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Abstract Test flakiness is a phenomenon occurring when a test case is non-
deterministic and exhibits both a passing and failing behavior when run
against the same code. Over the last years, the problem has been closely inves-
tigated by researchers and practitioners, who all have shown its relevance in
practice. The software engineering research community has been working to-
ward defining approaches for detecting and addressing test flakiness. Despite
being quite accurate, most of these approaches rely on expensive dynamic
steps, e.g., the computation of code coverage information. Consequently, they
might suffer from scalability issues that possibly preclude their practical use.
This limitation has been recently targeted through machine learning solutions
that could predict the flakiness of tests using various features, like source code
vocabulary or a mixture of static and dynamic metrics computed on individ-
ual snapshots of the system. In this paper, we aim to perform a step forward
and predict test flakiness only using static metrics. We propose a large-scale
experiment on 70 Java projects coming from the iDFlakies and FlakeFlag-
ger datasets. First, we statistically assess the differences between flaky and
non-flaky tests in terms of 25 test and production code metrics and smells,
analyzing both their individual and combined effects. Based on the results
achieved, we experiment with a machine learning approach that predicts test
flakiness solely based on static features, comparing it with two state-of-the-art
approaches. The key results of the study show that the static approach has
performance comparable to those of the baselines. In addition, we found that
the characteristics of the production code might impact the performance of
the flaky test prediction models.
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1 Introduction

Regression testing is a widely used approach to verify whether newly commit-
ted code changes introduce software faults [75]. Developers rely on test cases
to decide on whether to merge pull requests or even deploy the entire system
[26]. Perhaps more importantly, developer’s productivity is partially depen-
dent on the outcome of test cases [14,53]: this is mainly due to their ability to
identify real faults in a timely and reliable fashion [73].

Unfortunately, even tests can be affected by defects and, sometimes, they
can suffer from the so-called flakiness [50]: this happens when a test exhibits
both a passing and failing behavior when run against the same code, being
therefore unreliable and producing a non-deterministic outcome. While the
amount of flaky tests in software systems is typically limited - according to pre-
vious literature on the matter [21,22,53], flakiness explicitly arises in around
2% of the tests. Nonetheless, it is hard to precisely estimate the amount of
flaky tests because of their intrinsic non-determinism, i.e., tests might be flaky
even though their flakiness does not arise. This is why researchers advocated
the need of considering all tests as potentially flaky [17,37]. At the same time,
flaky tests have a profound impact on testing activities: (1) They may hide real
defects and be hard to reproduce because of their non-determinism [50]; (2)
They increase testing costs, as developers invest time debugging failures that
are not real [44]; and (3) They can reduce the overall developer’s confidence
on test cases, potentially leading to neglect real defects [21]. In addition, the
presence of flaky tests might impact a number of collateral testing tools. In
mutation testing, the mutation score might lead to variations due to flakiness,
confounding this variability with the influence of the quality of the test that
the mutation score aims at addressing [17]. Still, in automated program re-
pair, the certainty that a repair is correct may be affected by flaky tests, other
than possibly making the repair technique unable to localize the point where
to attempt a patch [17]. The potential harms of test code flakiness have been
made more and more popular by practitioners and companies worldwide (e.g.,
[22,53]), who all called for automated mechanisms to detect and deal with it.

The software engineering research community has been contributing to the
body of knowledge through empirical investigations aiming at eliciting the
causes of flakiness [21,46,47,50,52] as well as with the definition of techniques
for detecting and addressing them [8,18,89,99]. Despite the promising results
achieved so far, most of the identification techniques require test cases to be
re-run multiple times: for instance, the most well-known approach is called
ReRun and consists of executing the same test N times, with N being a
variable that goes from dozens to hundreds of executions. As the reader may
understand, the poor scalability of ReRunmakes it often unusable in practice;
in addition, there is no guarantee to discover the flakiness over the N runs.

To face this limitation, researchers devised alternatives like DeFlaker
[8], that works at commit-level and relies on the differential code coverage ex-
tracted from the analysis of a test execution from a commit to another. In a
complementary manner, the use of machine learning approaches has been pro-
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posed. Pinto et al. [76] and further replications [13,33] exploited the test code
dictionary to discriminate the presence of potential flakiness. More recently,
Alshammari et al. [2] devised a supervised learning model that, using a mix-
ture of code and coverage metrics, can predict flaky tests with an accuracy up
to 86%. While these previous research efforts have shown promising results,
they all involve steps that might deteriorate the scalability of the proposed
techniques. More particularly, the techniques proposed by Bell et al. [8] and
Alshammari et al. [2] require the computation of dynamic features, while the
approach by Pinto et al. [76] relies on natural language processing, which is
known to be costly as the corpus of the text to analyze increases in size [6].

To face the scalability limitations of the currently available techniques, our
previous work [77] aimed at conducting a feasibility study to assess whether
a static prediction of test flakiness would be possible, i.e., whether we could
identify likely flaky test cases only based on their design. In particular, we
took into account the iDFlakies dataset,1 and investigated the differences
between flaky and non-flaky tests in terms of 25 test and production code
metrics and smells. We first studied the distribution of these indicators in-
dividually, observing that a number of metrics and smells are more likely to
be observed on flaky tests. Then, we also considered the combined effects of
the indicators by computing a logistic regression model relating them to test
flakiness: also in this case, the results showed the presence of static indicators
that are statistically connected to flakiness.

The promising results achieved by our previous work [77] indicated the
feasibility of devising a static approach to flaky test prediction. Hence, in this
paper, first we extend our preliminary work by replicating the initial analyses
on the FlakeFlagger dataset,2 in an effort of increasing the generalizability
of our results. Secondly, we devise a static flaky test prediction model that can
identify flaky tests only considering the design of test cases. Last but not least,
we conduct an empirical study that analyzes the performance of the devised
model, other than comparing it with two baseline approaches based on source
code vocabulary and a mixture of static and dynamic analysis. The key find-
ings of the paper show that static features can be used to characterize flaky
tests: this is especially true for metrics and smells connected to source code
complexity. In addition, the newly devised machine learning model achieves
performance up to 74% in terms of F-Measure, being no worse than techniques
that adopt more complex and/or dynamic computations. Perhaps more im-
portantly, our approach is, overall, more precise than the others, therefore
minimizing the risks of developers wasting time in diagnosing wrong recom-
mendations. As such, we conclude that the proposed model can represent a
more practical solution, which makes the flaky test prediction problem more
scalable. To sum up, our work provides the following novel contributions:

1The iDFlakies dataset: https://sites.google.com/view/flakytestdataset/home.
2The FlakeFlagger dataset: https://zenodo.org/record/4450723#.YXetWprP2Uk.
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1. We provide a large-scale empirical investigation of the distribution of static
features in flaky and non-flaky tests, showing their individual and combined
effects on the likelihood of a test to exhibit a flaky behavior;

2. We devise the first fully static machine learning approach for flaky test
prediction, which relies on the design of test cases and ensures performance
comparable with other, more sophisticated techniques previously proposed;

3. We release a publicly available replication package [78], where we provide
access to data, scripts, and results of our experiment. These data can be
used by other researchers to verify, replicate, and further investigate the
relation between static features and flaky tests.

Structure of the paper. Section 2 overviews the background and the related
literature, summarizing how our work differs from the previous ones. Section 3
describes the research questions and the context, while Section 4 reports on the
empirical variables of the study. Sections 5 to 8 describe the methodology and
the results that address our research questions, while Section 9 describes the
threats to validity of our study, other than the mitigation strategies applied.
Section 10 concludes the paper and outlines our future research agenda.

2 Background and Related Work

This section describes the background and the related work that are the foun-
dations of our contributions.

2.1 Terminology

We provide in the following the definitions of the main elements and concepts
targeted by our empirical investigation. In particular:

‘Test case’. A test case is defined as “a set of inputs, execution conditions,
a pass/fail criterion, an execution environment, its dependencies, and the
corresponding production code”. This is an extended version of the 829-1998
IEEE standard definition of test case [3]: according to previous work [21,
50], the definition includes the additional factors that may play a role in
the specific context of test code flakiness, like execution environment, test
dependencies, and corresponding production code.

‘Regression testing’. Regression testing is defined as “the verification activ-
ity that allows developers to control newly committed code for the presence
of defects” [97]. Our work focuses on regression testing activities, as the
datasets employed were originally collected by means of multiple re-runs of
test cases against the change history of the considered projects (more details
later in Section 3.2). The granularity of our experiments is at unit test code
level, which means that we target test cases that aim at exercising individual
components of the production code [75].
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‘Flaky test’. A flaky test is defined as “a non-deterministic test that exhibits
both a passing and failing behavior when run against the same code. We
followed the definition provided by Luo et al. [50], who also indicated that
test code flakiness may arise because of multiple root causes pertaining to
how the test code is designed, executed, or dependent from other code.

2.2 Related work

The problem of flaky tests is becoming more and more serious for both re-
searchers and developers [22,53]. Harman and O’Hearn [37] even suggested
that all tests should be considered flaky, recommending the development of
tools and techniques that can automatically assess the likelihood of a new test
becoming flaky in the future. Comprehensive analyses of the state of the art
were presented in the recent systematic literature reviews conducted by Parry
et al. [66] and Zheng et al. [100].

A first research angle frequently treated concerns with the identification
of the root causes making tests flaky. In this respect, Luo et al. [50] manually
inspected 1,129 commits to elicit a taxonomy reporting ten root causes of
test flakiness. Thorve et al. [90] conducted a similar study in the context of
Android apps, concluding that some root causes are similar to those identified
by Luo et al. [50], while others relate to program logic and UI. Eck et al. [21]
built upon these papers to identify additional root causes, shedding light on
the potential contribution provided by production code factors. When defining
the independent variables to consider in our study, we took the work by Eck et
al. [21] into account and computed a number of production code metrics and
smells. Furthermore, the relation between design issues in test cases, a.k.a. test
smells [19], and test flakiness was observed by Camara et al. [12]. As explained
later in the paper, this was the main reason why we also considered test smells
as independent variables of the study. Still on the empirical side, Gruber et
al. [30] proposed a new dataset of 7,571 flaky tests in Python, which were
identified by rerunning the test suites 400 times; the authors also suggested
that flakiness is equally prevalent in Python as it is in Java.

Among the various causes of flakiness, the order dependency one has gained
more attention. While Zhang et al. [99] proposed an empirical study on the test
independence assumptions, several techniques have been proposed to detect
these types of flaky tests: for instance, Gyori et al. [31] proposed a technique for
finding shared states between tests, while Bell et al. [7] proposed an approach
to detect all dependencies between test cases in large projects. More recently,
Shi et al. [86] proposed iFixFlakies, a tool that automatically fixes real order-
dependent tests. The authors evaluated this tool on 58 flaky tests and the tool
has correctly fixed all of them. With respect to the research on test order
dependency, it is worth clarifying that the goal of the approach proposed in
our experimentation is that of predicting the emergence of a flakiness behavior,
rather than focusing on the classification of the root cause leading to flakiness.
As such, even though issues concerned with test order dependency might be
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potentially predicted by means of our approach, it cannot report whether a
problem identified is actually due to this root cause.

Interestingly, researchers and practitioners have been also working together
on the investigation of flaky tests. There is indeed a growing number of in-
dustrial studies that propose empirical investigations and tools. Lampel et
al. [49] proposed a new approach that automatically classifies failing jobs as
pertaining to software bugs or flaky tests. Rehman et al. [81] quantified how
often a test fails without finding any defect in production code by means of
an empirical investigation across four large projects at Ericsson.

In this practitioner’s context, there is also a growing number of studies
that target the developer’s opinion. Habchi et al. [32] conducted an inter-
view study involving 14 industrial practitioners. Their results confirmed the
problem’s relevance, but also pointed out that in a non-negligible amount of
times, flakiness stems from interactions between the system components, the
testing infrastructure, and other external factors. Still, on a similar line of re-
search, Gruber and Fraser [29] surveyed 335 professional software developers
and testers in different domains; their results confirmed the relevance of the
problem especially using automated testing.

Another relevant research area pertains to the proposal of tools and tech-
niques to automatically detect flaky tests. Bell et al. [8] proposed DeFlaker,
a tool that analyzes the differences in code coverage between one commit and
another to alert developers of the emergence of some sort of flakiness. Lam
et al. [45] introduced iDFlakies, a tool that detects flaky tests by rerunning
tests in different orders. It is important to note that, besides proposing novel
techniques, these studies also publicly released datasets that represented the
starting point of later research.

