
Noname manuscript No.
(will be inserted by the editor)

Rubbing Salt in The Wound? A Large-Scale Investigation
into The Effects of Refactoring on Security

Emanuele Iannone ¨ Zadia Codabux ¨

Valentina Lenarduzzi ¨ Andrea De
Lucia ¨ Fabio Palomba

Received: date / Accepted: date

Abstract Software refactoring is a behavior-preserving activity to improve
the source code quality without changing its external behavior. Unfortunately,
it is often a manual and error-prone task that may induce regressions in the
source code. Researchers have provided initial compelling evidence of the re-
lation between refactoring and defects, yet little is known about how much
it may impact software security. This paper bridges this knowledge gap by
presenting a large-scale empirical investigation into the effects of refactoring
on the security profile of applications. We conduct a three-level mining soft-
ware repository study to establish the impact of 14 refactoring types on (i)
security-related metrics, (ii) security technical debt, and (iii) the introduction
of known vulnerabilities. The study covers 39 projects and a total amount of
7,708 refactoring commits. The key results show that refactoring has a limited
connection to security. However, Inline Method and Extract Interface statisti-
cally contribute to improving some security aspects connected to encapsulating
security-critical code components. Extract Superclass and Pull Up Attribute
refactoring are commonly found in commits violating specific security best
practices for writing secure code. Finally, Extract Superclass and Extract &
Move Method refactoring tend to occur more often in commits contributing to
the introduction of vulnerabilities. We conclude by distilling lessons learned
and recommendations for researchers and practitioners.

Keywords Refactoring; Software Security; Empirical SE.

Emanuele Iannone, Andrea De Lucia, Fabio Palomba
SeSa Lab — University of Salerno, Italy
E-mail: eiannone@unisa.it, adelucia@unisa.it, fpalomba@unisa.it

Zadia Codabux
University of Saskatchewan, Canada
E-mail: zadiacodabux@ieee.org

Valentina Lenarduzzi
University of Oulu, Finland
E-mail: valentina.lenarduzzi@oulu.fi

2 Emanuele Iannone et al.

1 Introduction

In 1999, Fowler defined the term “software refactoring” to indicate the activi-
ties developers perform to improve the internal structure of source code with-
out changing its external behavior [1]. Since then, the research community has
investigated refactoring from multiple perspectives [2, 3, 4, 5], proposed novel
recommendation systems to help developers refactor source code [6, 7, 8], em-
pirically investigated why developers refactor source code [9, 10], studied the
current barriers preventing refactoring in practice [11, 12, 13, 14], and explored
the effects of refactoring on source code dependability [15, 16, 17, 18].

One of the most worrisome results of these empirical analyses is that refac-
toring might induce defects. Bavota et al. [19] and, more recently, Di Penta
et al. [16] have indeed shown that refactoring operations can induce faults in
a non-negligible number of cases—this is likely due to refactoring operations
done manually rather than supported by semi-automated tools [12].

This study builds on this line of research and investigates the relationship
between refactoring and software security, defined as the property that allows
the software to continue working correctly under potential risks due to exter-
nal malicious attacks that may cause loss or harm [20]. Our study is based
on the assumption that refactoring operations performed by developers can
lead to variations in the security level of an application. In the first place,
this assumption is justified by early work studying the relation between refac-
toring and security measured in various ways. In particular, Abid et al. [15]
recently proposed a search-based security-aware refactoring recommender that
suggests the refactoring operations to apply to obtain the best trade-off be-
tween code maintainability and security degradation. While the main focus of
such work was the definition of a novel refactoring recommender, they also
conducted a preliminary motivational analysis to correlate (i) the presence of
14 automatically-detectable refactoring types [21] and (ii) the QMOOD met-
rics [22] with eight data-access security indicators proposed in literature [23].
The analysis considered a single snapshot of 30 open-source software systems
and revealed that some refactoring types are negatively correlated to security—
i.e., their application caused the worsening of certain security characteristics.
Among their findings, they observed a negative correlation between the appli-
cation of Extract Superclass refactoring operation [1] and data-access security
indicators—which is something we also observed in the context of our research.
For instance, let us consider the case of project Conversations1 at the re-
vision 2067b9bd, where the application of an Extract Superclass has led to
the extraction of class XmppUri from class Invite. This refactoring caused
the introduction of new security-sensitive attributes. Thus, it seems reason-
able to believe that refactoring might impact an application’s security profile.
Indeed, Extract Superclass revolves around modifying hierarchies to create a
common superclass for a set of classes. By design, a superclass is more acces-
sible than subclasses, which might expose previously hidden sensitive parts of

1https://github.com/iNPUTmice/Conversations

https://github.com/iNPUTmice/Conversations

A Large-Scale Investigation into the Effects of Refactoring on Security 3

GraphicsUtil

+ AffineTransform IDENTITY

+ createGraphics()
+ getDestination()
+ getDestinationColorModel()
+ getDestinationBounds()
+ copyData_FALLBACK()
[...]

GraphicsUtil

+ drawImage()
[...]

Extract Method(s)

Fig. 1: Simplified graphical representation of the changes applied to
GraphicsUtil class at the revision 8309088a in project batik.

the program, increasing the chances of introducing vulnerabilities. In a similar
manner, Abid et al. [15] found correlations between other refactoring opera-
tions (e.g., Move Method [1]) and other security-related aspects.

Our research identifies a set of refactoring types whose application might
actually lead to variations of the security level of the code being refactored—as
detailed later in Section 2.3.1. In this sense, we build our empirical analysis
upon logical reasoning, through which we hypothesized and verified the ex-
tent of the identified relations. For example, we hypothesize that the Pull Up
Attribute refactoring [1]—i.e., moving an attribute from a subclass to a su-
perclass, changing its visibility and external accessibility—potentially leads to
security drifts due to the wider exposition of the attribute. As an additional
example, let us consider a case observed in the context of our research. This
pertains to project batik2 at the revision 8309088a. The commit applied a
great restructuring of the classes, as also pointed out by the commit message
reported in the following:

“The deepest architectural change is a strong move towards tiling ev-
erything [...]”.

Elaborating on the modifications performed in this commit, the
GraphicsUtils class was affected by the various changes, being subject to sev-
eral Extract Method refactoring operations. Specifically, the main restructuring
involved the long method drawImage(), whose logic was decomposed into sev-
eral smaller and more cohesive methods. In the version before the change,
the drawImage() method allocated a new instance of the AffineTransform

class each time it was called. Likely, this was judged as invalid, so making
the commit’s author introduce a new class variable (i.e., a static class field)
pointing to an instance of AffineTransform class named IDENTITY having
public visibility. However, they likely ended up leaving it not-final, making
it modifiable from any other class that has access to GraphicsUtils—i.e.,

2https://github.com/apache/batik

https://github.com/apache/batik

4 Emanuele Iannone et al.

potentially any project that includes batik library in their classpath. This
scenario represents a pointless exposure of the class variable to any change,
likely introducing bugs or even leaking information that should not be dis-
closed to clients. Figure 1 shows the GraphicsUtils class before and after the
application of the multiple Extract Method refactoring operations.

Based on these observations and recognizing the significant research ad-
vances done by Abid et al. [15], we aim to substantially enlarge the knowl-
edge of the relation between refactoring and security, using different statistical
methods and looking at different aspects characterizing software security. More
specifically, we aimed at defining a theory that could provide quantitative in-
dications of how different refactoring operations may impact security under
different perspectives. Hence, we consider the change history information of
39 software projects and conduct a three-level quantitative analysis. We first
assess the extent to which 14 refactoring types extracted by Refactoring-
Miner [24] may affect the source code from a security perspective. As such, we
measure the effects of refactoring on (i) a set of security metrics available in lit-
erature [23] and computed with a homemade tool, coined Surface (SecURity
FlAws metriCs Extractor), that we publicly release to the research commu-
nity, and (ii) security-related technical debt, as computed by SonarQube.3

In doing so, we use similar statistical instruments as in previous studies inves-
tigating the relation between refactoring and source code quality [9], program
comprehension [25], and defects [16]. In particular, statistical models specify
mathematical relationships between one or more independent variables (in our
case, the refactoring operations and a set of confounding variables) and de-
pendent variables (in our case, the source code security level computed using
security metrics and technical debt). As such, statistical modeling allows us
to formally represent our theory [26], perfectly fitting the goals of our study.
As the last part of the study, we verified how refactoring could lead to the
introduction of known vulnerabilities mined from the National Vulnerability
Database (NVD) [27]. In this case, we first measured the number of times
refactoring operations are performed in commits where known vulnerabilities
are introduced; then, we conducted a finer-grained manual investigation to un-
derstand the extent to which refactoring operations are actually contributing
to the introduction of vulnerabilities.

The key results of our investigation show a limited connection between
refactoring and security. Indeed, we discover that most of the refactoring op-
erations do not have a significant impact on any of the security perspectives
considered. At the same time, we highlight some noticeable exceptions: Inline
Method and Extract Interface are the refactoring operations that appear to
be statistically significant when it turns to the improvement of some security
aspects connected to encapsulation, while Extract Superclass, and Pull Up At-
tribute are linked to an increase of violations to certain security practices to
write secure code. Furthermore, the Extract Superclass and Extract & Move
Method refactoring types tend to occur more often in commits contributing to

3Link: https://www.sonarqube.org

https://www.sonarqube.org

A Large-Scale Investigation into the Effects of Refactoring on Security 5

the introduction of real vulnerabilities. Based on our findings, we identify and
distill a set of concrete issues and challenges that the refactoring community
should face to better support developers. To sum up, this study provides the
following contributions:

1. An evidence-based investigation into the relation between refactoring and
security that targets the problem under three different perspectives, such as
security metrics, security-related technical debt, and known vulnerabilities;

2. A research roadmap that researchers in the field can exploit to understand
further the circumstances that lead refactoring to negatively affect security
and provide automated support for practitioners;

3. An online appendix [28] reporting all the data and scripts used in the study
to allow researchers to replicate and conduct additional investigations.

Structure of the paper. Section 2 reports the methodology employed
in the study, while Section 3 discusses the results achieved. In Section 4, we
provide an overview of the main discussion points and implications of the
results for the research community and practitioners. Section 5 reports on
the threats that may have biased our findings. Section 6 discusses the related
literature. Finally, Section 7 concludes the paper.

2 Research Methodology

The goal of this study is to assess the relation between refactoring and secu-
rity, with the purpose of understanding how refactoring operations applied by
developers introduce security threats. The perspective is of both researchers
and practitioners: the former are interested in understanding which additional
support developers would require when performing refactoring; the latter are
interested in evaluating the potential consequences of refactoring on source
code dependability. Our study was designed based on the guidelines proposed
by Runeson and Host [29] and follows the ACM/SIGSOFT Empirical Stan-
dards recently introduced and discussed by Ralph et al. [30].4

2.1 Research Questions and Methodological Overview

The empirical study is based on three levels of analysis. Following the prelimi-
nary investigation by Abid et al. [15]—who observed a correlation between the
amount of refactoring operations applied and security metrics—we aimed at
assessing the security implications of refactoring operations on security indica-
tors in an effort to provide insights into the potential compromise a developer
should pay attention to while improving source code quality.

4Given our study and currently available standards, we followed the general guidelines
when reporting the study design and results.

6 Emanuele Iannone et al.

39 Projects
History

RefactoringMiner

GitHub

7,708

Refactoring Commits

41,217

Refactorings Control Metrics

Surface

SonarQube

NVD

Security Metrics

Violations

RQ1

RQ2

RQ3

26 CVE

103 VCCs

MLR

MLR

Comparison

Fig. 2: Methodological steps employed in our study.

We start facing this research objective using two analyses: the first focused
on security-related metrics that indicate portions of source code whose charac-
teristics may lead the code to be more exposed to security risks [23]; the second
targeting technical debt [31] that highlights the design and implementation is-
sues that might represent exploitable security flaws. These two analyses are
by nature complementary: security-related metrics focus on weak constructs
implemented in the source code, while security technical debt measures on
higher-level poor design or implementation solutions that might possibly im-
pact the security profile of an application. As further explained in Section 2.3,
we conducted these analyses by measuring developers’ activities, and their im-
plications for source code security by running tools and analyses on commits

A Large-Scale Investigation into the Effects of Refactoring on Security 7

where refactoring has been applied. These goals led to the formulation of the
following two research questions:

RQ1. To what extent do refactoring operations impact security metrics?

RQ2. To what extent do refactoring operations impact security-related
technical debt?

While the first two research questions allowed us to uncover possible neg-
ative effects given the application of refactoring operations on security, these
were not sufficient nor comprehensive. Both security-related metrics and tech-
nical debt focus on potential risks for source code security; yet, this does not
still clarify if and how refactoring has an impact on the introduction of real
security threats. For this reason, we continued our empirical investigation by
assessing how the application of refactoring operations over the change history
of software projects leads to the introduction of known software vulnerabilities.
This reasoning led to our last research question:

RQ3. To what extent do refactoring commits contribute to the introduction
of real software vulnerabilities?

The study can be configured as a quantitative investigation [32] where we
seek to find statistically significant findings from a large amount of data. While
the next sections detail the data collection and analysis procedures used to ad-
dress our research questions, Figure 2 overviews the methodology employed
in our study. In short, when addressing RQ1 and RQ2 we first run three
tools, namely an automated refactoring detector called RefactoringMiner
[24], a security metric tool named Surface, and a static code analyzer called
SonarQube over all the commits of the considered projects. Afterward, we use
the data collected to compute the difference in terms of security metrics and
debt between the refactoring commits and their predecessors to indicate how
the refactoring operations have changed these measures. Finally, the variation
of security metrics and debt were used as dependent variables of Multinomial
Log-Linear regression models [33] that allowed us to identify which refactoring
operations are statistically related to their increase or decrease while control-
ling for factors like complexity, lines of code, and code churn.

As for RQ3, we mined the vulnerability-fixing commits of known vulnera-
bilities affecting the software projects considered in our study and available on
a public dataset of vulnerabilities, namely, the National Vulnerability Database
(NVD) [27]. Then, we employed an automated mechanism based on the SZZ
algorithm [34] to identify the commits responsible for the introduction of
those known vulnerabilities and combined this information with the one from
RefactoringMiner to obtain the number of times refactoring operations

8 Emanuele Iannone et al.

Table 1: Summary of the considered software projects. The last column ‘NVD’
indicates whether the corresponding project has known vulnerability data.

Project #Commits #Ref.Commits #Refact. NVD
archiva 4,741 363 2,399 ✖
batik 2,196 197 1,747 ✖
cayenne 1,269 99 384 ✖
cocoon 10,334 559 2,652 ✖
commons-bcel 1,324 37 959 ✖
commons-beanutils 1,209 41 385 ✖
commons-cli 855 26 115 ✖
commons-codec 1,732 53 363 ✖
commons-collections 2,893 145 1,633 ✖
commons-configuration 2,930 250 1,293 ✖
commons-daemon 982 2 3 ✖
commons-dbutils 603 13 66 ✖
commons-digester 2,143 47 373 ✖
commons-exec 616 14 45 ✖
commons-fileupload 914 15 104 ✖
commons-io 2,055 88 329 ✖
commons-jelly 1,938 73 203 ✖
commons-jexl 1,533 101 657 ✖
commons-jxpath 597 58 436 ✖
commons-net 2,100 63 301 ✖
commons-ognl 607 18 298 ✖
commons-validator 1,339 42 150 ✖
commons-vfs 2,080 133 771 ✖
felix 3,489 247 2,173 ✖
hive 5,919 892 5,175 ✖
httpcomponents-client 2,714 278 2,822 ✖
httpcomponents-core 2,760 348 2,967 ✖
santuario-java 2,755 158 1,038 ✖
thrift 2,912 33 187 ✖
zookeeper 1,487 159 979 ✖
Conversations 6,426 566 1,284 ✔
candlepin 10,967 696 3,597 ✔
hawtio 8,856 144 521 ✔
jboss-negotiation 307 20 120 ✔
jenkins 30,632 1,315 3,417 ✔
jolokia 1,695 196 607 ✔
junrar 233 20 141 ✔
litemall 1,093 37 135 ✔
struts1-forever 4,255 163 571 ✔
Overall 133,490 7,708 41,217 -
“#Ref.Commits.” refers to the number of commits having refactorings
“#Refact.” refers to the number of refactoring instances observed

are likely to have contributed to a known vulnerability. A manual qualitative
investigation later contextualized the statistical analyses to understand fur-
ther and discuss the quantitative results. The detailed methodological steps
adopted to collect the described data are reported in Section 2.3.

