
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

FindICI: Using Machine-Learning to Detect
Linguistic Inconsistencies between Code and Natural
Language Descriptions in Infrastructure-as-Code

Nemania Borovits · Indika Kumara ·
Dario Di Nucci · Parvathy Krishnan ·
Stefano Dalla Palma · Fabio Palomba ·
Damian A. Tamburri · Willem-Jan van
den Heuvel

Received: date / Accepted: date

Abstract Linguistic anti-patterns are recurring poor practices concerning
inconsistencies in the naming, documentation, and implementation of an entity.
They impede the readability, understandability, and maintainability of source
code. This paper attempts to detect linguistic anti-patterns in Infrastructure-as-
Code (IaC) scripts used to provision and manage computing environments. In
particular, we consider inconsistencies between the logic/body of IaC code units
and their short text names. To this end, we propose FindICI a novel automated
approach that employs word embedding and classification algorithms. We build
and use the abstract syntax tree of IaC code units to create code embeddings
used by machine learning techniques to detect inconsistent IaC code units. We
evaluated our approach with two experiments on Ansible tasks systematically
extracted from open source repositories for various word embedding models
and classification algorithms. Classical machine learning models and novel deep
learning models with different word embedding methods showed comparable

This work is supported by the European Commission grant no. 825480 (SODALITE H2020)
and no. 825040 (RADON H2020). We thank all members of the SODALITE and RADON
consortia for their inputs and feedback to the development of this paper. Fabio gratefully
acknowledges the support of the Swiss National Science Foundation through the SNF Projects
No. PZ00P2 186090. In addition, the work has been partially supported by the EMELIOT
national research project, which has been funded by the MUR under the PRIN 2020 program
(Contract 2020W3A5FY).

Nemania Borovits (�), Indika Kumara, Stefano Dalla Palma, and Willem-Jan van den
Heuvel
Jheronimus Academy of Data Science, Tilburg University
E-mail: n.borovits@tilburguniversity.edu

Parvathy Krishnan and Damian A. Tamburri
Jheronimus Academy of Data Science, Technical University Eindhoven

Dario Di Nucci · Fabio Palomba
University of Salerno, Italy

2 Borovits et al.

and satisfactory results in detecting inconsistent Ansible tasks related to the
top-10 used Ansible modules.

Keywords Infrastructure as Code · Linguistic Anti-patterns · Word
Embedding · Machine Learning · Deep Learning

1 Introduction

The software development cycle is becoming shorter every day. Therefore, devel-
opment and IT operation teams are increasingly cooperating as DevOps teams,
relying massively on automation at both development and operations levels. The
software code driving such automation is collectively known as Infrastructure-as-
Code (IaC), a model for provisioning and managing a computing environment
using the explicit definition of the desired state of the environment in source
code and applying software engineering principles, methodologies, and tools [51].

Although IaC is a relatively new research area, it attracted an ever-increasing
number of scientific works in recent years [58]. Although most research on IaC
investigated its tools, adoption, and testing [58], only a few studies explored
its code quality. The first steps in this direction focused on applying the well-
known concept of software defect prediction [26] to infrastructure code defining
defect prediction models [61,62,13] to identify pieces of infrastructure that
may be defect-prone and need more inspection. In this perspective, previous
works mainly focused on the identification of structural code properties that
correlate with defective infrastructure code scripts and the detection of various
smells. However, defects are only a possible issue given that problems with
the source code lexicon can negatively affect code comprehensibility and main-
tainability [40,72]. Linguistic anti-patterns are common code lexicon problems,
i.e., recurring poor practices concerning inconsistencies between the naming,
documentation, and implementation of entities [3,4].

Linguistics anti-patterns can also be exhibited in IaC programs. While the
existing literature mainly focuses on structural characteristics of defective IaC
scripts, none exists that analyze linguistic issues to the best of our knowledge.
This motivation led to the research goal of this work:

Can we accurately detect mismatches between IaC code units and their short
natural language descriptions using a learning-based approach?

Boosted by the emerging trend of learning-based approaches and word
embedding in the software engineering research [71,56,44,52,43], we propose
FindICI, a novel approach to detect linguistic anti-patterns in IaC, focusing
on name-body inconsistencies in IaC code units. We formulate name-body
inconsistency detection as a binary classification problem and train a classifier
that distinguishes between consistent and inconsistent code units. We use
Ansible as the IaC language, which is one of the widely-used IaC languages [24],
where a task is a unit of provisioning and configuration logic. A task has a
name and a body. The task name is essentially a short text that communicates

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 3

the purpose of the task. Our approach leverages the word embedding models to
produce distributed representations (feature vectors for the classifiers) of task
names and bodies, respectively. We evaluated the effectiveness of our approach
on a dataset composed of Ansible tasks for the top 10 used Ansible modules
from 38 open source repositories using machine learning and neural networks
trained using different word embedding representations.

Our experiments show that various learning algorithms can successfully
detect inconsistent IaC code units with high performance in MCC, AUC-
ROC, and accuracy. Similarly, all word embedding models also showed good
performance in terms of the evaluation metrics MCC, AUC-ROC, and accuracy
for most Ansible modules. We deem our approach can contribute to the current
research by tackling IaC Defect Prediction from a different perspective and
providing a solid baseline for future studies focusing on linguistic issues.

In this paper, we extend our previous work [6] by making the following
additional contributions:

1. We compare the performance of six machine Learning algorithms for in-
consistency detection: Random Forest, Support Vector Machine, eXtreme
Gradient Boosting, Convolutional Neural Networks, Short-Term Memory
Networks, and Multi-layer Perceptron.

2. We analyze the impact of different word embedding techniques on the
performance of the considered classifiers.

3. We provide a fully comprehensive online appendix1 consisting of the Find-
ICI source code, the raw data, and the scripts to replicate our results.

Structure of the paper Section 2 describes background. Section 3 details our
approach to identify name-body inconsistencies in IaC programs. Section 4
defines the empirical evaluation of the proposed approach, which results are
described in Section 5. We discuss the threats to validity in Section 6. Sec-
tion 7 summarizes the related work in the field and highlights our research
contributions. Finally, Section 8 concludes the paper and outlines future works.

2 Infrastructure-as-Code and their Linguistic Inconsistencies

This section provides a brief overview of IaC and Ansible, the learning algo-
rithms, and the word embedding models that we used.

2.1 Infrastructure-as-Code and Ansible

Infrastructure-as-Code (IaC) is a model for provisioning and managing comput-
ing environments based on the definition of the desired state using source code.
IaC relies on software engineering principles, methodologies, and tools. On the
one hand, IaC Domain-Specific Languages enable defining the environment

1 https://github.com/nboro/FindICI

https://github.com/nboro/FindICI

4 Borovits et al.

state as a software program. On the other hand, IaC tools enable managing the
environment based on such programs. In this study, we consider the Ansible IaC
language, one of the most popular languages amongst practitioners, according
to our previous survey [24].

- name: Add standalone.xml configuration file

template:

src: standalone.xml

dest: /usr/share/jboss-as/standalone/configuration/

- name: Copy the init script

copy:

src: jboss-as-standalone.sh

dest: /etc/init.d/jboss

mode: 0755

- name: Add iptables rules

template:

src: iptables-save

dest: /etc/sysconfig/iptables

T
a
sk

 1
T

a
sk

 2
T

a
sk

 3

Task

Name

Task

Body

Module

Name

Values for

Module

Parameters

Fig. 1: A snippet of an Ansible role, showing three tasks.

In Ansible, a playbook defines an IT infrastructure automation workflow
as a set of ordered tasks over one or more inventories consisting of managed
infrastructure nodes. A module represents a unit of code that a task invokes
and serves a specific purpose, such as creating a configuration file from a file
template, copying a file, and installing a software package. The definition of a
task is essentially a configuration of the module used by the task. A role can
be used to group a cohesive set of tasks and resources that together accomplish
a specific goal, such as installing and configuring JBoss server, and creating a
MySQL database instance.

Figure 1 shows an Ansible snippet for configuring a JBoss server instance
and iptables. The first two tasks use the Ansible modules template and copy to
generate the JBoss configuration file from a template, and to copy the JBoss
initialization script, respectively. The third task employs the module template
to create and add firewall rules for the Linux iptables utility. Besides, each
module contains parameters (or arguments), for example, src and dest, that
describe the desired state of the system and can be used to manage operations
provided by that module.

2.2 Linguistic Inconsistencies in Ansible Tasks

Figure 2 shows some excerpts of commit messages, highlighting inconsistencies
and fixes from real-world word Ansible projects collected for our experiments.
Although the recommended best practice is to provide a meaningful name to

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 5

(a) Task names changed several times by
developers.

(b) Errors due to mismatches between task
names and task body.

Fig. 2: Examples of inconsistent task names and bodies in IaC.

a task,2 as shown in Figure 2a, developers strive to follow this best practice.
In the two tasks examples, their names contradict or inaccurately represent
what they actually do. For example, if the value of the parameter state of
the module homebrew is “absent”, then, the package composer is uninstalled.
Furthermore, as shown in Figure 2b, the mismatches between task names and
task body may be a good indicator of an erroneous task. For example, the first
task installs the package nginx instead of the package supervisor, but the name
of the task says that the package should be supervisor. Thus, this name-body
inconsistency indicates a buggy task.

