as it is affected by many ancestor classes [46].

[29, 46]

NOC Number of Children, i.e., the number of direct sub-classes [53]. Changing a class with many incoming dependencies may
introduce defects [46].

[29, 46]

LCOM1 Lack of Cohesion of Methods version 1, i.e., the number of
pairs of methods not sharing all the fields they access to [53].

Poor cohesive code has been shown to be positively cor-
related with vulnerabilities [46].

[46]

LCOM2 Lack of Cohesion of Methods version 2, i.e., the percentage
of methods not accessing a specific attribute averaged over all
attributes in the class [91].

Same as LCOM1. [46]

Text Metrics
Files Term(s) Fre-
quency

The counting of each word that appears in the full text of the
modified Java files.

Term frequency has been shown to improve the prediction
power if considered with other metrics [50, 31].

[27, 49, 50]

Patches Term(s)
Frequency

The number of times in which the words appearing in the
patches involving Java files were changed (added or removed).

Same as Files Term(s) Frequency. [51]
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machine learners with the same (or similar) information
and that might cause them to not being able to derive
the correct explanatory meaning of the features. In this
respect, we exploited the Variable Inflation Factor (VIF)
method [39]: for each independent variable and for each
experimented model, the vif function measures how much
the variance of the model increases because of collinearity.
The features having a vif coefficient higher than 5 were
removed; the process was repeated until the point where
all the features had coefficients lower than the threshold.
Afterwards, we considered the problem of hyper-parameter
configuration. In particular, we run the Random Search
algorithm [41], which performs a randomized search of the
hyper-parameter space with the aim of identifying the op-
timal hyper-parameter values to use for the classification
task. Bergstra et al. [41] proved that this search algorithm
is able to reach, using less computational resources, the
same—or even better—hyper-parameter configuration as
an exhaustive search, e.g., Grid Search.

3.6. Evaluating the Machine Learning Methods
Our empirical investigation led to the training and val-

idation of a total of 56 different models, coming from
the combination of the eight machine learning algorithms
(Section 3.5.2) and the seven features combinations (Sec-
tion 3.5.1). The results of the comparison of these models
are reported in Section 4. After setting the machine learn-
ers, we defined the data analysis procedure to address our
research question.

3.6.1. Training and Validation strategy
To assess the capabilities of the considered models, we

had to define a training and validation strategy. We took
into account the imbalance of the dataset: as previously
shown (see Table 2), each project has around 1% of vul-
nerable commits. As such, we applied the Synthetic Mi-
nority Oversampling Technique (SMOTE) [102]: for each
project, this technique generates artificial samples of the
minority class (i.e., vulnerable commits in our case) in or-
der to rebalance the classes. Unfortunately, we found that
the technique could not be applied on all the considered
projects. In particular, SMOTE requires the presence of
at least two samples of the minority class; otherwise, it
does not have enough data to oversample the dataset. In
two projects, i.e., Junrar and Litemall, only one com-
mit was labelled vulnerable and it was not possible to ap-
ply the balancing approach. This problem influenced our
training procedures, as we could not effectively train ma-
chine learners using a within-project strategy.

Hence, we went for a cross-project training. This
means that we aggregated data coming from n-1 projects,
balance the training set, and then verify the performance
of the models on the remaining project. More specifically,
we adopted a Leave One Group Out (LOGO) validation
strategy, which divides the entire dataset into folds, each
containing all the commits of a single project for a total of

9 folds. The validation consisted of 9 iterations, each using
8 folds to build the training set, and the remaining one for
the test set. As a consequence, each project was used in
n-1 training sessions, and only once for the testing.