A Large-Scale Investigation into the Effects of Refactoring on Security 9

2.2 Context of the Study

The context of the study was composed of open-source software projects and,
in particular, their change history information. In this respect, we exploited the
Technical Debt Dataset [35], which is a curated collection of data coming from
39 Java projects mainly from the Apache Software Foundation ecosys-
tem. Despite belonging to a single ecosystem, the majority of such projects
were originally selected by following the diversity guidelines introduced by
Nagappan et al. [36], i.e., they were selected by addressing the representa-
tiveness of projects in terms of age, size, and domain, and the Patton’s “cri-
terion sampling” [37], namely, they are more than four years old, have more
than 200 commits and 100 classes, and have more than 100 issues reported in
their issue tracking system. As such, this dataset minimizes by design possible
threats to external validity. To further verify the properties of this dataset, we
have manually investigated the corresponding Github repositories and dis-
covered that all of them adhere to a strict code of conduct [38] and regularly
review source code to improve their quality processes [39]. This analysis fur-
ther confirmed the suitability of the dataset. It is important to note that nine
of the considered systems also appear in the National Vulnerability Database
(NVD) [27], which was initially developed by the U.S. NIST Computer Se-
curity Division [40] to collect and provide public information about known
vulnerabilities affecting software systems and their causes. Such a database
includes a comprehensive set of publicly known vulnerabilities: each of them is
described through CVE (Common Vulnerabilities and Exposure [41]) records
and is enriched with additional pieces of information such as external refer-
ences, severity (computed using the Common Vulnerability Scoring System
- CVSS), the related weakness type (Common Weak Enumeration - CWE),
and the known affected software configurations (Common Platform Enumer-
ations - CPEs). NVD aggregates information from multiple data sources and
is widely considered a reliable data source [42, 43, 44].

While all the projects were considered when addressing RQ1 and RQ2,
only the nine systems overlapping with the NVD could be used for RQ3 as
these are the only ones for which we could obtain data on the known vulnera-
bilities affecting them. Table 1 reports the main characteristics of the projects
in our context—we report statistics on their change history with a particular
focus on the refactoring operations observed.

2.3 Data Collection

This section describes how we collected each piece of information to address
our research questions: developers’ refactoring operations, security metrics,
security-related technical debt, and known vulnerabilities that affected the
projects considered.

10 Emanuele Iannone et al.

Table 2: Set of refactoring types selected in this study collected using Refac-
toringMiner [24]. Each refactoring has a description and a comment on the
expected impact on the source code security, which is also reported graphically
in column ‘Hp’.

Refactoring Description Expected Impact on Security Hp
Package-Level
Move Package Moves a package between the source

roots of the project.
Changing the package positioning should not affect any
security-related aspect.

—

Class-Level
Extract Superclass Creates a shared superclass from a set

of classes with common attributes and
methods.

A superclass is commonly more accessible that subclasses,
so it might expose previously hidden security-sensitive
parts of the program, negatively affecting security.

Ó

Extract Interface Creates a shared interface from a set of
classes with common methods.

An interface is commonly more accessible than its sub-
classes, but it should not change anything from imple-
menting classes.

—

Move Class Moves a class between the packages of
the project.

Changing the belonging package should not affect any
security-related aspect.

—

Method-Level
Extract Method Creates a new method containing part

of the logic of an existing one, which will
call the extracted method.

The new method of the extracted class might expose previ-
ously hidden security-sensitive parts of the program, neg-
atively affecting security.

Ó

Inline Method Deletes a method and integrates its logic
into all calling methods (i.e., the inverse
of Extract Method).

The removal of a method may hide security-sensitive parts
of the program, positively affecting security.

Ò

Move Method Moves a method between the classes of
the project.

Changing the belonging class should not affect any
security-related aspect.

—

Extract & Move Method Successive application of Extract
Method and Move Method refactorings.

Same as Extract Method. Ó

Move & Inline Method Successive application of Move Method
and Inline Method refactorings.

Same as Inline Method. Ò

Pull Up Method Creates a shared method from a set
of classes with common methods and
places it in their superclass.

A new method in the superclass is commonly more ac-
cessible than its subclasses, so it might expose previously
hidden security-sensitive parts of the program, negatively
affecting security.

Ó

Push Down Method Removes a method of a superclass to
place it in one of its subclasses.

The removal of a superclass method may hide security-
sensitive parts of the program, positively affecting security.

Ò

Attribute-Level
Move Attribute Moves an attribute between the classes

of the project.
Changing the belonging class should not affect any
security-related aspect.

—

Pull Up Attribute Creates a shared attribute from a set
of classes with common attributes and
places it in their superclass.

A new attribute in the superclass is commonly accessed
by subclasses through new accessor methods, negatively
affecting security.

Ó

Push Down Attribute Removes an attribute of a superclass to
place it in one of its subclasses.

The removal of a superclass attribute may remove accessor
methods as well, positively affecting security.

Ò

2.3.1 Mining Refactoring Data

We mined the entire change history of the considered projects to identify
commits where developers applied at least one refactoring. To this aim, we
run version 2.2 of RefactoringMiner [24] against each source code change.
RefactoringMiner is a publicly available tool5 that can detect a large num-
ber of refactoring types through the analysis of how the Abstract Syntax Tree
of a Java class/method has changed with respect to the one of the previ-
ous commit. The output of RefactoringMiner is formatted as a JSON file
reporting for each commit the set of refactoring operations applied and the
classes/methods subject to them. Despite the existence of alternative refactor-
ing detectors (e.g., RefDiff [45]), we opted for RefactoringMiner since it
is publicly available and has a detection accuracy close to 100%, overcoming
the capabilities of other detectors [24].

In the context of this study, we selected a set of common refactoring op-
erations having mixed relations with security to uncover possible unexpected
and sneaky correlations. Table 2 reports the 12 basic refactoring operations

5Link: https://github.com/tsantalis/RefactoringMiner

 https://github.com/tsantalis/RefactoringMiner

A Large-Scale Investigation into the Effects of Refactoring on Security 11

Table 3: List of security metrics computed by Surface.

Metric Acronym Description
Class-Level
Classified Attributes CA Number of classified attributes of a class, identified through pattern matching

heuristics (e.g. password, token).
Classified Methods CM Number of classified methods of a class, identified through (i) pattern match-

ing heuristics (e.g.validatePassword, generateToken) or (ii) the check of us-
ages of classified attributes.

Classified Instance Variables
Accessibility

CIVA Ratio of non-private and non-static classified attributes out of the total num-
ber of classified attributes (CA).

Classified Class Variables Ac-
cessibility

CCVA Ratio of non-private and static classified attributes out of the total number
of classified attributes (CA).

Classified Method Accessibility CMA Ratio of non-private classified methods out of the total number of classified
methods (CM).

Classified Methods Ratio CMR Ratio of the number of classified methods (CM) out of all class methods.
Classified Attribute Interac-
tions

CAI Sum of the number of classified methods that access each classified attribute,
divided by the product of the number of classified attributes and methods
(CA ˆ CM).

Project-Level
Critical Classes CC Number of critical classes, i.e., classes with at least one classified components

(classified attribute or method).
Critical Classes Ratio CCR Ratio of the number of critical classes (CC) out of all project classes.
Critical Classes Extensibility CCE Ratio of non-final critical classes out of the critical classes (CC).
Classified Methods Extensibil-
ity

CME Ratio of non-final critical methods among all classes out of the critical meth-
ods among all classes.

Critical Super Classes Ratio CSCR Mean of the ratios, for each class, of the number of critical super classes out
of all their super classes.

Serializable Critical Classes
Ratio

SCCR Ratio of serializable critical classes out of the critical classes (CC).

plus two composite refactoring operations (i.e., successive application of two
elementary refactorings) we deemed worth investigating. Each row contains
a description of how they work and of the possible impact on security. Such
expected impacts derive from the refactoring operations’ definition and rep-
resent the conjectures we aim to verify in our empirical investigation. In this
respect, we formulated the hypotheses we posed for this study and described
them graphically in column ‘Hp’. An up arrow (‘Ò’) indicates that we hypothe-
sized a certain refactoring has a positive (good) effect on source code security;
a down arrow (‘Ó’) indicates that we hypothesized a negative (bad) effect. In
contrast, the symbol ‘—’ indicates a hypothesis of stability, i.e., the refactoring
should not change the security profile of the source code in any way. As fur-
ther explained in Section 2.5, these hypotheses were instantiated for the three
specific research questions. All the selected refactoring operations alter the
source code’s internal structure at different granularity levels—ranging from
individual attributes to groups of classes.

2.3.2 Mining Security Metrics

We computed a set of metrics that have been previously used to assess source
code security [15, 46, 47] on all the refactoring commits of the projects. Ta-
ble 3 reports their names and description. The metrics measure source code
against the presence of confidential or sensitive information, e.g., user IDs,
authorization tokens, or passwords, that might potentially worsen the security
level. For instance, over-exposed (in terms of access specifiers) code fragments
might lead to vulnerabilities that can be exploited.

To compute these metrics, we developed a tool, which we named Sur-
face, and, for the sake of verifiability, we made it available in our online

12 Emanuele Iannone et al.

appendix [28]. Our tool is a re-implementation of the one built by Abid et
al. [15], as it was not publicly available. Given a source code file, it first veri-
fies the presence of the security-related keywords identified in [15] to identify
“classified attributes” (i.e., class fields that contain confidential or sensitive
information), that will be used as a basis for applying further static analyses
and computing the other metrics. To this end, we used a set of regular expres-
sions based on those adopted by Abid et al. [15] to automatically detect all
classified code elements (i.e., attributes, methods, and classes). The following
box reports the regular expressions used by Surface as a comma-separated
list of strings.

logins?, accounts?, auths?, authenticates?, authenticators?, auth[- -
\s]?constraints?, roles?, permissions?, access(es)?, restricted, restricted[-
\s]?access(es)?, admins?, administrators?, certificates?, digital certifi-
cates?, fingerprints?, biometrics?, id, identifiers?, userid, uuid, client[-
\s]?ids?, user[- \s]?ids?, username, user[- \s]?details?, e[- \s]?mail,
passw(or)?ds?, pass[- \s]?phrases?, pwds?, (secret[- \s]?)?keys?,
(api[- \s]?)?tokens?, (oauth[- \s]?)?tokens?, otp, credentials?, ip[- -
\s]?address(es)?, ports?, hosts?, hostnames?, address(es)?, hiddens?,
hidden[- \s]?fields?, secrets?, top[- \s]?secrets?, confidentials?, confiden-
tiality, classified, privates?, private[- \s]?fields?, private[- \s]?members?,
privacy, personals?, protect(ed)?, signatures?, (under)?cover(ed)?,
payments?, credit[- \s]?cards?([- \s]?number)?s?, cards?, credits?,
phone[- \s]?numbers?, social[- \s]?security[- \s]?numbers?, date[- -
\s]?of[- \s]?birth, safe, (content[- \s]?)?secure, security, security[-
\s]?management, security[- \s]?constraint, sensitive, sensitive[- -
\s]?data, sensitive[- \s]?information, criticals?, vulnerables?, weaks?,
weakness(es)?, backdoors?, (en)?crypt(ed)?, cipher([- \s]?text)?,
hash(ed)?, salt, nonce, encoded?, transcoded?, lock(ed)?, cach(ed)?,
paths?, connection[- \s]?string, transactions?, jobs?

We are aware that most of the metrics are derived from the set of classified
attributes; hence they capture similar aspects connected to source code secu-
rity. Yet, to the best of our knowledge, these are the only ones available that
can enable an analysis of the security profile of object-oriented source code in
a fully-automated fashion.

To collect the security metrics values, for each commit having at least one
refactoring instance, we selected only those Java files directly involved in one
of the refactorings made in the commit. Then, we run Surface twice: one
time considering the files’ versions before the commit, and one more time on
the versions after the commit. The resulting metrics for the previous files’
versions were subtracted from the latest versions, obtaining the delta (∆) that
represents how much a metric has changed in that commit. It is worth noting
that for newly-added files the metrics were left as-is, while for the files deleted
in the commit their values resulted to have a negative sign. Afterward, all the

A Large-Scale Investigation into the Effects of Refactoring on Security 13

Table 4: Top 10 most recurring SonarQube rules violated in the selected
projects.

Security Rule Description # Severity
Class Variable
Visibility Check

Class variable fields should not have public accessibility 10,532 Critical

S1313 IP addresses should not be hardcoded 4,328 Critical
S1148 Throwable.printStackTrace(...) should not be called 4,193 Critical
S1444 Public static fields should be constant 3,732 Critical
S2386 Mutable fields should not be public static 1,306 Major
S2755 Fails for DocumentBuilderFactory XXE should be dis-

abled
633 Blocker

S4423 Weak SSL/TLS protocols should not be used 484 Major
S2077 SQL binding mechanisms should be used 426 Major
S2068 Credentials should not be hard-coded 371 Critical
S5542 Encryption algorithms should be used with secure mode

and padding scheme
333 Critical

class-level security metrics (Table 3) were aggregated to have individual values
expressed at the entire commit level. Specifically, the deltas pertaining to the
security metrics CA (Classified Attributes) and CM (Classified Methods) were
summed together (as they represent counting), while the rest of the metrics
were averaged. In this way, we could outline the magnitude of change in the
security profile after a commit containing refactorings.

2.3.3 Mining Security-related Technical Debt

According to recent findings, SonarQube is among the most popular auto-
mated static analysis tools employed in practice [48, 49], in addition to being
accurate when detecting security violations [50]. Based on these observations,
we selected SonarQube version 7.5 to collect the metrics needed for RQ2.
In particular, we measured the security-related technical debt collecting two
kinds of metrics linked to the security profile of applications. On the one hand,
for each refactoring commit, we counted the number of violations of security
rules (i.e., those belonging to the “Vulnerability” group) that SonarQube en-
countered when analyzing the Java classes of the project’s snapshot after the
commit. Such violations indicate that the code is likely to be affected by a soft-
ware vulnerability, or has laid the foundation for vulnerable code. Moreover,
similarly to what we did for RQ1 (Section 2.3.2), we counted the violations
only on those files directly involved in the refactorings that occurred in that
commit. On the other hand, we obtained the so-called “security remediation
effort”, i.e., a measure of how much effort developers would spend when ad-
dressing all the detected violations in that snapshot—based on the violated
security rules.

Once we collected all the technical debt-related metrics for all the refactor-
ing commits, we computed the difference (∆) between all the metrics values
with their previous version (i.e., the parent commit) to compute the change
in the number of violations and remediation effort—analogously to what we
did for security metrics in RQ1. Overall, SonarQube was able to detect 26
different types of security violations. Table 4 reports the top 10 most recurring

14 Emanuele Iannone et al.

Table 5: The 26 known vulnerabilities mined from NVD grouped by the 12
vulnerability types.