The aforementioned inconsistencies in task names and bodies can be con-
sidered linguistic anti-patterns [4]. The presence of linguistic anti-patterns can
mislead developers as they can make wrong assumptions about the code behav-
ior or spend unnecessary time and effort to clarify it when understanding source
code for their purposes [3]. Therefore, highlighting their presence is essential
for producing easy-to-understand code. Our goal is to develop an approach to
detect name-body inconsistencies in Ansible tasks. Although there may exist
inconsistencies between code documentation (task or role level comments) and
tasks, we could only find a few task examples with comments. Thus, we solely
focus on name-body inconsistencies in this study.

In Ansible, the name and body of a task differ from those of a regular method
in general programming languages. The task name is a complete sentence or a
fragment, and the task body is a configuration of a specific Ansible module. A
task only uses a single module, while the tasks using the same module mostly

2 Ansible Best Practices: https://docs.ansible.com/ansible/2.8/user_guide/

playbooks_best_practices.html

https://docs.ansible.com/ansible/2.8/user_guide/playbooks_best_practices.html
https://docs.ansible.com/ansible/2.8/user_guide/playbooks_best_practices.html

6 Borovits et al.

Generate

Training Data

Tokenize Names

and Bodies

Train and Tune

Models

Tokenize Names

and Bodies

Predict

Inconsistencies

Create Vector Representations

with Word Embedding

Create Vector Representations

with Word Embedding

Save

Query

Previously Unseen

Ansible Task Corpus

Ansible Task

Corpus

Ansible Task Corpus

with Positive and

Negative Samples

Likely Inconsistencies

between Task Names

and Task Bodies

Model Repository DL ML

Fig. 3: Overview of the FindICI approach

differ in terms of module parameters used and their values. In contrast, the
body of a regular method can include arbitrary complex logic, use many APIs
(analogous to Ansible modules), and define comments for each line of the code.

3 FindICI: A Framework for Learning to Detect Code-Description
Inconsistencies in Infrastructure Codes

This section presents FindICI, our approach to identifying inconsistencies
between natural language descriptions and logic/bodies in IaC code units and,
in particular, in Ansible tasks. Figure 3 illustrates the workflow of FindICI as
a set of steps, which can be summarized as follows. Finding a sufficient number
of real buggy task examples containing inconsistencies is challenging. Therefore,
FindICI applies code transformations to generate a corpus of inconsistent
Ansible tasks. Both task names and bodies are tokenized and converted into
their vector representations that a learning algorithm can use. Afterward,
FindICI trains and evaluates binary classifiers using different machine learning
and deep learning algorithms and stores them in a model repository. The
classifiers can then predict name-body inconsistencies of unseen Ansible tasks
based on the module at hand, where the unseen Ansible tasks are tokenized
and converted to vectors in the same way as the ones used for training. The
following section provides more details about each step.

AnsibleTaskBody

Module

Name

template

Notify

restart datadog-agentParameter

src datadog.yaml.j2

Parameter

group datadog_group

Fig. 4: AST model for a task using template module

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 7

3.1 Generating Training and Test Data

Our linguistic anti-pattern detection is a binary supervised classification task.
Thus, we need a dataset that includes correct (name-body consistent) and
potentially buggy (name-body inconsistent) task examples. As Ansible is a
relatively new domain-specific language, it is non-trivial to collect a sufficient
number of buggy examples from real-world corpus. Inspired by the training
data generation in the defect prediction literature [56,42], we use simple code
transformations to generate the buggy task examples from a given corpus
of likely correct task examples by applying simple code transformations. In
particular, we swap the body of a given task with another randomly selected
task to create inconsistencies. We consider two cases: (i) tasks using the same
module (e.g., two tasks with the template module) and (ii) tasks using different
modules (e.g., one task with the template module and another with the copy
module). Consider the three tasks in Figure 1: swapping the bodies of Task 1
and Task 3 is an example for the first case; replacing the bodies of Task 1 and
Task 3 with the body of Task 2 is an example for the second case.

3.2 Tokenization of Names and Bodies

This step converts the Ansible task descriptions (i.e., task names and task
bodies) to a stream of tokens consumed by the learning algorithms. On the
one hand, task names are generally short texts in natural language. Therefore,
we tokenize them into words. On the other hand, the body of a task has a
structured representation. Hence, we use the abstract syntax tree (AST) of the
task body to generate the token sequences while preserving the code semantic.
In the research literature, ASTs are commonly used for representing code
snippets as distributed vectors [44,2]. A task body defines an Ansible module’s
configuration and instance as a set of parameters (name-value pairs). The tasks
can also specify notify actions, conditionals, and loops. The notify actions are
to inform other tasks and handlers about the changes to the state of a resource
managed by a module. We create an AST model to capture the key information
of a task body. Figure 4 shows a snippet of the generated AST model for the
task example in fig. 1. AST node types capture the semantic information such
as modules and their parameters and notify action, and the raw code tokens
capture the raw text values. The token stream generated from the AST will be
[AnsibleTaskBody, Module, Name, template, Parameter, src, datadog.yaml.j2,
...., Notify, restart datadog-agent].

3.3 Creating Vector Representations

To feed the learning algorithms, the token sequences have to be transformed into
vectors. Therefore, we rely on word embedding learning models for generating
the vector representation from the Ansible task names and the task bodies. We

8 Borovits et al.

create a sequence of tokens for each task containing its name and body. We
provide this sequence as input of the word embedding model, which takes a set
of token string sequences as inputs and produces a map between string tokens
and numerical vectors [48]. We generate a corresponding feature vector per word
embedding technique for every word in the input task. Word embeddings embed
tokens into numerical vectors and place semantically similar words in adjacent
locations in the vector space. As a result, the semantic information from the
input text is preserved in the corresponding vector representation. Before
applying word embeddings, we remove all special characters (e.g., symbols and
punctuation) and merge the token sequences for task names and bodies (per
task). These steps enable us to build a single vector space for each task as
successfully done by previous work on code-comment inconsistency detection
for each source code method [9,56].

3.4 Training and Tuning Prediction Models

We use the learning algorithms to build our binary classifier to categorize the
tasks into name-body consistent or not. The embedded token vectors of Ansible
tasks generated by the word embedding models are used as input for the
classifier. Section 4 provides an overview of the hyperparameter settings used in
our experiments. Before feeding the input token vectors into the classifiers, we
padded them as appropriate to comply with the fix-width input representations
of the classifiers. Motivated by Wang et al. [74], we appended zero vectors at
the end of the token sequences to reach the size of the longest token sequence
of the input tasks. To compute the maximum length of the input sequences s
we used the equation: max lengths = means + standard deviations. To avoid
long sequences with many padded zeros, we set the max length of the input
sequences within two standard deviations of the mean [50]. This way, we filtered
outliers by reducing noise from the padded zeros, and only the 3% of the input
token sequences were affected by this operation.

3.5 Inconsistency Identification

Inconsistency identification is a binary classification task since the test data are
labeled in two classes: inconsistent and consistent, which are the positive and
negative classes in this work. Once the binary classifier is trained with a suffi-
ciently large amount of training data, we can query it to predict whether unseen
Ansible tasks (e.g., unseen test data sets) have name-body inconsistencies.

3.6 Implementation

To parse Ansible tasks and build ASTs for them, we developed a custom python
tool. We tokenized and lemmatized the task names using the NLTK library3.

3 http://www.nltk.org/

http://www.nltk.org/

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 9

We used the Word2vec, Doc2vec, and FastText implementations available in
the gensim library to generate vectors from tokens. We implemented Machine
Learning and Deep Learning models using TensorFlow4 and Keras5. We used
PyGithub6 and PyDriller [70] to locate repositories that contain Ansible IaC
scripts. The complete prototype implementation of FindICI, including data set
and evaluation results is available on GitHub7. It has been integrated into the
SODALITE8 toolchain that supports guided model-driven engineering of IaC
for deploying and managing complex heterogeneous applications [16,37].

4 Empirical Study Definition and Design

This section describes the design of the empirical study we performed to verify
the extent to which FindICI can detect textual inconsistencies in Infrastructure-
as-Code. In detail, we aim at understanding whether Machine Learning and
Deep Learning classifiers can be used to detect such inconsistencies when
trained using word embeddings.

4.1 Research Questions

We set the following research questions:

RQ1. To what extent can Machine Learning be employed to detect linguistic
inconsistencies in IaC?

RQ2. To what extent can word embedding representations affect the perfor-
mance?

RQ3. To what extent can the approach find linguistic inconsistencies in real-
world IaC scripts?

In the first research question, we fixed the word embedding representation
to Word2vec using Continuous Bag of Words (i.e., Word2vec-CBOW) and
empirically evaluated and compared six machine-learning models, namely
Random Forest (RF), Support Vector Machine (SVM), and eXtreme Gradient
Boosting (XGBoost), Multi-Layer Perceptron (MLP), Convolutional Neural
Networks (CNNs), and Long-Short Term Memory (LSTM). We selected the
Word2Vec-CBOW method as it was one of the two best performing models
across classifiers. There are several alternatives to Word2vec-CBOW, and we
empirically compared these embedding techniques to check their impact on the
performance of the classifiers in RQ2.