3.6.2. Detection performance measures
For each fold experimented during the validation, we

assessed the machine learning models capabilities using a
number of performance measures. First, we computed pre-
cision and recall. However, as suggested by Powers [103],
these two measures present some biases as they are mainly
focused on positive examples (i.e., vulnerable commits in
our context) and predictions, so they do not capture any
information about the rates and kind of errors made. The
contingency matrix (a.k.a. confusion matrix), and the re-
lated F-measure overcome this issue. Moreover, we com-
puted the Matthews Correlation Coefficient (MCC) [104]
to understand possible disagreement between actual values
and predictions—the coefficient involves all the four quad-
rants of the contingency matrix. In addition, from the con-
tingency matrix we retrieved the measure of true negative
rate (TNR), which measures the percentage of negative
sample correctly categorized as negative, false positive rate
(FPR) which measures the percentage of negative sample
misclassified as positive, and false negative rate (FNR),
measuring the percentage of positive samples misclassi-
fied as negative. The measure of true positive rate is left
out as equivalent to the recall. Finally, we computed the
Receiver Operating Characteristic (ROC) curve, and the
related Area Under the Curve (AUC-ROC). This measure
gave us the probability of ranking a randomly chosen posi-
tive instance higher than a randomly chosen negative one.

3.6.3. Statistical Analysis
The final step of our methodology consisted of the ap-

plication of statistical tests to verify whether the differ-
ences in the performance achieved by the various experi-
mented models were statistically significant. Such an anal-
ysis was useful to assess the existence of metrics and/or
classifiers that were more suitable for the problem of just-
in-time vulnerability detection. Since the data are not
normally distributed, we exploited the Friedman Test with
the Nemenyi post-hoc test [105] on all the machine learning
models. This is a post-hoc test that identifies the groups of
data that differ after a statistical test of multiple compar-
isons has rejected the null hypothesis (the groups are simi-
lar), making a pair-wise performance. We selected this test
because it is robust to multiple comparisons - which is our
case since we had to compare multiple models on multiple
features - and does not require the underlying distribu-
tion to be normally distributed. To conduct the statistical
analysis, we used the Nemenyi package for Phyton.9
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Figure 1: The AUC-ROC scores obtained during the LOGO validation of the 56 models, grouped by the seven features combinations.
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Figure 2: The F-measure scores obtained during the LOGO validation of the 56 models, grouped by the seven features combinations.

4. Empirical Study Results

Figure 1 and Figure 2 depict the box plots reporting the
distribution of AUC-ROC and F-measure values obtained
during the LOGO validation of the 56 machine learning
models on the considered dataset. In both figures, each
color indicates the model produced by the selected learning
algorithms (Section 3.5); the box plots were also grouped
by the seven different combinations of features. For the
sake of readability and comprehensibility, we only report
in detail the results of two of the seven performance metrics
described in Section 3.6; however, the complete results are
included in the online appendix.4

Considering the AUC-ROC distributions (Figure 1)
the ensemble methods (Random Forest, Extra Trees,

9https://scikit-posthocs.readthedocs.io/en/latest/.

AdaBoost, Gradient Boosting, and XGBoost) gen-
erally performed better than the three basic classifiers
(SVM, KNN and Decision Tree) over all the seven com-
binations of features. Among all the feature sets, the prod-
uct group alone (label “PRODUCT”) caused the models
to obtain the worst AUC-ROC scores. Something similar,
though with lesser extent, happened for the textual met-
rics (label “PRODUCT”). The combination of these two
groups (label “PRODUCT-TEXT”) did not yield any rel-
evant positive effect, i.e., the addition of product metrics
does not provide substantial changes in terms of AUC-
ROC. Moreover, the sole presence of product and/or tex-
tual metrics did not highlight any relevant difference be-
tween basic classifiers and ensemble models, i.e., they are
comparable in terms of AUC-ROC. Although the ensem-
ble models still show better performance, the SVM and

10



KNN models are the only ones that greatly benefit from
the presence of textual metrics. This phenomenon becomes
even more evident when moving from the product+process
group to the combined one. The most interesting re-
sults occurred when process metrics were involved (all the
groups having the “PROCESS” label in Figure 1). On the
one hand, these metrics further increased the differences
among the AUC-ROC distributions—e.g., the large gap
between the box plots of AdaBoost and SVM. On the
other hand, almost all the models—with the notable excep-
tion of the SVMs—received a general improvement. What
is more, the ensemble models achieved the best AUC-
ROC scores in product+process feature combination (la-
bel “PRODUCT-PROCESS”), hinting that the addition of
textual metrics causes negative, though marginal, effects.
Once again, SVM and KNN were not subject to these phe-
nomena: their models did not receive any positive effect
from the presence of process metrics. Indeed, similarly to
the product metrics, they seem to be quite “insensitive”
from the presence or absence of process metric when the
textual metrics are already involved. This can be seen by
comparing the set having the textual metrics alone (la-
bel “TEXT”) with the ones including them (“PRODUCT-
TEXT” , “PROCESS-TEXT” , and “COMBINED”).