Vulnerability Type Description #CVE
CWE-264 Permissions, Privileges, and Access Controls 4
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 4
CWE-287 Improper Authentication 3
CWE-79 Cross-site Scripting 3
NVD-CWE-noinfo No sufficient information to classify the vulnerability 2
CWE-254 7PK Security Features 2
CWE-22 Path Traversal 2
CWE-352 Cross-Site Request Forgery (CSRF) 2
CWE-326 Inadequate Encryption Strength 1
CWE-310 Cryptographic Issues 1
CWE-20 Improper Input Validation 1
CWE-835 Infinite Loop 1

violations that were found and resolved within the refactoring commits we an-
alyzed. Each rule in the table is accompanied by its description, the number
of occurrences, and the corresponding severity level. The full list of rules for
is available on the SonarQube website.6

2.3.4 Mining Known Vulnerability Data

We only considered vulnerabilities in NVD affecting the considered systems
(see Table 1) and specifying the fixing commit (i.e., the one that officially
patched a publicly disclosed vulnerability)—otherwise, we could not address
ourRQ3, as explained later in Section 2.4. From an operational perspective, we
mined the full dump of NVD exploiting CVE-Search project [51], allowing
the download of a JSON file containing all CVE records updated daily. We
obtained the full JSON dump on May 30, 2022. We performed some additional
filtering steps to remove incomplete/incorrect data that might have biased
our observations: (1) we discarded CVEs that reported commits to different
GitHub projects than those considered since we could not establish where the
vulnerability was residing; (2) we filtered out vulnerabilities whose fixes were
marked as merge commits, as these do not apply any real modification in the
project history but simply incorporate the changes (i.e., a set of commits) from
a branch into another, i.e., we could not consider them as actual patches since
we were interested in getting precise information about the moment when fixes
were added into the history rather than the moment when they were sent into
the main branch. After this filtering, we ended up with a total of 26 known
vulnerabilities of 12 distinct types, pertaining to nine NVD projects. Table 5
reports the 26 vulnerabilities grouped by their vulnerability type (CWE).

6Link: https://rules.sonarsource.com

https://rules.sonarsource.com

A Large-Scale Investigation into the Effects of Refactoring on Security 15

2.4 Data Analysis

After collecting the data required to address our research questions, we pro-
ceeded with the statistical modeling and the subsequent interpretation.

2.4.1 RQ1-RQ2. Refactoring vs. Security-related Metrics and Technical
Debt.

The first two research questions aim at understanding the effect of refactoring
on indicators of longer-term source code security issues. For both RQs, we
employed similar analysis methods.

Starting from the security metrics (Section 2.3.2) and the security-related
technical debt (Section 2.3.3) variations observed in the refactoring commits,
we converted all ∆ values into categories that could be better interpreted
by humans. If a metric m had a ∆ ą 0 in one of the refactoring commits
analyzed, the variation was converted into the category “Increased”. Similarly,
if m has a ∆ ă 0, it was converted to the category “Decreased”. Otherwise,
it was converted to “Stable”. It is worth noting that the interpretation of
these categories depends on the specific metrics. Let us consider CA (Classified
Attributes) metrics as an example. An increased number of classified attributes
is generally deemed as something negative, as it indicates an increment in the
number of fields holding security-sensitive data. In this case, observing many
deltas labeled as “Increased” is a negative indication of the security profile of
the application.

Afterwards, to address RQ1 and RQ2 we built a statistical model for each
security metric and technical debt in which we relate the number of distinct
refactoring operations applied between cr´1 and cr as well as other control
variables to the three categories mentioned above, i.e., “Increased”, “Stable”,
and “Decreased”. Approaching the research questions in this manner allowed
us to verify which refactoring types have connections to security indicators
and whether the effect of those refactoring operations is positive or negative.

More specifically, we considered the categorical values associated with each
refactoring commit as dependent variables. The number of refactoring oper-
ations for each of the 14 considered types were treated as our independent
variables in all the models. Furthermore, we computed three additional met-
rics that acted as the confounding variables, namely the factors that might
significantly influence a dependent variable regardless of the values of the in-
dependent variables [52]. They are:

1. The number of lines of code (LOC) of the files’ versions that underwent to
refactoring, i.e., immediately before the commit detected by Refactor-
ingMiner. All the LOC values were averaged to have a single summarized
value for an entire commit. This metric has often been associated with a re-
duction of source code quality, and dependability [53, 54, 55]. The inclusion
of this confounding factor was motivated by the assumption that working

16 Emanuele Iannone et al.

on files with many lines of code might have a higher chance of increas-
ing the values of security indicators or contributing to the introduction of
vulnerabilities with respect to smaller files.

2. The Weighted Methods per Class (WMC) [56] computed on the files’ ver-
sions that underwent refactoring, i.e., immediately before the commit de-
tected by RefactoringMiner. All the WMC values were averaged to
have a single summarized value for an entire commit. This metric repre-
sents the sum of McCabe’s cyclomatic complexity [57] values computed on
the class’s methods. In this case, the negative impact of code complexity
on vulnerabilities has been previously assessed [58, 59].

3. The code churn, i.e., the amount of code added/deleted in the commit that
touched the files’ that underwent to refactoring. All the churn values were
summed to have a single summarized value for an entire commit. Previous
work has shown that the higher the churn of two subsequent commits, the
higher the likelihood to introduce issues in the code [60]. The negative
impact of churn metrics has also been assessed when considering software
vulnerabilities [61].

Such metrics were extracted using PyDriller [62], which allows straight-
forward analyses of projects’ change history, and Lizard,7 which parses the
source code and automatically extracts a set of common structural metrics
from the source code.

Furthermore, we encoded the projects as 39 different binary variables to
capture any possible random effect coming from a specific project.

Having a categorical dependent variable, we fit a mixed-effect Multinomial
Log-Linear model [33], a classification method that can generalize logistic re-
gression to multiclass problems, so fitting our case. The models were built
using the R toolkit exploiting the multinom model of the package nnet.8

The choice of a mixed-effect Multinomial Log-Linear model was driven by
multiple observations. First and foremost, it fits the multiclass problem we
intended to model when building a theory of how refactoring is related to
security. Second, it outputs precious pieces of information that can be used
to interpret the results, as detailed in the remainder of the section. It indeed
provides statistical codes through which each individual refactoring type can
be assessed against its statistical relevance for the problem under analysis—as
such, we could identify the refactoring types having a statistically significant
connection to security. Furthermore, it returns the odds ratios (OR) [63]—i.e.,
the exponential of the model’s coefficients—that provide a measure of the ac-
tual impact of the associated variables, i.e., the refactoring type. Such interpre-
tation complements the statistical codes, providing a more practical measure
to interpret the effects of refactoring on security. Other research methods, e.g.,
correlation analysis, cannot provide such a comprehensive and tangible assess-
ment of our hypotheses. Perhaps more importantly, it is important to remark

7https://pypi.org/project/lizard
8https://cran.r-project.org/web/packages/nnet/nnet.pdf

https://pypi.org/project/lizard
https://cran.r-project.org/web/packages/nnet/nnet.pdf

A Large-Scale Investigation into the Effects of Refactoring on Security 17

that security might and might not be affected by the refactoring; other factors
might play a role. The statistical modeling exercise allowed us to specify a set
of confounding variables and, for this reason, assess the impact of refactoring
while keeping other factors into account.

When building the models, we took the problem of multicollinearity into
account. This arises in cases where two or more independent variables are lin-
early correlated, and one can be predicted from the other, possibly biasing
the model’s fitting capabilities and how the results are interpreted. In this
respect, we first verified the normality of the distributions of the independent
variables employing the Anderson-Darling normality test [64]. Such a test ver-
ifies whether a given sample follows a theoretical distribution, i.e., the normal
one. For each independent variable, we compared its distribution with a nor-
mal distribution having the same mean and standard deviation of the sample.
As a result, all the test runs failed to reject the null hypothesis, hence indicat-
ing that our data are not normally distributed. Because of the non-normality
of any of the independent variables samples, we computed the Spearman’s
rank correlation [65] between all possible pairs of independent variables to de-
termine whether there are strongly correlated pairs (i.e., variables for which
the Spearman’s ρ ą 0.8). This step did not eventually find any correlated
variables, meaning that the independent variables’ distribution was different
enough to be used together in the statistical models.

As for the interpretation of the results, it is worth noting that the model’s
logit coefficients ci are relative to a reference category and indicate how the
independent variables vary the chances of the dependent variable being affected
with respect to the reference category. We set such a category to “Stable” to
estimate how the various independent variables, i.e., the refactoring operations,
likely change in either a positive or negative direction the stability of security
indicators. For instance, if we have the refactoring type ri that presents a logit
coefficient ci “ ´1.50 in the model built when analyzing the decrease in the
security metric sj , this means that a one-unit increase of ri would lead to an
increase of the chances of sj to remain stable.

After obtaining the logit coefficients, we computed the odds ratios (ORs)
using the exponential function (eci). In our case, the ORs complement the in-
terpretation of the results: for an independent variable, i.e., a refactoring type,
it indicates the increment of chances for a class to increase/decrease the value
of a security metric (RQ1) or a technical debt metric (RQ2) as a consequence
of a one-unit increase of the refactoring. With the OR values, we could quan-
tify the extent to which the application of refactoring impacts security metrics
and debt, hence giving a more practical sense to the coefficients obtained when
running the models.

2.4.2 RQ3. Refactoring vs. Known Vulnerabilities

The last research question measures the extent to which refactoring operations
contribute to the introduction of vulnerabilities. To address it, the first chal-

18 Emanuele Iannone et al.

lenge was concerned with mining the commits responsible for the introduction
of vulnerabilities.

To obtain these vulnerability-contributing commits (a.k.a. VCCs) [66], we
have followed the idea behind the well-known SZZ algorithm [34], which recov-
ers the set of commits that likely introduced a defect starting from a bug-fixing
commit using the git-blame functionality on the lines deleted during the fix.
Despite SZZ has been envisioned to fetch the commits that induce traditional
defects [67], it has also been exploited to fetch vulnerability-contributing com-
mits [68, 69, 70]. Yet, it has been subject to adjustments and improvements.
In this work, we adopted a set of heuristics to reduce the amount of noisy
results. Specifically, for each Java file Fi modified in a vulnerability-fixing
commit f , we run the git-diff functionality to obtain the list of added and
deleted lines in Fi and then applied two strategies to obtain the VCCs. Firstly,
we run the git-blame command to obtain the commits that last changed the
lines deleted in f . Secondly, we blamed the lines “around” continuous blocks
of changes—generally representing new checks—made only of added lines. The
former was done to recover those commits that have likely added flawed pieces
of code—e.g., a call to an improper input validation function or the use of an
obsolete cryptography algorithm. Instead, the latter can reach the commits
touching the code areas that lacked solid control mechanisms. The only excep-
tion was made for blocks made of totally new functions or methods, as they
can be placed anywhere, rendering their contextual lines irrelevant. In addi-
tion, we did not blame empty and comment lines, and irrelevant non-source
code files—e.g., documentation, build, blob, and test files—as they do not
generally contribute to a vulnerability. What is more, we did not consider the
VCCs that merged changes from multiple commits, as they do not report real
modifications per se. It is worth noting that vulnerabilities could have been
fixed by multiple fixing commits; in such cases, we united the set of VCCS ob-
tained from each fixing commit to build the final set. The described procedure
was implemented exploiting PyDriller [62] repository mining library with
the help of the parsing library Lizard9 to apply our heuristics.

Once we had detected the vulnerability-contributing commits, we could
verify in how many cases such commits were also marked as refactoring com-
mits (collected as described in Section 2.3.1). Therefore, we sought to elicit
the amount of vulnerability-contributing commits for which refactoring might
have played a role. When addressing RQ3, we also reported the results by
considering each refactoring type individually, hence assessing if a particular
operation is more likely to contribute to the introduction of a vulnerability.

2.5 Hypotheses and Statistical Verification

Once we completed the statistical modeling, we proceeded with the verifica-
tion of the high-level hypotheses formulated in Table 2. More specifically, we

9https://pypi.org/project/lizard

https://pypi.org/project/lizard

A Large-Scale Investigation into the Effects of Refactoring on Security 19

first refined them to derive more concrete null and alternative hypotheses to
test the research questions in this study. In the cases of Move Package, Ex-
tract Interface, Move Class, Move Method, and Move Attribute refactoring, we
defined the following null hypothesis:

Hn1 The refactoring has a significant impact, either positive or negative, on
security properties.

Our alternative hypothesis was, instead:

Ha1 There is no significant impact of the refactoring on security properties.

In the context of RQ1 and RQ2, we rejected the null hypotheses if the
coefficients of the statistical models built to understand the increase and de-
crease of the security properties were not significant or negative. In the latter
case, the coefficients of the Multinomial Log-Linear model would indicate that
refactoring operations tend to increase the likelihood of security metrics/debt
being stable, hence rejecting the null hypothesis in favor of the alternative
one. As for RQ3, we run the non-parametric Mann-Whitney U test [71] (with
α “ 0.5) on the distribution of refactoring operations within VCCs and non-
VCCs commits. We rejected the null hypothesis if α ą 0.05. We also measured
the effect size of the differences identified in the two distributions using Co-
hen’s d [72]. We followed well-established thresholds for interpretation: 0.2 for
Small, 0.5 for Medium and 0.8 for Large effect size [72].

With respect to Extract Superclass, Extract Method, Extract & Move
Method, Pull Up Method, and Pull Up Attribute refactoring, our null hypoth-
esis was:

Hn2 There is no significant impact of the refactoring on security properties.

The alternative hypothesis in this case was:

Ha2 The refactoring has a significant negative impact on security properties.

In RQ1 and RQ2, we rejected the null hypothesis if we observed (i) both
significant coefficients and (ii) positive coefficients in the statistical model built
to understand the increase of security metric/debt values and negative coef-
ficients in the statistical model built to understand the decrease of security
metric/debt values. In the latter case, indeed, the statistical model coefficients
would tell us that the application of refactoring operations tends to increase
the likelihood of the metrics/debt being increased, hence indicating their dete-
rioration. As for RQ3, we still relied on the same outcomes and interpretation
of the Mann-Whitney U test [71] and Cohen’s d [72].

Finally, when it comes to Inline Method, Move & Inline Method, Push
Down Method, and Push Down Attribute refactoring, the null hypothesis was
set to:

Hn3 There is no significant impact of the refactoring on security properties.

The alternative hypothesis in this case was:

20 Emanuele Iannone et al.

Ha3 The refactoring has a significant positive impact on security properties.

As for RQ1 and RQ2, we rejected the null hypothesis if we observed (i)
both significant coefficients and (ii) positive coefficients in the statistical model
built to understand the decrease of security metric/debt values and negative
coefficients in the statistical model built to understand the increase of security
metric/debt values. In the latter case, the statistical coefficients would indicate
that the application of refactoring operations has the tendency to increase
the likelihood of the metrics/debt being decreased, which would mean that
the security profile would improve. In RQ3, we relied on the outcomes and
interpretation of the Mann-Whitney U test [71] and Cohen’s d [72].

2.6 Verifiability and Replicability

In order to allow our study to be verified and replicated, we have published the
complete raw data, along with the data collection and analysis scripts in our
online appendix [28]. The ‘README.md’ file contains more precise instructions
on how to use our artifacts to replicate the study.

3 Analysis of the Results

In this section, we report the results of the empirical study, discussing them
by research question.

3.1 RQ1. To what extent do refactoring operations impact security metrics?

In RQ1, we sought to understand the relation between refactoring and secu-
rity metrics. Table 6 reports for each refactoring type the sign of the logit
coefficients (within a circle) and the value of the ORs obtained for the Multi-
nomial Log-Linear models built to understand the decrease and increase of the
security metrics considered in the study. The coefficients of the variables that
turned out to be statistically significant are reported with a colored symbol
(green for + , red for -), otherwise are left white. In addition, the cells with
a gray shade indicate that the impact of that type of refactoring rejects the
null hypothesis formulated in Section 2.5—i.e., the impact turned out to be
in line with our expectations. For the sake of readability, we did not report
the coefficient signs and ORs values of the confounding factors (LOC, WMC,
and code churn) considered when building the models, but we discuss their
role in our analysis and report the full results in our online appendix [28].
Looking at the table, we can immediately observe that the refactoring types
Move Method, Move Attribute, Extract Superclass, and, to a lesser extent, Push
Down Method, always had positive coefficients in all the 13 models built for the
13 security metrics; this means that moving code components (i.e., attributes
or methods) from a class to another or optimizing the degree of code reuse

A Large-Scale Investigation into the Effects of Refactoring on Security 21

Table 6: The impact of each refactoring type on security-related metrics (RQ1)
represented via the sign of the models’ coefficients (colored if p ă 0.05) and
their odds ratios. The category ‘DECR.’ represents the cases where ∆ ă 0,
while ‘INCR.’ represents ∆ ą 0. The cells in gray indicate the acceptance of
the related alternative hypotheses (Ha1) formulated for RQ1. (Section 2.5).