By design, DeFlaker and iDFlakies are able to detect flakiness only
after its emergence, namely only after that the developers have introduced
flaky tests. In this sense, they could be useful to diagnose flaky tests, but not
for preventing their introduction. For this reason, a recent trend concerns the
definition of predictive methods that could alert developers of the possible in-
troduction of test flakiness in advance by looking at the static and/or dynamic
characteristics of tests. FlakeFlagger [2] considered static and dynamic fea-
tures to predict flakiness. In this work, Alshammari et al. [2] also released their
dataset, which was built by executing the same tests 10,000 times and identify-
ing possible non-deterministic behaviors. Bertolino et al. [11], Pinto et al. [76]
and their replications [13,33] worked on an orthogonal approach, proposing
approaches based on the vocabulary contained in a test method body. They
only relied on textual metrics, without considering other features.

With respect to the studies discussed above and the results obtained from
our previous feasibility study [77], our work can be considered as complemen-
tary, since it contributes with an additional technique to predict test flakiness
that only considers static metrics. It is important to emphasize that our re-
search is driven by a key consideration: a prediction only based on static
metrics could lead to benefits in terms of (1) computational costs, as it would
avoid the computation of dynamic metrics that would require the execution
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of the entire test suite; (2) interpretability, as it would allow developers to
focus on a refactoring of test cases guided by the static metrics and smells
that impact more the likelihood of the test becoming flaky.

3 Research Questions and Context Selection

The goal of the study was to investigate to what extent a fully static approach
can predict the presence of flaky tests, with the purpose of assisting develop-
ers in the scalable identification of test flakiness. The perspective is of both
researchers and practitioners: the former are interested in understanding the
capabilities of a prediction model based on code- and test-related static met-
rics when it comes to the identification of flaky tests; the latter are interested
in evaluating which are the features more connected to flakiness and that,
therefore, should be kept under control when evolving source code.

3.1 Research Questions

Our study was structured around four research questions. We started by con-
sidering both test and production code metrics and smells. Some of these
metrics were related to the size and complexity of both production and test
code, e.g., McCabe cyclomatic complexity or the number of lines of the test
suite (TLOC ). Other metrics pertained to bad programming practices applied
while developing either production or test code. For instance, we considered
production code smells [23] such as Complex Class and Spaghetti Code, other
than test smells [19] like Eager Test and Resource Optimism.

While the research community has identified test-related aspects as those
primarily connected to the potential flakiness of test code [50], we considered
production code metrics based on the findings reported in a recent work by Eck
et al. [21]. We chose this dimension because in a non-negligible number of cases,
the root-cause of test flakiness might be due to errors done in the production
code, e.g., when managing concurrency. This reasoning let us define our RQ1:
we started by analyzing how the above mentioned metrics correlate to test
flakiness. We focused on their individual effect by statistically comparing how
their values differ in the sets of flaky and non-flaky tests. We asked:

RQ1. What are the individual effects of production and test code quality
metrics on the prediction of flaky tests?

While the results of the first research question might already provide in-
sights into the relations between static metrics and test flakiness, we performed
an additional step with the aim of verifying whether the differences observed in
RQ1 were still statistically significant when the considered metrics were com-
bined: as shown in literature [71], this step is required to establish unbiased
conclusions on the capabilities of metrics for predictive models:
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RQ2. What are the combined effects of production and test code quality
metrics on the prediction of flaky tests?

Afterwards, we went beyond the statistical analyses and verified the actual
effectiveness of static metrics for the prediction of flaky tests. This led to the
definition of a fully static solution that can identify flaky tests, hence allowing
us to measure how good static metrics are at predicting flakiness. We then
evaluated the performance of the proposed approach. Hence, we asked our
third research question:

RQ3. How effective are these static metrics at predicting flaky tests?

As a final step of our empirical investigation, we compared the prediction
performance of the proposed static approach to existing techniques, in an
effort of understanding how close are the capabilities of an approach only
based on the design of test cases with respect to approaches that employ more
seemingly accurate dynamic or textual metrics. The last research question
therefore assessed the extent to which our approach may be feasible in practice,
namely whether it can be useful in comparison to other existing approaches.
Indeed, should other approaches perform notably better than ours, this would
imply that a practitioner should not prefer our solution but rather go for
alternative approaches. Hence, we asked our final research question (RQ4):

RQ4. How does the devised fully static approach work when compared to
existing, state-of-the-art flaky test prediction approaches?

The outcome of our research aimed at enlarging the current body of knowl-
edge on flaky test prediction, providing insights into the value of design-related
characteristics for the detection of test flakiness, other than a quantitative as-
sessment of static flaky test prediction with respect to existing techniques.
In terms of reporting, we followed the ACM/SIGSOFT Empirical Standards3

and, in particular, the “General Standard” and “Data Science” guidelines.

3.2 Context of the Study

The context of our study consisted of Java open-source projects that belong
to the iDFlakies and FlakeFlagger datasets.

The rationale behind the selection of these datasets was driven by their
availability, other than their diversity. In particular, the projects are all avail-
able on GitHub and are developed by different communities—seven projects
belong to the Apache Software Foundation. Furthermore, the projects
have a size ranging from some hundreds to one million lines of code. In par-
ticular, we analyzed 24 projects coming from FlakeFlagger dataset and
82 projects deriving from iDFlakies dataset. Seven of these projects were

3Available at: https://github.com/acmsigsoft/EmpiricalStandards.
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in common between the two datasets, yet they referred to different commits:
for this reason, we did not have duplicates and, therefore, took all projects
into account. Looking at the scope of the various projects, we observed that
they vary very much, e.g, some projects relate to http requests and responses,
other to container orchestration. A full report of the domains of the consid-
ered projects is available in our online appendix [78]. Nonetheless, the domain
observations were already insightful to understand that test code flakiness is a
widespread problem that affects projects independently from the domain. In
terms of testing activities, all the projects make use of a continuous integra-
tion pipeline that allows code changes to be verified against a test suite. With
the use of a build tool, e.g., Maven, developers can configure the test cases
that must be run when new changes are pushed onto the repository. While
we cannot know whether the developers of the considered projects defined a
test plan document before configuring the tests to run, it is important to no-
tice that all projects establish contribution guidelines that contributors must
follow and that include indications on how to conduct testing activities. As
such, the testing activities are not left to the developer’s willingness to perform
them, but are defined and updated over time. This increases our confidence in
the quality assurance procedures adopted by the considered projects.

Perhaps more importantly, we relied on those datasets because of the pro-
cedures followed to identify the flakiness information: when populating iD-
Flakies and FlakeFlagger, Lam et al. [45] and Alshammari et al. [2] indeed
ensured the equivalence of test cases and preserved the testing conditions by
re-executing test cases in the exact order intended by the developers of those
projects. Indeed, they re-run tests following the order and testing conditions
established through the build tools.

When addressing the research questions of the study, we considered the
two datasets individually, hence reporting the results for each dataset. This
was done because the data collection methods used to build the two datasets
were different and, therefore, we avoided merging them. In addition, when
addressing RQ4, we only focused on the FlakeFlagger dataset since it
reported data on the features employed to build the baseline approaches used
for comparison (more details are reported in Section 8).

4 Empirical Study Variables

The first step to address the research questions posed in our study concerned
with the definition of the empirical study variables, namely (1) the dependent
variable to predict and (2) the features to be used as independent variables.

4.1 Dependent Variable

The dependent variable of our study is the test flakiness. The information
about the flakiness or non-flakiness of a test case is reported in the iDFlakies
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[45] and FlakeFlagger datasets [2]. In particular, test cases are either la-
beled as “flaky” or “non-flaky”. As such, our statistical exercise will consider
a binary dependent variable.

4.2 Independent Variables

The ultimate goal of our work was to verify the extent to which statically
computable metrics can be adopted to predict test flakiness. We considered a
total of 25 factors along three dimensions i.e., production and test code metrics,
code smells, and test smells. Table 1 reports the name and description of the
considered metrics, other than the indication of whether they were computed
on production or test code. The rationale and motivations for selecting them
is discussed in the following.

Production and test code metrics. This set is composed of ten factors
measuring the size and complexity of production and/or test code. Some of
these metrics belong to the Object-Oriented metric suite proposed by Chi-
damber and Kemerer [16], e.g., coupling between object classes (CBO), while
other metrics come from other catalogs, e.g., the McCabe cyclomatic com-
plexity [51] or the Halstead’s metrics [55]. The rationale behind the selection
of these metrics was driven by our willingness to verify whether large and/or
complex code might have an impact on the likelihood of observing a flaky
behavior of the test case. In addition, previous analyses [68,71] investigated
those metrics to understand the robustness of test code. In this sense, our
study can complement previous findings through an understanding of the role
of production and test code metrics for test flakiness. More particularly, we
computed TLOC and McCabe on the test code, while the other eight metrics
were computed on the production code. To compute these metrics, we relied
on a tool that we have developed within our research lab and that was used
for a number of previous studies (e.g., [69,71,72]). Its use was not only moti-
vated by our familiarity with the instrument, but also because of the extensive
testing activities we could perform on this tool over the years. For the sake of
replicability, we made this tool available in our online appendix [78].

Code smells. These indicate the presence of sub-optimal solutions to the
development of source code [23] that might contribute to the increase of tech-
nical debt [62]. It is reasonable to believe that writing tests for smelly code
may be harder and might possibly lead them to be less effective—this was
somehow showed by Grano et al. [27]. Hence, we run our own instance of
Decor [54], a state-of-the-art code smell detector, to count the number of in-
stances of five code smell types having different characteristics and targeting
well-known design issues, i.e., Class Data Should Be Private, Complex Class,
Functional Decomposition, God Class, and Spaghetti Code [23]. Our tool imple-
ments the original rules proposed by Moha et al. [54]. These code smells were
computed on production code only, as our goal was to consider the potential
effect that design issues in production code have on the likelihood of tests to
be flaky. While other code smell detectors have been proposed in literature
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[4,67], we opted for Decor for three main reasons. First, it has been widely
experimented in literature, showing good detection performance [54,63,64].
Secondly, it might be employed when performing large-scale studies, given its
lightweight nature [91]. Third, its usage allowed us to focus on a larger variety
of code smell types: other detectors can indeed identify a lower amount of
code smells [82]. To enable replications, we made our own version of Decor
accessible in our online appendix [78].

Test smells. Similarly to code smells, these are defined as bad program-
ming practices in unit test code [19]. As originally defined, test smells may
indeed reveal the presence of issues that induce test flakiness [19]. Moreover,
Camara et al. [12] showed a correlation between test smells and flaky tests. For
these reasons, we run a state-of-the-art test smell detector named VITRuM
[70] to verify whether test smells have an impact on flakiness. The detec-
tor identifies seven test smell types, i.e., Assertion Roulette, Conditional Test
Logic, Eager Test, Fire and Forget, Mystery Guest, Resource Optimism, and
Sensitive Equality. Also in this case, it is worth pointing out that other de-
tectors have been proposed over the last decade [28,48,65,74,92]. In this case,
the selection of VITRuM was driven by two observations. On the one hand,
this is a tool we have a direct access to and, for this reason, we could directly
interact and run it against the considered datasets. On the other hand, the
tool implements multiple test smell types that have been originally associated
to test flakiness, hence allowing us to assess their actual relation to flaky tests.

When computing metrics and smells on production code, we had to link
test cases to their correspondent production code—otherwise, we could not
investigate the value of the production code metrics. In this respect, we used
a pattern matching approach based on naming conventions and already used
in previous work (e.g., [27,33,71]). This approach simply uses the name of a
production class (e.g., ‘ClassName’) as the base for finding the corresponding
test class, which will be the one whose name is the same as the one of the
production class, but includes the prefix/postfix ‘Test’ (e.g., ‘TestClassName’
or ‘ClassNameTest’). Whenever this pattern matching failed, the production
class associated with the test class could not be detected and, for this reason,
we had to discard the test from our analysis. Despite this practical limitation,
the selection of this pattern matching approach was mainly driven by the good
compromise between accuracy and scalability that it ensures; more complex
approaches, e.g., those based on static and dynamic slicing [80], can be hardly
employed on a large scale. In an effort of conducting a larger experimentation
of our approach, we therefore accepted the intrinsic limitation of the pattern
matching method and excluded the tests/projects where the developers did
not use the appropriate naming conventions.

The outcome of this linking process led to the modification of the initial
datasets. In particular, we had to discard five projects from the FlakeFlag-
ger dataset and 31 projects from the iDFlakies one. In all these cases, the
developers did not follow the above-mentioned naming conventions, hence not
allowing us to properly link production and test classes. As for the remaining



12 Valeria Pontillo et al.

Table 1: List of metrics used as independent variables.