The F-measure trends (Figure 2) are largely different
from the ones seen with the AUC-ROC. In the first place,
not all the ensemble methods benefit from the presence
of process metrics. Random Forest, Extra Trees
and XGBoost classifiers scored even lower F-measures
than the basic classifiers; this difference becomes even
larger when textual metrics are added: their F-measures
collapsed around 0. Differently, AdaBoost Gradient
Boosting preserve the general behavior seen with the
AUC-ROC: adding process metrics is always beneficial,
i.e., the inter-quartile ranges shrunk, while the mean and
median values increased. To a far lesser extent, these two
models suffer from the presence of textual metrics, as they
may slightly worsen their performance. As an example,
XGBoost dropped for about 0.1 point in F-measure when
textual metrics were added to product and process models
(i.e., from “PRODUCT-PROCESS” to “COMBINED”). In
any case, the sole presence of process metrics is enough to
achieve acceptable performance.

Finding #1

The majority of the models benefit—in terms of both
AUC-ROC and F-measure scores—from the presence
of process metrics in the set of predictors. SVM- and
KNN-trained classifiers give the best of themselves
when textual metrics are involved, while the opposite,
to varying degrees, occurs for the other models, es-
pecially in terms of F-measure—which is much more
susceptible than AUC-ROC.

From the point of view of the machine learning algo-
rithms, the Decision Tree provides the most unstable

models, highly influenced by the set of predictors used, i.e.,
they received the largest drop in terms of both AUC-ROC
and F-measure when textual metrics were added. This
could be explained by the fact that decision trees are par-
ticularly sensible to noise in the training data, and cannot
properly generalize. This effect is more obvious in the
case of a high dimensional feature space—i.e., the one cre-
ated when all the tokens from the two bag-of-words built
are added—or highly imbalanced data—which is true in
this context since the number of vulnerable instances is
far lower than the number of “safe” instances. Such a lim-
itation is partially solved by using ensemble methods.
Conversely, the classifiers trained using SVM and KNN
are the only models positively influenced by the presence
of textual metrics. In particular, KNNs resulted to pro-
duce the most stable models, being the least influenced
by other predictors that are not part of the textual group,
and achieving very similar scores in most combinations of
predictors. Between the two, KNN outperformed SVM in
terms of AUC-ROC, but it scored very low performance in
terms F-measure. Nevertheless, both algorithms did not
manage to train models with high scores, making them
unsuitable in the context we considered.

Random Forest and Extra Trees, despite hav-
ing a similar learning mechanisms, obtained quite differ-
ent distributions: they both scored the worst possible F-
measures, being around 0 in most cases, even lower than a
traditional Decision Tree. They draw benefit from the
inclusion of process metrics, but they are too much nega-
tively influenced by the tokens of the bag-of-words. Curi-
ously enough, they still managed to reach very high AUC-
ROC scores, sometimes even outperforming all the other
learners. Such contrasting AUC-ROC and F-measure val-
ues implies that there is a possibility to improve the pre-
dictive capabilities of these models by tuning the decision
threshold: instead of keeping it to the default value 0.5,
change it accordingly to the specific needs, finding the best
trade-off between the recall and the false positive rate,
which also have an impact to the F-measure.