Categories Categories Categories Categories
Metric

DECR. INCR. DECR. INCR. DECR. INCR. DECR. INCR.
Extract Method Inline Method Extract & Move Met. Move & Inline Met.

CA - 0.882 + 1.021 + 1.114 - 0.954 - 0.991 - 0.989 - 0.997 + 1.005
CAI + 1.021 + 1.013 + 1.061 + 1.035 + 1.002 - 0.996 + 1.001 + 1.005
CC - 0.940 + 1.024 + 1.227 + 1.016 - 0.989 - 0.988 + 1.002 - 0.993
CCE - 0.971 + 1.013 + 1.271 + 1.063 + 1.016 + 1.002 + 1.003 - 0.993
CCR - 0.805 - 0.930 + 1.010 - 0.959 - 0.938 - 0.986 + 1.006 - 0.997
CCVA + 1.009 + 1.025 + 1.030 + 1.141 - 0.993 - 0.996 + 1.003 - 0.994
CIVA - 0.999 - 0.947 - 0.975 - 0.995 + 1.002 - 0.971 - 0.995 - 0.993
CM - 0.861 + 1.043 + 1.140 - 0.862 - 0.992 - 0.988 - 0.997 + 1.004
CMA + 1.035 - 1.000 + 1.041 + 1.045 - 0.997 - 0.994 - 0.997 + 1.004
CME - 0.935 + 1.057 + 1.122 - 0.993 - 0.996 - 0.988 - 0.999 - 0.999
CMR + 1.013 + 1.015 + 1.031 + 1.063 + 1.019 - 0.999 + 1.087 + 1.089
CSCR - 0.839 - 0.928 - 0.982 + 1.041 - 0.995 + 1.005 + 1.006 + 1.003
SCCR + 1.029 - 0.951 + 1.040 + 1.196 - 0.982 - 0.998 - 0.992 + 1.000

Move Package Move Class Move Method Move Attribute
CA + 1.353 + 1.184 + 1.002 + 1.004 + 1.063 + 1.032 + 1.148 + 1.171
CAI + 1.486 + 1.416 - 0.996 + 1.005 + 1.048 + 1.043 + 1.230 + 1.274
CC + 1.536 + 1.249 - 0.994 + 1.004 + 1.076 + 1.049 + 1.222 + 1.222
CCE - 0.944 + 1.245 - 0.998 + 1.004 + 1.059 + 1.043 + 1.210 + 1.177
CCR + 1.022 + 1.221 - 0.987 + 1.002 + 1.180 + 1.184 + 1.460 + 1.489
CCVA + 1.772 + 1.228 - 0.956 + 1.013 + 1.016 + 1.017 + 1.141 + 1.155
CIVA - 0.941 - 0.836 + 1.002 + 1.009 + 1.044 + 1.042 + 1.080 + 1.109
CM + 1.327 + 1.210 - 0.996 + 1.001 + 1.055 + 1.016 + 1.129 + 1.121
CMA + 1.356 + 1.188 - 0.999 + 1.001 + 1.043 + 1.048 + 1.123 + 1.166
CME + 1.827 - 0.788 - 0.919 + 1.003 + 1.061 - 0.992 + 1.095 + 1.102
CMR + 1.253 + 1.107 - 0.995 + 1.002 + 1.031 + 1.034 + 1.097 + 1.136
CSCR - 0.629 + 1.656 + 1.009 + 1.006 + 1.168 + 1.148 + 1.463 + 1.459
SCCR + 1.447 + 1.496 + 1.005 + 1.005 + 1.048 + 1.059 + 1.232 + 1.231

Pull Up Method Pull Up Attribute Push Down Method Push Down Attribute
CA - 0.996 + 0.952 + 1.044 + 1.006 + 1.071 + 1.043 + 0.865 - 0.960
CAI + 1.011 - 0.994 - 0.984 - 0.995 + 1.053 + 1.058 - 0.984 + 1.002
CC - 0.994 - 0.973 + 1.066 + 1.037 + 1.052 + 1.018 + 1.007 - 0.999
CCE - 0.994 - 0.980 + 1.065 + 1.038 + 1.040 + 1.031 + 1.018 + 1.004
CCR + 1.013 + 1.003 - 0.996 - 0.998 + 1.039 + 1.042 + 1.009 + 1.009
CCVA - 0.984 - 0.985 + 1.048 + 1.046 + 1.045 + 1.072 - 0.941 - 0.880
CIVA + 1.021 - 0.998 - 0.986 + 1.010 + 1.073 + 1.065 - 0.681 - 0.958
CM + 1.006 - 0.972 + 1.017 + 1.013 + 1.052 + 1.026 - 0.917 - 0.982
CMA + 1.007 - 0.990 + 1.005 - 0.999 + 1.057 + 1.043 - 0.849 - 0.968
CME + 1.017 - 0.992 - 0.986 - 0.997 + 1.037 - 0.987 - 0.999 + 1.011
CMR + 1.002 - 0.998 + 1.004 - 0.999 + 1.021 + 1.025 - 0.952 - 0.993
CSCR + 1.079 + 1.072 - 0.877 - 0.997 + 1.070 + 1.061 + 1.020 - 0.997
SCCR - 0.996 - 0.967 + 1.024 + 1.088 + 1.038 + 1.054 - 1.000 + 1.005

Extract Superclass Extract Interface
CA + 2.071 + 2.629 + 1.054 + 1.151
CAI + 1.965 + 2.378 + 1.206 + 1.072
CC + 1.632 + 2.295 - 0.711 + 1.008
CCE + 1.487 + 2.254 - 0.770 + 1.042
CCR + 17.743 + 8.504 - 0.915 + 1.046
CCVA + 1.846 + 1.550 + 1.074 - 0.742
CIVA + 1.722 + 2.744 + 1.201 - 0.637
CM + 1.764 + 1.678 + 1.046 - 0.973
CMA + 1.460 + 1.950 + 1.056 + 1.185
CME + 1.297 + 1.178 + 1.076 + 1.200
CMR + 1.190 + 1.666 - 0.879 + 1.030
CSCR + 13.387 + 13.125 + 3.263 + 1.382
SCCR + 2.026 + 2.120 - 0.996 - 0.646

(i.e., creating better class hierarchies) have the effect of varying the security
profile of an application, either positively or negatively. Moreover, the Extract
Superclass refactoring had a particularly strong impact on CCR and CSCR
metric, i.e., their ORs are the largest among all the other models. As such,
extracting new classes in hierarchies impacts (i) the ratio of the number of crit-

22 Emanuele Iannone et al.

ical classes to the number of classes in the entire project (ii) and the number of
superclasses in all the class hierarchies (CSCR), respectively. Although these
findings suggest that these refactoring types have a random effect on security
metrics, it is reasonable to believe that the impact is determined by their spe-
cific application, i.e., the security profile is affected differently depending on
how developers apply the refactoring operations.

Surprisingly, refactoring types for which we expected no impact, such as
Extract Interface and Move Package, still exhibited a statistically significant
mixed effect on the security metrics. Between the two, Extract Interface showed
a clearer behavior. On the one hand, it tends to increase the value of CC,
CCE, CCR, and CMR metrics—i.e., increasing the number of critical classes.
On the other hand, it keeps reducing CCVA, CIVA, and CM metrics—i.e.,
reducing both the accessibility of instance and class variables, and the number
of classified methods. This means that re-organizing the classes’ interfaces
helps keep the number of critical attributes and methods under control, still
increasing the risk of introducing too many critical classes. Differently, only
for the CIVA metric, the Move Package refactoring matched our expectations:
moving classes among packages does not affect this metric at all. This might
be explained by the fact that commits applying package restructuring are
generally not done in a fully-isolated manner but are applied in the context of
other changes—which have a mixed impact.

Extract Method, Inline Method, and Move Class still exhibited mixed ef-
fects on the various security metrics, but with much lesser significance than
other refactoring types. The only cases where the null hypotheses were re-
jected were for Extract Method for CM and CME metrics, and also for Inline
Method for CM metric. This is quite straightforward to comprehend. Extract
Method creates new methods from a piece of code in existing methods, likely
introducing new classified methods if the extracted logic deals with classified
attributes. At the same time, Inline Method refactoring eliminates redundant
methods, with a high chance of removing classified methods and reducing
access to classified attributes. This was the case of project Conversation
at the revision 14cfb609. In such a commit, the utility class CryptoHelper

was streamlined into three new classes, all placed in package crypto/sasl.
Additionally, the XmppConnection class—in change or managing XMPP
connections—was refactored to inline the two methods sendSaslAuthPlain()
and sendSaslAuthDigestMd5() into processStreamFeatures(). Indeed, the
two removed methods were only called by processStreamFeatures(), so driv-
ing the developer to apply two Inline Method refactorings—the commit mes-
sage confirms this intentions, i.e., ‘Refactor authentication code’. In this re-
spect, sendSaslAuthPlain() was a classified method, as it access to security-
sensitive data, i.e., account instance variable in this case. Hence, its removal
led to the reduction of one from the CM metric. This variation translates
into a reduction of the overall application’s attack surface. Indeed, the met-
rics proposed by Alshammari et al. [73] penalize those classes exposing too
many methods that access classified components, as attackers might leverage
them to carry out attacks. This explains why Inline Method refactorings have

A Large-Scale Investigation into the Effects of Refactoring on Security 23

been seen as beneficial from this perspective is beneficial. Such an example
also opens an interesting observation. While a securely-designed class should
minimize the number of methods with the responsibility of accessing security-
critical data, good design practices for maintainable code recommend creating
many small and cohesive methods. Thus, creating both maintainable and se-
cure code demands particular care not to create too many classified methods
but still avoiding making poorly cohesive and long methods. In other words,
accessing security-critical data should be reserved for only an essential set
of elected classes and methods. Similarly, in commit 43531113 of the same
project, an Extract Method refactoring was applied on sendBindRequest() to
extract sendIqPacket() method, which happened to access security-sensitive
data—so, it was branded as a new classified method. While this method is
not necessarily a security issue, its presence increases the application’s attack
surface, giving attackers an additional method to leverage for its purpose.

All the other refactoring types, i.e., Move Class, Pull Up Attribute, Push
Down Attribute, and Pull Up Method, appears to have limited or no impact
on any security metrics. Perhaps more interestingly, the composite refactoring
types considered in the study, namely Extract & Move Method and Move &
Inline Method, seem to show a “mixture” of the behaviors of their individual
operations. This had the curious effect of having almost no statistical signifi-
cance for all 13 models. Yet, this could also be caused by the limited amount
of composite refactorings observed in our dataset.

When considering the impact of the confounding factors, i.e., LOC, WMC,
and code churn, we could notice that only code churn has a statistically signif-
icant relationship with all dependent variables. On the contrary, WMC turned
out to have a poor impact on the security metrics, indicating that the com-
plexity of methods is not related to the number of critical components in the
source code. All in all, the ORs for all confounding factors are still very low,
translating into a very weak effect on security.

Last but not least, we also found that in some cases, the projects themselves
turned out to be significant for the explanation of the dependent variable. From
a practical point of view, this means that the peculiarities of the projects
have some influence on the changes to the global security profile. Our study
cannot uncover the reasons behind this finding, as it would deserve further
investigation. Yet, it is reasonable to believe that project-specific properties
exist, e.g., contribution guidelines [74], code of conducts [38], and more, that
make developers more or less prone to introduce vulnerabilities.

24 Emanuele Iannone et al.

Main findings for RQ1

Different refactoring types have a different impacts on security metrics. In
most cases, there are just variations, in either positive or negative ways,
without a clear direction. Refactoring types such as Inline Method or Ex-
tract Interface may help keep the number of classified attributes and meth-
ods under control. The application of refactoring sequences causes a mix-
ture of the effect of the individual components. More in general, the effect
on security seems to depend on how refactoring operations are applied.

3.2 RQ2. To what extent do refactoring operations impact security-related
technical debt?

In RQ2, we investigated the relation between refactoring and security-related
technical debt, measured through the number of security violations detected
by SonarQube and the security remediation effort. Similarly to RQ1, Table 7
reports the sign of the logit coefficients (within a circle) and the value of the
ORs obtained for the Multinomial Log-Linear models for each refactoring type.
Here too, the coefficients of the variables that turned out to be statistically
significant are reported with a green + or red - , otherwise are left white.
Whenever the impact of a refactoring type rejects a null hypothesis formulated
in Section 2.5 the related cells are depicted in gray. The table does not report
the confounding factors (LOC, WCM, and code churn), but these are reported
in the raw results in our online appendix [28].

Looking at the results, we could immediately notice the predominant pres-
ence of negative coefficients associated with both the decrease or increase of
rule violations, implying that the majority of refactoring operations tend to
keep the number of violations stable. This is particularly evident for Extract
Interface, Move Package, Push Down Method, and Push Down Attribute. In
other words, these refactoring types generally do not introduce or resolve any
security-related violation. This is in line with their definition. Extract Interface
and Move Package do not overhaul the code structure of the involved classes,
so it is reasonable that they do not affect any security rule. The refactoring op-
erations that push attributes or methods down to class hierarchies—i.e., Push
Down Method, Push Down Attribute—do not seem to affect security rules in
any way. However, both Move Package and Move Attribute are connected to
a variation of the security remediation effort. This could be explained by the
fact that these kinds of changes are made in conjunction with other changes
that introduce security-related technical debt.

Despite these results, there are some notable exceptions worth analyzing.
Extract Superclass refactoring significantly increases the chance of increasing
the security remediation effort. Such a refactoring type also tends to violate
rule S2386, i.e., ‘Mutable fields should not be public static’. Violating such
a rule has a security implication, as the presence of public static fields
expose mutable objects or arrays to changes by malicious users. Such bad

A Large-Scale Investigation into the Effects of Refactoring on Security 25

Table 7: The impact of each refactoring type on security debt and violations
(RQ2) represented via the sign of the models’ coefficients (colored if p ă 0.05)
and their odds ratios. The category ‘DECR.’ represents the cases where ∆ ă 0,
while ‘INCR.’ represents ∆ ą 0. The cells in gray indicate the acceptance of
the related alternative hypotheses (Ha2) formulated for RQ2. (Section 2.5).

Categories Categories Categories Categories
Metric

DECR. INCR. DECR. INCR. DECR. INCR. DECR. INCR.
Extract Method Inline Method Extract & Move Met. Move & Inline Met.

