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Abstract—Several techniques have been proposed to accurately predict software defects. These techniques generally exploit
characteristics of the code artefacts (e.g., size, complexity, etc.) and/or of the process adopted during their development and
maintenance (e.g., the number of developers working on a component) to spot out components likely containing bugs. While these bug
prediction models achieve good levels of accuracy, they mostly ignore the major role played by human-related factors in the introduction
of bugs. Previous studies have demonstrated that focused developers are less prone to introduce defects than non-focused developers.
According to this observation, software components changed by focused developers should also be less error prone than components
changed by less focused developers. We capture this observation by measuring the scattering of changes performed by developers
working on a component and use this information to build a bug prediction model. Such a model has been evaluated on 26 systems
and compared with four competitive techniques. The achieved results show the superiority of our model, and its high complementarity
with respect to predictors commonly used in the literature. Based on this result, we also show the results of a “hybrid” prediction model
combining our predictors with the existing ones.

Index Terms—Scattering Metrics, Bug Prediction, Empirical Study, Mining Software Repositories
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1 INTRODUCTION

Bug prediction techniques are used to identify areas of
software systems that are more likely to contain bugs.
These prediction models represent an important aid
when the resources available for testing are scarce, since
they can indicate where to invest such resources. The sci-
entific community has developed several bug prediction
models that can be roughly classified into two families,
based on the information they exploit to discriminate
between “buggy” and “clean” code components. The
first set of techniques exploits product metrics (i.e., metrics
capturing intrinsic characteristics of the code compo-
nents, like their size and complexity) [1], [2], [3], [4],
[5], while the second one focuses on process metrics (i.e.,
metrics capturing specific aspects of the development
process, like the frequency of changes performed to code
components) [6], [7], [8], [9], [10], [11], [12]. While some
studies highlighted the superiority of these latter with
respect to the product metric based techniques [7], [13],
[11] there is a general consensus on the fact that no
technique is the best in all contexts [14], [15]. For this
reason, the research community is still spending effort
in investigating under which circumstances and during
which coding activities developers tend to introduce
bugs (see e.g., [16], [17], [18], [19], [20], [21], [22]).

Some of these studies have highlighted the central role
played by developer-related factors in the introduction
of bugs.

In particular, Eyolfson et al. [17] showed that more
experienced developers tend to introduce less faults
in software systems. Rahman and Devanbu [18] partly
contradicted the study by Eyolfson et al. by showing that
the experience of a developer has no clear link with the
bug introduction. Bird et al. [20] found that high levels
of ownership are associated with fewer bugs. Finally,
Posnett et al. [22] showed that focused developers (i.e.,
developers focusing their attention on a specific part
of the system) introduce fewer bugs than unfocused
developers.

Although such studies showed the potential of
human-related factors in bug prediction, this information
is not captured in state-of-the-art bug prediction models
based on process metrics extracted from version history.
Indeed, previous bug prediction models exploit predic-
tors based on (i) the number of developers working on
a code component [9] [10]; (ii) the analysis of change-
proneness [13] [11] [12]; and (iii) the entropy of changes
[8]. Thus, despite the previously discussed finding by
Posnett et al. [22], none of the proposed bug prediction
models considers how focused the developers perform-
ing changes are and how scattered these changes are.
In our previous work [23] we studied the role played
by scattered changes in bug prediction. We defined two
measures, namely the developer’s structural and semantic
scattering. The first assesses how “structurally far” in
the software project the code components modified by a
developer in a given time period are.
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The “structural distance” between two code compo-
nents is measured as the number of subsystems one
needs to cross in order to reach one component from
the other.

The second measure (i.e., the semantic scattering) is
instead meant to capture how much spread in terms
of implemented responsibilities the code components
modified by a developer in a given time period are.
The conjecture behind the proposed metrics is that high
levels of structural and semantic scattering make the de-
veloper more error-prone. To verify this conjecture, we
built two predictors exploiting the proposed measures,
and we used them in a bug prediction model. The
results achieved on five software systems showed the
superiority of our model with respect to (i) the Basic
Code Change Model (BCCM) built using the entropy
of changes [8] and (ii) a model using the number of
developers working on a code component as predictor
[9] [10]. Most importantly, the two scattering measures
showed a high degree of complementarity with the
measures exploited by the baseline prediction models.

In this paper, we extend our previous work [23] to
further investigate the role played by scattered changes
in bug prediction. In particular we:

1) Extend the empirical evaluation of our bug predic-
tion model by considering a set of 26 systems.

2) Compare our model with two additional compet-
itive approaches, i.e., a prediction model based
on the focus metrics proposed by Posnett et al.
[22] and a prediction model based on structural
code metrics [24], that together with the previously
considered models, i.e., the BCCM proposed by
Hassan [8] and the one proposed by Ostrand et al.
[9] [10], lead to a total of four different baselines
considered in our study.

3) Devise and discuss the results of a hybrid bug
prediction model, based on the best combination of
predictors exploited by the five prediction models
experimented in the paper.

4) Provide a comprehensive replication package [25]
including all the raw data and working data sets
of our studies.

The achieved results confirm the superiority of our
model, achieving a F-Measure 10.3% higher, on average,
than the change entropy model [8], 53.7% higher, on
average, with respect to what achieved by exploiting the
number of developers working on a code component
as predictor [9], 13.3% higher, on average, than the F-
Measure obtained by using the developers’ focus metric
by Posnett et al. [22] as predictor, and 29.3% higher, on
average, with respect to the prediction model built on
top of product metrics [1]. The two scattering measures
confirmed their complementarity with the metrics used
by the alternative prediction models. Thus, we devised a
“hybrid” model providing an average boost in prediction
accuracy (i.e., F-Measure) of +5% with respect to the best
performing model (i.e., the one proposed in this paper).

Structure of the paper. Section 2 discusses the related lit-
erature, while Section 3 presents the proposed scattering
measures. Section 4 presents the design of our empirical
study and provides details about the data extraction pro-
cess and analysis method. Section 5 reports the results of
the study, while Section 6 discusses the threats that could
affect their validity. Section 7 concludes the paper.

2 RELATED WORK

Many bug prediction techniques have been proposed
in the literature in the last decade. Such techniques
mainly differ for the specific predictors they use, and can
roughly be classified in those exploiting product metrics
(e.g., lines of code, code complexity, etc), those relying
on process metrics (e.g., change- and fault-proneness of
code components), and those exploiting a mix of the two.
Table 1 summarizes the related literature, by grouping
the proposed techniques on the basis of the metrics they
exploit as predictors.

The Chidamber and Kemerer (CK) metrics [36] have
been widely used in the context of bug prediction. Basili
et al. [1] investigated the usefulness of the CK suite
for predicting the probability of detecting faulty classes.
They showed that five of the experimented metrics are
actually useful in characterizing the bug-proneness of
classes. The same set of metrics has been successfully
exploited in the context of bug prediction by El Emam et
al. [26] and Subramanyam et al. [27]. Both works reported
the ability of the CK metrics in predicting buggy code
components, regardless of the size of the system under
analysis.

Still in terms of product metrics, Nikora et al. [28]
showed that measuring the evolution of structural at-
tributes (e.g., number of executable statements, number
of nodes in the control flow graph, etc.) it is possible to
predict the number of bugs introduced during the sys-
tem development. Later, Gyimothy et al. [2] performed
a new investigation on the relationship between CK
metrics and bug proneness. Their results showed that the
Coupling Between Object metric is the best in predicting
the bug-proneness of classes, while other CK metrics are
untrustworthy.

Ohlsson et al. [3] focused the attention on the use
of design metrics to identify bug-prone modules. They
performed a study on an Ericsson industrial system
showing that at least four different design metrics can be
used with equivalent results. The metrics performance
are not statistically worse than those achieved using
a model based on the project size. Zhou et al. [29]
confirmed their results showing that size-based models
seem to perform as well as those based on CK metrics
except than the Weighted Method per Class on some
releases of the Eclipse system. Thus, although Bell et
al. [35] showed that more complex metric-based models
have more predictive power with respect to size-based
models, the latter seem to be generally useful for bug
prediction.
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TABLE 1
Prediction models proposed in literature

Type of Information Exploited Prediction Model Predictors

Product metrics

Basili et al. [1] CK metrics
El Emam et al. [26] CK metrics
Subramanyam et al. [27] CK metrics
Nikora et al. [28] CFG metrics
Gyimothy et al. [2] CK metrics, LOC
Ohlsson et al. [3] CFG metrics, complexity metrics, LOC
Zhou et al. [29] CK metrics, OO metrics, complexity metrics, LOC
Nagappan et al. [14] CK metrics, CFG metrics, complexity metrics

Process metrics

Khoshgoftaar et al. [6] debug churn
Nagappan et al. [30] relative code churn
Hassan and Holt [31] entropy of changes
Hassan and Holt [32] entropy of changes
Kim et al. [33] previous fault location
Hassan [8] entropy of changes
Ostrand et al. [10] number of developers
Nagappan et al. [34] consecutive changes
Bird et al. [20] social network analysis on developers’ activities
Ostrand et al. [9] number of developers
Posnett et al. [22] module activity focus, developer attention focus

Product and process metrics

Graves et al. [7] various code and change metrics
Nagappan and Ball [4] LOC, past defects
Bell et al. [35] LOC, age of files, number of changes, program type
Zimmerman et al. [5] complexity metrics, CFG metrics, past defects
Moser et al. [13] various code and change metrics
Moser et al. [11] various code and change metrics
Bell et al. [12] various code and change metrics
D’Ambros et al. [15] various code and change metrics

Nagappan and Ball [4] exploited two static analysis
tools to early predict the pre-release bug density. The
results of their study, conducted on the Windows Server
system, show that it is possible to perform a coarse
grained classification between high and low quality
components with a high level of accuracy. Nagappan et
al. [14] analyzed several complexity measures on five
Microsoft software systems, showing that there is no
evidence that a single set of measures can act universally
as bug predictor. They also showed how to methodically
build regression models based on similar projects in
order to achieve better results. Complexity metrics in the
context of bug prediction are also the focus of the work
by Zimmerman et al. [5]. Their study reports a positive
correlation between code complexity and bugs.