The scenario is thoroughly different for boosting-based
models: AdaBoost, followed by Gradient Boosting,
outperformed the other learners on all fronts. This re-
sult was somehow expected since both these models build
sequential shallow weak classifier, usually a single split de-
cision tree, which are less prone to overfit compared to the
deep weak classifiers used by other ensemble models like
Random Forest. Moreover, the aggregation of the pre-
diction is weighted in the case of AdaBoost and Gradi-
ent Boosting, hence the individual weak classifiers who
performed better have a higher weight compared to those
who performed poorly. In the other ensemble models, the
prediction of each weak classifier carries the same weight.
Oddly enough, XGBoost, despite being a boosting-based
model, was very far from the performance of AdaBoost
and Gradient Boosting, and more similar to Random
Forest and Extra Trees.
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Finding #2

Boosting-based classifiers, especially AdaBoost and
Gradient Boosting, achieved the best overall re-
sults. The other ensemble models scored far worse F-
measures, even lower than basic classifier. Random-
Forest and ExtraTrees, however, obtained very
high AUC-ROC scores, hinting the possibility to im-
prove their predictive capabilities by properly tuning
the decision threshold. SVMs and KNNs are the only
models to benefit from textual metrics, and generally
ignore the effect of other features.

To assess whether the distributions of the performance
metrics were statistically different when considering differ-
ent combinations of predictors, we run the post hoc Ne-
menyi rank test [105] on all the machine learning mod-
els. For the sake of readability, in this paper we only
report and describe the results for AdaBoost, i.e., the
algorithm that provided the best results over all the seven
combinations of features. For consistency, we show the
p-values of the Nemenyi rank test computed on the distri-
bution of AUC-ROC and F-measure values by the means of
heatmaps (Figures 3a and 3b). In addition, we report the
statistical results (in terms of AUC-ROC and F-measure)
of the eight experimented machine learners trained using
the product+process features set, i.e., the best combina-
tion according to our results (Figures 4a and 4b). The
complete results are reported in our online appendix.4

Figure 3a shows statistically significant differences
(depicted in dark violet) in AUC-ROC values between
the models built using the product metrics alone (label
“PRODUCT” label) and both (1) those built using process
metrics (label “PRODUCT”), and (2) the ones trained us-
ing only the textual metrics (label “TEXT”). This confirms
the large positive effect that process metrics have on the
AUC-ROC measure on AdaBoost-trained models. Be-
tween the product and textual groups there are no sta-
tistically significant differences, implying that there is no
sufficient evidence to establish which provides higher pre-
dictive capabilities. On a similar note, Figure 3b shows the
presence of statistically significance differences between
the combined group (label “COMBINED” and the groups
involving either product or textual metrics (labels “PROD-
UCT” , “TEXT” , and “PRODUCT-TEXT”) in terms of F-
measure. This is a further evidence on the contribution
provided by the process metrics.

Focusing on the process+product combination, which
provided the best models overall, Figure 4a better high-
lights the comparable performance obtained by the en-
semble methods which significantly differs from the ones
obtained by SVM and KNN—which did not benefit from
the process metrics, but, rather, from textual ones. Fig-
ure 4b provides a different view of what could be seen
from the box plots (Figure 2): AdaBoost and Gradient
Boosting far greatly surpassed the F-measures scored
by RandomForest, ExtraTrees, and DecisionTree

models. Surprisingly, the DecisionTrees were able to
significantly surpass the performance of RandomForest
and ExtraTrees. This does not immediately implies
that decision trees are better than the related ensemble
methods. As a matter of fact, RandomForest and Ex-
traTrees still scored higher AUC-ROC, suggesting the
need to fine tune the decision threshold to achieve better
predictive capabilities, instead of relaying on the default
one (which could also be the best choice in certain cases).
This aspect, however, deserves further investigation.

Finding #3

Significance tests confirm the findings discovered dur-
ing the qualitative analysis of the distributions by the
means of box plots: the adoption of process metrics to
AdaBoost models provides improvements in terms of
both AUC-ROC and F-measure. More in general, the
boosting-based algorithms are better than other clas-
sifiers, while non-boosting ensemble methods still need
further investigation on how to improve their capabil-
ities by tuning their decision thresholds.