Name Description Computed
on ...

Production and Test Code Metrics
CBO Coupling Between Object, i.e., the number of dependencies a class has with

other classes [16].
Production
Class

Halstead
Length

The total number of operator occurrences and the total number of operand
occurrences.

Production
Class

Halstead Vo-
cabulary

The total number of distinct operators and operands in a function. Production
Class

Halstead Vol-
ume

Proportional to program size, represents the size, in bits, of space necessary
for storing the program.

Production
Class

LOC Lines of Code, counting both source and comment lines. Production
Class

LCOM2 Lack of Cohesion of Methods version 2, i.e., the percentage of methods that
do not access a specific attribute averaged over all attributes in the class.

Production
Class

LCOM5 Lack of Cohesion of Methods version 5, i.e., the density of accesses to at-
tributes by methods.

Production
Class

McCabe It uses to indicate the number of linearly independent paths through a pro-
gram’s source code [51].

Test Class

MPC Message Passing Coupling, measures the numbers of messages passing among
objects of the class.

Production
Class

RFC Response For a Class, i.e., the number of methods (including inherited ones)
that can potentially be called by other classes [16].

Production
Class

TLOC Number of lines of code of the Test Suite. Test Class
WMC Weighted Methods per Class, i.e., the sum of the complexities (i.e., McCabe’s

Cyclomatic Complexity) of all the methods in a class [16]. Note that Chi-
damber and Kemerer [16] did not define a predefined complexity metric to
consider for the computation of WMC. In our case, we opted for the McCabe
metric to account for the individual complexity of methods.

Production
Class

Code Smells
Class Data
Should Be
Private

When a class exposes its attributes, violating the information hiding principle. Production
Class

Complex Class When a class has a high cyclomatic complexity. Production
Class

Functional De-
composition

When in a class inheritance and polymorphism are poorly used. Production
Class

God Class When a class has huge dimension and implementing different responsibilities. Production
Class

Spaghetti Code When a class has no structure and declares long method without parameters. Production
Class

Test Smells
Assertion Den-
sity

Percentage of assertion statements in the test code. Test Class

Assertion
Roulette

When a test method has multiple non-documented assertions. Test Class

Conditional
Test Logic

Conditional code within a test method negatively impacts the ease of com-
prehension by developers.

Test Class

Eager Test When a test method invokes several methods of the production object. Test Class
Fire and For-
get

A test that is at risk of exiting prematurely because it does not properly wait
for the results of external calls.

Test Class

Mystery Guest When a test method utilizes external resources (e.g. files, database, etc.). Test Class
Resource Opti-
mism

When a test method makes an optimistic assumption that the external re-
source (e.g., File), utilized by the test method, exists.

Test Class

Sensitive
Equal.

When the toString method is used within a test method. Test Class

projects, the outcome of the linking process led us to the removal of some test
cases, including all methods called ‘setUp’ and ‘tearDown’—these represent
fixtures that only enable the correct allocation an de-allocation of the resources
to be used by the tests and could not clearly linked to any production class.
As a consequence of these filtering actions, the iDFlakies dataset finally con-
tained 44,592 test cases (including 281 flaky tests) pertaining to 51 projects,
while the FlakeFlagger dataset contained 10,914 test cases (including 671
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flaky tests) of 19 projects. For the sake of verifiability, in our online appendix
[78] we reported the list of the projects discarded from the analysis.

5 RQ1 - The individual effects of metrics on test flakiness

This section discusses the research methodology and the results achieved when
we analyzed the individual effects of metrics considered.

5.1 Research Methodology

We assessed if the independent variables were different in the set of flaky and
non-flaky sets in both datasets. As a first step, we normalized the metric values
through the min-max scaling—this was needed because the metric values came
in different range of values and, as such, we used a min-max scaling to have
them under the same representation range [36]. We reported in our online
appendix [78] the updated dataset used to address the research question.

We showed boxplots depicting the distribution of the metrics and smells.
Then, we computed the Mann-Whitney and Cliff’s Delta tests to verify the
statistical significance of the observed differences and their effect size. The
choice of non-parametric methods came from the verification of the normality
of the distributions. The data indeed followed a non-normal distribution even
after the min-max scaling normalization.

5.2 Analysis of the Results

Figure 1 and 2 depict the boxplots of the distributions of metrics and smells
which exhibit some differences between the sets of flaky and non-flaky tests in
the two datasets. The boxplots showing all factors are reported in our repli-
cation package [78]. We can observe that some factors vary in the two sets in
both boxplots: this is especially true when considering the production and test
code metrics for which the medians of flaky tests and corresponding produc-
tion code are often higher than those of non-flaky tests. These results confirm
that flaky tests have a different metric profile than other tests. In particular,
we observe differences in terms of control flow graph-related metrics (e.g., pro-
duction WMC metric computed on tests) and complexity of the expressions
used in the code (e.g., the Halsteald’s metrics). This seems to suggest that
the development of test cases is heavily impacted by complexity measures,
possibly increasing the likelihood to induce flakiness. As for the test-related
factors, the higher median of assertion density in the flaky test set might be
connected to the fact that having more assertions increases the chances to in-
duce flakiness due to restrictive ranges in the values compared within assert

statements [21]. Finally, we observe the severity of the Eager Test smell as a
metric that differs in two sets as distribution but not as median. This smell
measures how focused a test is, namely whether it exercises more methods of
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the production code. Based on our results, we may conjecture that the lack
of focus of tests does not allow them to properly set the environment needed
to exercise the production code: as a consequence, their outcome may depend
on the order of execution of test methods, i.e., the outcome may change if the
environment is (not) set before calling the smelly test.

assertionDensity

assertionRoulette

cbo

conditionalTestLogic

eagerTest

halsteadLength

halsteadVocabulary

halsteadVolume

lcom2

lcom5

loc

mpc

rfc

tloc

tmcCabe

wmc

0.00 0.25 0.50 0.75 1.00

set Flaky NoFlaky

Boxplot Independent Variables iDFlakies dataset

Fig. 1: RQ1. Analysis of the metric profiles of flaky and non-flaky tests on the
iDFlakies dataset.

The results of the statistical tests are reported in Tables 2 and 3 and con-
firm the discussion provided so far. Most of the metrics (17 for the first dataset,
22 for the second) presented a ρ-value<0.05, meaning that the differences be-
tween the distributions of flaky and non-flaky tests are statically significant.
These differences have, however, a small effect size in 14 cases for the first
dataset and in 12 cases for the second dataset. When combining the boxplots
with the statistical results, we could observe cases where the distributions
were very similar yet statistically different, possibly indicating interpretation
errors. These are, for instance, the cases of the McCabe metric and the Con-
ditional Test Logic smell. We took a closer look at these cases, finding that
the differences among the distributions were so small that they could not be
visible with a boxplot representation. Nonetheless, some statistical differences
still arose. As an example, the Cliff’s Delta test for Conditional Test Logic
reported negligible differences, while the test for the McCabe metric reported



Static Test Flakiness Prediction 15

assertionDensity

assertionRoulette

cbo

conditionalTestLogic

eagerTest

halsteadLength

halsteadVocabulary

halsteadVolume

lcom2

lcom5

loc

mpc

rfc

tloc

tmcCabe

wmc

0.00 0.25 0.50 0.75 1.00

set Flaky Test No Flaky Test

Boxplot Independent Variables FlakeFlagger dataset

Fig. 2: RQ1. Analysis of the metric profiles of flaky and non-flaky tests on the
FlakeFlagger dataset.

Table 2: Mann-Whitney and Cliff’s Delta Tests for the iDFlakies dataset. N,
S, M, and L indicate negligible, small, medium and large effect size, respec-
tively. Significant p-value and δ value are reported in bold-face.

Statistic Tests
p-value δ p-value δ

CBO 1.34e−13 S Complex Class 9.85−11 N
Halstead Length 1.17e−06 S FD 0.03 N
Halstead Vocab. 4.70e−09 S God Class 0.38 N
Halstead Volume 3.78e−07 S Spaghetti Code 8.47e−11 N
LOC 7.84e−11 S Assertion Density 1.69e−8 S
LCOM2 < 2.2e−16 S Assertion Roulette 3.81e−10 S
LCOM5 1.63e−14 S Cond. Test Logic 0.10 N
McCabe 0.20 N Eager Test 2.03e−13 S
MPC 1.04e−7 S Fire And Forget 0.74 N
RFC 6.56e−11 S Mystery Guest 0.40 N
TLOC 1.16e−8 S Resource Optimism 0.12 N
WMC 1.80e−12 S Sensitive Equality 0.17 N
CDSBP 1.30e−9 N

small differences. This analysis reinforced the need for considering both box-
plots and statistical perspectives to better interpret our findings.
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Table 3: Mann-Whitney and Cliff’s Delta Tests for the FlakeFlagger
dataset. N, S, M, and L indicate negligible, small, medium and large effect
size, respectively. Significant p-value and δ value are reported in bold-face.

Statistic Tests
p-value δ p-value δ

CBO < 2.2e−16 S Complex Class < 2.2e−16 N
Halstead Length < 2.2e−16 S FD 0.049 N
Halstead Vocab. < 2.2e−16 S God Class 7.7e−4 N
Halstead Volume < 2.2e−16 S Spaghetti Code < 2.2e−16 N
LOC < 2.2e−16 S Assertion Density 5.09e−4 N
LCOM2 < 2.2e−16 S Assertion Roulette 4.28e−3 N
LCOM5 < 2.2e−16 N Cond. Test Logic 3.91e−7 N
McCabe < 2.2e−16 S Eager Test 0.93 N
MPC < 2.2e−16 S Fire And Forget 8.73e−14 N
RFC < 2.2e−16 S Mystery Guest < 2.2e−16 S
TLOC < 2.2e−16 S Resource Optimism 0.10 N
WMC < 2.2e−16 S Sensitive Equality 1.5e−2 N
CDSBP 0.3887 N

Table 4: Summary of statistical significance of metrics between the two
datasets. The gray color indicates that a metric is statistically significant in
the dataset, while it is white otherwise.

iDFlakies FlakeFlagger iDFlakies FlakeFlagger
CBO Complex Class

Halstead Length FD
Halstead Vocab. God Class
Halstead Volume Spaghetti Code

LOC Assertion Density
LCOM2 Assertion Roulette
LCOM5 Cond. Test Logic
McCabe Eager Test
MPC Fire And Forget
RFC Mystery Guest
TLOC Resource Optimism
WMC Sensitive Equality
CDSBP

The statistical results are summarized in Table 4 - for each metric, a gray
cell represents that it is statistically significant on a dataset; white otherwise.
Looking at the table, we can observe that there are some differences between
the two datasets, some metrics are statistically significant only in iDFlakies
dataset, i.e., Class Data Should Be Private, and Eager Test, while other met-
rics are statistically significant only in FlakeFlagger dataset, i.e., McCabe,
God Class, Conditional Test Logic, Fire and Forget, Mystery Guest, and Sen-
sitive Equality. These differences may depend on the different nature of the
datasets, e.g., the number of flaky tests or the number of test cases, yet there
are still a number of metrics that are statistically significant in both datasets,
such as those related to code complexity.
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Finally, we identified the presence of Assertion Roulette smell instances
to be statistically significant in both datasets, while other smells are often
significant in only one of them.

Key findings of RQ1

The metric profile of flaky tests is different from the one of non-flaky
tests. Program complexity metrics, e.g., WMC and Halstead’s measures,
vary when computed on the two sets of tests. We also discovered a set of
production code metrics that might potentially affect test flakiness, e.g,
CBO, the number of lines of production code, and the lack of cohesion
of methods. Our results are consistent, from a statistical perspective, for
some metrics between the two considered datasets.

6 RQ2 - The combined effects of metrics on test flakiness

This section discusses the research methodology and the results achieved when
we analyzed the combined effects of metrics considered.

6.1 Research Methodology

After studying the statistical significance of the distributions of our indepen-
dent variables in both datasets, we proceeded with our second research ques-
tion. In particular,RQ2 aimed at assessing whether the statistically significant
factors identified in the previous research question were still significant when
combining all metrics: this analysis was required since the individual effect of
a factor might be reduced (or even lost) when other factors come into play
[71]. Hence, we took the normalized datasets into account and devised a Logis-
tic Regression Model, which belongs to the class of Generalized Linear Model
(GLM) [57]. We have used this statistical modeling approach because it does
not assume the distribution of data to be normal. In fact, we verified the nor-
mality of the distribution by means of the K-S Lilliefors test [25], which failed
to reject the null-hypothesis, i.e., our data is not normally distributed. Fur-
thermore, the Logistic Regression Model can deal with dichotomous dependent
variables, hence fitting our case.

