
OR I G I N A L A RT I C L E

“Through the looking-glass..." An Empirical Study on
Blob Infrastructure Blueprints in TOSCA

Stefano Dalla Palma1 | Chiel van Asseldonk1 | Gemma
Catolino1 | Dario Di Nucci2 | Fabio Palomba2 |
Damian A. Tamburri3

1Tilburg University, Jheronimous Academy
of Data Science, Netherlands
2Software Engineering (SeSa) Lab —
University of Salerno, Italy
3Eindhoven University of Technology,
Jheronimous Academy of Data Science,
Netherlands
Correspondence
Stefano Dalla Palma, Jheronimus Academy
of Data Science, Tilburg University, City,
The Netherlands
Email: s.dallapalma@uvt.nl
Funding information

Infrastructure-as-Code (IaC) helps keep upwith the demand
for fast, reliable, high-quality services by provisioning and
managing infrastructures through configuration files. Those
files ensure efficient and repeatable routines for systempro-
visioning, but they might be affected by code smells that
negatively affect quality and code maintenance.

Research has broadly studied code smells for traditional
source code development; however, none explored them
in the “Topology and Orchestration Specification for Cloud
Applications” (TOSCA), the technology-agnosticOASIS stan-
dard for IaC. In this paper, we investigate a prominent tradi-
tional implementation code smell potentially applicable to
TOSCA: Large Class, or “Blob Blueprint” in IaC terms.

We compare metrics-based and unsupervised learning-
based detectors on a large dataset of manually validated
observations related to Blob Blueprints. We provide insights
on code metrics that corroborate previous findings and em-
pirically show that metrics-based detectors perform highly
in detecting Blob Blueprints.

We deem our results put forward a new research path
toward dealing with this problem, e.g., in the scope of fully
automated service pipelines.
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1 | INTRODUCTION

Since the rise of DevOps [1], the shift from on-premise infrastructure to cloud-based infrastructure has introduced
new challenges and opportunities driven by the continuously increasing demand for fast and high-quality software
services and their orchestration. DevOps covers a broad spectrum of organizational and technical practices to achieve
this integration, including Continuous Integration (CI) and Continuous Deployment (CD). In particular, service orches-
tration is strongly influenced by Infrastructure-as-Code (IaC), which rapidly became a crucial practice to automate in-
frastructure and ensure consistent and repeatable routines for service provisioning and configuration changes [2].

On the one hand, IaC substantially benefits the maintainability and quality of the overall service properties and
service-level agreements, e.g., faster closing-the-loop iterations and, therefore, faster service evolution cycles. At the
same time, it reduces the time, effort, and specialized skills required to provision and scale infrastructure services while
improving consistency by reducing ad-hoc configuration changes and updates (a phenomenon known as configuration
drift1). Nevertheless, on the other hand, IaC is still code and, therefore, subject to all potential problems (e.g., due to
bad coding practices or human error). Similarly to software written in traditional application languages, IaC artifacts
– often called blueprints – bear the same coding horror2 fatalities, which can become even more impactful for IaC,
where bad coding practices contribute to introducing IaC defects [3]; their impact can be massive since it manifests at
runtime and often via running expensive infrastructure costs and connected shortfalls. In 2017, for example, a services
infrastructure failure within Amazon Web Services took down websites such as Expedia.com, Slack.com,Medium.com,
and the US Securities and Exchange Commission for several hours.3

In this study, we focus on bad coding practices, which reveal another harm in software development: symptoms
indicating wrong style usage or a lousy design known as code smells. Smells do not directly cause system failures but
violate best practices and design principles, negatively affecting readability and code maintainability [4].
Motivation. Code smells are broadly researched for traditional source code development [5], as their detection can en-
hance software quality. In the scope of IaC, Guerriero et al. [6] investigated the state of practices in adopting IaC using
the data from 44 semi-structured interviews with senior developers. They observed that large IaC scripts, referred to
as Blob Blueprint, occur among the most common bad practices in the industry when developing infrastructure code.

Unfortunately, only a few works exist on IaC code smells [7], and they focus on specific technologies and lan-
guages, such as Puppet or Ansible. However, Guerriero et al. [6] identify as one of the best practices “recombining
diverse formats by abstraction using the OASIS TOSCA standard for IaC and including multiple formats inside node-
type definitions”. Indeed, technology-agnostic infrastructure code, such as the OASIS Topology and Orchestration
Specification for Cloud Applications4 (TOSCA) can build upon existing configuration and orchestration languages to
improve the readability and portability of configuration files across platforms [8, 9]. It enables automated deployment
of technology-independent and multi-cloud compliant applications, managing applications, resources, and services
regardless of the underlying cloud platform or infrastructure. From a business viewpoint, TOSCA “expands customer

1https://www.ibm.com/cloud/learn/infrastructure-as-code
2https://blog.codinghorror.com/please-dont-learn-to-code/
3https://aws.amazon.com/message/41926/
4https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
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choice, reduces cost, and increases business agility across the application life cycle. The synergy between these benefits
accelerates overall time-to-value” [9].

What is more, the fourth and sixth authors of the paper are active members of the OASIS TOSCA Standard
Technical Committee and used this presence to enact discussions about this work in some of the committee’smeetings.
As a result, practitioners shared concerns about “long, blob-like blueprints”. In particular, theymentioned that themost
critical hazards connected to infrastructure abuse come from lousy coding practices concerning the security of IaC
blueprints. The targets for such practices are mainly found in long, blob-like blueprints. Such issues reportedly can
yield irreparable infrastructure damage as well as loss or even theft of data as much as leaking of industrial secrets to
a point in which manual inspection of long blueprints is required.5
Research Questions. In this study, we conjecture that identifying code smells in technology-agnostic infrastructure
code (i.e., TOSCA) and related metrics opens up opportunities for building a general, automated service continuity
quality model designed explicitly for configuration orchestration languages. Furthermore, we deem that analyzing
such code smells paves the way to understanding how lousy coding practices affect service infrastructure continu-
ity [10]. In particular, the goal is to identify structural code measures that characterize complex blueprints and analyze
the effectiveness of candidate metric- and unsupervised learning-based techniques in detecting those blueprints. Mo-
tivated by this goal, this study aims at addressing the following research questions in the context of TOSCA:
RQ1 To what extent can structural code metrics distinguish between Blob and sound blueprints?
RQ2 To what extent can metric- and unsupervised learning-based techniques detect Blob Blueprint?
RQ3 What metrics are the most effective to maximize the performance of those detectors?

