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Abstract

Nowadays, machine learning is being used to address multiple problems in
various research fields, with software engineering researchers being among
the most active users of machine learning mechanisms. Recent advances re-
volve around the use of quantum machine learning, which promises to revo-
lutionize program computation and boost software systems’ problem-solving
capabilities. However, using quantum computing technologies is not trivial
and requires interdisciplinary skills and expertise. For such a reason, we
propose QuantuMoonLight, a community-based low-code platform that
allows researchers and practitioners to configure and experiment with quan-
tum machine learning pipelines, compare them with classic machine learning
algorithms, and share lessons learned and experience reports. We showcase
the architecture and main features of QuantuMoonLight, other than dis-
cussing its envisioned impact on research and practice.
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1. Motivation and Significance

Machine Learning (ML) is now, more than ever, one of the primary mech-
anisms employed to solve real-world problems. Among the various research
communities which are benefiting from its use, the software engineering re-
search one has been employing it to support practitioners under several per-
spectives like the analysis of source code naturalness [1], code smell detec-
tion [2, 3], defect prediction [4], and test code quality (e.g., test flakiness [5]
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and test case effectiveness [6]), to name a few. The adoption of quantum com-
puting technologies represents the next frontier of the research on Machine
Learning in software engineering [7–9], as it can help solve some of the limita-
tions affecting classical computing—e.g., long training times. Quantum tech-
nologies have the potential to exponentially increase processing capabilities,
enabling more efficient and faster algorithms for tasks such as detection and
pattern recognition [10], leading to better quality software. Moreover, quan-
tum machine learning can allow deeper analyses of large or complex data sets,
being particularly useful in the field of scientific research. Big firms like IBM,
Google, and Microsoft are investing in quantum hardware, providing access to
some of their resources for experimental usage by researchers and practition-
ers. This is the case of the IBM Quantum platform [11], which allows users
to gain access to quantum machines via a cloud-based API and lets them
design, implement, and execute their quantum applications on IBM hard-
ware. Similar solutions are provided by Microsoft Azure,1 D-Wave,2

and Xanadu.3 Recently, Grossi et al. [12] proposed a highly extendable
framework to build quantum-based web apps. Moreover, Di Marcantonio et
al. [13] proposed QUASK, a library to integrate quantum machine learn-
ing algorithms in traditional programs. However, exploiting quantum com-
puting technologies is still challenging and requires inter-disciplinary skills,
other than the basic knowledge about the underlying technology, namely how
quantum circuits are defined and work [14–16]. In the case of classic machine
learning, a plethora of ready-to-use tools and guidelines are currently avail-
able to allow non-experts to exploit the technology as a black-box, leveraging
its functionalities without necessarily understanding the inner-working of ML
algorithms. This is not the case for quantum machine learning, as users must
have knowledge of the quantum engine to experiment with the computing
platforms provided by large companies owning the hardware.

To address this gap, we propose QuantuMoonLight, a low-code web
application designed to fulfill the following requirements of researchers and
practitioners: (1) configure and experiment with quantum machine learning
algorithms; (2) compare quantum solutions with canonical machine learning
algorithms; and (3) openly discuss experience and share solutions through a
community-inspired blog.

The goal of QuantuMoonLight is to create a level of abstraction that
hides the intrinsic complexity of quantum circuits, providing users with a

1Azure Quantum: https://azure.microsoft.com/it-it/services/quantum/
2D-Wave: https://www.dwavesys.com/
3Xanadu: https://xanadu.ai/
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graphical user interface through which they can interact with quantum ma-
chines and run quantum machine learning algorithms. In contrast with exist-
ing solutions for running quantum algorithms, that are designed to be used
by experts in the domain, QuantuMoonLight is designed for non-expert
users, that are allowed to experiment with quantum machine learning algo-
rithms without the underlying knowledge about how quantum circuits work.
QuantuMoonLight is available as a web application,4 and is accompanied
by a demonstration video.5

In this paper, we describe the architecture, features, and potential impact
of QuantuMoonLight. Moreover, we report on a preliminary assessment
of the tool, which focused on two software engineering tasks such, as those
of code smell and flaky test prediction.