SRE + 1.016 + 1.028 + 1.044 + 1.038 - 0.982 - 0.993 + 1.001 + 1.004
S1989 - 0.000 - 0.751 + 1.418 - 0.000 - 0.000 + 1.475 - 0.967 - 0.000
S2647 + 1.145 - 0.480 - 0.022 - 0.003 - 0.021 + 1.208 - 0.012 - 0.010
S2755 + 1.100 - 0.874 + 1.180 - 0.560 - 0.953 - 0.828 - 0.000 + 1.027
S2976 - 0.825 - 0.891 + 1.269 + 1.394 - 0.900 + 1.123 + 1.150 - 0.000
S4423 - 0.829 - 0.911 - 0.000 + 1.331 - 0.250 + 1.061 - 0.842 - 0.000
S4830 - 0.896 - 0.718 - 0.000 - 0.000 - 0.000 - 0.851 - 0.000 - 0.000
S5527 - 0.959 - 0.557 - 0.000 - 0.452 - 0.000 - 0.633 - 0.000 - 0.002
S5542 - 0.572 + 1.059 + 1.205 + 1.196 + 1.253 + 1.037 - 0.000 + 1.012
S5547 - 0.000 - 0.221 - 0.000 - 0.000 + „965 - 0.000 - 0.000 - 0.339
S2068 - 0.0933 - 0.886 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000
S2386 - 0.019 - 0.993 - 0.027 - 0.962 - 0.047 + 1.004 - 0.138 - 0.995

Move Package Move Class Move Method Move Attribute
SRE + 1.845 + 1.476 - 0.983 + 1.004 + 1.007 + 1.004 + 1.068 + 1.053
S1989 - 0.030 - 0.001 - 0.002 + 1.313 - 0.000 - 0.000 - 0.000 - 0.000
S2647 - 0.412 - 0.007 - 0.238 + 1.016 - 0.032 - 0.516 + 1.392 - 0.005
S2755 - 0.000 - 0.000 - 0.826 - 0.727 - 0.901 + 1.018 + 1.502 + 1.136
S2976 - 0.001 - 0.000 - 0.985 - 0.475 - 0.954 + 1.136 - 0.618 + 1.150
S4423 - 0.010 + 9.633 - 0.600 - 0.939 - 0.809 + 1.013 - 0.955 - 0.915
S4830 - 0.003 - 0.015 - 0.000 - 0.902 - 0.000 - 0.662 - 0.971 - 0.000
S5527 - 0.000 + 0.000 - 0.000 - 0.913 - 0.389 + 1.038 + 1.925 - 0.765
S5542 - 0.001 - 0.100 - 0.731 - 0.626 + 1.169 - 0.985 - 0.000 - 0.489
S5547 - 0.000 - 0.000 - 0.000 - 0.717 - 0.000 - 0.000 - 0.000 - 0.000
S2068 - 0.028 - 0.001 - 0.000 - 0.055 - 0.000 + 1.032 - 0.000 - 0.861
S2386 + 2.985 + 1.323 - 0.518 - 0.972 + 1.942 - 0.986 - 0.046 + 1.102

Pull Up Method Pull Up Attribute Push Down Method Push Down Attribute
SRE - 0.999 - 0.999 + 1.022 + 1.001 - 0.973 - 0.996 + 1.023 + 1.041
S1989 - 0.000 - 0.696 - 0.000 + 4.714 - 0.000 - 0.003 - 0.011 - 0.031
S2647 - 0.282 - 0.009 - 0.434 - 0.147 - 0.336 - 0.098 - 0.842 - 0.536
S2755 + 1.265 - 0.997 - 0.359 - 0.956 - 0.000 + 1.671 - 0.000 - 0.000
S2976 - 0.769 - 0.939 - 0.000 + 1.280 - 0.000 - 0.000 - 0.000 - 0.000
S4423 - 0.825 - 0.904 + 1.366 - 0.000 + 1.088 - 0.000 + 1.002 - 0.000
S4830 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000
S5527 - 0.877 - 0.000 + 1.910 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000
S5542 - 0.000 - 0.719 - 0.000 + 1.155 - 0.000 + 1.550 - 0.000 - 0.000
S5547 - 0.000 - 0.013 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000
S2068 - 0.000 - 0.682 - 0.000 + 1.411 - 0.000 - 0.030 - 0.152 - 0.063
S2386 - 0.200 - 0.944 - 0.340 + 1.005 - 0.025 + 1.054 - 0.206 + 1.107

Extract Superclass Extract Interface
SRE - 0.901 + 1.264 - 0.994 + 1.057
S1989 - 0.000 + 7.920 - 0.000 - 0.000
S2647 - 0.005 - 0.011 - 0.119 - 0.014
S2755 + 1.352 - 0.944 - 0.000 - 0.353
S2976 + 1.521 - 0.791 - 0.000 - 0.000
S4423 + 1.148 - 0.708 + 2.094 - 0.001
S4830 - 0.000 - 0.000 - 0.001 - 0.000
S5527 - 0.854 - 0.000 - 0.000 - 0.000
S5542 - 0.000 + 1.094 + 3.360 + 1.529
S5547 - 0.000 - 0.000 - 0.000 - 0.000
S2068 - 0.000 - 0.003 - 0.000 - 0.000
S2386 - 0.000 + 1.585 - 0.001 - 0.874
SRE stands for “Security Remediation Effort”, measuring the security technical debt

practices are also categorized by CWE-582: ‘Array Declared Public, Final,
and Static’, CWE-607: ‘Public Static Final Field References Mutable Object’,
and CWE-766: ‘Critical Data Element Declared Public’, all representing weak-
nesses in the source code that attackers can leverage to carry out attacks. In
other words, mutable objects should not be leaked to client programs as they
can violate class invariants and disrupt the normal execution flow of the target
application—if they have access to its runtime. Moreover, violations of this rule

26 Emanuele Iannone et al.

URLData

+ String protocol
+ String host
+ int port
+ String path
+ String ref

URL buildURL()
+ boolean complete()
+ InputStream openStream()
+ String getPortStr()

Initial State

ParsedURL

+ byte[] GZIP_MAGIC

+ InputStream checkGZIP()

ParsedURLData

+ byte[] GZIP_MAGIC
+ String protocol

+ String host

+ int port

+ String path

+ String ref

+ InputStream checkGZIP(InputStream)

URL buildURL()

+ boolean complete()

+ InputStream openStream()

+ String getPortStr()

Final State

DataParsedURLData

+ boolean complete()
+ String getPortStr()

ParsedURL

Fig. 3: Graphical representation of the Extract Superclass refactoring applied
in revision e28370d2 in project batik.

also imply a degradation of encapsulation, further motivating the importance
of resolving it early. Curiously, an increase in security remediation effort also
happens with Extract Interface refactoring. Despite both refactoring opera-
tions aiming to simplify the hierarchical organization of a project, they should
be made with caution as they have a high risk of increasing the remediation ef-
fort. Let us consider an example in project batik at the revision e28370d2, also
shown in Figure 3. The commit applied a series of refactorings to reorganize
some hierarchical structures in the util package—as also stated in one para-
graph of the full commit description: ‘[...] Cleaned up, made easier to extend
and pulled several inner class out of ParsedURL [...]’. In particular, the class
URLData was first promoted from a static nested class to a first-level public
class, renamed to ParsedURLData and then reorganized to have a new sub-
class called DataParsedURLData—hence, an Extract Superclass was applied.
In the end, the ParsedURL class was streamlined to favor the new extension.
In applying these changes, the former nested class had five public attributes
left unchanged when the class was made public. This caused SonarQube to
recognize a violation to rule S2386 for the five attributes, as now they can be

A Large-Scale Investigation into the Effects of Refactoring on Security 27

freely modified by an external client program. In this case, we observe that
the refactoring alone is not the direct cause of the violation, but the way it
was applied led to the creation of extra public static fields. To conclude,
Extract Superclass and Extract Interface refactorings should be applied with
particular care as they have also been seen to disrupt all the security metrics
(RQ1).

Another exception occurs with Extract & Move Method refactoring, that
(1) negatively impacts rule S2647, i.e., ‘Basic authentication should not be
used’ and (2) increases the chances of rule S5547, i.e., ‘Cipher algorithms
should be robust’ being removed—as it can be observed from its high OR.
The individual refactoring operations, i.e., Extract Method and Move Method,
do not appear to be connected with these rules in any form, while their combi-
nation has observable effects. Analyzing this case further, we could not identify
specific reasons why the combination of multiple refactorings has a higher im-
pact than individual refactoring types, yet we can suppose that our results
represent a reflection of the number of changes applied, i.e., more changes af-
fect security more than individual ones. Nonetheless, the effect of refactoring
sequences is something that might be worth further analyzing in future work.

As in RQ1, it is worth noting that the results were achieved while con-
trolling for several confounding factors. Similarly to the previous discussion,
the confounding factors are generally not statistically significant in any model,
i.e., they are not correlated with the increase or decrease of security-related
technical debt. Likewise, the projects turned out to be significant, somehow
confirming that there exist some project-specific attributes that might influ-
ence the security technical debt.

Main findings for RQ2

While most of the refactoring types do not significantly impact security-
related violations, we identified some operations concerning restructuring
class hierarchies, i.e., Extract Superclass, and Extract Interface, that are
statistically related to an increase of security violations, implying that they
should be implemented with caution to avoid introducing security threats.
In the end, refactoring is weakly connected to the violations detected by
SonarQube, and other influencing factors should be analyzed.

3.3 RQ3. To what extent do refactoring commits contribute to the
introduction of real software vulnerabilities?

Our third research question investigated the relationship between refactoring
and the introduction of known vulnerabilities reported in the National Vul-
nerability Database (NVD).

It is worth recalling that for this research question, we focused on nine of
the projects considered in the study (see Table 1). This subset of projects is
affected by 26 known vulnerabilities, i.e., 26 different CVE records, whereas

28 Emanuele Iannone et al.

Table 8: The main descriptive statistics pertaining to the unique VCCs of the
nine projects appearing in NVD. N “ 103.

Refactoring Total Min Med Max Mean Std. Dev.
Package-Level
Move Package 0 0 0 0 0.000 0.000
Class-Level
Extract Superclass 5 0 0 1 0.049 0.216
Extract Interface 1 0 0 1 0.010 0.099
Move Class 7 0 0 3 0.068 0.377
Method-Level
Extract Method 24 0 0 6 0.233 0.819
Inline Method 3 0 0 2 0.029 0.220
Move Method 53 0 0 40 0.515 3.983
Extract & Move Method 14 0 0 3 0.136 0.465
Move & Inline Method 2 0 0 1 0.019 0.139
Pull Up Method 251 0 0 231 2.437 22.785
Push Down Method 2 0 0 1 0.019 0.139
Attribute-Level
Move Attribute 17 0 0 14 0.165 1.387
Pull Up Attribute 126 0 0 81 1.223 9.045
Push Down Attribute 0 0 0 0 0.000 0.000

the number of distinct VCCs was 103—there were some cases of commits
contributing to more than one vulnerability. Table 8 reports the descriptive
statistics of the distribution of refactoring operations, grouped by type, in
such VCCs. In the first place, our results showed that the number of VCCs
with at least one refactoring was 34, i.e., 33.01% of the VCCs contained at
least one instance of a refactoring operation. While this seems to indicate that
refactoring might have a connection with the introduction of vulnerabilities,
a closer look indicates a lack of causal relationship between the refactoring
activities performed by developers and the introduction of vulnerabilities, i.e.,
the fact that refactoring is performed does not imply that it is the root cause
of the vulnerability introduction.

A more in-depth analysis reveals that the refactoring types that occurred
the most in the VCCs were Pull Up Method and Pull Up Attribute with 251 and
126 instances, respectively. Both refactoring types deal with generalization,
hinting that complex restructuring activity (i.e., modifying hierarchies) are
often present when vulnerabilities are introduced—this is partially in line with
the results observed in the context of RQ2.

Nonetheless, we also observed their very high standard deviation values
that, combined with much lower mean values, imply that the distribution of
these refactoring types across the commits is “irregular”—i.e., there are com-
mits with a considerable number of Pull Up Method and Pull Up Attribute and
commits without any of them. For instance, the Jenkins’s commit 70c10658
has over 200 instances of Pull Up Method and over 80 of Pull Up Attribute.
Such a commit touches over 300 different files and represents a crucial commit
for the project as it marks the moment when Jenkins was forked from Hud-
son (its original project). This suggests that some projects, like Jenkins, are

A Large-Scale Investigation into the Effects of Refactoring on Security 29

characterized by large and poorly cohesive commits, which have higher chances
to touch critical parts of the code, possibly introducing defects and security
flaws. Hence, a “chaotic” development process might be the actual reason be-
hind the introduction of vulnerabilities—as part of our future research agenda
on the matter, we plan to investigate this aspect further.

From a different point of view, the nine NVD projects had a total of 7,708
refactoring commits (i.e., commits with at least one refactoring instance), 34
of which contributed to the introduction of a vulnerability, accounting for
0.44% of the total. This further supports the fact that refactoring alone is
not the main responsible for the introduction of vulnerabilities, but rather
a co-occurring phenomenon that, in some cases, might worsen the situation,
especially when touching several components.

To assess whether the number of a specific refactoring type was statistically
significant, we run a one-tailed Mann-Whitney U test [71] for each refactoring
type on both the sets (i.e., the refactoring commits contributing to vulnera-
bilities versus those that did not contribute), for a total of 14 test runs. We
discovered that the distribution of Extract Superclass and Extract & Move
Method instances for VCCs is significantly higher than the distribution for
non-VCCs. (p ă 0.05). At the same time, Cohen’s d [72] is lower than 0.2,
indicating a very small effect size. In other words, Extract Superclass and Ex-
tract & Move Method occurs more often in VCCs, but still in a limited way.
Extract Method and Move Method refactorings do not appear to show any
connection with VCCs, hence suggesting that basic refactorings touching few
code components are less likely to contribute to the emergence of a vulnera-
bility. On the contrary, only for Pull Up Method and Pull Up Attribute the
effect size appeared large (d ą 1.2), but without any statistically significant
difference highlighted by the Mann-Whitney U test. The full results of such
tests are reported in our online appendix [28].

Fig. 4: Part of the diff of the commit e45d7bda of Conversations. The
focus is given on the root cause behind the vulnerability CVE-2018-18467, i.e.
caused by the addition of an incomplete appendText() method during the
refactoring.

30 Emanuele Iannone et al.

Going more in-depth, let us consider the example reported in Figure 4. It
shows the diff of the commit e45d7bda of the project Conversations, an
XMPP client for Android that allows the creation of private chats with other
users. The commit message states that a “UI code refactoring” was applied.
The modification impacted three different files. Four years later, the modifi-
cation resulted in being one of the causes that led to vulnerability CVE-2018-
18467, which allowed an attacker to append a custom text to an existing con-
versation (with a draft message) by sending an intent from another application.
While the commit message suggests code refactoring as the main activity per-
formed, the vulnerability was not due to the refactoring itself, but rather to the
addition of the appendText() method in the class ConversationFragment.
This allowed appending any text to an existing conversation without ade-
quately checking if an external application was trying to append a text content
to an existing draft message through an Intent, leading to the vulnerability
described in CVE-2018-18467. In other words, the vulnerability was involun-
tarily introduced while the committing author was doing some refactoring and
code clean-up. In the example, RefactoringMiner only managed to mine
two instances of Inline Method, which only represent a small part of the total
modifications made. Thus, we can conclude that refactoring is often not the
direct cause of vulnerabilities but rather a co-occurring phenomenon.

Main findings for RQ3

Our results indicate the absence of a clear cause-effect relationship between
refactoring and vulnerability-contributing commits. At the same time, we
also observed that some refactoring operations, such as Extract Superclass
and Extract & Move Method co-occur often in commits where vulnerabil-
ities are introduced.

4 Discussion and Implications

This section further discusses the main results achieved in our study and re-
ports their implications for researchers and practitioners.

4.1 Discussion: Connecting the Dots

The results of our three research questions allowed us to quantify the role of
refactoring on three critical aspects of software security, such as its impact
on security metrics, technical debt, and introduction of known vulnerabili-
ties. Moreover, the statistical analyses conducted enable a more general and
conclusive discussion of the initial hypotheses formulated in Table 2.

By summing all up, we can provide three main insights. First of all, when
looking at the big picture, we can conclude that refactoring has only a lim-
ited effect on software security. Most of the refactoring operations considered
in the study do not lead any security indicators to vary consistently and/or

A Large-Scale Investigation into the Effects of Refactoring on Security 31

significantly. As we learned from RQ1, it is indeed possible that some refac-
toring operations may influence security metrics depending on how they are
applied, while they rarely have an impact on technical debt (RQ2) and in-
troduction of known vulnerabilities (RQ3); similarly, it may happen that a
change accompanied by refactoring can contribute to a vulnerability with-
out affecting any security metrics or increasing the technical debt value. This
is the case of the example shown in Figure 4 in which neither Surface nor
SonarQube detected any difference between the commit containing the refac-
toring (e45d7bda) and its predecessor (i.e., the ∆ was mapped to the “Stable”
category). Hence, these results partially contradict the preliminary findings
reported by Adib et al. [15]: when studying the matter on a larger scale, it
comes out that most refactoring operations do not directly impact the security
of software systems but are rather co-occurring phenomena.