We conducted a case study involving 749 blueprints and a prominent traditional implementation code smell,
known as Large Class or Blob, that highly impacts fault- and change-proneness [11, 12, 13] and that could potentially
be observed and easily implemented in TOSCA. The smell is one of the most frequently investigated for traditional ap-
plication code [14]. In addition, Guerriero et al. [6] observed it among the most common bad practices in the industry
when developing infrastructure code; they refer to it as Blob Blueprint, namely a too-large IaC script. From here on, we
use the same nomenclature. We selected this smell for its implementation ease, frequency, and potential impact on
infrastructure code quality. We build upon the studies by Sharma et al. [15] and Schwarz et al. [16]. Specifically, we an-
alyze traditional structural code metrics for IaC smell detection to corroborate their findings on a technology-agnostic
language (i.e., TOSCA). Additionally, and investigate howmetric- and unsupervised learning-based techniques perform
to detect Blob Blueprints.

The motivation behind focusing on the metrics- and unsupervised learning-based detectors is two-fold. On the
one hand, metrics-based smell detectors are the most frequent and easy to implement [17]. They calculate a set of
metrics, such as lines of code, coupling, and cohesion, upon the original source code and detect smells if they exceed
a given threshold [17]. However, determining a suitable threshold demanded by metrics-based smell detectors is a
non-trivial challenge. On the other hand, the interest in ML-based methods, prevalently supervised, is growing to
overcome shortcomings such as determining threshold values. However, they come with other drawbacks, such as
the need for accurate (labeled) training data, which might be hard to acquire [18]. Despite this, unsupervised learning
might significantly reduce the effort of collecting and identifying smelly blueprints, similarly to previous work on
software defect prediction [19, 20].

5https://www.oasis-open.org/2022/06/06/emerging-compute-models-recommendations-and-sample-profile-v1-0-published-by-tosca-tc/
(Section 2.1)
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Contribution. This study contributes to research with an empirical study that compares metric- and unsupervised
learning-based techniques to detect Blob Blueprint. In particular, we compare several popular clustering techniques
with a detector applying the Interquartile Rule on a dataset ofmanually validated observations related toBlobBlueprints.
We provide insights on code metrics that corroborate previous findings and empirically show that metric-based detec-
tors perform well in detecting Blob Blueprints. Finally, we provide a replication package and a comprehensive dataset
of publicly available TOSCA blueprints, including source code measurements calculated on these blueprints and man-
ually validated observations related to the Blob Blueprint smell.6
Paper Structure. Section 2 presents background on Infrastructure-as-Code, focusing on TOSCA, and reviews the ex-
isting literature on IaC smell detection. Section 3 outlines the measures for blueprint complexity that characterize
Blob Blueprints. Section 4 describes the empirical study to evaluate metric- and unsupervised learning-based tech-
niques in detecting Blob Blueprints, and Section 5 reports the experiment results. Section 6 discusses limitations and
threats to validity; Section 7 discusses the implications for researchers and practitioners and lessons learned. Section 8
concludes the paper and outlines future work.

2 | BACKGROUND AND RELATED WORK

This section provides a brief grounding about Infrastructure-as-Code (IaC), and TOSCA, as well as previous literature
on code smells in IaC.

2.1 | IaC and TOSCA: An Overview

The Topology and Orchestration Specification for Cloud Applications (TOSCA) is the official OASIS industry stan-
dard for IaC. It is a YAML-based domain-specific language that allows for the automated deployment of technology-
independent and multi-cloud compliant applications. In other words, it can manage applications, resources, and ser-
vices regardless of the underlying cloud platform, software environment, or infrastructure [9]. Furthermore, unlike
other configuration management tools, such as Puppet, Chef, Docker, and Ansible, TOSCA covers the complete appli-
cation life cycle rather than just deployment and configuration management [9]. Thus, it provides a higher abstraction
level while incorporating those above and additional technologies to serve a specific need.

The creator of a cloud service captures its structure in a service topology – a graph of nodes representing the
service’s components and relationships that connect and structure nodes into the topology. Both nodes and relation-
ships are typed and hold a set of type-specific properties. Types define reusable entities that define the semantics of
the node or relationship (e.g., properties, attributes, requirements, capabilities, interfaces). Templates form the cloud
service’s topology using these types. In particular, they define how to instantiate the respective type for use in the
application. They allow defining the start values of the properties by specifying their defaults. However, they can over-
write and extend the types to adjust them for their respective application. These types are conceptually comparable
to abstract classes in Java, whereas the templates are comparable to concrete classes [8].

6https://github.com/jade-lab/tosca-smells
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3 | THEORETICAL MODEL: THE BLOB BLUEPRINT

With this work, we do not intend to introduce new smells for IaC, but we conduct a case study revolving around one
specific code smell called Blob Blueprint. In traditional application code, researchers refer to this smell as Large Class;
it represents a class that typically contains too many fields and methods and relies on several external data classes,
making it low cohesive [4, 5].

In IaC, only two works relate to Blob Blueprint, although they do not target it directly [15, 16]. For example,
Sharma et al. [15] and Schwarz et al. [16] presented Insufficient Modularization. This smell represents an abstraction
(e.g., a resource, class, “define”, or module) that is large or complex and thus can be modularized further. They instan-
tiated it for Puppet and Chef, respectively, and provided three conditions for their detection:
1. configuration files that contain more than one class (in Chef) or resource (in Puppet); or
2. class declarations that are too large (more than 40 lines of code); or
3. class declarations that are too complex (max nesting depth more than three).

