Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Handling Uncertainty in SBSE: A Possibilistic Evolutionary
Approach for Code Smells Detection

Sofien Boutaib - Maha Elarbi - Slim Bechikh -
Fabio Palomba - Lamjed Ben Said -

Received: date / Accepted: date

Abstract Code smells, also known as anti-patterns, are poor design or implementation
choices that hinder program comprehensibility and maintainability. While several code
smell detection methods have been proposed, Mantyla et al. identified the uncertainty
issue as one of the major individual human factors that may affect developer’s decisions
about the smelliness of software classes: they may indeed have different opinions
mainly due to their different knowledge and expertise. Unfortunately, almost all
the existing approaches assume data perfection and neglect the uncertainty when
identifying the labels of the software classes. Ignoring or rejecting any uncertainty form
could lead to a considerable loss of information, which could significantly deteriorate
the effectiveness of the detection and identification processes. Inspired by our previous
works and motivated by the interesting performance of the PDT (Possibilistic Decision
Tree) in classifying uncertain data, we propose ADIPE (Anti-pattern Detection and
Identification using Possibilistic decision tree Evolution), as a new tool that evolves
and optimizes a set of detectors (PDTs) that could effectively deal with software class
labels uncertainty using some concepts from the Possibility theory. ADIPE uses a
PBE (Possibilistic Base of Examples: a dataset with possibilistic labels) that it is built
using a set of opinion-based classifiers (i.e., a set of probabilistic classifiers) with the
aim to simulate human developers’ uncertainty. A set of advisors and probabilistic
classifiers are employed in order to mimic the subjectivity and the doubtfulness
of software engineers. A detailed experimental study is conducted to show the
merits and outperformance of ADIPE in dealing with uncertainty in code smells

Sofien Boutaib (Corresponding author)

SMART Lab, University of Tunis, ISG, Tunis, Tunisia. E-mail: boutaibsofien @yahoo.fr
Maha Elarbi

SMART Lab, University of Tunis, ISG, Tunis, Tunisia. E-mail: arbi.maha@yahoo.com
Slim Bechikh (Corresponding author)

SMART Lab, University of Tunis, ISG, Tunis, Tunisia. E-mail: slim.bechikh@fsegn.rnu.tn
Fabio Palomba

Software Engineering (SeSa) Lab, University of Salerno, Italy. E-mail: fpalomba@unisa.it
Lamjed Ben Said

SMART Lab, University of Tunis, ISG, Tunis, Tunisia. E-mail: lamjed.bensaid @isg.rnu.tn

2 Sofien Boutaib et al.

detection and identification with respect to four relevant state-of-the-art methods,
including the baseline PDT. The experimental study was performed in uncertain and
certain environments based on two suitable metrics: PF-measure_dist (Possibilistic
F-measure_Distance) and IAC (Information Affinity Criterion); which corresponds
to the F-measure and Accuracy (PCC) for the certain case. The obtained results for
the uncertain environment reveal that for the detection process, the PF-measure_dist
of ADIPE ranges within [0.9047 and 0.9285], and its JAC lies within [0.9288 and
0.9557]; while for the identification process, the PF-measure_dist of ADIPE is in
[0.8545, 0.9228], and its IAC lies within [0.8751, 0.933]. ADIPE is able to find 35%
more code smells with uncertain data than the second best algorithm (i.e., BLOP). In
addition, ADIPE succeeds to decrease the number of false alarms (i.e., misclassified
smelly instances) with a rate equals to 12%. Our proposed approach is also able to
identify 43% more smell types than BLOP and decreases the number of false alarms
with a rate equals to 32%. Similar results were obtained for the certain environment,
which demonstrate the ability of ADIPE to also deal with the certain environment.

Keywords Code smells - Subjectivity and doubtfulness of software engineers - Data
labels uncertainty - Possibility theory - Possibilistic decision tree evolution - SBSE.

1 Introduction

Code smells are poor solutions to recurring implementation and design problems
that may hinder the evolution of a system by making it hard for software engineers
to carry out changes (de Paulo Sobrinho et al. 2018; Sharma and Spinellis 2018).
As the introduction of these smells is usually unavoidable (Tufano et al. 2017),
they should be detected and then refactored as early as possible (Mansoor et al.
2013). To ease the detection step, Fowler and Beck (1999) have defined the main
symptoms of each smell type as well as its corresponding refactoring solution. Several
code smell detection approaches have been proposed in the literature that could be
classified into three categories: (1) rule-based approaches (Lanza and Marinescu
2007a), (2) machine learning-based approaches (Fontana et al. 2016b; Pecorelli
et al. 2020b), and (3) search-based ones (Kessentini et al. 2011). A summary of
notable recent software-based approaches (rule-based, machine learning-based, and
search-based approaches) are summarized in Table 1. Rule-based approaches use a
set of predefined rules that are based on the combination of metrics and thresholds;
by design, they suffer from the problem of threshold calibration that has been
often reported to lead software developers ignoring the code smell instances they
output (Fontana et al. 2016a; Palomba et al. 2017a). Different from the rule-based
approaches, the machine learning-based approaches build a classifier model using a
base of smell examples; unfortunately, the model building process is greedy and hence
locally-optimal classifiers are obtained (Barros et al. 2012; Al-Sahaf et al. 2019).
Search-based approaches evolve a set of detection rules using also a BE and usually
exploit Evolutionary Algorithms (EAs) as search engines because of their ability to
find (near) globally-optimal detectors (Fernandes et al. 2016; Di Nucci et al. 2018).
In fact, the software engineer intervenes in all the previously mentioned approaches
either by defining the rules of rule-based approaches, or by constructing the BE

A Possibilistic Evolutionary Approach for Code Smells Detection

A4 d © U0 paseq pajesauds ppour

Sax £ £2).4 X | 8 Jayissep dnsiiqissod pasjoad ue Suisn (l10M anQ) AJIAV
S[[PwS 3p0d SuIAJNUIPI pue FundNdQ
“Hdd © Uo paseq .
SOX OoN ON sk | 8 paureIqo NN-3 onstfiqissod e uo paseq (1702 "1 30 qrewmog)
S[[ows 3pod Furynuapt pue 3unoarRg Aodiav
a4
o ° ° o © 9ARY JYSIW ey AYSIDAIP JO YOr[A~ (¥10€ "2 19 utyes)
N N N N | 8 SSQIPPE 0 SUO [OAI[-Iq B SB UONIAP do1d
[[ows 9pod Jo wapqoad ayy Surppon
*saAndafqo Sunadwoo
3, .
oN oN oN on | g o.E E, uoneziundo ayy ;a_HEEz (L10T 'T® 12 J0OSUBIA))
(I-VDSN) poyiew aAndafqo-ninu dDON sauoeoidde
e Sursn sa[n1 NgH.L-J1 Suneiouan mé:. J.Eo
‘Bunuwrersoxd oneuad oy uo paseq gg i poseq-yotees
(€102 "2 19 WnQ)
ON ON ON ON | 8 © WOy pajesouas NHHL-A] JO uLoy
Q) UI SA[NI JO JOqUINU & SUIA[OAT 49
(gdd) sedurexy jo aseg~
JNSI[IISSOJ © UO PAsEq pajesouag~ (uOTEIIRSSI(] TURYUA[
oA °N °N ON | 8 [opow 1oyIsse[o onsiiqissod & 1Ad (aurfoseg)
Sursn s[fows apod Funoaq
N § " . (Q'BT10T '[2 12 BRIRN)
°N ON ON ON | € (ag) sojdwexq jo oseq v 199RAINAS | seyoroidde paseq-
U0 paseq J[INq [ApOu JAYISSB[D =)
G107 wLowy Sururea] suryory
ON ON ON ON | # ®© Sursn s[jows apod Sunoaleq 1a
no1310981Z)® R SI[eIueS,
oN oN oN oN | € (600¢ not 1Z1ey) P! Eha_vou r_lw.
*sa[n1 pauyapaid Jo 19s & uo Oz T ho mscmv sayoeoidde
o] o) o) o] ¢ ASEQ S[[OWS IPOD FUND) dsBqQ-o[N
N N N N | € paseq S| POd Sundared oo paseq-a[ny
fureweoun) depoaQ Ble@ s | sounfSig-[lews yiim UONRIAPISUO)) | S[[QWS PAIdPISUO]) vopt urepy soyoroiddy K10312)

1eaq 01 Aijiqy

1eaq 01 Aijiqy

Qoue[equiy LR

JO ToquINN

*S[[oWS 9p0J JO UONINIP 2y} J0j sayoeordde pasodoid ay) usamiaq uostredwo) T Jqel,

4 Sofien Boutaib et al.

of machine learning-based approaches or search-based ones. Although most of the
existing detectors, especially those included in the latter two categories, have shown
promising detection capabilities, they still share a critical limitation that reduces
their usage in practice. In fact, the existing detectors do not take into account the
subjectivity of the human experts. These latter suppose that the software engineers
express certain decisions regarding the smelliness of the software classes (i.e., the
considered decisions are taken in a certain environment). However, according to
recent findings in this research field (Yamashita and Moonen 2013; Palomba et al.
2014; Taibi et al. 2017), the outputs of the automated detectors (i.e., code smells) are
subjectively perceived by developers based on their knowledge and expertise. This
is mostly due to the doubtfulness in the decisions taken by the software engineers
regarding the smelliness of software classes and the identification of the existing
smell types (Taibi et al. 2017). Therefore, the software engineers are uncertain when
expressing their decisions (i.e., the considered decision are subjectively taken in an
uncertain environment). One can notice from Table 1 that all the existing approaches
do not consider the uncertainty data problem. The underestimation of this problem by
software engineering developers may cause a problem in the applicability of code smell
detection and identification. For instance, Fontana et al. (2016a) identified a number of
"conceptual" false positive instances given by existing detectors. These latter are able
to identify code smells that are not perceived by developers as actual design issues
and that are unavoidably ignored in practice. As shown in previous work (Mantyla
et al. 2004), two developers could perceive different smell types over a software class.
This subjectivity and uncertainty could be explained by the fact that they could have
different experience degrees. Therefore, a class could be Smelly (i.e., includes a smell
type) by one developer and Non-smelly by another expert. To mimics such a situation,
we have chosen two different advisors (PMD and JDeodorant), which simulate the
expert opinions for the detection of the Long Method smell type. As shown in Figure
1, two advisors could have different opinions (i.e., subjectivity) regarding the same
method as they are implementing different detection rules. Moreover, the sources
of subjectivity are the human developers since these latter are only able to express
their uncertainty using likelihood values. Moreover, the sources of subjectivity are the
human developers since these latter are only able to express their uncertainty using
likelihood values. Existing works have demonstrated that the likelihood values (i.e.,
probability theory) are not effective for uncertain data (Jenhani 2010). To alleviate
such a problem, we propose to employ the possibility theory, which has proven its
adequacy to the uncertain data case (Jenhani et al. 2008b).

The solution to this problem can be modeled as an uncertain class label
classification (Tsang et al. 2009). In this setting, a dependent variable (in our case, the
smelliness of a class), is not modeled as a binary distribution (i.e., presence/absence
of a smell) but with multiple values forming a probability that indicates the likelihood
that a developer may consider a class belonging to one of the two categories (i.e.,
smelly/non-smelly). More precisely, in a typical use case scenario involving uncertain
data, software practitioners can either reject the suggestion given by a detector or
replace it with crisp data (i.e., certain data). Such practice is done a-posteriori, namely
when the code smell candidates have been already presented to developers: this does
not allow benefiting from the maximum amount of information hidden in the data

A Possibilistic Evolutionary Approach for Code Smells Detection 5

protected String rtrim(String s)
{

// if the string is empty do nothing and return it
if ((s == null) || (s.length() == 8))

return s;

// get the position of the last character in the string
int pos = s.length();
while ((pos > @) && Character.isWhitespace(s.charAt(pos - 1)))

--pos;
}
// remove everything after the last character
return s.substring(@, pos);
¥

}

Fig. 1 Illustration of the Long Method smell type using the rtrim () method of the Apache Common CLI
(Foundation 2004). This method is considered as a Long method using the JDedoroant advisor, while it is
a normal method using the PMD.

(Jenhani et al. 2008b) and consequently it may deteriorate the overall performance of
the detectors. Data mining and machine learning researchers have proposed a number
of uncertainty theories and one of them is the possibility theory. In this paper, we
propose ADIPE as a new tool to defect and identify code smells under uncertainty.
The detection problem consists of discriminating whether a certain class is affected
by a generic code smell, while the identification problem aims at pointing out the
existence of a particular type of code smell (e.g., a God Class). The flowchart of our
proposed approach in an uncertain environment is illustrated in Figure 2. One can see
from Figure 2 that we can identify three phases in our proposed approach that are:
(1) the construction of the BE phase, (2) the training phase, and (3) the application
phase. In the construction of the BE phase, we can identify two possible scenarios:
(1) the engineer is certain about the smelliness of a given software class or (2) the
engineer has doubtfulness (uncertainty) about the smelliness of a given software class.
In the first scenario, the software engineer does not has doubtfulness in determining
the smelliness of a particular software class for this reason, the values of the software
class labels are set to 0 or 1. In the second scenario, the software engineer is not
certain about the smelliness of the software classes, therefore, the class labels values
are expressed as likelihood values. We note that the BE has the form of a matrix
where the lines are the Object Oriented (OO) software classes and the colons are the
metrics values, while the last colon corresponds to the labels of the software classes
(i.e., smelly or non-smelly for the case of detection or the smell type for the case of
identification). In fact, our algorithm merges the opinions of human experts expressed
in the form of probability values based on the voting fusion in order to obtain a
single decision. Since the probability theory is unable to handle the subjective piece
of information [2’], we have converted the resulted probability distributions over the
software class labels into possibility ones. Motivated by the interesting performance
of the PDT (Jenhani et al. 2008b), which is a combination between Possibility theory
and decision tree, we have proposed to evolve a set of PDTs using the GA (Genetic
Algorithm) metaheuristic. Therefore, during the training phase, ADIPE will use the

6 Sofien Boutaib et al.

constructed BE (certain or uncertain BE) to outcome with a set of optimized detectors
(PDT ensemble) that will be used by the software engineer to detect the smelliness
of any unseen (i.e., unlabeled) OO software class in the application phase. Generally
speaking, the unseen software classes of a targeted software project can be predicted
based on the software classes that have been trained during the training phase and its
labeled instances (Zimmermann et al. 2009; Hosseini et al. 2018). It is worth noting
that the uncertainty could appear in the identification case. However, in such a case, the
output of ADIPE will be a set of specific optimized smell detectors for each considered
smell type.

As ADIPE combines several techniques from the computational intelligence field,
it is important to justify our choices:

1. The suitability of PDTs to deal with the uncertain data classification problem
(Jenhani et al. 2008Db).

2. The capability of PDTs to learn from a training set characterized by uncertain
class labels represented by possibility distributions (Jenhani et al. 2008b).

3. The ability of GAs to avoid the local optima in the PDT search space; which is not
the case for state-of-the art greedy machine learning algorithms for PDT induction
(cf. Appendix F);

4. The solid structure of smell detectors as PDTSs; which is not the case of most
existing search-based detection approaches that evolve a set of ad-hoc rules; and

5. The adaptive fusion of possibilistic distributions using conjunctive and disjunctive
aggregations; which facilitates the decision making whatever are the detectors’
states (in a concordance or discordance (Dubois and Prade 1994a)).

The performance of our ADIPE approach is assessed based on a detailed empirical
study involving six well-known open-source projects submerged by uncertainty. The
comparison is made with respect to four state-of-the-art baseline approaches. The
experimental results of our study reveal that ADIPE outperforms its competitors in all
the considered software projects under an uncertain environment. For the detection
process, ADIPE succeeds to find 35% more code smells with uncertain data than
BLOP. Moreover, ADIPE succeeds to decrease the number of false alarms with a rate
equals to 12%. ADIPE has demonstrated its ability to identify 43% more smell types
than BLOP and it decreases the number of false alarms with a rate equals to 32%. To
sum up, the main contributions of this paper are:

1. Building a new base of possibilistic smell examples in the aim to aggregate the
various expert engineers’ subjective opinions, in which the expert quantify its
uncertainty through elements from the possibility theory;

2. Proposing ADIPE as a new method and tool to detect and identify code smells
under an uncertain environment;

3. Showing the performance of our ADIPE method on a set of detailed and statistically
analyzed comparative experiments on six well-known open source projects with
respect to four existing recent and prominent works in addition to the baseline
PDT (Jenhani et al. 2008b).

It is important to note that the use of the possibility distribution concept in smells
detection is not new, as we have already employed it in our previous work ADIPOK

A Possibilistic Evolutionary Approach for Code Smells Detection

-aseyd Sururer oy ur paiopisuod sjoafoid
90IN0S 9y} JO SISSB[O OO PAUTEI) Y} UO Paskq PI[aqe[Ik SISSB[O O UISUN Y} d1ym Jouuew Joafoxd-uryiim e ur paurograd ST 358D UONO3J9p YL, *| puk () jo pasoduwiod
suonNQISIp AIBUIq OM) B [)IM JUO UTRIISOUN AY) JO 9SBI-qNS © ST ASED UTR}IAD [, “JUSWUOIIAUL UTELI0UN ay) ul wiyptioSe pasodord 1o jo yromourery urew oy Sunensn[[y g “Sig

€0 T Ussvp)

1 sto Tssp)

SIPqE[SSE[D PP

(€1 wonenb®) OAV
Sursn worsny Sunoa

!

\ 1 r'o Tsso1) 0 T Tssv1) T o ssv10 / saeaz08 asssan Ao
wo wopeondde FIIAV 1T
! 0 tssp1)) 1 [Tssv1) o 1 Tssvp)
N 1035339p JO UondIPaIg T 1039230P JO UOIDIPAAd | 10353)9P JO UONDIPIIG
E SISSED 2IVAIJOS UIISU)

s[quasus Lad) G | e =7
ynduy
4 o5 Ry e)
- N tssmBug
2TEANFOS SW JO WIS
adrav jo Smueay g | 7 AdIaV v
i - N zesmSur aremyos
v 1o @ | e usspyy .
T 1 o Hssmp oro vgo Hes1 . . . o s |
(1 wonunby) . (A ~
== vopsuiiojsuen | o sBeasay | | g0 zo e 5T) sse[o dIEMIFOS
Sursn uorsn g Sunop A ——

Tssop0

w,o N.c
, 4 w[nuIoy % D p=== .
y..au..mw..:ansq_%n ,4&1 W

A msaIssod (@ Susmarqos) s1asursug g0 wo | = uss1)
DIEAIOS Y AU} JO STUOISIII(PISIIN

1 Teomr3ug 2reMPos
e

°é

...... sl

€0 o

1 avamBuy
areaggos 2y Jo uosIAA

A6 oW Jo wopINHSWOD 1T

8 Sofien Boutaib et al.

(Boutaib et al. 2021). This latter is an evolutionary algorithm that evolves a population
of PK-NNs (Possibilistic K-NNs). The main limitations of this tool are: (1) the
definition of the number of nearest neighbors K, which heavily influences the results
(cf. Figure 6); and (2) the inability to deal with small disjuncts and data overlap (no
use of splitting hyper-planes)(cf. Figure 3). The main differences between ADIPOK
and ADIPE can be summarized as follows (cf. Table 1):

1. The adoption of the PDT instead of the PK-NN as baseline classifier for evolution
based on the PF-measure_dist;

2. Showing the advantages of the classifier change in solving two main challenges
in smells detection that are related to the data imbalance: (a) small disjuncts and
(2) data overlap (cf. Figure 4);

3. In addition to demonstrating the role of the non-possibility degree X in finding
more effective splitting hyper-planes (cf. Figure 5), X values are shown to define
the prioritization values of software classes for refactoring.

4. Extending the experiments using other existing performance metrics, notably the
precision and the recall; which allows a better positioning of ADIPE with respect
to the related works

Through the first section of this paper, we have described the problem statement
of this paper by exposing one of the most influential human factors in code smells
detection, which is uncertainty in software classes labelling. We have also pointed out
that the main sources of uncertainty are the developers’ subjectivity, doubtfulness, and
personal experience. This uncertainty issue was already discussed by some researchers
since more than fifteen years such as Mantyla et al. (2004), but unfortunately it was
usually omitted so far by the SE (Software Engineering) community, including the
SBSE one. The second section introduces some important concepts related to the
possibility theory that will aid the reader to understand the rest of the paper. The
third section is devoted to describe ADIPE as a new tool that is able to process
developers’ uncertainty related to software classes’ labels. ADIPE uses a PBE to
build a set of smells detectors each encoded as PDT. As the specialized literature did
not consider the uncertainty issue in building the BE, we have constructed a PBE that
mimics the developers’ uncertainty by following a three-step process: (i) first, a set
of advisors are used to generate different certain BEs; (ii) then a set of probabilistic
classifiers are applied to transform the labels values into probability distributions; (iii)
finally these distributions are converted into possibility ones. It is worth noting that the
opinion-based classifiers (i.e., probabilistic classifiers) are used to simulate the human
experts’ opinions by generating probability distributions for the classes of the software
projects (Bounhas et al. 2014). The ADIPE tool communicates with the PBE when
evaluating each PDT (detector) using the PF-measure_dist (Possibilistic version of
the F-measure). The latter corresponds to the F-measure in the certain case.

After detailing the solution encoding and the genetic operators of ADIPE, a detailed
comparative experimental study is conducted in the fourth section for both cases:
(1) the uncertain case and (ii) the certain one. The experiments are conducted in a
within-project manner by following the hold-out validation method (70% of the data
is for training and the remaining 30% is for performance testing). The experimental
results reveal that ADIPE remarkably surpasses its competitors for the detection and

A Possibilistic Evolutionary Approach for Code Smells Detection

aE
in***

*
i Sk Kk .
**,E Small Disjuncts
Intate T O, 2
* *I,P\' e s

K K ik X KK %
ok K & kK Xk
b i tal et

(@) Small disjuncts (b) Overlapping

W Smelly class J¢ Non-smelly class

Fig. 3 Illustration of the difficulties encountered when handling imbalanced data: (a) small disjuncts and
(b) overlapping.

@ (b)

= Hyper-planes without X calibration
. Hyper-planes with X calibration

Q Misclassified instance

Fig. 5 The effect of the X values in the calibration of the PDT splitting hyper-planes based on ADIPE
fitness function.

=== PK-NN decisions boundaries
— PDT splitting hyper-plancs splitting

® New unseen instance

Fig. 6 The difference between the splitting hyper-planes of ADIPE and ADIPOK ones.

10 Sofien Boutaib et al.

identification cases in both uncertain and certain environments. The fifth section
discusses the various threats that could affect the validity of our experimentations.
The sixth section summarizes the related work and the main characteristics of existing
related works. The last section concludes the paper and gives some avenues for future
research. It is important to note that a set of appendices are presented at the end of
the paper to give some background concepts and details that could be valuable for the
interested reader.

2 Background

Possibility theory is one of the theories that offer a simple model to deal with an
uncertain environment Zadeh (1978); Dubois and Prade (1988). Let 2 be the universe
of discourse for the different states of knowledge {®;, w,..., ®,}. Each state of
knowledge (i.e., ;) corresponds to a class label in the BE. In other words, the universe
of discourse for the case of detection is Qgerecrion={ Smelly, Non-smelly}, while for
the case of identification the universe of discourse corresponds t0 Qigenification={
Blob, Data Class, Long Method, Long Parameter List, Duplicate Code, Feature Envy,
Spaghetti Code }. The possibility distribution, denoted by 7, is a function that maps
o from to obtain a possibility degree from the unit interval (i.e., [0, 1]), which
is a representation of the real-world knowledge of the software engineer. m(wy) =
1 means that the realization of @y is completely possible, while 7(wy) = 0 means
that @y is a rejected state. Therefore, m(Smelly) = 1 means that the passed software
project class is completely possible smelly, while 7(Smelly) = 0 means that the given
software project class is completely non-smelly. Moreover, (@) > m(®;) means
that @y is more plausible (or is more specific) than ;. In order to measure, the degree
of conflict between two sources of information, we use The Inconsistency measure
(Inc). For more details about the computation of this measure, the reader can refers to
Appendix C.

In real world, the information could be provided by different sources. The sources
of information in the software maintenance domain are software engineers where
the information corresponds to their opinions (possibility distributions). These latter
should be combined to provide useful information. However, the choice of the
combination modes depends on the state of sources (i.e., if they are in agreement
or not). Two modes of combination of the source of information have been employed
in the literature: The conjunctive fusion Dubois and Prade (2000) and the disjunctive
one Dubois and Prade (2000). More details about these two fusion modes are given
in Appendix C.