Differently from the previous discussed techniques,
other approaches try to predict bugs by exploiting pro-
cess metrics. Khoshgoftaar et al. [6] analyzed the contri-
bution of debug churns (defined as the number of lines
of code added or changed to fix bugs) to a model based
on product metrics in the identification of bug-prone
modules. Their study, conducted on two subsequent
releases of a large legacy system, shows that modules
exceeding a defined threshold of debug churns are often
bug-prone. The reported results show a misclassification
rate of just 21%.

Nagappan et al. [30] proposed a technique for early
bug prediction based on the use of relative code churn
measures. These metrics relate the number of churns to
other factors such as LOC or file count. An experiment
performed on the Windows Server system showed that
relative churns are better than absolute value.

Hassan and Holt [31] conjectured that a chaotic devel-
opment process has bad effects on source code quality
and introduced the concept of entropy of changes. Later
they also presented the top-10 list [32], a methodology
to highlight to managers the top ten subsystems more
likely to present bugs. The set of heuristics behind their
approach includes a number of process metrics, such as
considering the most recently modified, the most frequently
modified, the most recently fixed and the most frequently
fixed subsystems.

Bell et al. [12] pointed out that although code churns
are very effective bug predictors, they cannot improve a
simpler model based on the code components’ change-
proneness. Kim et al. [33] presumed that faults do not
occur in isolation but in burst of related faults. They
proposed the bug cache algorithm that predicts future
faults considering the location of previous faults. Simi-
larly, Nagappan et al. [34] defined change burst as a set
of consecutive changes over a period of time and proposed
new metrics based on change burst. The evaluation of
the prediction capabilities of the models was performed
on Windows Vista, achieving high accuracy.

Graves et al. [7] experimented both product and pro-
cess metrics for bug prediction. They observed that
history-based metrics are more powerful than product
metrics (i.e., change-proneness is a better indicator than
LOC). Their best results were achieved using a combi-
nation of module’s age and number of changes, while
combining product metrics had no positive effect on
the bug prediction. They also saw no benefits provided
by the inclusion of a metric based on the number of
developers modifying a code component.
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Moser et al. [13] performed a comparative study
between product-based and process-based predictors.
Their study, performed on Eclipse, highlights the su-
periority of process metrics in predicting buggy code
components. Later, they performed a deeper study [11]
on the bug prediction accuracy of process metrics, re-
porting that the past number of bug-fixes performed on a file
(i.e., bug-proneness), the maximum changeset size occurred
in a given period, and the number of changes involving
a file in a given period (i.e., change-proneness) are the
process metrics ensuring the best performances in bug
prediction.

D’Ambros et al. [15] performed an extensive compari-
son of bug prediction approaches relying on process and
product metrics, showing that no technique based on a
single metric works better in all contexts.

Hassan [8] analyzed the complexity of the develop-
ment process. In particular he defined the entropy of
changes as the scattering of code changes across time.
He proposed three bug prediction models, namely Basic
Code Change Model (BCCM), Extended Code Change
Model (ECCM), and File Code Change Model (FCCM).
These models mainly differ for the choice of the temporal
interval where the bug proneness of components is
studied. The reported study indicates that the proposed
techniques have a stronger prediction capability than
a model purely based on the amount of changes ap-
plied to code components or on the number of prior
faults. Differently from our work, all these predictors do
not consider the number of developers who performed
changes to a component, neither how many components
they changed at the same time.

Ostrand et al. [9], [10] proposed the use of the number
of developers who modified a code component in a give time pe-
riod as a bug predictor. Their results show that combining
developers’ information poorly, but positively, impact
the detection accuracy of a prediction model. Our work
does not use a simple count information of developers
who worked on a file, but also takes in consideration the
change activities they carry out.

Bird et al. [20] investigated the relationship between
different ownership measures and pre- and post-releases
failures. Specifically, they analyzed the developers’ con-
tribution network by means of social network analysis
metrics, finding that developers having low levels of
ownership tend to increase the likelihood of introducing
defects. Our scattering metrics are not based on code
ownership, but on the “distance” between the code
components modified by a developer in a given time
period.

Posnett et al. [22] investigated factors related to the one
we aim at capturing in this paper, i.e., the developer’s
scattering. In particular, the “focus” metrics presented by
Posnett et al. [22] are based on the idea that a developer
performing most of her activities on a single module (a
module could be a method, a class, etc.) has a higher
focus on the activities she is performing and is less likely
to introduce bugs.

Fig. 1. Example of two developers having different levels
of “scattering”

Jan 
2015

Feb 
2015

it.gui.login

it.gui.logout
it.db.insertPayslip

it.gui.logout
it.gui.addUser
it.gui.confirmRegistration it.gui.logout

it.whouse.showStocks
it.db.deleteUserAccount

Following this conjecture, they defined two symmetric
metrics, namely the Module Activity Focus metric (shortly,
MAF), and the Developer Attention Focus metric (shortly,
DAF) [22]. The former is a metric which captures to
what extent a module receives focused attention by
developers. The latter measures how focused are the
activities of a specific developer. As it will be clearer
later, our scattering measures not only take into account
the frequency of changes made by developers over the
different system’s modules, but also considers the “dis-
tance” between the modified modules. This means that,
for example, the contribution of a developer working on
a high number of files all closely related to a specific
responsibility might not be as much “scattered” as the
contribution of a developer working on few unrelated
files.

3 COMPUTING DEVELOPER’S SCATTERING
CHANGES

We conjecture that the developer’s effort in performing
maintenance and evolution tasks is proportional to the
number of involved components and their spread across
different subsystems. In other words, we believe that
a developer working on different components scatters
her attention due to continuous changes of context. This
might lead to an increase of the developer’s “scattering”
with a consequent higher chance of introducing bugs.

To get a better idea of our conjecture, consider the
situation depicted in Figure 1, where two developers,
d1 (black point) and d2 (grey point) are working on the
same system, during the same time period, but on dif-
ferent code components. The tasks performed by d1 are
very focused on a specific part of the system (she mainly
works on the system’s GUI) and on a very targeted topic
(she is mainly in charge of working on GUIs related to
the users’ registration and login features). On the con-
trary, d2 performs tasks scattered across different parts
of the system (from GUIs to database management) and
on different topics (users’ accounts, payslips, warehouse
stocks).

Our conjecture is that during the time period shown in
Figure 1, the contribution of d2 might have been more
“scattered” than the contribution of d1, thus having a
higher likelihood of introducing bugs in the system.
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To verify our conjecture we define two measures,
named the structural and the semantic scattering mea-
sures, aimed at assessing the scattering of a developer
d in a given time period p. Note that both measures
are meant to work in object oriented systems at the
class level granularity. In other words, we measure how
scattered are the changes performed by developer d
during the time period p across the different classes
of the system. However, our measures can be easily
adapted to work at other granularity levels.

3.1 Structural scattering
Let CHd,p be the set of classes changed by a developer d
during a time period p. We define the structural scattering
measure as:

StrScatd,p = |CHd,p| × average
∀ci,cj∈CHd,p

[dist(ci, cj)] (1)

where dist is the number of packages to traverse in
order to go from class ci to class cj ; dist is com-
puted by applying the shortest path algorithm on
the graph representing the system’s package struc-
ture. For example, the dist between two classes
it.user.gui.c1 and it.user.business.db.c2 is
three, since in order to reach c1 from c2 we need to tra-
verse it.user.business.db, it.user.business,
and it.user.gui. We (i) use the average operator for
normalizing the distances between the code components
modified by the developer during the time period p
and (ii) assign a higher scattering to developers working
on a higher number of code components in the given
time period (see |CHd,p|). Note the the choice to use
the average to normalize the distances is driven by the
fact that other central operators, such as the median,
are not affected by the outliers. Indeed, suppose that a
developer performs a change (i.e., commit) C, modifying
four files F1, F2, F3, and F4. The first three files are in the
same package, while the fourth one (F4) is in a different
subsystem. When computing the structural scattering for
C, the median would not reflect the scattering of the
change performed on F4, since half of the six pairs of files
involved in the change (and in particular, F1-F2, F1-F3,
F2-F3) have zero as structural distance (i.e., they are in
the same package). Thus, the median would not capture
the fact that C was, at least in part, a scattered change.
This is instead captured by the mean that is influenced
by outliers.

To better understand how the structural scattering mea-
sure is computed and how it is possible to use it in order
to estimate the developer’s scattering in a time period,
Figure 2 provides a running example based on a real
scenario we found in Apache Ant1, a tool to automate
the building of software projects.

The tree shown in Figure 2 depicts the activity of a
single developer in the time period between 2012-03-01
and 2012-04-30.

1. http://ant.apache.org/

Fig. 2. Example of structural scattering

org.apache.tools.ant

Target UpToDate

taskdefs
ProjectHelper

types

FilterMapper

mappers

In particular, the leafs of the tree represent the classes
modified by the developer in the considered time pe-
riod, while the internal nodes (as well as the root
node) illustrate the package structure of the system.
In this example, the developer worked on the classes
Target and UpToDate, both contained in the pack-
age org.apache.tools.ant.taskdefs grouping to-
gether classes managing the definition of new com-
mands that the Ant’s user can create for customizing
her own building process. In addition, the developer
also modified FilterMapper, a class containing utility
methods (e.g., map a java String into an array), and
the class ProjectHelper responsible for parsing the
build file and creating java instances representing the
build workflow. To compute the structural scattering we
compute the distance between every pair of classes
modified by the developer. If two classes are in the
same package, as in the case of the classes Target and
UpToDate, then the distance between them will be zero.
Instead, if they are in different packages, like in the case
of ProjectHelper and Target, their distance is the
minimum number of packages one needs to traverse to
reach one class from the other. For example, the distance
is one between ProjectHelper and Target (we need
to traverse the package taskdefs), and three between
UpToDate and FilterMapper (we need to traverse the
packages taskdefs, types and mappers).