More formally, let Logit(πf ) be the explained test flakiness f , let β0 be
the log odds of the likelihood of flakiness being increased in a test, and let the
parameters β1 · f1 , β2 · f2, . . . , βn · fn be the differentials in the log odds of
being the likelihood of flakiness increased for a test with characteristics f1, f2,
. . . , fn, the statistical model is represented by the function:

Logit(πf ) = β0 + β1 · f1 + β2 · f2 + · · ·+ βn · fn. (1)

To implement the model, we relied on the glm function available in R

toolkit.4 Moreover, to avoid multi-collinearity we used the vif (Variance Infla-

4https://www.r-project.org/
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tion Factors) function implemented in R to discard highly correlated variables,
putting a threshold value equal to 5 [60]. The interested reader can find addi-
tional information on the correlation between the independent variables in our
online appendix [78]. In particular, we conducted correlation analyses using
the non-parametric Spearman’s rank correlation coefficient [56] with the aim
of providing further insights into the relations between the considered vari-
ables. As a result, we found out that such a correlation analysis reinforced the
results obtained when using the vif function, hence making us more confident
about the decisions made when discarding variables.

6.2 Analysis of the results

Table 5 reports the results of the Logistic Regression Model on the iDFlakies
dataset. As the reader might observe, Table 5 reports only 17 of the indepen-
dent variables; the other eight factors, i.e., Halstead Length, Halstead Volume,
LCOM2, LOC, MPC, RFC, WMC, and Spaghetti Code, were excluded by the
model as a result of the vif analysis. Similarly, Table 6 reports the results of
the Logistic Regression Model on the FlakeFlagger dataset, in which are
shown only 16 of the independent variables; the other nine factors, i.e., Com-
plex Class, Halstead Length, Halstead Volume, LCOM2, LOC, MPC, RFC,
WMC, and Spaghetti Code, were excluded as a consequence of the multi-
collinearity checks.

Table 5: Results for RQ2 achieved by the statistical model and obtained with
iDFlakies dataset.

Generalized Linear Model
Estimate S.E. Sig. Estimate S.E. Sig.

Intercept -4.06 2.09 . Cond. Test Logic -44.82 13.15 ***
TLOC 6.59 2.34 ** Fire and Forget 0.88 1.98
McCabe 1.06 0.67 LCOM5 -1.71 1.15
Assertion Density 1.41 0.57 * CBO 0.34 0.77
Assertion Roulette -23.64 9.03 ** Halstead Voc. 3.69 0.97 ***
Mystery Guest -1.04 2.69 CDSBP 1.99 1.71
Eager Test 4.91 0.97 *** Complex Class 1.11 0.63 .
Sensitive Equality -7.42 7.53 FD -0.57 0.41
Resource Optimism -4.18 4.51 God Class -1196.50 1867.19

For each variable, the tables report the value of the estimate, the standard
error, and the statistical significance. The latter is explained by the number
of stars, i.e., ’***’ indicates a p<0.001, ’**’ indicates a p<0.01, ’*’ indicates
a p<0.05, and ’.’ indicates a p<0.1.

For the sake of understandability, we split the following discussion accord-
ing to the categories of metrics analyzed.
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Table 6: Results for RQ2 achieved by the statistical model and obtained with
FlakeFlagger dataset.

Generalized Linear Model
Estimate S.E. Sig. Estimate S.E. Sig.

Intercept -11.63 168.77 Cond. Test Logic -2.22 1.14 .
TLOC 4.95 0.78 *** Fire and Forget 3.10 0.97 **
McCabe 2.58 0.40 *** LCOM5 -19.08 2.78 ***
Assertion Density 0.53 0.44 CBO 0.61 0.26 *
Assertion Roulette 0.29 0.85 Halstead Voc. 5.58 0.57 ***
Mystery Guest 6.55 0.55 *** CDSBP -1.74 0.84 *
Eager Test -7.16 1.12 *** FD -0.16 0.20
Sensitive Equality -1.13 1.13 God Class 176.33 3657.57
Resource Optimism -6.63 1.42 ***

6.2.1 Results for production and test code metrics

Looking at Table 5, only one metric, namely the test lines of code (TLOC), was
statistically significant on the iDFlakies dataset. The value of the estimate
was positive (6.56), meaning that an increase of lines of test code statistically
leads to an increase of the likelihood of the test being flaky. TLOC was a
relevant metric in the context of the FlakeFlagger dataset too (Table 6),
hence confirming that longer tests are statistically associated to test flakiness.
Besides the lines of test code, we could observe other statistically significant
factors on this dataset. These pertain to various aspects of production code
quality, like cohesion, coupling, and complexity. The LCOM5 estimate was
equal to -19.08: the negative estimate of the metric indicates that an increase in
LCOM5 values corresponds to a decrease of the likelihood of tests being flaky.
In turn, higher LCOM5 values indicate lower cohesion, i.e., the LCOM5 is an
inverse metric. Hence, we can conclude that the lower the cohesion the lower
the likelihood of tests being flaky. This result looks unexpected and points out
the need for further analyses of how cohesion influences software testability. On
the other side, coupling (CBO) and complexity metrics (McCabe and Halstead
Vocabulary) had a positive correlation to flaky tests. Also, in this case, the
results seem to highlight the relevance of production code maintainability for
source testability: an increase in coupling and complexity may indeed make
harder for developers to verify the source code, potentially leading to the
introduction of flakiness.

6.2.2 Results for code smells

When analyzing the correlation between code smells and flakiness, we could
delineate a limited relation. Both Tables 5 and 6 show that most of the code
smells were not statistically significant. Particularly interesting was the case of
God Class (also known as Blob), which appears when a class is poorly cohesive
and maintainable [23]: because of its properties, the code smell has been often
associated to various forms of technical debt [40,62], including a decrease of the
overall effectiveness of test cases [27,87]. According to our results, the negative
effects of God Class do not increase the likelihood of the corresponding tests
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being flaky. The only two exceptions to this general discussion were Complex
Class on the iDFlakies dataset and Class Data Should be Private on the
FlakeFlagger dataset. While the presence of a high cyclomatic complexity
seems to confirm the results obtained inRQ1, the second does not have obvious
connections to flakiness. Looking at the definition, this smell affects classes that
do not encapsulate fields, hence providing public access to their attributes. To
provide an interpretation of this finding, we manually dived into the Flake
Flagger dataset and analyzed a sample of the production classes affected
by this smell. We randomly selected 20 classes affected by each smell and
tried to establish a motivation for the statistical results obtained—this process
was mainly conducted by the first author of the paper, who was supported
by the other authors whenever needed. As a result, we could discover that
the examined classes had, however, high cyclomatic complexity and, most
likely, the statistical significance was due to a casual reflection of the high co-
occurring complexity. In other words, it is not the presence of this code smell
to directly influence the test flakiness but rather a co-occurring phenomenon.
We believe this is reasonable, as code smell capture orthogonal dimensions
with respect to complexity metrics.

6.2.3 Result for test smells

We observed different - or even contrasting - results when considering test
smells over the two considered datasets. The first discussion concerns Eager
Test, which appeared to be positively correlated (estimate=5.07) on the iD-
Flakies dataset and negative correlated (estimate=-7.16) with test flakiness
on the FlakeFlagger one. This smell arises when a unit test exercises more
production methods, hence not being focused on a specific target [19], and has
been previously correlated to a decrease of test code effectiveness [87]. Our
findings are not definitive, as flakiness appears to be impacted by the lack
of focus of the Eager Test smell depending on the cases. In this sense, it is
reasonable to believe that co-occurring phenomena might affect the likelihood
of tests to be both smelly and flaky. Further empirical investigations might
therefore analyze these phenomena further.

Test smells such as Conditional Test Logic and Assertion Roulette were
negatively correlated to flakiness on the iDFlakies dataset, meaning that an
increasing amount of these smells does not imply an increase of the likelihood
of the affected tests to become flaky. On the one hand, the result obtained for
Conditional Test Logic is somehow unexpected. A test affected by this smell
has multiple paths and exercises more execution paths of production code,
possibly being more likely to be non-deterministic. Our findings seem to sug-
gest that this is not true in general but, perhaps, only specific circumstances
influence the harmfulness of the smell. On the other hand, the presence of
an Assertion Roulette implies the lack of documentation. Our findings sug-
gest that having multiple non-documented assertions does not risk to become
harmful for flakiness. Interestingly enough was, however, the role of the asser-
tion density—which measures the amount of assertions per lines of test code.
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We found a positive correlation (estimate=1.43). This indicates that, while
missing documentation has a limited connection to flakiness, the presence of
too many assertions can potentially impact flakiness.

When analyzing the FlakeFlagger dataset, we found two more positive
correlations due to Fire and Forget and Mystery Guest. The former highlights
a technical debt caused by the sub-optimal use of threads: by nature, this
smell is related to concurrency and asynchronous wait issues [12], which are
among the most diffused root causes of test flakiness [21,50]. The latter refers
to the use of external resources within the test code, which make tests more
dependent on those resources. Also in this case, the reliance on external sources
is known to be a root cause of flakiness [21,50]; our findings suggest that test
smell detectors can be a useful means to identify potential cases of flakiness.

In any case, it is worth remarking that the differences noticed between the
two statistical models may be attributable to the different size of the datasets,
other than to the number of flaky tests present, i.e., 281 in the iDFlakies
dataset and 671 in the FlakeFlagger dataset.

Key findings of RQ2

While some production and test code metrics that turned out to be signif-
icant in RQ1 were discarded as a result of vif analysis (e.g., LOC, MPC,
and RFC ), we could confirm that factors connected to code complexity,
e.g., McCabe and LCOM5, and assertion density represent the main dis-
tinguishing elements for test flakiness. In addition, the presence of some
forms of test smells, e.g., Fire and Forget and Mystery Guest, may be used
as a proxy measure to estimate the likelihood of tests to be flaky.

7 RQ3 - An approach to predict test flakiness statically

While the correlations identified in RQ2 do not necessarily indicate causation,
they may suggest some sort of relation between static metrics and test flak-
iness. The analyses done in RQ2 were indeed preliminary and had the goal
to understand whether it is in principle possible to consider static metrics
for flakiness prediction. The promising results achieved let us believe that a
fully static approach to the prediction of flaky tests would have been possi-
ble. Hence, this section discusses the research methodology and the results
achieved when exploring such a possibility.

7.1 Research Methodology

The methodology employed to address RQ3 concerned with the definition of
a machine learning pipeline that would produce reliable measurements of the
performance of a static flaky test predictor based on the most relevant metrics
explored in our study.
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The first step is related to the feature engineering process, that is, the
identification of the relevant metrics to use as predictors. While the statis-
tical exercise conducted in the previous research question already provided
indications on which features are more connected to test flakiness, it does not
necessarily provide insights into the predictive power of the considered metrics
[5]. In other words, RQ2 only reported correlations, while we were interested
in assessing the value of the metrics as features of a machine learner more
precisely. Hence, we performed a further step ahead by (1) running the vif

analysis to discard highly correlated variables [60]; and (2) quantifying the
predictive power of each metric in terms of information gain [79]. While the
former analysis allowed us to limit the scope of our investigation to the ac-
tually relevant features, the latter is a measure of how much a model would
benefit from the presence of a certain predictor. More formally, let P be the
flaky test predictor, let F = {f1, f2, ..., fn} be the set of features composing
P , an information gain algorithm [79] computes the difference from before to
after splitting P on an attribute fi in terms of entropy. It specifically applies
the following formula:

InfoGain(P, fi) = H(P )−H(P |fi) (2)

where the function H(P ) measures the entropy of the model relying on
fi as predictor and the function H(P |fi) represents the entropy of the model
that does not rely on fi as predictor. The specific measure of entropy is based
on the Shannon’s definition [85], namely:

H(P ) = −
n∑

i=1

prob(fi) log2 prob(fi) (3)

Hence, the algorithm measures how much the uncertainty of the model P
is reduced because of a predictor fi. In our work, we computed this measure by
using the Gain Ratio Feature Evaluation algorithm [79]. This ranks features
in descending order of expected information gain, putting the most valuable
features at the top. Similarly to previous work in the field [2,14], we considered
the predictors having an information gain higher than zero as those to use
for the machine learning exercise, i.e., we discarded the metrics that did not
provide any expected beneficial effect on the performance.