Tending to compare two distributions, some measures are proposed in possibility
theory such as Minkowski distance (Dunford et al. 1971), information closeness
(Higashi and Klir 1983), Sanguesa et al distance (Sangiiesa et al. 1998), and
information divergence (Kroupa 2006). Nevertheless, the previously mentioned
measures of similarity cannot satisfy the inconsistency criterion, which is considered
as one of the important criteria for measuring possibilistic similarity. The information
affinity (denoted by Aff) (Jenhani et al. 2007) is a measure that was conceived to
compute the amount of closeness between two opinions (i.e., possibility distributions).

A Possibilistic Evolutionary Approach for Code Smells Detection 11

This latter takes into account the distance and the inconsistency criteria and it is defined

as follows:

Kxd(my,) + A * Inc(my, m)
K+ A

Aff(m,m) =1~ (1)
where k¥ > 0 and A > 0 are two parameters defined by the user. In fact, k¥ and
A parameters should be equal to give similar importance for both distance and
inconsistency criteria. Inc(m;,) refers to the inconsistency (cf. Equation 17) while
d(my,m) refers to the normalized Manhatten distance. For more details about the
information Affinity and the manhatten istance, the readers can refer to Appendix C.

3 Anti-pattern detection and identification using possibilistic decision tree
evolution: ADIPE

In this section, we describe and detail the main components of our approach, denoted
as ADIPE, for code smell detection and identification under an uncertain environment.
The uncertainty is mainly inherent in the class labels due to the subjectivity and the
uncertainty of the software engineers’ opinions about the smelliness of a software
class and the types of the existing smells. Indeed, ignoring the uncertainty could
cause the deterioration of the quality of the generated results by the detector. We
notice that both tasks are done using the same mechanism, but using different BEs
with uncertain class labels. The class labels are assigned with likelihood values that
represent the uncertainty of the expert opinions called possibility degrees. These latter
are constructed using five probabilistic classifiers (Naive Bayes classifier (Friedman
etal. 1997), Probabilistic K-NN (Holmes and Adams 2002), Bayesian Networks (Pearl
1982, 1985), Naive Bayes Nearest Neighbor (Behmo et al. 2010), and Probabilistic
Decision Tree (Quinlan 1987)) to assign (predict) aggregated probability distribution
for each existing software class in the BE. The use of probabilistic classifiers is
extended from the idea suggested in (Bounhas et al. 2014), in which a number of
classifiers are used to simulate the experts. In this work, the selected classifiers are
used in the aim to simulate the uncertainty of the experts (i.e., software engineers)
to label the BE software classes. This will help the expert to quantify its uncertainty
about the smelliness of a software class in the form of likelihood values.

Afterward, these generated values are converted into possibility distributions
through a conversion formula (cf. Equation 2). Regarding the detection case, the base
could include several smell types or the opposite; while for the identification case, the
base encompasses only a single smell type. That is why the identification is considered
as a special case of the detection task in which the approach runs only on a single smell
type. To facilitate the comprehension of the ADIPE working principle, we first present
the main motivations behind its design. Second, we detail the artificial construction
of the PBEs. Third, we illustrate the global schema of our detection method in an
uncertain environment. Fourth, we specify how the detectors (i.e., PDTs) are evolved
using the GA. We note that the PDTs are adopted in our work since they are suitable
to learn from instances characterized with uncertain class labels. In the rest of this
section, we describe the solution encoding, the fitness function, and the crossover
and mutation operators. Finally, we illustrate how the obtained detectors could be
employed for the detection and identification of code smells.

12 Sofien Boutaib et al.

3.1 PBE: Constructing the dataset with possibilistic labels

Like many data mining fields, the SE industry could be susceptible to the uncertainty
issue. The BEs could be submerged by uncertain class labels. The main uncertainty
sources could be related to: (1) the lack of human experts’ knowledge and/or (2) the
subjectivity of their possibly conflicting opinions. In such an uncertain environment,
the expert could express their opinion in the form of likelihood degrees each referring
to the membership degree of every software class to every class label. To be able
to generate possibilistic smell detectors, we need a set of PBEs. In such PBEs, each
software class (i.e., instance) could be assigned a set of class labels each having a
Possibility degree. Unfortunately, existing BEs do not contain uncertain class labels
that could serve as training datasets for possibilistic detectors induction. As the goal
of this paper is to process uncertainty in only class labels and not in features, only
the class labels will be substituted with possibility distribution; while the original
features’ values are preserved. The possibility distributions are generated through the
opinion-based classifiers (extended from (Bounhas et al. 2014)) and the conversion
formula (Dubois and Prade 1985) (cf. Figure 7). The transformation process is
described as follows:

1. First, we employ five different advisors (DECOR (Moha et al. 2010), JDeodorant
(Tsantalis and Chatzigeorgiou 2009), inFusion?, iPlasmaZ, and PMD (Gopalan
2012)) to generate five different crisp BEs. We notice that the BE includes all the
OO classes of the chosen software systems in this work (see Table 2).

2. Second, we execute independently five probabilistic classifiers (previously
mentioned) on each of the five obtained crisp BEs. Then, we apply the voting
fusion using the average operator in two times. In the first time, the voting fusion
is employed to aggregate the obtained probabilistic BE for each classifier and in
the second time, it is employed to obtain a single probabilistic BE (cf. Figure 7).

3. Finally, the obtained probability distributions are transformed into a possibility
distributions using the following conversion formula, proposed by (Dubois and
Prade 1985):

n
77.7((1),') = i*p(a)i) + Z p((l)j),Vi =1.n)
j=it1

where the probability distribution p defined on £ should be sorted in descending
order (p(w;) = p(m) >...> p(®,)) before starting the transformation of p into
7. Moreover, the sum of the probability distribution degrees should be equal to
one. According to Equation 2, the distribution value will have one of the following
forms: [X Y] or [Y X] where X isin [0 1] and Y is equal to 1.

3.2 Basic schema and fitness function

Figure 8 presents the main schema of the ADIPE method, which is mainly
composed of two modules: (1) the possibilistic smell detectors generation module

Uhttp://www.intooitus.com/products/infusion
Zhttp://loose.upt.ro/iplasma/

13

A Possibilistic Evolutionary Approach for Code Smells Detection

'ss9001d uonerouas ggd £ *Siq

e

[) fwgameg | N
PR Bw0T |)
Sy | |
adfypug | sse)
m " : Aaug amyea] N
SuroN [4)
Qo1 5}
ewse[qt jo adlypug | ssepy f uosnqur
g SIgu0I ./
apop maydeds | ND B.. EE8 8@
Buigoy 0 N 00D
: qo1g 6] V0D —
g DSQISS0q qgomsImqeqoid . - WSKS ALAYJ0S

adypus | s |
w1

Topurered S0 | Ny

POYRNBIOT | 7y -
poapandng | 1 o
adfpug | SSE)
L fugameag | NO
JRI0POIQL JO - POYRNBIOT | 7D -
A4 d1sIIqeqoiq Qoig 1]
IEEIED

JueI0poaqf jo
§3g dnsIqeqolq

vuuselgljo sgg
nsqeqoid

14 Sofien Boutaib et al.

Output /)
PDT evolution
using GA
=
=
Possibilistic Base of lg
Examples (PBE): Set of possibilistic 5
A set of possibilistic detectors (PDTs) S
smell instances with p—
ifferent types. 5
different types. Output g
£
)]
=]
PDT evolution
using GA
Possibilistic Base of
Examples (PBE): Set of specific
A set of smell instances possibilistic detectors —
with a specific type (PDTs)
(a) Possibilistic smell detectors generation
Input
! Output -
i 7 . Detected smell with
7 unknown type
Unseen Software classes Base of detectors
-
< Detection task
2
E]
4
S
2
Input Output g
“u _, Detected smell with
identified type ‘
Unseen Software classes
Smell-specific base of detectors
Identification task

(b) Detection and Identification tasks

Fig. 8 The global schema of the ADIPE approach.

and (2) the possibilistic smell detectors application one. The former produces a
set of optimized PDTs, while the latter applies these generated PDTs on unseen
software classes. It is important to note that It is important to note that the possibility
distributions obtained from the generated PDTs are aggregated using the Adaptive
Fusion Operator (AFO) to produce a single possibility distribution degree (Dubois
and Prade 1994a). Moreover,over the detection process, all the produced detectors are
gathered together into only one BE, while each kind of smell type is collected into a
specific base through the identification process.

Each individual (PDT) of the GA’s population should be assessed to determine the
solution quality after the population initialization process as well as at any time a new
offspring individual (PDT) is created by applying the crossover and/or the mutation

A Possibilistic Evolutionary Approach for Code Smells Detection 15

operators. Based on these assigned fitness (quality) values, the selection process is
performed to keep the chosen individuals for the next generation. Many works have
presented different fitness functions as part of evolutionary classification among them
the accuracy metric in (Ma and Wang 2009). However, the adoption of the existing
metrics as a fitness function in the case of uncertain class labels represents a crucial
issue. As we mentioned previously, the PDT generates possibility distributions during
the classification process. The existing metrics will assign the classes. Hence, these
metrics give much attention to only the most plausible class labels while the rest are
ignored. For instance, suppose that we have the following possibility distribution for
three smell types in the case of identification: w(Blob) = 1, n(Long Method) = 0.6,
nt(Duplicate Code) = 0.8. The existing metrics consider the Blob smell as it is the
fully possible smell, while the remaining ones are discarded. However, according to
the presented example, the remaining smell types have a high possibility to exist in
the given software class. In fact, ignoring some possibility degrees could cause a loss
of an important amount of information that is generated by detectors. As a result,
inadequate or missing refactoring methods for the correction of code smell may lead
to the deterioration of the software performance.

The code smell detection is considered as an imbalanced binary classification
problem (Pecorelli et al. 2019, 2020a) where the BE is composed of two sub-sets:
(1) the majority class and (2) the minority one. The former cardinality is much more
than the latter one, which causes an imbalance problem that should be managed by the
detector. The high imbalance ratio remarkably appears in the identification task as this
latter is similar to the detection task but with a single smell type. To handle the data
imbalance issue, our modeled fitness function is based on the F-measure classification
metric (Van Rijsbergen 1979). Our choice could be explained by the fact that the
F-measure relies on the harmonic mean of precision and recall over the minority
class; this renders its insensitive to whenever the data imbalance ratio is, which is not
the case for the existing software-based approaches Table 1. Unlikely, the F-measure
is not suitable for the uncertain environment and hence it will deteriorate the detector’s
performance. Motivated by this observation, we have developed a new metric called
PF-measure_dist (Possibilistic F-measure_distance) that is expressed by equation 3.
The PF-measure_dist considers the average distances between (77*") and the initial
possibility distribution (m"y of each classified unseen (unlabeled) software class
I; . The proposed measure calculates the amount of closeness between the predicted
software class comparing to the label of its corresponding one in the ground truth.
When PF-measure_dist is close to 1, the resulting detector is accurate and the resulting
possibility distributions are of high-quality as well as faithful compared to the real
(initial) ones. This means that the predicted possibility distribution is very close to the
ground truth, more precisely to the opinion of the software engineer. In contrast, the
detector is considered extremely bad in the case where its assigned fitness function
relying on the PF-measure_dist metric falls to 0, which means that the generated
possibility distribution for a given software class is far from the software engineer’s
opinion. The PF-measure_dist is expressed as follows:

Precision_giss X Recall jig

PF — measure_dist =2 X

3)

Precision_giss + Recall g

16 Sofien Boutaib et al.

. TP gis
P N g — ——————————————— 4
recision_gis TP_dl‘S[T FP_d,'X[()
TP is
Recall 4y = it (5)
- TP_dist +FN_dist
%
TPas=), NSD(I}) ©)
?jEASCcc
_>
TN giw= Y, NSD(I}) @)
I7€ANSCCC
_)
FPg4w= Y, NSD(I}))
T} €ASCmNs
_>
FNaw= Y NSD(I)) ©)
T, EANSCms
N , , 5
Sd(1) =Y (z"(C;) — 7/ (C))) (10)
i=1
sd(T)) . -
NSD(I—;): - ,lde(Q)Héz (11)
I, if Sd(Ij)=2

where ANSCcc, ASCcc, ANSCms, and ASCmNs are abbreviations of Actual
Non-smelly classes correctly classified (True Negative (TN)), Actual Smelly classes
correctly classified (True Positive (TP)), Actual Non-smelly classes miss-classified
as Smelly (False Negative (FN)), and Actual Smelly classes miss-classified as
Non-smelly (False Positive (FP)), respectively. Sd(/;) (Similarity distance) (cf.
Equation 10) is the distance between the resulting possibility distribution (77**) and
the real (initial) possibility distribution (7™My, This distance pertains to the interval [0,
2]. To give the Sd(I;) a significance similar to F-measure metric, we perform some

modifications on Sd(I;) to attain the Normalized Similarity Distance (NSD(I_j>)) (cf.
Equation 11). This latter lies within a range of 0 and 1. According to the position
of the most plausible class on both possibility distributions (7,;; and T.), the
NSD(T;) value is added to one of these quantities: TP ;5 (cf. Equation 6), TN g5
(cf. Equation 7), FP_4is (cf. Equation 8), or FN ;s (cf. Equation 9). After calculating
these distances for all the unseen software classes, the Precision g (cf. Equation
4) and Recall g5 (cf. Equation 5) are measured to yield the PF-measure_dist (cf.
Equation 3). In the following, an example is taken to explain the computation of
PF-measure_dist. For instance, if 7= [1 0.4] and " = [1 0.2] where the initial
possibility distribution that corresponds to the software engineer opinion considers
a given software class as Smelly and there is a possibility of 0.4 that it could
be Non-smelly. Similarly, the predicted possibility distribution considers a given
software class as Smelly, while there is a possibility of 0.2 that it could be Non-smelly.
Thus, based on the measured distance between those possibility distributions, we will
add the resulting distance to the TP y4;5;. Conversely, if 77%°=[0.2 1], then the resulting
distance will be joined to FP 4. It is important to note that the working process

A Possibilistic Evolutionary Approach for Code Smells Detection 17

of PF-measure_dist is identical to the F-measure one in a certain environment. For
more details please refer to Appendix D.

3.3 GA evolution operators

The employment of the GA to our problem requires the definition of the solution
encoding. All along with a set of principal operators that are: (1) Population
initialization, (2) Fitness assignment, (3) Mating selection, (4) Crossover, and (5)
Mutation. The feasibility of the produced offsprings (PDTs) should be verified
whenever the reproduction operators are triggered. Indeed, the fitness function is not
presented here as it is already detailed in the previous section. The evaluation of a
PDT requires its execution on the PBE and hence a 5-fold cross-validation strategy is
performed to calculate the PDTs performance.

3.3.1 Individual encoding

To facilitate the PDT representation, we have decided to use a two-array encoding
with breadth-first order. Figure 9 outlines this encoding for two cases: decision node
and terminal node. For the case of the decision node, the first array incorporates
the weights’ vectors of the considered structural metrics such as: LOC, NOM, NOP,
etc (cf. Appendix B) in each reached node. We notice that each decision node must
contain the most discriminant feature (metric). As for the second array, it includes the
splitting rule threshold. For the case of a terminal node, the first array has a similar
structure as the case of a decision node but it finishes with a supplementary cell
including a NULL value to mention that the actual node is a terminal one. However,
the second array is the same as the case of an internal node but just with a possibility
distribution 7 (e.g., [1 0.2]). For example, the terminal node number (3) contains a
NULL value in the last cell of the first array. Such a choice is made to differentiate
a terminal node from a decision node (Kretowski and Grze$ 2005). In the second
array, the last cell contains the possibility distribution (i.e., [1 0.6]), which represents
the uncertainty aspect regarding the smelliness of a software class. The value [1 0.6]
could be explained as follows: “The passed software project class is fully possible
smelly while the possibility that it could be non-smelly is 0.6”. In a nutshell, assuming
that a node is located at the breadth-first order in a position having index i, its left
child is normally located at index 2i, while the right one is located at the (2i + 1)
position. It is important to know that metrics’ thresholds are established according
to an efficient discretization strategy (Krgtowski and Grzes 2005), which is revealed
in subsection 3.3.2. Among the important characteristics of our chosen encoding is
that the feature (metric) selection is carried out in an implicit mode as the discarded
metrics are allotted a zero as a weight. We notice that the considered quality metrics
over this work are represented in Appendix B.

18 Sofien Boutaib et al.

Decision node

Terminal node

L /
o 0100 | o001 - h g ributes
o I | A
- /e = = -» - el s
\pv L
[(Smelly)= os 7[(Non Smelly)=1] ’“ [r(Smelly)=1, 7(Non-Smelly)=0.4]
s N

= Ry
Attributes
A
e s o0 (1osl |31 Erec)
[106] | [031] 5 1000 [106] [031] | [104]

Fig. 9 Possibilistic decision tree and its corresponding structure. Decision nodes are represented by binary
vectors in the first array cells and threshold values at the second array cells; while terminal nodes are
represented by NULL values at the first array cells and possibility distributions at the second array cells.

3.3.2 Population initialization

In the initialization procedure, the GA initializes a set of N detectors (PDTs) according
to three components, called (1) attribute selection, (2) partitioning strategy, and (3)
stopping criterion and structure of leaves.

For the attribute selection process, each attribute is chosen randomly by assigning
’1” as a weight to the chosen attribute (metric) while the remaining ones (the ignored
metrics) are designated with 0" weights. Each decision node must contain only one
discriminant feature (metric).

For the partitioning strategy process, after selecting an attribute at a given internal
node, we apply a threshold discretization technique. However, one of the big problems
in the current search-based detection approaches resides in threshold tuning. We
note that the term threshold corresponds to the threshold of each structural metric
existing in each decision node. It is important to know that the majority of the
search-based smells detection researches did not specify the way to fix threshold
value and solely claim that it is stochastically evolved throughout the optimization
process. Unlikely, such a strategy could result in insignificant thresholds and hence
degrades the effectiveness of the detectors’ search process as well as their efficiency.
To deal with this problem, we adopt in our ADIPE approach an existing discretization
method, presented by Kretowski and Grzes (2005), for an effective definition of the
threshold. This discretization method has already yielded interesting results when
incorporated inside the basic decision tree induction algorithm, in particular the C4.5.
The employed discretization technique has the following working principle: Once a
structural metric (feature) is selected throughout a given node, its values are sorted in
upward order. Afterward, boundary thresholds are identified according to the smelly
class and non-smelly one as illustrated by Figure 10. As the class labels are represented
by possibility distributions, we choose the most plausible classes (i.e., their possibility

A Possibilistic Evolutionary Approach for Code Smells Detection 19

e e e L e e Y

—_—

Ineffective threshold ‘\‘\ / //

Effective boundary thresholds

— s ———

[Smelly class

Non-smelly class

Fig. 10 The identification of the threshold boundaries for a randomly selected feature.

degrees equal to 1) to know if each software class is smelly or not. Then, among the
obtained boundary thresholds for the given feature, one of them is chosen as a midpoint
between a successive non-similar pair of examples, so that one example is Smelly and
the other is Non-smelly. Finally, the threshold value of the given node is randomly
picked among a set of effectively provided thresholds as demonstrated by Figure 10.
This discretization strategy is performed whenever a new metric (feature) is selected
inside a node.

Finally, the last component could be divided into two parts: (1) the structure
of leaves and (2) the stopping criterion. For the structure of leaves, as our ADIPE
approach is handling a PBE, where class labels are characterized with possibility
distributions, the detectors (PDTs) are labeled by possibility distribution at each leaf
node. It is important to note that deciding whether a particular node would be internal
or leaf is an important decision for the initialization process. For this reason, we have
tuned the parameter corresponding to this initialization using the Taguchi experimental
design method. The results of this latter reveal that giving equal chances to both states
("internal node" and "leaf node") is a good choice. Therefore, each state has 50% of
chances to be executed. Thus, the probability of each state occurrence is 0.5. Thus,
the PBE located at the parent node of the given node must be partitioned according
to the fixed threshold. Hence, the resulting possibility distributions’ software classes
should be combined to induce a representative possibility distribution denoted by
Trep (Jenhani et al. 2008b). The 7g., represents the different possibility degrees
proportion of the different class labels values. Moreover, this possibility distribution
is derived by the arithmetic mean of a set of possibility distributions where 7; (i=1..n)
(Bouchon-Meunier et al. 1999), and it is calculated using equation 12. Then, 74y
should be normalized to obtain the 7g.,, which is given by equation 18. For the
detection scenario as well as the identification one, the leave nodes contain possibility
distributions. For instance, if a leaf node contains [1 0.2] this means that the detector
fully supports the Class C (i.e., the software class is Smelly) and less support the
Class C; (i.e., Non-smelly) with possibility degree equals to 0.2. In the identification

20 Sofien Boutaib et al.

task, the C1 and G, (i.e., Smelly and Non-Smelly, respectively) are replaced with the
smell type, i.e., C; refers to BLOB and C; corresponds to Non-BLOB.

mi(wy)) (12)

=

1
Tam (@g) = - X (
1

Tam (0y)

maxi? {xav ()}

ﬂRep(wq) = (13)

In this work, the number of evaluations or the length of the tree (user-specified
parameter) represents the stopping criterion of our approach.

3.3.3 Mating selection operators

As previously stated, one of the principal advantages of our ADIPE method is its
capability to escape local optima and hence to converge to the globally-optimal
detectors (PDTs). The principal mechanism that guarantees such behavior is the mating
selection operator. Therefore, we have chosen the binary tournament selection operator
(Brindle 1980) that can be described as follows:

— First, we pick (N/2) parents for the reproduction, where N is the size of the
population.

— Then, we run a loop of (N/2) iterations. More precisely, at each iteration, two
individuals (PDTs) are chosen randomly.

— Finally, the fittest parent will be placed throughout the mating pool.

Such strategic selection allows the selection of good and bad individuals to be chosen
(i.e., we are managing the diversification of the population’ individuals) with a biased
preference for good individuals. Accordingly, the GA probabilistically accepts the
degradation of fitness; which prevented to got stuck in a local optima and reach the
global optima PDT(s).

3.3.4 Crossover and mutation operators

Once the individuals’ selection process is done, we perform the one-point operator as
it is shown in Figure 11. The working process is as follows. It begins by arbitrarily
choosing a cut-point to locate a sub-tree in both parents. Then, the two selected
sub-trees are swapped. Based on this fact, the values of the possibility distributions in
each leaf node of those swapped sub-trees should be updated. It is worth noting that
the update involves only the leaves nodes of the swapped sub-trees. The update of the
possibility distribution of the leave nodes should be performed based on the new set
of software classes located on the parent node of a given leaf node. For the mutation
operator, only one type of change is possible, called weight change (cf. Figure 12). This
operator changes the metrics’ weights by allowing for the replacement of the current
metric with another one. In other words, the current metric weight passes from *1’ to
’0” while the weight of a randomly chosen metric changes from 0’ to ’ 1. For instance,
according to the upper part of Figure 12, the LOC metric is changed to another metric,

A Possibilistic Evolutionary Approach for Code Smells Detection 21

Parent 1 Offspring 1

Loc
< 202
100<,/ S\ 1002 :
. 100 < | \1510 > [m(Smell=0 [(Smell)=1
“a / . mNon-smel)=1] m(Non-smel)=0.5]
[m(Smellj=0.2 [m(Smel)=1 v
N =11 N 1)=0 [(Smel)=02 [m(Smell)=1
(Non-smell)=1] T(Non-smel)=0]
Attributes A
(weighty | 01000 | 00100 [F10000} null | il Sl Sl &‘»‘:‘;‘J‘:Z; 01000 | 00100 [10000 | null | null | null | mull
Threshold/ N y
F 10 100 20 0211 | o] | 41 | po7 /_\i' “‘;_ﬁﬁ‘" 10 100 20 |21 no| 01| nos
Parent 2 .~ Crossover points Offspring 2
\ A 17 =
250 < 250 > 5 5 250 < \ 250 = 17<| ~—
< . P \ v —
[m(Smell)=1 [m(Smell)=0.5 [m(Smel)=0.2 [m(Smell)=1 [v(Smell=1 [m(Smell)=0.5
[m(Smell)=0.2 [m(Smell)=1 | T(Non-smel)=0.7] ' r(Non-smell)=1] TH(Non-smell)=1] Ti(Non-smell)=0] | T(Non-smell=0.8] " " m(Non-smell)=1]
Tr(Non-smell)=1] (Non-smell)=0]
‘(\‘;‘:2;:::; 00001 | 00100 | 10000 | mul | null | mull null ’83::;;:2: 00001 [00100] 10000 | mal | mal | null null
Threshold/ < < /'
li?b;; 5 250 50 [021] | [10] | 0.7 | [051] lh{z‘hlz‘d 5 250 17 [021] | [1o] | [108] | [051]
Fig. 11 One-point crossover operator.
Parent 1 Offspring 1
C r/“ !
100 < /
v
[(Smel)=1 i i 4 i 1
[. [[m(Smell)=1 m(Non-smel)=0.6] m(Non-smel)=1] T(Non-smel)=1] m(Non-smel}=0.7]
N =1] N 1)=01 N)= N I=0.7]
Attributes Attributes.
Cweightyy | 01000010 [1000 | m |l | ma | Cweightgy | 0100 0001 f 1000 [mit | mil | wt | o
Thres!
el g0 | 100 | 20 |21 | o) | an | nom T | 10 100 [20 |[os) 31 | pa1) | 107)
Parent 2 Offspring 2

250 < 250> s0< 502
/N
- "
5 5 ["ﬁ’“e")’%?ﬂ [(Smell)=1 [(Smel)=1 [m(Smell)=0.3
B =] TN 1)=0] | m(Non-smellj=07] (N Iyet] (Non-smell)=1] Ti(Non-smell)=0] | i(Non-smell}=0.2] ' i(Non-smel)=1]
Attributes Attributes
ey [00001 | 00100 [10000 | wi | st gt | o g | 00001 | 00100 (01000 | il | wunt [aun |
Threshold/ Threshold/ <
Tatel 5 250 50 p21] [no | pog | s Tabel 5 250 50 211 | (o) | po2 | 31

Fig. 12 Mutation operator.

which is NOM. Since the metric at the selected node is changed, we should update
the possibility distributions of its leaves nodes. The update process of the possibility
distribution for both crossover and mutation operations is performed using the 7g,,
(cf. Equation 13). Moreover, the threshold tuning is performed randomly.

