
Noname manuscript No.
(will be inserted by the editor)

On the Adoption and Effects of Source Code Reuse
on Defect Proneness and Maintenance Effort

Giammaria Giordano · Gerardo Festa ·
Gemma Catolino · Fabio Palomba ·
Filomena Ferrucci · Carmine Gravino

Received: date / Accepted: date

Abstract Software reusability mechanisms, like inheritance and delegation
in Object-Oriented programming, are widely recognized as key instruments
of software design that reduce the risks of source code being affected by de-
fects, other than to reduce the effort required to maintain and evolve source
code. Previous work has traditionally employed source code reuse metrics for
prediction purposes, e.g., in the context of defect prediction. However, our
research identifies two noticeable limitations of the current literature. First,
still little is known about the extent to which developers actually employ code
reuse mechanisms over time. Second, it is still unclear how these mechanisms
may contribute to explaining defect-proneness and maintenance effort during
software evolution. We aim at bridging this gap of knowledge, as an improved
understanding of these aspects might provide insights into the actual support
provided by these mechanisms, e.g., by suggesting whether and how to use
them for prediction purposes. We propose an exploratory study, conducted on
12 Java projects—over 44,900 commits—of the Defects4J dataset, aiming
at (1) assessing how developers use inheritance and delegation during soft-
ware evolution; and (2) statistically analyzing the impact of inheritance and
delegation on fault proneness and maintenance effort. Our results let emerge
various usage patterns that describe the way inheritance and delegation vary
over time. In addition, we find out that inheritance and delegation are statis-
tically significant factors that influence both source code defect-proneness and
maintenance effort.

Keywords Software Reuse; Quality Metrics; Software Maintenance and
Evolution; Empirical Software Engineering.

Giammaria Giordano, Gerardo Festa, Fabio Palomba, Filomena Ferrucci, Carmine Gravino
Software Engineering (SeSa) Lab - University of Salerno (Italy) — E-mail: giagior-
dano@unisa.it, g.festa22@studenti.unisa.it, fpalomba@unisa.it, fferucci@unisa.it

Gemma Catolino
Jheronimus Academy of Data Science & Tilburg University, The Netherlands — E-mail:
g.catolino@tilburguniversity.edu

https://orcid.org/0000-0003-2567-440X
https://orcid.org/0000-0002-4689-3401
https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0002-0975-8972
https://orcid.org/0000-0002-4394-9035


2 Giammaria Giordano et al.

1 Introduction

Software reusability is the design principle that allows developers to reuse
part of the existing software to implement new features [10,96]. This practice
is widely recognized as one of the key assets of software development, as de-
velopers may have multiple benefits, such as the reduction of evolution time,
effort, and cost, other than the reduction of risks of source code being affected
by defects [90,58,86].

When it turns to Object-Oriented programming languages, many software
reuse mechanisms have been provided over time. Design patterns [27,36], third-
party libraries [113,85], and programming abstractions [95] are examples of
these mechanisms. Focusing on Java, two very well-known types of program-
ming abstractions are provided to developers: inheritance and delegation [8].
The former allows a class to take the properties and attributes of another class,
establishing a hierarchical relation between them. The latter refers to when
a class invokes an instance of another class to carry out operations without
performing any other type of action.

The importance of these mechanisms has been remarked several times by
researchers. In the early 90s, Chidamber and Kemerer [22] included the Depth
of Inheritance Tree (DIT), i.e., a metric that measures the number of classes
that inherit from another class, in their Object-Oriented metrics suite. Later
on, researchers suggested more ways to measure different aspects of inheritance
[13,65,84] and delegation [20,70,106], along with best and bad practices on
how to use reusability mechanisms [43,51,66,75]. From the empirical stand-
point, a noticeable amount of investigations targeted the role of inheritance
and delegation in keeping source code quality under control. For instance, re-
searchers have been studying the relationship between these mechanisms and
Object-Oriented metrics [21,19,1], design patterns [4,50], code complexity [2],
and source code maintainability [26,38,80]. Perhaps more interestingly, inher-
itance and delegation metrics have often been employed for building software
maintenance predictive models. The key example is defect prediction [44,49],
where researchers assessed how reusability mechanisms might contribute to the
prediction of future source code defects [9,91,112,28,76]. Similarly, the contri-
bution of inheritance and delegation has been experimented with for predicting
maintenance effort change [17,72], code smells [7,29], software vulnerabilities
[88], and infrastructure-as-code quality [24].

Despite the availability of a large body of knowledge on how inheritance and
delegation mechanisms contribute to the prediction of source code attributes,
most of the prediction models defined so far made a strong assumption: devel-
opers make use of reusability principles while evolving source code.

First, the extent to which these mechanisms are used in practice might
notably impact their contribution to prediction models. Second, it is unclear
how the relationship between reusability and source code attributes varies over
time and, therefore, whether inheritance and delegation mechanisms should
still be considered for prediction purposes as the system evolves.

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 3

In this paper, we propose an empirical investigation to fill the limitations
of current research concerning the adoption of reusability practices and their
evolutionary effects on two specific source code attributes such as defect prone-
ness and maintenance effort. We select these attributes as they represent two
interesting use cases to assess reusability mechanisms. On the one hand, these
mechanisms are indeed supposed to reduce fault proneness and maintenance
effort [90,58,86]. On the other hand, several prediction models targeted the
early location of defects and estimation of the effort required to perform evo-
lutionary tasks [17,77,72].

Our study focuses on Java projects, as Java (1) offers mechanisms that
encourage the use of inheritance and delegation [23,102] and (2) is still among
the most popular programming languages used in industry.1 To conduct our
experiment, we first mine the Defects4J dataset to extract commit-level
information on the reusability mechanisms adoption. Then, we developed sta-
tistical models to assess the contribution of reusability mechanisms on defect
proneness—as indicated by the number of defects over time—and maintenance
effort—as indicated by the code churn of commits. The main results report on
the inheritance and delegation usage patterns of the 12 projects considered,
highlighting that (1) developers tend to frequently use these mechanisms and
(2) their adoption varies over time in a significant manner. Furthermore, we
identify a statistical relation, corroborated by a fine-grained qualitative inves-
tigation, between the adoption of inheritance and delegation and both defect-
proneness and maintenance effort, hence concluding that software reuse is a
relevant component that affects the way source code quality evolves.

This paper extends our registered report accepted at the 38th IEEE In-
ternational Conference on Software Maintenance and Evolution [40]. While in
our previous work, we defined the research goals of the study and the envi-
sioned data collected analysis methods, this submission analyzes the study’s
results achieved and discusses the implications, lessons learned, and actionable
items that our work has for researchers and practitioners.

Structure of the paper. Section 2 overviews the research literature con-
nected to our work, pointing out the main differences that let our investigation
advance the state of the art. Section 3 defines the study’s research questions,
other than the research method applied to address them. In Section 4, we dis-
cuss the study’s results, while in Section 5, we report on the implications that
our findings have for researchers and practitioners. The main limitations of
the study and the way we mitigated them are discussed in Section 6. Finally,
Section 7 provides some final remarks.

2 Background and Related work

In this section, we first provide background information on the most widely
used mechanisms in the Object-Oriented programming languages for reusing

1Programming language ranking - Year 2021: https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/


4 Giammaria Giordano et al.

code: inheritance and delegation. Then, we survey the related literature tar-
geting code reusability and its impact on source code.

2.1 Background: Inheritance and Delegation Mechanisms in Java

Our study focuses on Java and, for this reason, we describe the way inheritance
and delegation mechanisms can be employed in this programming language. In
particular, in Java there are two forms through which it is possible to define
a hierarchical dependency between two classes:

‘extends’. Given two classes A and B, A is defined as super-class of B if B

inherits variables or methods by A. In Java to establish this super-class – sub-
class relation the sub-class must indicate it through the keyword “extends”.

‘implements‘. Given a class B, and an interface A, we will claim that B inherits
from A if B implements the interface A. In Java this mechanism is provided
using the keyword “implements”. In particular, when a class A inherits using
an interface, it must provide a concrete implementation of methods defined
as a blueprint on interface.