Once we had completed the feature engineering process, we proceeded with
the identification of the machine learning algorithm to use. The literature
on flaky test prediction is still embryonic [66] and, for this reason, only a
few studies have been conducted on the best classifiers to use. Therefore, we
took this as an opportunity to benchmark learning algorithms with different
characteristics and making different assumptions on the underlying data. We
evaluated Decision Trees [24], Naive Bayes [96], Multilayer Perceptron [88],
and Support Vector Machine [59] as basic classifiers. Additionally, we also
considered two ensemble techniques such as Ada Boost [83] and Random Forest
[39]—the latter was the one used by Alshammari et al. [2]. To implement the
algorithms, we employed the Scikit-Learn library [43] in Python, which
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provides public APIs that let configure, execute, and validate all the above-
mentioned classifiers.

In terms of training, we had to deal with the fact that the flaky test prob-
lem is an unbalanced problem. The number of flaky test instances represented
the 0.9% and 6.8% of the total amount of test cases in the iDFlakies and
FlakeFlagger datasets, respectively. As such, the test flakiness was largely
underrepresented, threatening the ability of machine learning algorithms to
properly learn the characteristics of flaky tests. Hence, we faced the problem
by (i) experimenting with multiple under- and over-sampling techniques to
balance our data and (ii) comparing them to the results obtained without any
balancing technique. As for under-sampling, we made use of NearMiss 1,
NearMiss 2, and NearMiss 3 algorithms [98]. These techniques first com-
pute the distance between instances of the majority and minority class. Then,
they select for removal instances of the majority class that have the short-
est distance with instances of the minority class: the underlying idea is indeed
that of removing the most similar majority samples to increase the diversity of
the training set and, therefore, let a machine learner more appropriately learn
features. The three versions of the NearMiss algorithm differ for the distance
function used in the first computational step. In addition to these algorithms,
we also experimented with a Random Undersampling approach that ex-
plored the distribution of majority instances in a random fashion and under-
samples them. As for over-sampling, we experimented with Synthetic Minority
Oversampling Technique, a.k.a. SMOTE [15], and advanced versions of this al-
gorithm such as Adaptive Synthetic Sampling Approach, a.k.a. ADASYN [38]
and the Borderline-SMOTE [35]. While the basic SMOTE approach uses
a simple k-nearest neighbor function to identify the minority class instances to
over-sample, ADASYN attempts to over-sample minority class instances ac-
cording to their level of difficulty in learning. Instead, Borderline-SMOTE
builds on top of the concept of borderline examples, namely it selects minority
class instances to over-sample based on how similar they are with respect to
the instances of the majority class. In addition to these algorithms, we also
experimented with a Random Oversampling approach that explores the
distribution of minority instances in a random fashion and over-samples them.

We then followed a similar methodology as previous work [2,76] to evaluate
the models. We employed a stratified ten-fold cross validation [9,41], applying
it on both individual projects and considering all projects as a unique dataset.
More particularly, this strategy first randomly partitions the data into ten folds
of equal size. Then, it iteratively selects a single fold to use as test set, while the
other nine are used as training set. It is important to note that we normalized
the metric values through the min-max scaling after splitting the training
and test sets, namely at each iteration of the ten-fold cross validation - this
was required to perform a realistic validation of the model where the training
and test sets were individually normalized based on their own distributions.
It is worth remarking that we applied the different balancing techniques at
each iteration of the cross-validation rather than before evaluating the models.
In this way, we could avoid forms of data leakage [84] due to the fact that
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the resulting test sets would have been balanced, not representing a real-case
scenario where the number of flaky tests is way lower than the one of stable
tests, i.e., we only balanced the training sets. When training the classifiers, we
also optimized the hyper-parameters of the experimented classifiers using the
Random Search strategy [10]: this is a search-based algorithm that randomly
samples the hyper-parameter space in order to find the best combination of
hyper-parameters maximizing the F-Measure. For the sake of replicability, we
reported the exact hyper-parameter configuration for each classifier in our
replication package [78].

Finally, to evaluate the performance achieved by the experimented models,
we relied on three metrics such as precision, recall, and F-Measure. We also
statistically verified the validity of our findings exploiting the Nemenyi test [58]
for statistical significance and report its results by mean on MCM (Multiple
Comparison with the best) plots [42]. As a significance level, we used 0.05;
the elements plotted above the gray band in the plots are statistically larger
than the others. To perform this last step, we relied on the nemenyi function
available in R toolkit.5

7.2 Analysis of the results

We run each machine learning algorithm experimented against the two
datasets. For the sake of readability, in this section we mainly focus on the best
of those algorithms, while we included the full results in our online appendix
[78]. Figure 3 plots the outcome of the Nemenyi test on the two datasets,
which were the means we used to decide on the best algorithm to explore fur-
ther. More particularly, the dots in the figures represent the median F-Measure
that the algorithms obtained on the two datasets: a blue dot indicates that the
F-Measure of an algorithm is statistically better than the other algorithms,
while the red dots indicate that the performances obtained are not statistically
different. As shown, for both datasets Random Forest was the best classifier
but with a different balancing technique, i.e. Random Oversampling for the
iDFlakies dataset and SMOTE for the FlakeFlagger dataset. It is worth
remarking that the ADASYN technique does not appear in the figure because
it failed on some projects, making the comparison with other techniques unfair.
At the same time, the figure does not show the outcome of the models trained
with under-sampling methods: these models were all consistently worse than
the others and, therefore, we decided not to include them in the figure to ease
readability—detailed results are available in our online appendix [78].

These preliminary results already provide some insights into the capabili-
ties of learning flaky tests. First, we could corroborate previous findings on the
highest performance of Random Forest for this problem [2,45]. Second, simpler
data over-sampling approaches seem to work better than most sophisticated
ones. Indeed, Random Oversampling and SMOTE were consistently bet-
ter on both datasets. The likely reason behind this finding connects to the

5https://www.r-project.org/
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Fig. 3: The likelihood of each technique in within prediction in Nemenyi rank
in terms of F-Measure. Circle dots are the median likelihood, while the error
bars indicate the 95% confidence interval. 60% of likelihood means that a
classification technique appears at the top-rank for 60% of the studied projects.

peculiarities of the data we are considering. Advanced over-sampling tech-
niques are based on the identification of instances which are more difficult to
learn (ADASYN) or borderline (Borderline-SMOTE): while future inves-
tigations should be conducted on this matter, it is possible that the features
characterizing flaky and non-flaky tests are diverse enough not to be considered
as hard to learn or borderline, hence making ADASYN and Borderline-
SMOTE unable to properly work. Last but not least, it is worth reporting
that under-sampling methods always behaved worse than both over-sampling
approaches and the no-balance cases. Being the problem of flaky test predic-
tion highly unbalanced, these methods lead to remove way too many samples
of the majority class, hence leading to a deterioration of the performance due
to the inability to learn neither flaky and non-flaky test characteristics.

Table 7 reports the outcome of the feature engineering process, showing
the information gain (IG) obtained when building the Random Forest model.
Looking at the two lists, we can observe that for the iDFlakies dataset there
are 10 features with an IG>0.001, while for the Flakeflagger dataset there
are 12 features. In addition, the information gain values for the first dataset
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Table 7: List of features not excluded by the VIF analysis and with an infor-
mation gain (IG) higher 0.001 for iDFlakies and FlakeFlagger datasets.

iDFlakies dataset FlakeFlagger dataset
Features IG Features IG
Halstead Vocabulary 0.0338 Halstead Vocabulary 0.1727
CBO 0.0166 Assertion Density 0.0539
LCOM5 0.0089 CBO 0.0359
Complex Class 0.0059 TLOC 0.0284
Eager Test 0.0059 Mystery Guest 0.0157
TLOC 0.0049 McCabe 0.0133
Class Data Should Be Private 0.0021 LCOM5 0.0128
Assertion Roulette 0.0019 Assertion Roulette 0.0107
Assertion Density 0.0010 Conditional Test Logic 0.0076
McCabe 0.0010 Eager Test 0.0066

Fire and Forget 0.0013
Functional Decomposition 0.0011

are lower than those of the second. This might be explained by the nature of
the datasets, as iDFlakies contains a lower percentage of flaky tests.

Analyzing the most relevant features, we could observe that, independently
from the dataset, the higher values were related to production and test code
complexity measures. This is in line with the results of RQ2 and confirms that
the development of test cases and the likelihood to induce flakiness is impacted
by complexity measures. Other features with a relevant IG are Mystery Guest,
Conditional Test Logic, Fire and Forget and Functional Decomposition (for
FlakeFlagger dataset), and Eager Test, the assert-related features (for both
datasets), meaning that the presence of design flaws, either in production or
test code, might provide indications of test flakiness.

Based on these results, we then verified the performance of Random Forest
in terms of prediction capabilities. Table 8 presents data on the true positives,
true negatives, false positives, false negatives, precision, recall, and F-Measure
achieved on each project of the two datasets. The last rows (“Total”) report
the results when considering all projects as a unique dataset.

The first thing to discuss is concerned with the fact that, for both the
datasets, we could not produce results for all individual projects. By diagnosing
the reasons behind the failures of the model, we identified a main factor. On 37
projects of iDFlakies dataset and one project of FlakeFlagger dataset,
the number of flaky tests was equal to one. This caused a training error, as
the balancing algorithm failed because of the lack of instances to use when
generating artificial elements.

The observations above already let us to point out a limitation in the use
of machine learning for flaky test prediction. According to our data, there are
cases where the unbalance problem is such that it is not even possible to train
a machine learning model. On the one hand, this is a common limitation of
machine learning applied to software engineering tasks [4,34]. On the other
hand, our results point out the need for more specialized software engineering
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Table 8: Results of the best classifiers for both datasets.

iDFlakies Random Forest
Project Tests Flaky Tests TP TN FP FN Pr R F
activiti 221 20 18 195 6 2 83% 90% 82%
admiral 2,082 5 3 2,066 11 3 21% 60% 31%
aletheia 46 3 3 40 3 0 50% 100% 66%
elastic-job-lite 564 3 2 554 7 1 22% 66% 33%
fastjson 544 12 8 530 2 4 75% 70% 70%
hadoop 12,838 58 36 12,766 14 22 77% 62% 66%
http-request 309 28 25 280 1 3 96% 90% 91%
incubator-dubbo 1,768 20 8 1,736 12 12 41% 40% 37%
java-websocket 135 27 26 92 16 1 63% 96% 75%
pippo 240 5 5 230 5 0 90% 100% 93%
querydsl 1,926 3 0 1,920 3 3 0% 0% 0%
struts 2,577 4 4 2,571 2 0 87% 100% 91%
wildfly 982 38 30 937 7 8 86% 79% 80%
Total 24,233 226 156 23,937 69 70 69% 69% 68%

FlakeFlagger Random Forest
Project Tests Flaky Tests TP TN FP FN Pr R F
achilles 1,053 4 2 1,049 0 2 100% 50% 66%
activiti 169 16 5 141 12 11 25% 25% 23%
alluxio 186 122 117 60 4 5 97% 96% 97%
ambari 294 52 47 241 1 5 98% 90% 93%
elastic-job-lite 521 3 0 518 3 1 0% 0% 0%
hbase 368 121 105 233 14 16 89% 87% 87%
hector 121 33 26 75 13 7 76% 81% 74%
httpcore 524 15 8 503 6 7 50% 60% 53%
http-request 161 18 13 132 11 5 55% 75% 61%
incubator-dubbo 1,681 18 11 1,658 5 7 76% 65% 68%
java-websocket 107 21 20 86 0 1 100% 96% 98%
logback 655 15 3 637 3 12 50% 20% 28%
ninja 352 16 16 330 6 0 81% 100% 88%
okhttp 782 108 70 565 109 38 39% 65% 48%
orbit 26 4 2 20 2 2 50% 50% 50%
spring-boot 1,634 82 61 1,542 10 21 87% 74% 79%
undertow 48 6 2 39 3 4 40% 33% 26%
wro4j 1,103 16 3 1,084 3 13 14% 15% 12%
Total 9,785 670 446 8,957 158 224 74% 66% 70%

mechanisms to deal with peculiar properties of test flakiness: as an example,
the use of cross-project models might be taken into consideration.

The inability to execute all models had an impact on the amount of our
analysis. We could consider 13 projects of the iDFlakies dataset (for a total
of 226 flaky tests on 24,232 test cases) and 18 projects of the FlakeFlagger
dataset (for a total of 670 flaky tests on 9,785 test cases).