After computing the distance between every pair of
classes, we can compute the structural scattering. Table
2 shows the structural distances between every pair of
classes involved in our example as well as the value
for the structural scattering. Note that, if the developer
had modified only the Target and UpToDate classes in
the considered time period, then her structural scattering
would have been zero (the lowest possible), since her
changes were focused on just one package. By also
considering the change performed to ProjectHelper,
the structural scattering raises to 2.01. This is due to the
number of classes involved in change set (3) and the
average of the distance among them (0.67).
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TABLE 2
Example of structural scattering computation

Changed components Distance
org.apache.tools.ant.ProjectHelper org.apache.tools.ant.taskdefs.Target 1
org.apache.tools.ant.ProjectHelper org.apache.tools.ant.taskdefs.UpToDate 1
org.apache.tools.ant.ProjectHelper org.apache.tools.ant.types.mappers.FilterMapper 2
org.apache.tools.ant.taskdefs.Target org.apache.tools.ant.taskdefs.UpToDate 0
org.apache.tools.ant.taskdefs.Target org.apache.tools.ant.types.mappers.FilterMapper 3
org.apache.tools.ant.taskdefs.UpToDate org.apache.tools.ant.types.mappers.FilterMapper 3
Structural Developer scattering 6.67

Finally the structural scattering reaches the value of 6.67
when also considering the change to the FilterMapper
class. In this case the change set is composed of 4 classes
and the average of the distances among them is 1.67.
Note that the structural scattering is a direct scattering
measure: the higher the measure, the higher the estimated
developer’s scattering.

3.2 Semantic scattering

Considering the package structure might not be an
effective way of assessing the similarity of the classes
(i.e., to what extent the modified classes implement
similar responsibilities). Because of the software “aging”
or wrong design decisions, classes grouped in the same
package may have completely different responsibilities
[37]. In such cases, the structural scattering measure might
provide a wrong assessment of the level of developer’s
scattering, by considering classes implementing different
responsibilities as similar only because grouped inside
the same package. For this reason, we propose the se-
mantic scattering measure, based on the textual similarity
of the changed software components. Textual similarity
between documents is computed using the Vector Space
Model (VSM) [38]. In our application of VSM we (i) used
tf-idf weighting scheme [38], (ii) normalized the text by
splitting the identifiers (we also have maintained the
original identifiers), (iii) applied a stop word removal,
and (iv) stemmed the words to their root (using the
well known Porter stemmer). The semantic scattering
measure is computed as:

SemScatd,p = |CHd,p| ×
1

average
∀ci,cj∈CHd,p

[sim(ci, cj)]
(2)

where the sim function returns the textual similarity
between the classes ci and cj as a value between zero
(no textual similarity) and one (the textual content of the
two classes is identical). Note that, as for the structural
scattering, we adopt the average operator and assign
a higher scattering to developers working on a higher
number of code components in the given time period.

Figure 3 shows an example of computation for the
semantic scattering measure. Also in this case the figure
depicts a real scenario we identified in Apache Ant of
a single developer in the time period between 2004-04-
01 and 2004-06-30. The developer worked on the classes
Path, Resource and ZipScanner, all contained in the
package org.apache.tools.ant.types.

Fig. 3. Example of semantic scattering measure

org.apache.tools.ant.type

Path Resource ZipScanner

TABLE 3
Example of semantic scattering computation

Changed components Text. sim.
org.apache.tools.ant.type.Path org.apache.tools.ant.type.Resource 0.22
org.apache.tools.ant.type.Path org.apache.tools.ant.type.ZipScanner 0.05
org.apache.tools.ant.type.Resource org.apache.tools.ant.type.ZipScanner 0.10
Semantic Developer scattering 24.32

Path and Resource are two data types and have
some code in common, while ZipScanner is an archives
scanner. While the structural scattering is zero for the ex-
ample depicted in Figure 3 (all classes are from the same
package), the semantic scattering is quite high (24.32) due
to the low textual similarity between the pairs of classes
contained in the package (see Table 3). To compute
the semantic scattering we firstly calculate the textual
similarity between every pair of classes modified by the
developer, as reported in Table 3. Then we calculate
the average of the textual similarities (≈ 0.12) and we
apply the inverse operator (≈ 8.11). Finally the semantic
scattering is calculated multiplying the obtained value
by the number of elements in the change set, that is 3,
achieving the final result of ≈ 24.32.

3.3 Applications of Scattering Measures

The scattering measures defined above could be adopted
in different areas concerned with monitoring mainte-
nance and evolution activities. As an example, a project
manager could use the scattering measures to estimate
the workload of a developer, as well as to re-allocate
resources. In the context of this paper, we propose the
use of the defined measures for class-level bug predic-
tion (i.e., to predict which classes are more likely to be
buggy). The basic conjecture is that developers having a
high scattering are more likely to introduce bugs during code
change activities.

To exploit the defined scattering measures in the
context of bug prediction, we built a new prediction
model called Developer Changes Based Model (DCBM) that
analyzes the components modified by developers in a
given time period. The model exploits a machine learn-
ing algorithm built on top of two predictors. The first,
called structural scattering predictor, is defined starting
from the structural scattering measure, while the second
one, called semantic scattering predictor, is based on the
semantic scattering measure.
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The predictors are defined as follow:

StrScatPredc,p =
∑

d∈developersc,p

StrScatd,p (3)

SemScatPredc,p =
∑

d∈developersc,p

SemScatd,p (4)

where the developersc,p is the set of developers that
worked on the component c during the time period p.

4 EVALUATING SCATTERING METRICS IN THE
CONTEXT OF BUG PREDICTION

The goal of the study is to evaluate the usefulness of
the developer’s scattering measures in the prediction of
bug-prone components, with the purpose of improving
the allocation of resources in the verification & validation
activities focusing on components having a higher bug-
proneness. The quality focus is on the detection accuracy
and completeness of the proposed technique as com-
pared to competitive approaches. The perspective is of
researchers, who want to evaluate the effectiveness of
using information about developer scattered changes in
identifying bug-prone components.

The context of the study consists of 26 Apache soft-
ware projects having different size and scope. Table 4
reports the characteristics of the analyzed systems, and
in particular (i) the software history we investigated,
(ii) the mined number of commits, (iii) the size of the
active developers base (those who performed at least one
commit in the analyzed time period), (iv) the system’s
size in terms of KLOC and number of classes, and (v)
the percentage of buggy files identified (as detailed later)
during the entire change history. All data used in our
study are publicly available [25].

4.1 Research Questions and Baseline Selection
In the context of the study, we formulated the following
research questions:

• RQ1: What are the performances of a bug prediction
model based on developer’s scattering measures and how
it compares to baseline techniques proposed in literature?

• RQ2: What is the complementarity between the proposed
bug prediction model and the baseline techniques?

• RQ3: What are the performances of a “hybrid” model
built by combining developer’s scattering measures with
baseline predictors?

In the first research question we quantify the perfor-
mances of a prediction model based on developer’s scat-
tering measures (DCBM). Then, we compare its perfor-
mances with respect to four baseline prediction models,
one based on product metrics and the other three based
on process metrics.

The first model exploits as predictor variables the CK
metrics [1], and in particular size metrics (i.e., the Lines
of Code—LOC—and the Number of Methods—NOM),

cohesion metrics (i.e., the Lack of Cohesion of Method—
LCOM), coupling metrics (i.e., the Coupling Between
Objects—CBO—and the Response for a Class—RFC),
and complexity metrics (i.e., the Weighted Methods per
Class—WMC). We refer to this model as CM.

We also compared our approach with three prediction
models based on process metrics. The first is the one
based on the work by Ostrand et al. [10], and exploiting
the number of developers that work on a code compo-
nent in a specific time period as predictor variable (from
now on, we refer to this model as DM).

The second is the Basic Code Change Model (BCCM)
proposed by Hassan and using code change entropy
information [8]. This choice is justified by the superiority
of this model with respect to other techniques exploit-
ing change-proneness information [11], [12], [13]. While
such a superiority has been already demonstrated by
Hassan [8], we also compared these techniques before
choosing BCCM as one of the baselines for evaluating
our approach. We found that the BCCM works better
with respect to a model that simply counts the number of
changes. This is because it filters the changes that differ
from the code change process (i.e., fault repairing and
general maintenance modifications) considering only the
Feature Introduction modifications (FI), namely the changes
related to adding or enhancing features. However, we
observed a high overlap between the BCCM and the
model that use the number of changes as predictor
(almost 84%) on the dataset used for the comparison,
probably due to the fact that the nature of the infor-
mation exploited by the two models is similar. The
interested reader can find the comparison between these
two models in our online appendix [25].

Finally, the third baseline is a prediction model based
on the Module Activity Focus metric proposed by Posnett
et al. [22]. It relies on the concept of predator-prey food
web existing in ecology (from now on, we refer to this
model as MAF). The metric is based on the measure-
ment of the degree to which a code component receives
focused attention by developers. It can be considered as
a form of ownership metric of the developers on the
component. It is worth noting that we do not consider
the other Developer Attention Focus metric proposed by
Posnett et al., since (i) the two metrics are symmetric, and
(ii) in order to provide a probability that a component is
buggy, we need to qualify to what extent the activities
on a file are focused, rather than measuring how are
developers’ activities focused. Even if Posnett et al. have
not proposed a prediction model based on their metric,
the results of this comparison will provide insights on
the usefulness of developer’s scattering measures for
detecting bug-prone components.