These definitions recall the concept of reusability in terms of specification
inheritance, implementation inheritance, and delegation [15]. From a practical
point of view, the first one refers to the possibility of replacing an object A

with an object B using a combination of two principles:

– Strict Inheritance. When a sub-class B exposes behavior and properties
of super-class A without making any changes [15].

– The Liskov Substitution Principle. According to Liskov andWing [63],
given two classes A and B, B is a sub-class of A if is possible to substitute
the object A with the object B every time that the object A was expected.

The implementation inheritance occurs when a class indirectly reuses a
super-class source code. The sub-class can wholly or partially override meth-
ods and/or properties and replace the super-class’s original behavior with its
own. However, the implementation inheritance violates, by definition, the en-
capsulation principle because a sub-class could accidentally invoke methods
or use some proprieties of the super-class in a wrong manner [15]. To avoid
this, it is possible to replace the implementation inheritance with the delega-
tion in some cases. With this mechanism, a class B does not inherit anything
from another class A, but B invokes methods of A directly by declaring itself a
variable of type A.

2.2 Related Work: The Impact of Inheritance and Delegation Mechanisms on
Source Code Quality

Source code reusability has been the subject of several research in the last
decades. These touched various angles of the problem, by introducing novel

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 5

metrics to capture inheritance relations [22,13,65,84] and delegation [20,70,
106], defining best design practices to exploit the benefits of reusability [43,51],
or identifying a number of source code quality issues that reusability can cause,
e.g., code smells [66,75,35]. While the scope of our work targets inheritance and
delegation mechanisms, it is worth mentioning the existence of close research
areas such as the analysis of design patterns [34,115] and third-party libraries
[114]. These are additional perspectives that we plan to investigate as part of
our future research agenda, but that we leave out of the scope of this paper.

Reusability and code quality.As for the themes of our study, Albalooshi
and Mahmood [2] conducted an empirical analysis on the implementation in-
heritance by considering three programming languages like C++, Python,
and Java. As a result, the authors found that the mechanisms of Java to define
inheritance tend to degrade source code quality. Goel and Bathia [41] obtained
similar results by analyzing the impact of multilevel inheritance on reusability
considering three C++ projects. They found a negative correlation between
the use of inheritance and the quality of source code in terms of maintainabil-
ity. Other research efforts targeted the effect of inheritance and delegation on
various aspects of source code quality. Chhikara et al. [21] conducted a case
study on one small-scale software project, reporting on the correlation be-
tween inheritance metrics and other metrics belonging to the Chidamber and
Kemerer suite. Chawla and Nath [19] took a closer look at how inheritance
and delegation metrics may impact software coupling, concluding that these
metrics can be useful to assess code quality. Similar findings were reported by
Abreu et al. [1]. Additional experiments were conducted to assess the relation
between reusability and design patterns [4,50] and code complexity [2]: all
these studies converged toward the relevance of inheritance and delegation.
More recently, we carried out a study to investigate the evolution of inheri-
tance and delegation and their impact on the severity of code smells [38]. The
results revealed that inheritance and delegation tend to increase over time,
but not in a statistically significant manner. However, increasing the adoption
of these mechanisms tends to decrease code smells’ severity.

The potential benefits of reusability have led researchers to use inheritance
and delegation metrics within prediction models. In this respect, most of the
defect prediction models include reusability as a feature [44]. Perhaps more im-
portantly, these metrics have been sometimes shown to significantly contribute
to the predictions of those models: for instance, Jureczko and Madeyski [54]
showed that the Depth of Inheritance Tree metric is among the best predic-
tors of source code defectiveness. These results were later confirmed by other
software maintenance and evolution researches [89,55].

Reusability and maintenance effort. From an empirical side, Prechelt
et al. [80] carried out two experiments to investigate the relation between in-
heritance metrics and maintenance effort estimation. Their results revealed
that maintaining a low level of inheritance depth positively impacts the (de-
crease of) developer’s effort to maintain source code. Similarly, Daly et al.



6 Giammaria Giordano et al.

[26] showed that as the inheritance depth level increases, so does the effort of
developers to maintain code.

In terms of maintenance effort estimation, researchers have been mainly
looking at process-level information (e.g., team data and measurements of the
development activities), attempting to provide indications in terms of direct
and indirect estimations of entire projects under maintenance [111]. Besides
that, researchers have been also working on effort prediction of maintenance
activities, which revolves around the prediction of the effort spent in perform-
ing specific activities such as code review [69] and bug fixing time [6,12]. The
contribution provided by reusability metrics to those models are, however, un-
clear. Recently, Nagappan et al. [72] and Liu et al. [64] proposed the use of
code churn, i.e., the amount of lines of code modified within commits, as an
alternative metric of maintenance effort which better aligns with the actual
effort spent by developers while performing evolutionary tasks.

Our work. With respect to the papers discussed above, ours has multiple
differences. First, most of the previous work analyzed reusability by relying on
the computation of metrics, e.g., Depth of Inheritance Tree (DIT); as further
elaborated in Section 3, we operationalize reusability by means of specification
inheritance, implementation inheritance, and delegation, being able to better
map the adoption of reuse mechanisms over time. Second, we conduct a fine-
grained analysis where the evolution and impact of reusability are investigated
at commit-level. Furthermore, we address a key limitation of most previous
works proposing prediction models: the contribution of code reuse to their ca-
pabilities indeed assumes that developers make use of reusability mechanisms.
As such, our study provides more detailed insights into the potential benefits
brought by inheritance and delegation to state-of-the-art prediction models.

3 Research Questions and Methods

The goal of the study was to (1) investigate the adoption of reusability mech-
anisms over time and (2) assess their impact on defect-proneness and main-
tenance effort. The purpose was to understand whether those mechanisms
can provide developers with an indication of source code quality variation—
considering the defect-proneness and effort to fix faults of a project. The quality
focus was on the reusability in terms of implementation inheritance, specifica-
tion inheritance, and delegation and their evolution within software projects.
The perspective was that of practitioners and researchers: the former are inter-
ested in understanding whether the reusability mechanisms can be suitable for
monitoring the quality of a system, while the latter are interested in improv-
ing their knowledge on how inheritance and delegation mechanisms can vary
over time and impact source code quality. The context of our investigation was
composed of publicly available Java projects, as detailed in Section 3.1.

Based on the goal of our study, we formulated three main research ques-
tions. The first aimed at understanding the use of source code reusability
mechanisms by developers during software evolution. Specifically, we asked:

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 7

Û RQ1. How does the use of source code reusability mechanisms vary
during software evolution?

The goal of RQ1 was that of providing insights on the evolution of reuse
mechanisms that might later be exploited to better interpret the findings of
RQ2 and RQ3. In other terms, the patterns observed in the context of this
research question will also be useful to understand the effects of inheritance and
delegation on defect-proneness and maintenance effort, e.g., should we identify
an exponential growth in the adoption of delegation, this would potentially
make this mechanism more relevant for software evolution, hence influencing
more the amount of effort required to apply modifications.

Since we analyze three mechanisms for reusability, i.e., specification in-
heritance, implementation inheritance, and delegation [15], that can impact
differently on software evolution, we considered three sub-research questions:

RQ1.1. How does the use of implementation inheritance vary during software
evolution?

RQ1.2. How does the use of the specification inheritance vary during software
evolution?

RQ1.3. How does the use of delegation vary during software evolution?

Once the evolution of reusability mechanisms was analyzed, we investigated
how the evolution might affect code quality, initially measuring it in terms of
fault-proneness. Hence, we asked our second research question:

Û RQ2. How do source code reusability mechanisms impact fault-
proneness over time?

Finally, we assessed the impact of reusability mechanisms on the mainte-
nance effort required to fix faults. Among the various direct and indirect met-
rics available in literature [111], we operationalize maintenance effort through
code churn, that is, the amount of lines of code modified within a commit.
This is an indirect metric that can proxy the actual effort spent by developers
when maintaining source code [68,71,111]. In particular, we asked:

Û RQ3. How do source code reusability mechanisms impact code churn?