5. Discussion and Implications

The results achieved in our empirical study revealed a
number of insights that may lead to concrete implications
for the software engineering research community, and that
we further discuss hereafter.

Comparison with other just-in-time VPMs. Our
analyses revealed a number of insights that could be re-
lated to the ones discovered by Perl et al. [51] and Yang
et al. [52], i.e., the closest studies to our work and that
represent the current state-of-the-art in just-in-time vul-
nerability prediction modeling. Similarly to what Riom et
al. experienced [61], we could not provide a precise com-
parison with the VPMs described in [51] and [52], as the
original papers point to appendices that no longer exist,
preventing us to access to the raw results they achieved.
Moreover, the description of the metrics extraction pro-
vided in those papers do not report implementation de-
tails, making the reproduction even harder. For all these
reasons, we only compared our findings with the ones re-
ported in [51] and [52], leaving out any detailed comments
on the actual performance scores achieved by the models.
In this respect, our goal was to find any possible point of
agreement and/or disagreement between our contribution
and the current state-of-the-art VPMs.

The performance of the two VPMs [51, 52] were re-
ported in terms of precision, using the rationale that, in
the context of predicting software vulnerabilities, a higher
precision is preferable as the minimization of the false
positive rates is instrumental for preventing developers to
pointlessly inspect a large number of commits that will
not contribute to the insertion of vulnerable code. Be-
cause of this, the authors compared their models with a
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(a) AUC-ROC (b) F-measure

Figure 3: Nemenyi test p-values obtained for comparing the eight AdaBoost models trained on the seven features combinations.

(a) AUC-ROC (b) F-measure

Figure 4: Nemenyi test p-values obtained for comparing the models trained on product+process feature combination using the eight machine
learning algorithms.

baseline static analysis tools, i.e., FlawFinder [106], to
find whether they could outperform its detection capabil-
ities at the same recall level (done by varying the deci-
sion threshold). In both studies, the models were able to
achieve much higher precision, i.e., they largely reduced
the amount of false positives discovered by FlawFinder.
Yet, such a comparison is still limited, as it does assess
the actual effectiveness of machine-learning models. As a
matter of fact, under these configurations—i.e., when set-
ting the decision threshold to have the same recall level
as FlawFinder—the SVM built in [51] obtained an F-
measure of 0.343, while the RandomForest used in [52]
scored 0.198. Both these results indicate limited effective-
ness. It is worth remarking that we could not compare
these scores with ours as all the studies considered dif-
ferent contexts and feature sets, making any comparison
unfair and leading to wrong conclusions. In any case, the
F-measure, together with precision and recall, cannot be
the sole measure to be taken into account, especially when
working with imbalanced datasets. Indeed, other mea-
sures, such as AUC-ROC and MCC, are recommended to
provide a better overview on the predictive capabilities

of the models [107, 40]. To the best of our knowledge,
our study is one of the first in JIT vulnerability predic-
tion that does not consider the precision alone, and whose
primary goal is not overcoming static analysis tools, but
rather comparing many learning algorithms to find which
provides the best models, as well as adopting critical pre-
processing steps aimed at improving the training session.

Both [51] and [52] considered the use of textual met-
rics under the “code metrics” feature group. Specifically,
Perl et al. [51], not only they run the bag-of-words on the
patch content, but they also added the counting of the
C/C++ language keywords (e.g., if, goto, etc.) in the
same group; simlarly, Yang et al. [52] counted the C/C++
keywords appearing in the modified files of the commit.
The behavior of our SVM models seems to be in line with
the one by Perl et al. [51]: the textual metrics seems to
be beneficial, as opposed to the process metrics (which
they called GitHub meta-data). This may be explained
by the fact that SVMs are able to perform well even with
large and sparse feature space, i.e., when considering words
counting [78]. On the other hand, the RandomForest
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in [52] obtained the worst performance when involving the
textual metrics, the same encountered with our Random-
Forests. In both studies the authors managed to ob-
tained the best performance when considering all metrics
together, confirming the results observed in [31] at the file
granularity level. Our SVMs did not experience this effect,
as the best model is obtained when only textual features
were considered, while our RandomForests confirmed
this effect only for the AUC-ROC scores, as the addition
of textual metrics dropped the F-measure close to 0. This
hints the need of better data pre-processing activities tai-
lored on the requirements of each learning algorithm.