However, some exceptions have been observed, especially when consider-
ing security technical debt. According to our results, the Extract Interface
refactoring provides a significant increase in security-related technical debt
but might have positive effects on some security metrics, e.g., reducing the
number of classified methods (CM metric). This result supports and further
stimulates the research efforts on the construction of automated refactoring
recommenders that might balance quality improvements and security threats,
as initiated by Abid et al. [15].

To broaden the scope of the discussion, our overall findings do not match
with the results previously obtained when studying the relation between refac-
toring and defects [19, 16]. In particular, this is the case of the refactoring
types dealing with the generalization: while Bavota et al. [19] and Di Penta
et al. [16] found these operations to be sometimes defect-inducing, we discov-
ered that they can instead provide some benefits to security aspects connected
to attribute encapsulation. We see two main points here. On the one hand,
these differences corroborate the conclusions drawn by previous researchers
on the need of considering and treating vulnerabilities differently from de-
fects [75, 76, 77, 78, 79, 80]. On the other hand, our results indicate that the
same refactoring can have multiple, contrasting effects on code quality and
dependability.

4.2 Implications of the Study

The results of our study provide us with several actionable items and implica-
tions for both researchers and practitioners that we discuss in the following.

Novel Refactoring Optimization Techniques. According to our results,
refactoring is generally not connected to software vulnerabilities. However,
we pointed out that refactoring operations dealing with generalization can
contribute to the improvement of software systems’ security profile un-
der certain perspectives. By connecting the previous research on the ef-
fect of refactoring on defects introduction with the results of our study,

32 Emanuele Iannone et al.

we could conclude that the definition of novel strategies that recommend
refactoring operations—while minimizing the negative impact on source
code attributes—should be devised and further investigated. In particular,
the key example is represented by search-based refactoring recommenda-
tions [81, 82], where search-based algorithms are used to recommend develop-
ers the best refactoring operation (or sequence of operations) to apply based
on the potential impact that such a refactoring may have on various proper-
ties of source code. These recommenders might be potentially enhanced by
means of the addition of further security-related objective functions so that
they could recommend refactoring operations that optimize the compromise
between quality and security metrics/technical debt. For instance, let us
consider the case of Extract Superclass, which we found to appear among
the most disruptive refactorings for security according to our results. The
refactoring consists of finding a subset of methods of a class that can be ex-
tracted in order to create a new superclass. As such, there are multiple ways
to perform the refactoring based on how the subset of methods to extract is
identified. An Extract Superclass refactoring recommender might use, as an
objective function, a weighted combination of quality and security metrics
so that it can identify the subset of methods to extract that optimize both
quality and security. Similarly, multi-objective search algorithms might be
used to solve the problem, for instance by combining information coming
from quality metrics, security metrics, and technical debt. Some preliminary
studies on these aspects have been recently published [15], yet we believe
that further studies are needed, especially concerning the granularity of the
recommendations. Indeed, our RQ3 shows that developers would benefit
from just-in-time solutions that can provide advice while committing new
changes to software repositories.

Exploiting Security Variations to Drive Refactoring. The results
coming from RQ1 and RQ2 also pointed out the existence of refactoring
operations having high correlations with both increase or decrease of
security metrics and technical debt. In these cases, our findings suggest that
the positive or negative effect on security is due to the specific operation
performed when refactoring code. In a real-case scenario, these results may
be exploited to devise automated mechanisms that alert developers of the
potential effects of refactoring on security. As an example, we may envision
the definition of novel bots/conversational agents [83] that monitor the
development and drive the developer toward the application of an operation
that has higher chances to improve security metrics or reduce security
technical debt when recognizing he/she is applying a refactoring operation.
The research in this respect is rapidly gaining interest [84, 85, 86], though
actionable solutions are still not widely spread, and so representing a
potentially interesting use case.

Refactoring Verification and Validation. As a complimentary discussion
of the previous one, we can foresee two main implications for the testing com-
munity. First and foremost, the importance of having robust verification and

A Large-Scale Investigation into the Effects of Refactoring on Security 33

validation techniques is further corroborated by our study. Practitioners and
security managers can indeed exploit our findings to put in place additional
preventive mechanisms aimed at verifying the outcome of each modification,
possibly improving both the code review process [39], e.g., by integrating
stricter security checks when refactoring operations are applied, and the re-
gression testing activities [87] of their systems. Secondly, our results shed
light on the need for more research on techniques to verify the correctness
of refactoring operations. This is an overly neglected angle of the refactoring
process [88] that has been only tangentially touched by the research com-
munity in the past [89, 90]. We hope that our investigation would stimulate
research on this topic.

Homogenizing Refactoring Operations. As noticed in RQ1, some refac-
toring operations, e.g., Extract Superclass, tend to have different effects for
security depending on how they are applied. This finding—which we be-
lieve would deserve further attention—possibly suggests that practitioners
approach refactoring in different manners, perhaps because of their differ-
ent expertise or level of knowledge on the classes subject to refactoring.
As such, they could benefit from automated solutions that can recommend
how to apply the refactoring, namely what are the steps that may lead to
the safe improvement of source code quality and homogenize the refactoring
process toward the definition of standard guidelines that might favor both
newcomers and developers with limited knowledge on security.

The Link between Composite and Elementary Refactorings. In this
empirical study we investigated the effect of two composite refactoring op-
erations, namely Extract & Move Method and Move & Inline Method. We
suspected that they might behave differently from the isolated application of
the basic refactoring operations they are composed of—i.e., Extract Method,
Move Method, and Inline Method. The results of RQ1 show that composite
refactoring operations appear to behave as if they are a “mixture” of their
basic operations; conversely, in RQ2 we observed that they have some effects
on a restricted subset of SonarQube violations, while their basic operations
do not. Similarly, in RQ3 Extract & Move Method tends to occur more of-
ten in vulnerability-contributing commits than individual Extract Method
and Move Method refactorings. Based on these results, we could not outline
a precise trend regarding composite refactorings. In any case, the number
of instances in our dataset was limited, hence demanding further in-depth
investigations with a larger number of observations to derive more precise
conclusions on how these composite refactoring operations are connected to
their individual refactoring operations.

Value of The Currently Available Security Metrics. When collecting
the data required to address RQ1, we observed that the security metrics
previously proposed in the literature [15, 46, 47] capture similar aspects, be-
ing all computed based on the number of security-sensitive attributes that a
class exposes. We consider it a limitation that does not enable a comprehen-
sive analysis of the source code’s security profile. As such, a side outcome of

34 Emanuele Iannone et al.

our study suggests that more effort should be invested in the definition of
novel security metrics that may adequately complement the analysis of the
attributes. This represents a challenge for the software engineering commu-
nity and researchers in closely related fields, e.g., programming languages,
which are called to elicit specific properties that make programming lan-
guages more or less prone to security weaknesses.

Refactoring Has A Poor Impact on Security Technical Debt. From
the results achieved in the context of RQ2, we could observe that most
refactoring operations do not significantly vary the amount of security-
related technical debt. The Extract Superclass and Extract Interface
refactoring types represent exceptions to this discussion, along with
composite refactoring operations. As such, we can claim that refactoring
is mostly safe with respect to security technical debt, yet verification
and validation mechanisms might represent useful additions to assess the
refactored code against security regressions.

Software Vulnerabilities: A Social Perspective? The results given by
our statistical modeling exercise revealed that, in most cases, the projects
themselves turn out to significantly influence the increase/decrease of
security-related metrics and technical debt. While this aspect deserves ad-
hoc investigations to better understand the underlying reasons leading to
these findings, our study seems to suggest that there exist specific properties
or standards implemented within those projects that have effects on software
dependability. In other words, our results seem to be in line with recent stud-
ies uncovering relations between developer’s collaboration/coordination—
elaborated and controlled through the definition of development contribu-
tion guidelines [74] and code of conducts [38]—and the implications they
have for software quality [91, 92]. In this sense, our results can serve as a
base for investigations into the role of social aspects on vulnerabilities.

5 Threats to Validity

Several factors might have biased our results. This section discusses them and
reports the mitigation strategies we employed.

Construct Validity. The subjects of our study were the commits hav-
ing refactoring operations, that we could detect using the tool Refactor-
ingMiner [24]. The main threat associated with this granularity level is the
impossibility to isolate the refactored code elements and study how their secu-
rity profile has changed. Despite the fact that RefactoringMiner allows the
identification of the refactored code regions, we still had trouble in selecting a
reasonable set of metrics capturing the security profiles at such a granularity
level. In other words, there are no metrics that can measure the security of
partial code snippets: the minimum unit of work is the file/class. Neverthe-
less, we strove for addressing at our best this issue by removing the amount
of noise from refactoring commits—whenever the metrics and tools allowed.

A Large-Scale Investigation into the Effects of Refactoring on Security 35

Specifically, the computation of the security metrics (RQ1), the number of vi-
olations (RQ2), and the confounding variables (both RQ1 and RQ2) did not
involve the files not subject to any of the refactoring operations occurred in a
commit. Unfortunately, we could not do the same for the security remediation
effort metric (RQ2) as the tool SonarQube is only able to compute it at the
entire project’s snapshot level. In spite of everything, this mitigation mech-
anism still does not exclude any form of changes unrelated to refactorings.
Currently, this is the best possible solution to the best of our knowledge.

In the context of RQ1 and RQ2, we employed automated tools to com-
pute security metrics and technical debt. As for the security metrics, we re-
implemented the tool by Abid et al. [15] as it was not publicly available. When
developing Surface, we followed the exact steps reported in [15], other than
conducting follow-up automated and manual testing sessions to assess the
results produced by the tool. For the sake of verifiability, we made Surface
publicly available in our online appendix [28]. Among the technical debt detec-
tors available in the literature, the selection of SonarQube was driven by the
results reported by Saarimaki et al. [50], who showed that it is accurate when
considering security violations. Moreover, these tools were supported by the
libraries PyDriller [62] and Lizard to facilitate the recovery of the change
history and the computation of the confounding variables (LOC, WCM, and
code churn), respectively. Both are widely applied in several software reposi-
tory mining studies.

We expressed the security-related metrics for the commits by aggregating
the deltas we computed on all the files directly involved in refactorings. In
particular, the metrics CA (Classified Attributes) and CM (Classified Meth-
ods) were summed, while the rest of the metrics were averaged. CA and CM
count the number of security-sensitive code components (attributes or meth-
ods), so the sum suits well to count the amount of changed security-sensitive
code components within the commit. On the contrary, all the other security
metrics ranged between 0 and 1, expressing “no exposure” to “maximal ex-
posure”, respectively. Despite the existence of other aggregators, such as the
median, we opted to use the average as it well summarizes the change in the
exposure levels of all the refactored files without reducing the effect of outliers
(i.e., sharp changes in the security metrics).

As for RQ3, our results might have been affected by the erroneous identi-
fication of vulnerability-fixing and vulnerability-contributing commits. In the
first case, we mined the fixing commits from the references reported in the
CVE records description in the National Vulnerability Database (NVD). De-
spite being considered a reliable source of information that is continuously
monitored and updated, we cannot exclude the case in which the CVE record
fails at reporting the entire set of patches—indeed, an insufficient set of fixing
commits would have reduced the amount of contributing commits our algo-
rithm fetched. In the second case, we employed a set of heuristics built on
top of SZZ [34] to recover the VCCs. While the performance of the algorithm
has been criticized in the past [93], a recent study [94] has shown that (i) the
performance of SZZ depends on the dataset to which it is applied and (ii)

36 Emanuele Iannone et al.

the original version of SZZ is the one providing the best performance, overall.
Moreover, it has been seen as one of the best possible strategies for recovering
VCCs. For this reason, we were careful to adopt all possible recommended
precautions to greatly reduce the amount of noise and improve the precision,
e.g., ignoring irrelevant files, blaming the context of blocks of new code, etc.
To be even more confident about the suitability of our VCCs mining algo-
rithm, we manually validated its results, observing a precision of 71%, which
we considered acceptable for our purposes. Lastly, our strategy is also robust
to most cases of files renamings. As a matter of fact, the git-blame func-
tionality can automatically detect file renamings when traversing the project’s
history, further reducing the risk of blaming wrong commits.

Internal Validity. When building statistical models in RQ1 and RQ2,
we selected three confounding factors, i.e., LOC, WMC, and code churn, to
control our findings for aspects that might have explained the (in)stability of
security metrics and violations better than the number of instances of refac-
toring operations. We acknowledge the existence of additional factors that
were not considered in our study, and, as such, replications of our work would
be desirable. Nonetheless, our manual follow-up analysis (see Section 4.1) had
the goal of further investigating the underlying reasons behind the relation be-
tween refactoring and vulnerabilities, possibly mitigating threats to internal
validity and also explaining the role of confounding factors on our results.

Different implementations of refactoring operations might affect the level of
security of source code differently or may even represent explicit compromises
between quality and security made by a developer. For example, a Pull Up At-
tribute refactoring typically leads to a visibility change of a private attribute:
this might be either performed by modifying the visibility into protected or
public so that the attribute can be accessible by child classes. While the
protected visibility would be essential to apply the refactoring, the public

visibility might potentially induce unnecessary risks for security—unless de-
velopers consciously opt for this choice and favor it because of other contex-
tual factors or requirements. In this respect, it is worth remarking that our
empirical study does not aim at questioning the way developers may apply
refactoring, but rather what effect refactoring types may have on the secu-
rity profile of source code. Furthermore, the specific design decisions taken
by a developer when performing refactoring cannot be automatically detected
through the refactoring mining tools currently available. Therefore, we encour-
age replications of our study conducted with different research methods, e.g.,
through controlled experiments that verify how the refactoring choices done
by developers impact security.

Conclusion Validity. Concerning the relation between treatment and
outcome, a threat is related to the statistical methods adopted to address our
RQs. In RQ1 and RQ2, we opted for a Multinomial Log-Linear statistical
model [33] as our problem was a multiclass problem involving both categorical
and continuous independent variables. In addition, it allowed us to interpret
the results from various perspectives, i.e., by considering both statistical codes

A Large-Scale Investigation into the Effects of Refactoring on Security 37

and odds ratios. Before interpreting the results, we also verified the normality
of the independent variable distributions through the Anderson-Darling nor-
mality test [64] before computing the Spearman’s rank-correlation coefficients
[65] to identify pairs of correlated independent variables that might lead to
multicollinearity.

External Validity. Our study targeted 39 projects from the Technical
Debt Dataset [35] involving 7,708 commits containing refactorings. While al-
most all the systems belong to the Apache Software Foundation, they
were originally selected to meet guidelines that ensure diversity and represen-
tativeness [36, 37]. We cannot exclude that different results could be obtained
when considering systems of other ecosystems developed using different pro-
gramming languages and with different maturity levels. In addition, it is worth
remarking that RQ3 could only target nine of those projects, namely the ones
connected to the NVD dataset of known vulnerabilities. Replications targeting
a larger set of projects would be, therefore, desirable. In any case, in our on-
line appendix [28], we made available the data and scripts to favor researchers
interested in replicating our study in other contexts.

6 Related Work

The impact of refactoring on source code dependability has been explored from
different perspectives, which we overview herein.

6.1 Impact of Refactoring on Software Quality

Many studies have investigated the impact of refactoring on software quality
either directly or from the perspective of defect proneness, change proneness,
or code smells.

Bavota et al. [9] mined the history of 63 releases of Java Open Source
Projects (OSPs) to investigate refactoring operations on code components,
which indicate a need for refactoring through indicators such as metrics and
smells. They concluded that most refactoring operations take place on code
with no quality metrics indication for the need to refactor, and although 40%
of refactoring operations were performed on smelly code, only 7% removed the
smells. Their findings were corroborated by Yoshida et al. [95] who revisited the
relationship between code smells and refactoring by using the same refactoring
dataset by Bavota et al. [9]. Cedrim et al. [96] had similar findings when they
analyzed more than 16K+ refactoring instances from 23 OSPs to investigate
whether refactoring reduces the code smell density. They reported that even
though almost 80% of refactorings touched smelly code, 57% of refactorings
did not impact them, and roughly 10% of them removed the smells while 33%
introduced new smells. Tufano et al. [97] conducted an empirical study on 200
projects from the Android, Apache, and Eclipse ecosystems to investigate,
among other aspects, whether developers’ actions, e.g., refactoring, resolve

38 Emanuele Iannone et al.

smells. They reported that only a low number (9%) of code smells are removed
following refactoring operations.