Note that our choice of the baselines is motived by the
will of: (i) considering both models based on product
and process metrics, and (ii) covering a good number
of different process metrics (since our model exploits
process metrics), including approaches exploiting infor-
mation similar to the ones used by our scattering metrics.
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TABLE 4
Characteristics of the software systems used in the study

Project Period #Commits #Dev. #Classes KLOC % buggy
classes

AMQ Dec 2005 - Sep 2015 8,577 64 2,528 949 54
Ant Jan 2000 - Jul 2014 13,054 55 1,215 266 72
Aries Sep 2009 - Sep 2,015 2,349 24 1,866 343 40
Camel Mar 2007 - Sep 2015 17,767 128 12,617 1,552 30
CXF Apr 2008 - Sep 2015 10,217 55 6,466 1,232 26
Drill Sep 2012 - Sep 2015 1,720 62 1,951 535 63
Falcon Nov 2011 - Sep 2015 1,193 26 581 201 25
Felix May 2007 - May 2015 11,015 41 5,055 1,070 18
JMeter Sep 1998 - Apr 2014 10,440 34 1,054 192 37
JS2 Feb 2008 - May 2015 1,353 7 1,679 566 34
Log4j Nov 2000 - Feb 2014 3,274 21 309 59 58
Lucene Mar 2010 - May 2015 13,169 48 5,506 2,108 12
Oak Mar 2012 - Sep 2015 8,678 19 2,316 481 43
OpenEJB Oct 2011 - Jan 2013 9,574 35 4,671 823 36
OpenJPA Jun 2007 - Sep 2015 3,984 25 4,554 822 38
Pig Oct 2010 - Sep 2015 1,982 21 81,230 48,360 16
Pivot Jan 2010 - Sep 2015 1,488 8 11,339 7,809 22
Poi Jan 2002 - Aug 2014 5,742 35 2,854 542 62
Ranger Aug 2014 - Sep 2015 622 18 826 443 37
Shindig Feb 2010 - Jul 2015 2,000 27 1,019 311 14
Sling Jun 2009 - May 2015 9,848 29 3,951 1,007 29
Sqoop Jun 2011 - Sep 2015 699 22 667 134 14
Sshd Dec 2008 - Sep 2015 629 8 658 96 33
Synapse Aug 2005 - Sep 2015 2,432 24 1,062 527 13
Whirr Jun 2010 - Apr 2015 569 17 275 50 21
Xerces-J Nov 1999 - Feb 2014 5,471 34 833 260 6

In the second research question we aim at evaluating
the complementarity of the different models, while in the
third one we build and evaluate a “hybrid” prediction
model exploiting as predictor variables the scattering
measures we propose as well as the measures used by
the four experimented competitive techniques (i.e., DM,
BCCM, MAF, and CM). Note that we do not limit our
analysis to the experimentation of a model including
all predictor variables, but we exercise all 2,036 possible
combinations of predictor variables to understand which
is the one achieving the best performances.

4.2 Experimental process and oracle definition
To evaluate the performances of the experimented bug
prediction models we need to define the machine learn-
ing classifier to use. For each prediction technique, we
experimented several classifiers, namely ADTree [39],
Decision Table Majority [40], Logistic Regression [41],
Multilayer Perceptron [42] and Naive Bayes [43]. We
empirically compared the results achieved by the five
different models on the software systems used in our
study (more details on the adopted procedure later in
this section). For all the prediction models the best
results were obtained using the Majority Decision Table
(the comparison among the classifiers can be found in
our online appendix [25]). Thus, we exploit it in the
implementation of the five models. This classifier can be
viewed as an extension of one-valued decision trees [40].
It is a rectangular table where the columns are labeled
with predictors and rows are sets of decision rules.

Each decision rule of a decision table is composed of
(i) a pool of conditions, linked through and/or logical

operators which are used to reflect the structure of the if-
then rules; and (ii) an outcome which mirrors the classi-
fication of a software entity respecting the corresponding
rule as bug-prone or non bug-prone. Majority Decision
Table uses an attribute reduction algorithm to find a
good subset of predictors with the goal of eliminating
equivalent rules and reducing the likelihood of over-
fitting the data.

To assess the performance of the five models, we
split the change-history of the object systems into three-
month time periods and we adopt a three-month sliding
window to train and test the bug prediction models.
Starting from the first time period TP1 (i.e., the one
starting at the first commit), we train each model on
it, and test its ability in predicting buggy classes on
TP2 (i.e., the subsequent three-month time period). Then,
we move three months forward the sliding window,
training the classifiers on TP2 and testing their accuracy
on TP3. This process is repeated until the end of the
analyzed change history (see Table 4) is reached. Note
that our choice of considering three-month periods is
based on: (i) choices made in previous work, like the one
by Hassan et al. [8]; and (ii) the results of an empirical
assessment we performed on such a parameter showing
that the best results for all experimented techniques are
achieved by using three-month periods. In particular, we
experimented with time windows of one, two, three, and
six months. The complete results are available in our
replication package [25].

Finally, to evaluate the performances of the five experi-
mented models we need an oracle reporting the presence
of bugs in the source code.
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Although the PROMISE repository collects a large
dataset of bugs in open source systems [44], it provides
oracles at release-level. Since the proposed measures
work at time period-level, we had to build our own
oracle. Firstly, we identified bug fixing commits hap-
pened during the change history of each object system
by mining regular expressions containing issue IDs in
the change log of the versioning system (e.g., “fixed issue
#ID” or “issue ID”). After that, for each identified issue
ID, we downloaded the corresponding issue report from
the issue tracking system and extracted the following
information: product name; issue’s type (i.e., whether an
issue is a bug, enhancement request, etc); issue’s status
(i.e., whether an issue was closed or not); issue’s resolution
(i.e., whether an issue was resolved by fixing it, or it was
a duplicate bug report, or a “works for me” case); issue’s
opening date; issue’s closing date, if available.

Then, we checked each issue’s report to be correctly
downloaded (e.g., the issue’s ID identified from the
versioning system commit note could be a false positive).
After that, we used the issue type field to classify the
issue and distinguish bug fixes from other issue types
(e.g., enhancements). Finally, we only considered bugs
having Closed status and Fixed resolution. Basically, we
restricted our attention to (i) issues that were related to
bugs as we used them as a measure of fault-proneness,
and (ii) issues that were neither duplicate reports nor
false alarms.

Once collected the set of bugs fixed in the change
history of each system, we used the SZZ algorithm [45]
to identify when each fixed bug was introduced. The
SZZ algorithm relies on the annotation/blame feature of
versioning systems. In essence, given a bug-fix identified
by the bug ID, k, the approach works as follows:

1) For each file fi, i = 1 . . .mk involved in the bug-fix
k (mk is the number of files changed in the bug-fix
k), and fixed in its revision rel-fixi,k, we extract the
file revision just before the bug fixing (rel-fixi,k − 1).

2) starting from the revision rel-fixi,k − 1, for each
source line in fi changed to fix the bug k the blame
feature of Git is used to identify the file revision
where the last change to that line occurred. In
doing that, blank lines and lines that only contain
comments are identified using an island grammar
parser [46]. This produces, for each file fi, a set of
ni,k fix-inducing revisions rel-bugi,j,k, j = 1 . . . ni,k.
Thus, more than one commit can be indicated by
the SZZ algorithm as responsible for inducing a
bug.

By adopting the process described above we are able
to approximate the periods of time where each class of
the subject systems was affected by one or more bugs
(i.e., was a buggy class). In particular, given a bug-fix
BFk performed on a class ci, we consider ci buggy from
the date in which the bug fixed in BFk was introduced
(as indicated by the SZZ algorithm) to the date in which
BFk (i.e., the patch) was committed in the repository.

4.3 Metrics and Data Analysis
Once defined the oracle and obtained the predicted
buggy classes for every three-month period, we answer
RQ1 by using three widely-adopted metrics, namely
accuracy, precision and recall [38]:

accuracy =
TP + TN

TP + FP + TN + FN
(5)

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

where TP is the number of classes containing bugs that
are correctly classified as bug-prone; TN denotes the
number of bug-free classes classified as non bug-prone
classes; FP and FN measure the number of classes for
which a prediction model fails to identify bug-prone
classes by declaring bug-free classes as bug-prone (FP )
or identifying actually buggy classes as non buggy ones
(FN ). As an aggregate indicator of precision and recall,
we also report the F-measure, defined as the harmonic
mean of precision and recall:

F -measure = 2 ∗ precision ∗ recall
precision+ recall

(8)

Finally, we also report the Area Under the Curve
(AUC) obtained by the prediction model. The AUC
quantifies the overall ability of a prediction model to
discriminate between buggy and non-buggy classes. The
closer the AUC to 1, the higher the ability of the classifier
to discriminate classes affected and not by a bug. On
the other hand, the closer the AUC to 0.5, the lower the
accuracy of the classifier. To compare the performances
obtained by DCBM with the competitive techniques, we
performed the bug prediction using the four baseline
models BCCM, DM, MAF, and CM on the same systems
and the same periods on which we ran DCBM.

To answer RQ2, we analyzed the orthogonality of the
different measures used by the five experimented bug
prediction models using Principal Component Analysis
(PCA). PCA is a statistical technique able to identify vari-
ous orthogonal dimensions (principal components) from
a set of data. It can be used to evaluate the contribution
of each variable to the identified components. Through
the analysis of the principal components and the contri-
butions (scores) of each predictor to such components,
it is possible to understand whether different predic-
tors contribute to the same principal components. Two
models are complementary if the predictors they exploit
contribute to capture different principal components.
Hence, the analysis of the principal components provides
insights on the complementarity between models.