JIT vulnerability detection: Are we there yet?
In the title of the paper, we pose this question. Accord-
ing to our results, the answer is: “No”. The accuracy of
the existing vulnerability prediction models is not enough
to make developers aware of possible vulnerabilities when
committing new changes onto a repository. Our study
identifies a number of open issues and challenges that the
research community should further consider and on which
we elaborate more in the remainder of the section. From
the predictive power of the features to the machine learn-
ing pipelines configured for the prediction exercise, the
currently available solutions cannot provide a just-in-time
feedback to developers. From a practical perspective, our
results indicate the lack of techniques that can analyze
the changes done within a commit and detect possible in-
consistencies inducing vulnerabilities. As such, developers
must still rely on longer-term predictions that analyze en-
tire releases to identify vulnerable files. This represents a
threat to the usability and usefulness of the available ap-
proaches, as indicated by previous work [35]. Hence, our
work points out the need for further research on the mat-
ter and that should be devoted to all components of the
machine learning pipelines.

The existing metrics are not enough. One of the
key outcomes of our research is the inability of current
metrics to characterize vulnerable commits in an effective
and consistent manner. Indeed, despite having consid-
ered most of the metrics exploited in previous work on
VPMs, in many cases the performance achieved in terms
of F-measure are low. This is particularly evident when
considering the textual metrics: the bag-of-words source
code representation which was found successful by Scan-
dariato et al. [27] was instead poorly accurate in our case.
This is true for both models exploiting this representa-
tion individually and those where textual features are com-
bined with other metrics. This might be due to the fact
that, when run on the set of modified files, the represen-
tation takes into account too many irrelevant tokens pos-
sibly creating noise, hindering the predictive capabilities
of the bag-of-words to indicate the whether a commit con-
tributes to a vulnerability. For this reason we also (1)
employed the use of thresholds to discard both high- and
low-frequency words, and (2) added the tokens extracted
from the commit patch only, with the aim of reducing the

noise and using more relevant features. Yet, these actions
did not improve the overall quality of the textual met-
ric set, highlighting the need for additional specific pre-
processing activities aiming at further reducing noise. On
a similar note, general-purpose code metrics alone often
lead to poor results. For instance, the product met-
rics exploited in our study—and in vulnerability research
in general—refer to the quantification of code quality as-
pects like cohesion, coupling, and complexity: while these
have been successfully employed in other branches, e.g.,
code smell or defect prediction [108, 109], we observed that
their contribution for just-in-time vulnerability detection
is limited. Therefore, our results represent a call for new
software metrics that can better characterize additional
aspects of the source code, e.g., capturing security-related
aspects [110, 111, 112], and evolutionary properties corre-
lated to the presence of vulnerabilities.

Better together? On the combination of fea-
ture sets. As a follow-up discussion, it is worth analyz-
ing the results achieved while combining multiple metrics.
As recently reported by Theisen and Williams [31], vul-
nerability prediction models relying on a mixture of code,
process, and textual metrics perform better than models
based on individual features. When lowering the granular-
ity of the prediction to commit-level, we found that this is
not always the case, hence partially contrasting their re-
sults. As a matter of fact, there are some specific learning
algorithms that appear to perform well under certain per-
formance measures but fail when evaluated with different
measures. For instance, despite showing very high AUC-
ROC scores, the Random Forest models resulted to be
one of the worst models in terms of F-measure when all
the features were involved, apparently owing to the addi-
tion of textual metrics. At the same time, Theisen and
Williams [31] show that the combination of textual and
software metrics lead to a considerable drop in precision,
hence affecting F-measure as well, in line with the results
we observed in Figure 2. This suggests the need for au-
tomated mechanisms that can exploit contextual informa-
tion to recommend which features would best fit the needs
of the system where vulnerabilities must be diagnosed. A
partial exception to this general finding was represented by
process metrics: as shown in our study, these are the fea-
tures that allow machine learners to significantly improve
their detection capabilities. Our results seem to be in line
with previous research showcasing the positive impact that
change history information has on predictive modelling ap-
proaches [113, 114]. As such, it seems reasonable to argue
that further research on the processes around the intro-
duction of vulnerabilities should be performed to better
characterize and improve their detection.