Palomba et al. [17] investigated the relationship between refactoring oper-
ations and code changes (namely fault repairing modification, general main-
tenance modification, and feature introduction modification) by analyzing the
dataset by Bavota et al. [9]. They concluded that code duplication and Self-
Admitted Technical Debt (SATD) are the main reasons behind refactoring
instances, and refactoring also helps increase code readability. The impact of
refactoring on code readability was the subject of the study by Sellitto et
al. [25], who partially confirmed previous findings, showing that refactoring
can also negatively impact code readability metrics.

Kim et al. [98] investigated the refactoring benefits and challenges at Mi-
crosoft by conducting a survey, semi-structured interviews, and historical data
analysis. They found that refactoring is beneficial, leading to reduced inter-
module dependencies and post-release defects. An empirical study was con-
ducted by Bavota et al. [19] to investigate the impact of refactoring on defects.
They found that generally, refactoring instances do not induce defects. How-
ever, in specific cases, some specific refactoring types (e.g., Pull Up Method
and Extract Subclass) tend to introduce defects in code.

6.2 Impact of Refactoring on Software Security

Mumtaz et al. [99] investigated whether removing code smells through refac-
toring resulted in improved security for a system. They conducted a study to
identify a subset of code smells and calculated security metrics on five systems.
Then they applied refactoring to remove the smells and then re-calculated
the same metrics as before. They concluded that generally, refactoring im-
proved the quality of the studied systems from a security standpoint. Ghaith
et al. [100] were interested in finding out whether automated search-based
refactoring improved software security. They achieved an improvement of 15%
in the metrics of industrial software after applying search-based refactoring.
However, their study is based on a small project, and the results are not gen-
eralizable.

An empirical study was conducted by Abid et al. [15] to determine the
relationship between quality and security and the impact of refactoring types
on security. The results of the study were used to implement a tool, which was
then evaluated on OSPs. They concluded that their tool improved the security
of the systems with little impact on the quality. They further validated their
results by conducting a survey with practitioners. Similarly, Alshammari et al.
[101] assessed the impact of refactoring at the design level on security using a
case study. Their findings indicate that about 20 refactoring rules improve se-
curity, 12 rules made security worse, and four rules had no impact on security.
In a follow-up study [73], the authors evaluated the impact of refactoring on
information security using a case study. 8 out of 16 refactoring rules used im-
proved the software’s security while the remaining made it worse. Again, both

A Large-Scale Investigation into the Effects of Refactoring on Security 39

studies being focused on one case study cannot be generalized. Maruyama et
al. [102] proposed a tool, implemented as an Eclipse plug-in, to help develop-
ers assess the impact of their refactoring operations on software vulnerabilities
during software implementation. Currently, the tool supports only two refac-
toring types, namely, Pull Up Method and Push Down Method, and measure
security using access levels (private, public, protected, and default) of fields.
A downgrade in the access level signifies that the software becomes more vul-
nerable. However, they evaluated the tool using an artificial experiment (on
one version of Eclipse) and not on real software.

6.3 Impact of Refactoring on Security-Related Technical Debt

Refactoring has been recognized in many studies as one of the most common
ways to manage technical debt [103, 104, 105]. In this subsection, we review
some studies to understand the impact of refactoring on security debt (TD).

Zabardast et al. [106] investigated the impact of various software develop-
ment activities, including refactoring on TD by analyzing 2K+ commits in a
large industrial project. Their empirical study shows that refactoring removes
22% of TD but introduces an additional 22% TD. However, in most cases,
refactoring did not impact TD. Search-based automated refactoring using four
different approaches was used by Mohan et al. [107] to determine the impact
of refactoring on TD, among other aspects of development, on six OSPs. They
concluded that automated refactoring help decrease TD in software. However,
these studies do not focus on security-related TD. Similarly, there are some
studies on security smells, which are symptoms in the code that signals the
prospect of a security vulnerability [108]. Such studies investigate whether the
security smells have an impact on vulnerabilities and are conducted in specific
domains [108, 109].

6.4 Reflecting on Previous Work and Our Contribution

To summarize, the studies that investigate the impact of refactoring on soft-
ware quality have mixed results. Some reported a positive impact whereas
others concluded that refactoring increased TD or had no impact on it. Most
existing studies focus on the impact of refactoring on software quality but
very few investigate TD specifically. Similarly, the studies which investigate
the impact of refactoring on software security do not include security-related
technical debt. The studies are also limited, often focusing on one software sys-
tem, thereby making their results not generalizable. Despite refactoring being
commonly used to reduce technical debt, most existing research focuses on
code smell as an indication of debt, thereby explaining the lack of refactoring
studies that focus on technical debt directly. Similarly, security smells have
been investigated in the context of vulnerabilities but not refactoring. Abid et
al. [15] conducted a preliminary study to investigate the impact of refactoring

40 Emanuele Iannone et al.

types on security but, to the best of our knowledge, investigating the actual
impact of refactoring on technical debt from a security standpoint has not
been studied and therefore represents a premier of our research.

7 Conclusion

The potential adverse effects of refactoring on software dependability have
been previously assessed concerning its relation to software defects [19, 16]. In
this study, we went a step forward by considering the extent to which refac-
toring affects software security. We have conducted a three-level analysis that
considered the effects of refactoring on (i) security metrics, (ii) security-related
technical debt, and (iii) contribution to the introduction of known vulnerabil-
ities. Our study had a primarily quantitative connotation where we employed
statistical methods on a set of 39 open-source projects. Yet, we conducted addi-
tional manual analyses to extract qualitative insights and possible motivations
explaining the statistical findings. The core results of the study reported that
refactoring has a limited impact on security. Nevertheless, some exceptions
indicate that some particular types of refactoring operations might lead to
significant variations of software systems’ security profiles under different per-
spectives. Particularly interesting, in this respect, was the case of refactoring
operations dealing with the generalization that appeared to disrupt the source
code security.

Based on our findings, we identified several open issues and challenges for
researchers, especially related to the lack of automated mechanisms to bal-
ance multiple dependability attributes. These outcomes represent our future
research agenda, which is focused on the definition of novel just-in-time vul-
nerability detectors, technical debt linters, and testing methods to verify the
presence and exploitability of software vulnerabilities. Additionally, we plan
to extend the study by considering a more comprehensive range of software
projects, refactoring operations (e.g., “big” or architectural refactoring [1]),
and security-related indicators (e.g., security smells [108]), other than trian-
gulating our findings with different research methods, e.g., through controlled
studies able to reveal how different refactoring implementations may lead to
a variation of software security indicators.

Acknowledgement

The authors would like to thank the associated handling editor and the anony-
mous reviewers for their insightful suggestions and feedback, which were instru-
mental in improving the quality of our manuscript. Fabio and Zadia gratefully
acknowledge the support of the Swiss National Science Foundation (SNSF)
through the SNF Project No. PZ00P2 186090 (TED) and the Natural Sci-
ences and Engineering Research Council of Canada (RGPIN-2021-04232 and
DGECR-2021-00283), respectively. This work has been partially supported by

A Large-Scale Investigation into the Effects of Refactoring on Security 41

the EMELIOT national research project, funded by the MUR under the PRIN
2020 program (Contract 2020W3A5FY).

Declarations

Funding and/or Conflicts of interests/Competing interests

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported
in this paper.

Data Availability Statement

The datasets built during the current study, plus the scripts used to
analyze and generate the data, are available in the FigShare reposi-
tory: https://figshare.com/articles/online_resource/Rubbing_Salt_

in_the_Wound_A_Large-Scale_Investigation_into_the_Effects_of_

Refactoring_on_Vulnerabilities/14483787/1.

References

1. F. Martin and B. Kent, “Refactoring: Improving the design of existing
code,” Addison-Wesley Longman Publishing Co., Inc., 1999.

2. J. Al Dallal and A. Abdin, “Empirical evaluation of the impact of object-
oriented code refactoring on quality attributes: A systematic literature
review,” IEEE Transactions on Software Engineering, vol. 44, no. 1, pp.
44–69, 2017.

3. M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning tech-
niques for code smell detection: A systematic literature review and meta-
analysis,” Information and Software Technology, vol. 108, pp. 115–138,
2019.

4. E. V. de Paulo Sobrinho, A. De Lucia, and M. de Almeida Maia, “A
systematic literature review on bad smells—5 w’s: which, when, what,
who, where,” IEEE Transactions on Software Engineering, 2018.

5. T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE Trans-
actions on software engineering, vol. 30, no. 2, pp. 126–139, 2004.

6. G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Automating extract
class refactoring: an improved method and its evaluation,” Empirical
Software Engineering, vol. 19, no. 6, pp. 1617–1664, 2014.

7. R. Terra, M. T. Valente, S. Miranda, and V. Sales, “Jmove: A novel
heuristic and tool to detect move method refactoring opportunities,”
Journal of Systems and Software, vol. 138, pp. 19–36, 2018.

https://figshare.com/articles/online_resource/Rubbing_Salt_in_the_Wound_A_Large-Scale_Investigation_into_the_Effects_of_Refactoring_on_Vulnerabilities/14483787/1
https://figshare.com/articles/online_resource/Rubbing_Salt_in_the_Wound_A_Large-Scale_Investigation_into_the_Effects_of_Refactoring_on_Vulnerabilities/14483787/1
https://figshare.com/articles/online_resource/Rubbing_Salt_in_the_Wound_A_Large-Scale_Investigation_into_the_Effects_of_Refactoring_on_Vulnerabilities/14483787/1

42 Emanuele Iannone et al.

8. N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 347–367, 2009.

9. G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba, “An
experimental investigation on the innate relationship between quality and
refactoring,” Journal of Systems and Software, vol. 107, pp. 1–14, 2015.

10. D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? confessions
of github contributors,” in 24th acm sigsoft international symposium on
foundations of software engineering, 2016, pp. 858–870.

11. E. Murphy-Hill and A. P. Black, “Breaking the barriers to successful
refactoring: observations and tools for extract method,” in International
conference on Software engineering, 2008, pp. 421–430.

12. M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of
refactoringchallenges and benefits at microsoft,” IEEE Transactions on
Software Engineering, vol. 40, no. 7, pp. 633–649, 2014.

13. T. Sharma, G. Suryanarayana, and G. Samarthyam, “Challenges to and
solutions for refactoring adoption: An industrial perspective,” IEEE Soft-
ware, vol. 32, no. 6, pp. 44–51, 2015.

14. C. Vassallo, F. Palomba, and H. C. Gall, “Continuous refactoring in ci:
A preliminary study on the perceived advantages and barriers,” in Inter-
national Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2018, pp. 564–568.

15. C. Abid, M. Kessentini, V. Alizadeh, M. Dhouadi, and R. Kazman, “How
does refactoring impact security when improving quality? a security-
aware refactoring approach,” IEEE Transactions on Software Engineer-
ing, 2020.

16. M. Di Penta, G. Bavota, and F. Zampetti, “On the relationship between
refactoring actions and bugs: a differentiated replication,” in Joint Meet-
ing on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2020, pp. 556–567.

17. F. Palomba, A. Zaidman, R. Oliveto, and A. De Lucia, “An exploratory
study on the relationship between changes and refactoring,” in 25th Inter-
national Conference on Program Comprehension (ICPC). IEEE, 2017,
pp. 176–185.

18. K. Stroggylos and D. Spinellis, “Refactoring–does it improve software
quality?” in International Workshop on Software Quality (WoSQ’07:
ICSE Workshops 2007). IEEE, 2007, pp. 10–10.

19. G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and
O. Strollo, “When does a refactoring induce bugs? an empirical study,”
in 12th International Working Conference on Source Code Analysis and
Manipulation. IEEE, 2012, pp. 104–113.

20. G. McGraw, “Software security,” IEEE Security & Privacy, vol. 2, no. 2,
pp. 80–83, 2004.

21. V. Alizadeh, M. Kessentini, M. W. Mkaouer, M. Ocinneide, A. Ouni,
and Y. Cai, “An interactive and dynamic search-based approach to soft-
ware refactoring recommendations,” IEEE Transactions on Software En-

A Large-Scale Investigation into the Effects of Refactoring on Security 43

gineering, vol. 46, no. 9, pp. 932–961, 2018.
22. P. K. Goyal and G. Joshi, “Qmood metric sets to assess quality of java

program,” in International Conference on Issues and Challenges in In-
telligent Computing Techniques (ICICT). IEEE, 2014, pp. 520–533.

23. B. Alshammari, C. Fidge, and D. Corney, “Security metrics for object-
oriented class designs,” in International Conference on Quality Software.
IEEE, 2009, pp. 11–20.

24. N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and efficient refactoring detection in commit history,” in 40th
International Conference on Software Engineering, ser. ICSE ’18, 2018,
pp. 483–494.

25. G. Sellitto, E. Iannone, Z. Codabux, V. Lenarduzzi, A. De Lucia,
F. Palomba, and F. Ferrucci, “Toward understanding the impact of refac-
toring on program comprehension,” in 2022 IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER), 2022,
pp. 731–742.

26. H. J. Adèr, Advising on research methods: A consultant’s companion.
Johannes van Kessel Publishing., 2008.

27. “National vulnerability database,” https://nvd.nist.gov/.
28. E. Iannone, Z. Codabux, V. Lenarduzzi, A. De Lucia, and

F. Palomba, “Rubbing salt in the wound? a large-scale inves-
tigation into the effects of refactoring on security,” Mar 2022.
[Online]. Available: https://figshare.com/articles/online resource/
Rubbing Salt in the Wound A Large-Scale Investigation into the
Effects of Refactoring on Vulnerabilities/14483787/1

29. R. Per and H. Martin, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Softw. Engg., vol. 14,
no. 2, pp. 131–164, 2009.

30. P. Ralph, N. bin Ali, S. Baltes, D. Bianculli, J. Diaz, Y. Dittrich, N. Ernst,
M. Felderer, R. Feldt, A. Filieri, B. B. N. de França, C. A. Furia, G. Gay,
N. Gold, D. Graziotin, P. He, R. Hoda, N. Juristo, B. Kitchenham,
V. Lenarduzzi, J. Mart́ınez, J. Melegati, D. Mendez, T. Menzies, J. Mol-
leri, D. Pfahl, R. Robbes, D. Russo, N. Saarimäki, F. Sarro, D. Taibi,
J. Siegmund, D. Spinellis, M. Staron, K. Stol, M.-A. Storey, D. Taibi,
D. Tamburri, M. Torchiano, C. Treude, B. Turhan, X. Wang, and S. Ve-
gas, “Empirical standards for software engineering research,” 2021.

31. B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the size, cost, and
types of technical debt,” in 2012 Third International Workshop on Man-
aging Technical Debt (MTD). IEEE, 2012, pp. 49–53.

32. S. Sukamolson, “Fundamentals of quantitative research,” Language In-
stitute Chulalongkorn University, vol. 1, pp. 2–3, 2007.

33. H. Theil, “A multinomial extension of the linear logit model,” Interna-
tional economic review, vol. 10, no. 3, pp. 251–259, 1969.