In TOSCA, node and relationship types and templates are analogous to abstract and concrete classes [8]. Therefore,
their size is a leading indicator for Blob Blueprints, and we consider the cumulative number of types and templates in
condition (1). As for condition (2), it is accepted that the larger a module, the more difficult it is to comprehend. Indeed,
on average, the number of conditions can likely increase proportionally to the module size.7 Hence, we consider the
number of code lines as a simple measure of its size. Finally, condition (3) is computed in the respective paper using
the maximum nesting depth (e.g., in an if) for an abstraction. Unfortunately, this is impossible in TOSCA because
of its declarative nature, and we had to define a different complexity measure. However, because of its novelty
and difference compared with traditional programming languages, it is unclear what can be considered a complexity
measure in TOSCA.

In general, a complexity measure tries to capture the difficulty in understanding a module (i.e., a blueprint in this
case). Following the definition of Large Class above, we computed the number of interfaces and properties as anal-
ogous to the number of methods and attributes. In addition, in line with previous studies on the matter [15], we
further computed the well-known lack of cohesion of methods (LCOM) [21] since a higher value of LCOM indicates
decreased encapsulation and increased complexity [22, 23]. In particular, the latter measures the number of con-
nected components in a class, where a connected component is a set of related methods and class-level variables.
First, related methods, which access the same class-level variables, are grouped. Then, LCOM equals the number
of connected groups of methods. Ideally, there should be only one component in each class. Unfortunately, due to
its different structure and characteristics, we cannot use the same metric for infrastructure code. Thus, our model
defines a connected component as a set of related types or templates (rather than methods in traditional languages)
and blueprint-level properties (rather than attributes in traditional languages). Then, similarly to Sharma et al. [15], we
use the following algorithm to compute LCOM in a blueprint:
1. Consider each declared element, such as node and relationship templates, as a node in a graph. Initially, the graph

contains the disconnected components (DC ) equal to the number of elements.
2. Identify the parameters of the topology template and the used variables. We refer to these elements as data

members.

7https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html
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1 tosca_definitions_version: "tosca_simple_yaml_1_0"

2

3 # Imports, description, and metadata...

4

5 topology_template:

6 inputs:

7 mem_size:

8 # ...

9 num_cpus:

10 # ...

11 rclone_user:

12 # ...

13 rclone_password:

14 # ...

15

16 node_templates:

17 Docker:

18 type: "tosca.nodes.indigo.Docker"

19 cababilities:

20 host:

21 properties:

22 mem_size: { get_input: mem_size }

23 num_cpus: { get_input: num_cpus }

24

25 marathon:

26 type: "tosca.nodes.indigo.Marathon"

27 properties:

28 command: { get_input: run_command }

29 environment_variables:

30 RCLONE_CONFIG_USER: { get_input: rclone_user }

31 RCLONE_CONFIG_PASS: { get_input: rclone_password }

L I ST ING 1 An example of how the measure LCOM can be interpreted and computed in TOSCA. The two nodes in the topology
(Docker and marathon) access two disjoint groups of input each: mem_size and num_cpu for Docker, and rclone_user and rclone_password for
marathon. Therefore, LCOM = 2.

3. For each data member, identify the components that use it and merge the identified components into a single
component.

4. Compute the lack of cohesion as LCOM = |DC |.

Listing 1 shows an example of this measure for TOSCA. The two topology nodes (Docker and marathon) access
two disjoint groups of input each (i.e., mem_size and num_cpu for Docker, and rclone_user and rclone_password for
marathon). Therefore, there are two connected components, each consisting of one node, hence LCOM = 2.

In addition to cohesion, we counted the Number of imports as a measure of the efferent coupling (a.k.a. fan-out)
that defines the number of components on which a particular component depends. Components with a high efferent
coupling value are sensitive to the changes introduced to their dependencies. Moreover, the deficiencies of their
dependencies naturally manifest themselves in these components.

Please note that we first relied on our knowledge of “complexity” in application code to elicit a set of relevant
metrics in TOSCA. Then, we performed preliminary non-structured interviews with the OASIS TOSCA Technical Com-
mittee to understand their view on the matter and evaluate the extent to which our definition of blobs and infras-
tructure complexity match. We conducted several rounds of interviews, where the experts were free to map IaC
characteristics they perceived as factors of complexity to blob code smells. We repeated the process until two key
complexity aspects emerged. Such factors still require dedicated attention even beyond the scope of this study:



Dalla Palma et al. 7

1. Blob Blueprints reflect a lower bound for complexity. Blueprints that implement multiple modules, interface
hooks, and dependencies tend to developmaintainability problems and vulnerability to infrastructure penetration
or chaos [24].

2. Automated testing Blob IaC is nigh impossible. A considerable number of negative characteristics are sparsely
related to automated testing (e.g., low code understandability, low code reuse); this warrants the necessity of
defining operationally multiple and fine-grained complexity measures to be used in a combined complexity func-
tion for further automation.

While this study focuses on the first of the above points, we are releasing all materials and automation borne of this
study to encourage further replication of our computational results and further research on the matter. Finally, we
refined and implemented the considered metrics based on their input.

4 | STUDY METHODOLOGY

In this section, we present the methodology followed throughout the study, consisting of four phases: (i) data col-
lection, (ii) data preparation (exploratory analysis and data pre-processing), (iii) detectors building, and (iv) performance
evaluation and comparison. The goal is to investigate how metric- and unsupervised learning-based detectors iden-
tify Blob Blueprints, to provide improved tooling to identify them in practice. The perspective is for researchers and
practitioners. The former is interested in assessing, through in-vitro experimentation, the effectiveness of metric-
and unsupervised learning-based code smell detection applied to TOSCA. The latter is interested in evaluating how
unsupervised learning-based smell detection works in practice.