Figure 1 overviews the research process applied to address our research
questions. After a first phase of data extraction, where we collected data about
inheritance, delegation, and other code quality indicators, we integrated the
various pieces of information for further analysis. In this way, the research
questions were addressed by employing statistical tests and models (see details
in Section 3.3). To design and report the empirical study, we followed the



8 Giammaria Giordano et al.

PyDriller

Source Code

Module -  
CK Metrics

Module - 
InhMetrics

Dataset

Dataset

Dataset

Data 
Integration

RQ2. How do source code 
reusability mechanisms  
impact fault-proneness  

over time?

RQ3. How do source code  
reusability mechanisms 

impact code churn?

RQ1. How does the use of 
source code reusability 

mechanisms vary during 
software evolution?

Reusability Metrics 
Evolution 

Building a Statistical 
Model

Building a Statistical 
Model

Defects4J

Fig. 1: Overview of the research process applied in the study.

guidelines proposed by Wohlin et al. [110] and the ACM/SIGSOFT Empirical
Standards2. We made all the experimental materials (e.g., datasets, scripts)
publicly available in an online appendix [39].

3.1 Context of the Study

The context of the study was composed of Java projects available within the
Defects4J dataset, which collects information on over 800 real bugs of open-
source systems. According to the official documentation3 each bug collected
into the dataset is characterized by the following properties:

1. It is reported in the issue tracker of the project, has an associated commit
message for resolution, and it is fixed in a single commit, i.e., the defect
resolution never refers to more than one commit;

2. It is associated to a triggering test case that allows its reproduction;

3. It is minimized, meaning that the Defects4J maintainers manually re-
moved commits that would have induced noise, namely commits that did
not actually provide information about the introduction of defects or fixing
activity (e.g., commits where refactoring activities were done);

4. The fixing activities modified the source code. This means that the de-
fect introduction can be caused by several factors, e.g., wrong parameters
in configuration files and problems in the production class. However, the
corresponding fixing only concerns changes within the source code.

By design, the dataset does not include all the defects reported in the
issue trackers of the considered projects, but only those matching the inclu-
sion criteria reported above. In this respect, there are some considerations to
make. First, these criteria led to the definition of a set of defects having two

2Available at: https://github.com/acmsigsoft/EmpiricalStandards
3https://github.com/rjust/defects4j

https://orcid.org/0000-0003-2567-440X
https://github.com/acmsigsoft/EmpiricalStandards


On the Adoption and Effects of Source Code Reuse 9

key properties: (1) All the defects were true positives, verifiable, and traceable,
meaning that there exists at least one test case letting the defective behavior
of the code emerge, other than precise indications on the inducing-fix commit
pairs reported by the developers, which were instrumental for our analysis,
as further discussed in the following sections; (2) The dataset avoided, by de-
sign, possible bias due to the presence of uncontrolled conditions, e.g., tangled
changes [48], that might have notably affected the validity of the conclusions
reported by our study, e.g., refactoring actions targeting inheritance and del-
egation which were not related to defect fixing operations.

As a consequence of these two properties, the choice of Defects4J enabled
the investigation of the impact of reuse mechanisms in a noise-free environ-
ment in which we could have provided more precise insights into the actual
role played by inheritance and delegation. In any case, we are aware that the
dataset contains a subset of the defects included in the issue trackers of the
considered projects and that the missing analysis of some defects might po-
tentially bias our conclusions. In response to this potential threat to validity,
we (i) analyzed further the anatomy of the dataset to better characterize our
sample - this is discussed in the remainder of this section; and (ii) conducted
additional analyses aiming at assessing the types of defects that were not in-
cluded in our analysis - these are part of Section 6.

In addition to the discussion on the use of Defects4J, it is worth re-
marking that, despite the defects being carefully selected, those defects are of
different types and natures, hence representing various defects affecting real-
world software systems [93]. Last but not least, Defects4J has been widely
used in literature (e.g., [67,31]), hence representing a valuable asset that en-
ables us to build additional knowledge on a state-of-the-art dataset - this would
also be useful for other researchers interested in building on top of our work.

Project Name # Bugs Pull Request Contributors Stars Forks Commits Branches LOC Analyzed

Commons-Codec 18 9 40 364 207 2,244 7 48k - 34k

Commons-Cli 39 8 42 255 154 1,169 4 5k - 16k

Commons-Collections 4 37 62 551 389 3,729 8 49k - 60k

Commons-CSV 16 8 37 281 220 1,796 4 166k - 166k

Commons-Compress 47 9 67 231 210 3,602 9 129k - 91k

Gson 18 151 125 21,2k 4,1k 1,668 14 68k - 70k

Jackson-Core 26 2 63 2.1k 690 2,124 21 33k - 66k

Jackson-Databind 112 19 198 3,1k 1,2k 6,578 22 98k - 235k

Jackson-Dataformat-XML 6 3 26 497 189 1,318 19 59k - 117k

Commons-JXPath 22 8 17 18 40 601 4 46k - 26k

Joda-Time 26 2 77 4,8k 922 2,196 6 103k - 164k

Closure-Compiler 174 6 472 6,5k 1,1k 17,962 76 60k - 60k

JSoup 93 43 99 9,6k 2k 1,693 3 39k - 34k

Commons-Lang 64 92 174 2,3k 176 6,859 8 160k - 190

Commons-Math 106 68 48 451 71 7,004 17 58k - 63k

Mockito 38 7 246 13,1k 2,3k 5,787 16 73k - 94k

JFreeChart 26 22 24 866 355 4218 3 250k - 290k

Table 1: Characteristics of the projects considered in the study. The column
‘LOC’ provides a range reporting the minimum and maximum values observed
over the history of the projects.

As mentioned in Section 2, little has been done to analyze code reuse mech-
anisms over time and how those may contribute to explaining fault-proneness
and maintenance efforts during software evolution. For this reason, our anal-



10 Giammaria Giordano et al.

ysis focused on the analysis of code reuse mechanisms from a low granularity
perspective, i.e., commits. We analyzed over 44,900 commits. With respect to
our initial plan [40], we had to discard five projects from the total amount of
systems available in the dataset. This was mainly due to repository inconsis-
tencies caused by developers’ removal of defective commits. Table 1 reports
statistics of the projects included in the Defects4J dataset. For each project,
the table provides (i) the number of defects, (ii) process metrics such as number
of commits, number of pull requests, and number of contributors; (iii) its min-
imum and maximum LOC; and (iv) if the project could have been analyzed.
More particularly, we exploited the latest version of Defects4J (v2.0.0). The
defects contained in this version were identified by the original authors using
Java 1.8, which is the Java version used by all the projects considered in
the study. The reliance on Java 1.8 had some implications on the number of
defects reported in the dataset. More particularly, some behavioral changes
introduced under Java 8 did not allow to verify anymore 29 of the defects
reported in previous versions of Defects4J. As such, these 29 defects were
considered deprecated and no longer relevant in Defects4J 2.0.0. In the light
of this consideration, we excluded them from our study. These defects indeed
violated the first property mentioned above: on the one hand, they were not
verifiable; on the other hand, they were not necessarily true positives, as they
were re-labeled by the original authors as non-defective when verifying them
through the most appropriate Java version, namely the one employed within
the corresponding systems.

3.2 Data Extraction Procedure

To answer our research questions, we quantified the reusability mechanisms
employed within the considered software projects. To this aim, we operational-
ized three metrics capturing reusability mechanisms such as implementation
inheritance, specification inheritance, and delegation. We did not rely on ex-
isting metrics, like the Depth of Inheritance Tree (DIT) or the Number of
Children (NoC) [22], since we aimed at computing metrics that could have
directly expressed the adoption of reusability mechanisms. Indeed, our met-
rics have a finer granularity and can indicate the exact constructs added by
developers during a change/commit, e.g., the inclusion of a new method that
delegates its operations or a change in the inheritance structure—this would
not be possible using existing metrics, as they just provide the result of the
actions done by developers, e.g., the increase of the depth of inheritance tree,
without indications of how that was obtained. To compute the implementation
inheritance, specification inheritance, and delegation metrics, we used a tool
already validated in our previous work [38]. It was originally developed by the
first author of this paper and compute the metrics following these patterns:

Specification Inheritance. Given a class B, the tool considers the specifi-
cation inheritance as the arithmetical sum of each interface used by B. For

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 11

instance, suppose that B inherits methods from two interfaces A and C,
and C in turn inherits methods from another interface D. In this case, the
specification inheritance for B is 3.