Looking at the performance obtained on the individual projects of the iD-
Flakies dataset, another interesting observation could be made. In one case,
i.e., on the querydsl project, the machine learner behaved as a pessimistic
classifier, predicting the non-flakiness of all test cases. This was clearly due to
the few flaky test instances available in the dataset. Once again, this result
seems to suggest that the balancing operations that might be reasonably per-
formed might still be not enough. For this reason, alternative solutions to the
prediction might be worth to explore.
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In cases where the model could be built, the performance was reasonable
and ranged between 31% and 93% of F-Measure. Diving into these projects,
it is worth observing the presence of five projects, i.e., admiral, aletheia,
elastic-job-lite, pippo and struts, that had a low amount of flaky tests
but for which the model could still be built. To further understand the dif-
ferences between these cases and the previously discussed one, we manually
looked at the test code of the projects and the values for each feature. In
particular, the first author examined the code and attempted to identify pat-
terns that might explain why the model could be actually built. While the
replication of such a qualitative analysis on a larger sample would be desir-
able, we could conjecture that in two projects the diversity of flaky cases was
lower than the one of the project where the model could not be built. More
specifically, the flaky tests of these projects belong to single test suites. The
metric values computed on the test suites and the corresponding production
classes are similar, in terms of lines of code and other design metrics. On the
one hand, this is reasonable since these tests have been likely developed by
the same developer, following the same design approach. On the other hand,
some of our metrics aim at capturing aspects connected to the entire class,
e.g., the TLOC metric: this implies that the value of some metrics is exactly
the same, since test cases belong to the same class. As such, the balancing
operation produced instances that, despite being artificial, could still be rep-
resentative because derived from similar metric profiles. Such a rudimentary
analysis seems to suggest that more comprehensive conceptual frameworks
able to suggest when to use machine learning for flaky test prediction might
be worth to devise.

Turning our attention to the FlakeFlagger dataset, we can observe that
there is only one project where the number of true positives was zero, i.e.,
elastic-job-lite. Besides this case, we could observe that the performance
is almost always good, except for four projects in which the F-Measure does
not even reach 50%. When putting all projects together, the number of true
positives was high (446) and the number of false positives was low (158), with
the performance metrics ranging from 66% to 74%.

In conclusion, our results provide two main insights. First, a fully static
approach could reach high levels of accuracy in situations where the number
of flaky tests is large enough or their diversity is low enough to ensure the
learning of their characteristics. Second, there exist projects for which the use
of machine learning does not look reasonable: further research effort should be
spent to investigate when to use machine learning or to complement it with
heuristic approaches that could assist when learning is not a suitable option.

Key findings of RQ3

The best machine learning algorithm was Random Forest, while the fea-
tures with the highest information gain were related to the code complex-
ity. The F-Measure achieved ranged from 31% and 93% on the idFlakies
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dataset and from 12% to 98% on the FlakeFlagger dataset. Finally,
having a lower percentage of flaky tests in a project does not necessarily
lead to worse prediction performance, provided that their diversity is low.

8 RQ4 - Comparing the performance of the static approach with
existing baselines

Our last research question aimed at comparing the performance of the static
flaky test predictor with the currently existing baselines. This section reports
on the methodological choices done and the results achieved.

8.1 Research Methodology

To address RQ4, we had to compare our fully static approach with existing
baselines. To avoid threats to construct validity due to the re-implementation
of the baselines, we decided to only focus on the FlakeFlagger dataset,
which also provided data concerned with three baseline approaches such as
(1) FlakeFlagger [2]; (2) the textual-based approach proposed by Pinto et
al. [76], which we refer to as Vocabulary in the remainder of this section;
and (3) the combination of the two [2], which we refer to as Combined in
this section. Based on this methodological decision, we therefore decided not
to consider the iDFlakies dataset in the context of RQ4.

More specifically, the data available pertain to the metrics used by the
baseline approaches, namely the predictors employed to feed FlakeFlagger,
Vocabulary, and Combined. On this basis, we could then proceed with the
empirical comparison. To enable a fair comparison, we re-executed the same
pipeline applied in RQ3 on the original features that have been released by
Alshammari et al. [2]. As such, we applied the vif function and computed
the information gain [79] to discard metrics not providing any gain. After-
wards, we trained a Random Forest algorithm—the choice was the result of
a benchmark study where we experimented with multiple learning algorithms
and under-/over-sampling strategies against the baseline data, finding that
Random Forest combined with SMOTE was the best option to use to train
the baselines. We then executed the models, collecting their performance and
comparing them with our approach in terms of the same evaluation metrics
employed in RQ3, i.e., precision, recall, and F-Measure. Finally, the Nemenyi
test was applied to assess the statistical significance of the results achieved.

8.2 Analysis of the results

Table 9 reports the information gain of each baseline feature in the Flake-
Flagger dataset [2]. To ease the comparison, we also reported the information
gain data of our approach.
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Table 9: List of features not excluded by the VIF analysis and with an informa-
tion gain (IG) higher 0.001 for FlakeFlagger, Vocabulary approach, combined
approach, and our model.

Static approach FlakeFlagger
Features IG Features Type IG
Halstead Vocabulary 0.1727 Execution Time FlakeFlagger 0.1414
Assertion Density 0.0539 Project Source Lines Covered FlakeFlagger 0.0869
CBO 0.0359 Project Source Classes Covered FlakeFlagger 0.0790
TLOC 0.0284 Covered Lines FlakeFlagger 0.0400
Mystery Guest 0.0157 Covered Changes (past 500 commits) FlakeFlagger 0.0328
McCabe 0.0133 Test Length FlakeFlagger 0.0299
LCOM5 0.0128 Covered Changes (past 10000 commits) FlakeFlagger 0.0258
Assertion Roulette 0.0107 Covered Changes (past 75 commits) FlakeFlagger 0.0253
Conditional Test Logic 0.0076 Covered Changes (past 100 commits) FlakeFlagger 0.0249
Eager Test 0.0066 Covered Changes (past 50 commits) FlakeFlagger 0.0231
Fire and Forget 0.0013 mtfs Token 0.0227
Functional Decomposition 0.0011 tfs Token 0.0217

External Library FlakeFlagger 0.0188
tachyon Token 0.1716
for Token 0.0162
Covered Changes (past 10 commits) FlakeFlagger 0.0148
fileid Token 0.0132
create Token 0.0128
int Token 0.0128
ioexception Token 0.0126
master Token 0.0124
writetype Token 0.0120
testutils Token 0.0117
assertthat Token 0.0112
tachyonfile Token 0.0110
throws Token 0.016
createbytefile Token 0.0101
Fire and Forget FlakeFlagger 0.0101
client Token 0.0099
Number of Assertions FlakeFlagger 0.0097
invalidpathexception token 0.0095
testfile Token 0.0094
that Token 0.0088
Covered Changes (past 5 commits) FlakeFlagger 0.0087
filealreadyexistexception Token 0.0085
file Token 0.0083
should Token 0.0081
cluster Token 0.0081
createfile Token 0.0079
Mystery Guest FlakeFlagger 0.0078
Resource Optimism Token 0.0077
new Token 0.0071
return Token 0.0071
asserttrue Token 0.0069
increasing Token 0.0068
null Token 0.0067
then Token 0.0065
throws Token 0.0064
thenreturn Token 0.0064
already Token 0.0063
true Token 0.0063
mkdir Token 0.0061
cli Token 0.0060
conf Token 0.0060
if Token 0.0060
Covered Changes (past 25 commits) FlakeFlagger 0.0058

According to the data shown in the table, we could provide two main obser-
vations. First, we could confirm once again the role of code complexity. Indeed,
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among the most informative features considered by us and the baselines, we
found both static and dynamic metrics related to complexity. For instance,
features like execution time, test length, or number of external libraries are
among the most relevant metrics. The role of complexity is also partially visi-
ble when looking at the tokens considered within the approach by Pinto et al.
[76]. Indeed, terms like for or cli (the command line interface) suggest that
the fact that a test performs complex tasks is an indication of flakiness. In ad-
dition, the most informative terms are connected to the management of files.
As the reader might notice, the vast majority of the textual features in Table
9 pertain to exceptions (e.g., throws, ioexception, invalidpathexception,
etc.) or to the creation of files (e.g., mkdir, createfile, createbytefile,
etc.). Elaborating on the relevance of file-related terms, it may be reasonable
to believe that an approach based on vocabulary is particularly suitable to
identify flaky tests whose root cause depends on the sub-optimal management
of files—this aspect might be interesting to consider in further experimenta-
tions on root cause classification.

In the second place, it is worth commenting on the fact that some features
have different information gain when considered in our approach and in the
baseline ones. Test smells are the main example. According to Alshammari et
al. [2], “none of the test smells [...] collected had a strong information gain,
which may indicate that test smells are not well-correlated with test flakiness”.
Indeed, all the test smells appeared in the bottom of the ranked list of the
baselines. In our case, the situation is slightly different: while the test smells
scored lower than other features, their contribution seems to be comparable,
hence possibly influencing test flakiness.

Such a difference could be explained by two factors. On the one hand, the
static metrics could have less relevance than the dynamic ones when considered
together. In other terms, the weight of the static features might be lower
when dynamic information are available, hence leading these metrics to lose
significance. On the other hand, Alshammari et al. [2] computed test smells
in a different manner. As explained by the original authors, their goal was to
“not precisely detect test smells [...] but rather, to find features that may be
representative of flaky tests”. For this reason, they “decided to expand [the]
definition of many of these smells to be inclusive of all code executed by a test,
rather than just the code contained in the test method body itself”. In other
terms, this detection mechanism aims at maximizing the recall, compromising
the precision. As a consequence, the study by Alshammari et al. [2] might
include a number of false positive test smell instances that could have biased
the information gain computation. Our mechanism, instead, is based on a test
smell detector that aims at optimizing the compromise between precision and
recall [70], hence providing a lower amount of false positives. Based on these
observations, we argue the existence of a relation between test smells and flaky
tests that might be worth to further explore—this relation was indeed partially
confirmed by Camara et al. [12], other than theorized in previous work [61].

Table 10 reports the results obtained by the three baselines, showing the
true positives, true negatives, false positives, false negatives, precision, recall,
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Table 10: RQ4. Comparison between our model and the existing flaky test
prediction models against the FlakeFlagger dataset. The table shows true
positives, true negatives, false positives, false negatives, precision, recall, and
F-Measure for each project and for the entire dataset. We report the results of
both our static approach and the techniques already presented in the literature
to facilitate comparison.

FlakeFlagger Vocabulary Approach
Project TP TN FP FN Pr R F TP TN FP FN Pr R F
achilles 2 1,049 0 2 100% 50% 66% 2 1,049 0 2 100% 50% 66%
activiti 5 143 10 10 31% 30% 29% 11 146 7 5 54% 70% 59%
alluxio 122 63 1 0 99% 100% 99% 121 64 0 1 100% 99% 99%
ambari 44 237 5 8 92% 84% 87% 43 241 1 9 97% 83% 89%
elastic-job-lite 1 515 3 2 25% 33% 27% 0 518 0 3 0% 0% 0%
hbase 110 236 11 11 91% 90% 90% 95 223 24 26 79% 78% 78%
hector 27 79 9 36 73% 81% 76% 26 83 5 7 87% 80% 81%
httpcore 12 496 13 3 48% 80% 58% 10 502 7 5 59% 75% 64%
http-request 11 127 16 7 39% 65% 45% 6 140 3 12 45% 30% 35%
incubator-dubbo 9 1,662 1 9 76% 50% 58% 10 1,661 2 8 71% 55% 59%
java-websocket 19 85 1 2 96% 91% 92% 20 86 0 1 100% 96% 98%
logback 1 636 4 14 10% 10% 10% 0 636 4 15 0% 0% 0%
ninja 16 336 0 0 100% 100% 100% 16 336 0 0 100% 100% 100%
okhttp 45 603 70 64 41% 41% 39% 33 650 23 76 58% 30% 38%
orbit 3 19 3 1 25% 30% 26% 2 21 1 2 15% 20% 16%
spring-boot 61 1,544 8 21 90% 74% 80% 59 1,544 8 23 88% 72% 78%
undertow 2 40 2 4 20% 50% 20% 1 40 2 5 33% 14% 19%
wro4j 1 1,086 1 15 50% 50% 66% 4 1,087 0 72 40% 25% 29%
Total 448 9,002 112 222 80% 66% 72% 428 9,006 108 242 80% 63% 70%

Combined Approach Static Approach
Project TP TN FP FN Pr R F TP TN FP FN Pr R F
achilles 0 1,049 0 0 0% 0% 0% 2 1,049 0 2 100% 50% 66%
activiti 11 147 6 5 56% 70% 61% 5 141 12 11 25% 25% 23%
alluxio 122 64 0 0 100% 100% 100% 117 60 4 5 98% 90% 93%
ambari 47 242 0 5 100% 90% 94% 47 241 1 5 98% 90% 93%
elastic-job-lite 0 518 0 3 0% 0% 0% 0 518 3 1 0% 0% 0%
hbase 112 238 9 9 92% 92% 92% 105 233 14 16 89% 87% 87%
hector 28 85 3 5 92% 86% 88% 26 75 13 7 76% 81% 74%
httpcore 9 501 8 6 44% 65% 50% 8 503 6 7 50% 60% 53%
http-request 10 140 3 8 70% 55% 58% 13 132 11 5 55% 75% 61%
incubator-dubbo 12 1,661 2 6 91% 70% 76% 11 1,658 5 7 76% 65% 68%
java-websocket 20 86 0 1 100% 96% 98% 20 86 0 1 100% 96% 98%
logback 2 638 2 13 50% 13% 20% 3 637 3 12 50% 20% 28%
ninja 16 336 0 0 100% 100% 100% 16 330 6 0 81% 100% 88%
okhttp 35 660 13 74 74% 31% 43% 70 565 109 38 39% 65% 48%
orbit 2 21 1 2 66% 50% 56% 2 20 2 2 50% 50% 50%
spring-boot 62 1,544 8 20 89% 75% 81% 61 1,542 10 21 87% 74% 79%
undertow 1 40 2 5 33% 16% 22% 2 39 3 4 40% 33% 26%
wro4j 3 1,087 0 13 100% 18% 30% 3 1,084 3 13 14% 15% 12%
Total 463 9,057 57 207 89% 68% 77% 446 8,957 158 224 74% 66% 70%

and F-Measure for each project and for the entire dataset. To ease the com-
parison, we also reported the results of our static approach. In addition, for a
visual understanding of the results, Figure 4 depicts barplots of the F-Measure
values obtained for each project by the experimented models.