All experiments were performed on a machine with an Intel Core i7-9750H
CPU, 16GB of memory, and a single NVIDIA Quadro P2000 GPU.

4 https://www.tensorflow.org/
5 https://keras.io/
6 https://github.com/PyGithub/PyGithub
7 https://github.com/nboro/FindICI
8 https://www.sodalite.eu/

https://www.tensorflow.org/
https://keras.io/
https://github.com/PyGithub/PyGithub
https://github.com/nboro/FindICI

10 Borovits et al.

4.2 Data Collection

To answer RQ1 and RQ2, we evaluated FindICI on a real-world corpus of
Ansible tasks mined from GitHub. To ensure the quality of the data collected,
we used the following criteria adapted from Rahman et al. [61] and Dalla Palma
et al. [13].

Criterion 1 - At least 11% of the files belonging to the repository must be
IaC scripts.

Criterion 2 - The repository has at least 10 contributors.
Criterion 3 - The repository must have at least two commits per month.
Criterion 4 - The repository is not a fork.

These criteria were used by previous works to collect IaC scripts [13,61]. In
particular, criterion 1 represents a cut-off to ensure that only repositories with
a sufficient amount of IaC scripts and commit history are analyzed. Indeed,
Jiang and Adams [34] observed that in open-source repositories a median of
11% of the files are IaC scripts.

We found 38 GitHub repositories that met the above criteria. We extracted
18, 286 Ansible tasks from them. As we trained the corresponding ML and
DL models for each Ansible module, our experiments only considered the 10
most used modules, which account for 10, 396 tasks in the collected data set.
Table 1 shows the distribution of the data samples for each module type in the
collected dataset. We applied the transformations described in Section 3.1 to
create our dataset. Thus, the resulting dataset comprises 20,792 observations
with a balanced number of instances for each label.

Table 1: Size of the collected instances per each module.

Module shell command set fact template file copy gather facts service debug fail

Tasks 2,126 1,702 1,246 1,198 1,151 773 752 569 484 395

To answer RQ3, we focused on the data collected by Dalla Palma et
al. [13] for defect prediction of Ansible code. The dataset provides over 180k
observations of defect-prone and defect-free IaC blueprints collected from 85
open-source GitHub repositories based on the Ansible language. From the
Ansible files present in the dataset, we extracted 14, 116 tasks that we use to
validate the best performing model. In addition, we ensured that there is not
any information leakage between this dataset and ours by filtering out any
common tasks. Table 2 shows statistics about the most recurring modules.

4.3 Classifiers Selection

To address the first research question, we relied on six classification algorithms,
namely Random Forest (RF) [29], Support Vector Machine (SVM) [10], eX-
treme Gradient Boosting (XGBoost) [7], Multi-Layer Perceptron (MLP) [28],

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 11

Table 2: Size of the collected instances per module for the external dataset.

Module file shell set fact command template copy service fail debug gather facts

Tasks 2,617 2,297 2,236 2,200 2,025 1,111 791 503 245 91

Convolutional Neural Networks (CNNs) [46], and Long-Short Term Memory
(LSTM) [8], as they have been widely used for text classification and defect pre-
diction [18,43,44,49,52,56]. More specifically, we selected RF for its robustness
to noise and correlated variables and low proneness to overfitting [29]. Likewise,
SVM was selected for its low proneness to overfitting and its ability to handle
non-linear data [10]. On the other hand, XGBoost allows for loss function
customization and it is less biased by unbalanced datasets [7]. Concerning the
neural network based algorithms, we selected MLP as a baseline neural network
for its simplicity [28], and CNNs and LSTM to verify whether their more
complex nature provides better performance for detecting inconsistency [8,46].

4.4 Model Selection

The model selection was guided by a grid search on the models’ parameters9

through a stratified k-folds cross-validation. Grid search is an exhaustive search
algorithm through a manually-specified subset of parameters, while stratified
k-folds cross-validation is a widely used validation method that ensures that
every observation from the dataset has the chance of appearing in the training
and test set [33]. It randomly partitions the data into ten folds of equal size,
applying a stratified sampling (e.g., each fold has the same proportion of
inconsistencies). A single fold is used as the test set, while the remaining ones
are used as the training set. The process was repeated ten times, using each
time a different fold as the test set. Then, the model performance was reported
using the mean achieved over the ten runs. Please consider that we could
not employ this strategy for CNNs and LSTM as it was too computationally
expensive. Therefore, we manually calibrated the classifiers and we applied
hold-out validation [33]. We split the dataset into three sets (i.e., 60% training,
20% validation, and 20% test) with the same distribution of inconsistencies.

4.5 Model Validation

The built models are used to predict task-body inconsistencies. As usual in
machine learning, there are four possible prediction outcomes:

– True Positive (TP): when the actual class is inconsistent and the predicted
class is also inconsistent.

9 Given the number of classifiers and hyper-parameters, we preferred reporting the latter
in the online appendix.

12 Borovits et al.

– False Negative (FN): when the actual class is inconsistent but the predicted
class is consistent.

– True Negative (TN): when the actual class is consistent and the predicted
class is also consistent.

– False Positive (FP): when the actual class is consistent but the predicted
class is inconsistent.

To evaluate the performance of the trained models, we used the common
metrics used in binary classification problems, namely accuracy, precision,
recall, F1 score, MCC (Matthews Correlation Coefficient), and AUC-ROC
(Area Under the Receiver Operating Characteristic curve).

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1− score =
precision× recall

precision+ recall

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

AUC measures the entire two-dimensional area underneath the entire ROC
(receiver operating characteristic curve), which plots true positive rate and
false positive rate. A good classifier has an AUC closer to 1, whereas, a poor
model has an AUC near to 0. Please consider that we used AUC to tune the
models when applying cross-validation. To analyze the classifiers’ performance
we reported the following evaluation measures: the performance is analyzed in
terms of mean and standard deviation.

Afterwards, to compare performance across classifiers and word embedding
techniques, we followed the recommendations in Demšar [15]. In particular,
first, we applied the Friedman test [21] with a significance level equal to 0.05
to reject the null hypothesis. Once we have established a statistical difference
between the classifiers’ performance, we applied the pairwise posthoc analysis
recommended by Benavoli et al. [5], where the average rank comparison is
replaced by a Wilcoxon signed-rank test [76] with Holm’s alpha correction [30].
To statistically compare the performance of multiple classifiers and multiple
word embedding methods over multiple Ansible modules, we plotted the results
using several critical difference (CD) diagrams [15], which visualize the results
of the Wilcoxon-Holm post hoc test. In a CD diagram, the positions of the
treatments (e.g., classification or word embedding methods) represent their
average ranks across all outcomes of the observations. Two or more treatments
are connected with each other with a thick horizontal line if they are not signif-
icantly different in terms of the considered metric. To perform this statistical

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 13

analysis and draw CD diagrams, we relied on the implementation provided by
Ismail Fawaz et al. [32].

We also perform a qualitative analysis of classification outcomes. We employ
the t-Distributed stochastic neighbor embedding (t-SNE) [45] to visualize in
the dimension space the words of a predicted true positive task and a false
positive task. The t-SNE is a dimensionality reduction technique that has been
widely used in the Natural Language Processing (NLP) literature to project
the relationship between words in a corpus in the two-dimensional space [75,
73,23]. In our study, we created a distributed vector representation of size 100
for each word using the corresponding word embedding techniques. Thus, we
used t-SNE to reduce the dimensionality of the vectors and project the learned
relationships between the words in the two-dimensional space. The words used
for consistent tasks should be placed relatively closer in the feature space than
the corresponding words of the inconsistent task. Particularly, we expect the
words forming the task name to be placed close to the words of the task body
of the consistent task. On the other hand, we expect the words that compose
the task name to be placed relatively further from those that constitute the
task body for the inconsistent task.

4.6 Word Embedding Selection

To answer RQ2, we chose three widely used word embedding learning models,
Word2vec [48], Doc2vec [41], and FastText [35]. These embedding models
are used by software engineering research for learning representations source
codes and method names [56,44,42,18], and other natural language texts [71].
Word2vec is a two-layer neural network that processes text by creating vector
representations from words. Word2vec can use either continuous bag-of-words
(CBOW) or continuous skip-gram to learn a distributed representation of
the words. CBOW enables predicting a single word from a fixed window
size of context words (or surrounding words), whereas Skip-gram predicts
several context words from a single input word. Doc2Vec learns fixed-length
feature representations from variable-length pieces of texts, such as sentences,
paragraphs, and documents. It extends Word2vec by considering the ordering
and semantics of the words within blocks of texts. Doc2vec can use two model
architectures: Distributed Bag of Words of Paragraph Vector (PV-DBOW) and
Distributed Memory of Paragraph Vector (PV-DM), which are analogous to
Skip-gram and CBOW implemented by Word2vec. Doc2vec generates a single
vector representation for every word among all documents in the corpus by
considering the additional context of the document. In addition to this vector,
it generates a vector per document. However, to maintain the compatibility of
Doc2vec with the rest of our word embedding models, we did not use such a
document-level vector. Finally, FastText improves on Word2vec by taking word
parts (e.g., prefixes, roots, and suffixes) into account, enabling the embedding
training on smaller datasets and generalizing to unknown words.