2. Software Description

2.1. Overview of the Tool

QuantuMoonLight is a web application—already deployed on the
web—to experiment with quantum machine learning. It relies on the IBM
Quantum Computing platform [11]—i.e., a framework that allows quantum
computers to be programmed on the cloud—and, from a software perspec-
tive, uses the Qiskit framework6—i.e., an open-source SDK for working with
quantum computers. The tool was designed to allow for (1) the configura-
tion of quantum machine learning models and (2) the comparison between
quantum and classic machine learning solutions.We provided the tool with a
user-friendly graphical interface to abstract the users from the natural com-
plexity of the quantum mechanisms employed.

2.2. Software Features and Architecture

QuantuMoonLight allows users to perform the following operations:

1. Configuration and validation of quantum machine learning models;

2. Comparison of quantum and classic machine learning solutions devel-
oped on the platform;

3. Sharing knowledge and results about quantum machine learning solu-
tions through a community-inspired blog.

4QuantuMoonLight site: https://sesaquantumoonlight.ngrok.io/
5QuantuMoonLight demo video: https://youtu.be/xhXj1uZ7P1M
6Qiskit: https://qiskit.org/
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Figure 1: QuantuMoonLight tool architecture.

We designed the tool to make it suitable for empirical research aiming at
evaluating the performance of quantum algorithms. Indeed, QuantuMoon-
Light can help researchers with data preprocessing (e.g., data cleaning and
normalization), hyper-parameters configuration, feature selection, validation
strategy choice, and evaluation metrics set to compute in an experimenta-
tion. It is important to note that the tool does not automatically select the
best pipeline for a task but requests the user to do that. Moreover, the blog
feature can let researchers and practitioners discuss about the experiments
conducted, hence (1) increasing the awareness of the potential of quantum
machine learning and (2) lowering the entry barriers faced by newcomers ap-
proaching such a complex theme. The tool requires users to be registered to
acquire data about their permissions over the IBM Quantum platform [11].

Figure 1 reports the architecture of the tool. It was developed as a web ap-
plication, implementing a three-tier architecture. Moreover, we split Quan-
tuMoonLight into three core subsystems:

• User: It manages the users account, login, and registration processes;

• Community blog: It implements the community blog features;
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• Machine learning: It implements the application’s functions related
to machine learning—both quantum and canonical.

In the tool, data flows vertically through the three tiers, from the presenta-
tion to the storage. All the subsystems are decoupled and independent. Each
subsystem is horizontally distributed through the three tiers. The presenta-
tion tier manages the interaction with users by means of the graphical user
interfaces. We developed three different sets of GUIs, one for each subsystem.

Regarding the application tier, while the User and Community Blog im-
plement basic functionalities—e.g., login—the machine learning one is the
most interesting. This subsystem enables the creation of both classic and
quantum machine learning models from an input dataset. The quantum
machine learning part consists of an adapter that implements the communi-
cation—over an HTTP protocol—with the Web API of the IBM Quantum
Computing platform [11]—implemented using the REST API of the plat-
form.7 The adapter has been designed to be highly independent from the
IBM platform, allowing future integrations of new quantum learners, config-
uration steps, and back-ends. As for the classic machine learning part, our
web application implements on-premise solutions based on scikit-learn.8

The platform uses a database—implemented as a cloud SQL database—to
collect historical data and implement the community-oriented blog. From the
implementation side, we used Python and the well-known Flask framework
for the web-deployment infrastructure.

2.3. Quantum Machine Learning with QuantuMoonLight

To enable experimentations, QuantuMoonLight relies on the APIs
provided by Qiskit. Specifically, the tool allows users to exploit algorithms
for data classification and quantum support vector regressors.9 As for the
classifiers, the tool implements the Quantum Support Vector Machine, the
Quantum Support Vector Classifier, the Quantum Neural Network Classifier,
and the Pegasos Quantum Support Vector Classifier algorithm defined by
Shalev-Shwartz et al. [17]. As for the regressors, the tool implements the
Support Network and Variational Quantum Regressor.