Analyzing the results obtained for the entire dataset (row “Total”), we
could first observe that the number of true positives of our approach is slightly
lower with respect to the one of FlakeFlagger (446 vs 448) and Combined
(446 vs 463), but higher to the one of Vocabulary (446 vs 423). Elaborating
on these results, we could argue that it is reasonable to expect to identify
less true positives, overall, since our approach is not boosted with dynamic
features that would provide orthogonal pieces of information. Nonetheless, we
could still observe similar levels of accuracy, especially when considering recall:
this is indeed higher when compared to Vocabulary (66% vs 63%), equal
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to FlakeFlagger (66% vs 66%) and only slightly lower than Combined
(66% vs 68%). From a practical perspective, these results imply that a similar
amount of actual flaky tests can be identified in a more efficient manner by
just looking at the design of test cases. The similar recall is payed in terms of
precision: our approach outputs more false positives, overall. Nonetheless, the
lower precision is not visible on all individual projects.

When looking at the results achieved on the individual projects, some con-
siderations can be made. First, we could notice some complementarity between
the experimented approaches. There are indeed cases where our approach can-
not identify any flaky test, while the baselines can, and viceversa. This is, for
instance, the case of the activiti, where the static approach performed worst
than all other baselines. This project makes available a lightweight open-source
business process management platform. In doing so, the source code imple-
ments a data-driven client-server architecture where data are sent back and
forth to be verified. The corresponding tests are therefore called to verify that
the data exchange processes work fine. By nature, the flakiness of these test
cases might be more easily identified using dynamic or textual features: the
former could help pinpointing edge cases through data-flows analysis, while the
latter might exploit peculiar terms connected to the sub-optimal use of net-
work protocols. On the contrary, the static metrics considered by our approach
might not be effective in this case because none of them explicitly target the
properties of source code. As a consequence, the baseline approaches tend to
work better than ours.

On the other hand, let consider the logback project, which implements
a framework to log Java code. In this case, the operations performed in the
source code are mostly related to the management of files, e.g., by adding log
statements to existing Java files. The corresponding test cases are therefore
responsible to verify the correctness of such a file management. The detection
of test flakiness, in this case, seems to be more connected to the static profile
of a test, for instance to the way it handles the communication with files. This
is a likely reason that makes our approach better than FlakeFlagger, other
than the possible imprecision that the baseline has when computing certain
static properties of source code, like test smells. Perhaps more interestingly,
Vocabulary reached 0% precision and recall on this project, acting as a pes-
simistic classifier. We looked deeply into this case to understand the reason
why an approach that mostly relies on file-related features failed so evidently.
While we could not determine the exact reasons behind this failure, we no-
ticed that the lack of natural language normalization might have impacted
the performance of Vocabulary. Indeed, most file-related terms are taken
as they are, even when different terms have the same (or similar) meaning.
For instance, the source code of the logback project makes use of terms such
as file and resilientfileoutputstream, file header, file footer, and
others. While the terms actually refer to various specific properties or actions
performed on files, a fully textual approach might not properly assess the like-
lihood of test flakiness because of the many different terms associated to the
same potential issue arising with the management of files. In this sense, further
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Fig. 4: Barplot of the F-Measure achieved for each project when comparing the
baselines to our static approach. The orange color represents FlakeFlagger,
the green color represents our static approach, the blue color represents the
Vocabulary, and the purple color represents the Combined.

improvements of the Vocabulary approach that take text normalization into
account might be worth to explore.

There are, however, some exceptions to this discussion. In some cases the
flaky tests can be predicted with a similar accuracy independently from the
source of information exploited - for instance, in the cases of alluxio or ninja.
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Likely, this is due to the fact that either the static or dynamic metrics can
capture the relevant aspects that may lead to the flakiness prediction.

To further elaborate on the complementarity among the experimented tech-
niques, we conducted an additional analysis focused on understanding the
overlap among them. Given two prediction models mi and mj , we computed
(1) the amount of flaky tests correctly predicted by both mi and mj and (2)
the amount of flaky tests correctly predicted by mi only and missed by mj . In
addition, given the four experimented prediction models mi, mj , mk, and mp

we computed (1) the amount of flaky tests correctly predicted by all models
and (2) the amount of flaky tests correctly predicted by mi only and missed by
mj , mk, and mp. Such an analysis could provide insights into the complemen-
tarity of the experimented techniques, other than assessing the actual value of
our model with respect to the baselines.

Table 11: The overlap results. First, we reported the results obtained by com-
paring our model with the baselines, then we reported the results obtained
by comparing the baselines with each other. Finally, the results obtained by
comparing the values predicted correctly by a single model that were not pre-
dicted by the other three are reported.

Static vs. FlakeFlagger
Static corr ∩ FlakeFlagger corr Static corr \ FlakeFlagger corr FlakeFlagger corr \ Static corr

72% 14% 14%
Static vs. Vocabulary

Static corr ∩ Vocabulary corr Static corr \ Vocabulary corr Vocabulary corr \ Static corr

72% 16% 12%
Static vs. Combined

Static corr ∩ Combined corr Static corr \ Combined corr Combined corr \ Static corr

72% 14% 14%
FlakeFlagger vs. Vocabulary

FlakeFlagger corr ∩ Vocabulary corr FlakeFlagger corr \ Vocabulary corr Vocabulary corr \ FlakeFlagger corr

70.7% 16.4% 12.9%
FlakeFlagger vs. Combined

FlakeFlagger corr ∩ Combined corr FlakeFlagger corr \ Combined corr Combined corr \ FlakeFlagger corr

78.8% 8.6% 12.7%
Vocabulary vs. Combined

Vocabulary corr ∩ Combined corr Vocabulary corr \ Combined corr Combined corr \ Vocabulary corr

82.6% 5.1% 12.3%

Static corr \ (FlakeFlagger corr ∪ Vocabulary corr ∪ Combined corr) FlakeFlagger corr \ (Static corr ∪ Vocabulary corr ∪ Combined corr)
15.5% 15.7%

Vocabulary corr \ (Static corr ∪ FlakeFlagger corr ∪ Combined corr) Combined corr \ (Static corr ∪ FlakeFlagger corr ∪ Vocabulary corr)
13.2% 17.4%

(Static corr ∩ FlakeFlagger corr ∩ Vocabulary corr ∩ Combined) \ (Static corr ∪ FlakeFlagger corr ∪ Vocabulary corr ∪ Combined corr)
38.2%

The overlap results are reported in Table 11. The findings indicate a clear
trend. When comparing our model with the baselines, we could observe that
72% of the correct predictions are in common. This means that the vast major-
ity of the flaky tests can be detected independently from the model exploited.
The complementarity is limited to the remaining portion of flaky tests. Our
model can, for instance, identify 14% of flaky tests that FlakeFlagger can-
not detect, and viceversa. This suggests that the cases of activiti and log-
back previously discussed represent exceptions to the general trend, while in
most cases our model provides the same predictions as baselines that exploit
additional dynamic or textual information.

Besides the relation between our model and the baselines, our analysis
also indicates that the discussion is similar when comparing the other models
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against each other. Table 11 indeed reports that most of the flaky tests can
be correctly identified by two baselines, with a limited amount of flaky tests
detected by only one of them.

The results are further confirmed when looking at the bottom of Table 11.
When studying the amount of flaky tests correctly identified by all approaches,
we could see that this happened in 38% of the cases. The contributions of the
individual models reach up to 17% in the case of Combined.

To conclude, the observations above—especially those related to the over-
lap analysis—seem to reinforce and extend what discovered in RQ3: a fully
static approach that does not require expensive dynamic or textual computa-
tion can provide insights into the flakiness of test cases with an accuracy close
(or higher, in some cases) of more sophisticated baselines.

Key findings of RQ4

A fully static approach to test flakiness prediction reached 66% of recall,
being comparable with respect to the baselines, i.e., +0% to FlakeFlag-
ger, +3% to Vocabulary, -2% to Combined. In terms of precision, the
static approach produces 6% more false alarms with respect to Flake-
Flagger and Vocabulary. The additional overlap analysis further cor-
roborated the results achieved, indicating that a fully static approach can
work similarly to the baselines, without requiring expensive additional dy-
namic or textual computations.

9 Threats to Validity

When it comes to the limitations of the study, there are some factors that
might have biased our conclusions. This section discusses these factors and
the mitigation strategies applied to limit their influence on our results.

9.1 Construct Validity

The main threat related to the relationship between theory and observation is
concerned with possible imprecision in the data used in the study. We relied
on publicly available sources built in the context of previous researches [2,45]
and that have been already used and validated. This makes us confident of
the reliability of the datasets; yet, we cannot exclude imprecision, especially
in terms of the flaky tests identified, e.g., some tests might have not exposed
their unreliability over the multiple executions performed by the authors of
the datasets. In this sense, further replications conducted on different datasets
might be worth to increase the confidence on the validity of our results.

Another discussion point concerns with the computation of the indepen-
dent variables through automated tools. We are aware of the possible noise
that might be introduced, for instance in terms of false positive code and test
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smells. Yet, we had to necessarily accept this limitation, as our study targeted
large datasets for which a manual detection process was infeasible. To par-
tially mitigate this threat, we selected well-established tools that have been
previously evaluated, showing good accuracy. In addition, we defined indepen-
dent variables by computing metrics on either production or test code, while
additional analyses might consider the effects of computing metrics on both of
them. For instance, some code smells (e.g., Complex Code) might be a poten-
tially relevant indicator of test flakiness. Further investigations on this matter
are part of our future research agenda.

When computing independent variables, we had to link test classes to the
corresponding production classes. To this aim, we relied on a pattern match-
ing approach relying on naming conventions. Multiple observations should be
made on this choice. In the first place, the choice of using it comes from the
good compromise between accuracy and scalability it guarantees. As already
mentioned in Section 4, alternative approaches based on more complex algo-
rithms, e.g., static and dynamic slicing [80], are typically more effective but
poorly scalable on a large scale. In our study, we accepted the limitations of
the pattern matching approach with the aim of conducting a larger scale eval-
uation. However, we took some precautions. In particular, the approach may
output false positive links in cases where two or more production classes have
identical names, but different paths. Dealing with these cases was not neces-
sary in our case, as there were no cases of production classes with identical
names but different paths. Nonetheless, replications of our study on different
systems may need to consider this potential concern to improve the linking
capabilities of the pattern matching approach.

Finally, in the context of RQ4, we decided to only focus on the Flake-
Flagger dataset. While this decision let us reduce the amount of data, it
allowed us to avoid the re-implementation of the baselines. Being not the orig-
inal authors of those approaches, our re-implementation could have introduced
bias, affecting the validity and fairness of the comparison.

9.2 Conclusion Validity

Threats to conclusion validity are related to the relationship between treat-
ment and outcome. As for the statistical methods employed in RQ2, we se-
lected the Generalized Linear Model after verifying its suitability for our pur-
pose, e.g., its ability to deal with dichotomous variables. In addition, to ensure
that the model did not suffer from multi-collinearity, we applied a stepwise
procedure, using the vif function, aimed at discarding non-relevant indepen-
dent variables. These procedures followed established guidelines [60], making
us confident of the validity of the conclusions drawn.