14 Borovits et al.

Table 3: Results for all considered metrics achieved on the 10 most used modules
in Ansible using Support Vector Machine.

shell command set fact template file gather facts copy service debug fail

AUC 0.99 0.97 1.00 0.99 0.99 0.99 0.99 1.00 1.00 1.00

MCC 0.94 0.89 0.95 0.95 0.96 0.95 0.97 0.94 0.94 0.96

Accuracy 0.97 0.94 0.98 0.98 0.98 0.97 0.99 0.97 0.97 0.98

F1 score 0.97 0.95 0.97 0.98 0.98 0.97 0.99 0.97 0.97 0.98

Precision 0.96 0.93 0.98 0.96 0.97 0.95 0.99 0.96 0.96 0.97

Recall 0.98 0.97 0.97 0.99 0.99 1.00 0.99 0.98 0.98 0.99

Table 4: Results for all considered metrics achieved on the 10 most used modules
in Ansible using Random Forest.

shell command set fact template file gather facts copy service debug fail

AUC 0.98 0.97 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.99

MCC 0.87 0.84 0.86 0.89 0.92 0.92 0.84 0.92 0.93 0.92

Accuracy 0.94 0.92 0.93 0.95 0.96 0.96 0.92 0.96 0.96 0.96

F1 score 0.94 0.93 0.93 0.95 0.96 0.96 0.92 0.96 0.96 0.96

Precision 0.94 0.92 0.91 0.92 0.95 0.94 0.92 0.98 0.96 0.95

Recall 0.93 0.93 0.95 0.98 0.97 0.98 0.92 0.95 0.97 0.97

In a recent study, Sulistya et al. [71] compared different word embedding
learning methods for finding software-relevant tweets. Following their guidelines,
we used the same hyper-parameter settings for each word embedding learning
model (i.e., Word2vec, Doc2Vec, and FastText). We choose the following key
parameters: context window size (6) and vector size (100). The context window
defines the number of words that are used to determine the context of each
word. As the Ansible tasks are short texts, we use a window size of 6. The
vector size is the dimensionality of vector embeddings to be learned. According
to the previous studies [55,47], 100-400 is the most frequently used setting, and
the best accuracy is achieved with 300 tokens. However, since the corpus and
the vocabulary (the number of unique words) is small, we choose 100 tokens,
which is also the default value used by our implementation (i.e., gensim), to
prevent overfitting.

5 Results of the Empirical Study

This section reports the results of the empirical study previously defined.

5.1 RQ1. To what extent can Machine Learning be employed to detect
linguistic inconsistencies in IaC?

Table 4 to Table 7 summarize the performance of the selected classifiers to
detect linguistic inconsistency on the 10 most used modules in Ansible. Figure 5
depicts the boxplots for the MCC, AUC-ROC, and accuracy metrics.

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 15

Table 5: Results for all considered metrics achieved on the 10 most used modules
in Ansible using eXtreme Gradient Boost.

shell command set fact template file gather facts copy service debug fail

AUC 0.95 0.93 0.96 0.94 0.97 0.98 0.93 0.96 0.95 0.96

MCC 0.90 0.86 0.93 0.88 0.93 0.93 0.86 0.91 0.91 0.91

Accuracy 0.95 0.93 0.96 0.94 0.97 0.97 0.93 0.96 0.95 0.96

F1 score 0.95 0.94 0.96 0.94 0.97 0.97 0.93 0.96 0.95 0.95

Precision 0.95 0.92 0.95 0.93 0.96 0.96 0.93 0.97 0.96 0.95

Recall 0.95 0.95 0.97 0.97 0.98 0.97 0.93 0.95 0.95 0.96

Table 6: Results for all considered metrics achieved on the 10 most used modules
in Ansible using Multi-Layer Perceptron.

shell command set fact template file gather facts copy service debug fail

AUC 0.98 0.98 0.99 0.99 0.99 0.98 0.99 1.00 1.00 0.99

MCC 0.91 0.90 0.94 0.92 0.94 0.95 0.94 0.96 0.97 0.95

Accuracy 0.96 0.95 0.97 0.96 0.97 0.97 0.97 0.98 0.98 0.97

F1 score 0.96 0.95 0.97 0.96 0.97 0.97 0.97 0.98 0.98 0.97

Precision 0.95 0.93 0.96 0.95 0.96 0.96 0.95 0.98 0.99 0.97

Recall 0.96 0.98 0.97 0.98 0.98 0.99 0.99 0.98 0.98 0.97

Table 7: Results for all considered metrics achieved on the 10 most used modules
in Ansible using Long-Short Term Memory.

shell command set fact template file gather facts copy service debug fail

AUC 0.86 0.93 0.81 0.939 0.948 0.84 0.89 0.87 0.76 0.70

MCC 0.73 0.85 0.65 0.88 0.90 0.70 0.79 0.74 0.55 0.40

Accuracy 0.85 0.93 0.82 0.94 0.95 0.84 0.89 0.87 0.76 0.70

F1 score 0.84 0.93 0.85 0.93 0.95 0.83 0.87 0.86 0.78 0.74

Precision 0.95 0.94 0.78 0.90 0.95 0.93 0.98 0.90 0.69 0.69

Recall 0.75 0.92 0.93 0.97 0.95 0.75 0.79 0.82 0.90 0.80

Table 8: Results for all considered metrics achieved on the 10 most used modules
in Ansible using Convolutional Neural Networks.

shell command set fact template file gather facts copy service debug fail

AUC 0.85 0.76 0.77 0.84 0.89 0.80 0.84 0.85 0.84 0.68

MCC 0.70 0.52 0.54 0.69 0.77 0.61 0.70 0.71 0.70 0.39

Accuracy 0.85 0.76 0.76 0.84 0.88 0.80 0.85 0.85 0.84 0.69

F1 score 0.84 0.76 0.77 0.86 0.88 0.82 0.87 0.86 0.85 0.73

Precision 0.90 0.72 0.72 0.80 0.93 0.81 0.82 0.79 0.77 0.66

Recall 0.79 0.80 0.84 0.92 0.84 0.84 0.93 0.94 0.95 0.83

Overall, we can observe that all ML models perform similarly with the
best results achieved by SVM. This classifier yields an accuracy ranging from
0.94 to 0.99, MCC from 0.89 to 0.97, and AUC from 0.97 to 1. It detects
inconsistent tasks with F1 score ranging from 0.95 to 0.99, recall from 0.97 to
1, precision from 0.93 to 0.99. Among the neural-network based classifiers, the
MLP classifier performed the better in terms of all evaluation metrics and the

16 Borovits et al.

RF
SVM

XGBoos
t

MLP CNN
LSTM

ML Classifier

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
CC

(a) MCC

RF
SVM

XGBoos
t

MLP CNN
LSTM

ML Classifier

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
C-

RO
C

(b) AUC-ROC

RF
SVM

XGBoos
t

MLP CNN
LSTM

ML Classifier

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

(c) Accuracy

Fig. 5: Boxplots depicting MCC, AUC-ROC, and accuracy for each classifier.

123456

5.9000CNN
4.9000LSTM
3.7000RF 3.5000 XGBoost

1.7000 MLP
1.3000 SVM

MCC Metric for ML Classifiers

(a) MCC

123456

5.9000CNN
5.1000LSTM
3.9000XGBoost 2.4000 RF

2.0500 SVM
1.6500 MLP

AUC-ROC Metric for ML Classifiers

(b) AUC-ROC

123456

5.9000CNN
5.0000LSTM
3.7000RF 3.4000 XGBoost

1.6500 MLP
1.3500 SVM

Accuracy Metric for ML Classifiers

(c) Accuracy

Fig. 6: Critical Difference diagram based on the Wilcoxon-Holm test to detect
pairwise significance between the performance achieved by the considered
classifiers: MCC, AUC-ROC, and accuracy metrics.

CNN model is the worst performer. MLP yielded an accuracy ranging from
accuracy from 0.95 to 0.99, MCC from 0.90 to 0.97, and AUC from 0.98 to 1.
On the other hand, it finds inconsistent tasks with F1 score ranging from 0.95
to 0.98, recall from 0.96 to 0.99, precision from 0.93 to 0.99.

Figure 6 depicts the result of the statistical analysis we conducted on all
the considered ML classifiers. Looking at Support Vector Machine, eXtreme
Gradient Boosting, and Random Forest, we can notice that although the
former is the best-performing classifier over eight Ansible modules in terms
of the metrics MCC, AUC-ROC, and accuracy. For both accuracy and MCC
metrics, there is no difference between RF and XGBoost models. Furthermore,
considering the AUC-ROC metric, SVM and RF perform similarly. The results
also show that the differences between the performance of the three neural

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 17

(a) True positive example (b) False positive example

Fig. 7: The t-SNE visualizations of the words of a true positive predicted
observation and a false positive predicted observation of the SVM ML model.