Such an analysis is necessary to assess whether the
exploited predictors assign the same bug-proneness to
the same set of classes.
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However, PCA does not tell the whole story. Indeed,
using PCA it is not possible to identify to what extent
a prediction model complements another and vice versa.
This is the reason why we complemented the PCA by
analyzing the overlap of the five prediction models.
Specifically, given two prediction models mi and mj , we
computed:

corrmi∩mj
=
|corrmi ∩ corrmj |
|corrmi

∪ corrmj
|
% (9)

corrmi\mj
=
|corrmi \ corrmj |
|corrmi

∪ corrmj
|
% (10)

where corrmi represents the set of bug-prone classes cor-
rectly classified by the prediction model mi, corrmi∩mj

measures the overlap between the sets of true positives
correctly identified by both models mi and mj , corrmi\mj

measures the percentage of bug-prone classes correctly
classified by mi only and missed by mj . Clearly, the
overlap metrics are computed by considering each com-
bination of the five experimented detection techniques
(e.g., we compute corrBCCM∩DM , corrBCCM∩DCBM ,
corrBCCM∩CM , corrDM∩DCBM , etc.). In addition, given
the five experimented prediction models mi, mj , mk, mp,
mz , we computed:

corrmi\(mj∪mk∪mp∪mz) =
|corrmi

\ (corrmj
∪ corrmk

∪ corrmp
∪ corrmz

)|
|corrmi

∪ corrmj
∪ corrmk

∪ corrmp
∪ corrmz

|
%

(11)

that represents the percentage of bug-prone classes cor-
rectly identified only by the prediction model mi. In the
paper, we discuss the results obtained when analyzing
the complementarity between our model and the base-
line ones. The other results concerning the complemen-
tarity between the baseline approaches are available in
our online appendix [25].

Finally, to answer RQ3 we build and assess the per-
formances of a “hybrid” bug prediction model exploit-
ing different combinations of the predictors used by
the five experimented models (i.e., DCBM, BCCM, DM,
MAF, and CM). Firstly, we assess the boost in perfor-
mances (if any) provided by our scattering metrics when
plugged-in the four competitive models, similarly to
what has been done by Bird et al. [20], who explained
the relationship between ownership metrics and bugs
building regression models in which the metrics are
added incrementally in order to evaluate their impact
on increasing/decreasing the likelihood of developers to
introduce bugs.

Then, we create a “comprehensive baseline model”
featuring all predictors exploited by the four competi-
tive models and again, we assess the possible boost in
performances provided by our two scattering metrics
when added to such a comprehensive model. Clearly,
simply combining together the predictors used by the
five models could lead to sub-optimal results, due for
example to model overfitting.

Thus, we also investigate the subset of predictors
actually leading to the best prediction accuracy. To this
aim, we use the wrapper approach proposed by Kohavi
and John [47]. Given a training set built using all the
features available, the approach systematically exercises
all the possible subsets of features against a test set, thus
assessing their accuracy. Also in this case we used the
Majority Decision Table [40] as machine learner.

In our study, we considered as training set the penul-
timate three-month period of each subject system, and
as test set the last three-month period of each system.
Note that this analysis has not been run on the whole
change history of the software systems due to its high
computational cost. Indeed, experimenting all possible
combinations of the eleven predictors means the run
of 2,036 different prediction models across each of the
26 systems (52,936 overall runs). This required approx-
imately eight weeks on four Linux laptops having two
dual-core 3.10 GHz CPU and 4 Gb of RAM.

Once obtained all the accuracy metrics for each combi-
nation, we analyzed these data in two steps. Firstly, we
plot the distribution of the average F-measure obtained
by the 2,036 different combinations over the 26 software
systems. Then we discuss the performances of the top
five configurations comparing the results with the ones
achieved by (i) each of the five experimented models,
(ii) the models built plugging-in the scattering metrics
as additional features in the four baseline models, and
(iii) the comprehensive prediction models that include all
the metrics exploited by the four baseline models plus
our scattering metrics.

5 ANALYSIS OF THE RESULTS

In this section we discuss the results achieved aiming at
answering the formulated research questions.

5.1 RQ1: On the Performances of DCBM and Its
Comparison with the Baseline Techniques

Table 5 reports the results—in terms of AUC-ROC, accu-
racy, precision, recall, and F-measure—achieved by the
five experimented bug prediction models, i.e., our model,
exploiting the developer’s scattering metrics (DCBM),
the BCCM proposed by Hassan [8], a prediction model
that uses as predictor the number of developers that
work on a code component (DM) [9], [10], the prediction
model based on the degree to which a module receives
focused attention by developers (MAF) [22], and a pre-
diction model exploiting product metrics capturing size,
cohesion, coupling, and complexity of code components
(CM) [1].

The achieved results indicate that the proposed pre-
diction model (i.e., DCBM) ensures better prediction
accuracy as compared to the competitive techniques.
Indeed, the area under the ROC curve of DCBM ranges
between 62% and 91%, outperforming the competitive
models.
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In particular, the Developer Model achieves an AUC
between 50% and 69%, the Basic Code Change Model
between 50% and 78%, the MAF model between 50%
and 78%, and the CM model between 41% and 61%.
Also in terms of accuracy, precision and recall (and,
consequently, of F-measure) DCBM achieves better re-
sults. In particular, across all the different object sys-
tems, DCBM achieves a higher F-measure with respect
to DM (mean=+53.7%), BCCM (mean=+10.3%), MAF
(mean=+13.3%), and CM (mean=+29.3%). The higher
values achieved for precision and recall indicates that
DCBM provides less false positives (i.e., non-buggy
classes indicated as buggy ones) while also being able
to identify more classes actually affected by a bug as
compared to the competitive models. Moreover, when
considering the AUC, we observed that DCBM reaches
higher values with respect the competitive bug predic-
tion approaches. This result highlights how the proposed
model performs better in discriminating between buggy
and non-buggy classes.

Interesting is the case of Xerces-J where DCBM is
able to identify buggy classes with 94% of accuracy (see
Table 5), as compared to the 74% achieved by BCCM,
49% of DM, 71% of MAF, and 59% of CM. We looked
into this project to understand the reasons behind such
a strong result. We found that the Xerces-J’s buggy
classes are often modified by few developers that, on
average, perform a small number of changes on them.
As an example, the class XSSimpleTypeDecl of the
package org.apache.xerces.impl.dv.xs has been
modified only twice between May 2008 and July 2008
(one of the three-month periods considered in our study)
by two developers. However, the sum of their structural
and semantic scattering in that period was very high (161
and 1,932, respectively). It is worth noting that if a low
number of developers work on a file, they have higher
chances to be considered as the owner of that file. This
means that, in the case of the MAF model, the probability
that the class is bug-prone decreases. At the same time,
models based on the change entropy (BCCM) or on the
number of developers modifying a class (DM) experi-
ence difficulties in identifying this class as buggy due to
the low number of changes it underwent and to the low
number of involved developers, respectively. Conversely,
our model does not suffer of such a limitation thanks to
the exploited developers’ scattering information.

Finally, the CM model relying on product metrics
fails in the prediction since the class has code metrics
comparable with the average metrics of the system (e.g.,
the CBO of the class 12, while the average CBO of the
system is 14).

Looking at the other prediction models, we can ob-
serve that the model based only on the number of de-
velopers working on a code component never achieves
an accuracy higher than 49%. This result confirms what
previously demonstrated by Ostrand et al. [10], [9] on
the limited impact of individual developer data on bug
prediction.

Regarding the other models, we observe that the in-
formation about the ownership of a class as well as the
code metrics and the entropy of changes have a stronger
predictive power compared to number of developers.
However, they still exhibit a lower prediction accuracy
with respect to what allowed by the developer scattering
information.

In particular, we observed that the MAF model
has good performances when it is adopted on well-
modularized systems, i.e., systems grouping in the same
package classes implementing related responsibilities.
Indeed, MAF achieved the highest accuracy on the
Apache CFX, Apache OpenEJB, and Apache Sqoop
systems, where the average modularization quality (MQ)
[48] is of 0.84, 0.79, and 0.88, respectively. The rea-
son behind this result is that a high modularization
quality often correspond to a good distribution of de-
velopers activities. For instance, the average number
of developers per package working on Apache CFX
is 5. As a consequence, the focus of developers on
specific code entities is high. The same happens on
Apache OpenEJB and Apache Sqoop, where the av-
erage number of developers per package is 3 and 7,
respectively. However, even if the developers mainly
focus their attention on few packages, in some cases
they also apply changes to classes contained in other
packages, increasing their chances of introducing bugs.
This is the reason why our prediction model still con-
tinue to work better in such cases. A good example
is the one of the class HBaseImportJob, contained
in the package org.apache.sqoop.mapreduce of
the project Apache Sqoop. Only two developers
worked on this class over the time period be-
tween July 2013 and September 2013, however the
same developers have been involved in the main-
tenance of the class HiveImport of the package
com.cloudera.sqoop.hive. Even if the two classes
shared the goal to import data from other projects into
Sqoop, they implement significantly different mecha-
nisms for importing data. This results in a higher prone-
ness of introducing bugs. The sum of the structural and
semantic scattering in that period for the two develop-
ers reached 86 and 92, respectively, causing the correct
prediction of the buggy file for our model, and an error
in the prediction of the MAF model.

The BCCM [8] often achieves a good prediction
accuracy. This is due to the higher change-
proneness of components being affected by bugs.
As an example, in the JS2 project, the class
PortalAdministrationImpl of the package
org.apache.jetspeed.administration has been
modified 19 times between January and March 2010.
Such a high change frequency led to the introduction of
a bug. However, not always such a conjecture is valid.
Let us consider the Apache Aries project, in which BCCM
obtained a low accuracy (recall=45%, precision=34%).
Here we found several classes with high change-
proneness that were not subject to any bug. For instance,
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TABLE 6
Wilcoxon’s t-test p-values of the hypothesis F-Measure

achieved by DCBM > than the compared model.
Statistically significant results are reported in bold face.

Cliff Delta d values are also shown.

Compared models p-value Cliff Delta Magnitude
DCBM - CM < 0.01 0.81 large
DCBM - BCCM 0.07 0.29 small
DCBM - DM < 0.01 0.96 large
DCBM - MAF < 0.01 0.44 medium

the class AriesApplicationResolver of the package
org.apache.aries.application.managament has
been changed 27 times between November 2011 and
January 2012.

It was the class with the higher change-proneness in
that time period, but this never led to the introduction
of a bug. It is worth noting that all the changes to the
class were applied by only one developer.