22 Sofien Boutaib et al.

Unseen Software Class

§I

‘ Sets of detectors
gencrated by ADIPE

mrmhdn Sll‘SpghlqulL«l 5‘”‘“['"""

2 07 1 2 0 1

2 0 1

N N 1 07

= m..h glnglletll Code = snghem Code Fcamn- Envy _ Feature Envy
l 06 03 1
A

Spaghetti Code

1 0 03

Fig. 13 Illustration of the use of PDTs generated by ADIPE for smell types identification on an unseen
software class.

3.4 Possibilistic smell detectors application module

After the generation of a set of optimized detectors (PDTs) via the GA, the ADIPE tool
is ready for use on unseen software classes to detect code smells and/or identify their
types. In other words, the software engineer is allowed to employ some of the best
detectors or all of them. As a result, a set of possibility distributions is obtained when
applying the detectors on the unseen software classes. These latter will be aggregated
by applying the AFO (cf. Equation 14) to produce a single possibility distribution
that will support the software engineer when deciding about the smelliness of the
unseen software class (Dubois and Prade 1994a). The AFO works as follows. For
the case where the detectors are in disagreement, the AFO merges the decisions (i.e.,
possibility distributions) using the disjunctive operator (cf. Appendix C). Otherwise,
the AFO merges the decisions based on the conjunctive operator (cf. Appendix
C). We notice that in such a case, the detectors are in agreement. The choice of
agreement or disagreement is related to the amount of conflict among the generated
possibility distributions by the detectors. In other words, if Inc(m; A mp) = 0 means
that the detectors are in agreement. Otherwise, the detectors are in disagreement (i.e.,
Inc(m; Amp) # 0). Figure 13 illustrates the use of PDTs generated by ADIPE for the
identification of smell types on an unseen software class. Based on this figure, the
output of identification (sets of PDTs for a specific smell type (i.e., a set for Blob, a set
for Spaghetti Code, a set for Feature Envy, etc.)) are employed to identify the attributed
smell type in a given unseen software class. In each set, the detectors will generate a
number of decisions that will be aggregated using the AFO at the local level to obtain
a single decision. This latter will be aggregated with the decisions of the other sets by
employing the AFO aggregation method at the global level in order to obtain a single

A Possibilistic Evolutionary Approach for Code Smells Detection 23

decision that considers all the different existing smell types. It is important to note that
we can obtain multiple fully possible smell types (i.e., multiple possibility degrees
equal to 1). Finally, the generated decision will be provided to software engineers in
order to have an idea about the existing smell types in the unseen class.

Vo € Q, wap(w) =max(ms(w), min(m,(®), 1—h(m,m))) (14)

Inc(my Amp)) = 1 —max(min(m, m)) (15)
where 7, () = “2EHOBO) 1 () = max(m (), 72 (@) and h(7 (), 7 (@) =
1 —Inc(m A m)). The h(m (@), m(®)) represents the degree of agreement among
two detectors (Dubois and Prade 1994b). Moreover, 7, and @, correspond to the
conjunctive and disjunctive operators, respectively.

4 Evaluation of ADIPE performance

In this section, the performance of our ADIPE is evaluated with respect to the most
prominent state-of-the-art existing works. In the following, we answer a number of
research questions over a series of comparative experiments using six widely used
software systems:

— RQ1: How does our ADIPE approach perform for the code smell detection
problem in an uncertain environment? To answer this question, we report the
performance of using adequate fitness function to deal with uncertain class labels
as well as data imbalance problems. Moreover, we evaluate the effectiveness of
ADIPE for the adaptation of adequate detectors (PDTs) in the aim to process the
possibilistic class labels. Besides, we propose to use guided automated threshold
tuning to achieve an optimized splitting. These are carried out over a set of
comparative experiments regarding four state-of-the-art approaches.

— RQ2: How does our ADIPE approach perform to identify the code smell types?
To answer this question, we report the performance of using a set of optimized
detectors for each smell type to well identify the existing smell types. Thus, our
ADIPE is compared with four respective state-of-the-art approaches.

— RQ3: How does our ADIPE approach perform to detect code smells and/or identify
their types for uncertain class labels as well as data imbalance issues compared
to a baseline PDT approach (e.g., NS-PDT)? It is important to know how far
our proposed approach might surpass the baseline PDT with a greedy searching
strategy.

— RQ4: What is the added value of outputting a possibility distribution instead of
a single label for the software engineer? It is important to interpret the semantic
meaning of each possibility value that is strictly less than 1. In brief, we show that
such value allows defining the ranking of a particular software class (or a particular
smell type) in terms of its prioritization for refactoring.

24 Sofien Boutaib et al.

Table2 Used Software in the experimentation. ECSS (Empirical Code Smell Studies) and DVDT (Designed
by Various Developer Teams).

Systems Version_NOC__KLOC _ Description ECSS__DVDT _ Advantages
GanttProject 1102 245 42 A platform for the scheduling of the projects X X o
ArgoUML 0.198 200 284 A tool for UML modeling X X) C";"'“’“’“ blicly availabi
Xercess-] 270 991 240 Sofiware for XML parsing X X T Rih i D e s
JFreeCharl 109 521 70 Java Library Tor the charts Java applications X X 1 I terms of code smefls .

- L - Used in the empirical code smell studies
Apache Ant 170 1839 327 Java library devoted to design Java applications X X Dt b vl
Azureus 23.0.6 1449 42 Peer to Peer (P2P) client program for sharing files x X oe Y various P i

Table 3 The number of existing smell types!'?, the Number of Smelly Classes (Smelly Classes), the Number
Non-Smelly Classes (Non-smelly Classes), and the Imbalance Ratio in the considered software systems
within the BE

Blob DC FE LM DuC LPL SC FD Classes Smelly Classes Non-smelly Classes ~ Imbalance Ratio

GanttProject 9 32 10 31 55 34 16 18 254 205 49 19.13%
ArgoUML 32 22 18 47 0 37 0 0 200 156 44 22%
Xercess-J 95 193 97 83 190 98 23 8 991 787 204 20.6%
JFreeChart 41 100 62 51 110 40 18 10 521 432 89 17.1%
Apache Ant 133 235 311 239 371 354 22 0 1839 1665 174 09.5%
Azureus 91 288 249 157 197 205 81 19 1449 1287 162 11.2%
Overall 401 870 747 608 923 768 160 55 5254 4532 722 13.7%

10 The used smell types are Blob, Data Class (DC), Feature Envy (FE), Long Method (LM), Duplicate
Code (DuC), Long Parameter List (LPL), Spaghetti Code (SC), Functional Decomposition (FD).

4.1 Subject Software

Our proposed tool is evaluated on a collection of widely used open-source OO
applications that are: ArgoUMLS, Xerces-J4, GanttProjectS, Apache Ant®, Azureus’,
and JFreechart®. Table 2 sets out the key features of the software systems being
considered in our experiment, where the columns (from the left side to the right one)
present the system name, version, description, number of classes (NOC) as well as
the number of lines of code (KLOC: thousands of code Lines), respectively. In our
experimental study, we have considered eight smell types that are: Blob, Data Class
(DC), Feature Envy (FE), Long Method (LM), Duplicate Code (DuC), Long Parameter
List (LPL), Spaghetti Code (SC), and Functional Decomposition (FD) (cf. Appendix
A). Table 3 presents the number of existing smell types, the Number of Classes,
the Number of Smelly Classes, the Number Non-Smelly Classes, and the Imbalance
Ratio in the considered software systems within the PBE. The constructed PBE is
considered as our ground truth over this experimental study as it is an aggregation
of the various simulated subjective uncertain opinions belonging to many experts
(probabilistic classifiers). Indeed, these opinions are quantified to have the form of
probability values.

3http://argouml.tigris.org/
“http://xerces.apache.org/xerces-j/
Shttps://sourceforge.net/projects/ganttproject/files/OldFiles/
Shttp://ant.apache.org

"http://vuze.com/

8hitp://www.jfree.org/jfreechart/

A Possibilistic Evolutionary Approach for Code Smells Detection 25

4.2 Selection of the baseline approaches

To compare ADIPE with state-of-the-art approaches, four relevant baselines were
chosen: GP (Ouni et al. 2013), MOGP (Mansoor et al. 2017), BLOP (Sahin et al.
2014), and DECOR (Moha et al. 2010). The choice of these baseline approaches
has been based on two important reasons. On the one side, the existing approaches
(i.e., Mono-objective techniques (GP), Multi-objective techniques (MOGP), and the
Bi-level ones (BLOP)) give us a broader overview of how our approach operates
against existing approaches. On the other side, in order to evaluate the ADIPE
performance against rule-based approaches, we have included the DECOR baseline as
itrepresents the rule/heuristic based type. A concise summary of the working principle
of each baseline approach is given as follows:

— GP: This approach generates a collection of IF-THEN rules via a metaheuristic
method (i.e., genetic programming) that interacts with a BE containing code
smells. Every solution is defined as a tree of rules for detection; where the inner
nodes contain the quality metrics, as well as the class labels, are indicated by
the leaf codes. These rules are developed by maximizing the number of detected
software defects compared to those expected in the BE. As a result, GP obtained an
average F-measure rate of 88% on six different software projects, when taking only
three types of smells into account. We notice that the F'-measure value is calculated
based on the precision and recall values stated by (Ouni et al. 2013). Moreover,
these authors have suggested in the same paper a multi-objective approach for
refactoring the detected smells as much as possible using the NSGA-II method.

— MOGP: This approach is a multi-objective approach. From the standpoint of
solution representation, MOGP is using the same GP encoding, while it modifies
the fitness function. Also, MOGP has a similar framework as NSGA-II and it
grows the trees through the optimization of two competing objectives. The first
objective consists of maximizing the detection of existing code smells in the BE,
while the second objective consists of reducing the detection of the well-design
code pieces. To attain this aim, NSGA-II interacts with two BEs; The first one has
smells, while the second one has well-designed codes. The authors explained the
usage of well-designed codes under the reason that the employment of smells on
their own would not permit the coverage of all smells. Therefore, a fragment of
code may be regarded as a suspicious anti-pattern by maximizing the distance to a
well-designed code example. Following the recorded precision and recall results,
the mean F-measure for seven software projects is equal to 87% when five smell
types are taken into account.

— BLOP: This approach has been proposed to address the lack of diversity problem
that might have a BE. To this end, the authors have suggested modeling the problem
of code smell detection as a bi-level optimization one as follows. In the upper-level,
a collection of detection rules are evolved, while in the lower level, a collection
of different artificial code smells are generated. From the fitness standpoint, the
detection of real code smells as well as artificial ones are maximized by the upper
level, while the probability of the event that the upper- level rules would detect code
smells, is minimized by the lower level. Thus, the competition between the two

26 Sofien Boutaib et al.

levels aims to: (1) generate rules characterized by important detection capability
and (2) produce unknown artificial code smells for the diversification of the BE.
According to the recorded precision and recall values, the average F-measure is
around 90% for nine software projects, with respect to seven smell types.

— DECOR: This approach is a heuristic-based technique. DECOR employs a
collection of rules, known as the "rule card", describing the intrinsic properties of
a class contaminated by a smell. For instance, a Blob class is identified if the class
contains: LCOMS (Lack of Cohesion Of Methods) (Henderson-Sellers 1995) more
than 20, a number of methods as well as attributes more than 20, a suffix in the
collection { “Process", “Control", “Command”, “Manage", “Drive, “System"}
and an association of one-to-many with different data classes. The authors have
shown the ability of DECOR to identify code smells with a mean F-measure of
80% (Moha et al. 2010).

4.3 Parameter configuration for ADIPE

The adjustment of algorithm parameters is an important aspect that is generally
overlooked in metaheuristic search algorithms. It is important to realize that the setting
of parameters greatly affects an algorithm’s performance on a particular problem.
Therefore, the ADIPE default parameters employed in the simulation part (cf. Table
4) are tuned by the trial-and-error technique (Eiben and Smit 201 1), which is acommon
practice in the evolutionary computation field as well as the SBSE one (Karafotias et al.
2015; Boussaid et al. 2017; Ramirez et al. 2018). In order to ensure a fair comparison
between peer algorithms, we have employed the same stopping criterion for all the
approaches under comparison. Hence, after 256,500 fitness evaluations, each run is
halted. Such a choice is suitable for all the approaches under comparison including
BLOP that uses two populations: (1) the upper level and (2) the lower one. Both
levels evolve a population of 30 individuals. Indeed, the upper level population as
well as the lower level one are evolved for 15 and 19 generations, respectively. These
values are set in order to approximate the optimal lower level population, which is
required to calculate the fitness function of its corresponding upper-level population.
In this way, all algorithms including BLOP could meet the stopping criterion since
with such settings the number of evaluations performed by BLOP is (30 x 15 x 30
x 19) = 256,500. In order to allow the reproducibility of ADIPE!!, we present the
implementation details as follows. For the development of ADIPE, we have used
the open source KEEL'? (Knowledge Extraction based on Evolutionary Learning)
platform (Alcald-Fdez et al. 2011) to implement the GA algorithm with respect to
our adopted solution encoding, fitness function, and variation operators. In ADIPE, a
solution represents a PDT where each decision node is composed by two cells. The
first cell contains a binary vector specifying the weights of the employed metrics,
while the second cell includes the threshold value. For the case of a terminal node,
the first cell contains a NULL value, while the second cell represents the possibility

"1 ADIPE is protected by a private Copyright
Phttp://www.keel.es

A Possibilistic Evolutionary Approach for Code Smells Detection 27

Table 4 The default parameters configuration.

Parameters ADIPE GP MOGP BLOP
Crossover rate 0.9 0.9 0.8 0.8
Mutation rate 0.1 0.5 0.2 0.5
Population size 200 100 100 30

distribution. For the crossover operator, we used the one-point crossover operator that
starts by randomly choosing a cut-point to locate a sub-tree in the parent individuals.
Then, it creates two child solutions by swapping the first sub-tree with the second one.
After that, the weight change mutation operator is used to modify the weights of the
metrics in order to allow the replacement of the current metric with another one. For the
evaluation, for the evaluation of the generated solutions, we used as objective function
the PF-measure_dist that evaluates the solutions based on the amount of closeness
between the predicted software class labels comparing to their corresponding ones in
the PBE'3. Further details are given in Section 3.

4.4 Performance metrics

As we tackle an uncertain data classification issue, the performance metrics used
should be able to quantify the performance of the different approaches considered
in our study. The fact that the existing approaches ignore the uncertainty, this
may negatively influence their performance. To alleviate this problem in our
proposed approach, we have selected two appropriate measurements for the uncertain
environment. The first one is PF-measure_dist that we have already introduced in
section 3.2. The second one is the JAC (Information Affinity-based criterion) (cf.
Equation 16) that was proposed by Jenhani et al. (2009). This metric uses the Affinity
metric (cf. Equation 1) to measure the distance between the obtained possibility
distribution ((n’”"l’)) and the original one (z""). The IAC is used as a second
metric since it takes into account only the uncertain class labels problem and does
not give much importance to the imbalanced data issue, which is not the case with the
PF-measure_dist metric that deals with both problems. If the JAC values are near to
1, this indicates that the generated detectors are more accurate as well as the produced
possibility distributions are of high quality and faithful compared to the original ones.
However, if the IAC values drop to 0, this implies that the obtained detectors are weak.
It is important to note that in an uncertain environment the PF-measure_dist and IAC
correspond to the F-measure and PCC (Accuracy), respectively (cf. Appendix D).

1 & L
IAC = - ZAff(ﬂimna b essult) 16)
i=1

Bhttps://sites.google.com/view/sofienboutaib/accueil

28 Sofien Boutaib et al.

4.5 Adopted statistical testing methodology

As GAs have stochastic behaviors, they generally yield different outputs from one
run into another on the same software project (or problem). In such situations, it
becomes difficult to compare stochastic smell detection approaches since the output
may vary from one run to another. To deal with the stochastic nature of outcomes,
researchers have suggested using statistical tests to detect the difference between the
obtained results (Arcuri and Briand 2014). There are two possible types of tests: (1)
Parametric tests requiring normalized data and (2) Non-parametric ones. To escape
the data normality issue, we have chosen to use the Wilcoxon test (Conover and
Conover 1980) by performing a pairwise comparison. Two hypothesis have been
considered: Hy implies that the two median values of the two compared algorithms
are not significantly different over the number of runs and H; means the opposite. We
use 5% as a significance rate, which means that the chance of rejecting Hy is only 0.05.
Besides the significance, it is important to quantify the difference between the results
of the compared algorithms that’s why the effect size should be reported. It is important
to note that the Wilcoxon test allows only to verify if the obtained results are statically
different or not. Nevertheless, such a test does not provide any indication concerning
the difference magnitude. To achieve this goal, we adopted a non-parametric effect
size measure called Vargha-Delaney A test (Vargha and Delaney 2000) to assess the
improvement magnitude of the effect size. This latter could be: (1) “large” if A is less
than 0.29 or greater than 0.71, (2) “medium” if A is less than 0.36 or greater than 0.64,
or (3) “small” if A is less than 0.64 or greater than 0.64.

4.6 Analysis of the results

The following sub-section is dedicated to report and explain the obtained comparative
results to tackle the three above-mentioned research questions as well as to demonstrate
the effects of the key characteristics of the ADIPE approach. This latter include: (1)
the possibilistic detectors for code smell detection (2) the GA to avoid falling into
local optima, (3) the well-structure of smells detectors, and (4) the informed process
of the threshold tuning. Besides, we demonstrated how ADIPE can be used for the
detection task as well as the identification one.

4.6.1 Results for RQ1

To answer RQ1, we carry out a set of experiments on the six considered software
applications with considering the uncertainty aspect. For ADIPE, we have transformed
the original BE (with crisp classes) into a possibilistic one with possibility distributions
across different class labels. The transformation process is performed to simulate the
subjectivity of experts’ opinions. In this work, we aim to prove the outperformance of
our ADIPE approach for both cases. The first case is presented with an Uncertainty
Level (UL) equals to 50%, which means that half of the BE class labels are covered
by uncertainty. The second case refers to the crisp BE (i.e., UL=0 %), in which all
the BE class labels are crisp. According to Table 5, ADIPE beats all the considered

A Possibilistic Evolutionary Approach for Code Smells Detection 29

state-of-the-art approaches in terms PF-measure_dist. The outperformance of ADIPE
over the four remaining approaches (i.e., DECOR, GP, MOGP, and BLOP) could be
explained by the fact that our ADIPE approach considers the uncertainty aspect over
the process of the solution evaluation, while the competitors approaches ignore this
aspect. We notice that the adopted fitness function by the ADIPE (PF-measure_dist)
had proven its efficacy in dealing with the uncertain class labels problem since it is
insensitive to the data imbalance problem. DECOR obtained the worst results in terms
of PF-measure_dist. The DECOR results could be justified by the fact that its rules
are designed manually and without considering the uncertainty factor. As for the IAC
metric results, they are almost similar to those presented by the PF-measure_dist since
a certain case represents a sub-case of the uncertain one. From the Precision and Recall
viewpoints, ADIPE has shown its outperformance against its competitors where its
obtained values belongs to [0.8724, 0.9345] for the Precision and [0.9420, 0.8809] for
the Recall. However, BLOP obtained the second best performance with 0.4416 and
0.4837 for the Precision and the Recall measures, respectively. This could be explained
by the fact that our ADIPE approach has a fitness function (i.e., PF-measure_dist)
that takes into consideration the uncertainty, which is not the case of the remaining
approaches (i.e., DECOR, GP, MOGP, and BLOP). Moreover, the calculation of
the adopted fitness function is based on distances, these latter allow translating the
hyper-planes in the data space with the aim to well-distinguish minority instances (e.g.,
non-smelly classes) from the majority ones (e.g., smelly classes). Therefore, when a
data point is located at the boundaries of the minority class (non-smelly instances),
the X value would express the non-possibility of belonging to the majority class
(smelly instances). By using the information provided by X, the induction (classifier
construction) algorithm would be better guided to discover more effective splitting
hyper-planes. Table 5 shows the obtained A statistic results of the five algorithms under
comparison. One can observe that ADIPE succeeds to obtain an A value greater than
0.9 (large) based on the PF-measure_dist and the JAC metrics on all the considered
software projects. It is important to know that a certain case corresponds to the
ground truth. In other words, the possibility distribution for a certain case could be
represented by a binary vector including only a value of 1 (i.e., the real class label)
while the remaining values are set to 0. This demonstrates that ADIPE is able to
deal with uncertain environment. Figure 14 displays the Boxplots of the compared
approaches for the detection case under an uncertain environment. This Figure clearly
demonstrates the superiority of ADIPE over its competitors in terms PF-measure_dist
and AUC. The obtained box plots are compliant with the reported results in Table 5.

Table 6 presents the results of the used metrics for the five detection approaches
in the case of a certain environment, i.e., ULevel = 0%. For the case of the crisp
(certain) environment, the class labels are certain as their BE. Hence, the performance
of the PF-measure_dist acts similarly to the F-measure one. Based on this table,
our ADIPE approach performs better than the other four considered approaches in
terms of PF-measure_dist. The surpass of ADIPE across its competitors could be
explained as follows. On the one hand, the adopted fitness functions by the considered
approaches (excluding ours) are not adequate to the data imbalance that could trick the
search process of the generated detection rules. In contrast, the fitness function adopted
by ADIPE is insensitive to the problem of imbalanced data as the PF-measure_dist

30 Sofien Boutaib et al.

GanttProject GanttProject

PF-measure_dist

s o © © o o

g & &8 2 & 8
1A

© o © © © o

£ & 8 2 8 8

o
°

°
N

B 8 = | v B 8 =

01 01
ADIPE BLOP MOGP G ADIPE BLOP MOGP G

Fig. 14 Boxplots of the PF-measure_dist and IAC values (i.e., an uncertain environment) for the detection
case on the GanttProject.