- name: Get file descriptors total limit

shell: openshift_cli get project project_dev

register: result

ignore_errors: yes

changed_when: false

(a) True positive example

- name: Save the iptables rules

shell: iptables-save /etc/sysconfig/iptables

become: true

ignore_errors: yes

changed_when: false

(b) False positive example

Fig. 8: Ansible tasks used in the t-SNE visualizations of Figure 7

networks-based classifiers are statistically significant (there is no a think line
connecting the classifiers). Although in a different context (extracting entities
from textual medical records using word embeddings and neural networks), our
results are similar to those previously shown by Dudchenko and Kopanitsa [17].

Figure 7 shows the t-SNE results for the classification results depicted in
Figure 8. We used the SVM classifier, which is the best-performing model. We
observed that the words of the task name are positioned relatively closer to
the words of the task body for the predicted false positive task compared to
the corresponding word positioning for the predicted true positive task. For
example, the words Save, iptables are relatively closer to the words iptables-save,
/etc/sysconfig/iptables, and become in the false-positive example. In contrast,
the words Get, file descriptors, total limit are positioned relatively far from the
words openshift cli, get, and project in the true positive example. Please note
that the scales are different in the two figures. However, all words of task names
and bodies are relatively closer in case of false positives than true positives.

The explanation for the erroneous classification for the false positive obser-
vation lies within the collected Ansible tasks. Most of the misclassified tasks

18 Borovits et al.

(a) True positive example (b) False positive example

Fig. 9: The t-SNE visualizations of the words of a true positive predicted
observation and a false positive predicted observation for the CNN deep learning
model

- name: Get docker device

shell: openshift_cli get project project_test

register: result

ignore_errors: yes

changed_when: false

(a) True positive example

- name: Give user access to the completed project

shell: oc policy

add-role-to-user

admin ocp_username

-n ocp_project_completed

(b) False positive example

Fig. 10: Ansible tasks used in the t-SNE visualizations of Figure 9

contain words of low occurrence frequency in the rest of the tasks. Thus, these
observations are too few for the classifier to learn to predict them accurately.
For example, for the demonstrated false-positive task illustrated in Figure 7
and Figure 8, the combination of the words Save and iptables does not exist
in any other task in the dataset. Therefore, such observations are treated as
outliers that lead to wrong predictions. This pattern is observed for most of
the misclassified observations. Finally, the rest of the misclassifications occur
because some words in the tasks of the test set do not exist in the corpus
of words of the word embedding model used during the training phase. As a
result, the classifiers miss feature representations of some words and erroneously
classify the tasks. To reduce these misclassification errors in the future, we
will need a bigger Ansible tasks corpus to train the ML models to perform the
classification task accurately.

We also qualitatively analyzed the classification results of a deep learning
model, namely the CNN model. From the classified tasks in Figure 10 and
their visualizations in Figure 9, we can observe the same pattern for the word
positioning between the predicted true positive example and the false positive

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 19

Word
2vec

(CBOW)

Word
2vec

(Skip
-gram

)

Doc2
vec

(PV
-DBOW)

Doc2
vec

(PV
-DM)

Fas
tTe

xt(
CBOW)

Fas
tTe

xt(
Skip

-gram
)

Word Embedding Method

0.0

0.2

0.4

0.6

0.8

1.0

M
CC

Fig. 11: Boxplots representing the MCC values obtained by the word embedding
methods for Ansible name-body inconsistency detection.

example as remarked above. Namely, the words contained in the false-positive
example are placed closer in the dimension space than the corresponding
words of the true positive example. This observation indicates that the task
was indeed falsely classified as inconsistent. The reasoning for the occurring
misclassifications is the same as above, leading to the lower performance of
the DL models compared to the corresponding performance of the ML models.
DL models require a large text corpus to make high-quality predictions [64].
Consequently, tasks with no vector representations or word combinations that
do not occur in other tasks will ultimately result in erroneous predictions.

RQ1 summary: Machine learning classifiers can be successfully employed
to detect linguistic inconsistency in Infrastructure-as-Code, confirming pre-
vious findings [18]. Among them, deep learning models should be carefully
considered given their low resource efficiency and high computational cost at
training time, as previously shown in other contexts [22,18].

5.2 RQ2. To what extent can word embedding representations affect the
performance?

Figures 11, 12, 13 show the boxplots for the MCC, AUC-ROC, and accuracy
values obtained by applying different word embedding techniques with the six
classifiers over eight Ansible modules. The online appendix includes the detailed
experimental results of the six classifiers for each embedding method. Generally,
all models have high performance in terms of the considered metrics. However,
the models based on Word2vec and FastText achieve the best results, and their
variants based on Skip-gram have a smaller performance variance. Looking at
Doc2vec, the model based on PV-DM, which is analogous to Word2vec CBOW,

20 Borovits et al.

Word
2vec

(CBOW)

Word
2vec

(Skip
-gram

)

Doc2
vec

(PV
-DBOW)

Doc2
vec

(PV
-DM)

Fas
tTe

xt(
CBOW)

Fas
tTe

xt(
Skip

-gram
)

Word Embedding Method

0.5

0.6

0.7

0.8

0.9

1.0

AU
C-

RO
C

Fig. 12: Boxplots representing the AUC-ROC values obtained by the word
embedding methods for Ansible name-body inconsistency detection

Word
2vec

(CBOW)

Word
2vec

(Skip
-gram

)

Doc2
vec

(PV
-DBOW)

Doc2
vec

(PV
-DM)

Fas
tTe

xt(
CBOW)

Fas
tTe

xt(
Skip

-gram
)

Word Embedding Method

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Fig. 13: Boxplots representing the accuracy values obtained by the word
embedding methods for Ansible name-body inconsistency detection

performs better than the ones based on PV-DBOW which is analogous to
Word2vec Skip-gram.

The results are confirmed by the statistical analysis, which results are
depicted in Figures 14, 15, and 16. Generally, the word embedding models
Word2vec and FastText achieve the best results in terms of the considered met-
rics, and the Doc2vec model is the worst performer. All the embedding models
except the Doc2vec PV-DBOW model perform similarly over eight modules
in terms of the AUC-ROC and accuracy metrics. There are no statistically
significant differences among FastText and Word2vec models in terms of MCC.

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 21

123456

4.8667Doc2vec(PV-DBOW)
3.6583Doc2vec(PV-DM)
3.4583Word2vec(Skip-gram) 3.2250 FastText(Skip-gram)

3.0583 Word2vec(CBOW)
2.7333 FastText(CBOW)

AUC-ROC Metric for Word Embedding Methods

Fig. 14: Critical Difference diagram based on the Wilcoxon-Holm test to
detect pairwise significance between the AUC-ROC achieved by the considered
techniques for word embedding.

123456

5.0667Doc2vec(PV-DBOW)
4.1667Doc2vec(PV-DM)
3.1667Word2vec(Skip-gram) 2.9750 FastText(Skip-gram)

2.8167 FastText(CBOW)
2.8083 Word2vec(CBOW)

MCC Metric for Word Embedding Methods

Fig. 15: Critical Difference diagram based on the Wilcoxon-Holm test to detect
pairwise significance between the MCC achieved by the considered techniques
for word embedding.

123456

4.8500Doc2vec(PV-DBOW)
4.1083Doc2vec(PV-DM)
3.4250Word2vec(Skip-gram) 3.4000 FastText(Skip-gram)

2.7667 FastText(CBOW)
2.4500 Word2vec(CBOW)

Accuracy Metric for Word Embedding Methods

Fig. 16: Critical Difference diagram based on the Wilcoxon-Holm test to
detect pairwise significance between the accuracy achieved by the considered
techniques for word embedding.

Our results confirm previous work [71,47] which assessed the superiority of
Word2vec and FastText in a different context (i.e., text mining). In addition,
our work agrees with the findings of previous work [39] suggesting that Doc2vec
creates document embeddings which align with lower frequency words when the
documents are short and the corpus is relatively small. The maximum index
of our corpus consists of 9,651 unique words and the average size of our task
sequences is 22 token sequences. Both numbers are relatively low compared to
the corresponding numbers of the benchmark NLP task used for the evaluation
of the Doc2vec model [41].

RQ2 summary: The models trained using Word2vec and FastText exhibit
better performance than those trained using Doc2vec. Although the models
based on Skip-gram seem to be superior to those trained on Continuous Bag
of Words, this difference is not statistically significant.

22 Borovits et al.

5.3 RQ3. To what extent can the approach find linguistic inconsistencies in
real-world IaC scripts?

To evaluate the effectiveness of our IaC inconsistency detectors, we applied them
to unmodified real-world Ansible tasks and manually inspected the reported
inconsistencies to assess their precision. We used the best detector, which is
the SVM model with Word2vec.