4.1 | Data Collection

TOSCA is a novel standard. To get a comprehensive set of blueprints, we mined GitHub to look for all repositories
related to the search query tosca. The search returned 636 repositories that we analyzed to collect TOSCA blueprints.
First, we discarded repositories with no releases becausewe are interested in blueprints considered functioning. Then,
we collected all the files with the extension .tosca from the last release of each project. However, TOSCA blueprints
can also have a .yml extension. Therefore, we searched for the presence of the keyword tosca_definitions_version for
YAML files.8 That keyword identifies the versioned set of normative TOSCA type definitions to validate those types
defined in the TOSCA Simple Profile and is mandatory.9 Please note that we discarded blueprints used for testing or
examples, i.e., those containing test or example in the file path, as they are not representative of production blueprints
targeted by this study. This way, we collected 1036 blueprints from 42 repositories.

4.2 | Data Preparation

The blueprints collected in the previous section were scanned to extract the metrics defined in Section 3 to create the
dataset for experiments. To this end, we implemented an open-source tool for TOSCA available on GitHub.10 Please
note that 287 blueprints were discarded at this point because of invalid YAML files (123) or duplicates (164) based

8This step was performed on Jun 9, 2021.
9https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html

10https://github.com/radon-h2020/radon-tosca-metrics
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on the extracted metrics, leading to a comprehensive data set of 749 distinct blueprints.
From that, we manually annotated a statistically relevant random set of 290 blueprints that we sampled to have

an acceptable margin of error of 5% and a 95% confidence level to create the ground truth for the exploratory analysis
described below and compare techniques. The annotation was performed before the subsequent analyses so that we
could avoid additional bias; furthermore, the inspectors actively discussed their operations multiple times to convey
a decision in order to reduce subjectivity.

The first and fourth authors scanned each resource and labeled it as smelly or sound based on their experience
and understanding of the blueprint’s semantics. The authors have at least four years of experience in code quality
and IaC research. In addition, the fourth author is an active member of the OASIS TOSCA Technical Committee;11
as such, he participates in monthly meetings where the Committee discusses with TOSCA practitioners about status
and challenges of the language.

Each blueprint was subjectively analyzed considering the overall length, the number of nodes and relationships,
and their scope based on type, description, properties, and interfaces; we defined these criteria based on the theoret-
ical model in Section 3 before annotating. We also considered complexity in terms of difficulty in understanding the
operations performed by the blueprint. A web application was developed and shared among the assessors to facilitate
the annotation.12

Then, Cohen’s Kappa [25] was measured to compute the degree of agreement between the assessors. Cohen’s
Kappa ranges between 0 and 1, with 0 indicating no agreement between the two raters and 1 indicating perfect
agreement. In case of disagreements, the assessors met and discussed the disagreed blueprint to convey a decision.
Following this procedure, we obtained a ground truth consisting of 248 sound and 42 smelly instances after reaching
a complete agreement in the resolution phase from an initial Cohen’s Kappa of 0.56 (i.e., moderate agreement). Below,
we describe the exploratory analysis performed on the ground truth.

4.2.1 | Exploratory Analysis

We tested each metric separately using statistical analysis before employing them for predicting Blob Blueprints. For
each metric, we measured whether the distribution of this metric within Blob Blueprints is statistically different from
the distribution within all other blueprints. To this end, we applied the non-parametric Mann–Whitney U test [26]
with a significance level α = 0.01.

To better control for the randomness of our observations, we used Bonferroni’s correction [27] to adjust the
significance level according to the number of comparisons (i.e., five). Thus, the results are significant at the significance
level α = 0.002. P-values below this show that the two groups differ for the consideredmetric. While we acknowledge
that a metric distributed differently does not necessarily distinguish Blob and sound blueprints, these results hint at
why a machine learning approach that combines these features can be successful.

Beyond the p-value interpretation, we calculated the effect size using Cliff’s delta [28] to measure the magnitude
of the difference between two populations and ranges from zero to one. For example, according to Kampenes et
al. [29], a value below 0.147 is considered trivial; between 0.147 and 0.33, it is small; between 0.33 and 0.474, it is
medium, and it is large above 0.474. In the following, we discuss how we pre-processed these metrics for experimen-
tation.

11https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
12Demo accessible at https://smell-annotator.web.app/ using the token: 9WhBsZe1EiDhFgVXtBPn
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4.2.2 | Pre-processing

First, we normalized data as a common requirement for many machine learning estimators. Typically this is done by
removing the mean and scaling to unit variance. However, outliers can often influence the sample mean or variance
negatively. Therefore, we resorted to the RobustScaler available in scikit-learn for the task.13 It scales data similarly
to the min-max normalization but uses the interquartile range rather than the max-min range to be robust to outliers.
Therefore it follows the formula:

x−Q1 (x )
Q3 (x )−Q1 (x )

As for feature selection, we meant the metrics for code smell detection. However, some metrics may correlate to
others. The latter might be a problem in unsupervised learning, as the concept they represent gets more weight than
other concepts. Thus, the final model might skew toward that particular concept, which might be undesirable. For
that reason, we controlled for multicollinearity through the Variable Inflation Factor (VIF) [30], discarding the features
having a value larger than 10, a widely-used rule-of-thumb [31]. In addition, we used a stepwise forward selection
to determine the optimal set of features to build the detectors described below. More specifically, all the metrics but
those already selected are tested against the MCC at each step. The metric that significantly improves MCC the most
is added to the set.

4.3 | Detectors Building

Afterward, we used the pre-processed data and the selected features to build the metrics- and unsupervised learning-
based smell detectors described below.

4.3.1 | Metrics-based detectors

A metric-based detector takes source code as the input, calculates a set of source code metrics that capture the
characteristics of a given smell, and detects that smell by applying a suitable threshold [5]. In most cases, setting the
threshold values is a highly empirical process, and it is guided by similar past experiences and hints from the metrics’
author [32]. For example, as mentioned in Section 3, Sharma et al. [15] and Schwarz et al. [16] detect a similar smell
called InsufficientModularizatio if a configuration script containsmore than 40 lines of code or an abstraction contains
more than one class or define. Nevertheless, those thresholds do not hold to TOSCA because of the differences
between these languages. Indeed, blueprints rarely contain a single type because of their nature, and types are usually
small. In addition, no previous works on Blob Blueprint detection for TOSCA exist. Therefore, no hints are available
from past experiences.