The model based on structural code metrics (CM)
obtains fluctuating performance, with quite low F-
measure achieved on some of the systems, like the
Sshd project (28%). Looking more in depth into such
results, we observed that the structural metrics achieve
good performances in systems where the develop-
ers tend to repeatedly perform evolution activities to
the same subset of classes. Such a subset of classes
generally centralizes the system behavior, is com-
posed of complex classes, and exhibits a high fault-
proneness. As an example, in the AMQ project the class
activecluster.impl.StateServiceImpl controls
the state of the services provided by the system and it ex-
perienced five changes during the time period between
September 2009 and November 2009. In this period,
developers heavily worked on this class increasing its
size from 40 to 265 lines of code. This sudden growth
of the class size resulted in the introduction of a bug,
correctly predicted by the CM model.

We also statistically compare the F-measure achieved
by the five experimented prediction models. To this aim,
we exploited the Mann-Whitney test [49] (results are
intended as statistically significant at α = 0.05). We also
estimated the magnitude of the measured differences by
using the Cliff’s Delta (or d), a non-parametric effect
size measure [50] for ordinal data. We followed well-
established guidelines to interpret the effect size values:
negligible for |d| < 0.10, small for |d| < 0.33, medium
for 0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474 [50].
Table 6 reports the results of this analysis. The proposed
DCBM model obtains a significant higher F-measure
with respect to the other baselines (p-value<0.05), with
the only exception of the model proposed by Hassan
[8], for which the p-value is partially significant (p-
value=0.07). At the same time, the magnitude of the the
differences is large in the comparison with the model
proposed by Ostrand et al. [9] and the one based on
product metrics [24], medium in the comparison with the
model based on the Posnett et al. metric [22], and small

when our model is compared with the model based on
the entropy of changes [8].

Summary for RQ1. Our approach showed quite
high accuracy in identifying buggy classes. Among
the 26 object systems its accuracy ranges between
53% and 98%, while the F-measure between 47%
and 98%. Moreover, DCBM performs better than
the baseline approaches, demonstrating its superi-
ority in correctly predicting buggy classes.

5.2 RQ2: On the Complementarity between DCBM
and Baseline Techniques
Table 7 reports the results of the Principal Component
Analysis (PCA), aimed at investigating the complemen-
tarity between the predictors exploited by the different
models. The different columns (PC1 to PC11) repre-
sent the components identified by the PCA as those
describing the phenomenon of interest (in our case,
bug-proneness). The first row (i.e., the proportion of
variance) indicates on a scale between zero and one how
much each component contributes to the phenomenon
description (the higher the proportion of variance, the
higher the component’s contribution). The identified
components are sorted on the basis of their “importance”
in describing the phenomenon (e.g., the PC1 in Table 7 is
the most important, capturing 39% of the phenomenon
as compared to the 2% brought by PC11). Finally, the
values reported at row i and column j indicate how
much the predictor i contributes in capturing the PC
j (e.g., structural scattering captures 69% of PC1). The
structural scattering predictor is mostly orthogonal with
respect to the other ten, since it is the one capturing
most of PC1, the most important component. As for
the other predictors, the semantic scattering and the
change entropy information seem to be quite related
by capturing the same components (i.e., PC2 and PC3),
while the MAF predictor is the one better capturing
PC4 and PC5. The number of developers is only able
to partially capture PC5, while the product metrics are
the most important to capture the remaining components
(PC6 to PC11). From these results, we can firstly con-
clude that the information captured by our predictors
is strongly orthogonal with respect to the competitive
ones. Secondly, we also observe a high complementarity
between the MAF predictor and the others, while the
predictor based on the number of developers working
on a code component only partially capture the phe-
nomenon, demonstrating again its limited impact in the
context of bug prediction. Finally, the code metrics cap-
ture portions of the phenomenon that none of the other
(process) metrics is able to capture. Such results highlight
the possibility to achieve even better bug prediction
models by combining predictors capturing orthogonal
information (we investigate this possibility in RQ3).

As a next step toward understanding the complemen-
tarity of the five prediction models, Tables 8, 9, 10, and
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TABLE 7
Results achieved applying the Principal Component Analysis

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11
Proportion of Variance 0.39 0.16 0.11 0.10 0.06 0.05 0.03 0.03 0.03 0.02 0.02
Cumulative Variance 0.39 0.55 0.66 0.76 0.82 0.87 0.90 0.92 0.95 0.97 1.00
Structural scattering predictor 0.69 - - 0.08 0.04 - - - - - -
Semantic scattering predictor - 0.51 0.33 0.16 0.03 - - - - - -
Change entropy 0.07 0.34 0.45 0.25 0.11 0.22 - 0.01 - - -
Number of Developers - - 0.05 0.02 0.29 - 0.04 0.05 0.01 - 0.07
MAF 0.04 0.11 - 0.38 0.45 - 0.21 0.04 0.06 - 0.1
LOC 0.04 - 0.01 - 0.03 0.07 0.18 0.21 0.11 0.09 0.33
CBO 0.1 0.04 0.05 0.07 - 0.56 0.2 0.33 0.21 0.44 0.12
LCOM 0.01 - 0.04 - 0.01 - 0.24 0.1 0.06 0.09 0.05
NOM 0.03 - 0.01 0.01 - 0.11 - 0.12 0.43 0.22 0.1
RFC 0.01 - 0.04 0.01 0.03 - 0.13 0.06 0.12 0.1 0.09
WMC 0.01 - 0.02 0.02 0.01 0.04 - 0.08 - 0.06 0.14

TABLE 8
Overlap analysis between DCBM and DM

System DCBM ∩ DCBM \ DM \
DM% DM% DCBM%

AMQ 14 81 5
Ant 9 74 17
Aries 12 65 23
Camel 16 67 17
CXF 12 66 22
Drill 27 72 1
Falcon 12 84 4
Felix 14 65 21
JMeter 8 89 3
JS2 22 75 3
Log4j 13 75 12
Lucene 18 75 7
Oak 19 81 0
OpenEJB 17 80 3
OpenJPA 22 71 7
Pig 16 74 10
Pivot 18 80 2
Poi 11 72 17
Ranger 11 76 13
Shindig 20 61 18
Sling 16 62 21
Sqoop 19 71 10
Sshd 22 64 14
Synapse 12 79 9
Whirr 19 66 15
Xerces 32 55 13
Overall 14 73 13

11 report the overlap metrics computed between DCBM-
DM, DCBM-BCCM, DCBM-CM, and DCBM-MAF, re-
spectively.

In addition, Table 12 shows the percentage of buggy
classes correctly identified only by each of the single bug
prediction models (e.g., identified by DCBM and not by
DM, BCCM, CM and MAF). While in this paper we only
discuss in details the overlap between our model and
the alternative ones, the interested readers can find the
analysis of the overlap among the other models in our
online appendix [25].

Regarding the overlap between our predictor (DCBM)
and the one built using the number of developers (DM),
it is interesting to observe that there is high comple-
mentarity between the two models, with an overall
73% of buggy classes correctly identified only by our

model, 13% only by DM, and 14% of instances correctly
classified by both models. This result is consistent on all
the object systems (see Table 8).

An example of buggy class identified
only by our model is represented by
LuceneIndexer contained in the package
org.apache.camel.component.lucene of the
Apache Lucene project. This class, between February
2012 and April 2012, has been modified by one
developer that in the same time period worked on
five other classes (the sum of structural and semantic
scattering reached 138 and 192, respectively). This is the
reason why our model correctly identified this class as
buggy, while DM was not able to detect it due to the
single developer who worked on the class. On the other
side, DM was able to detect few instances of buggy
classes not identified by DCBM. This generally happens
when developers working on a code component apply
less scattered changes over the other parts of the system,
as in the case of the Apache Sling project, where
the class AbstractSlingRepository of the package
org.apache.sling.jrc.base was modified by four
developers between March 2011 and May 2011. Such
developers did not apply changes to other classes, thus
having a low structural and semantic scattering. DM
was instead able to correctly classify the class as buggy.

A similar trend is shown in Table 9, when analyzing
the overlap between our model and BCCM. In this case,
our model correctly classified 42% of buggy classes that
are not identified by BCCM that is, however, able to
capture 29% of buggy classes missed by our approach
(the remaining 29% of buggy classes are correctly iden-
tified by both models). Such complementarity is mainly
due to the fact that the change-proneness of a class does
not always correctly suggest buggy classes, even if it is
a good indicator. Often it is important to discriminate
in which situations such changes are done. For exam-
ple, the class PropertyIndexLookup of the package
oak.plugins.index.property in the Apache Oak
project, during the time period between April 2013 and
June 2013, has been changed 4 times by 4 developers
that worked, in the same period, on other 6 classes. This
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caused a high scattering (both structural and semantic)
for all the developers, and our model correctly marked
the class as buggy.

Instead, BCCM did not classify the component as
buggy since the number of changes applied on it is
not high enough to allow the model to predict a
bug. However, the model proposed by Hassan [8] is
able to capture several buggy files that our model
does not identify. For example, in the Apache Pig
project the class SenderHome contained in the pack-
age com.panacya.platform.service.bus.sender
experienced 27 changes between December 2011 and
February 2012. Such changes were made by two devel-
opers that touched a limited number of related classes
of the same package. Indeed, the sum of structural and
semantic scattering was quite low (13 and 9, respec-
tively) thus not allowing our model to classify the class
as buggy. Instead, in this case the number of changes
represent a good predictor.

Regarding the overlap between our model and the
code metrics-based model (Table 10), also in this case
the set of code components correctly predicted by
both the models represents only a small percentage
(13% on average). This means that the two mod-
els are able to predict the bug-proneness of differ-
ent code components. Moreover, the DCBM model
captures 78% of buggy classes missed by the code
metrics model that is able to correctly predict 9%
of code components missed by our model. For ex-
ample, the DCBM model is able to correctly classify
the pivot.serialization.JSONSerializer class
of the Apache Pivot project, having low (good) values
of size, complexity, and coupling, but modified by four
developers in the quarter going from January 2013 to
March 2013.