34. J. Sliwerski, Z. T., and A. Zeller, “When do changes induce fixes?” in
International Workshop on Mining Software Repositories, ser. MSR ’05,
2005, pp. 1–5.

https://nvd.nist.gov/
https://figshare.com/articles/online_resource/Rubbing_Salt_in_the_Wound_A_Large-Scale_Investigation_into_the_Effects_of_Refactoring_on_Vulnerabilities/14483787/1
https://figshare.com/articles/online_resource/Rubbing_Salt_in_the_Wound_A_Large-Scale_Investigation_into_the_Effects_of_Refactoring_on_Vulnerabilities/14483787/1
https://figshare.com/articles/online_resource/Rubbing_Salt_in_the_Wound_A_Large-Scale_Investigation_into_the_Effects_of_Refactoring_on_Vulnerabilities/14483787/1

44 Emanuele Iannone et al.

35. V. Lenarduzzi, N. Saarimäki, and D. Taibi, “The technical debt dataset,”
in 15th conference on PREdictive Models and data analycs In Software
Engineering, ser. PROMISE ’19, 2019, pp. 2 – 11.

36. M. Nagappan, T. Zimmermann, and C. Bird, “Diversity in software en-
gineering research,” in 2013 9th joint meeting on foundations of software
engineering, 2013, pp. 466–476.

37. M. Patton, Qualitative Evaluation and Research Methods. Newbury
Park: Sage, 2002.

38. P. Tourani, B. Adams, and A. Serebrenik, “Code of conduct in open
source projects,” in 2017 IEEE 24th international conference on software
analysis, evolution and reengineering (SANER). IEEE, 2017, pp. 24–33.

39. L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and A. Bacchelli,
“Information needs in contemporary code review,” Proceedings of the
ACM on Human-Computer Interaction, vol. 2, no. CSCW, pp. 1–27,
2018.

40. “U.s. nist computer security division,” https://www.nist.gov.
41. “Common vulnerabilities and exposures,” https://cve.mitre.org/.
42. O. Alhazmi, Y. Malaiya, and I. Ray, “Measuring, analyzing and predict-

ing security vulnerabilities in software systems,” Computers & Security,
vol. 26, no. 3, pp. 219–228, 2007.

43. S. Huang, H. Tang, M. Zhang, and J. Tian, “Text clustering on national
vulnerability database,” in International Conference on Computer Engi-
neering and Applications, vol. 2, 2010, pp. 295–299.

44. S. Zhang, D. Caragea, and X. Ou, “An empirical study on using the
national vulnerability database to predict software vulnerabilities,” in
International Conference on Database and Expert Systems Applications,
2011, pp. 217–231.

45. D. Silva, J. Silva, G. J. D. S. Santos, R. Terra, and M. T. O. Valente,
“Refdiff 2.0: A multi-language refactoring detection tool,” IEEE Trans-
actions on Software Engineering, 2020.

46. B. Alshammari, C. Fidge, and D. Corney, “Security metrics for object-
oriented designs,” in Australian Software Engineering Conference. IEEE,
2010, pp. 55–64.

47. A. Agrawal and R. Khan, “Assessing impact of cohesion on security-an
object oriented design perspective,” Pensee, vol. 76, no. 2, 2014.

48. C. Vassallo, S. Panichella, F. Palomba, S. Proksc, H. C. Gall, and A. Zaid-
man, “How developers engage with static analysis tools in different con-
texts,” Empirical Software Engineering, 2019.

49. P. Avgeriou, D. Taibi, A. Ampatzoglou, F. Arcelli Fontana, T. Besker,
A. Chatzigeorgiou, V. Lenarduzzi, A. Martini, N. Moschou, I. Pigazzini,
N. Saarimäki, D. Sas, S. Soares de Toledo, and A. Tsintzira, “An overview
and comparison of technical debt measurement tools,” IEEE Software,
2021.

50. N. Saarimaki, M. T. Baldassarre, V. Lenarduzzi, and S. Romano, “On the
accuracy of sonarqube technical debt remediation time,” in Euromicro
Conference on Software Engineering and Advanced Applications (SEAA).

https://www.nist.gov
https://cve.mitre.org/

A Large-Scale Investigation into the Effects of Refactoring on Security 45

IEEE, 2019, pp. 317–324.
51. “Cve search tool,” https://github.com/cve-search/cve-search.
52. M. H. Kutner, C. J. Nachtsheim, J. Neter, W. Li et al., Applied linear

statistical models. McGraw-Hill Irwin Boston, 2005, vol. 5.
53. K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, “The confounding effect

of class size on the validity of object-oriented metrics,” IEEE Transac-
tions on Software Engineering, vol. 27, no. 7, pp. 630–650, 2001.

54. A. G. Koru and H. Liu, “An investigation of the effect of module size
on defect prediction using static measures,” in Workshop on Predictor
models in software engineering, 2005, pp. 1–5.

55. H. Zhang, “An investigation of the relationships between lines of code and
defects,” in International Conference on Software Maintenance. IEEE,
2009, pp. 274–283.

56. S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6, pp.
476–493, 1994.

57. T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

58. I. Chowdhury and M. Zulkernine, “Using complexity, coupling, and co-
hesion metrics as early indicators of vulnerabilities,” Journal of Systems
Architecture, vol. 57, no. 3, pp. 294–313, 2011.

59. Y. Shin and L. Williams, “An empirical model to predict security vul-
nerabilities using code complexity metrics,” in International symposium
on Empirical software engineering and measurement, 2008, pp. 315–317.

60. N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” in International conference on Software engineer-
ing, 2005, pp. 284–292.

61. Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating com-
plexity, code churn, and developer activity metrics as indicators of soft-
ware vulnerabilities,” IEEE transactions on software engineering, vol. 37,
no. 6, pp. 772–787, 2010.

62. D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python framework
for mining software repositories,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering - ESEC/FSE
2018. New York, New York, USA: ACM Press, 2018, pp. 908–
911. [Online]. Available: http://dl.acm.org/citation.cfm?doid=3236024.
3264598

63. J. M. Bland and D. G. Altman, “The odds ratio,” Bmj, vol. 320, no.
7247, p. 1468, 2000.

64. T. W. Anderson and D. A. Darling, “Asymptotic Theory of Certain
”Goodness of Fit” Criteria Based on Stochastic Processes,” The Annals
of Mathematical Statistics, vol. 23, no. 2, pp. 193 – 212, 1952. [Online].
Available: https://doi.org/10.1214/aoms/1177729437

65. C. Spearman, “The proof and measurement of association between two
things.” 1961.

https://github.com/cve-search/cve-search
http://dl.acm.org/citation.cfm?doid=3236024.3264598
http://dl.acm.org/citation.cfm?doid=3236024.3264598
https://doi.org/10.1214/aoms/1177729437

46 Emanuele Iannone et al.

66. A. Meneely, H. Srinivasan, A. Musa, A. Tejeda, M. Mokary, and
B. Spates, “When a patch goes bad: Exploring the properties of
vulnerability-contributing commits,” in International Symposium on Em-
pirical Software Engineering and Measurement, 2013, pp. 65–74.

67. G. Rodŕıguez-Pérez, G. Robles, and J. M. González-Barahona,
“Reproducibility and credibility in empirical software engineering: A
case study based on a systematic literature review of the use of the szz
algorithm,” Inf. Softw. Technol., vol. 99, no. C, p. 164–176, jul 2018.
[Online]. Available: https://doi.org/10.1016/j.infsof.2018.03.009

68. H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl,
and Y. Acar, “Vccfinder: Finding potential vulnerabilities in open-source
projects to assist code audits,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
426–437. [Online]. Available: https://doi.org/10.1145/2810103.2813604

69. L. Yang, X. Li, and Y. Yu, “Vuldigger: A just-in-time and cost-aware tool
for digging vulnerability-contributing changes,” in GLOBECOM 2017 -
2017 IEEE Global Communications Conference, 2017, pp. 1–7.

70. E. Iannone, R. Guadagni, F. Ferrucci, A. De Lucia, and F. Palomba, “The
secret life of software vulnerabilities: A large-scale empirical study,” IEEE
Transactions on Software Engineering, pp. 1–1, 2022.

71. H. B. Mann and D. R. Whitney, “On a test of whether one of two random
variables is stochastically larger than the other,” Annals of Mathematical
Statistics, vol. 18, pp. 50–60, 1947.

72. J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Taylor
& Francis, 2013.

73. B. Alshammari, C. Fidge, and D. Corney, “Security assessment of code
refactoring rules,” in National Workshop on Information Assurance Re-
search. VDE, 2012, pp. 1–10.

74. O. Elazhary, M.-A. Storey, N. Ernst, and A. Zaidman, “Do as i do, not as
i say: Do contribution guidelines match the github contribution process?”
in International Conference on Software Maintenance and Evolution (IC-
SME). IEEE, 2019, pp. 286–290.

75. G. Canfora, A. Di Sorbo, S. Forootani, A. Pirozzi, and C. A. Visaggio,
“Investigating the vulnerability fixing process in oss projects: Peculiari-
ties and challenges,” Computers & Security, vol. 99, p. 102067, 2020.

76. F. Camilo, A. Meneely, and M. Nagappan, “Do bugs foreshadow vulner-
abilities? a study of the chromium project,” in 12th Working Conference
on Mining Software Repositories. IEEE, 2015, pp. 269–279.

77. C. Joshi, U. K. Singh, and K. Tarey, “A review on taxonomies of at-
tacks and vulnerability in computer and network system,” International
Journal, vol. 5, no. 1, 2015.

78. F. Mercaldo, A. Di Sorbo, C. A. Visaggio, A. Cimitile, and F. Martinelli,
“An exploratory study on the evolution of android malware quality,”
Journal of Software: Evolution and Process, vol. 30, no. 11, p. e1978,
2018.

https://doi.org/10.1016/j.infsof.2018.03.009
https://doi.org/10.1145/2810103.2813604

A Large-Scale Investigation into the Effects of Refactoring on Security 47

79. P. J. Morrison, R. Pandita, X. Xiao, R. Chillarege, and L. Williams,
“Are vulnerabilities discovered and resolved like other defects?” Empiri-
cal Software Engineering, vol. 23, no. 3, pp. 1383–1421, 2018.

80. E. R. Russo, A. Di Sorbo, C. A. Visaggio, and G. Canfora, “Summariz-
ing vulnerabilities’ descriptions to support experts during vulnerability
assessment activities,” Journal of Systems and Software, vol. 156, pp.
84–99, 2019.

81. T. Mariani and S. R. Vergilio, “A systematic review on search-based
refactoring,” Information and Software Technology, vol. 83, pp. 14–34,
2017.

82. M. O’Keeffe and M. O. Cinnéide, “Search-based refactoring for software
maintenance,” Journal of Systems and Software, vol. 81, no. 4, pp. 502–
516, 2008.

83. V. Alizadeh, M. A. Ouali, M. Kessentini, and M. Chater, “Refbot: Intel-
ligent software refactoring bot,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019,
pp. 823–834.

84. L. Erlenhov, F. G. de Oliveira Neto, R. Scandariato, and P. Leitner,
“Current and future bots in software development,” in 2019 IEEE/ACM
1st International Workshop on Bots in Software Engineering (BotSE).
IEEE, 2019, pp. 7–11.

85. C. Lebeuf, M.-A. Storey, and A. Zagalsky, “Software bots,” IEEE Soft-
ware, vol. 35, no. 1, pp. 18–23, 2017.

86. I. Beschastnikh, M. F. Lungu, and Y. Zhuang, “Accelerating software
engineering research adoption with analysis bots,” in 2017 IEEE/ACM
39th International Conference on Software Engineering: New Ideas and
Emerging Technologies Results Track (ICSE-NIER). IEEE, 2017, pp.
35–38.

87. W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, “A study of
effective regression testing in practice,” in International Symposium On
Software Reliability Engineering. IEEE, 1997, pp. 264–274.

88. G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making program refac-
toring safer,” IEEE software, vol. 27, no. 4, pp. 52–57, 2010.

89. B. v. Bladel and S. Demeyer, “Test behaviour detection as a test refactor-
ing safety,” in International Workshop on Refactoring, 2018, pp. 22–25.

90. G. Soares, R. Gheyi, and T. Massoni, “Automated behavioral testing
of refactoring engines,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 147–162, 2012.

91. F. Palomba, D. A. Tamburri, F. Arcelli Fontana, R. Oliveto, A. Zaidman,
and A. Serebrenik, “Beyond technical aspects: How do community smells
influence the intensity of code smells?” IEEE Transactions on Software
Engineering, pp. 1–1, 2018.

92. I. Kwan, A. Schroter, and D. Damian, “Does socio-technical congruence
have an effect on software build success? a study of coordination in a
software project,” IEEE Transactions on Software Engineering, vol. 37,
no. 3, pp. 307–324, 2011.

48 Emanuele Iannone et al.

93. G. Rodŕıguez-Pérez, G. Robles, and J. González-Barahona, “Repro-
ducibility and credibility in empirical software engineering: A case study
based on a systematic literature review of the use of the szz algorithm,”
Information and Software Technology, vol. 99, pp. 164–176, 2018.

94. G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza,
and R. Oliveto, “Evaluating szz implementations through a developer-
informed oracle,” in International Conference on Software Engineering
(ICSE). IEEE, 2021, p. to appear.

95. N. Yoshida, T. Saika, E. Choi, A. Ouni, and K. Inoue, “Revisiting the
relationship between code smells and refactoring,” in International Con-
ference on Program Comprehension (ICPC). IEEE, 2016, pp. 1–4.

96. D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa, R. de Mello,
B. Fonseca, M. Ribeiro, and A. Chávez, “Understanding the impact of
refactoring on smells: A longitudinal study of 23 software projects,” in
Joint Meeting on Foundations of Software Engineering, 2017, pp. 465–
475.

97. M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lu-
cia, and D. Poshyvanyk, “When and why your code starts to smell bad
(and whether the smells go away),” IEEE Transactions on Software En-
gineering, vol. 43, no. 11, pp. 1063–1088, 2017.

98. M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refac-
toring challenges and benefits,” in 20th International Symposium on the
Foundations of Software Engineering, 2012, pp. 1–11.

99. H. Mumtaz, M. Alshayeb, S. Mahmood, and M. Niazi, “An empirical
study to improve software security through the application of code refac-
toring,” Information and Software Technology, vol. 96, pp. 112–125, 2018.

100. S. Ghaith and M. Ó. Cinnéide, “Improving software security using search-
based refactoring,” in International Symposium on Search Based Software
Engineering. Springer, 2012, pp. 121–135.

101. B. Alshammari, C. Fidge, and D. Corney, “Assessing the impact of refac-
toring on security-critical object-oriented designs,” in Asia Pacific Soft-
ware Engineering Conference. IEEE, 2010, pp. 186–195.

102. K. Maruyama and T. Omori, “A security-aware refactoring tool for java
programs,” in Workshop on Refactoring Tools, 2011, pp. 22–28.

103. B. Pérez, C. Castellanos, D. Correal, N. Rios, S. Freire, R. Sṕınola, and
C. Seaman, “What are the practices used by software practitioners on
technical debt payment: results from an international family of surveys,”
in International Conference on Technical Debt, 2020, pp. 103–112.

104. Z. Codabux and B. Williams, “Managing technical debt: An industrial
case study,” in International Workshop on Managing Technical Debt
(MTD). IEEE, 2013, pp. 8–15.

105. Z. Codabux, B. J. Williams, and N. Niu, “A quality assurance approach
to technical debt,” in International Conference on Software Engineering
Research and Practice (SERP), 2014.

106. E. Zabardast, J. Gonzalez-Huerta, and D. Šmite, “Refactoring, bug fix-
ing, and new development effect on technical debt: An industrial case

A Large-Scale Investigation into the Effects of Refactoring on Security 49

study,” in Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). IEEE, 2020, pp. 376–384.

107. M. Mohan, D. Greer, and P. McMullan, “Technical debt reduction using
search based automated refactoring,” Journal of Systems and Software,
vol. 120, pp. 183–194, 2016.

108. M. Ghafari, P. Gadient, and O. Nierstrasz, “Security smells in android,”
in the 17th International Working Conference on Source Code Analysis
and Manipulation (SCAM), Sep. 2017, pp. 121–130.

109. A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells
in infrastructure as code scripts,” in International Conference on Soft-
ware Engineering (ICSE). IEEE, 2019, pp. 164–175.

	Introduction
	Research Methodology
	Analysis of the Results
	Discussion and Implications
	Threats to Validity
	Related Work
	Conclusion