GanttProject GanttProject
| =] =2
08 08
™
2
3
7
¢ 0 07
5
® <
o
06
E 06
* = = = =
05
0s
" T &
04
ADIPE BLOP MOGP [ADIPE BLOP MOGP =

Fig. 15 Boxplots of the PF-measure_dist and IAC values (i.e., a certain environment) for the detection
case on the GanttProject. The PF-measure_dist and the JAC correspond to the F-measure and PCC in the
certain environment.

behaves similarly to the F-measure especially under certain environments. On the other
hand, the considered methods (excluding DECOR) randomly determine the thresholds.
Table 6 shows that the obtained Recall and Precision values of ADIPE surpass those
of the remaining approaches, which could be explained by the fact that ADIPE is well
suitable for the imbalanced environment while the remaining approaches are unable
to deal with imbalanced data. Thus, ineffective slicing values may be obtained. Table
6 shows the obtained A statistic results of ADIPE, DECOR, GP, MOGP, and BLOP
using the PF-measure_dist and the JAC metrics. One can see that ADIPE succeeds
to obtain an A value higher than 0.86 (large) on all the considered software projects.
The obtained experimental results are confirmed by the box plots of Figure 15. The
analysis of these box plots demonstrates the high performance of ADIPE based on the
PF-measure_dist and AUC for the detection in a certain environment.

In nutshell, the ADIPE performance surpass could be explained as follows. For
the uncertain environment viewpoint, the PF-measure_dist is a good metric to cope
with the uncertainty located at the BE class labels., while for the certain environment
viewpoint, the PF-measure_dist mimics the behavior of the F-measure since this latter
is insensitive towards the problem of imbalanced data.

31

A Possibilistic Evolutionary Approach for Code Smells Detection

-ansoddo oy sueow

uSis Y, "onea wyLoS[e

*PAUILISPUN AIE SAN[BA SOLNAUI PAUTLIGO 1S9q-PUOIAS "Plog Ul PAYSI[YSIY I8 SaN[eA SILNAW PAUTRIQO 1S -
“UQAIS aIe SONSTIRIS-Y 9y Sulsn ((]) 931e[pue ‘(W) WNIPIW (S) [[BWS) SIN[RA SIZIS 199JJ9 Y, -
! 2U) WO} JUAIIPIP A[[RO1LIS SI (SN[BA URIPAW [pD2Y 10 “UOISIAG ‘DI ‘(P Ad KQ PIIRIAIQQR) ISP~ 24NSD2UI-{) AM[EA UBIPAW OLIdW WyLoS[e dy) Jey) suvaw uonisod 1 ay1 e+, uSis Ay, -

(ur) () (s) (s) an an (wu) — (ww) @ arn (www) (W ww) arn arrn arn arn

901¥0 ¥10K0 LE9TO OFSTO) +) ©) (OGS B O] (G B C oS B C S B C) (F+4) (B (FHEd)) (FH+d) (F++4) uy agoedy
TSHED TISEO TUSI0__ p6vI°0_ 1TII0__ 6L01°0 88600 LT800 SIS0 €TTI0 ¥290°0 15700 I£€6°0 01260 TLEG'O S916°0
(ur) ())) an an (wu) — (ww) I arn (wuwrs) (ww) arn arn aren aren

1Trr0 9IEV0 78910 ¥H9T0 (+) (+) ©) ©) (@x49) (++) (++4) ++) (++4) (+++) (++-) (F+4) (F+++) (F++H) (F++H) (H++H) snanzy
I1TLEO ST9E0 S6S1°0 __66v1°0 _ 19LT0 #1920 1ITI0_ 8S0I'0 €LPI'0 TEELO £590°0 S6v0°0 £876'0 £916°0 8016°0 $976°0
(ur) () () () an an (wu) — (ww) @ arn (jws) (Tws) arn arn arn aren

6LTS0 0TISO €161'0 SO8T'0 +) +)) [O G I O] (G B G S B G N) (++-) () (H+d) (B (FHEE) () umyDdaK(
9LTH0 9TIt0 9LI'0 PELI'O 90VE0D 611E0 0810 ISTI'0__TS61'0 _ T6LI'O 90600 LOSO'O 9576'0 PLIGO LSS6'0 S876°0
() ()) () an an (wu) — (ww) (ww) (wu) (quw) (wu) arn arn aren aren

7SS0 +0TS0 09170 8L0OTO) ©) ©) ©) (++) (++) (G5 (E49) () (+++) (Gt (F+4) (F++4) (FH+H) (HH+H) () [-582010X
91670 6180 S00T0__ €¥61°0 16SE0 IFEE0 6091°0 _ €I¥I'0__ OIITO 09020 L1600 #1800 1906°0 $868'0 $676°0 LY06°0
(5) (5) () ©] an an (ws) (ww) (www) (Wws) (wuwrs) (wws) arn arn aren aren

8€65°0 9685°0 LIVTO 6¥TT0)))) ++) ++4) +-) (++) (+++) (++-) (+--) (F+4-) (F++4) (44 (F++4) (H++H) TNNOSIY
6€85°0 29950 STITO $OTO _ OISE0 ESLED SPLI'0 TTSI'0 1T9E0 6190 8TH1°0 821°0 02160 $006°0 S16'0 L816°0
)) () () (ww (ww) (ws) (Ww) (Www) (Wws) (Www) (Wws) ary ary an arn

70650 88LS0 9E¥T0 TSTTO) © ©) O GH D *) (D G () 44 (F+7) (FHH+H) FH+H) (4 (H++4) 00loiguuen
TELSO 089S0 €¥TT0 S8ITO TIEKO L8IYO 8061'0 €SLI0 LILEOD $09€'0 1TLI0 61S1°0 €L16°0 $876'0 $016°0

[[e9Y U003 DV] P dd [[£29Y UOISIAN] DV Pdd I[Py uosdld VI Pd [1®o9y oVl pdd 1222y ovl1 pdd spafoig
I dOTd | dOOW | do | ¥M00Ad | adIav

"%0S=1N

[9A9] AjuTeiIooun 9y} Je S} UONI)AP Ay} JO suni [¢ 10} JOTI PUe ‘dDON ‘dD YOI ‘AdIAV JO SOI00S UBIPOW jpo2y PUR ‘UOISII2A DV ‘ISIp~ ansvaui-d S dqel,

Sofien Boutaib et al.

32

“A[2A0adsaI ‘samseaw D)4 Pue (W] Aq PAJRIASIQQE) QINSEAW-] SW03q SAINSLAW JV] PUE (P~ dd £q PIIRIASIqQR) ISIP ™ 2471SD2U- J AU} “JUSUUOIIAUD UTLLIN0 dY} U]

1soddo oy sueawr

. uS1s oy [, "anfea wiyLose

“PAUI[IOpUN I SAN[BA SOLIOW PAUILIQO 1$9G-PU0IAS “P[Og Ul PAYSIYSIY oIe SIN[EA SOLIOUI PAUTRIqO 159g -
“UAAIS aIe SoNSnEIS-y oy Sursn (1) 981 pue ‘(W) WNIpaw ‘(S) [[BWS) SAN[RA SIZIS 199JJd YL, -

Q) WOIJ JUAIRIIP A[[oNe)S ST (AN[RA URIPAW [7DI2Y 10 ‘UOISI2U] ‘D] ‘(P dd Kq PAIRIARIQR) ISIP~ 24NSDIUI-] J) GN[EA URIPIW JLIAW WIPLIOS[e ay) Jey) sueauwr uonisod

Ay e+, uSis ayp, -

(s) (s)) an an (ws) (wuw) —(rrn (wws) (wwuw) (qIID arn arn arn

61950 TLSEO LTSE0 01TE0 ())) (GG (+-) 4+ (++-) (44 (F++H) () (FH+4) (F++4) uyogoedy
80Z€0__ 110€°0 9EEE0_ 10T€'0_ 9LIT0 _ €801°0 SSTTO _ €STTO_ TYE10 891210 0TI 1$96°0 8056'0 LLS6°0 LYY6°0
(w) (w)) () an an (ws) (wuw) (D) (Wws) (Wwuw) (11D [iy [(T)

9€SH0 8LFF 0 LEYO €€Tr0 (+)) ©) ©) *+) D (+-) 4 (++4) (++-) (++4) (F++d) (FH+d) (D) (D) snamzy
8S6E0 608E0 689€°0 09SE0 618T0 90LTO 8TLTO SIVTO 16V1°0 8I9PI'0 L6TI'0 LOS6'0 TIP6°0 96560 68€6°0
() (] (5) () an an (wuw) — (ww) — (Q1n (Tws) (Jws) arn arn arn arn

61SS0 9VESO 86050 £€00S0 (+) (+))) 4+ @+ +4H) D D (D (++-) (++-) (F++4) (F++4) (F++4) (F++4) meydLRL[
STOP0__ STEPO 9SEF'0_ 90010 TSPED 6LIEO 960£°0 __€90€°0 €860 LOSI'0 89€0C°0 _ 80LI0 __ LEYE'0 €256'0 L1960 996°0
())) () an an (s9) ww) (ww (uw (ww quw QD [T ey (1)

7SS0 6IESO 11280 Twiso () ©) ©) ©) (++) (++) (G5 (++) ++4) (+++) (H+4) (F+4) () () () (H4+) [-$89019X
916v'0 €881°0 €ILY0 60LFO TILED 9IPE0 SLEEO YOTED ¥TITO L8OTO 811TTO 1L610 €€76'0 9LTI60 LEV60 80760
(s)) (5) (s) an an (ws) (ww) (Wwuw) (wws) (wss) (wws) — (qrIp arn arn arn

ST090 81650 65950 8LLSO () ©))) 4+) (+-) 4+ (++0) (+--) (++-) (F++4) (F++4) (F+++4) (H+++) TANNOZY
1650 1€L5°0 I18YS°0 8TSS'0 ST6E0 TISED 9Y8E'0 Y09E'0 €89€0 SHIE0 8TYEED 98CE0 LIP6'0 90€£6'0 $096'0 LTE6'0
() ()) () (ww) — (ww) (ws) (ww) (Www) (Wws) (Www) (Wws) (D [an aro

76190 1T6S°0 169S0 0850 () ©) ©) ©) (++) (++) (+-) ++) (+++) (++-) (+++4) (++-) (F++4) (F++4) (H++H) (++++) wloignuen
01850 0£LS0 PLSSO ¥SS0 €6EF0 90THO 9ITF'0 9S0V0 6TLED €T9E°0 I8LE0 PESE0 8IE60 1726°0 6£6'0 LLI6'0

[[£29Y UOISIdI] OVI P dd 1%y Pdd [[P99Y UOIsIdld OVI P dd [[e99y _ UOISIoIg ovI P dd 1[99y UOISIIg ovI P dd seforg

do1d do ¥00dd 4d1av :
¢1 '%0=1N

[9A9] AjuTeiIooun oy} Je ySe) UondJdp Ay} Jo suni [¢ 10y JOTIH PUB ‘dDON ‘dD YOI ‘AdIAV JO S9I00S UBIPOW [jpoay PUE ‘UOISII2A DV ‘ISIp~ a4nsvaui-JJ 9 dqel,

A Possibilistic Evolutionary Approach for Code Smells Detection 33

Blob Blob
= =
08 08
“
2
3
106 06
¢
3 v
H g
o
E
& 04 04
02 = = oz = =
ADIPE BLOP MOGP GP ADIPE BLOP MOGP GP

Fig. 16 Boxplots of the PF-measure_dist and IAC values (i.e., an uncertain environment) for the
identification of the Blob smell type.

Blob Blob

w] =

09 %

08

°

PF-measure_dist
o
s
1AC

°

. T e) S =
g = . =

ADIPE BLOP MOGP Gp ADIPE BLOP MOGP GP

Fig. 17 Boxplots of the PF-measure_dist and IAC values (i.e., a certain environment) for the identification
of the Blob smell type. The PF-measure_dist and the IAC correspond to the F-measure and PCC in the
certain environment.

4.6.2 Results for RQ2

To answer RQ2, we aim over this subsection to evaluate the performance of the
compared approaches on the identification of the smell type problem for both
environments: (1) the uncertain environment (having uncertain class labels) and (2)
the certain one (having only crisp class labels). It is important to know that the
identification process is harder than the detection one as its imbalance ratio is greater
than that of the detection process. For the realization of the comparative experiments,
for every smell type, we combined all the software systems into only one BE and
then, we determine the minority class. However, in this task, we noted that the
number of classes that are not smelly are larger than the number of the smelly ones,
which causes a significant imbalance ratio throughout the BE. For the uncertain
environment, every software has a class label in the form of a possibility distribution,
which is represented by a vector of two real numbers. Each value of the vector is a
possibility degree which indicates the membership degree of a given software class to
each of the following class labels: (1) Smell and (2) Non-Smelly. Table 7 reports the
PF-measure_dist and IAC values of ADIPE, DECOR, GP, MOGP, and BLOP. One
can see from this table that ADIPE outperforms its competitors since the identification
process is performed in an uncertain environment. Based on the same table, ADIPE

34 Sofien Boutaib et al.

has shown its outperformance against its competitors through the Precision and Recall
values. This could be explained by the fact that the PDTs detectors used by ADIPE
are able to overcome the smell disjuncts and data overlap problems encountered when
dealing with imbalanced data. Table 7 shows the obtained A statistic results of ADIPE,
DECOR, GP, MOGP, and BLOP using the PF-measure_dist and the JAC metrics for
the smell types identification case under an uncertain environment. The obtained
results reveal that ADIPE succeeds to obtain a value greater than 0.91 (large) over the
eight considered smell types. Thus, we can conclude that our approach significantly
exceeds its competitors. Figure 16 shows the boxplots obtained by ADIPE, GP, MOGP,
and BLOP for the identification of the Blob smell type using thePF-measure_dist and
the AUC. This Figure illustrates the outperformance of ADIPE against its competitors
in identifying the Blob smell type. Therefore, it does not contradict the obtained results
of Table 7.

For the case of a certain environment, all the BEs class labels are certain. According
to Table 8, the ADIPE approach outperforms all the remaining approaches in terms
of PF-measure_dist. Similar results are obtained for the JAC metric. Moreover, the
obtained Recall and Precision values of ADIPE surpass those of the remaining
approaches. These results are explained by the fact that the adopted fitness function
allows us to obtain detectors suitable for the case of imbalanced data while the
remaining approaches have obtained bad detectors since their fitness functions are
not adequate to cope with the data imbalance problem. These results are explained by
the fact that the adopted fitness function allows us to obtain detectors suitable for the
case of imbalanced data while the remaining approaches have obtained bad detectors
since their fitness functions are not adequate to cope with the data imbalance problem.
In summary, the deterioration in performance did not influence all the approaches of the
same size. The results quality demonstrated by ADIPE is somewhat lower compared to
its performance quality over the detection process. However, BLOP, MOGP, DECOR,
GP performance indicators’ values are significantly reduced. These results can be
explained as follows. For the case of the DECOR approach, the obtained results were
extremely poor since its rules are predefined, which will make it not adequate to the
data imbalance and the uncertain class labels problems. In contrast, for the case of GP,
MOGTP, and BLOP, their results are varying between poor and very poor because their
identification processes are evolved using meta-heuristic algorithms. To this end, they
can detect some smells by chance. Table 8 shows the obtained A statistic results of the
five algorithms under comparison using the PF-measure_dist and the JAC metrics for
the identification case under a certain environment. The obtained results shows that
ADIPE succeeds to obtain a value greater than 0.8 (large) over all the considered smell
types. Therefore, we can deduce that ADIPE significantly surpasses DECOR, GP,
MOGP, and BLOP. Figure 17 displays the box plots obtained by the four search-based
approaches in terms PF-measure_dist and AUC in a certain environment. This figure
clearly shows the high performance of ADIPE with regard to the Blob smell type.

Generally speaking, we can conclude from the different obtained results that the
deterioration in performance did not influence all the approaches of the same size.
Our ADIPE succeeds to obtain better results in the detection and the identification
processes. However, BLOP, MOGP, DECOR, GP have shown their deeper weaknesses
in dealing with both processes. For the case of the DECOR approach, its results were

A Possibilistic Evolutionary Approach for Code Smells Detection 35

extremely poor as its rules are predefined. In contrast, for the case of GP, MOGP, and
BLOP, their results are varying between poor and very poor because their identification
processes are evolved using meta-heuristic algorithms. To this end, they can detect
some smells by chance.

4.6.3 Results for RQ3

To answer RQ3, we recall that the main objective of this research question is to
compare the performance of our ADIPE against a baseline PDT. For the comparison,
we used NS-PDT as it keeps the uncertainty in the DT (Decision Tree) throughout
the building process while the other PDT methods (i.e., SIM-PDT (Jenhani et al.
2008a) and Clust-PDT (Jenhani et al. 2009)) get rid of uncertainty. In general, the
PDT approach is based on a greedy search method to construct their classifiers. In
other words, the greedy search is performed to select an attribute at each node of
the PDT. Also, the threshold values are fixed by doing a greedy search. We compare
the two approaches in an uncertain environment and a crisp one for both tasks: (1)
detection and (2) identification.

For the detection of code smells under uncertainty (cf. Table 9), ADIPE succeeds
to obtain the best performance in terms of PF-measure_dist and IAC.

For the identification (cf. Table 10), ADIPE outperforms the baseline approach in
the identification of eight smell types in both environments (i.e., certain and uncertain).
These results could be explained by the following reasons. On the one hand, the
ADIPE approach can avoid falling into the local optima as well as approaching from
the global optima thanks to the used GA. However, the baseline approach performs a
greedy search over the search space which will make it got stuck into a local optima.
In the same context, the method employed by ADIPE allows defining effective and
meaningful thresholds in contrast to the baseline PDT’ threshold that is carried out by
greedy search. On the other hand, the ADIPE adopted a well-adequate fitness function
able to manage the uncertainty problem as well as the data imbalanced one, while the
PDT can manage only the uncertainty. That’s why it has a medium quality of results in
the detection process that is characterized with lower data imbalance ratio. Based on
these facts, ADIPE generates a set of optimized detectors for the detection task and also
a set of optimized detectors for each smell type. However, the baseline PDT produces
only non-optimized PDTs. It is important to notice that the degradation of the results of
ADIPE in the identification task could be explained by the fact that the imbalance ratio
is extremely higher. The results degradation of the baseline approach is remarkable.
Tables 9 and 10 show the obtained A statistic results of ADIPE and baseline PDT in the
detection and identification cases under the certain and uncertain environments. The
obtained results clearly demonstrate that ADIPE significantly exceeds the baseline
PDT since its A statistic values range between [0.75, 0.84] (large).

4.6.4 Results for RO4

To answer RQ4, we need to discuss the added value of the outputted possibility
distribution. Traditional detectors, including SBSE ones, return directly the smelliness
result for each software class as a label (1: Smelly and 0: Not Smelly). Differently,

Sofien Boutaib et al.

36

“POUILIOPUN JIE SAN[EA SILIOW PAUTLIQO 159-PUOIAS “PIOE UT PAIYSIYFIY I8 SIN[EA SILIIW PAUILIQO 1S -

“[lows Sur a1 uo (W/N) [qed1| 10N st yoroidde uaAl3 ayy ey SYIUSIS /N YL~

“ua1d are sonsnels-y 2y Sursn ((1) a8re[pue ‘(W) WNIPIW () [[EWS) SAN[EA SIZIS 103]J2 AL -

315 AL "aN[eA WYLOF[E ;7) WOI) WUDIDIP A[[LINEIS ST (IN[EA UBIPIW D23y 10 “UOISI2Ad “DV] “(P~dd Kq PIICIAAIQQR) ISIP™a411SDIUI-{d]) N[EA UBIPI JLIOW WILIOS[E DY) Jey) suvaw uonisod ;7 g e+, uts oy -

“asoddo oy suvowr

(w) () ()) an an (D] () arn arn an arn arn arn arn arn
6£TTO SYITO 9100 €0900 (+)) ©) ©) (++4) ++) (+-) (++4) (+44) (++4) (H44) (H+4) (FH+4) (FH+H) (F++4) (F++4) uontsodwoda [euonduny
18910 11910 X 62500 . L011°0 +850°0 9LY0°0 98010 01800 SEE00 9TT00 60880 YTL80 15L8'0 SpS8'0

(w) () ©) an an an am am arn ar
6L FI0E0 10210 LEITO (+)) ©) ++4) (++4) (++4) ++4) (+++4) (+++) (+++4) ISV IeweIeg Suo]
99¥T0__ 6THT0 TLOL'0 28600 61910 TTS10 2L £990°0 9116°0 16680 L68°0 12L8°0

)) ()) an an (urury arp an ar arm
LISE0 9SHE0 8TSI0 T0ST0 () ©) ©) ©) (+4)) (++4) (+++) (++4) T€88°0 (+++) (+++) POYRI Suo]
9rI€'0 680£°0 £9€1°0 i $09T°0___08¥T0 LOL1'0 . 9106'0 968°0 16L8°0

am
++4)
1v16°0

am
(+++) 08060

ATDG++)
1768°0

176£°0 168¢°0 90610 6£81°0 sse[D eleq

L0260

rond_vorsaid __ Ovi woisald _ OvI worstoad [r2d _uoisald OVl uorsald s op0
d0Td dDON a0 MODAA adIay 112t 2P0

"%0S=1
[9AQ] AJurelradun ay) Je ySe) UonedYNUapI Y} Jo suni [¢ 10§ JOTH PUB ‘DO dD ‘YOOI ‘AdIAYV JO SPI00S UBIPIW [[pI2Y PUR ‘UOISIIAL ‘DV] ‘ISIP 24NSDau-AJ [e,

37

A Possibilistic Evolutionary Approach for Code Smells Detection

"A1oAnoadsal ‘saInsedw D)d Pue (W] Aq PAIRIASIGQE) AINSEAW-,f SWI0II(SAINSLIW. DY/] PUE (P~ Ad KQq PIIRIASIQQR) IS1P™ 2UNSDIUL- o J) JUSWUOIIAUD UTBIID) U], |

*PAUILIOPUN IR SIN[RA SOLIAUI PAUIRIQO 1S9G-PUOIAS “PlOg Ul PAYSIYIIY 218 SaN[RA SOLAW PAUIRIQO 153g -

100 3y o (V/N) 21qeatiddy 10N st yoroidde uaalS ayy yey sayruss v/N Y-
R1s- AU Sursn ((1) 98] pue ‘(W) WNIpaw ‘(s) [[BWS) SAN[LA SIZIS 193JJ2 Y, -
-ansoddo oy sueaw -, uS1s Ay, "onfeA WO QY WOIJ JUDIAIIP A[[EONRIS ST (AN[RA UBIPIU J1DI2Y 10 ‘UOISIN2A *DV] ‘(P Ad Kq PAIRIAGIQQR) JSIP™ 2UNSDUI- [J) AN[LA URIPIW JLNIUW WYHLIOSTE) JeY) SUBIU UOT) e+, usis oy, -
(s) O] (w) (ur) an (1w) (1w (1w) [rw) qrw) @ an arn arrn
9TrT0 60£T0 8680C0 vL0T0 ()) +)) +4) @+ (++) (++) (F+H) () () (b)) (FEEH) (FEE) (F++4) (H++4) uonisodwodag euonouny
10L1°0 68910 ILI0 6¥S10 w810 01910 15210 22010 $TI0_ GELLO €880°0 S€900 T€68'0 7188'0 7L88°0 $098°0
(5) ©) (wr) (w) an an @) (w arn arn 1) ars) ann e arrn arn
¥16T0 LSSTO 80Y9T0 9€5T0 () ©) (+) (HE06T (++) ++4) . o GED () (H+7) (k+9) (FH+d) (Rt (F++4) (F++4) 2po) maysedg
. . . £061°0 - . (++H) 6610 (++) 010 . - . ') 3 ¥ "
19220 0S120 070 8010 T61T'0 0610 TSTI'0 LIT0 €1800 T€060 9S68'0 9L88'0 6¥98°0
() (ur) () [C0) an an an an am ar arn am
79260 OLIEO 8L00E0 T66T0 (+) +) (+) +) G D] ++) (++) VIN VIN VIN VIN F+4) (++4) F+4) () IS SRR SU0]
PILTO _ LESTO €670 91€T0 PI8I0_ €1L1°0 2061°0 W0 60260 £206°0 PE06°0 £818°0
() ©) (W (qw (w) (wr) am (@) arn arn
€L9€0 PSVED 8962€0 0LcE0 () ©) (G I ++) ++) VIN VIN VIN VIN G+D) hogge Y G+H apoD awardng
98€€'0 TIIED i i 81970 S9vT0 L9ETO ¥961°0 96680 19880 60L8°0
) () M [} an an ar am am ar
YPLED 88LLEO 10PED () ©) 4 +H ++) ++) VIN VIN VIN VIN Sy L B L POURI Suo]
TUTE0 80 06LT0 __LISTO £670 T6£T0 9506°0 1$06°0 7688'0
() (O] (Tw) (Tw) (CD) (ur) ar ar am ((311)
89760 © ©) (XN CED) (++4) (++) VIN VIN VIN VIN F+4) (++4) (Ht+4) (++4) Aaug armea,
6ISE0 TIFED : TL6TO 088T0 16920 91570 €2160 01060 9160 S168'0
) ©) 5 o) (@w) (wrw) () arn [an QDG+
IV6€0 TS8E0 8SI8E0 Teer0 () ©) +4) +H (++) (++) VIN VIN VIN VIN (++4) (++H) (S I sse[) eea
686€°0 _€66€°0 991€°0 TLLTO L9T0 SE€26'0 9016'0 8£26'0
[) an (wrw) (w wr) (Wws) (wws) (wws) (wws) Q11D [(T) arn arrn
0670 0EST0 8€0SK0 TTEero () ©) (++) (++) (++) (++-) G+ F++d) () (F++4) (+++4) qord
0970 SE 685€°0 ¥8YE'0 91€€0 618€°0 9E0 TIS6'0 8726'0
TR 0214 OvI DAd [Py W 11203y OvI P Ad [1eooy P dd 112203 P dd strows 9poy
do1d o
11 %0="1