Statistical techniques can define a suitable threshold for each metric when no hints are available. In this case, we
used the Interquartile Rule as in previous works [33] as a baseline:

T (x ) = Q3 (x ) + 1.5 × I QR (x )

The formula defines threshold spotting blueprints representing upper outliers for a specific metric (i.e., smelly in-
stances). It makes use of the third quartile (Q3) and the interquartile range (I QR (x ) = Q3 (x ) −Q1 (x )) extracted from
the blueprints selected for this tuning. Typically, a threshold is calculated for each metric, and a rule is defined that

13https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
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F IGURE 1 The cluster labeling scheme. Once clusters are defined, the feature values of blueprints in each
cluster are summed (SFB). Then, the average SFB (ASFB) is calculated for each cluster. To support scenarios with
multiple clusters (>2), the median values of these ASFBs (MASFB) are calculated so that clusters where
ASF B > MASF B are labeled as smelly and the remaining as sound.

combines them through logic operators. In this case we used the logic OR : an instance is detected as smelly if any met-
ric exceeds the respective threshold. Conversely, the logic AND might be impractical, as the probability of detecting
smelly instances drops when the number of metrics increases. For this reason, we relied on multivariate outliers to
consider multiple metrics at once.

The standard method for multivariate outlier detection uses the Mahalanobis distance [34, 35], a measure of the
distance between a point p and a distribution D . More specifically, it measures the number of standard deviations the
point p is from the mean of D . The distances are typically interpreted by comparing the corresponding χ2 value (with
the degrees of freedom equal to the number of variables) to a cut-off p-value. Cases with p-value < .001 are likely to
be considered outliers.

4.3.2 | Unsupervised learning-based detectors

The unsupervised learning detectors proposed in this study revolve around four popular clustering techniques avail-
able in the Python framework scikit-learn [36], namely KMeans, AgglomerativeClustering, MeanShift, and BIRCH. We
relied on these techniques for their popularity14 and because they are common in code smell detection for traditional
source code [37, 38]. Furthermore, we used the implementations provided by scikit-learn to ensure easy operational-
ization for practitioners and replication for researchers. A detailed description of these techniques is available in the
scikit-learn’s official documentation.15
Number of Clusters. Most of the algorithms mentioned above require specifying the number of clusters in advance.
Being that unavailable information, we resorted to the Silhouette coefficient [39] to validate the goodness of a clus-
tering technique and select an appropriate number of clusters. It ranges between -1 and +1: a coefficient close to +1
indicates that the objects are well-matched to their cluster and poorly matched to neighboring clusters. A value close
to -1 indicates too many or too few clusters, whereas a coefficient close to 0 indicates overlapping clusters. Therefore,
we performed a randomized search on different hyper-parameters configurations for every clustering technique and
retained the configuration that maximized the Silhouette coefficient across ten runs.
Cluster Labelling. The clusters resulting from the previous step have unique identifiers from a technical standpoint;
these identifiers are not labels that indicate the cluster’s smelliness. However, Zhang et al. [40] proposed a heuristic

14https://dataaspirant.com/unsupervised-learning-algorithms/
15https://scikit-learn.org/stable/modules/clustering.html
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to label clusters in the context of defect prediction that Xu et al. [41] adapted to support scenarios with more than
two clusters. Figure 1 depicts the heuristic that we instantiated for smell detection by changing the labels as follows:
1. Sum up the feature values of blueprints in each cluster (SFB).
2. Calculate the average SFB for each cluster (ASFB).
3. Calculate the median of these ASFBs (MASFB).
4. Label every observation in each cluster as smelly if ASF B > MASF B ; sound otherwise.

Step 4 assumes Blob Blueprints generally have larger values than sound blueprints for the considered metrics.
Although this reasoning applies to defect prediction [40, 42, 43], we argue that it applies to the smell we investigated.
Finally, step 4 labels the observations as sound in cases of one cluster.

4.4 | Performance Evaluation

We evaluated the techniques’ performance on the ground truth in terms of Precision and Recall [44], defined as follow:
pr eci si on = T P

T P+F P

r ecal l = T P
T P+F N

whereT P is the number of smelly-instances classified as such by the model; T N denotes the number of non-smelly-
instances correctly classified by the model; F P and F N measure the number of classes for which the model fails to
identify the smelliness of classes by declaring these classes as smelly (F P ) or non-smelly (F N ).

Then, we computed the Matthews Correlation Coefficient (MCC) [45], a regression coefficient that combines all
four quadrants of a confusion matrix, thus also considering true negatives. Its formula is:

MCC = (T P×T N )−(F P×F N )√
(T P+F P ) (T P+F N ) (T N+F P ) (T N+F N )

where TP, TN, and FP represent the number of true positives, true negatives, and false positives, respectively, while
FN is the number of false negatives. Its value ranges between -1 and +1. A coefficient equal to +1 indicates a perfect
prediction; 0 suggests that the model is no better than a random one; and -1 indicates total disagreement between
prediction and observation.

Please note that these measurements evaluate classifiers; however, they are applicable in this research since we
apply binary clustering with known ground truth. In addition, we calculated the adjusted Rand index (ARI) – a standard
metric for clustering evaluation. This metric measures the similarity between the ground truth assignments (e.g., true
labels in our validation set) and our clustering approach assignments on the same samples (e.g., the labels assigned by
our approach).

Finally, for each algorithm, we reported whether their MCC differs significantly. To this end, we applied the non-
parametric Mann–Whitney U test [26] with a significance level α = 0.01. To better control for the randomness of
our observations, we used Bonferroni’s correction [27] to adjust the significance level according to the number of
comparisons (i.e., 15). Thus, the results are significant at the significance level α = 0.001. P-values lower than this
value show that the MCC of the two algorithms differs significantly.

Beyond the p-value interpretation, we calculated the effect size using Cliff’s delta [28] to measure the magnitude
of the difference between two populations and ranges from zero to one. For example, according to Kampenes et
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TABLE 1 Overview of the features and results of the statistical analysis of the metrics. Mann–Whitney U test
significant (*) if p < 0.002 (corresponding to a non-corrected p < 0.01 for each test).