To use this tool, an account (and a token) on the IBM Quantum Comput-
ing [11] platform is required. The IBM Quantum platform provides different

7REST API of IBM Quantum: https://cloud.ibm.com/apidocs/

quantum-computing
8Scikit-learn: https://scikit-learn.org/stable/
9Qiskit Machine Learning API reference: https://qiskit.org/documentation/

machine-learning/apidocs/qiskit_machine_learning.algorithms.html

5

https://cloud.ibm.com/apidocs/quantum-computing
https://cloud.ibm.com/apidocs/quantum-computing
https://scikit-learn.org/stable/
https://qiskit.org/documentation/machine-learning/apidocs/qiskit_machine_learning.algorithms.html
https://qiskit.org/documentation/machine-learning/apidocs/qiskit_machine_learning.algorithms.html


back-end systems with different hardware potentiality to perform the quan-
tum operations.10 For example, the ibm washington system is characterized
by a high number of qubits (127), while the ibm lagos has fewer (7). Our ap-
plication allows users to select the desired back-end to perform ML tasks, but
with limitations based on the type of logged user. Specifically, “standard”
registered users can select among seven systems equipped with a number of
qubits ranging from 1 to 5. Users with a research license can select all the
systems for “standard” users plus three machines provided with 7 qubits.
Moreover, being that QuantuMoonLight relies on IBM quantum machines,
the queue to access such machines depends on the status of the IBM Quan-
tum platform. Specifically, the policy of IBM stipulates that each back-end
has a separate queue with a first-in-first-out logic; this means that if the
selected back-end is busy, QuantuMoonLight informs the user that the
computation time could be longer.

3. Illustrative Examples

QuantuMoonLight provides its features through a four-page website.
In the following, we describe the page representing the core functionalities of
the developed tool—more details are available in our online appendix [18].

Figure 2 shows the GUI of the web page enabling to configure and run ex-
periments with QuantuMoonLight. The first step consists in loading the
desired dataset into the tool (Sub-figure 2.1). QuantuMoonLight allows
uploading the training, test, and prediction sets, depending on the specific
experiment the user would like to run. The tool also provides the possibility
to quickly setup experiments; the user can indeed check whether they would
like to apply default configurations in terms of feature extraction, feature
selection, and validation techniques. In particular, the latter is implemented
using a percentage split that automatically assigns to the training set 80%
of the instances in the uploaded dataset and 20% in the test set. The user
can then select the quantum machine learner to use among the supported
ones (Sub-figure 2.2).

A user can already execute quantum experiments with the first two con-
figuration steps. However, further customization is allowed through the “Ad-
vanced Options” menu, showed in Sub-figures 2.3-2.7. In terms of validation,
the tool provides an additional setting, i.e., the k-fold cross-validation. The
platform also enables the automation of a number of data pre-processing

10IBM Quantum back-end: https://quantum-computing.ibm.com/services?

services=systems
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Figure 2: The GUI provided by QuantuMoonLight to run experiments.

steps, such as data balancing or standardization. The user can manage fea-
tures by employing Principal Component Analysis [19] for feature extraction
and choosing to rely on the k -best features [20] for prediction. In both cases,
the user can select the number of features to work with. Finally, the user has
to select the back-end, namely the characteristics of the quantum hardware.

After user confirmation, QuantuMoonLight will connect to the IBM
services, start the execution, and inform the user via e-mail once the exper-
iment is concluded. Once the results are available, the user can request the
comparison with the performance of canonical machine learners through the
dedicated analysis page—described in the online appendix [18].

4. Evaluation of the Tool

We preliminarily assessed QuantuMoonLight on two software engi-
neering tasks, i.e., predicting (1) code smells [21] and (2) flaky test [22]. The
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former are suboptimal implementation choices applied by programmers, the
latter are non-deterministic tests exhibiting both a passing and failing be-
havior. This focus is due to our expertise and willingness to experiment with
such a new powerful technology in the context of our own research. Also, we
assessed the usability of the tool [23].

Code Smells and Flaky Tests Prediction. As training data for predic-
tion tasks, we used product metrics, e.g., the number of lines of code and
lack of cohesion. With respect to the dataset size, our experiment can be
considered large-scale. Both datasets are indeed quite large when consid-
ering the typical studies conducted in the field of software engineering. As
for the code smell prediction case, we used a dataset composed of 25,000
instances provided by Palomba et al. [21]; it focuses on the analysis of five
large-scale software projects, taking into account a set of five code smell
types of different granularity. As for the flaky test prediction case, we an-
alyzed 9,785 test cases, of which 670 were flaky [24]: in literature, other
datasets have similar sizes, e.g., in their seminal work, Bell et al. [25] con-
sidered datasets of 412 and 423 flaky tests, respectively.

For both tasks, we used QuantuMoonLight to prepare the datasets, con-
figure the hyper-parameters, and optimize the pipeline according to our do-
main knowledge and the literature available on the matter. Specifically, all
the choices conducted in the study were based on (1) the paper by Pecorelli
et al. [26] for the code smell prediction study and (2) the paper by Pontillo
et al. [24] for the flaky test prediction study. Finally, we employed 10-fold
cross-validation and the Quantum Support Vector Classifier—detailed con-
figurations and results are available in the online appendix [18].