[9A9] AJureIIooun Ay Je Sk} UONBIYNUIPI Y} JO suni [¢ J0J JOTH PUe ‘dOOIN ‘dD YOI ‘AdIAY JO S2I0S URIPIW J]pI2Yy PUE ‘U0IS1IaL ‘DV] ‘ISP~ 24nsDaul-,]J § dqe],

38 Sofien Boutaib et al.

Table 9 PF-measure_dist, IAC, Precision, and Recall median scores of ADIPE and PDT baseline approach
over 31 independent runs regarding the detection task the uncertainty levels UL=50% and UL=0%.°

Syst UL ADIPE Baseline PDT
ystems PF_d(=Fm) IAC (=PCC) Precision Recall PF_d(=Fm) IAC (=PCC) Precision _ Recall
0.9084 09288 09016 09173
) UL=50% *) *)) *) 0.5039 05133 06087 0.6308
GanttProject) W W W
0.9177 0939 09241 09173
UL=0% +)))) 05158 05297 06011 0.6287
@ ()] ()] 0]
0.9187 09452 09004 09120
UL=50%) *))) 05017 05043 05971 06118
ArgoUML
goU o o o O
0.9327 09498 09306 09120
UL=0%) *))) 05216 052382 06135 0.6221
1)) [0 ()] U]
0.9047 09295 0.8985 0.9061
UL=50% *)))) 04558 04694 05893 0.6012
Xercessd 0} [0} [0} o
0.9208 09437 09176 0.9061
UL=0% +)))) 04712 04766 0.6071 06128
0} ()] ()] (0]
0.9285 09557 09174 09256
) UL=50%)))) 0.4024 04138 06225 0.6419
JFreeChart W W W W
0.9466 09617 09523 09256
UL=0%) +))) 04102 04127 06220 06403
) [0) ()] U]
0.9277 09408 09163 09283
UL=50% *))) *) 03587 03736 0.6204 0.6311
Adreus o [0} 10} o
0.9389 09548 09412 09283
UL=0%) *))) 03751 03825 06305 0.6392
(1)) ()] ()] [0))
0.9165 09353 09210 09331
- UL=50%) *))) 03259 03515 06403 06729
Apache Ant W W W W
0.9447 09577 09508 09331
UL=0% +)))) 03446 03628 0.6697 0.6873

m (0]) [U)
- The sign "+" at the i""" position means that the algorithm metric median value (PF-measure_dist (abbreviated by PF_d), IAC, Precision, or
Recall median value) is statically different from the i algorithm value. The sign "-" means the opposite.
- The effect sizes values (small (s), medium (m), and large (1)) using the A-statistics are given.
- Best obtained metrics values are highlighted in Bold. Second-best obtained metrics values are underlined.
1911 the certain environment, the PF-measure_dist (abbreviated by PF_d) and JAC measures become

F-measure (abbreviated by Fm) and PCC measures, respectively.

h

the PDT ensemble generated by ADIPE returns a possibility distribution with two
values for the detection case. In case of plausible smelliness, the distribution has the
form [1, X], where X<1. A straightforward question that could come to the reader’s
mind is: “Why not only considering the value 1 and ignoring the X?” Differently
speaking, “what is the added value of X?” Differently to probability theory (always
for the case of detection) where the first probability value p; obliges the second
one p, to be equal to (1-p;), this influence rule does not exist in the possibility
distribution because the sum of possibilities values could be greater than one. In this
way, X defines the non-possibility value. This would be very helpful for the software
engineer in prioritizing smelly classes for the refactoring task. Indeed, the lower the
X value is, the higher the priority to apply refactoring to the considered software class
is. Assuming we have the following three smelliness possibility distributions for the
three java classes Cy, C», and C3, respectively: [1, 0.82], [1, 0.17], and [1, 0.34]; than
the refactoring should be first applied to C, because its non-possibility value in terms
of smelliness is the lowest: 0.17. AfterC,, the engineer should apply refactoring to
C3 (X =0.34). Finally, the last considered class is C| because it has the highest value

A Possibilistic Evolutionary Approach for Code Smells Detection 39

Table 10 PF-measure_dist, IAC, Precision, and Recall median scores of ADIPE and PDT baseline approach
over 31 independent runs regarding the identification task the uncertainty levels UL=50% and UL=0%.%!

Systems UL ADIPE Baseline PDT
PF_d(=Fm) IAC(=PCC) Precision Recall PF_d(=Fm) IAC(=PCC) Precision Recall
0.9228 0.923 0.9345 0.9420
Blob UL=50% +) +) +) +) 0.429 0.4464 0.4032 04175
o o ()] o
0.9294 0.943 0.9511 0.9511
UL=0% +) +) +) +) 0.4117 0.4331 0.4070 0.4208
(U] (U] [0) (U]
0.8941 0.9207 0.9080 0.9141
. UL=50% +) +) +) +) 0.3139 0.3314 0.2962 0.3226
Data Class W n W »
0.9026 0.9238 0.9235 0.9235
UL=0% +) +) +) +) 0.3221 0.3362 0.3013 0.3291
(U] (U] (V) [U)
0.8861 0.9037 0.8913 0.9065
UL=50% +) +) +) +) 0.3023 0.3196 0.2907 0.3076
Feature Envy w a) a
0.8915 0.916 09123 09123
UL=0% +) +) +) +) 0.3098 0.3247 0.2892 0.3315
(U] (U] [U) (U]
0.8794 0.896 0.8831 0.9016
UL=50% +) +) +) +) 0.3012 0.3191 0.2823 0.3263
Long Method W W a W
0.8832 0.9041 0.9056 0.9056
UL=0% +) +) +) +) 0.3031 0.3253 0.2914 03119
[U) a I (U]
0.8623 0.8849 0.8736 0.8919
5 UL=50% +) (+) (+) +) 0.2701 0.276 0.2647 0.2807
Duplicate Code W W W W
0.8709 0.8861 0.8996 0.8996
UL=0% +) +) +) +) 0.2724 0.2879 0.2683 0.2847
(U] (U] [U) o
0.8721 0.897 0.8994 0.9116
T UL=50% +) +) +) +) 0.2242 0.2454 0.2158 0.2206
Long Parameter List W W a W
0.8783 0.9034 0.9209 0.9209
UL=0% +) +) +) +) 0.2287 0.2467 0.2018 0.2235
(U] (U] [U) (U]
0.8593 0.8840 0.8810 0.8952
. UL=50% +) +) +) +) 0.2118 0.2314 0.1907 0.2184
Spaghetti Code W W W W
0.8619 0.8846 0.9031 0.9031
UL=0% +) (+) (+) +) 0.2145 0.2258 0.1993 0.2204
(U] (U] [U) (U]
0.8623 0.887 0.8724 0.8809
Functional Decomposition UL=50% EB) EI*;) :i;) E;) 0.1498 0.1676 0.1356 0.1497
0.8649 0.8876 0.8812 0.8932
UL=0% +) +) +) +) 0.1532 0.1753 0.1487 0.1511

(U] (U] (U] o
- The sign "+" at the i"" position means that the algorithm metric median value (PF-measure_dist (abbreviated by PF_d), IAC, Precision, or
Recall median value) is statically different from the i algorithm value. The sign "-" means the opposite.
- The effect sizes values (small (s), medium (m), and large (1)) using the A-statistics are given.
- Best obtained metrics values are highlighted in Bold. Second-best obtained metrics values are underlined.

21 1 the certain environment, the PF-measure_dist (abbreviated by PF_d) and JAC measures become
F-measure (abbreviated by Fm) and PCC measures, respectively.

of non-possibility in terms of smelliness. This allows ranking the detected classes in
terms of smells prioritization for refactoring based on the increasing order of X values,
and thus the ranking would be: C,, C3, and then C;. Such ranking information defined
by the X values expresses the degree of uncertainty of the human engineers and is of
an important practical interest, since it allows ranking the detected smelly classes from
the highest priority to the lowest one for refactoring. Moreover, in practical industrial
context, the human engineer could face a high number of smelly classes and thus
could be unable to process all of them. The possibility distributions offer a solution
to the engineer by allowing the ranking of detected smelly classes in terms of priority
for refactoring. Thus, the engineer could focus on the highest priority classes (e.g.,
those having X>0.65 in their possibility distributions) and keep the others for possible
future investigation. This practice is very useful especially with the increase of the

40 Sofien Boutaib et al.

software size in terms of the number of classes and also with the pressure imposed by
the defined deadlines.

The identification task could be seen as a subcase of the detection one as it uses
a PDT ensemble for each smell type (e.g., PDT ensemble for Blob, another one for
feature envy, etc.). Therefore for each software class, after the application of the
PDT detectors, we would obtain N binary possibility distributions vectors in the form
[pos1, posa], where N is the number of smell types, pos; is the possibility degree
of the presence of a particular smell type, and pos; is its non-possibility degree. In
fact, the interpretation of the possibility distribution vectors by the human engineer
could be a quite fastidious task, especially with the increase of the number of smell
types as a distribution is generated for each smell. To solve this issue, we apply the
AFO voting fusion (Dubois and Prade 1994a), as an aggregation operator, to output a
single possibility distribution vector that indicates the possibility of occurrence of each
considered smell type. The possibility values are used to define the priority of each
smell type for refactoring. For example, assuming we have the following possibility
distribution: pos(Blob) = 1, pos(SpaghettiCode) = 0.1, pos(LongMethod) = 0.8; for
a particular class. This defines the following priority order: Blob, Long Method, and
then Spaghetti Code. Likewise the detection phase, such prioritization could be very
helpful for the software engineers in practical context, especially when the software
size and/or the deadlines’ pressure increase(s).

In summary, the possibility distributions allow prioritization for refactoring: (1)
among software classes for the case of detection and (2) among smell types for
the case of identification (as processing is made class per class in such task). The
PF — measure_dist and IAC empirical results confirm that ADIPE’s generated PDT
ensembles (ADIPE detectors) outperform the considered peer methods in terms of not
only detection/identification but also smells prioritization for refactoring.

5 Threats to Validity

This section explores the different factors that may skew our empirical study. These
factors can be classified into three categories: (1) the internal validity, (2) the external
validity and (2) the construct one. The internal validity threats concern the correctness
of the results of our proposal’s experiments, whereas external validity threats are
associated with the generalizability of the obtained results except the sample instances
employed during the experiment. Finally, the construct validity threats are related to
the theory-observation relation.

5.1 Internal validity threats

During this work, we consider the internal threats to validity when using the stochastic
algorithm, since 31 independent simulation runs are conducted. The peer algorithms
are statically evaluated using the Wilcoxon-rank sum test with a 95% confidence level
(i.e., alpha=5 %). Another important internal threat that must be tackled in our future
work is the parameter configuration of the various considered optimization algorithms

A Possibilistic Evolutionary Approach for Code Smells Detection 41

through our experimentations. In this work, the parameter configuration is performed
employing the trial-and-error technique (Eiben and Smit 2011), which is the widely
used technique by the SBSE community. To mitigate this threat, it might be a very
interesting perspective if we build a configuration strategy to update our approach
parameters including the threshold parameter that is employed to decide if the current
node is a leaf or internal node.

5.2 External validity threats

The external threat to validity mainly addresses the used types of smells in this study as
well as the studied software projects. We have considered eight different types of code
smells (cf. Appendix A) that are a broadly representative collection of standard smell
types and the most frequent ones. We have chosen six different software projects (cf.
Table 2) from various application domains, having different sizes as well as diverse
functionalities, and also built by different companies. The choice of such diverse
projects aims to reduce the bias that could appear due to the special characters on
the selected projects. Moreover, we carried out a K-folds cross-validation strategy to
reduce the bias evoked by the specific projects. Besides, it is very interesting if we
could test our proposed ADIPE tool for the identification of anti-patterns that reside on
web services and Android applications. For the case of web services, anti-patterns may
impede their progress, thereby deteriorating their quality and automatically decreasing
the rate of use. On the Android applications side, the existence of anti-patterns will
negatively affect these applications’ executions by raising their processing times and
also by increasing their consumption in terms of energy. Figure 18 shows the detection
code smells models on a within-project and a cross-project. One can see from Figure
18 (a) that in the case of a within-project, the unseen software classes are labeled
based on the trained instances of the source projects considered in the training phase.
However, in the case of a cross-project (cf. Figure 18 (b)), the unseen classes of the
target project are labeled by the help of the labeled instances of the source project
and some of its labeled instances (cf. Appendix H). Based on Figure 18, it will be
interesting to add a transfer learner to our ADIPE approach that is able to transfer
knowledge of the considered source projects to target projects.

5.3 Construct validity threats

In our experimental study, we have built a BE using some existing advisors (e.g.,
DECOR (Moha et al. 2010), JDeodorant (Tsantalis and Chatzigeorgiou 2009),
inFusion??, iPlasma??, and PMD (Gopalan 2012)) for the detection of anti-patterns
(cf. Figure 7). Then, the produced BE is submerged by uncertainty, in particular, its
class labels. The transformation from crisp (or certain) class labels to uncertain ones
is made based on: (1) five different probabilistic classifiers ((Naive Bayes classifier
(Friedman et al. 1997), Probabilistic K-NN (Holmes and Adams 2002), Bayesian

22http://www.intooitus.com/products/infusion
2http://loose.upt.rofiplasma/

42 Sofien Boutaib et al.

D : Software instance
I:D : Non smelly-labeled instance

Model
oo I:. : Smelly-labeled instance
I:E : Unlabeled instance

" prediction
Project p

(a) Within-project Code smell detection

Source Project s

(b) Cross-project Code smell detection

Fig. 18 Within-project and Cross-project Code smell detection (Inspired by (Zhu et al. 2020))

Networks (Pearl 1982, 1985), Naive Bayes Nearest Neighbor (Behmo et al. 2010),
and Probabilistic Decision Tree (Quinlan 1987)) for the creation of the likelihood
values and then (2) a mathematical formula to transform the obtained probability
distributions into a possibilistic ones (for more details, please refer to Section 3.1).
Thereby, a constructed threat to validity can be related to the employment of the
non-deterministic five probabilistic classifiers for the simulation of the uncertain as
well as subjective experts’ opinions in the process of the generation of likelihood
values. To handle such a problem, the generated values will be manually checked by
human experts. To the best of our knowledge, our work is the first one in the SBSE that
detects code smells with uncertain class labels. Based on this fact, another important
construct threat to validity arises because there is no SBSE work that dealt with the
detection of code smells under uncertain environment. Unfortunately, most of the
current approaches ignore the uncertainty that resides in the BE. So, we compared our
approach with a possibilistic one (i.e., NS-PDT). This latter is not publicly available
and hence we re-implemented it. However, the NS-PDT re-implementation could be
wrong, and this could skew the obtained results. In the aim to reduce the threat, we
relied on (experienced) code reviewers to monitor implementation. We also compared
with the reported results of the re-implemented NS-PDT in the literature, and therefore,
the comparison shows that the results are nearly identical. For the evaluation part,
it is impossible to evaluate the performance of our proposed approach against the
remaining ones using the existing measures in the literature since these latter are maybe
able to work under an imbalanced environment, but not for the uncertain environment.
We recall that in this work, we are dealing with an uncertain environment as well as
an imbalanced one. To handle these issues, we have proposed a novel metric called
PF-measure_dist, which can work under certain and uncertain environments. To the
best of our knowledge the PF-measure_dist is the first uncertain metric that has been

A Possibilistic Evolutionary Approach for Code Smells Detection 43

proposed in the SBSE field. Thus, an important construct threat to validity may appear
due the lack of existence of uncertain measures. In fact, the usual used metrics (i.e.,
F-measure, Accuracy, AUC, etc.) are not suitable to deal with the uncertainty over the
class labels. For this reason, we have used the PF-measure_dist and the IJAC measures
to consider the information about the uncertainty existing at the class labels. Although,
we have employed the AUC metric to compare the five considered algorithms in the
certain environment for the detection and identification cases (cf. Appendix E), it will
be interesting to investigate the performance of ADIPE using additional metrics such
as the Geometrical mean (G-mean) and the modified Area Under Precision Recall-One
Versus All (mnAURPC-OVA).

6 Related work

The detection of code smells remains a highly active and timely subject for research
within the SE domain, including the SBSE one (Azeem et al. 2019). Many types
of research have been suggested by different authors to automate the code smells
detection methods to aid the experts (including developers) for the detection task. The
term uncertainty has appeared in some SE problems, (Whittle et al. 2009) tackled the
uncertainty caused by changing environmental conditions for the case of self-adaptive
systems. Also, the uncertainty was discussed by (Bowers et al. 2020) where they try
to optimize the non-functional requirements in the self-adaptive system that generates
adaptation strategies for carrying out reconfigurations at run time to tackle unexpected
problems that occur as a result of uncertainty such as, unpredicted problems within the
system itself. Nevertheless, most of the existing works did not deal with the uncertain
data in the SE including the SBSE methods that can be classified into four major
categories: (1) Rule-based methods, (2) Machine learning-based methods (along with
deep learning), (3) Search-based methods, and (4) Others. Table 11 summarizes the
main features and the hyper-parameters of the most prominent existing works, with
the aim to show the characteristics that make ADIPE able to deal with uncertain and
imbalanced data with respect to existing works. Based on Table 11, the following
observations could be concluded:

— ADIPE is the only search-based algorithm that is able to take into consideration
the doubtfulness and the subjectivity of the software engineers when tackling the
detection of code smells problem. This is done in the construction of the BE phase
through the use of a set of Opinion-based classifiers that generate probabilistic
values (i.e., likelihood values) to take into consideration the uncertainty of the
software engineer. These latter are converted into possibilistic values in order to
mimic real world scenarios.

— Most of the existing works have not consider the data imbalance issue. Only two
works proposed to tackle this issue by focusing in the data level by means of data
processing (Fontana et al. 2016b; Di Nucci et al. 2018). In fact, these two works
employed stratified random sampling to rebalance data. ADIPE is the only work
that propose to handle the imbalance data problem by focusing on the algorithm
level through the use of a fitness function that is based on the PF-measure_dist. It

44

Sofien Boutaib et al.

is important to note that the PF-measure_dist is inspired by the F-measure metric,
which is insensitive to the data imbalance issue.

Existing DTs based methods use the gain ratio as feature selection criterion at
each node. This practice is greedy and could lead to the local optimal split. Other
researchers proposed to use the random forest where a set of DTs are constructed
using a random selection of the feature before aggregating all the generated trees.
This random generation process may also lead to locally-optimal splits. In ADIPE,
at each node of PDT, only one feature is chosen using the crossover and mutation
operators. On the one hand, the crossover exploits the fittest parts of the parents
with the aim to generate prominent offspring individuals. On the other hand, the
mutation operator is used to diversify the offspring individuals (i.e., PDTs) in
order to not get stack in local optima. Therefore, our ADIPE performs an effective
feature selection at PDT nodes based on: (1) the crossover and mutation operators
to perform the feature selection operation and (2) the PF-measure_dist towards
the global-optimal PDT.

The column TDM presents the efficient threshold generation carried out by ADIPE
using the Kretowski-&-Grzes method. In fact, existing machine learning-based
approaches have used , the entropy-based discretization method for the threshold
generation. This method is greedy and usually leads to locally-optimal thresholds.
For this reason, researchers have opted for the use of the mutation operator.
This latter have shown its limitation since it can leads to the generation of
meaningless and/or ineffective splitting thresholds. In this work, we have chosen
the Kretowski-&-Grzes method for the following two main reasons. On the one
hand, the application of this method at each node of the PDT produces a number
of effective thresholds for the related feature (cf. Figure 10). On the other hand,
ADIPE chooses randomly a threshold from the set of effective splitting thresholds
generated based on the Kretowski-&-Grzes method to avoid being trapped in local
optimal thresholds (which is not the case of C4.5).

Traditional existing detection methods employ two types of pruning. The first one
consists on pruning the nodes during the induction, while the second one prunes
them after the whole tree generation. The SBSE approaches (including ADIPE)
perform the pruning process by applying the crossover operator. During the
evolution process, the crossover operator could stop the development of branches
via the sub-tree exchange.

Column CEFF on the table shows that many fitness functions have been employed
to optimize the detection rules. Nevertheless, no one of them considers the
uncertainty and the data imbalance issues. ADIPE uses the PF-measure_dist as a
fitness function. This latter has proven its ability to deal with the uncertainty and
its insensitivity to the problem of imbalanced data.

6.1 Rule/heuristic-based approaches

The initial efforts for the identification of software classes containing anti-patterns
focused on defining rule-based methods (also called heuristic-based approaches)
(Sharma and Spinellis 2018) that relies on structural metrics for capturing deviations

45

A Possibilistic Evolutionary Approach for Code Smells Detection

SulpoN | (9910¢ ‘¥ 10 ruruoy) Aq pardope se s1oyIsse[d ejiuig X X (810 "2 32 1000N 1)
INOYIM PUE FUNSOOY (IIM SIOUBLIBA NAS
VIN VIN VIN prowdIg pue ‘[eipey ‘[eruoukjod ‘redury
Sunsoog ynm (Ajod pue 393) O
VIN VIN VIN S pue Sunsoog noyim
(A10d pue J€¥) ONS) INAS
VIN VIN VIN Sunsoog (Inoyiim pue) yim sakeq dAIEN
uonod[es (Sunsoog MOYIM UONONNSUOD WOPUELY
SunpoN V/N 2IMBaq pue Sunsoog ym
Areniqry UonONISUOD WOPURY) 153104 WOpPURY
uonoNpaY JOLIF Uo dunsoog e 3ddIY
paseq Surunid-1sog VIN VIN put sunsood (it
MAddI) 1oyisserd dryp
uondNpAy Io1ryg uo chﬁmoom nm Sy
- pue Sunsoog noyim
paseq Surunid-1soq
S"¥D) 991 uorstoa paunidun
s (Bunsoog yum ¢'4) .
VIN SuroN SUMON pue Sunsoog oYM X X (99102 "1 12 vueiuoy)
UONEZOASPUO | o e S¥D) oan Mc”mhuoc vu__“”ﬁ::
oney uren uo paseq Adonug HEY UED (Sunsood im 670
. : pue Sunsoog JnoyIm
paseq paunid-a1q
G'$D) 231} UOISIOd(] paunid
VIN VIN VIN V/N | SurqoN JToyisse[d paseq saurdg-g X X (0102 " 12 019A10)
Suro IQYISSE[O paseq N N ((6 10 SUTESSTRD) soyoroidde paseq
VIN VIN VN VIN HON WISAS uNUIW] [RIOYNIY 010 ¢ 2 SUIESSEH, -Sururesy suryoey
VIN VIN VIN V/N | BuipoN QUIYIRIA 10109 Moddng X X (9°vT10T "2 1 EBIRIN)
VIN VIN VIN V/N | SurgoN NIOMION UrIsoAeg Jorog X X (600T T8 12 19YoneA)
VIN VIN VIN V/N | BuipoN YIOMION urIsoAeg Jorog X X (10T T2 32 ywoyyy)
VIN VIN VIN V/N | SurgoN NIOMION UrIsdAee Jorog X X (6002 T8 32 ywoysy)
VIN OHEY UILH UO | UOHEZIaIoSIp U0 oney uren | SuryioN (0°6D) 991 uoIsIQ X X (S10T T8 1° wLIOWY)
paseq Sutunid-a1g Surkja1 Adonug . : : o i
OHEY UIPDH UO | UOHBZNAISIP U0 |y, Suryo; (S'$D) 931 UOISTOS X X (S IoWIdIY)
VIN paseq Sutunid-a1g Suiker Adonug HEY WED fwoN §Y0 L uotsioed £00T towary
8 3
V/IN V/IN V/IN V/IN wz_r—ucz %:m::mE pauygap aIe Sa[nI X X A— 10T _._O_DHOOM_Nﬁn_.—U pue mm—ﬂgﬂﬂm.—.v mUﬁ—UNnﬂh—n—ﬂ poseq
V/N VIN VIN V/N | SuigoN A[enuew pouyop oxe S JSLNOH X X (010T ‘1# 12 BYON)
-OnSLINAY/SA[NY
VIN VIN VIN V/N | SumpoN AJ[enuewr pauyop a1e sa[nJ ONSLINH X X (Z00OT NOSAULILIA])
SO | ON | SOA | ON
EEC) Sd WAL JSAN nsv WD 0 o POYIoW UOBOJIP [[oWg A103ae)

"(pawtoday 10N /N ¢ o1qeoriddy 10N (y/N ¢ ‘uonoun ssawjr{ uonenyeaq Joyissel) gD ‘ASo1eng Surunig :Sq ‘POYIRIA uonIuyaq
PIoysaIy [, (AL ‘UOLIALID) UOIDA[AS AIMjea,] dpoN :DSAN ‘Aiurerraoup o) £39)eng uoneidepy NSV ‘[OPOIA JOYISSB[D (JAD ‘UONBIIPISUOD) JUSUIUOIIAUY UTRIdU() :DHN
‘UOTIBIOPISUO)) JUSWUOIAUF ddueequi] :DH]) siojowrered-1od Ay pue saInjeay 11ay) Jo SISeq 9 U0 UOTIOAAP S[[oWs dpod Jo sayoeordde Sunsrxe o) usam)aq uostredwio) 1y Iqel,

Sofien Boutaib et al.