5.3.1 Results

To evaluate the best-performing model on a real-world dataset, the first three
authors of this paper manually assessed whether the predicted label for a
task is correct or not. We addressed all the discrepancies through discussions.
Cohen’s Kappa coefficient was 0.786, indicating a substantial agreement. Since
the number of tasks in the real-world dataset was relatively high (i.e., 14, 116),
we examined only a statistically significant sample of 380 tasks selected from
the dataset by considering a 95% confidence level and a 5% margin of error.
All tasks in the real-world sample had an inconsistent predicted label. This
way, we could evaluate the performance of our model based on the number
of the predicted false positives. The results suggest that our model correctly
detected inconsistency for 193 tasks while falsely predicting 187 tasks. These
results are comparable to the results reported in a previous study [56], which
motivated our work regarding the argument swapping transformation for the
creation of the inconsistent set.

5.3.2 Qualitative Analysis of Inconsistencies and False Positives

Our best-performing model contains vector representations for 9, 651 words,
which comprise the Ansible tasks during the training phase. The statistically
significant sample of the real-world dataset consisted of 4791 unique words.
The relevantly average performance of our model can be explained by the fact
that only 1, 316 common words existed in the pre-trained corpus of our model.
In other words, our model knew the features (vector presentations) for only
27% of the words of the real-world dataset. We deem this amount insufficient
to predict effectively whether a task is consistent or not since our model did
not contain the corresponding vector representations for most of the words in
the real-world dataset.

We qualitatively assessed the result for a predicted true positive task and
a predicted false positive task by analyzing Figure 17 and the corresponding
tasks on Figure 18 that confirm the findings reported in the two previous
sections. Particularly, we observed that the distances between the words of
the false-positive task are closer than those of the true-positive task. For
example, regarding the false positive task, the task name words such as reload
and systemd are positioned closer to the corresponding task body words
such as daemon-reload, systemctl and when. This result implies that the pre-
trained embedding model based on our dataset could successfully detect the

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 23

(a) True positive example (b) False positive example

Fig. 17: The t-SNE visualizations of the words of a true positive predicted
observation and a false positive predicted observation for the real-world dataset

- name: Java Source environment variables

shell: source /etc/profile

args:

executable: /bin/bash

changed_when: false

tags:

- skip_ansible_lint

(a) True positive example

- name: reload systemd

shell: systemctl daemon-reload

changed_when: false

when: mongodb_is_systemd

(b) False positive example

Fig. 18: Ansible tasks used in the t-SNE visualizations of Figure 17

relationships between the words in the unseen real-world set even with a
relatively small number of common words. However, our classifier is unable
to predict the correct labels. Therefore, this confirms our findings from the
previous sections, which suggest that the classifiers lack performance when
there are missing word representations in the feature space. Finally, given the
small number of common words between the tasks of our dataset and the
real-world dataset, we note that the sets contain a significant number of unique
tasks. This result suggests that to improve the performance of our model, we
need to collect and include a higher number of tasks in the training phase.

RQ3 summary: Our approach can yield effective defect predictors that
find linguistic inconsistencies in real-world Infrastructure-as-Code scripts.

24 Borovits et al.

6 Threats to Validity

We present the potential threats to the internal, external, and construct validity
of our findings.

6.1 Threats to Construct Validity

The collected repositories may not be relevant for the problem at hand. We
mitigated this threat by applying the criteria used in previous works on IaC
smell detection to ensure the quality of the collected data set. Another threat
to construct validity concerns the mutation of scripts employed to generate
inconsistent cases, which may not represent real-world inconsistent tasks. Please
consider that we created datasets in which consistent and inconsistent programs
are equally represented. However, this assumption could not hold, leading
to a different class distribution compared to real settings. Nevertheless, we
tried to mitigate this threat by applying the existing approaches that have
successfully used mutation to generate the training data [42,56]. We plan to
further mitigate this threat by gathering more real-cases of inconsistent Ansible
tasks. As discussed in Section 4.6, we leveraged the configurations employed by
previous studies for word embedding models. While the selected parameters
performed well, experiments with different configurations would have provided
some insights into the effectiveness of the word embedding methods.

6.2 Threats to Internal Validity

The choice of the features used to train the classifiers could influence linguistic
anti-patterns detection. We mitigated this threat by training the model using
several features (obtained by transforming each task to a vector space of words)
extracted from more than ten thousand Ansible tasks. The feature engineering
for the classification task depends on the quality of the code base, including
naming conventions, typos, and abbreviations. This aspect poses a threat to
validity, and advanced NLP techniques can be employed to overcome this.

6.3 Threats to External Validity

The conclusions are derived only from a subset of modules in Ansible (i.e.,
the ten most used), which might not be reproducible for other modules and
languages. However, we used both generic modules (such as command modules)
and more specific modules. Specific modules (e.g., the copy module) do focus
works, but general modules can execute ad-hoc OS commands. We believe that
using a mix of generic and specific modules may mitigate, at least partially,
this threat. Finally, we analyzed only Ansible projects, and the results could
not generalize to other IaC languages (e.g., Chef, Puppet). Extending our
approach to these languages is part of our agenda. We validated our approach

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 25

with a real-world dataset manually validated by the first three authors. We
addressed all the discrepancies through discussions and achieved a percentage
of agreement of 89%, with Cohen’s kappa equal to 0.786, which indicates a
substantial agreement. Nevertheless, manual analyses present intrinsic bias
that could have affected the generalizability of the results.

7 Related Work

In this section, we first discuss the existing studies on IaC, which we ground on
a recent mapping study on IaC research [58]. Then, we overview the linguistic
anti-patterns literature for other programming languages.

7.1 Empirical Studies related to IaC

According to the mapping study, IaC has been used to support the automated
provisioning and deployment of applications on different infrastructures and
implement DevOps and continuous deployment. Several empirical studies focus
on testing and quality assurance and the evolution of IaC artifacts to analyze
how practitioners adopt this technology. IaC has been used to support the
automated provisioning and deployment of applications on different infrastruc-
tures and implement DevOps and continuous deployment. Guerriero et al. [24]
identified further insights on the challenges related to the IaC development
and testing in industrial contexts by surveying 44 practitioners. Sandobaĺın et
al. [65] focused on the effectiveness of IaC tools, while Rahman et al. [31,27]
on testing and security practices mined from grey literature. With similar goals,
the latter analyzed the development practices that contributed to defective IaC
scripts [57] and replicated previous studies [60]. Finally, Opdebeeck et al. [53]
analyzed the adoption of semantic versioning in Ansible roles, while Kokuryo
et al. [36] examined the usage of imperative modules in the same language.

7.2 IaC Quality and Defect Prediction

Most of the previous works describe infrastructure code quality in terms of
smelliness [20] and defects-proneness of Chef and Puppet infrastructure com-
ponents. From a smelliness perspective, Schwarz et al. [67], Spinellis et al. [68],
and Rahman et al. [59] applied the well-know concept to IaC, and identified
code smells that can be grouped into four groups: (i) Implementation Config-
uration such as complex expressions and deprecated statements; (ii) Design
Configuration such as broken hierarchies and duplicate blocks; (iii) Security
Smells such as admin by default and hard-coded secrets; (iv) General Smells
such as long resources and too many attributes. From a defect prediction
perspective, Rahman et al. [63] identified ten source code measures that signifi-
cantly correlate with defective infrastructure as code scripts such as properties
to execute bash and/or batch commands, to manage file permissions, and more.

26 Borovits et al.

Dalla Palma et al. [12,14,13] proposed a set of tools to calculate quality metrics
for Ansible scripts and projects and use them for predicting defective scripts.
Kumara et al. [38] proposed a tool to detect smells in TOSCA scripts using
an ontology-based approach. Cito et al. [66] detected violations of Docker best
practices, while Dai et al. [11] leveraged static code analysis and rule-based
reasoning to detect risky IaC artifacts. Finally, Sotiropoulos et al. [69] crafted
a tool to identify missing dependencies and notifiers in Puppet manifests by
analyzing system call traces.

In this work, we step up this research line by proposing a novel automated
approach that employs word embeddings and learning techniques to detect
linguistic anti-patterns, focusing on short-text-name-body inconsistencies in
IaC code units, in particular Ansible. We focused on Ansible, rather than
Puppet and Chef, because Ansible is the most used IaC in the industry [24].
We evaluated the effectiveness of our approach with various machine learning
models, deep learning models, and word embedding models.

7.3 Linguistic Anti-patterns Literature in Other Domains

Arnaoudova et al. [4] coined the term “software linguistic anti-patterns” for the
bad practices about naming and documentation in source code. The authors
proposed a catalog of such anti-patterns for object-oriented programs and
assessed the relevance and usefulness of the catalog with an empirical study with
developers [3]. They also studied how linguistic anti-patterns can exacerbate
design smells and consequently increase the change and fault proneness of
source code [25]. A user study by Fakhoury et al. [19] showed the negative
impact on the cognitive load experienced by developers when reviewing code
containing linguistic anti-patterns. The authors also developed anti-pattern
detectors using deep neural networks and traditional machine learning [18].
The evaluation of the detectors with a dataset of Java programs showed that
machine learning could outperform deep neural networks. With a large scale
dataset of libraries (APIs), Java projects using the APIs, and StackOverflow
questions concerning the APIs, Aghajani et al. [1] studied the impacts of
linguistic inconsistencies with the libraries on the chance of introducing bugs in
the projects using those libraries. They found a 29% increase in the likelihood
of introducing bugs. Palma et al. [54] proposed a catalog of linguistic anti-
patterns in RESTful APIs, which mainly consider bad practices in designing
and documenting RESTful APIs. Their anti-pattern detection tool applies
semantic similarity checking techniques to detect the inconsistencies between
API documentation and API URLs. We believe that our study is the first work
that studies the linguistic anti-patterns in IaC programs.