As for the overlap between MAF and our model,
DCBM was able to capture 45% of buggy classes not
identified by MAF. On the other hand, MAF correctly
captured 29% of buggy classes missed by DCBM, while
26% of the buggy classes were correctly classified by
both models. An example of class correctly classified
by DCBM and missed by MAF can be found in the
package org.apache.drill.common.config of the
Apache Drill project, where the class DrillConfig
was changed by three developers during the time pe-
riod between November 2014 and January 2015. Such
developers mainly worked on this and other classes
of the same package (they can be considered as own-
ers of the DrillConfig class), but they also applied
changes to components structurally distant from it.
For this reason, the sum of structural and semantic
scattering increased and our model was able to cor-
rectly classify DrillConfig as buggy. On the other
hand, an example of class correctly classified by MAF
and missed by DCBM is LogManager of the package
org.apache.log4j from the Log4j project. Here the
two developers working on the component between
March 2006 and May 2006 applied several changes to

TABLE 9
Overlap Analysis between DCBM and BCCM

System DCBM ∩ DCBM \ BCCM \
BCCM % BCCM % DCBM %

AMQ 23 32 45
Ant 39 37 24
Aries 24 39 37
Camel 19 43 38
CXF 20 44 36
Drill 27 47 26
Falcon 34 40 26
Felix 29 38 34
JMeter 28 45 27
JS2 21 40 39
Log4j 16 67 17
Lucene 16 45 39
Oak 29 37 34
OpenEJB 36 35 28
OpenJPA 19 36 45
Pig 31 39 30
Pivot 34 46 20
Poi 37 33 30
Ranger 40 44 16
Shindig 31 33 36
Sling 16 31 53
Sqoop 32 49 19
Sshd 18 36 46
Synapse 20 31 49
Whirr 40 48 12
Xerces 22 43 35
Overall 29 42 29

this class, as well as related classes belonging to different
packages. Such related updates decreased the semantic
scattering accumulated by developers.

Thus, DCBM did not classify the instance as buggy,
while MAF correctly detect less focused attention on the
class and marked the class as buggy.

Finally, looking at Table 12, we can see that our
approach identifies 43% of buggy classes missed by the
other four techniques, as compared to 24% of BCCM, 8%
of DM, 18% of MAF, and 7% of CM. This confirms that
(i) our model captures something missed by the com-
petitive models, and (ii) by combining our model with
BCCM/DM/MAF/CM (RQ3) we could further improve
the detection accuracy of our technique. An example of
a buggy class detected only by DCBM can be found
in the Apache Ant system. The class Exit belonging to
the package org.apache.tools.ant.taskdefs has
been modified just once by a single developer in the time
period going from January 2004 to April 2004. However,
the sum of the structural and semantic scattering in that
period was very high for the involved developer (461.61
and 5,603.19, respectively), who modified a total of 38
classes spread over 6 subsystems. In the considered time
period the DM does not identify Exit as buggy given
the single developer who worked on it, and the BCCM
fails too due to the single change Exit underwent be-
tween January and April 2004. Similarly, the CM model
is not able to identify this class as buggy due to its low
complexity and small size.

Conversely, an example of buggy class not
detected by DCBM is represented by the class
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TABLE 10
Overlap Analysis between DCBM and CM

System DCBM ∩ DCBM \ CM \
CM % CM % DCBM %

AMQ 10 65 25
Ant 8 68 24
Aries 12 58 30
Camel 22 53 25
CXF 7 84 9
Drill 5 73 22
Falcon 18 79 3
Felix 15 68 17
JMeter 15 78 7
JS2 6 88 6
Log4j 11 87 2
Lucene 11 77 12
Oak 14 83 3
OpenEJB 6 88 6
OpenJPA 18 67 15
Pig 16 75 9
Pivot 13 78 9
Poi 14 75 11
Ranger 21 75 5
Shindig 7 82 11
Sling 7 82 11
Sqoop 9 86 5
Sshd 15 72 13
Synapse 18 63 19
Whirr 8 85 7
Xerces2-j 39 59 2
Overall 13 78 9

AbstractEntityManager belonging to the package
org.apache.ivory.resource of the Apache Falcon
project.

Here we found 49 changes occurring on the class on
the time period going from October 2012 to January 2013
applied by two developers. The sum of the structural
and semantic scattering metrics in this time period was
very low for both the involved developers (14.77 is
the sum for the first developer, 18.19 for the second
one). Indeed, the developers in that period only apply
changes to another subsystem. This is the reason why
our prediction model is not able to mark this class as
buggy. On the other hand, BCCM and MAF prediction
models successfully identify the buggyness of the class
exploiting the information about the number of changes
and ownership, respectively. DM fails due to the low
number of developers involved in the change process
of the class. Finally, CM is not able to correctly classify
this class as buggy because of the low complexity of the
class.

Summary for RQ2. The analysis of the comple-
mentarity between our approach and the four
competitive techniques showed that the proposed
scattering metrics are highly complementary with
respect to the metrics exploited by the baseline
approaches, paving the way to “hybrid” models
combining multiple predictors.

TABLE 11
Overlap Analysis between DCBM and MAF

System DCBM ∩ DCBM \ MAF \
MAF % MAF % DCBM %

AMQ 24 47 29
Ant 23 46 31
Aries 32 47 21
Camel 19 51 29
CXF 20 50 31
Drill 23 43 34
Falcon 19 42 39
Felix 24 56 20
JMeter 25 53 22
JS2 23 40 37
Log4j 26 45 30
Lucene 31 41 28
Oak 26 46 28
OpenEJB 28 49 24
OpenJPA 22 46 32
Pig 25 44 31
Pivot 26 55 19
Poi 27 44 29
Ranger 27 41 32
Shindig 27 46 27
Sling 21 37 42
Sqoop 33 43 24
Sshd 19 40 41
Synapse 21 56 23
Whirr 27 53 20
Xerces2-j 30 42 28
Overall 26 45 29

Fig. 4. Boxplot of the average F-Measure achieved by
the 2,036 combinations of predictors experimented in our
study.

60 65 70 75 80

5.3 RQ3: A “Hybrid” Prediction Model
Table 13 shows the results obtained while investigating
the creation of a “hybrid” bug prediction model, ex-
ploiting a combination of predictors used by the five
experimented models.

The top part of Table 13 (i.e., Performances of each ex-
perimented model) reports the average performances—
in terms of AUC-ROC, accuracy, precision, recall, and F-
measure—achieved by each of the five experimented bug
prediction models. As already discussed in the context
of RQ1, our DCBM model substantially outperforms the
competitive ones. Such values only serve as a reference
to better interpret the results of the different hybrid
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TABLE 12
Overlap Analysis considering each Model independently

System DCBM \ BCCM \ DM \ MAF \ CM \
(BCCM ∪ DM ∪ (DCBM ∪ DM ∪ (DCBM ∪ BCCM ∪ (CM ∪ DCBM ∪ (DCBM ∪ BCCM ∪
CM ∪ MAF) % CM ∪ MAF) % CM ∪ MAF) % BCCM ∪ DM) % CM ∪ DM) %

AMQ 44 24 9 17 6
Ant 40 25 8 20 7
Aries 41 22 10 19 8
Camel 39 21 6 22 12
CXF 45 25 9 14 7
Drill 44 25 8 18 5
Falcon 46 27 8 18 2
Felix 43 21 5 19 12
JMeter 42 23 7 17 11
JS2 45 26 10 15 4
Log4j 43 20 8 19 10
Lucene 44 23 8 20 5
Oak 39 26 9 19 7
OpenEJB 43 24 8 16 9
OpenJPA 41 26 9 18 6
Pig 44 25 9 20 2
Pivot 45 25 8 19 3
Poi 39 23 9 17 12
Ranger 48 19 10 14 9
Shindig 46 24 6 17 7
Sling 41 25 9 16 9
Sqoop 41 26 7 19 7
Sshd 44 22 10 19 5
Synapse 41 22 7 20 10
Whirr 40 23 8 18 11
Xerces 47 23 9 12 9
Overall 43 24 8 18 7

models we discuss in the following.
The second part of Table 13 (i.e., Boost provided by

our scattering metrics to each baseline model), reports
the performances of the four competitive bug prediction
models when augmented with our predictors.

The boost provided by our metrics is evident in all
the baseline models. Such a boost goes from a minimum
of +8% in terms of F-Measure (for the model based on
change entropy) up to +49% for the model exploiting
the number of developers as predictor. However, it is
worth noting that the combined models do not seem to
improve the performances of our DBCM model.

The third part of Table 13 (i.e., Boost provided by our
scattering metrics to a comprehensive baseline model)
seems to tell a different story. In this case, we combined
all predictors belonging to the four baseline models into
a single, comprehensive, bug prediction model, and as-
sessed its performances. Then, we added our scattering
metrics to such a comprehensive baseline model and
assessed again its performances. As it can be seen from
Table 13, the performances of the two models (i.e., the
one with and the one without our scattering metrics) are
almost the same (F-measure=71% for both of them). This
suggests the absence of any type of impact (positive or
negative) of our metrics on the model’s performances,
which is something unexpected considered the previ-
ously performed analyses.

Such a result might be due to the high number of
predictor variables exploited by the model (eleven in this

case), possibly causing model overfitting on the training
sets with consequent bad performances on the test set.
Again, the combination of predictors does no seem to
improve the performances of our DBCM model. Thus,
as explained in Section 4.3, to verify the possibility to
build an effective hybrid model we investigated in an
exhaustive way the combination of predictors that leads
to the best prediction accuracy by using the wrapper
approach proposed by Kohavi and John [47].