46

(1202 T8 19 qrenog) JUSWUOIIAUD
UIeLISOUN 3Y) UI S[IQR] SSB[O AJLIOUIW 9Y) 19A0 ANANISUSS puk A1101103dS 91 JO UBSW [ROLIIOWOAT QY S1 Uubaul — O UL, *IS1p~ K3101f102d g X 3s1p~parjisuag N = uvout — N d g

(L10T 'Te 19 100suepy) sojdwrexa pau3Isap-[[om jo
UoNn9919p 9y} SAZIWIUI &f [y ‘so[durexa [[ous apod Jo 1993ap Y} JO 2FLIIA0D AU} SOZIWIXeW Ly Y], o < EGE] =47 pue =Ly
Ta5alU()soal T 794l ")sodl

(102 ‘Te 32 uryes) sojduwrexa pauSIsap-[[om Iy} YIrm 0URISIP) UO Paseq
poonpoid a1e 1Ry} $100J0P [RIOYILIE PAJOSIop-UOU JO IOqUINU Y} SAIB[NO[RD 0Ly oy ["[OAS] JOMO] 9y 18 109J9p , [eroynae, paonpoid oy jo omﬁu\/oo oy pue so[duwrexs 109J9p Jo
9810400 oY) saen[ead 44y oy, *(|(2poDaouata f2y0) I — (SOmoLf114y2)) | YR AR Y ue + 1 = >4l pue = doddn

Vpaiaiap T (@a St Em Syuoisaig
(F10T T8 19 Ez:oﬁovc (AIISISATIP A} SSISSE 0] WIE Y} IIM) SUSWSeIY

QP02 20UAIRJAI SNOLIEA PUE SI0}02)p SUOWE 21008 AJLIB[IWISSIP 9} TuIsn SI10309)p P)NSAI Ay} SALNBAS UOHOUN SSWY VO, Y Jsenuod uf "o ay) Aq pajoajop asoy) yiim

os[e pue gg) ur sauo pajoadxa ay 03 uostredwod ur $109J9p PoIdJP JO JIOqUINU Y} SAYR[NOTed 40,7 Ay, 3 = Vo7 pue A.@é_iis%i._wv S} = Dy,

*(€10T 'Te 10 eessnog) “(s109Jop pajeIauas Jo 398 €) uonn[os pajerouas e jo Afenb oy
SOSSE JBY) UONOUNJ IS0 AY) 0] SIDJAI IS0 “IOAIMOH ‘[OA] PUOIIS Y} Aq $109Jop , [eIOYNIY,, padnpold oy se [[om se mm oY) ur pajoadxa asoy 01 Jutredwod $309Jop PajdAIP
JO Joquunu ay) saye[nares (uonendod jsiy oy J05) 25742402, wonouny ssawy Isxy oL 2 + (|(X0) I — ('p) | T< T:HORBE = Jso) pue + 4 = 2804240

‘(€10T

‘[B 19 TUNQ) PAZITRULIOU ST IN[BA PAUIRIQO Y} ‘UYL, “Hg Y} Ul p3oadxa asoy) 0 30adsar yarm S[[ows pajoalap Jo raquinu ay) saznndwod “Oury ayy, = oy q

1
p 1= T TR
d d
(1T0Z ‘Te 32 TUnuassay]) qg Y} ur pajoadxa 9soy) 0} 102dsaI Yjim S[[OWS PajO)3P JO IIqUINU JY) SIJR[NO[Ld uonouny ssawyy dLgn YL, /v T:.w =dIgn,

9010y d1SLINAY Swo 9[NI ONSLINAY « « (e 10 HquIBYC)
V/N V/IN POAIOAUOD [EnUBI V/N JION pouyap [enuejy 800C ' 10 Hqureyq
9010U2 d1ISLINAY 9[nI oNsSLINAY .
VIN VIN POATOAUIOD [enURIy VIN SurgloN pauyop [enuely X X (500 'Te 1 Jor[a5ueT)
010U d1ISLINAY Suo QNI dNSLINAY N | ¢ UAUOOT puE USpUIE)
VIN VIN POAIOAUOD [enUEIy VIN IIoN pouyep [enuely 00t A pue uspury
Q010U d1ISLINAY Sumo QNI ONSLINAY . ; (oy pue ng)
V/N VIN POAISAUIOD [enUEIy V/N oN pauyap [enuely G10T UayS pue ng
901049 d1ISLINQY QNI dNSLINAY N SIYIO
VIN VIN POAIOAUOD [enUEIy VIN SunpoN pouyop [enuely X X | (S10T ‘€10T 'Te 19 rquiofed)
9010y d1ISLINAY 9[NI ONSLINAY .
VIN VIN | Dosroauoo [enuepy VIN SurgioN pouyep [EnuTIy X X (#00T "Te 10 ndey)
OYISJA SIZI uone)n, ISP amseall-Id Qa1
IS1P”24nSD2U-J | IOAOSSOID) P 5_ _,\,wso 30 Lu>%ﬁ“22 Sursn uonnjosd LOISI90(T S1SHIT _foﬁ X X qd1ayv pasodoxd g
% Dismojory| SSOID 991, UOISIAQ OSSO IS199(dnsI[IqIssod
uoneIn uedW-nJ SuIsn UONN[OAd .
5 UDAUW-DJ | IOAOSSOID) uoneInA -10A0SS01D NN-3 OBSHIQISsoq NN- onsiiqissod X X (1202 'T® 19 qrenog)
. uoneIny K
74 PUB L | J9AOSSOI) uonenpy -10A08501) SuroN | s9Iny 00y-py Jo 231], X X (L10T "Te 12 100SUBIA))
, %Ly pue 42ddny | 19A085010) uonen LW_MH_MMMH_\M SuryloN | S9Ny d0Y-py Jo 2217, X X (#10T 'Te 319 uIyes)
uonen
p V24 puE 42 | 10A08501) uonempy .53%20 SuryioN | SNy 90y-py Jo 2317, X X (10T ‘T8 19 TUNuassay)
150 pug 297424025 | 13008501 uonem A SuryioN | se[ny o0y-py Jo a1y, X X (€107 'Te 32 vESSnog)
? i -IOAOSSOID) . soyoreordde
15A0SSOI) onEIngy Mm%ﬁ_\w SunpoN | soImy 20y-py Jo 9211 X X (€102 o0 ung) | POEIAIRIS
aL uoneInN X
pILgN | 10A0SSOID) uonempy -10A08501) SuroN | soIny o0y-py Jo 231], X X (1102 ‘Te 12 TUnuassay|)
A49D Sd WAL OSHN nsv WD =4 MM =4 cU7_H poyial uonsaep [[pug A103a1e)

A Possibilistic Evolutionary Approach for Code Smells Detection 47

from good practices of OO design. Erni and Lewerentz (1996) proposed to use
multi-metrics to evaluate the software performance with a view of improving them.
Marinescu (2004) proposed a strategy for detecting defects into different levels of
0O design fragments (including method, class, and subsystem) using a metric-based
approach to analyze the code source. Lanza and Marinescu (2007b) suggested to
combine a number of quality metrics with thresholds where a set of a rules (i.e., a
combination of AND/OR operators) are established for 11 anti-patterns. Moha et al.
(2010) introduced the DECOR approach that described the symptoms of the defect
using an abstract language to represent the rules. Other existing approaches have
adopted clustering methods for detecting code smells such as the JDeodorant tool
Tsantalis and Chatzigeorgiou (2009). This latter could detect smells and recommend
some move method as refactoring operations.

6.2 Machine learning-based approaches

To tackle the manual design difficulties, a new trend has been recently emerging
which consists in the employment of machine learning techniques for the problem of
detection of code smells (Fontana et al. 2016b). The idea was to build a given classifier
based on training data so that the classifier can predict the smelly software classes on
software projects. Kreimer (2005) suggested the application of Decision Trees (DTs)
methods on two small software systems (IYC and WEKA) to find the two design flaws
occurrences: God Class and Long Method. Amorim et al. (2015) validated the previous
results by evaluating the DTs performances on four medium software systems sizes
to detect 12 different anti-patterns. Khomh et al. (2009) proposed to use Bayesian
Networks for the detection of Blob anti-pattern occurring on two software projects.
Khomh et al. (2011) extended their previous work by proposing a novel approach
called BDTEX (Bayesian Detection Expert) that relies the Goal Question Metric to
construct Belief Bayesian Networks. Vaucher et al. (2009) used the BBNs to study
the Blob evolution life cycle and thereby distinguishing between the real God Classes
from accidental ones. Maiga et al. (2012a,b) introduced an SVMDetect approach that
uses the Support Vector Machine (SVM) method to detect anti-patterns. Hassaine
et al. (2010) used the immune-inspired approach to recognize the Blob smell types.
This approach is designed for systematically detecting code smells within classes that
violate the characteristics belonging to certain conceived rules. Oliveto et al. (2010)
suggested to use the ABS (Anti-pattern identification using B-Splins) approach in
order to identify some smelly instances using the numerical analysis method.

Some authors have performed various studies to compare the performance of
different machine learning techniques for the code smell detection problem. For
instance, Fontana et al. (2016b) have tested and compared 16 supervised machine
learning methods with their boosting variant for detecting a set of code smells on 74
open-source software projects with different scales. Furthermore, during the training
as well as the evaluation stages, the authors employed the under-sampling method to
avoid the poor performances generated by machine learning methods for the case of
imbalanced datasets. Fontana and Zanoni (2017) made a classification of code smells
based on their severity using multinomial classification and regression techniques.

48 Sofien Boutaib et al.

This proposed approach can help developers to prioritize the class or methods or to
rank them. Di Di Nucci et al. (2018) reported the limitations of Fontana et al. (2016b)
approach. Recently, researchers proposed to employ the Deep Neural Network (DNN)
to detect code smells using different type of information: (1) Structural and historical
information (Barbez et al. 2019), (2) Structural as and textual information (Liu et al.
2019), and (3) Structural and semantic information (Hadj-Kacem and Bouassida
2019).

6.3 Search-based approaches

The search-based methods are used to address various optimization problems in the
context of software engineering based on meta-heuristic algorithms. Some researchers
considered the detection task as the most critical step since it records the exiting
smells as well as their paths in a given software system to the next step, which
corresponds to the refactoring (correction) task. Kessentini et al. (2011) introduced
an automated approach that relies on detection rules to detect code smells in a given
software project. The detection rules are described as combinations of quality metrics
along with thresholds that have been drawn from the comparison of different heuristic
search algorithms devoted to the extraction of rules. Ouni et al. (2013) implemented
a search-based method to detect the existing code smells in open-source software
systems. This was the first method to derive the rules for detection based on genetic
programming from the smelly examples. Boussaa et al. (2013) suggested to adopt an
approach that relies on a competitive co-evolutionary search to address the code smell
detection problem. This approach consists of two concurrent populations that grow
at the same time; the first population generates some detection rules to maximize the
detection ratio for smelly examples. However, the second population maximizes the
generation of artificially code smells that cannot be detected by the first population.
Kessentini et al. (2014) suggested to integrate the parallel aspect by proposing a
method called PEA (Parallel Evolutionary Algorithm) for the detection of code
smells. In fact, the authors joined the GA as well as the GP (Genetic Programming)
in a parallel manner over the optimization process to build a range of detection
rules based on examples of different smell types as well as the detection from the
non-smelly code source examples. Sahin et al. (2014) introduced the BLOP (Bi-Level
Optimization Problem) method based on a bi-level optimization problem to produce
the detection rules of the code smells across two levels. The first level is known as
the upper level, and it has to generate a collection of detection rules to optimize
the coverage of real code smell examples as well as the artificially generated ones
across the second level. In contrast, the other level (second or the follower one) is
responsible for divulging the maximum smells that are not detected from the first
level. Mansoor et al. (2013) proposed MOGP (Multi-Objective Genetic Programming)
method that relies on the multi-objective aspect for the detection rules generation
task. MOGP is used to figure out the best quality metric combination by maximizing
the detected smelly examples number as well as minimizing the number of detected
well-designed examples. Boutaib et al. (2021) have proposed ADIPOK (Anti-pattern
Detection and Identification using Possibilistic K-NN Evolution) that evolves a set

A Possibilistic Evolutionary Approach for Code Smells Detection 49

of PK-NN detectors to detect and/or identify code smells under certain and uncertain
environments.

6.4 Others

In the last few years, researchers paid more attention to historical information for
the code source evolution to detect code smells. Rapu et al. (2004) proposed to
extract the historical information from the smelly structure. The authors considered
some historical measures that depict the evolution of smells. Palomba et al. (2013,
2015) developed a novel approach namely HIST (Historical Information for Smell
deTection). This approach identifies code smells based on the extracted historical
information from different software versions. For the evaluation of the HIST approach,
the authors used eight software systems and a set of smell types. Fu and Shen (2015)
suggested an approach that relies on associated rule mining to draw information history
software systems with an enormous growth history. Indeed, the information history
could be related to either classes or methods or packages as well as to an additional
operation or modification one. Emden and Moonen (2002) introduced jCOSMO to
visualize the code smells for complex software analysis. This latter involves parsing
source code as well as showing the smelly code fragments and their relation via the
graphical view. Langelier et al. (2005) introduced the VERSO framework that used
colors in the visualization in order not only to represent the properties but also to
support the quality analysis in a given software. Dhambri et al. (2008) developed an
approach that automatically detects some symptoms of code smells and keeps the rest
of the analysis for a human analyst.

7 Conclusion and future work

In this paper, we proposed ADIPE as a new method and tool for detecting and
identifying code smells for uncertain and certain environments in which uncertainty
mainly appears at the level of class labels. Over this original work, we have triggered a
novel trend that the SBSE community researchers often neglect; which corresponds to
the fact that the code smells detection and/or identification is an uncertain classification
problem. In fact, the uncertainty could be justified by the subjectivity and the
doubtfulness that software engineers usually face when determining not only the
smelliness classes but also the smell types that they include. Additionally, the human
software engineers may have diverse opinions since they have distinct knowledge as
well as expertise. Ignoring any amount of uncertainty could lead to a significant loss of
information and consequently diminishes the performance of whenever used detectors.
To deal with the uncertainty issue, ADIPE evolves a set of PDTs classifiers using a
PBE. Our proposal has proven its merits by dint of three important characteristics. First,
it employs an adequate detector (PDT classifier) that is suitable to deal with uncertain
class labels. Moreover, this kind of classifier is evolved using the GA aiming to escape
local optima and to approach the global optima. We recall that over this work we
adopted the possibility theory as a tool to model the uncertainty through possibility

50 Sofien Boutaib et al.

distributions. Second, the designed fitness function (PF-mesure_dist) is capable to
manage the uncertain data as it takes into consideration the possibility distributions and
the imbalance issue due to its proven insensitivity. Finally, the AFO (Adaptive Fusion
Operator) is used since it is a suitable fusion operator to merge the different possibility
distributions coming from different detectors. The specificity of the AFO relies on its
ability to merge conflictual as well as non-conflictual information (i.e., possibility
distribution) at the same time. Our proposed decision tool has an industrial impact
for the following two main reasons: (1) it is able to maintain several industrial source
projects, and (2) it helps the software engineer to made effective choices regarding
the refactoring operations sequences that should be applied.

As part of our perspectives, we plan to expand our BE by generating artificial code
smells that might not be covered in our study. Moreover, we aim to evaluate our ADIPE
against the remaining PDT types: Sim-PDT (Jenhani et al. 2008a) and Clust-PDT
(Jenhani et al. 2009). Also, we may face a problem where an important amount of
data are not labeled. To this end, we propose to adopt one of the semi-supervised
techniques that can effectively deal with the lack of data labeled problem. It would be
interesting to extend this problem into an uncertain environment. We also intend to
merge different information types (structural and historical (Palomba et al. 2015))
and consider learning classifiers to detect and/or identify smells under uncertain
environment. In our experimental study, we have evaluated the performance of ADIPE
on unseen software classes from the six software projects employed in the training
phase. However, we have not predict the labels coming from target unseen projects
(Zimmermann et al. 2009; Li et al. 2020). Thus, it will be interesting to equip our
ADIPE with a transfer learner that is able to transfer knowledge of the considered
source projects to target projects coming from different domains (Qing et al. 2015;
Du et al. 2019; Zhu et al. 2020). As Future Avenue, it would be interesting to use a
distributed GPU architecture in order to decrease the time complexity of the detectors
generation process (cf. Appendix G). Moreover, we could add a posterior Interactive
Development Environment that allows introducing the developer preferences by
modifying some generated PDTs. Finally, we plan to use ADIPE for the identification
of smell types residing on mobile and web-based applications (Bessghaier et al. 2020;
Saidani et al. 2020).

Conflict of interest

The authors declare that they have no known competing interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgements Fabio Palomba gratefully acknowledges the support of the Swiss National Science
Foundation through the SNF Project No. PZ00P2_186090 (TED).

References

Al-Sahaf H, Bi Y, Chen Q, Lensen A, Mei Y, Sun Y, Tran B, Xue B, Zhang M (2019) A survey on
evolutionary machine learning. Journal of the Royal Society of New Zealand 49(2):205-228

A Possibilistic Evolutionary Approach for Code Smells Detection 51

Alcald-Fdez J, Ferndndez A, Luengo J, Derrac J, Garcia S, Sdnchez L, Herrera F (2011) Keel data-mining
software tool: data set repository, integration of algorithms and experimental analysis framework.
Journal of Multiple-Valued Logic & Soft Computing 17

Amor NB, Benferhat S, Elouedi Z (2004) Qualitative classification and evaluation in possibilistic decision
trees. In: Proceedings of the IEEE International Conference on Fuzzy Systems, IEEE, vol 2, pp 653-657

Amorim L, Costa E, Antunes N, Fonseca B, Ribeiro M (2015) Experience report: Evaluating the
effectiveness of decision trees for detecting code smells. In: Proceedings of the 26th International
Symposium on Software Reliability Engineering,, IEEE, pp 261-269

Arcuri A, Briand L (2014) A Hitchhiker’s guide to statistical tests for assessing randomized algorithms in
software engineering. Software Testing, Verification and Reliability 24(3):219-250

Azeem MI, Palomba F, Shi L, Wang Q (2019) Machine Learning Techniques for Code Smell Detection: A
Systematic Literature Review and Meta-Analysis. Information and Software Technology 108:115-138

Barbez A, Khomh F, Guéhéneuc YG (2019) Deep learning anti-patterns from code metrics history. In:
Proceedings of the IEEE International Conference on Software Maintenance and Evolution ICSME
2019), IEEE, pp 114-124

Barros RC, Basgalupp MP, De Carvalho AC, Freitas AA (2012) A survey of evolutionary algorithms for
decision-tree induction. IEEE Transactions on Systems, Man, and Cybernetics 42(3):291-312

Behmo R, Marcombes P, Dalalyan A, Prinet V (2010) Towards optimal naive bayes nearest neighbor. In:
European conference on computer vision, Springer, pp 171-184

Bessghaier N, Ouni A, Mkaouer MW (2020) On the diffusion and impact of code smells in web applications.
In: International Conference on Services Computing, Springer, pp 67-84

Bouchon-Meunier B, Dubois D, Godo L, Prade H (1999) Fuzzy sets in approximate reasoning and
information systems, vol 5. Kluwer Academic Publishers

Bounhas M, Hamed MG, Prade H, Serrurier M, Mellouli K (2014) Naive possibilistic classifiers for
imprecise or uncertain numerical data. Fuzzy Sets and Systems 239:137-156

Boussaa M, Kessentini W, Kessentini M, Bechikh S, Chikha SB (2013) Competitive Coevolutionary
Code-Smells Detection. In: Proceedings of the Sth International Symposium on Search Based Software
Engineering, Springer, vol 8084, pp 50-65

Boussaid I, Siarry P, Ahmed-Nacer M (2017) A survey on search-based model-driven engineering.
Automated Software Engineering 24:233-294

Boutaib MS, Elouedi Z (2018) Incremental possibilistic decision trees in non-specificity approach. In:
Proceedings of the 13th International FLINS Conference (FLINS 2018), World Scientific, vol 11, p
339

Boutaib S, Bechikh S, Palomba F, Elarbi M, Makhlouf M, Said LB (2020) Code smell detection and
identification in imbalanced environments. Expert Systems with Applications 166:114076

Boutaib S, Elarbi M, Bechikh S, Hung CC, Said LB (2021) Software anti-patterns detection under
uncertainty using a possibilistic evolutionary approach. In: EuroGP, pp 181-197

Bowers KM, Fredericks EM, Hariri RH, Cheng BH (2020) Providentia: Using search-based heuristics to
optimize satisficement and competing concerns between functional and non-functional objectives in
self-adaptive systems. Journal of Systems and Software 162:1-51

Brindle A (1980) Genetic algorithms for function optimization. PhD thesis, The Faculty of Graduate Studies
University of Alberta

Bryton S, e Abreu FB, Monteiro M (2010) Reducing subjectivity in code smells detection: Experimenting
with the long method. In: 2010 Seventh International Conference on the Quality of Information and
Communications Technology, IEEE, pp 337-342

Catolino G, Palomba F, Fontana FA, De Lucia A, Zaidman A, Ferrucci F (2019) Improving change prediction
models with code smell-related information. arXiv preprint arXiv:190510889

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Transactions on
software engineering 20(6):476-493

Conover WJ, Conover WJ (1980) Practical nonparametric statistics. Wiley New York

Dhambri K, Sahraoui H, Poulin P (2008) Visual detection of design anomalies. In: Proceedings of the 12th
European Conference on Software Maintenance and Reengineering,, IEEE, pp 279-283

Di Nucci D, Palomba F, Tamburri DA, Serebrenik A, De Lucia A (2018) Detecting code smells using
machine learning techniques: are we there yet? In: Proceedings of the 25th International Conference
on Software Analysis, Evolution and Reengineering, IEEE, pp 612-621

Du X, Zhou Z, Yin B, Xiao G (2019) Cross-project bug type prediction based on transfer learning. Software
Quality Journal pp 1-19

52 Sofien Boutaib et al.

Dubois D, Prade H (1985) Unfair coins and necessity measures: towards a possibilistic interpretation of
histograms. Fuzzy sets and systems 10(1-3):15-20

Dubois D, Prade H (1988) Possibility theory: an approach to computerized processing of uncertainty

Dubois D, Prade H (1994a) La fusion d’informations imprécises. Traitement du signal 11(6):447—458

Dubois D, Prade H (1994b) Possibility theory and data fusion in poorly informed environments. Control
Engineering Practice 2(5):811-823

Dubois D, Prade H (2000) Possibility theory in information fusion. In: Proceedings of the 3rd international
conference on information fusion, IEEE, vol 1, pp 6-P19

Dunford N, Schwartz J, WG B, RG B (1971) Linear Operators. Wiley-Interscience, New York

Eiben AE, Smit SK (2011) Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm
and Evolutionary Computation 1(1):19-31

Emden EV, Moonen L (2002) Java quality assurance by detecting code smells. In: Proceedings of the 9th
Working Conference on Reverse Engineering,, IEEE, pp 97-106

Erni K, Lewerentz C (1996) Applying design-metrics to object-oriented frameworks. In: Proceedings of
the 3rd international software metrics symposium, IEEE, pp 64-74

Fernandes E, OliveiraJ, Vale G, Paiva T, Figueiredo E (2016) A review-based comparative study of bad smell
detection tools. In: Proceedings of the 20th Conference on Evaluation and Assessment in Software
Engineering, ACM, p 18

Fokaefs M, Tsantalis N, Stroulia E, Chatzigeorgiou A (2012) Identification and application of extract class
refactorings in object-oriented systems. Journal of Systems and Software 85:2241-2260

Fontana FA, Zanoni M (2017) Code smell severity classification using machine learning techniques.
Knowledge-Based Systems 128:43-58

Fontana FA, Braione P, Zanoni M (2012) Automatic detection of bad smells in code: An experimental
assessment. Journal of Object Technology 11(2):5-1

Fontana FA, Dietrich J, Walter B, Yamashita A, Zanoni M (2016a) Antipattern and code smell false positives:
Preliminary conceptualization and classification. In: 2016 IEEE 23rd international conference on
software analysis, evolution, and reengineering (SANER), IEEE, vol 1, pp 609-613

Fontana FA, Mintyld MV, Zanoni M, Marino A (2016b) Comparing and experimenting machine learning
techniques for code smell detection. Empirical Software Engineering 21(3):1143-1191

Foundation AS (2004) Apache commons cli. URL http://commons.apache.org/cli/, [Accessed
19-April-2021]

Fowler M, Beck K (1999) Refactoring: Improving the Design of Existing Code. Addison-Wesely

Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Machine learning
29(2-3):131-163

Fu S, Shen B (2015) Code Bad Smell Detection through Evolutionary Data Mining. In: Proceedings of the
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,, IEEE,
pp 1-9

Gopalan R (2012) Automatic detection of code smells in java source code. PhD thesis, University of Western
Australia

Hadj-Kacem M, Bouassida N (2019) Deep representation learning for code smells detection using
variational auto-encoder. In: Proceedings of the International Joint Conference on Neural Networks
(IJCNN), IEEE, pp 1-8

Hassaine S, Khomh F, Guéhéneuc YG, Hamel S (2010) IDS: An immune-inspired approach for the detection
of software design smells. In: Proceedings of the 7th International Conference on Quality of Information
and Communications Technology,, IEEE, pp 343-348

Henderson-Sellers B (1995) Object-oriented metrics: measures of complexity. Prentice-Hall, Inc.