Metric Mean Blob Mean others U Effect size

LinesCode 669 79 7381* Large
NumTypesAndTemplates 15 3 6675* Large
LCOM 12 2 6631* Large
NumInterfaces 6 1 5303* Medium
NumProperties 64 9 6638* Large
NumImports 6 2 4699 Small
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F IGURE 2 Results of the statistical analysis of metrics distribution: the violin plots show that the population of
Blob and sound blueprints have different distributions for every considered metric compared with the ground truth.

al. [29], a value below 0.147 is considered trivial; between 0.147 and 0.33, it is small; between 0.33 and 0.474, it is
medium, and it is large above 0.474.

Please note that we evaluated the techniques across 100 experiments to gain insights into performance variability.
Each experiment considered a perturbed version of the original data set consisting of at least 290 uniformly sampled
observations without replacement (i.e., a statistically relevant sample size) and reported statistics like median, mean,
and standard deviation. We generated these versions upfront to evaluate all the techniques on the same data sets.

5 | RESULTS

Table 1 shows the metrics list and a statistical evaluation (as described in Section 4.2.1), while Figure 2 depicts an
overview of their statistics and distribution through violin plots. As can be observed, Blob and sound blueprints popu-
lations have different distributions for all considered metrics compared with the ground truth. However, NumImports
appears to be distributed independently from whether the blueprint is smelly or not, with a small effect size. Over-
all, this first analysis hints that their use, and the combination thereof, is a good proxy for detecting Blob Blueprints.
Therefore, we used those metrics, except the number of imports, to build the smell detectors.
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F IGURE 3 Matthews correlation coefficient across metric- and unsupervised learning-based detectors. The
detector built using the Interquartile rule performs statistically better than those relying on unsupervised learning.
Legend: (rb) = rule-based; (ml) = machine learning-based.

Summary of RQ1: All the considered structural code metrics, except NumImports, can distinguish between Blob
and sound blueprints with medium to large effect size.

Table 2 shows the results of our experiments for each detector in terms of MCC, Precision, Recall, F1, and ARI (for
cluster-based detectors). Similarly, Figure 3 depicts violin plots to compare detectors’ performance in terms of MCC.
The average MCC ranges from 0.5 for the worst-performing detector, AgglomerativeClustering, to approximately 0.8
for the best-performing detector, i.e., the metric-based detector based on the interquartile rule. It is also the detector
with the lowest standard deviation, alongside the other metric-based detector using the Mahalanobis distance. Thus,
it yields the most stable results regardless of the metrics used; the minimum is below 0.73, the maximum is 0.85,
and the standard deviation is 0.03. In addition, an unsupervised learning-based detector reaches the best precision,
namely the one using the AgglomerativeClustering algorithm. However, the recall has a high drop-off. As can be
observed by analyzing the F1, which summarizes precision and recall, the two metric-based detectors perform the
best, with an average of 0.6 and 0.8. The best unsupervised learning-based detector, MeanShift, achieves slightly
similar results. However, its performance is significantly worse than the best metric-based detector (22% worse in
MCC), with a large effect size.

Table 3 shows that the differences among the detectors are, in most cases, very high and of practical significance.
For example, all the detectors have 22% to 35% lower MCC than the best metric-based detector with a large effect
size. However, most detectors generally reach moderate to high MCC and F1. These results are encouraging since
false positives and false negatives are minimal. Please note that false positives and negatives might significantly
impact users in the context of code smell detection. For example, false positives can have negative consequences, as
developers put less trust in the tool when falsely alarmed multiple times for smells that do not exist. If this happens
too often, developers could stop using the smell detector. False negatives, on the other hand, are comparably harmful.
As the smell detector helps the developer during Quality Assurance, they might become less vigilant during code
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TABLE 2 Average performance statistics across 100 experiments. Legend: (RB) = Rule-based; (ML) Machine
Learning-based.

Algorithm MCC Precision Recall F1 ARI FN FP TN TP

Mean Std Mean Std Mean Std Mean Std Mean Std

IQR (RB) 0.79 0.03 0.68 0.05 0.99 0.02 0.80 0.04 – – 0 8 140 20
MeanShift (ML) 0.63 0.06 0.63 0.17 0.77 0.21 0.65 0.07 0.52 0.08 5 14 142 17
Mahalanobis (RB) 0.60 0.02 0.76 0.06 0.54 0.04 0.63 0.02 – – 10 3 146 11
KMeans (ML) 0.59 0.06 0.59 0.10 0.72 0.12 0.64 0.07 0.51 0.07 6 11 143 16
BIRCH (ML) 0.56 0.09 0.64 0.14 0.63 0.20 0.59 0.13 0.48 0.11 9 8 148 13
Agglomerative (ML) 0.51 0.10 0.82 0.08 0.38 0.14 0.49 0.13 0.42 0.12 14 2 147 7

TABLE 3 Statistical comparison of mean MCC among detectors. The values below the diagonal are the
differences between pairs of techniques in % (significant in bold). A negative value indicates that the detector in the
row performed worse than the one in the column. The values above the diagonal are the effect size. Legend: (RB) =
Rule-based; (ML) Machine Learning-based.

IQR MeanShif Mahalanobis KMeans Birch Agglomerative

IQR (RB) – Large Large Large Large Large
MeanShift (ML) -22 – Large Medium Large Large
Mahalanobis (RB) -24 -5 – Small Small Large
KMeans (ML) -25 -6 +2 – Small Large
Birch (ML) -29 -11 -7 -5 – Medium
Agglomerative (ML) -35 -19 -15 -14 -9 –

reviews as they fully trust and rely upon the detector. The overall code quality can even decrease when it suffers
from a high rate of false negatives.

Summary of RQ2: The metric-based detectors perform statistically better than unsupervised learning-based
detectors with large effect size.