Implementation Inheritance. Suppose that B is a sub-class of A, the tool
considers the implementation inheritance as the arithmetical sum of each
method in A called by some method in B. For example, suppose that B is
a class with N methods, and A a class with just one method call bar().
To increase the number of implementation inheritance by one, one of the
methods in B must invoke bar().

Delegation. Given a class A, the tool considers the delegation metric as the
arithmetical sum of each non-primitive variable (i.e., variables different from
int, double, String, and so on) or variables that do not have a binding
type provided by external libraries (e.g., Checkbox offered by javax.swing

framework). For each variable, the tool verifies if it is only used to invoke
external objects.

The metrics were computed over all the commits of the considered systems
and were used to address RQ1. Specifically, for each commit we computed the
sum of (i) specification and implementation inheritance uses and (ii) delegation
uses by statically analyzing the files involved in the commit. As for RQ2 and
RQ3, we collected information on defects and code churn. To this aim, we
mainly relied on the information made available by the Defects4J dataset.
In particular, for each project of the dataset,Defects4J assigns to each defect
a unique ID and stores an inducing-fixing commit pair, i.e., a pair of commits
reporting when the defect was introduced and fixed, respectively, over the
history of the project. Starting from these inducing-fixing commit pairs, we
could reconstruct the defect history of each project by overlaying them on the
full set of commits of the project and considering as defective all the commits
between the inducing-fixing commit pairs. As for the code churn, these were
collected by exploiting PyDriller, an automatic static analysis tool that can
analyze Git repositories to extract information about commits, developers,
modifications, diffs, and source code.4 In our case, we run PyDriller over the
commits of the considered systems and extracted the number of modifications
performed by developers, i.e., the code churn.

The data extraction process described above was curated by the first two
authors of the paper. More specifically, the first author was involved in the
mining of the change history of the projects, while the second author had the
responsibility to write the scripts for mining Defects4J.

4https://pydriller.readthedocs.io/en/latest/intro.html



12 Giammaria Giordano et al.

3.3 Data Analysis Procedure

The collected data were further analyzed as follows:

1. RQ1 - Analysis of the evolution of reusability mechanisms over time. To
address this research question we analyzed how reusability metrics (im-
plementation inheritance, specification inheritance, and delegation) vary
over the evolution of the software systems considered. In particular, we
employed basic statistical analysis and visualized results using plots.

2. RQ2 - Analysis of the impact on defect-proneness of reusability mecha-
nisms over time. In this respect, we built a statistical model to verify how
reusability metrics impact the variability of defects in the source code.

3. RQ3 - Analysis of the impact on maintenance effort of reusability mecha-
nisms over time. Similarly to RQ2, we built a statistical model to verify
how reusability metrics impact the maintenance effort to fix a bug.

Specifically, the statistical models were devised as reported in the following.

Independent Variables. According to our previous considerations, we used
the reusability metrics, i.e., implementation inheritance, specification inher-
itance, and delegation, as independent variables.

Response Variable. In the context of RQ2 we were interested in under-
standing how the reusability metrics impact the defect-proneness of software
systems over time. Starting from the defect history built by exploiting De-
fect4J, we modeled our response variable as follows. Let Ci be a generic
commit of the change history of the project P . The number of defects affect-
ing P at the time of Ci was computed through the #defects(Ci) function,
which relies on the following system of equations:

{
#defects(Ci) = #defects(D4JCi

) − #fixedDefects(D4JCi
), if i = 1;

#defects(Ci) = #defects(Ci−1) + (#defects(D4JCi
) − #fixedDefects(D4JCi

)), if i > 1;

(1)

where #defects(D4JCi
) indicates the number of defects in Defects4J hav-

ing as inducing commit Ci, #fixedDefects(D4JCi
) indicates the number

of defects fixed in the commit Ci, computed as the amount of defects fixed
according to Defects4J in Ci, and #defects(Ci−1) indicates the number
of defects affecting P at commit Ci−1. As shown, we had to distinguish the
case of the first commit (i=1) from the rest (i>1). When considering the first
commit, there cannot indeed be previous fixing operations that influenced
the number of defects and, as such, the number of defects at the first com-
mit is only due to the difference between the number of defects pointed out
by Defects4J and the number of defects fixed in the same commit. When
considering the other commits, instead, the number of defects at the time of
the generic commit Ci is given by the total number of defects at time Ci−1

plus the operations performed within Ci, both in terms of defects introduced

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 13

and fixed. After computing the number of defects affecting the considered
systems at each commit, we analyzed how this number varied over time.
Let Ci and Ci+1 be two subsequent commits of the change history of the
project P ; we labeled the commit pair (Ci, Ci+1) as stable, increased, or
decreased using the label(Ci, Ci+1) function described in the following:

label(Ci, Ci+1) =


‘Stable′ if #defects(Ci) = #defects(Ci+1);

‘Increased′ if #defects(Ci) < #defects(Ci+1);

‘Decreased′ if #defects(Ci) > #defects(Ci+1).

(2)

In other terms, we exploited the information previously collected on the
number of defects at each commit of the change history of the project P to
describe how the amount of defects varied over time.
In RQ3, instead, we were interested in assessing the effect of reusability
metrics on the effort required to fix defects, as measured by code churn.
Starting from the defect history of each project, we considered, as relevant
for the research question, the commits marked as fixing commits. Afterwards,
we computed our response variable as the sum of the code churn of the files
involved in those commits.

Control Variables. We computed a number of control variables. This step
was required because the impact on the response variables of the statistical
models might be due to various additional factors other than the independent
variables. As such, we first computed the Chidamber and Kemerer (CK)
metrics [22], namely DIT (Depth of Inheritance Tree), NOC (Number Of
Children), LOC (Lines of Code), LCOM (Lack of Cohesion of Methods),
WMC (Weighted Methods per Class), RFC (Response for a Class), and
CBO (Coupling Between Objects).
InRQ2, we also considered the code churn as control variable as suggested by
previous findings in the literature [72], i.e., we verified whether the variation
of the number of defects was due to the amount of changes performed by
developers within commits. This metric was not considered in RQ3, as it
was directly connected to the response variable and could, therefore, bias
the conclusions.
With respect to the control variables considered in the study, it is important
to discuss the role of NOC and DIT. These two metrics are by definition
connected to code reusability and measure indeed two aspects related to
how developers reuse existing source code through inheritance. We included
them with the intent of comparing their statistical power to the reusability
metrics considered as independent variables. In other terms, the inclusion
of NOC and DIT allowed us to assess the extent to which the reusability
metrics we computed represent relevant factors for the response variables
when compared to state-of-the-art metrics.
Before building the statistical models, we assessed the presence of possible
multi-collinearity concerns. These arise when two or more variables are exces-
sively correlated, possibly biasing the statistical model and the subsequent
interpretation of the results [73]. In this respect, we followed well-established
guidelines [3,62]. For each pair of variables, we computed the Spearman’s



14 Giammaria Giordano et al.

correlation coefficient [101]. If this scored higher than 0.7, then we removed
the variable having the most complex definition to favor explainability - for
instance, we preferred keeping the LOC metric rather than WMC to make
the interpretation of the results easier.
The scripts used to compute the dependent and control variables were de-
veloped by the second author of the paper, while the independent variables
were computed through the tool originally developed by the first author.