8 Conclusion and Future Work

In this paper, we study to what extent machine learning can detect linguis-
tic inconsistencies in Infrastructure-as-Code (IaC). In particular, we propose

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 27

FindICI, a method to detects linguistic inconsistencies between names and
bodies of IaC code units by leveraging word embedding and learning models
for classification tasks.

To evaluate our method, first, we generate a synthetic dataset of inconsis-
tencies by applying simple code transformations to create inconsistent tasks
from likely consistent tasks. Next, we generate the word embeddings from the
tokenized names and bodies of consistent and inconsistent tasks. We used word
embedding to train the various binary classifiers for inconsistency detection. We
evaluated the effectiveness of our approach with an Ansible dataset composed
of 38 open source repositories using six machine learning algorithms (three of
which are based on neural networks) and six word embedding models.

Our results confirm that both classical learning algorithms and novel deep
learning algorithms with various word embedding methods can be successfully
applied to detect linguistic inconsistencies in IaC scripts.

As part of our future agenda, we plan to extend FindICI to detect additional
linguistic inconsistencies and misconfigurations in Ansible code scripts. We also
aim to extend FindICI to detect such issues in other IaC languages. Finally,
to simplify practitioners’ adoption of our approach, we aim to enhance the
semantic representation of Ansible tasks to overcome the limitation of training
a model per Ansible module.

References

1. Aghajani, E., Nagy, C., Bavota, G., Lanza, M.: A large-scale empirical study on lin-
guistic antipatterns affecting apis. In: 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 25–35 (2018). DOI 10.1109/ICSME.2018.00012

2. Alon, U., Zilberstein, M., Levy, O., Yahav, E.: Code2vec: Learning distributed represen-
tations of code. Proc. ACM Program. Lang. 3 (2019)

3. Arnaoudova, V., Di Penta, M., Antoniol, G.: Linguistic antipatterns: What they are and
how developers perceive them. Empirical Software Engineering 21(1), 104–158 (2016)

4. Arnaoudova, V., Di Penta, M., Antoniol, G., Guéhéneuc, Y.G.: A new family of software
anti-patterns: Linguistic anti-patterns. In: 2013 17th European Conference on Software
Maintenance and Reengineering, pp. 187–196. IEEE (2013)

5. Benavoli, A., Corani, G., Mangili, F.: Should we really use post-hoc tests based on
mean-ranks? The Journal of Machine Learning Research 17(1), 152–161 (2016)

6. Borovits, N., Kumara, I., Krishnan, P., Palma, S.D., Di Nucci, D., Palomba, F., Tam-
burri, D.A., van den Heuvel, W.J.: Deepiac: Deep learning-based linguistic anti-pattern
detection in iac. In: Proceedings of the 4th ACM SIGSOFT International Workshop on
Machine-Learning Techniques for Software-Quality Evaluation, MaLTeSQuE 2020, pp.
7–12. Association for Computing Machinery (2020)

7. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, p. 785–794. Association for Computing Machinery, New York, NY, USA (2016).
DOI 10.1145/2939672.2939785. URL https://doi.org/10.1145/2939672.2939785

8. Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine reading.
In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pp. 551–561. Association for Computational Linguistics, Austin, Texas (2016).
DOI 10.18653/v1/D16-1053. URL https://www.aclweb.org/anthology/D16-1053

9. Corazza, A., Maggio, V., Scanniello, G.: Coherence of comments and method imple-
mentations: a dataset and an empirical investigation. Software Quality Journal 26(2),
751–777 (2018). DOI 10.1007/s11219-016-9347-1. URL https://doi.org/10.1007/

s11219-016-9347-1

https://doi.org/10.1145/2939672.2939785
https://www.aclweb.org/anthology/D16-1053
https://doi.org/10.1007/s11219-016-9347-1
https://doi.org/10.1007/s11219-016-9347-1

28 Borovits et al.

10. Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3), 273–297
(1995)

11. Dai, T., Karve, A., Koper, G., Zeng, S.: Automatically detecting risky scripts in in-
frastructure code. In: Proceedings of the 11th ACM Symposium on Cloud Computing,
SoCC ’20, pp. 358–371. Association for Computing Machinery (2020)

12. Dalla Palma, S., Di Nucci, D., Palomba, F., Tamburri, D.A.: Toward a catalog of software
quality metrics for infrastructure code. Journal of Systems and Software 170, 110726
(2020)

13. Dalla Palma, S., Di Nucci, D., Palomba, F., Tamburri, D.A.: Within-project defect
prediction of infrastructure-as-code using product and process metrics. IEEE Transactions
on Software Engineering pp. 1–1 (2021)

14. Dalla Palma, S., Di Nucci, D., Tamburri, D.A.: Ansiblemetrics: A python library for
measuring infrastructure-as-code blueprints in ansible. SoftwareX 12, 100633 (2020)

15. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal of
Machine Learning Research 7, 1–30 (2006)

16. Di Nitto, E., Gorroñogoitia, J., Kumara, I., Meditskos, G., Radolović, D., Sivalingam,
K., González, R.S.: An approach to support automated deployment of applications on
heterogeneous cloud-hpc infrastructures. In: 2020 22nd International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 133–140
(2020). DOI 10.1109/SYNASC51798.2020.00031

17. Dudchenko, A., Kopanitsa, G.: Comparison of word embeddings for extraction from
medical records. International Journal of Environmental Research and Public Health
16(22) (2019). DOI 10.3390/ijerph16224360. URL https://www.mdpi.com/1660-4601/

16/22/4360
18. Fakhoury, S., Arnaoudova, V., Noiseux, C., Khomh, F., Antoniol, G.: Keep it simple:

Is deep learning good for linguistic smell detection? In: 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 602–611
(2018)

19. Fakhoury, S., Roy, D., Ma, Y., Arnaoudova, V., Adesope, O.: Measuring the im-
pact of lexical and structural inconsistencies on developers’ cognitive load during
bug localization. Empirical Software Engineering 25(3), 2140–2178 (2020). DOI
10.1007/s10664-019-09751-4. URL https://doi.org/10.1007/s10664-019-09751-4

20. Folwer, M.: Refactoring: Improving the design of existing programs (1999)
21. Friedman, M.: A comparison of alternative tests of significance for the problem of m

rankings. The Annals of Mathematical Statistics 11(1), 86–92 (1940)
22. Fu, W., Menzies, T.: Easy over hard: A case study on deep learning. In: Proceedings of

the 2017 11th joint meeting on foundations of software engineering, pp. 49–60 (2017)
23. Gisbrecht, A., Schulz, A., Hammer, B.: Parametric nonlinear dimensionality reduction

using kernel t-sne. Neurocomputing 147, 71–82 (2015)
24. Guerriero, M., Garriga, M., Tamburri, D.A., Palomba, F.: Adoption, support, and

challenges of infrastructure-as-code: Insights from industry. In: 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 580–589. IEEE (2019)

25. Guerrouj, L., Kermansaravi, Z., Arnaoudova, V., Fung, B.C.M., Khomh, F., Antoniol,
G., Guéhéneuc, Y.G.: Investigating the relation between lexical smells and change- and
fault-proneness: an empirical study. Software Quality Journal 25(3), 641–670 (2017).
DOI 10.1007/s11219-016-9318-6. URL https://doi.org/10.1007/s11219-016-9318-6

26. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review
on fault prediction performance in software engineering. IEEE Transactions on Software
Engineering 38(6), 1276–1304 (2011)

27. Hasan, M.M., Bhuiyan, F.A., Rahman, A.: Testing practices for infrastructure as code.
In: Proceedings of the 1st ACM SIGSOFT International Workshop on Languages and
Tools for Next-Generation Testing, LANGETI 2020, pp. 7–12. Association for Computing
Machinery (2020)

28. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall
PTR, USA (1998)

29. Ho, T.K.: Random decision forests. In: Proceedings of 3rd international conference on
document analysis and recognition, vol. 1, pp. 278–282. IEEE (1995)

30. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian journal
of statistics pp. 65–70 (1979)

https://www.mdpi.com/1660-4601/16/22/4360
https://www.mdpi.com/1660-4601/16/22/4360
https://doi.org/10.1007/s10664-019-09751-4
https://doi.org/10.1007/s11219-016-9318-6

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 29

31. Islam Shamim, M.S., Ahamed Bhuiyan, F., Rahman, A.: Xi commandments of kubernetes
security: A systematization of knowledge related to kubernetes security practices. In:
2020 IEEE Secure Development (SecDev), pp. 58–64 (2020)

32. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learning
for time series classification: a review. Data Mining and Knowledge Discovery 33(4),
917–963 (2019)

33. James, G., Witten, D., Hastie, T., Tibshirani, R.: An introduction to statistical learning,
vol. 112. Springer (2013)

34. Jiang, Y., Adams, B.: Co-evolution of infrastructure and source code-an empirical study.
In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, pp.
45–55. IEEE (2015)

35. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759 (2016)

36. Kokuryo, S., Kondo, M., Mizuno, O.: An empirical study of utilization of imperative
modules in ansible. In: 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security (QRS), pp. 442–449 (2020)

37. Kumara, I., Mundt, P., Tokmakov, K., Radolović, D., Maslennikov, A., González, R.S.,
Fabeiro, J.F., Quattrocchi, G., Meth, K., Di Nitto, E., et al.: Sodalite@rt: orchestrating
applications on cloud-edge infrastructures. Journal of Grid Computing 19(3), 1–23
(2021)

38. Kumara, I., et al.: Towards semantic detection of smells in cloud infrastructure code.
In: Proceedings of the 10th International Conference on Web Intelligence, Mining and
Semantics, WIMS 2020, p. 63–67. Association for Computing Machinery, New York, NY,
USA (2020). DOI 10.1145/3405962.3405979. URL https://doi.org/10.1145/3405962.