Finally, Figure 4 shows how the consideredmetrics impact the performance of each detector. During the stepwise
forward selection described in Section 4.2.2, we tracked the variation in MCC, Precision, and Recall when adding
features at each step. We added the metric that maximizes the MCC (or minimizes the drop in MCC) at each step.
For example, the IQR-based detector (top-left graph) has the highest MCC when it uses only LinesCode. Adding
NumImports decreases theMCC, although the combination (LinesCode, NumImports)maximizes theMCC among those
consisting of two metrics, including LinesCode. Similarly, adding LCOM -– the best one among the remaining metrics
— to them further decreases the MCC.

As observed, performance varies visibly across metrics sets and detectors. For example, the number of code lines
maximizes MCC for the IQR-based detector. At the same time, performances are the lowest for the Mahalanobis-
based detector. As for the unsupervised learning-based detectors, the samemetric increasesMCC only forMeanShift,
while for the remaining, it decreases it. Precision tends to increase or stay constant. The opposite applies to recall.

In general, looking at the figure is clear that all the consideredmetrics improve performance. Therefore, one should
consider these metrics together while building detectors. Please note that we could not analyze all combinations for
time’s sake. Nevertheless, we observed several metrics that recur across the optimal subset of features, shown in
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F IGURE 4 Stepwise forward selection to track the change in performance when adding the metric that
maximized MCC (or, minimized its drop) at each step. For example, the IQR-based detector (top-left graph) has the
highest MCC when only LinesCode is used. Adding NumImports decreases the MCC, although the combination
(LinesCode, NumImports) maximizes the MCC among those consisting of two metrics and that include LinesCode.
Similarly, adding LCOM – the best one among the remaining metrics – to them further decreases the MCC.

Table 4. Among them, the number of interfaces – analogous to the number of methods in traditional programming –
is the one that occurs the most.
TABLE 4 Features that maximize MCC for each detector. Legend: (RB) = Rule-based; (ML) = Machine
Learning-based.

Algorithm Selected features

IQR (RB) LinesCode

MeanShift (ML) NumTypes, LinesCode, LCOM, NumProperties

Mahalanobis (RB) NumInterfaces, LinesCode, LCOM, NumProperties
KMeans (ML) NumInterfaces, NumTypes
Birch (ML) NumInterfaces, NumTypes, LCOM
AgglomerativeClustering (ML) NumInterfaces

Summary of RQ3: The number of interfaces appears to be a leading metric to maximize the overall performance.
Follows the number of types and templates, code lines, and LCOM.

6 | THREATS TO VALIDITY

This section describes the threats that can affect the validity of our study.
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6.1 | Construct Validity

Threats to construct validity concern the relation between the theory behind the executedmethodology and the found
observations by assessing whether the observed outcome corresponds to the effect we think we are measuring.

In this work, we used source code measurements, which may not appropriately represent the intended character-
istic by the researchers. We mitigated this threat by using two approaches. First, we looked for measures that have
been empirically validated multiple times for traditional code smell detection and that could be ported to TOSCA.
Then, we consulted the official TOSCA documentation to identify possible measures related to the blueprint complex-
ity and size source. Second, we implemented thesemeasurements following a test-driven development approach [46]:
the developer first creates unit tests for the intended functionality. Afterward, they implement the measurement and
improve it until all the initial unit tests pass.

Another threat relates to the construction of the ground truth, done manually. As manual work, such as labeling,
can be prone to human errors, we acknowledge this as a possible threat to construct validity. We tried to mitigate
this threat by summarizing the most prevalent definitions found in the literature for the analyzed smell. Furthermore,
the authors of this study performed the validation, which poses a threat to the construction validity due to the bias
regarding the perception of what metrics or quality attributes characterize the smell; involving external experts would
mitigate this bias. However, it is worth noting that the authors involved in the validation have multiple years of
experience in code quality and IaC research; although the annotators were not external, they could still be considered
experts enough for this task. Finally, the annotators performed the validation before the subsequent analyses to
mitigate additional bias; they also actively discussed their operations multiple times to reduce subjectivity.

Lastly, we collected GitHub repositories automatically based on a search string. Therefore, we may have missed
relevant repositories due to a conservative search string.

6.2 | Internal Validity

Threats to internal validity concern the possibility that other factors could cause the outcome but were not measured
during the research. A possible threat to internal validity is the source code measurement selection. It could be
possible that other not included source code measurements could significantly influence the result. We mitigated this
risk by selecting measurements that correlate with and can identify defective IaC scripts [47, 48].

6.3 | External Validity

Threats to external validity relate to the generalizability of the obtained results outside the scope of the research. We
observed various threats to external validity in this work.

First, the obtained data set is considerably small. Although it includes a large subset of publicly available TOSCA
blueprints, the size of the data set can still negatively affect the modeling performance of the clustering algorithm
used.

Another threat might be that our dataset does not correctly represent the population of TOSCA blueprints be-
cause we could select only those publicly available. For example, the blueprints used in industrial contexts cannot be
shared due to company regulations, but demo blueprints can. In that situation, our dataset could not represent the
actual population of TOSCA blueprints.

Lastly, we only used four clustering algorithms. However, such algorithms are among the most popular and in-
tuitive, easing operationalization and interpretability for practitioners. Although, less traditional algorithms might be
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evaluated as well. For example, spectral clustering could be analyzed, given its ability to solvemore complex situations,
such as arbitrary non-linear shapes, as it does not make assumptions about the shapes of the clusters.

6.4 | Conclusion Validity

Threats to conclusion validity concern the appropriate usage of statistical tests and reliable measurement procedures,
for example, to ensure the high quality of the conclusions. A possible threat to conclusion validity might be related to
our work’s implementation of the detectors used and the applied evaluation strategy. We followed the instructions
given by previous authors [15, 16] for building metrics-based detectors. As for the unsupervised learning detectors,
we used the implementation provided by the Python framework scikit-learn [36]. The metrics used to evaluate our
clustering-based detection approach (i.e., Silhouette, Precision, Recall, and MCC) are widely used techniques for eval-
uating the performances of binary classification tasks.