Choosing the Statistical Model. To address RQ2 we built a Multino-
mial Log-Linear Model [103]. This model generalizes logistic regression to
multi-class problems, matching our need to have a model able to handle
our response variable composed of three values (“stable”, “increased”, “de-
creased”). As done in our previous work [38], we used R for running the
analysis using the function multinom available in the package nnet.5

In RQ3 we had to build a different model because of the nature of the re-
sponse variable, i.e., code churn. In particular, we built a Generalized Linear
Model [33] using the glm function available in R.
The first two authors of the paper were involved in the development of the
statistical models. In addition, the interpretation of the results involved all
the authors of the paper: these were involved through open discussions and
regular meetings with the first two authors.

3.4 Public Availability of Data

To guarantee the replicability of our work and enable other researchers to build
on top of our analyses, we made all data and scripts publicly available in our
online appendix [39].

4 Analysis of the Results

In the following sections, we report and discuss the results addressing the
research questions of the empirical study. For the sake of comprehensibility,
we split the discussion by RQ.

4.1 RQ1 - On the Variation of Reusability Mechanisms in Source Code

Figure 2 shows how the three reusability mechanisms considered in our study,
i.e., implementation inheritance, specification inheritance, and delegation,
evolve over time in the considered software projects. Each row of the figure
reports the evolution of the metrics for two projects separately. To facilitate
the interpretation of the results and enable a more seamless comparison of evo-
lutionary trends across diverse projects, we normalized the reusability metrics