We measured the performance using accuracy and training time. The eval-
uation metrics were chosen based on previous papers published in the field,
which showed that these are among the recommended aspects to consider
when assessing quantum machine learning solutions [27–29].

When considering the code smells prediction task, the results achieved were
in line with those reported in previous work [30], yet we observed a reduc-
tion in the training time. As for the task of flakiness prediction, we noticed
that the performance achieved was lower compared to what showed by ex-
isting approaches [5, 24], while the computational cost drastically decreased.
While the accuracy obtained by quantum machine learning in the two use
cases considered was relatively low, we believe that our results would be
helpful to researchers to (1) initially estimate the potential of quantum ma-
chine learning when applied to the software engineering domain and (2) use
the features made available by QuantuMoonLight to investigate other
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Table 1: Iterative Usability Test.

# Task Description

1 Perform a quantum regression task using the website.

2 Compare the quantum regression task with a canonical one.

3 Access the community blog and post the results of your tasks.

research problems. Hence, the tool may impact research since it can sup-
port researchers when experimenting with quantum machine learning, other
than empirical comparisons with traditional machine learning solutions.

Usability Improvement. We evaluated the usability of the tool by apply-
ing iterative usability testing [23], thus implementing an iterative process to
get continuous feedback from users and keep improving the user experience
of the tool. We conducted the test with 12 students of the course “Intro-
duction of Machine Learning” at the Jheronimus Academy of Data Science
(The Netherlands); participants were voluntary. Students had to perform
three tasks—described in Table 1—during each iteration, sharing feedback
on the tool’s usability. After each iteration, we interviewed participants to
assess the tool’s usability in terms of learnability, efficiency, and satisfac-
tion. We improved the user interface of the tool according to the feedback
received. Overall, we conducted three iterations before reaching saturation.
During the first iteration, students identified several areas for improvement,
including the size of graphical elements, which some users found too small,
and the need for more guidance when interacting with the tool. Based on
this feedback, we changed the size of the graphical elements and included
info boxes to guide users through the tool’s features. In the second itera-
tion, we continued to collect students’ feedback and made further changes to
the user interface based on them. We found that users were still struggling
to understand certain tool features, so we made additional changes to the
website content and included more detailed feedback to guide users through
those features, e.g., parameters configuration. Finally, in the third iteration,
we conducted a final round of user testing and found that students could
use the tool more effectively and with fewer issues, thus reaching saturation.

5. Impact

Quantum technology is still far from being exploitable for everyday tasks.
However, QuantuMoonLight can contribute in this regard, facilitating its
adoption by researchers and practitioners.
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Impact on Research. The increasing interest in the quantummachine learn-
ing efficiency field [29, 31] stimulates researchers to conduct more and more
empirical studies to compare quantum-based solutions and classic ones.
QuantuMoonLight was designed to be a low-code platform, allowing
researchers to interact with quantum machine learning through a user in-
terface that would allow them to experiment with multiple configurations
of quantum machine learning algorithms and compare a number of classic
solutions. In this sense, the tool is impactful as it eases the investiga-
tion of quantum machine learning capabilities. Perhaps more importantly,
the community-inspired blog allows researchers to share lessons learned,
experiences, and reflections that may increase awareness about quantum
computing, driving the community to grow.

Impact on Practice. QuantuMoonLight opens a “window” on the quan-
tum world that can allow practitioners—e.g., data scientists and developers—
to exploit such a technology to make decisions faster. Practitioners can
indeed use the platform to verify the suitability of quantum computing so-
lutions for a large plethora of tasks, e.g., software engineering, and make
informed decisions on their adoption in practice. At the same time, prac-
titioners can read about successful experiences through the blog, learning
how to configure quantum machine learning solutions.

6. Concluding Remarks

QuantuMoonLight is a web application to experiment with quantum
machine learning design to be extremely usable and lower the entry barrier to
quantum computing for most users. We evaluated the tool on two prediction
tasks, i.e., flaky tests and code smells prediction, other than its usability
through iterative usability testing.