Furthermore, the test used for the statistical analysis to estimate the difference between measures among detec-
tors is a threat to the conclusion validity. There are many statistical tests whose choice relies upon the data structure,
data distribution, and variable type, and the result can differ accordingly. To mitigate this threat, we applied a non-
parametric test, which does not make assumptions about the data distribution, is commonly used in literature. Be-
sides, since we conducted multiple hypothesis tests at once, there is a chance that at least one of the tests produced
a false positive. Therefore, we used Bonferroni’s correction to adjust the significance level to control the probability
of committing a type I error and mitigate this threat.

7 | DISCUSSIONS, IMPLICATIONS, AND LESSONS LEARNED

In RQ1 and RQ3, we found that traditional source code metrics, such as the number of methods (interfaces in TOSCA),
classes (types and templates in TOSCA), code lines, and lack of cohesion are good indicators of complex blueprints
when mapped to their respective concepts in TOSCA. This result corroborates, on a technology-agnostic language,
the findings of Sharma et al. [15] and Schwarz et al. [16].

Besides, RQ2 shows that practitioners should prefer metrics-based detectors to unsupervised learning-based
detectors. The latter helps overcome shortcomings such as determining threshold values required by the former and
possibly reduce the effort of collecting and identifying smelly blueprints. We believe that, despite the performance
observed in this study, unsupervised-learning-based detectors can still play a role in detecting Blob Blueprints and
other smells in TOSCA. However, a broader range of TOSCA blueprints and metrics may be needed to enhance them.

7.1 | Implications for Researchers and Practitioners

The results above pose several implications for researchers and practitioners, described below.
• Implications for researchers: There is still room for research in this area, and we argue for more empirical work on

configuration smells to broaden our knowledge of complex blueprints and enhance the catalog of code smells for
IaC. Our findings put a baseline to investigate which metrics should be used to detect Blob Blueprints. However,
further research is needed to understand the relationship between the smelliness of the TOSCA code and the
collected metrics. These results can lead to a better understanding of which features to utilize to improve code
smell detection in TOSCA and enable the comparison of competing approaches.
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F IGURE 5 An excerpt of a Blob Blueprint with nodes targeting different technologies and a possible refactoring
suggestion.

• Implication for practitioners: Practitioners can build upon our findings and shared material to implement novel
methods and tools based on a small set of features such as those elicited in this paper. These tools will warn devel-
opers of complex blueprints and ultimately help reduce technical debt. For example, we already used those met-
rics as a proxy to predict failure-prone TOSCA blueprints within the scope of the European project called RADON,
aimed at pursuing a broader adoption of serverless computing technologies within the European software indus-
try.16 One of the RADON key pillars is quality assurance for TOSCA. The results from analyzing blueprints in
one of our partner’s use cases within the project show that they help distinguish blueprints that may induce tech-
nical debt.17 According to them, when keeping IaC quality, these metrics could ensure avoiding complex code
representations.

7.2 | Lesson Learned

In addition to the implications above, we report some insights we observed while validating complex blueprints that
we hope future researchers can benefit from to identify more fine-grained complexity measures for the Blob Blueprint
smell.
• Refactor nodes based on target technology. During the validation, we observed several Blob Blueprints defining

too many nodes, targeting different technologies. For example, a blueprint from Alien4Cloud18 contains 16 nodes,
16https://radon-h2020.eu/
17https://radon-h2020.eu/wp-content/uploads/2021/09/D6.5-Final-Assessment-Report.pdf (Section 4.3.3.4)
18https://raw.githubusercontent.com/alien4cloud/csar-public-library/d08f5ac3f3f5279ad65fdf8c025459fafac37e75/org/
alien4cloud/alien4cloud/topologies/a4c_ha/type.yml
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a subset of which targets three different technologies: Consul, Samba, and Elasticsearch. Figure 5 shows those
nodes and their dependencies. It might be advisable to refactor those types in different blueprints to reduce
the complexity, each grouping type targeting the same or similar technology. Then, one should import those
blueprints into the one at hand.

• Refactor nodes based on types. TOSCA provides types to describe the possible building blocks for constructing
a service template. For example, node types to describe kinds of nodes, relationship types to describe possible
relations among those nodes, and policy types to logically group TOSCA nodes that have an implied relationship
and need to be orchestrated or managed together to achieve some result. While it is possible and might be
advisable that a blueprint define one or more components of each type, we noticed that having toomany different
types makes the blueprint more challenging to understand. In this case, we suggest refactoring them in separate
files for each type or group.

• Move workflows into separate files. Some of the analyzed blueprints had large workflows that contributed the
most to increasing their size. Practitioners use workflows to automatically deploy, manage runtime, or undeploy
TOSCA topologies. We suggest moving those workflows into different files and importing them into the current
blueprint. Please note that although we noticed that large workflows could decrease the readability of a blueprint,
we did not implement a measure for its size. The reason is that, among the collected blueprints, we observed
workflows only in the project Alien4Cloud. In a preliminary investigation, we observed that this metric is too
noisy, weighting the prediction of smelly blueprints towards those blueprints only.

8 | CONCLUSION

In this work, we enhanced the current knowledge of current practices in Infrastructure-as-Code and the detection of
configuration smells. As indicated by Rahman et al. [7], current scientific works insufficiently address the characteris-
tics of best practices within IaC, and only a handful of previous works investigated configuration smells. We conducted
a study on the official OASIS standard for IaC called TOSCA, for which we constructed a comprehensive dataset of
publicly available blueprints, deduced the characteristics of current practices, and investigated the performance of
metric- and unsupervised learning-based techniques for smell detection. The implementation is made available on
Github, accompanied by an explanation for usage and research reproduction.19

The main findings of this work are many-fold. First, we observed significant characteristical differences between
smelly and sound blueprints based on their code structure for the current practices concerning TOSCA blueprint de-
velopment. Our findings concerning configuration smells are also noteworthy. The range of researched configuration
smells in previous work is relatively small because IaC is a new research area. However, we argue for more empir-
ical work on configuration smells to broaden the smell catalog for IaC. Finally, other researchers can enhance this
work based on the constructed dataset by applying more sophisticated techniques and analysis to investigate Blob
Blueprints further and open opportunities for extensive studies on code smells in TOSCA.
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