5https://cran.r-project.org/web/packages/nnet/nnet.pdf

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 15

DelegationImplnh SpecInh

0 200 400 600 800 10000
.0

0
0

6
0

.0
0

0
8

0
.0

0
1

0
0

.0
0

1
2

0
.0

0
1

4

Commit

E
re

d
ita

ri
e
tà

 d
i s

p
e
ci

fic
a

0 200 400 600 800 1000

0
.0

0
2
6

0
.0

0
2
8

0
.0

0
3
0

0
.0

0
3
2

0
.0

0
3
4

0
.0

0
3
6

Commit

E
re

d
ita

ri
e
tà

 d
i i

m
p
le

m
e
n
ta

zi
o
n
e

0 200 400 600 800 1000

0
.1
1
5

0
.1
2
0

0
.1
2
5

0
.1
3
0

Commit

D
e
le
g
a
zi
o
n
e

Jackson-Dataformat-XML

0 500 1000 1500

0
.0
8
5

0
.0
9
0

0
.0
9
5

0
.1
0
0

Commit

D
e
le
g
a
zi
o
n
e

0 500 1000 1500

0
.0

0
1
1
0

0
.0

0
1
2
0

0
.0

0
1
3
0

0
.0

0
1
4
0

Commit

E
re

d
ita

ri
e
tà

 d
i i

m
p
le

m
e
n
ta

zi
o
n
e

0 500 1000 1500

0
.0

0
0

6
5

0
.0

0
0

7
0

0
.0

0
0

7
5

0
.0

0
0

8
0

0
.0

0
0

8
5

0
.0

0
0

9
0

Commit

E
re

d
ita

ri
e

tà
 d

i s
p

e
ci

fic
a

Jackson-Core

0 500 1000 1500

0
.0
8

0
.0
9

0
.1
0

0
.1
1

0
.1
2

Commit

D
e
le
g
a
zi
o
n
e

0 500 1000 1500

0
.0

0
2
0

0
.0

0
2
5

0
.0

0
3
0

Commit

E
re

d
ita

ri
e

tà
 d

i s
p

e
ci

fic
a

0 500 1000 1500

0
.0

0
2
5

0
.0

0
3
0

0
.0

0
3
5

Commit

E
re

d
ita

ri
e
tà

 d
i i

m
p
le

m
e
n
ta

zi
o
n
e

GSON

0 200 400 600 800 1000

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

Commit

E
re

d
ita

ri
e
tà

 d
i s

p
e
ci

fic
a

0 200 400 600 800 1000

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

Commit

E
re

d
ita

ri
e
tà

 d
i i

m
p
le

m
e
n
ta

zi
o
n
e

0 200 400 600 800 1000

0
.0
0

0
.0
5

0
.1
0

0
.1
5

Commit

D
e
le
g
a
zi
o
n
e

Commons-Codec

Commons-Compress

0 500 1000 1500 2000 2500 3000

0
.0
5

0
.0
6

0
.0
7

0
.0
8

0
.0
9

Commit

D
e
le
g
a
z
io
n
e

0 500 1000 1500 2000 2500 3000

0
.0

0
0
8

0
.0

0
1
0

0
.0

0
1
2

0
.0

0
1
4

0
.0

0
1
6

Commit

E
re

d
ita

ri
e

tà
 d

i s
p

e
ci

fic
a

0 500 1000 1500 2000 2500 3000

0
.0

0
1
0

0
.0

0
1
5

0
.0

0
2
0

0
.0

0
2
5

Commit

E
re

d
ita

ri
e
tà

 d
i i

m
p
le

m
e
n
ta

zi
o
n
e

Joda-Time

0 500 1000 1500 2000

0
.0

0
1

7
0

.0
0

1
8

0
.0

0
1

9
0

.0
0

2
0

0
.0

0
2

1

Commit

E
re

d
ita

ri
e

tà
 d

i i
m

p
le

m
e

n
ta

zi
o

n
e

0 500 1000 1500 2000

0
.0
8
0

0
.0
8
5

0
.0
9
0

0
.0
9
5

Commit

D
e
le
g
a
zi
o
n
e

0 500 1000 1500 2000

0
.0

0
0
7

0
.0

0
0
8

0
.0

0
0
9

0
.0

0
1
0

0
.0

0
1
1

0
.0

0
1
2

Commit

E
re

d
ita

ri
e

tà
 d

i s
p

e
ci

fic
a

Jackson-Databind

0 1000 2000 3000 4000 5000

0
.0

0
2

6
0

.0
0

2
8

0
.0

0
3

0
0

.0
0

3
2

0
.0

0
3

4

Commit

E
re

d
ita

ri
e

tà
 d

i i
m

p
le

m
e

n
ta

zi
o

n
e

0 1000 2000 3000 4000 5000

0
.1
0
0

0
.1
0
5

0
.1
1
0

0
.1
1
5

Commit

D
e
le
g
a
zi
o
n
e

0 1000 2000 3000 4000 5000

0
.0

0
1
2

0
.0

0
1
4

0
.0

0
1
6

0
.0

0
1
8

Commit

E
re

d
ita

ri
e

tà
 d

i s
p

e
ci

fic
a

Commons-Collections

0 500 1000 1500 2000 2500 3000 35000
.0

0
0

5
0

.0
0

1
0

0
.0

0
1

5
0

.0
0

2
0

0
.0

0
2

5
0

.0
0

3
0

0
.0

0
3

5

Commit

E
re

d
ita

ri
e
tà

 d
i i

m
p
le

m
e
n
ta

zi
o
n
e

0 500 1000 1500 2000 2500 3000 3500

0
.0
6

0
.0
7

0
.0
8

0
.0
9

0
.1
0

Commit

D
e
le
g
a
zi
o
n
e

0 500 1000 1500 2000 2500 3000 3500

0
.0

0
0

5
0

.0
0

1
5

0
.0

0
2

5
0

.0
0

3
5

Commit

E
re

d
ita

ri
e
tà

 d
i s

p
e
ci

fic
a

Commons-Cli

0 500 1000 1500 20000
.0
2

0
.0
3

0
.0
4

0
.0
5

0
.0
6

0
.0
7

Commit

D
e
le
g
a
zi
o
n
e

0 500 1000 1500 2000

0
.0

0
1
4

0
.0

0
1
6

0
.0

0
1
8

0
.0

0
2
0

0
.0

0
2
2

0
.0

0
2
4

Commit

E
re

d
ita

ri
e

tà
 d

i s
p
e

ci
fic

a

0 500 1000 1500 20000
.0

0
1
0

0
.0

0
1
2

0
.0

0
1
4

0
.0

0
1
6

0
.0

0
1
8

0
.0

0
2
0

0
.0

0
2
2

Commit

E
re

d
ita

ri
e

tà
 d

i i
m

p
le

m
e

n
ta

zi
o

n
e

Commons-CSV

0 500 1000 1500

0
.0
5

0
.0
6

0
.0
7

0
.0
8

0
.0
9

Commit

D
e
le
g
a
z
io
n
e

0 500 1000 1500

0
.0

0
0

0
0

.0
0

0
5

0
.0

0
1

0
0

.0
0

1
5

0
.0

0
2

0

Commit

E
re

d
it
a
ri

e
tà

 d
i 
s
p
e
c
if
ic

a

0 500 1000 1500

0
.0

0
0

5
0

.0
0

1
0

0
.0

0
1

5
0

.0
0

2
0

Commit

E
re

d
it
a

ri
e

tà
 d

i 
im

p
le

m
e

n
ta

z
io

n
e

Commons-JxPath

0 100 200 300 400 500 600

0
.0
8
5

0
.0
9
0

0
.0
9
5

0
.1
0
0

0
.1
0
5

0
.1
1
0

Commit

D
e
le
g
a
z
io
n
e

0 100 200 300 400 500 600

0
.0

0
1

1
0

.0
0

1
2

0
.0

0
1

3
0

.0
0

1
4

0
.0

0
1

5
0

.0
0

1
6

Commit

E
re

d
it
a

ri
e

tà
 d

i 
s
p

e
c
if
ic

a

0 100 200 300 400 500 600

0
.0

0
2
0

0
.0

0
2
5

0
.0

0
3
0

Commit

E
re

d
it
a
ri

e
tà

 d
i 
im

p
le

m
e
n
ta

z
io

n
e

Closure-Compiler

0 5000 10000 15000

0
.0

0
1
4

0
.0

0
1
5

0
.0

0
1
6

0
.0

0
1
7

0
.0

0
1
8

0
.0

0
1
9

Commit

E
re

d
ita

ri
e
tà

 d
i i

m
p
le

m
e
n
ta

zi
o
n
e

0 5000 10000 15000

0
.0

0
1
1

0
.0

0
1
2

0
.0

0
1
3

0
.0

0
1
4

0
.0

0
1
5

0
.0

0
1
6

Commit

E
re

d
ita

ri
e

tà
 d

i s
p

e
ci

fic
a

0 5000 10000 15000

0
.1
1

0
.1
2

0
.1
3

0
.1
4

0
.1
5

Commit

D
e
le
g
a
zi
o
n
e

DelegationImplnh SpecInh

Fig. 2: RQ1. Adoption of Reusability Mechanisms Over Time.

by lines of code—in other terms, the figure shows the amount of implementa-
tion inheritance, specification inheritance, and delegation mechanisms applied
per line of code over the evolution history of the considered projects. These
trends were used to interpret the results and address the specific sub-research
questions defined in the context of RQ1.

4.1.1 RQ1.1 - Variation of Implementation Inheritance Over time.

As for the implementation inheritance, the trends in Figure 2 do not always
follow a common tendency among the projects.

Increasing - Decreasing Pattern. As shown in Figure 3, we discovered
an initial increasing trend in adopting implementation inheritance in seven
projects, i.e., Closure-Compiler, Commons-Cli, Commons-CSV,GSON,



16 Giammaria Giordano et al.

Commons-Cli

0 500 1000 1500 20000.0
01

0
0.0

01
2

0.0
01

4
0.0

01
6

0.0
01

8
0.0

02
0

0.0
02

2

Commit

Ere
dita

rie
tà 

di i
mp

lem
en

taz
ion

e

Commons-CSV

0 500 1000 1500

0.0
00

5
0.0

01
0

0.0
01

5
0.0

02
0

Commit

Ere
dit

ari
età

 di
 im

ple
me

nta
zio

ne

0 500 1000 1500

0.0
02

5
0.0

03
0

0.0
03

5

Commit

Ere
dita

rie
tà 

di i
mp

lem
en

taz
ion

e

GSON

Closure-Compiler

0 5000 10000 15000

0.0
01

4
0.0

01
5

0.0
01

6
0.0

01
7

0.0
01

8
0.0

01
9

Commit

Ere
dit

ari
età

 di
 im

ple
me

nta
zio

ne

0 200 400 600 800 1000

0.0
02

6
0.0

02
8

0.0
03

0
0.0

03
2

0.0
03

4
0.0

03
6

Commit

Ere
dita

rie
tà 

di i
mp

lem
en

taz
ion

e

Jackson-Dataformat-XML

Joda-Time

0 500 1000 1500 2000

0.0
017

0.0
018

0.0
019

0.0
020

0.0
021

Commit

Ere
dita

riet
à d

i im
ple

me
nta

zio
ne

Jackson-Databind

0 1000 2000 3000 4000 5000

0.0
026

0.0
028

0.0
030

0.0
032

0.0
034

Commit

Ere
dita

riet
à d

i im
ple

me
nta

zio
ne

Fig. 3: Increasing - Decreasing Pattern.

Jackson-Databind, Jackson-Dataformat-XML, and Joda-Time, fol-
lowed by a decreasing usage.

While the shape of the curves varies from case to case, we can still see a
common pattern. When we look more closely at these cases, we can identify
a similar behavior among the developers of those systems. In all the cases,
the adoption of implementation inheritance quickly increased during the first
commits, suggesting that developers approached the design of the systems to
take reusability into account. Nonetheless, the trend quickly decreased after a
while, leading implementation inheritance to be used less and less over time.

This trend leads us to formulate two observations. Firstly, the decline in
adoption following a peak could be indicative of a phenomenon known as “de-
sign erosion” in the literature [105]. Regardless of the intentions of developers
and designers, software design tends to degrade over time due to ongoing
changes and increasing complexity, as highlighted by Lehman’s laws [60]. This

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 17

erosion can also be attributed to inadequate utilization of software quality
measures, as emphasized in previous research [30,107,108]. Our findings seem
to suggest implementation inheritance is not exempt from this trend, and its
adoption is likely to decrease over time.

In the second place, the “increasing-decreasing” trend might have clear
implications on how reuse mechanisms should be considered within prediction
approaches, e.g., defect prediction. Indeed, the employment of implementation
inheritance should be carefully considered, and perhaps the usage trend might
even lead to the definition of novel feature selection procedures that monitor
the way developers are using certain programming constructs to inform the
model of the most promising features to consider in that evolution moment.

Steady-Increasing Pattern. Looking at Figure 2, we can identify three
less common usage patterns. In particular, two projects, namely Commons-
Collections (3rd row) and Commons-JxPath (4th row), appear to exhibit
a “steady-increasing” trend. The nature of these projects seems to offer a
natural explanation for this trend. The former project provides a framework
to use efficient data structures in Java, while the latter implements an in-
terpreter of the XPath expression language. Both projects are structured so
that most of the source code relies on a core set of classes. For instance, in the
Commons-Collections project, classes within the list package establish
the foundation for creating various advanced element lists. This seems encour-
aging developers to employ reuse mechanisms like implementation inheritance.

Stable Pattern. Two other projects, namely Commons-Codec (1st row)
and Jackson-Core (1st row) of Figure 2, follow mostly a “stable” trend. In
both cases, the amount of implementation inheritance uses remains constant
throughout the evolution. We analyzed the repositories of those projects deeper
to better understand this trend. While we could not identify any specific tool
or verification procedure conducted by developers to keep reusability under
control, we could observe that most of the commits performed over the last
years were peripheral [5], namely, they pertained to packages of the systems
other than core. This may explain the observed trend: developers did not
modify any central part of those systems, leaving the original design stable
and avoiding an excessive effect of design erosion.

Decreasing - Increasing Pattern. Finally, the Commons-Compress
project (5th row in Figure 2) exhibited an anomalous trend which we coined
“decreasing-increasing”. After a greater adoption of implementation inheri-
tance, the trend steadily decreased before increasing again, but at a lower
rate. Also, in this case, we manually dived into the repository in search of pos-
sible explanations. We discovered that after the release of the second version
of the project in 2010 (release commons-compress-1.1), the release engineer-
ing process of the system changed, passing from annual to monthly releases.
This switch caused a substantial rework of the original architecture, replac-
ing existing code with third-party libraries. Consequently, the overall amount
of implementation inheritance uses suddenly decreased in favor of other code



18 Giammaria Giordano et al.

reuse mechanisms. Afterward, the developers of the system kept the imple-
mentation inheritance under control, leading to an increasing usage trend.