Higashi M, Klir GJ (1983) On the notion of distance representing information closeness: Possibility and
probability distributions. International Journal of General System 9(2):103-115

Holland JH (1992) Genetic algorithms. Scientific american 267(1):66-73

Holmes C, Adams N (2002) A probabilistic nearest neighbour method for statistical pattern recognition.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(2):295-306

Hosseini S, Turhan B, Mintyld M (2018) A benchmark study on the effectiveness of search-based data
selection and feature selection for cross project defect prediction. Information and Software Technology
95:1-17

Hiillermeier E, Beringer J (2006) Learning from ambiguously labeled examples. Intelligent Data Analysis
10(5):419-439

Jenhani I (2010) From possibilistic similarity measures to possibilistic decision trees. PhD thesis, Artois

A Possibilistic Evolutionary Approach for Code Smells Detection 53

Jenhani I, Amor NB, Elouedi Z, Benferhat S, Mellouli K (2007) Information affinity: A new similarity
measure for possibilistic uncertain information. In: Proceedings of the European Conference on
Symbolic and Quantitative Approaches to Reasoning and Uncertainty, Springer, pp 840-852

Jenhani I, Amor NB, Benferhat S, Elouedi Z (2008a) Sim-pdt: A similarity based possibilistic decision
tree approach. In: Proceedings of the International Symposium on Foundations of Information and
Knowledge Systems, Springer, pp 348-364

Jenhani I, Amor NB, Elouedi Z (2008b) Decision trees as possibilistic classifiers. International Journal of
Approximate Reasoning 48(3):784—-807

Jenhani I, Benferhat S, Elouedi Z (2009) On the use of clustering in possibilistic decision tree induction.
In: Proceedings of the European Conference on Symbolic and Quantitative Approaches to Reasoning
and Uncertainty, Springer, pp 505-517

Karafotias G, Hoogendoorn M, Eiben AE (2015) Parameter control in evolutionary algorithms: Trends and
challenges. IEEE Transactions on Evolutionary Computation 19:167-187

Kessentini M, Sahraoui H, Boukadoum M, Wimmer M (2011) Search-Based Design Defects Detection
by Example. In: Proceedings of the 14th International Conference on Fundamental Approaches to
Software Engineering,, Springer, vol 6603, pp 401-415

Kessentini W, Kessentini M, Sahraoui H, Bechikh S, Ouni A (2014) A Cooperative Parallel Search-Based
Software Engineering Approach for Code-Smells Detection. IEEE Transactions on Software
Engineering 40(9):841-861

Khombh F, Vaucher S, Guéhéneuc YG, Sahraoui H (2009) A bayesian approach for the detection of code
and design smells. In: Proceedings of the 9th International Conference on Quality Software,, IEEE,
pp 305-314

Khombh F, Vaucher S, Guéhéneuc YG, Sahraoui H (2011) BDTEX: A GQM-based Bayesian approach for
the detection of antipatterns. Journal of Systems and Software 84(4):559-572

Klement EP, Mesiar R, Pap E (2000) Triangular norms

Kreimer J (2005) Adaptive detection of design flaws. Electronic Notes in Theoretical Computer Science
141(4):117-136

Krgtowski M, Grze§ M (2005) Global learning of decision trees by an evolutionary algorithm. In:
Information Processing and Security Systems, Springer, pp 401-410

Kroupa T (2006) Application of the choquet integral to measures of information in possibility theory.
International journal of intelligent systems 21(3):349-359

Langelier G, Sahraoui H, Poulin P (2005) Visualization-based analysis of quality for large-scale software
systems. In: Proceedings of the 20th IEEE/ACM international Conference on Automated software
engineering,, ACM, pp 214-223

Lanza M, Marinescu R (2007a) Object-oriented metrics in practice: using software metrics to characterize,
evaluate, and improve the design of object-oriented systems. Springer Science & Business Media

Lanza M, Marinescu R (2007b) Object-Oriented Metrics in Practice: Using Software Metrics to
Characterize, Evaluate, and Improve the Design of Object-Oriented Systems. Springer Science &
Business Media

Li K, Xiang Z, Chen T, Tan KC (2020) Bilo-cpdp: Bi-level programming for automated model discovery
in cross-project defect prediction. In: 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE, pp 573-584

LiuH,JinJ,XuZ,BuY,ZouY, Zhang L (2019) Deep learning based code smell detection. IEEE Transactions
on Software Engineering

Ma CY, Wang XZ (2009) Inductive data mining based on genetic programming: Automatic generation
of decision trees from data for process historical data analysis. Computers & Chemical Engineering
33(10):1602-1616

Maiga A, Ali N, Bhattacharya N, Sabane A, Gueheneuc YG, Aimeur E (2012a) SMURF: A SVM-based
incremental anti-pattern detection approach. In: Proceedings of the 19th Working conference on
Reverse engineering,, IEEE, pp 466-475

Maiga A, Ali N, Bhattacharya N, Sabané A, Guéhéneuc YG, Antoniol G, Aimeur E (2012b) Support vector
machines for anti-pattern detection. In: Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering,, IEEE, pp 278-281

Mansoor U, Kessentini M, Bechikh S, Deb K (2013) Code-smells detection using good and bad software
design examples. Technical report, Technical Report

Mansoor U, Kessentini M, Maxim BR, Deb K (2017) Multi-objective code-smells detection using good
and bad design examples. Software Quality Journal 25(2):529-552

54 Sofien Boutaib et al.

Mantyla MV, VanhanenJ, Lassenius C (2004) Bad smells-humans as code critics. In: 20th IEEE International
Conference on Software Maintenance, 2004. Proceedings., IEEE, pp 399-408

Marinescu R (2002) Measurement and quality in object oriented design. PhD thesis, Politehnica University
of Timisoara

Marinescu R (2004) Detection strategies: Metrics-based rules for detecting design flaws. In: Proceedings
of the 20th IEEE International Conference on Software Maintenance, IEEE, pp 350-359

Marinescu R, Ganea G, Verebi I (2010) Incode: Continuous quality assessment and improvement. In:
Proceedings of the 14th European Conference on Software Maintenance and Reengineering, IEEE, pp
274-275

Martin RC (2002) Agile software development: principles, patterns, and practices. Prentice Hall

McConnell S (2004) Code Complete - A Practical Handbook of Software Construction. Microsoft Press

Moha N, Gueheneuc YG, Duchien L, Meur AFL (2010) DECOR: A Method for the Specification and
Detection of Code and Design Smells. IEEE Transactions on Software Engineering 36(1):20-36

Oliveto R, Khomh F, Antoniol G, Guéhéneuc YG (2010) Numerical signatures of antipatterns: An approach
based on b-splines. In: Proceedings of the 14th European Conference on Software maintenance and
reengineering,, IEEE, pp 248-251

Ouni A (2014) A mono-and multi-objective approach for recommending software refactoring. PhD thesis,
Faculty of arts and sciences of Montreal

Ouni A, Kessentini M, Sahraoui H, Boukadoum M (2013) Maintainability defects detection and correction:
a multi-objective approach. Automated Software Engineering 20(1):47-79

Padhye N, Mittal P, Deb K (2015) Feasibility preserving constraint-handling strategies for real parameter
evolutionary optimization. Computational Optimization and Applications 62(3):851-890

Palomba F, Zaidman A (2019) The smell of fear: on the relation between test smells and flaky tests. Empirical
Software Engineering pp 1-40

Palomba F, Bavota G, Penta MD, Oliveto R, Lucia AD, Poshyvanyk D (2013) Detecting bad smells in
source code using change history information. In: Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering, IEEE Press, pp 268-278

Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A (2014) Do they really smell bad? a study
on developers’ perception of bad code smells. In: 2014 IEEE International Conference on Software
Maintenance and Evolution, IEEE, pp 101-110

Palomba F, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D, De Lucia A (2015) Mining version histories
for detecting code smells. IEEE Transactions on Software Engineering 41(5):462-489

Palomba F, Panichella A, De Lucia A, Oliveto R, Zaidman A (2016) A textual-based technique for smell
detection. In: Proceedings of the 24th international conference on program comprehension (ICPC),
IEEE, pp 1-10

Palomba F, Panichella A, Zaidman A, Oliveto R, De Lucia A (2017a) The scent of a smell: An extensive
comparison between textual and structural smells. IEEE Transactions on Software Engineering
44(10):977-1000

Palomba F, Zanoni M, Fontana FA, De Lucia A, Oliveto R (2017b) Toward a smell-aware bug prediction
model. IEEE Transactions on Software Engineering

Palomba F, Bavota G, Di Penta M, Fasano F, Oliveto R, De Lucia A (2018a) On the diffuseness and the
impact on maintainability of code smells: a large scale empirical investigation. Empirical Software
Engineering 23(3):1188-1221

Palomba F, Tamburri DAA, Fontana FA, Oliveto R, Zaidman A, Serebrenik A (2018b) Beyond technical
aspects: How do community smells influence the intensity of code smells? IEEE transactions on
software engineering

Palomba F, Zaidman A, De Lucia A (2018c) Automatic test smell detection using information retrieval
techniques. In: Proceedings of the International Conference on Software Maintenance and Evolution
(ICSME), IEEE, pp 311-322

Pan SJ, Tsang IW, Kwok JT, Yang Q (2010) Domain adaptation via transfer component analysis. IEEE
transactions on neural networks 22(2):199-210

de Paulo Sobrinho EV, De Lucia A, de Almeida Maia M (2018) A systematic literature review on bad
smells—35 w’s: which, when, what, who, where. IEEE Transactions on Software Engineering

Pearl J (1982) Reverend bayes on inference engines: A distributed hierarchical approach. In: Proceedings
of the Second AAAI Conference on Artificial Intelligence, AAAI Press, p 133-136

Pearl J (1985) Bayesian netwcrks: A model cf self-activated memory for evidential reasoning. In:
Proceedings of the 7th Conference of the Cognitive Science Society, University of California, Irvine,
CA, USA, pp 15-17

A Possibilistic Evolutionary Approach for Code Smells Detection 55

Pecorelli F, Palomba F, Di Nucci D, De Lucia A (2019) Comparing Heuristic and Machine Learning
Approaches for Metric-Based Code Smell Detection. In: Proceedings of the IEEE/ACM International
Conference on Program Comprehension, IEEE, p 12

Pecorelli F, Di Nucci D, De Roover C, De Lucia A (2020a) A large empirical assessment of the role of data
balancing in machine-learning-based code smell detection. Journal of Systems and Software p 110693

Pecorelli F, Palomba F, Khomh F, De Lucia A (2020b) Developer-driven code smell prioritization. In:
Proceedings of the 17th International Conference on Mining Software Repositories, pp 220-231

Qing H, Biwen L, Beijun S, Xia Y (2015) Cross-project software defect prediction using feature-based
transfer learning. In: Proceedings of the 7th Asia-Pacific Symposium on Internetware, pp 74-82

Quinlan JR (1987) Decision trees as probabilistic classifiers. In: Proceedings of the Fourth International
Workshop on Machine Learning, Elsevier, pp 31-37

Ramirez A, Romero JR, Ventura S (2018) A survey of many-objective optimisation in search-based software
engineering. Journal of Systems and Software 149:382-395

Rapu D, Ducasse S, Girba T, Marinescu R (2004) Using history information to improve design
flaws detection. In: Proceedings of the 8th European Conference on Software Maintenance and
Reengineering,, IEEE, pp 223-232

Sahin D, Kessentini M, Bechikh S, Deb K (2014) Code-Smell Detection as a Bilevel Problem. ACM
Transactions on Software Engineering and Methodology 24(1):1-44

Saidani I, Ouni A, Mkaouer MW (2020) Web service api anti-patterns detection as a multi-label learning
problem. In: International Conference on Web Services, Springer, pp 114-132

Sangiiesa R, Cabds J, Cortes U (1998) Possibilistic conditional independence: A similarity-based measure
and its application to causal network learning. International Journal of Approximate Reasoning
18(1-2):145-167

dos Santos Neto BF, Ribeiro M, Da Silva VT, Braga C, De Lucena CJP, de Barros Costa E
(2015) AutoRefactoring: A platform to build refactoring agents. Expert Systems with Applications
42:1652-1664

Sharma T (2019) Extending maintainability analysis beyond code smells. PhD thesis, University of Athens

Sharma T, Spinellis D (2018) A survey on software smells. Journal of Systems and Software 138:158-173

Taibi D, Janes A, Lenarduzzi V (2017) How developers perceive smells in source code: A replicated study.
Information and Software Technology 92:223-235

Tsang S, Kao B, Yip KY, Ho WS, Lee SD (2009) Decision trees for uncertain data. IEEE transactions on
knowledge and data engineering 23(1):64-78

Tsantalis N, Chatzigeorgiou A (2009) Identification of Move Method Refactoring Opportunities. IEEE
Transactions on Software Engineering 35(3):347-367

Tsantalis N, Chatzigeorgiou A (2011) Identification of extract method refactoring opportunities for the
decomposition of methods. Journal of Systems and Software 84:1757-1782

Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, Poshyvanyk D (2017) When and
why your code starts to smell bad (and whether the smells go away). IEEE Transactions on Software
Engineering 43(11):1063-1088

Van Rijsbergen C (1979) Information retrieval

Vargha A, Delaney HD (2000) A critique and improvement of the cl common language effect size statistics
of mcgraw and wong. Journal of Educational and Behavioral Statistics 25(2):101-132

Vassallo C, Grano G, Palomba F, Gall HC, Bacchelli A (2019) A large-scale empirical exploration on
refactoring activities in open source software projects. Science of Computer Programming

Vaucher S, Khomh F, Moha N, Guéhéneuc YG (2009) Tracking design smells: Lessons from a study of god
classes. In: Proceedings of the 16th Working Conference on Reverse Engineering,, IEEE, pp 145-154

Whittle J, Sawyer P, Bencomo N, Cheng BH, Bruel JM (2009) Relax: Incorporating uncertainty into
the specification of self-adaptive systems. In: Proceedings of the 17th International Requirements
Engineering Conference, IEEE, pp 79-88

Wirfs-Brock R, McKean A (2003) Object design: roles, responsibilities, and collaborations.
Addison-Wesley Professional

Witten IH, Frank E, Hall MA (2005) Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann publishers

Yamashita A, Moonen L (2013) Do developers care about code smells? an exploratory survey. In: 2013
20th Working Conference on Reverse Engineering (WCRE), IEEE, pp 242-251

Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems 1(1):3-28

ZhuZ,LiY, Tong H, Wang Y (2020) Cooba: Cross-project bug localization via adversarial transfer learning.
In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IICAI,

56 Sofien Boutaib et al.

pp 3565-3571

Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process. In: Proceedings of the 7th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering, pp 91-100

A Possibilistic Evolutionary Approach for Code Smells Detection 57

Appendix A. Description of the handled code smells

In this study, we tested our approach on eight different types of code smells presented
by Table 12. The considered anti-patterns are among the most considered code smells
within the field of software maintenance (Fowler and Beck 1999), (Martin 2002),
(Wirfs-Brock and McKean 2003), (Lanza and Marinescu 2007b), (Fontana et al. 2012),
(Ouni 2014):

Table 12 List of the most handled code smells for the detection task in the literature(Boutaib et al. 2020).

Code Smell / Antipattern | Description

God Class (aka Blob) Itoccurs when a class centralizes an important part of the system behavior
while the remaining classes mainly contain data.

Data Class It happens in the case where a class retains only data and not the complex
functionalities.

Feature Envy It arises when a method invokes much more methods from an external
class than the invoked methods from the same englobing class.

Long Method This smell refers to a method that is broad in terms of lines of code.

Duplicate code Such smell arises when there are many redundancies for the same code
fragment in many classes.

Long Parameter List This smell happens when a method has a high number of parameter list.

Spaghetti Code Such smell appears when the code structure is becoming much more
complex and tangled.

Functional Decomposition | Itarises when a class is developed in order to carry out a single function.
This smell type is caused by the lack of OO developers experiences.

58 Sofien Boutaib et al.

Appendix B. Description of the used metrics
Table 13 shows the list of the metrics that have been employed by GP (Ouni et al.

2013), BLOP (Sahin et al. 2014), and MOGP (Mansoor et al. 2017). To ensure a fair
comparison, we have used all the listed metrics in Table 13.

Table 13 List of the considered measures (Boutaib et al. 2020).

Metric

Description

ANA - Average Number of Ancestors

Such measure corresponds to the average number of classes from which any class
inherits information.

AOFD - Access Of Foreign Data

This measure is used to count the foreign attributes’ number from unconnected
classes, which are directly accessed or called through accessors (i.e., getters
methods).

CAM - Cohesion Among Methods of Class

It is used to compute the relatedness between methods of the class according to
the methods’ parameter list.

CBO - Coupling Between Objects

This measure counts the number of classes, which call a function or access to a
specific variable of a given class.

CIS - Class Interface Size

Such measure counts the number of existing methods that are public within a
class. It is interpreted as the average of the total class in a design.

CM - Changing Method

This measure counts the number of distinct methods, which invoke the measure
method.

DAM - Data Access Metric

It returns the ratio of the number of private (or protected) attributes to the total
number of attributes mentioned in the class.

DCC - Direct Class Coupling

This measure returns the number of classes, in which a class is directly linked
to. The metric considers the classes that are directly linked by the attribute
declarations and message passing (refers to parameters) within methods.

DSC - Design Size in Classes

Itis employed for counting the total number of classes within the design excepting
the library classes that are imported.

LOC - Lines of Code

It returns the program size in terms of the instructions number within a class or
method.

MFA - Measure of Functional Abstraction

This measure returns the ratio of the number of methods inherited by a class to
the whole number of methods attainable by the methods of the class.

MOA - Measure of Aggregation

This measure counts the number of data declaration where their types are classes
defined by the user.

NOA - Number of Attributes

This measure returns the attributes’ number regarding a given class within the
program.

NOAM - Number of Accessor Methods

This metric is used to count the number of getters and setters that pertain to a
class.

NOF - Number of Fields

This metric returns the classes fields’ number.

NOH - Number of Hierarchies

This measure is employed to count the entire number of class hierarchies within
the design.

NOM - Number of Methods

It counts the number of methods belonging to a given class.

NOPA - Number of Public Attributes

Such metric is used to count the public attributes’ number belonging to a given
class within the program.

NPA - Number of Private Attributes

This measure returns the private attributes number for a given class.

TCC - Tight Class Cohesion

This metric is employed to count the relative number of methods pairs of a class,
which access to at least one attribute of the measured class

WMC - Weighted Methods per Class

It computes the sum of the statistical complexity of a class based on the number
of existing methods within the given class.

WOC - Weighted Of Class

This metric returns the number of functional methods in a given class divided by
the entire number of members of the interface.

A Possibilistic Evolutionary Approach for Code Smells Detection 59

Appendix C. Basic concepts of possibility theory
1. The inconsistency metric

The inconsistency metric comes to measure the amount of conflict between the two
opinions. More formally, we can calculate such degree by Inc(m A m,) where the
conjunction A refers to the minimum (min) operator:

Inc(m,nz) = InC(TCl /\7I2) =1 —maxwieg{minwieg{m(a)i),ng(wi)}} (17

2. The extreme knowledge forms of possibility theory

In possibility theory, we can differentiate the following two extreme knowledge forms
of possibility distributions:

- Complete knowledge: 3 wy, € Q, m(@y) = 1 and all remaining states ®: 7(®) =0.
In this case, there is only one fully possible element and the remaining ones are
impossible. For example, in the case of identification, the complete knowledge
occurs when a possibility degree of one smell type is equal to 1 and the possibility
degrees of the other smell types are equal to O (w(Blob)=0, w(Data Class)=0,
n(Feature Envy)=0, n(Spaghetti Code)=0, m(Functional Decomposition)=1,
n(Long Method)=0, n(Long Parameter List)=0).

— Total ignorance:m(wy)=1, V oy € Q (i.e., all states @ are completely possible).
In this case, all the elements in 2 are equally possible. In reality, the software
engineer’s opinion sometimes shows ignorance regarding the smelliness of a
software class, and hence the possibility distribution is 7(Smelly)=1, T(Non —
smelly)=1.

3. Conjunctive and Disjunctive fusion modes and operators in possibility theory

The conjunctive fusion: This mode is employed when all the information sources are
in agreement. This mode was defined by Dubois and Prade (2000) and represented
by the following formula as follows:

Vo € Q, m\(0) =Qj—1. .7j(®) (18)

where ® represents a [0,1]-valued operation specified on [0,1]x[0,1], 7 refers to
the conjunctive fusion mode of the possibility distribution 7.

The disjunctive fusion: This mode of combination is defined when the information
sources are mainly conflicting. The disjunctive fusion mode was proposed by Dubois
and Prade (2000) and represented formally as follows:

Vo e, n/(0)=aj—1. .7mj(®) (19)

where & represents a [0, 1]-valued operation specified on [0, 1] x [0, 1], and @y,
refers to the disjunctive fusion mode of the possibility distribution 7.