Ensemble learning for vulnerability prediction.
In our investigation, we observed that the choice of the
classifier has an impact on the resulting capabilities of just-
in-time vulnerability detection models. While base learn-
ing algorithms typically have low performance, we noticed
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that the use of ensemble methods improves the classifica-
tion capabilities. On the one hand, this result does not
come as a surprise, as ensemble learning has been intro-
duced with the aim of overcoming the performance of base
classifiers. On the other hand, however, it is also worth
pointing out that previous investigations in the field of
software engineering have revealed that the improvements
given by ensemble methods might be limited when other
aspects (e.g., availability of a balanced training set) come
into play [115, 116]. Our findings specifically highlight that
boosting methods might be promising for vulnerability de-
tection and, indeed, the AdaBoost learner is the one ob-
taining the best performance. As observed in Section 4, its
characteristics allow it to iteratively train a weak classifier
on subsequent training data, assigning a weight to each in-
stance of the training set, and leading to boost the learning
capabilities. These results might drive practitioners in the
selection of the technique to use when predicting vulnera-
bilities at commit-level, but also researchers to build upon
these characteristics to engineer ad-hoc methodologies to
further improve the boosting performance.

6. Threats to Validity

This section discusses the possible biases to our results
and reports the employed mitigation strategies.

Threats to construct validity. A first threat in this
category relates to the dataset exploited. We mined the
National Vulnerability Database with the aim of collecting
real, verified data on the vulnerabilities that affected soft-
ware projects in the past. The nature of the information
contained in NVD allowed us to be confident about the
reliability of the dataset. Nonetheless, we cannot exclude
imprecision: for instance, a patch reported in the database
might have not removed a vulnerability as intended.

We relied on a technique based on SZZ to fetch the
vulnerability-contributing commits that are likely to have
caused the patch applied in the vulnerability-fixing com-
mits mined from NVD. Previous studies have shown that
this algorithm may frequently produce false positives [117];
to mitigate this risk we adopted some precautions. We
exploited the implementation of SZZ provided by Py-
Driller [118], which follows the standard version of the
algorithm [72] on which some adjustments have been in-
cluded, i.e., discarding the candidate commits where only
comments, cosmetic changes, or empty lines were blamed.
This implementation achieved the highest recall with re-
spect to the other variants [119], and so we opted for it to
reduce the risk of missing relevant VCCs.

Over the initial population of 56,286 commits consid-
ered in our context, we sampled 8,991 commits due to
computational constraints. We are aware that this sam-
pling could have affected the performance of the machine
learning models during the training and testing phases;
however, our sampling criterion was carefully made ran-
dom with the aim of mitigating the selection bias.

Another potential threat may be related to the selec-
tion of the independent variables used to build the exper-
imented models. In this respect, we have carefully con-
sidered the related literature and the features previously
used by researchers who targeted the problem of file-level
vulnerability detection. Perhaps more importantly, our
analyses targeted three different families of metrics, hence
allowing us to experiment with features capturing differ-
ent aspects of source code. Nevertheless, we cannot rule
out that other metrics, not considered in the study, could
provide additional contribution to the performance of just-
in-time vulnerability detection methods. We plan to inves-
tigate this aspect further in the future.

Finally, when using the bag-of-words method we dis-
carded the words appearing in over 80% of the documents
(i.e., files or patches) or less than 5%. While this step
could have removed some relevant features, and so possi-
bly hindered the performance of the models, it is a rec-
ommended pre-processing step to remove noisy data and
reduce the dimensionality of the dataset, which has been
seen to have positive effects on the training process [77, 78].
The choice of these thresholds was directed by the need to
have a reasonable number of features to train the models
in an acceptable time without removing important tokens.