4.1.2 RQ1.2 - Variation of Specification Inheritance Over time

When considering the specification inheritance, the usage patterns identified in
RQ1.1 still hold. In particular, we observed the same “increasing-decreasing”
trend in Commons-Cli, while in Commons-Codec a “stable” trend. These
findings seem to suggest the existence of a possible strict (cor)relation be-
tween implementation and specification inheritance throughout the evolution
of software systems, which might depend on the willingness of developers to
take (or not) code reusability into account when evolving source code. Part
of our future research agenda will consider the effects of this co-evolution of
metrics on software quality.

4.1.3 RQ1.3 - Variation of Delegation Over time

Regarding the delegation, we could observe similar usage patterns discussed
above. Nonetheless, we could also discover situations where the evolution of
delegation followed an opposite trend with respect to implementation and
specification inheritance ones. This is, for instance, the case of Commons-
Collections. Indeed, starting from a high adoption during the first devel-
opment phases, the amount of delegation used kept decreasing till reaching a
stable level. This result was, however, somehow expected as inheritance and
delegation are alternatives to each other [15] and, therefore, an increasing use
of one may lead to a decreasing use of the other. Similar results were observed
when analyzing other projects, e.g., Closure-Compiler Jackson-Core and
Compress.

The apparent synergy between inheritance and delegation could offer an
opportunity for source code quality predictive models. These models could
decide which metrics to focus on at different stages of development. In this way,
the models could rely on metrics that can best represent the current state of
the system under analysis, potentially improving their predictive capabilities.

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 19

ø Key findings for RQ1.

In 7 projects out of 12, the use of implementation and specification inheri-
tance followed an “increasing-decreasing” trend, with design erosion being
the most likely cause behind this result. Other usage patterns were less
common and dependent on the specific scope of the projects. We could
also confirm the orthogonality of delegation, which followed an opposed
trend with respect to both implementation and specification inheritance
in four of the considered systems. The results achieved in RQ1 may have
interesting applications in the context of predictive software quality an-
alytics, whose models might be informed by the usage trends on which
metrics should be better to use in specific moments of software evolution.

Project Discarded Variables
Commons-Codec RFC, NOC
Commons Cli DIT, NOC, InhImp
Commons-Collections WMC
Commons-CSV RFC
Commons-Compress RFC
Gson RFC
Jackson-Core WMC, RFC, DIT, InhImp
Jackson-Databind RFC
Jackson-Dataformat-XML WMC, RFC, DIT
Commons-JxPath DIT
Joda-Time WMC, RFC, DIT
Closure-Compiler RFC

Table 2: RQ2. Variables removed because of multi-collinearity.

4.2 RQ2 - The Impact of Reusability Metrics on Defect-Proneness

In this sub-section, we report the results when studying the impact of reusabil-
ity metrics on the defect-proneness of source code.

Multi-collinearity analysis. Before discussing the results of the statistical
model, it is worth reporting the outcome of the multi-collinearity analysis—
which was performed to make sure that no correlated variables were employed
within the statistical model and could bias the interpretation of the results
(see Section 3). Table 2 lists the variables removed after the application
of the correlation analysis. In the first place, we found that RFC was the
metric most often removed: in all the cases, it was correlated with LOC
and, therefore, we preferred keeping LOC because of its highest degree of
interpretability. Secondly, in three projects, i.e., Commons-Collections,



20 Giammaria Giordano et al.

Jackson-Core, and Joda-Time, the WMC metric was removed, again for
its correlation with LOC. We also discovered correlations between DIT and
NOC in two projects such as Commons-Codec and Commons-Cli: we kept
NOC, namely the metric reporting the number of immediate subclasses of
a class. In the cases of Jackson-Dataformat-XML and Joda-Time, we
found a correlation between DIT and specification inheritance: as the latter
was one of the independent variables, we preferred keeping it. Finally, we
identified correlations between specification and implementation inheritance
in the projects Commons-Cli and Jackson-Core—these correlations could
be already hypothesized looking at the trends observed in the context of
RQ1: in these two cases, we were obliged to remove one of the independent
variables and decided to opt for implementation inheritance.

Com.-Codec N=2,134 Com.-Cli N=1,099 Com.-Col. N=3,560 Com.-CSV N=1,634 Comp. N=3,305 Gson N=1,478

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

DiffWMC
-10.098

(7.495)

2.280

(10.981)

-0.691

(3.434)

2.416

(3.602)

-3.539

(2.559)

0.627

(5.136)

-5.248∗∗∗

(0.033)

-1.903

(4.387)

3.261

(30.899)

-1.305

(25.907)

DiffNOC
-0.038

(0.050)

0.004

(0.013)

-4.413∗∗∗

(0.156)

1.052∗∗∗

(0.176)

10.188∗∗∗

(0.002)

-5.653∗∗∗

(0.051)

-0.159

(0.275)

1.536∗∗∗

(0.415)

DiffLCOM
0.092

(0.140)

0.054

(0.261)

0.166

(0.256)

-0.744∗∗∗

(0.244)

0.422

(0.808)

0.476

(22.615)

-0.056

(0.066)

-0.040

(0.130)

-0.066

(0.335)

0.046

(0.125)

0.013

(1.242)

-0.159

(1.157)

DiffDIT
11.927∗∗∗

(0.269)

−0.183∗∗∗

(0.033)

0.012

(5.830)

-0.0003

(0.023)

0.012

(5.830)

-0.0003

(0.023)

-4.526∗∗∗

(0.238)

0.661∗∗∗

(0.169)

12.511∗∗∗

(0.002)

-5.151∗∗∗

(0.125)

0.696

(0.466)

1.896∗∗

(0.798)

DiffCBO
-5.434

(5.898)

-9.729∗∗∗

(0.243

-0.645

(3.617)

-5.947

(3.821)

-0.878

(58.069)

-0.495∗∗∗

(0.103)

-0.994

(4.485)

-3.484

(8.728)

-4.163∗∗∗

0.021)

1.467

(2.717)

-17.977

(12.462)

-3.472

(12.553)

DiffRFC
4.123

(5.784)

-0.030

(1.106)

-0.014

(1.027)

4.123

(5.784)

1.013

(6.087)

1.924

(14.548)

DiffLOC
0.005

(0.302)

0.075

(0.346)

0.002

(0.139)

0.056

(0.200)

-0.611

(1.053)

-0.099

(11.153)

0.175

0.121)

0.045

(0.236)

0.149∗

(0.090)

0.024

(0.104)

0.115

(1.273)

0.689

(1.373)

DiffDelegations
0.058

(0.049)

-0.060

(0.077

0.017

(0.022)

0.001

(0.025

-0.069

(0.137)

0.004

(0.654)

0.031

(0.076)

-0.058

(0.147)

0.013

(0.017)

-0.003

(0.013)

0.068

(0.059)

-0.018

(0.078)

DiffSpecInh
-1.791

(1.685)

-1.510

(3.395

0.070

(0.618)

1.382∗∗∗

(0.542)

1.013

(6.087)

1.924

(14.548)

-0.571

(5.267)

-1.495

(10.178)

-0.187

(0.862)

-0.148

(0.637)

-0.356

(3.632)

0.226

(1.865)

DiffimpInh
-0.060

(0.940)

0.046

(2.134

0.767

(3.457)

0.771

(13.557)

-1.141

(2.923)

-0.094

(4.432)

-0.337

(0.488)

0.154

(0.383)

0.047

(2.105)

0.267

(1.713)

Churns
-0.002

(0.003)

-0.002

0.004)

-0.002

(0.002)

-0.005

(0.004)

-0.026

(0.038)

-0.100

(0.127)

-0.004

(0.007)

-0.009

(0.013)

-0.003

(0.002)

-0.0003

(0.001)

-0.015

(0.014)

-0.007

(0.009)