We aim at extending the set of implemented quantum algorithms with
more advanced ones—e.g., the Variational Quantum Eigensolver (VQE) and
the Quantum Boltzmann Machine (QBM). Furthermore, we plan to extend
our application from an integration point of view, including solutions from
other providers—e.g., Microsoft Azure Quantum and Xanadu. Fi-
nally, the openly available implementation will allow researchers to use the
tool in other contexts and/or different, wider experimentation on quantum
machine learning.
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A. La Marca, G. Pagano, F. Tomeo, G. Catolino, G. Giordano, S. Lam-
biase, V. Pontillo, G. Sellitto, F. Ferrucci, F. Palomba, Quantu-
MoonLight: A low-code platform to experiment with quantum ma-
chine learning — online appendix, 2022. doi:10.6084/m9.figshare.
20108336.

[19] H. Abdi, L. J. Williams, Principal component analysis, Wiley Interdis-
ciplinary Reviews: Computational Statistics 2 (2010) 433–459.

12

http://dx.doi.org/https://doi.org/10.1002/que2.34
http://dx.doi.org/https://doi.org/10.1002/que2.34
https://quantum-computing.ibm.com/
http://dx.doi.org/10.1145/3517340
http://dx.doi.org/10.6084/m9.figshare.20108336
http://dx.doi.org/10.6084/m9.figshare.20108336


[20] E. R. Dougherty, J. Hua, C. Sima, Performance of feature selection
methods, Current genomics 10 (2009) 365–374.

[21] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, A. D. Lucia,
On the diffuseness and the impact on maintainability of code smells: a
large scale empirical investigation, Empirical Software Engineering 23
(2018) 1188–1221.

[22] Q. Luo, F. Hariri, L. Eloussi, D. Marinov, An empirical analysis of
flaky tests, in: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2014, pp. 643–653.

[23] A. Genov, Iterative usability testing as continuous feedback: A control
systems perspective, Journal of Usability Studies 1 (2005) 18–27.

[24] V. Pontillo, F. Palomba, F. Ferrucci, Static test flakiness prediction:
How far can we go?, Empirical Software Engineering 27 (2022) 1–44.

[25] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, D. Marinov, De-
flaker: Automatically detecting flaky tests, in: Proceedings of the 40th
International Conference on Software Engineering, 2018, pp. 433–444.

[26] F. Pecorelli, F. Palomba, D. Di Nucci, A. De Lucia, Comparing heuristic
and machine learning approaches for metric-based code smell detection,
in: 2019 IEEE/ACM 27th International Conference on Program Com-
prehension (ICPC), 2019, pp. 93–104. doi:10.1109/ICPC.2019.00023.

[27] H. Gupta, H. Varshney, T. K. Sharma, N. Pachauri, O. P. Verma, Com-
parative performance analysis of quantum machine learning with deep
learning for diabetes prediction, Complex & Intelligent Systems 8 (2022)
3073–3087.

[28] C. Havenstein, D. Thomas, S. Chandrasekaran, Comparisons of per-
formance between quantum and classical machine learning, SMU Data
Science Review 1 (2018) 11.

[29] R. D. M. Simões, P. Huber, N. Meier, N. Smailov, R. M. Füchslin,
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Current code version

Nr. Code metadata description Please fill in this column

C1 Current code version v1

C2 Permanent link to repository https://github.com/

Robertales/QuantuMoonLight

C3 Permanent link to Reproducible
Capsule

NA

C4 Legal Code License Common Development and Distri-
bution License 1.0

C5 Code versioning system used git

C6 Software code languages, tools, and
services used

Python, IBM Quantum

C7 Compilation requirements, operat-
ing environments

Python ≥ 3.7,Anaconda ≥
2021.11,MySQL ≥ 7.0

C8 Link to developer documenta-
tion/manual

https://github.com/

Robertales/QuantuMoonLight

C9 Support email for questions sesalab@unisa.it

Table 2: Code metadata.
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Current executable software version

Nr. (Executable) software meta-
data description

Please fill in this column

S1 Current software version v1

S2 Permanent link to executables of
this version

https://sesaquantumoonlight.

ngrok.io/

S3 Permanent link to Reproducible
Capsule

NA

S4 Legal Software License Common Development and Distri-
bution License 1.0

S5 Computing platforms/Operating
Systems

web-based application

S6 Installation requirements & depen-
dencies

Python ≥ 3.7,Anaconda ≥
2021.11,MySQL ≥ 7.0

S7 Link to user manual https://github.com/

Robertales/QuantuMoonLight

S8 Support email for questions sesalab@unisa.it

Table 3: Software metadata.
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