3405979

39. Lau, J.H., Baldwin, T.: An empirical evaluation of doc2vec with practical insights into
document embedding generation. arXiv preprint arXiv:1607.05368 (2016)

40. Lawrie, D., Morrell, C., Feild, H., Binkley, D.: Effective identifier names for comprehension
and memory. Innovations in Systems and Software Engineering 3(4), 303–318 (2007)

41. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Inter-
national conference on machine learning, pp. 1188–1196. PMLR (2014)

42. Li, G., Liu, H., Jin, J., Umer, Q.: Deep learning based identification of suspicious return
statements. In: 2020 IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering, pp. 480–491 (2020)

43. Li, N., Shepperd, M., Guo, Y.: A systematic review of unsupervised learning techniques
for software defect prediction. Information and Software Technology 122, 106287 (2020).
DOI https://doi.org/10.1016/j.infsof.2020.106287. URL https://www.sciencedirect.

com/science/article/pii/S0950584920300379

44. Liu, K., et al.: Learning to spot and refactor inconsistent method names. In: 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE), pp. 1–12
(2019)

45. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning
research 9(11) (2008)

46. Matsugu, M., Mori, K., Mitari, Y., Kaneda, Y.: Subject independent facial expression
recognition with robust face detection using a convolutional neural network. Neural
Networks 16(5-6), 555–559 (2003)

47. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781 (2013)

48. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations
of words and phrases and their compositionality. In: Advances in neural information
processing systems, pp. 3111–3119 (2013)

49. Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., Gao, J.: Deep
learning based text classification: A comprehensive review (2021)

50. Moore, D.S., Notz, W.I., Fligner, M.A.: The basic practice of statistics. Macmillan
Higher Education (2015)

51. Morris, K.: Infrastructure as code: managing servers in the cloud. ” O’Reilly Media,
Inc.” (2016)

https://doi.org/10.1145/3405962.3405979
https://doi.org/10.1145/3405962.3405979
https://www.sciencedirect.com/science/article/pii/S0950584920300379
https://www.sciencedirect.com/science/article/pii/S0950584920300379

30 Borovits et al.

52. Omri, S., Sinz, C.: Deep learning for software defect prediction: A survey. In: Proceedings
of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, IC-
SEW’20, p. 209–214. Association for Computing Machinery, New York, NY, USA (2020).
DOI 10.1145/3387940.3391463. URL https://doi.org/10.1145/3387940.3391463

53. Opdebeeck, R., Zerouali, A., Velázquez-Rodŕıguez, C., Roover, C.D.: Does infrastructure
as code adhere to semantic versioning? an analysis of ansible role evolution. In: 2020
IEEE 20th International Working Conference on Source Code Analysis and Manipulation
(SCAM), pp. 238–248 (2020)

54. Palma, F., Gonzalez-Huerta, J., Founi, M., Moha, N., Tremblay, G., Guéhéneuc, Y.G.:
Semantic analysis of restful apis for the detection of linguistic patterns and antipatterns.
International Journal of Cooperative Information Systems 26(02), 1742001 (2017). DOI
10.1142/S0218843017420011

55. Pennington, J., Socher, R., Manning, C.: GloVe: Global vectors for word representation.
In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1532–1543. Association for Computational Linguistics, Doha,
Qatar (2014). DOI 10.3115/v1/D14-1162. URL https://www.aclweb.org/anthology/

D14-1162

56. Pradel, M., Sen, K.: Deepbugs: A learning approach to name-based bug detection. Proc.
ACM Program. Lang. 2 (2018). DOI 10.1145/3276517

57. Rahman, A., Farhana, E., Williams, L.: The ‘as code’ activities: development anti-
patterns for infrastructure as code. Empirical Software Engineering 25(5), 3430–3467
(2020-09-01)

58. Rahman, A., Mahdavi-Hezaveh, R., Williams, L.: A systematic mapping study of
infrastructure as code research. Information and Software Technology 108, 65–77
(2019)

59. Rahman, A., Parnin, C., Williams, L.: The seven sins: Security smells in infrastructure
as code scripts. In: Proceedings of the 41st International Conference on Software
Engineering, pp. 164–175 (2019)

60. Rahman, A., Rahman, M.R., Parnin, C., Williams, L.: Security smells in ansible and
chef scripts: A replication study. ACM Transactions on Software Engineering and
Methodology (TOSEM) 30(1) (2021-01)

61. Rahman, A., Williams, L.: Characterizing defective configuration scripts used for contin-
uous deployment. In: 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST), pp. 34–45. IEEE (2018)

62. Rahman, A., Williams, L.: Source code properties of defective infrastructure as code
scripts. Information and Software Technology 112, 148–163 (2019)

63. Rahman, A., Williams, L.: Source code properties of defective infrastructure as code
scripts. Information and Software Technology 112, 148–163 (2019)

64. Roberts, K.: Assessing the corpus size vs. similarity trade-off for word embeddings in
clinical nlp. In: Proceedings of the Clinical Natural Language Processing Workshop
(ClinicalNLP), pp. 54–63 (2016)

65. Sandobaĺın, J., Insfran, E., Abrahão, S.: On the effectiveness of tools to support in-
frastructure as code: Model-driven versus code-centric. IEEE Access 8, 17734–17761
(2020)

66. Schermann, G., Zumberi, S., Cito, J.: Structured information on state and evolution of
dockerfiles on github. In: Proceedings of the 15th International Conference on Mining
Software Repositories, MSR ’18, pp. 26–29. ACM (2018)

67. Schwarz, J., Steffens, A., Lichter, H.: Code smells in infrastructure as code. In: 2018 11th
International Conference on the Quality of Information and Communications Technology
(QUATIC), pp. 220–228. IEEE (2018)

68. Sharma, T., Fragkoulis, M., Spinellis, D.: Does your configuration code smell? In: 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), pp.
189–200. IEEE (2016)

69. Sotiropoulos, T., Mitropoulos, D., Spinellis, D.: Practical fault detection in puppet
programs. In: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, ICSE ’20, pp. 26–37. Association for Computing Machinery (2020)

70. Spadini, D., Aniche, M., Bacchelli, A.: Pydriller: Python framework for mining software
repositories. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software

https://doi.org/10.1145/3387940.3391463
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162

FindICI: Using ML to Detect Linguistic Inconsistencies in IaC 31

Engineering Conference and Symposium on the Foundations of Software Engineering,
pp. 908–911 (2018)

71. Sulistya, A., Prana, G.A.A., Sharma, A., Lo, D., Treude, C.: Sieve: Helping developers
sift wheat from chaff via cross-platform analysis. Empirical Software Engineering 25(1),
996–1030 (2020). DOI 10.1007/s10664-019-09775-w. URL https://doi.org/10.1007/

s10664-019-09775-w

72. Takang, A.A., Grubb, P.A., Macredie, R.D.: The effects of comments and identifier
names on program comprehensibility: an experimental investigation. J. Prog. Lang. 4(3),
143–167 (1996)

73. Van Der Maaten, L.: Accelerating t-sne using tree-based algorithms. The Journal of
Machine Learning Research 15(1), 3221–3245 (2014)

74. Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for defect prediction.
In: Proceedings of the 38th International Conference on Software Engineering, ICSE ’16,
p. 297–308. Association for Computing Machinery, New York, NY, USA (2016)

75. Wattenberg, M., Viégas, F., Johnson, I.: How to use t-sne effectively. Distill 1(10), e2
(2016)

76. Wilcoxon, F.: Individual comparisons by ranking methods. In: Breakthroughs in statistics,
pp. 196–202. Springer (1992)

https://doi.org/10.1007/s10664-019-09775-w
https://doi.org/10.1007/s10664-019-09775-w

	Introduction
	Infrastructure-as-Code and their Linguistic Inconsistencies
	FindICI: A Framework for Learning to Detect Code-Description Inconsistencies in Infrastructure Codes
	Empirical Study Definition and Design
	Results of the Empirical Study
	Threats to Validity
	Related Work
	Conclusion and Future Work