Threats to internal validity. In the context of our
work, we selected and experimented eight machine learn-
ing models to better understand their strengths and weak-
nesses. Of course, the setting up of these approaches
might have biased our results. However, we followed well-
established guidelines [64, 38] through which we addressed
possible issues due to multi-collinearity, missing hyper-
parameter configuration, and data balancing issues. When
focusing on these issues, we used methods and techniques
that have been widely employed in the past (e.g., the vif
function to deal with correlated variables) and that are
recognized as effective.

Threats to external validity. Our study involved
nine systems written in Java. On the one hand, we rec-
ognize that larger-scale studies would be desirable to fur-
ther understand the capabilities of machine learning mod-
els for vulnerability detection. On the other hand, we are
aware that different results might be obtained when ad-
dressing our research question on projects written in dif-
ferent programming languages or developed in different
contexts (e.g., industrial systems). To enable replicability,
we made all data and scripts available in our online ap-
pendix.4 In any case, our future research agenda includes
a large-scale replication of the study.

Threats to conclusion validity. To derive conclu-
sive results on the performance of just-in-time vulnerabil-
ity detectors, we first computed a number of evaluation
metrics in an effort of capturing various angles of their ca-
pabilities. All of them uniformly indicated the poor perfor-
mance of the experimented models, hence confirming our
conclusions. In addition, we also applied statistical tests
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to verify the significance of the differences observed: we
run the Nemenyi rank test [105] to deal with the problem
of multiple comparisons. This test is particularly useful in
our context as it is suitable for non-normal distributions
like the ones we experienced.

7. Conclusion

This paper proposed an empirical investigation into the
capabilities of machine learning models for just-in-time
vulnerability prediction. We took into account a set of
eight machine learners and three families of features to
provide a broad overview of how software vulnerabilities
can be identified at commit-level.

Our key results indicated that the problem should be
further investigated, as elaborated in Section 5. First, the
currently available metrics seem to be not enough and,
perhaps more importantly, their combination does not nec-
essarily improve the detection capabilities. The research
community should invest effort in defining empirical inves-
tigations into the features connected to the introduction
of vulnerabilities at commit-level, other than the features
that developers consider more relevant. For instance, we
can envision the definition of longitudinal studies where
developers are monitored for a given time period so that
their activities might be closely analyzed in order to iden-
tify the key inducers of vulnerabilities. Similarly, we can
envision studies aiming at elaborating catalogs of micro-
antipatterns that developers frequently apply when con-
tributing to vulnerabilities. An improved understanding of
the features that more characterize the problem of software
vulnerabilities would definitively improve the accuracy of
just-in-time prediction models. On the basis of these em-
pirical investigations, the definition of novel instruments
able to compute those metrics and, perhaps more impor-
tantly, novel comprehensive datasets would be key to en-
able more and more research on the matter.

Second, our results indicate that the choice of the clas-
sifier impacts the performance: while most of the algo-
rithms experimented achieve low F-measure scores, we ob-
served that an ensemble method like AdaBoost seems to
provide promising results that should be further analyzed
and possibly improved by the research community. In
other terms, our findings stimulate research targeting the
engineering of software vulnerability prediction models.
For instance, we could envision empirical studies and/or
novel software engineering for artificial intelligence meth-
ods that could mix together the capabilities of individual
classifiers or even dynamically adapt the classifier to use
based on the peculiar characteristics of code commits and
of the developers applying changes.

Last but not least, a collateral finding of our study
concerns with the lack of public data and scripts that can
be used to replicate/reproduce previous studies. This is
pretty worrisome and allows us to recommend further re-
search effort on the definition of standards and guidelines

to make research reproducible, especially to enable re-
searchers to compare the previous findings with new ones,
hence leading to advance the state of the art in a safe and
sustainable manner.

Our future research agenda includes a larger-scale repli-
cations of our study, other than the definition of novel
techniques for (1) selecting features to use when identify-
ing vulnerabilities at commit-level and (2) improving the
training capabilities of ensemble approaches.
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