With respect to the machine learning exercises conducted in RQ3 and
RQ4, we benchmarked multiple learning algorithms, trained using different
under- and over-sampling strategies, in order to identify the best performing
one. The performance of Random Forest in terms of F-Measure were better
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than the other models, overall, as shown by the Nemenyi test. Our online
appendix [78] includes the data and analysis scripts used to reach this conclu-
sion. Moreover, the quantitative results have been backed-up with the use of
appropriate statistical tests and more qualitative, manual analyses conducted
to verify the rationale behind some of the observed findings.

Another relevant discussion point concerns with the validation strategy
used to reach conclusions. In our study, we work in the context of a cross-
validation scenario. Nonetheless, we are aware of the possible limitations com-
ing from this design choice: flakiness data are indeed likely to be time-sensitive
and a validation strategy accounting for this aspect might substantially vary
the interpretation of the performance metrics. There are, however, two main
observations to make in this respect.

First and foremost, previous work on flaky test prediction, i.e., all the
experimented baselines [2,45,76], employed a cross-validation procedure. As
such, a variation of the validation strategy would not have allowed us to per-
form a fair, precise comparison to quantify the value of statically-computable
metrics with respect to the others previously proposed in literature.

Perhaps more importantly, a time-sensitive validation would have required
a dedicated research design, other than expensive computations due to the
mining of flaky tests over the history of the considered software systems.
More particularly, while the datasets employed in the study provide infor-
mation on the commits where a flaky test was detected, the mining pro-
cedure followed to identify those flaky tests was not meant to conduct a
time-sensitive validation and might therefore require some tuning/adjust-
ments. For the sake of concreteness, let us consider the case of the com-
mit 7e3801e19fb43183c59607663ebd53c27a95cf77 of the WRO4J project,
where the test case named testbourboncssprocessor.shouldbethreadsafe

was detected as flaky. By analyzing this case further, we found out that the
commit did not modify the test nor the associated production class (i.e., the
class named bourboncssprocessor). In addition, the modified classes did not
have any structural relation with neither the production nor test class. Yet,
the flakiness of the test emerged. In other terms, the flakiness affecting the
test manifested itself independently from the actions performed by develop-
ers within the commit. This implies that the test might have possibly been
flaky even in previous commits of the project, despite not being detected.
The example has two main implications. First, novel strategies to identify
flakiness-inducing commits should be devised, as they should not only rely on
the information coming from an individual commit of the change history (as
the flakiness might have been previously emerged), but rather should mark
flakiness by also looking at the specific change history of tests (e.g., starting
from the emergence of a flaky test, they may traverse in reverse order the
commits until the last modification of the test). Second, the information avail-
able in current datasets might potentially lead to biased observations when
flaky test prediction models are experimented in a time-sensitive fashion, as
they were not collected by explicitly considering the many perils of mining
flaky test data. For these reasons, we believe that such an analysis would re-
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quire a brand new set of research questions, methodology, and analyses, and
is, therefore, out of the scope of our current submission.

Finally, it is worth discussing about the relation between the performance
observed when executing our model and complexity. Throughout the analysis
of the results we have highlighted the role of complexity metrics to discriminate
the flakiness of a test case. This may potentially lead to a practical limitation
of our approach: there is no guarantee that fixing a flaky test would reduce
its complexity, which is apparently what is useful to identify them, whereas
dynamic metrics would supposedly find differences (e.g., different coverage).
In this case, the approach would potentially not be useful to developers that
would get false positives from the model once their flaky tests have been fixed.
There are two observations to make in this respect. First, it is reasonable to
believe that the problem mostly pertains to code complexity metrics computed
on production code. Indeed, while the complexity of the exercised code may
provide hints to our prediction model, previous work [45,50] pointed out that
the fixing of a flaky test often revolves around the modification of the test code
only, hence increasing the risk of future misclassifications of our model. The
same may not be immediately applicable to complexity metrics computed on
test code: the likelihood of a fixing operation reducing test code complexity
is higher, as any modification induces changes in terms of metrics. Our model
relies on complexity metrics computed on both test and production code (see
Table 1) and, according to the results achieved in RQ3, the Information Gain
analysis revealed that the complexity of test code (as indicated by the McCabe
metric) appeared to be important in both datasets. As such, the real-world
capabilities of our model may be driven by multiple complexity metrics that
capture aspects connected to both test and production code.

In any case, to further analyze the practical capabilities of our approach,
we performed an additional analysis aiming at verifying the behavior of the
model when applied before and after fixes to flaky tests. To this aim, we
exploited the iFixFlakies dataset [86]. In particular, in the context of their
work, Shi et al. [86] opened 32 pull requests proposing to the contributors
of the considered projects to integrate changes that would have fixed flaky
tests of their applications. 23 of these pull requests were finally accepted and
integrated. Shi et al. [86] also provided an online appendix reporting the results
of the pull request analysis.6 We used this dataset to identify the flaky tests
whose fixes were accepted by contributors and that are in common with our
dataset - recall that we had to discard some tests or projects because of our
requirement of detecting the production class associated with the test taken
into account (see Section 4). Among the 23 cases of accepted pull requests,
we could identify four cases suitable for the additional analysis. First and
foremost, in all cases our model was able to correctly classify the flakiness
of the tests before and after the fix. Analyzing the metric profile of the tests
further, we could observe that in two cases the intensity of the Eager Test
smell instances affecting the earlier version of the test was reduced during the

6Available at: https://sites.google.com/view/ifixflakies
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fixing process. More importantly, the value of metrics such as WMC, RFC,
MPC, and Halstead’s vocabulary was reduced, meaning that the fixes induced
changes that had the effect of reducing the overall complexity of the code -
hence, positively influencing the model’s capabilities. In the remaining two
cases analyzed, we observed no variation in terms of test code metrics, yet the
Halstead’s vocabulary metric value of the production code was reduced.

We are aware that the limited extent of the analysis does not allow us to
generalize the results achieved. At the same time, the few cases analyzed seem
to highlight some peculiarities of the flaky test fixing process: not only this
leads to the removal of the flakiness, but also tends to induce variations in the
metric profile of both test and production code, especially in terms of code
complexity. This is the likely reason why our model could correctly discrimi-
nate the flakiness of test cases both before and after the fixes. Of course, further
investigations should corroborate our initial findings - and further datasets
should be developed so that these kind of analyses may be enabled.

9.3 External Validity

Threats to external validity regard the generalizability of the results. We con-
ducted our study focusing on the iDFlakies and FlakeFlagger datasets [2,
45], which are limited to open-source projects written in Java. In this respect,
it is important to note that the projects have different scope and characteris-
tics that allow us in part to mitigate this threat. While this is still a limitation
of our study, there are two considerations to make. First, the vast majority
of the datasets collecting information on flaky tests pertain to Java projects.
This is the reason why we decided to focus on Java in the first place. This
recalls the need for additional datasets targeting different programming lan-
guages: while some attempts have been made in the recent past [30,20], our
work further remarks this need. In the second place, it is reasonable to believe
that our approach might work when applied to other object-oriented applica-
tions, where the static metrics considered could be computed. Of course, an
extension of this type would require additional investigations and instruments.
For example, specialized code and test smell detectors have been proposed for
Python [94,95], yet these target peculiar design issues arising in Python code.
As such, replications of our work aiming at understanding the relation be-
tween Python-specific code/test smells and test flakiness should be devised
before considering the effect of static indicators for flaky test prediction. In
a similar vein, our approach could be experimented on other object-oriented
programming languages. As for other types of programming languages (e.g.,
procedural ones), it is important to notice that the concepts used in our study
can be adapted as well: code metrics and smells might be defined and detected
in procedural languages as well (e.g., [1]), hence making a wider application
of our work potentially feasible. In any case, extensions like those mentioned
above are part of our future research agenda.
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An addition point concerns with the practical adoption of our approach.
The methodology employed to link test to production classes naturally lim-
its the applicability of the current version of the approach to the projects
that actually employ naming conventions. Nonetheless, the choice of using the
pattern matching approach does not necessarily influence the practical deploy-
ment of our approach. Developers interested in using our solution may indeed
configure it so that the linking process is performed according to the standard-
s/guidelines they normally apply to develop code, leading our approach to be
fed with even more data. In other terms, the empirical choices applied in our
study were taken to provide a larger-scale experimentation of the approach,
but in a real-world case the availability of a stronger or ad-hoc linking solution
might potentially lead to having larger datasets to train our model, which is
supposed to further increase the performance reported in our paper.

10 Conclusion, Discussion, and Future Work

Test flakiness concerns with the non-determinism of test cases, which might
lead developers to waste time in diagnosing source code, other than increasing
the overall testing costs. While the most common approach to their detection
is represented by the multiple re-execution of test cases, a number of recent
studies proposed the adoption of machine learning approaches that could pre-
dict flaky tests in advance. Nonetheless, most of these artificial intelligence
solutions require the computation of dynamic metrics, like code coverage, or
the analysis of textual properties of test code. These still make the prediction
exercise not scalable, possibly impacting their practicality.

In this paper, we conducted an empirical study to analyze whether and to
what extent static metrics might be used to predict test flakiness. We selected
features of different nature, including test and production code metrics and
smells. First, we studied how these features correlate with test flakiness: this
was done by analyzing both features individually and in combination. The
promising results obtained from such an investigation allowed us to verify how
the considered factors could be employed within machine learning solutions.
Hence, we devised a fully static approach to test flakiness prediction. The em-
pirical investigation aimed at (1) measuring the performance of the approach
and (2) comparing them with those achieved by three baselines based on dy-
namic features, source code vocabulary, and their combination. This empirical
study provided a number of notable findings:

– Code complexity metrics are the ones that differ the most between flaky
and non-flaky tests. Not only this result was confirmed on both the consid-
ered datasets, but also when looking at the most relevant features employed
by the fully static approach. This has two main implications. On the one
hand, practitioners might use our findings to justify the adoption of in-
struments to take code complexity under control. On the other hand, more
research on code complexity and how it affects test code quality might be
worth to further elaborating instruments to support developers.



42 Valeria Pontillo et al.

– When analyzing the value of the features used by our approach and by
the baselines, we observed that some of them have a different weight. Par-
ticularly, while test smells were not deemed relevant for FlakeFlagger,
they contributed to our approach in a comparable manner with respect to
other features. This opens up new research opportunities into the relation
between test smells and flakiness. Some research on the matter has been
recently proposed [12], yet we argue that more empirical investigations
might be conducted to further understand how test code quality impacts
the likelihood of test flakiness.

– A fully static approach to test flakiness prediction reaches comparable re-
sults with respect to the baselines—the F-Measures ranged from 17% to
99% on the two considered datasets. Perhaps more importantly, our ap-
proach has higher precision, hence representing a more practical solution
for developers. While additional investigations into the matter are already
part of our future research agenda, our results have already implications
for researchers and practitioners. The former are called to devise and study
novel, more powerful metrics that could contribute to the improvement of
the flakiness prediction capabilities. The latter may rely on an approach
that does not need dynamics computations to verify the quality and reli-
ability of the test cases developed within their own organization. From a
practical standpoint, the static nature of the experimented model would
let it be run among the other continuous checks that developers normally
do to verify the presence of regressions in newly committed code [93].

– Our study revealed some peculiarities of the flakiness data that might lead
machine learning approaches to work differently. In particular, we identi-
fied the diversity of test cases as a relevant factor to even allow a machine
learner to work. In addition, we also found some interesting complemen-
tarity between our approach and the baselines, which suggests that im-
provements are still possible. On the basis of these conclusions, we argue
that the results of this paper might lead to further research on novel soft-
ware engineering practices for flaky test prediction, namely instruments
and methodologies that are aware of the flakiness data properties and may
act accordingly, for instance by dynamically selecting the approach to use
or the pre-processing steps to apply.

The output of this study represents the input of our future research agenda,
which will be focused on further understanding the relation between static
metrics (e.g., code complexity, code smells, or test smells) and test flakiness.
In addition, we aim at conducting additional investigations on how to best
configure and evaluate machine learning pipelines for the problem of flaky test
prediction. Part of these investigations will also revolve around the problem
of mining flakiness-inducing commit, which may enable further time-sensitive
analysis of flaky test prediction models other than investigations into the flak-
iness detection and fixing process. Finally, we aim at devising novel artificial
intelligence techniques that could combine existing instruments, other than
recommending when to use a technique rather than another.
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