Figure 4 plots the average F-measure obtained by
each of the 2,036 combinations of predictors experi-
mented. The first thing that leaps to the eyes is the
very high variability of performances obtained by the
different combinations of predictors, ranging between a
minimum of 62% and a maximum of 79% (mean=70%,
median=71%). The bottom part of Table 13 (i.e., Top-
5 predictors combinations obtained from the wrapper
selection algorithm) reports the performances of the
top five predictors combinations. The best configuration,
achieving an average F-Measure of 79% exploits as pre-
dictors the CBO coupling metric [1], the change entropy
by Hassan [8], the structural and semantic scattering
defined in this paper, and the module activity focus by
Posnett et al. [22]. Such a configuration also exhibits
a very high AUC (90%) and represents a substantial
improvement in prediction accuracy over the best model
used in isolation (i.e., DCBM with an average F-Measure
of 74% and an AUC=76%) as well as over the compre-
hensive model exploiting all the baselines’ predictors
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TABLE 13
RQ3: Performances of “hybrid” prediction models

Avg. AUC-ROC Avg. Accuracy Avg. Precision Avg. Recall Avg. F-measure
Performances of each experimented model
DM 51 24 19 25 21
BCCM 63 70 61 69 64
CM 52 46 44 45 44
MAF 62 65 59 64 61
DCBM 76 77 72 77 74

Boost provided by our scattering metrics to each baseline model
DM + Struct-scattering + Seman-scattering 78 71 73 68 70
BCCM + Struct-scattering + Seman-scattering 77 70 76 69 72
CM + Struct-scattering + Seman-scattering 76 70 73 70 71
MAF + Struct-scattering + Seman-scattering 77 70 73 70 71

Boost provided by our scattering metrics to a comprehensive baseline model
# Developers, Entropy, LOC, CBO, LCOM, NOM, RFC, WMC, MAF 78 69 73 68 71
# Developers, Entropy, LOC, CBO, LCOM, NOM, RFC, WMC, MAF, Struct-scattering, Seman-scattering 76 71 72 71 71

Top-5 predictors combinations obtained from the wrapper selection algorithm
CBO, Change Entropy, Struct-scattering, Seman-scattering, MAF 90 85 77 81 79
LOC, LCOM, Change Entropy, Seman-scattering, # Developers, MAF 78 72 77 77 77
LOC, NOM, WMC, Change Entropy, Struct-scattering 78 70 77 75 76
LOC, LCOM, NOM, Seman-scattering 77 70 75 75 75
LOC, CBO, LCOM, NOM, RFC, Struct-scattering, Seman-scattering 77 71 76 73 75

in combinations (+8% in terms of F-Measure). Such a
result supports our conjecture that blindly combining
predictors (as we did in the comprehensive model) could
result in sub-optimal performances likely due to model
overfitting.

Interestingly, the best combination of baselines’ predic-
tors (i.e., all predictors from the four competitive models)
obtained as result of the wrapper approach is composed
of BCCM (i.e., entropy of changes), MAF, and the RFC
and WMC metrics from the CM model, and achieves
70% in terms of F-Measure (9% less with respect to the
best combination of predictors which also exploits our
scattering metrics).

We also statistically compare the prediction accuracy
obtained across the 26 subject systems by the best-
performing “hybrid” configuration and the best per-
forming model. Also in this case, we exploited the Mann-
Whitney test [49] for this statistical test, as well as
the Cliff’s Delta [50] to estimate the magnitude of the
measured differences. We observed a statistically signifi-
cant difference (p-value=0.03) with a medium effect size
(d = 0.36).

Looking at the predictors more frequently exploited in
the five most accurate prediction models, we found that:

1) Semantic-scattering, LOC. Our semantic predictor
and the LOC are present in 4 out of the 5 most
accurate prediction models. This confirms the well-
known bug prediction power of the size metrics
(LOC) and suggests the importance for developers
to work on semantically related code components
in the context of a given maintenance/evolution
activity.

2) Change entropy, LCOM, Structural-scattering. These
predictors are present in 3 out of the 5 most accu-
rate prediction models. This confirms that (i) the
change entropy is a good predictor for buggy code
components [8]), (ii) classes exhibiting low cohe-
sion can be challenging to maintain for developers
[1], and (iii) scattered changes performed across
different subsystems can increase the chances of

introducing bugs.
In general, the results of all our three research ques-

tions seem to confirm the observations made D’Ambros
et al. [15]: no technique based on a single metric works
better in all contexts. This is why the combination of
multiple predictors can provide better results. We are
confident that plugging other orthogonal predictors in
the “hybrid” prediction model could further increase the
prediction accuracy.

Summary for RQ3. By combining the eleven pre-
dictors exploited by the five prediction models
subject of our study it is possible to obtain a boost
of prediction accuracy up to +5% with respect to
the best performing model (i.e., DCBM) and +9%
with respect to the best combination of baseline
predictors. Also, the top five “hybrid” prediction
models include at least one of the predictors pro-
posed in this work (i.e., the structural and semantic
scattering of changes) and the best model includes
both.

6 THREATS TO VALIDITY

This section describes the threats that can affect the
validity our study. Threats to construct validity concern
the relation between the theory and the observation, and
in this work are mainly due to the measurements we
performed. This is the most important type of threat for
our study and it is related to:
• Missing or wrong links between bug tracking systems

and versioning systems [51]: although not much can
be done for missing links, as explained in the design
we verified that links between commit notes and
issues were correct;

• Imprecision due to tangled code changes [52]. We can-
not exclude that some commits we identified as
bug-fixes grouped together tangled code changes,
of which just a subset represented the committed
patch.
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• Imprecision in issue classification made by issue-tracking
systems [19]: while we cannot exclude misclassifica-
tion of issues (e.g., an enhancement classified as a
bug), at least all the systems considered in our study
used Bugzilla as issue tracking system, explicitly
pointing to bugs in the issue type field;

• Undocumented bugs present in the system: while we
relied on the issue tracker to identify the bugs fixed
during the change history of the object systems, it
is possible that undocumented bugs were present
in some classes, leading to wrong classifications of
buggy classes as “clean” ones.

• Approximations due to identifying fix-inducing changes
using the SZZ algorithm [45]: at least we used heuris-
tics to limit the number of false positives, for exam-
ple excluding blank and comment lines from the set
of fix-inducing changes.

Threats to internal validity concern external factors we
did not consider that could affect the variables being
investigated. We computed the developer’s scattering
measures by analyzing the developers’ activity on a
single software system. However, it is well known that,
especially in open source communities and ecosystems,
developers contribute to multiple projects in parallel
[53]. This might negatively influence the “developer’s
scattering” assessment made by our metrics. Still, the
results of our approach can only improve by considering
more sophisticated ways of computing our metrics.

Threats to conclusion validity concern the relation be-
tween the treatment and the outcome. The metrics used
in order to evaluate our defect prediction approach (i.e.,
accuracy, precision, recall, F-Measure, and AUC), are
widely used in the evaluation of the performances of
defect prediction techniques [15]. Moreover, we used
appropriate statistical procedures, (i.e., PCA [54]), and
the computation of overlap metrics to study the orthog-
onality between our model and the competitive ones.

Since we had the necessity to exploit change-history
information to compute the scattering metrics we pro-
posed, the evaluation design adopted in our study is
different from the k-fold cross validation [55] generally
exploited while evaluating bug prediction techniques.
In particular, we split the change-history of the object
systems into three-month time periods and we adopted
a three-month sliding window to train and test the
experimented bug prediction models. This type of vali-
dation is typically adopted when using process metrics
as predictors [8], although it might be penalizing when
using product metrics, which are typically assessed us-
ing a ten-fold cross validation. Furthermore, although
we selected a model exploiting a set of product metrics
previously shown to be effective in the context of bug
prediction [1], the poor performances of the CM model
might be due to the fact that the model relies on too
many predictors, resulting in a model overfitting. This
conjecture is supported by the results achieved in the
context of RQ3, where we found that the top five “hy-

brid” prediction models include only a subset of code
metrics.

Threats to external validity concern the generalization
of results. We analyzed 26 Apache systems from different
application domains and with different characteristics
(number of developers, size, number of classes, etc).

However, systems from different ecosystems should
be analyzed to corroborate our findings.

7 CONCLUSION AND FUTURE WORK

A lot of effort has been devoted in the last decade to
analyze the influence of the development process on
the likelihood of introducing bugs. Several empirical
studies have been carried out to assess under which
circumstances and during which coding activities devel-
opers tend to introduce bugs. In addition, bug prediction
techniques built on top of process metrics have been
proposed. However, changes in source code are made by
developers that often work under stressing conditions
due to the need of delivering their work as soon as
possible.

The role of developer-related factors in the bug pre-
diction field is still a partially explored area. This paper
makes a further step ahead, by studying the role played
by the developer’s scattering in bug prediction. Specifically,
we defined two measures that consider the amount of
code components a developer modifies in a given time
period and how these components are spread struc-
turally (structural scattering) and in terms of the responsi-
bilities they implement (semantic scattering). The defined
measures have been evaluated as bug predictors in an
empirical study performed on 26 open source systems.
In particular, we built a prediction model exploiting our
measures and compared its prediction accuracy with
four baseline techniques exploiting process metrics as
predictors. The achieved results showed the superiority
of our model and its high level of complementarity with
respect to the considered competitive techniques. We
also built and experimented a “hybrid” prediction model
on top of the eleven predictors exploited by the five
competitive techniques. The achieved results show that
(i) the “hybrid” is able to achieve a higher accuracy with
respect to each of the five models taken in isolation, and
(ii) the predictors proposed in this paper play a major
role in the best performing “hybrid” prediction models.

Our future research agenda includes a deeper inves-
tigation of the factors causing scattering to developers,
and negatively impacting their ability of dealing with
code change tasks. We plan to reach such an objective
by performing a large survey with industrial and open
source developers. We also plan to apply our technique
at different levels of granularity, to verify if we can point
out buggy code components at a finer granularity level
(e.g., methods).



20

REFERENCES
[1] V. Basili, L. Briand, and W. Melo, “A validation of object-oriented

design metrics as quality indicators,” Software Engineering, IEEE
Transactions on, vol. 22, no. 10, pp. 751–761, Oct 1996.
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