60 Sofien Boutaib et al.

Various candidates relative to the conjunctive fusion operators, named triangular
norms (t-norms) (Klement et al. 2000), are employed. The most used ones are the
following:

Minimum : T QM = min(m,)
Product : T QM = %M
Lukasievicz t —norm: T @ mp = max(0,m +m — 1)

Assuming that two experts (E1 and E,) provide two opinions (771 and 7,) for the case
of detection as follows:

7t (Smelly) = 1 And o (Smelly) =1
71 (Non — smelly) = 0.4 7 (Non — smelly) = 0.23

One can notice that the two opinions are in agreement as they agree about the
smelliness of the given software class (possibility degree equals to 1 over smelly
class label in both opinions). The calculation of the conjunctive fusion operators is
performed as follows:

— Minimum : min(m,m) = min([1 0.4],[1 0.23]

— Product: mxm = [10.4]%[10.23] = [10.1

— Lukasievicz t —norm : max(0,m; +m — 1) = max([0 0],[1 0.4] +[1 0.23] —
[11]) =[10]

) = [10.23]
J

The different disjunctive fusion operators are called the triangular conorms
operation (t-conorms) (Klement et al. 2000). The duality relation leads to the following
operators:

Max : Vo € Q, my(0) =max(m (o), m(0))
Probabilistic Vo e, ny(o)=m(0)+m(0)—m(o)*m(o)
Lukasievicz t —conorm: Yo € Q, m,(0)=min(l,m(®)+ m (o))

Supposing we have two experts (E; and E») that provide two opinions (7] and)
in disagreement for the case of detection as follows:

m (Smelly) = 0.4 And M (Smelly) = 1
7 (Non — smelly) = 1 m (Non — smelly) = 0.23

One can observe that the two opinions are in disagreement as they disagree about
the smelliness of the passed software class. The calculation of the disjunctive fusion
operators is performed as follows:

- Max : max(m,m) = max([0.41],[1 0.23]) = [11]

— Probabilistic : T+ — 1+ T = [0.41]4[10.23] —[0.4 1]%[10.23] = [0.4 1] +
[10.23]—-[0.40.23] = [11]

A Possibilistic Evolutionary Approach for Code Smells Detection 61

3. The calculation of the Affinity distance

In order to compute the affinity distance, we need to calculate the Manhattan distance
that is expressed as follows:

Yisi | (@) = m (o)
n

d(m,m) = (20)
To better clarify the calculation process of the information Affinity measure, we take
as an example the two possibility distributions 71 (0.4, 1) and 7>(1, 0.23)that represent
the opinions of two experts for the case of detection. Therefore, the calculation of the
Affinity is performed as follows:

_ d(ﬂ],ﬂz) _):le\nl(az)fnz(w,-)\ — ‘0.4—1‘2”—0.23‘ — 0685

- Inc(m,m) = maxey,co (mingco (71 (0;), m(@;))) = 1 —
max(min(0.4,1),min(1,0.23)) = 1 —max(0.4,0.23) =1-0.4=0.6

- Aff(m,m)=1-— K*d(m,ﬂz):fflnc(m,nz) 1 0'5*066.25695'5*0'6 —0.3575

Appendix D. Demonstrating that PF-measure_dist and IAC exactly correspond
to the F-measure and the accuracy in the certain case, respectively

This appendix is devoted to present examples illustrating the correspondence between
the uncertain measures (i.e., PF-measure_dist and IAC) and the certain ones (i.e.,
F-measure and Accuracy).

1. Proof of correspondence between the PF-measure_dist and the F-measure:

A certain PBE includes only one fully possible class label (i.e., its possibility
degree is equal to 1) and the remaining class labels are impossible (i.e., their
possibility degrees are equal to 0). In this appendix, we demonstrate that the
PF-measure_dist working process corresponds to the conventional F-measure
one in a certain environment. Figure 19 presents two PBEs (A) and (B), where
PBE (A) is the ground truth and PBE (B) is the predicted one. It is important
to note that the two PBEs (A) and (B) correspond to the detection process and
their labels have the form of possibility distributions. The PF-measure_dist is
calculated as follows. First, we start by measuring the closeness between the
initial instance (from the ground truth) and the predicted one using sd(fj) (cf.
Eq. 10). Then, we normalize the obtained sd(fj) value using NSD(fj) (cf. Eq.
11). Finally, based on the comparison between the predicted obtained class
labels and the initial ones, we add the obtained NSD(fj) value to one of these
measures: TP_dist (if the actual Smelly classes correctly classified) or FP_dist
(@if the actual Smelly classes miss-classified as Non-smelly) or TN_dist (if the
actual Non-smelly classes correctly classified) or FN_dist (Actual Non-smelly
classes miss-classified as Smelly). One can see from Figure 19 that the possibility
distribution value of Class; in PBE (A) is similar to the predicted one in PBE (B).
The sd(fj) and NSD(fj) values of Class are calculated as follows:

sd(Il}) = (0—0)24(1—1) =0and NSD(I;) = 1.

TP_dist= NSD(J}) +TP_dist, TN_dist= NSD(/;) +TN_dist, FP_dist= NSD(/})

62 Sofien Boutaib et al.

+FP_dist, FN_dist= NSD(I;) +FN_dist
— TP_dist=0, TN_dist=1, FP_dist=0, FN_dist=0.

Similarly, sd(g) and NSD(IE) values of Classg are calculated as follows:

sd(ls) = (1—0)>+(0—1) =2 and NSD(Ig) = 1

= TP_dist=0, TN_dist=0, FP_dist=0, FN_dist=1.

TP_dist= NSD(/;) +TP_dist, TN_dist= NSD(I) +TN_dist, FP_dist= NSD(Jg)
+FP_dist, FN_dist= NSD(lg) +FN_dist

This process is continued until reaching the final instance. Thus, we will
obtain the following values:
= TP_dist=2, TN_dist=3, FP_dist=0, FN_dist=1.
Based on the obtained values of TP_dist, TN_dist, FP_dist, FN_dist (which
are equal to 2, 5, 1, and 2, respectively), we calculate the Precision_dist and
Recall_dist values (which are equal to 0.6667 and 0, respectively). These latter
are used to compute the PF-measure_dist (PF-measure_dist=0.571). From this
example, one can observe that the calculated PF-measure_dist value is equal to
the F-measure one.

2. Proof of correspondence between the IAC and the Accuracy:
The IAC measure (cf. Eq. 16) is based on the distance d (cf. Eq. 20) and the
Inconsistency Inc (cf. Eq. 17) and it is calculated as follows:

_[0=0[+j1—1] _

(i, x"™) :

0

Inc(nf"i,nfred) = 1 —max(min(0,0),min(1,1)) =0

Aff(n{"i,ﬂfred) _ 1_0.5>|<0—1&—0.5>|<0 _1

where the two parameters k and A are set to 0.5.
Similarly, d and Inc values of Classg are calculated as follows:

_|o—1|+[1-0]

d(ﬂ,’én[, ﬂgred) 5

1

Inc(né"i,rcé’red) = 1 —max(min(0,1),min(1,0)) = 1

05%14+05%1

AP) =1 =)

0,

. 0—0|+[1—1
(i pred — | _
(71’-6 ?ﬂ(;) 2
Inc(né”iﬂrgmd) = 1—max(min(0,0),min(1,1)) =0
0.5x0+0.5%0 |
=

This process is continued until reaching the final instance. Thus, we will obtain
the following values:

0

Aff(né”i,ngre’j) =1-

A Possibilistic Evolutionary Approach for Code Smells Detection 63

(A)
m— _m—_
Class; Class;
Class, Class,
Class,

Class,

1
1
0
Aller the detection process Class, 0
1

1
1
0 Class,
0
Classs 1
1 Classg 0
Class, 0 Class,
Classg 1 Classg

0

0

1

1

Classs i 0

1

0

0

Class, 0
1

0

0

1

1

0

Classg 0
1

0

0

0

o= ~ =

1 Class,

Classy 1 Classy

Predicted result:
Actual Base of Examples in certain Tedicted results

environment
(Ground Truth)

Fig. 19 Example of the obtained PBE after the detection process

Aff(mini) I, Aff(ar aly = 1, Aff(er) = 1,
AFF(rP ™)y = 1, Aff(al™)y = 1, Aff(zial?) = o,
Aff(md, o j) 0, Aff(miri zl™®y = 1, Aff(mr mlred) = 1,
Aff(nfwf’ge)=

— IAC=1x Yy 1Aff(mini gl = 0.7
Based on the obtained values of the TP and TN (which are 2 and 5, respectively),

the Accuracy value is calculated as follows:
. _ TP+TN _ 245 _
Accuracy " Totalnumbero finstances ~— 10 0.7

Based on this example, one can conclude that the IAC measure corresponds to
the Accuracy measure in a certain environment.

Appendix E: Comparison between ADIPE and the remaining approaches using
the AUC and AURPC measures

In this appendix, we present the obtained results of ADIPE, DECOR, GP, MOGP, and
BLOP for the detection and identification cases under a certain environment using
the AUC (Area Under ROC Curve) metric. In order to ensure a fair comparison, we
evaluate the performance of the five compared algorithms in the certain environment
since DECOR, GP, MOGP, and BLOP are not conceived to deal with uncertainty.
Tables 14 and 15 show the AUC values of the different considered approaches including
ADIPE for the detection and identification tasks, respectively. Based on Table 14, one
can see that ADIPE surpasses all the considered approaches with an AUC value that lies
within [0.9225, 0.9452], while BLOP succeeds to obtain the second-best performance
with an AUC value that ranges between 0.1923 and 0.3256. DECOR, GP, and MOGP
have a lower performance since their obtained AUC values are equal to 0.114, 0.2382,
and 0.2874, respectively. The outperformance of ADIPE could be explained by the
fact that its fitness function (i.e., PF-measure_dist) is insensitive to the problem of
imbalanced data. GP, MOGP, and BLOP have a lower performance since their fitness
functions are not suitable to deal with imbalanced data, which may create ineffective
detection rules. DECOR has the lowest AUC values since it is a rule-based algorithm

64 Sofien Boutaib et al.

Table 14 AUC median values of ADIPE, DECOR, GP, MOGP, and BLOP for 31 runs of the detection task
at the certain environment.

Software projects ADIPE DECOR GP MOGP BLOP
0.9263 0.114 0.2382 0.2874

GanttProject ++++) +++4) (-+) (-) 0.3256
arn (m m m) (s m) (s)
0.9314 0.1532 0.1756 0.2396

ArgoUML (++++4) (-++) (-+) (-) 0.3174
ain (s m m) (sm) (s)
0.9225 0.0986 0.2069 0.2815

Xercess-J ++++) +++4) (--) (-) 0.3082
[(R00)) (mm1) (ss) (s)
0.9452 0.0947 0.1173 0.2061

Jfreechart (++++4) -++4) (++4) (-) 0.2257
arnn (sml) (m m) (s)
0.9418 0.0803 0.106 0.1843

Azureus ++++) (-++) (-+) (-) 0.2108
[(380)] (s m m) (sm) (s)
0.9417 0.0412 0.0745 0.1388

ApacheAnt (+++4) -++) (-+) (-) 0.1923
[(R00)) (s m m) (s m) (s)

- The sign "+" at the i h position means that the algorithm AURPC median value is statically different

ith won

from the i*" algorithm value. The sign "-" means the opposite.
- The effect sizes values (small (s), medium (m), and large (1)) using the A-statistics are given.
- Best AURPC values are highlighted in Bold. Second-best AURPC values are underlined.

characterized with a set of manually defined detection rules. Table 15 shows similar
results for the identification case. The AUC values of ADIPE are slightly degraded,
while the AUC values of DECOR, GP, MOGP, and BLOP are significantly degraded
due to the high imbalance ratio over the identification process. It should be noted that
the A-statistic results are similar to the obtained ones in Tables 6 and 8. Similar results
are obtained for the AURPC (Area Under Recall Precision Curve) metric based on
Tables 16 and 17. One can observe that ADIPE has the best performance in terms
of AURPC in all the considered software projects, while BLOP has the second best
performance. This observation clearly demonstrates the ability of our approach to deal
with imbalanced data.

A Possibilistic Evolutionary Approach for Code Smells Detection 65

Table 15 AUC median values of ADIPE, DECOR, GP, MOGP, and BLOP for 31 runs of the identification
task at the certain environment.

Code Smell ADIPE DECOR GP MOGP BLOP
0.9306 0.3425 0.3342 0.4178
Blob ++++4) (-++) ++)) 0.4389
airn (s mm) (m m) (s)
0.9114 0.2605 0.3294
Data Class (+++) N/A ++)) 0.3762
arn (m m) (s)
0.9022 0.2581 0.3206
Feature Envy +++4) N/A ++)) 0.3711
[(39)) (m m) (s)
0.8876 0.2411 0.308
Long Method (+++) N/A ++)) 0.3419
a1l (m m) (s)
0.8734 0.1975 0.2766
Duplicate Code +++4) N/A ++) +) 0.3274
arny (m1) (m)
0.8875 0.141 0.2392
Long Parameter List +++) N/A (++) +) 0.2936
arny arn (m)
0.8761 0.0773 0.1197 0.1854
Spaghetti Code ++++4) (-++4) (++) +) 0.2553
arnny (sl (m1) (m)
0.8569 0.0619 0.1083 0.1563
Functional Decomposition ++++4) (-++) ++) (+) 0.1998
[(RRN)] (s10) (m1) (m)

- The sign "+" at the h position means that the algorithm AUC median value is statically different
from the i algorithm value. The sign "-" means the opposite.

- The effect sizes values (small (s), medium (m), and large (1)) using the A-statistics are given.

- Best AUC values are highlighted in Bold. Second-best AUC values are underlined.

Appendix F: Motivations for the Evolutionary design of PDTs.

In this appendix, we highlight the advantages of using EAs in optimizing PDTs.
In the literature, machine learning algorithms have been widely used in designing
PDTs (Barros et al. 2012; Al-Sahaf et al. 2019). However, existing machine learning
algorithms could lead the solution to got stack into local optima. One of the well-known
EAs is the GA that has proven its ability to escape from local optima (Holland 1992).
Figure 20 illustrates the schema for PDT configuration of two local optima as well
as one global optimum search using the PF — measure_dist. Each point on the x-axis
represents a PDT configuration for ease of visualization, while the y-axis displays the
value of the PF — measure_dist (configuration quality). According to this schema,
starting with solution (configuration) A, the greedy algorithm will converge to one of
the two globally optimal PDT structures G; or G;. Likewise, if it begins induction with
solution B, it could approximate the global optimum G3 or the local one G,. As aresult,
the chance that a greedy PDT induction method finding a closer globally-optimal
configuration is extremely low, whereas GAs do not have this problem due to two
features. From one side, similarly to any EA approach, the GA has a global search
capability because it can identify promising regions within the search space, more

66 Sofien Boutaib et al.

Table 16 AURPC median values of ADIPE, DECOR, GP, MOGP, and BLOP for 31 runs of the detection
task at the certain environment.

Software projects ADIPE DECOR GP MOGP BLOP
0.9243 0.1109 0.2354 0.2822

GanttProject ++++) +++4) (-+) (-) 0.3152
arn (m m m) (s m) (s)
0.9302 0.1513 0.1721 0.2349

ArgoUML (++++4) (-++) (-+) (-) 0.3106
[(R80)) (s m m) (sm) (s)
0.9186 0.0963 0.2011 0.2783

Xercess-J ++++) +++4) (--) (-) 0.3051
[(R00)) (mm1) (ss) (s)
0.9430 0.0920 0.1133 0.2046

Jfreechart (++++4) -++4) (++4) (-) 0.2239
arnn (sml) (m m) (s)
0.9410 0.0796 0.1019 0.1827

Azureus ++++) (-++) (-+) (-) 0.2091
[(380)] (s m m) (sm) (s)
0.9409 0.0403 0.0715 0.1367

ApacheAnt (+++4) -++) (-+) (-) 0.1910
[(RER)) (s m m) (s m) (s)

- The sign "+" at the i h position means that the algorithm AURPC median value is statically different

from the i/ algorithm value. The sign "-" means the opposite.

- The effect sizes values (small (s), medium (m), and large (1)) using the A-statistics are given.
- Best AURPC values are highlighted in Bold. Second-best AURPC values are underlined.

precisely; regions close to G, G, and G3. This could be done by simultaneously
evolving up an entire population (a number of configurations) rather than just a single
configuration. On the other side, the binary tournament operator allows the acceptance
of poor configurations (PF — measure_dist degradation). Based on this fact, the GA
can avoid falling into local optima like solutions close to G| and G». Such operator
carries out (N/2) iterations to pick up (N/2) offsprings for the reproduction process.
Accordingly, when two PDT configurations are chosen from the mating pool as parents
for crossover, these parents could include both good and bad PDT configurations.
As a result, the GA permits the fitness function to deteriorate, allowing it to: (1)
avoid local optima like solution G, and then (2) guide the search process through the
globally optimal PDT configuration G3. Another reason for the employment of the GA
algorithm is that it has shown good performance in the certain environment (Boutaib
et al. 2020). Motivated by the mentioned advantages of the GA, we have proposed to
assess its performance over the uncertain environment.

A Possibilistic Evolutionary Approach for Code Smells Detection 67

Table 17 AURPC median values of ADIPE, DECOR, GP, MOGP, and BLOP for 31 runs of the identification
task at the certain environment.

Code Smell ADIPE DECOR GP MOGP BLOP
0.9285 0.3307 0.3326 0.4168
Blob (++++) (-++) ++)) 0.4359
arn (s m m) (m m) (s)
0.9109 0.2583 0.3274
Data Class +++) N/A ++4)) 0.3722
arn (m m) (s)
0.8995 0.2553 0.3186
Feature Envy +++4) N/A (++)) 0.3690
a1l (m m) (s)
0.8865 0.2396 0.2993
Long Method +++) N/A ++4)) 0.3405
ary (m m) (s)
0.8712 0.1962 0.2751
Duplicate Code +++4) N/A (++) +) 0.3259
arn (m1) (m)
0.8868 0.1392 0.2376
Long Parameter List ++4) N/A (++) (+) 0.2912
ary an (m)
0.8753 0.0761 0.1183 0.1839
Spaghetti Code (++++4) (-++) (++) +) 0.2521
arnn (s1D (m1) (m)
0.8543 0.0603 0.1056 0.1544
Functional Decomposition (+++4) -++) ++) (+) 0.1965
a1nn (s1D) (m1) (m)
h

- The sign "+" at the i
from the i/ algorithm value. The sign "-" means the opposite.

- The effect sizes values (small (s), medium (m), and large (1)) using the A-statistics are given.
- Best AURPC values are highlighted in Bold. Second-best AURPC values are underlined.

position means that the algorithm AURPC median value is statically different

Appendix G: Comparison based on the CPU time between the peer algorithms

In this Appendix, we compare the considered algorithms in our experimental study
(i.e., GP, MOGP, BLOP, and ADIPE) from the CPU time viewpoint. In fact, all the
algorithms under comparison were executed on machines with Intel Core i7 2.20 GHz
processor and 8 GB RAM. We also note that we have used the simplest pseudo-parallel
approach, which is the multi-threading. Table 18 shows the CPU times obtained in each
software project for each induction algorithm (i.e., GP, MOGP, BLOP, and ADIPE).
For fairness of comparison, we use the same number of evaluation for all the considered
algorithms. This stopping criterion is set to 256,500 for all the used software projects.
One can see from Table 18 that the CPU time consumed by ADIPE is higher than
the ones of GP, MOGP, and BLOP since the update procedure of the reproduction
operators, the building structure of our PDT, and the evaluation process are a little
time consuming. Table 19 reports the CPU times obtained by PDT ensemble, DECOR,
GP-Tree, MOGP-Tree, and BLOP-Tree on the unseen project (i.e., Lucene v1.4.1%
with 154 software classes and 41 smells). One can observe from Table 19 that the

2*http://lucene.apache.org/

68

Sofien Boutaib et al.

PF-measure_dist

T

Gy

Local optima G,

Gs

\ ™~ Global optimum

PDT configuration

Fig. 20 Illustration of the schema for PDT configuration of two local optima as well as one global optimum

search using the PF — measure_dist

Table 18 CPU time consumed in hours by GP, MOGP, BLOP, and ADIPE on the six considered software
projects (i.e., GanttProject, ArgoUML, Xercess-J, JFreeChart, Apache Ant, Azureus).

Approaches CPU time
GP 3h 17 min
MOGP 6h 41 min
BLOP 7h 29 min
ADIPE 8h 11 min

Table 19 CPU time consumed in milliseconds by DECOR, GP-Tree, MOGP-Tree, BLOP-Tree, and PDT

ensemble on the unseen project Lucene v1.4.1

Approaches CPU time (ms)
DECOR 10
GP-Tree 18
MOGP-Tree 23
BLOP-Tree 25
PDT ensemble 50

CPU time of ADIPE is slightly higher than the ones of its competitors since it uses a
PDT ensemble instead of a single detector, which is the case of the other approaches.

A Possibilistic Evolutionary Approach for Code Smells Detection 69

Appendix H: Investigation of ADIPE performance on a cross-project

In this appendix, we show how the proposed approach is able to achieve good
performance on cross-projects code smell detection. As shown in Figure 21, ADIPE
is trained based on the source projects that have been used to construct the PBE. In
an industrial context, these software projects are labeled by software engineers that
may have some uncertainty and doubtfulness regarding the smelliness of a number
of software classes. The output of ADIPE is a PDT ensemble that are applied to the
target project that is not considered in the training process. It is important to note that
before the application of the PDT ensemble, a TCA (Transfer Component Analysis)
(Pan et al. 2010) method is used as a Domain Adaptation module. This latter aims to
have similar distributions between the source projects and the target one, since having
different distributions between the source and target projects may have a negative
influence on the performance of the classifiers. After the application of the Domain
Adaptation module, the PDTs could be applied to predict the labels of the existing
smelly instances of the target project. Therefore, the uncertainty of the software
engineers are transferred from the source projects to the target ones through the
application of the PDT detectors (PDT ensemble). In the validation step, the software
engineers label the software classes of the target project to be able to compare it with
the predicted software class labels obtained by the PDT detectors. It is worth noting that
the labeling step is performed by the same software engineers that have constructed
the BE of the source projects. An important threat that should not be ignored is that
the validation of the results must be performed by the developers who developed the
Lucene software project and not those who built the base of examples. Hence, since
the training step, the environment nature (certain or uncertain) of the source and target
projects is specified based on the opinions of the software engineers. This validation
process allows us to evaluate the effectiveness of the constructed PDTs in transferring
the uncertainty of the human experts when introducing unseen software cross-projects.
In this appendix, we have investigated the performance of our approach on the unseen
Lucene 1.4.1 software project using the PF-measure_dist and IAC measures in the
uncertain environment and the F-measure and the Accuracy in the certain one. Table
20 shows that ADIPE outperforms the remaining approaches (DECOR, GP, MOGP,
and BLOP) in both environments with respect to all the considered metrics. ADIPE
achieves 0.9115 and 0.9273 in terms of PF-measure_dist and IAC, respectively. The
second best performance is obtained by BLOP where it succeeds to obtain 0.2183
and 0.2330 in terms of PF-measure_dist and IAC measures. The same performance
is obtained by the compared algorithms in the certain environment.

70 Sofien Boutaib et al.

Table 20 PF-measure_dist and IAC (F-measure and Accuracy) median scores of ADIPE, DECOR, GP,
MOGP, and BLOP for 31 runs of the detection task at the uncertain (and certain) environments on the

Lucene v1.4.1 unseen project.

Environment ~ ADIPE DECOR GP MOGP BLOP

PF-measure_dist

0.9115 0.1267 0.1583 0.2019

(++++) (- ++) (++)) 0.2183
arrn (smm) (m m) (s)
. TIAC
Uncertain 09273 0.1349 0.01709 02254
++++) ++4) +4)) 0.2330
arrnp (mmm) (m m) (s)
PF-measure_dist (F-measure)
0.9269 0.1486 0.1671 0.2241
++++) -++) ++) -) 0.2392
. arnn (s m m) (m m) (s)
Certain TAC (PCC)
0.9364 0.1658 0.1742 0.2369
++++) -++) +4) +) 0.2587
ary (s m m) (m m) (m)

- The sign "+" at the i’ position means that the algorithm metric median value
(PF-measure_dist) (abbreviated by PF_d) or JAC(Accuracy) median value)

is statically different from the i algorithm value. The sign "-" means the opposite.

- The effect sizes values (small (s), medium (m), and large (1)) using the A-statistics are given.
- Best obtained metrics values are highlighted in Bold. Second-best obtained

metrics values are underlined.

Unseen Software

Project (Target Project)

|
Domain Adaptation
module

| Step I: PDT ensemble
application

PDT ensemble

Predicted Class labels
Possibilistic Base of of the Target Project
Examples (Source Projects): _

smell instances with
different types

?0

Software Engineer 1

?a Sottarecases Smelly Nowsmety . Step II: PDT ensemble
Software Fngineer 2 Gtz LS ! l Validation evaluation

Unseen Software
Project (Target Project)

Glass, 1 03

Fig. 21 Illustration of the application of the PDT ensemble on a cross-project problem.