Constant
-4.762∗∗∗

(0.248)

-4.717∗∗∗

(0.246)

-3.472∗∗∗

(0.187)

-3.448∗∗∗

(0.187)

6.429∗∗∗

(0.536)

-6.230∗∗∗

(0.527)

4.605∗∗∗

(0.265)

4.520∗∗∗

0.264)

-4.236∗∗∗

(0.160)

-4.327∗∗∗

(0.159)

-4.910∗∗∗

(0.369)

-5.051∗∗∗

(0.372)

Jack.-Core N=1,543 Jack.-Datab. N=5,228 Jack.-XML N=1,128Com.-JxPath N=598 Joda-Time N=2,094 Clo.-Compiler N=17,171

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

DiffWMC
-2.330

(1.546)

3.344∗∗

(1.619)

-14.452∗∗∗

(2.914)

41.577∗∗∗

(3.503)

-8.302∗∗∗

(0.006)

-3.841∗∗∗

(0.004)

DiffNOC
-37.085∗∗∗

(0.359)

-93.807∗∗∗

(0.372)

-58.836∗∗∗

(0.037)

-152.598∗∗∗

(0.043)

-0.066∗∗∗

(0.020)

-0.235∗∗∗

(0.007)

4.203∗∗∗

(0.113)

-1.798∗∗∗

(0.040)

-1.001∗∗∗

(0.007)

-0.723∗∗∗

(0.021)

0.617∗∗∗

(0.0003)

2.750∗∗∗

(0.0003)

DiffLCOM
-0.024

(0.029)

-0.008

(0.031)

0.155∗∗∗

(0.049)

0.179∗∗∗

(0.045)

-0.016

(0.244)

-0.420

(0.478)

0.217

(1.161)

-1.167

(1.509)

-0.835

(0.867)

-0.255

(2.234)

0.076

(0.086)

0.034

(0.069)

DiffDIT
-70.763∗∗∗

(0.028)

-124.104∗∗∗

(0.029)

0.391 ∗∗∗

(0.0003)

-0.665∗∗∗

(0.0002)

DiffCBO
-2.840

(5.329)

-8.386

(5.859)

1.062

(0.979)

2.261∗

(1.194)

-1.162

(3.528)

18.673∗

(10.142)

-11.521

(12.928)

-28.867∗∗∗

(9.482)

5.642∗∗∗

(0.319)

-7.746∗∗∗

(0.028)

-7.895∗∗∗

(0.003)

3.860∗∗∗

(0.002)

DiffRFC
8.152

(7.483)

-47.303∗∗∗

(8.690)

DiffLOC
-0.039

(0.053)

0.039

(0.047)

-0.045

(0.147)

-0.013

(0.141)

-0.009

(0.228)

0.077

(0.639)

-3.004∗

(1.736)

5.674∗∗∗

(1.428)

0.645

(0.699)

1.564

(2.364)

0.615∗∗∗

(0.153)

0.035

(0.116)

DiffDelegations
0.001

(0.003)

0.003

(0.003)

-0.005

(0.003)

-0.010∗∗∗

(0.003)

0.027

(0.043)

0.005

(0.066)

0.201∗

(0.104)

0.399∗∗∗

(0.100)

0.032

(0.051)

-0.074

(0.117)

-0.003

(0.002)

0.002

(0.002)

DiffSpecInh
-0.371

(0.439)

0.491

(0.407)

0.109

(0.095)

-0.065

(0.100)

-0.489

(2.984)

1.159

(5.170)

-4.686∗

(2.742)

0.161

(1.719)

-1.633

(3.875)

-6.170∗∗∗

(0.250)

0.002

(0.278)

-0.048

(0.268)

DiffimpInh
0.018

(0.099)

0.341∗∗∗

(0.090)

-0.461

(1.068)

-0.430

(2.108)

-2.314

(1.718)

-15.482∗∗∗

(4.800)

-1.313

(2.317)

1.200

(4.509)

0.133

(0.118)

-0.034

(0.096)

Churns
-0.001

(0.002)

-0.004

(0.004)

-0.001

(0.001)

-0.004∗∗

(0.002)

0.002

(0.006)

-8.872∗∗∗

(0.001)

-0.015∗

(0.008)

-0.026∗∗∗

(0.007)
-0.006(0.006)

-0.019

(0.013)

-0.001

(0.0004)

-0.00001

(0.0001)

Constant
-4.183∗∗∗

(0.237)

-4.082∗∗∗

(0.237)

-4.048∗∗∗

(0.118)

-4.043∗∗∗

(0.127)

-5.312∗∗∗

(0.440)

-5.346∗∗∗

(0.518)

-3.345∗∗∗

(0.262)

-3.323∗∗∗

(0.264)

-4.545∗∗∗

(0.243)

-4.462∗∗∗

(0.251)

-4.624∗∗∗

(0.081)

-4.654∗∗∗

(0.080)

Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table 3: RQ2. Results of the statistical model.

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 21

Statistical model explanation. Table 3 shows the results of the statistical
models built in RQ2. The independent variables and control variables are
reported on the rows, while the various considered systems are reported on
the columns—empty cells indicate that a certain variable was removed from
the analysis of a specific system as a consequence of the multi-collinearity
analysis, while the number of observations (the commits analyzed) for each
project is reported in the header of each column. The statistical codes report
the p-value for each variable and each project and were used to interpret the
results obtained. According to the description reported in the last row of Table
3, a higher amount of ‘*’ implies a higher statistical relevance of a variable
with respect to decrease (↓) or increase (↑) of the likelihood to affect the
defect-proneness of source code.

Statistical model analysis. Looking at the table, various considerations can
be drawn. First and foremost, in 10 out of the total 12 projects we found at
least one of the inheritance metrics to be a statistically significant factor to
explain the defect-proneness of the considered systems. The NOC metric, in
particular, is the one being relevant in more systems. On 8 projects the metric
was observed to explain both the increase and decrease of defect-proneness.

To understand how the metric affects the phenomenon of interest, we ana-
lyzed the sign of the coefficients. Specifically, the coefficients of a Multinomial
Log-Linear model relate to a reference category and indicate how the variables
change the chances of the dependent variable being affected with respect to the
reference category—which was set to “stable” in our case. As for the columns
“↓” of Table 3, this means that a negative coefficient for a variable X suggests
that for one unit increase of X, the chances that the defect-proneness of source
code varies toward a decrease are estimated in the amount indicated by the co-
efficient, i.e., the higher the coefficient the higher the chance that the variable
contributes to decrease the defect-proneness of source code. On the contrary, a
positive coefficient implies that for one unit increase of X, the chances that the
defect-proneness of source code varies toward the stability are estimated in the
amount indicated by the coefficient, i.e., the higher the coefficient the higher
the chance of defect-proneness being stable over time. Similarly, in the case
of the columns “↑”, a negative coefficient for X implies that the chances that
the defect-proneness of source code varies toward the stability are estimated
in the amount indicated by the coefficient, i.e., the higher the coefficient the
higher the chance of defect-proneness being stable over time. A positive coef-
ficient would instead indicate that the chances of defect-proneness increasing
are estimated in the amount indicated by the coefficient, i.e., the higher the
coefficient the higher the defect-proneness of source code.

According to this interpretation, the signs of the coefficients for NOC
over the various projects did not report a common pattern. For example, in
Commons-compress (5th column, 1st row of Table 3) we observed a positive
coefficient of the variable for “↓” and a negative coefficient for “↑”, meaning
that the variable statistically influences the stability of defect-proneness over
time. On the contrary, on the Closure-compiler project (6th column, 2nd



22 Giammaria Giordano et al.

row of Table 3) the coefficients are positive for both “↓” and “↑”, meaning
that the variable tends to influence the increase of defect-proneness, overall.
As such, we could not delineate a common behavior for NOC. Likely, its im-
pact depends on the peculiarities of the development process in place in the
different projects rather than on more general aspects.

As for the independent variables considered in our study, namely inheri-
tance and delegation, the discussion is similar. On the one hand, the impact of
these metrics is limited to a few projects, suggesting that the defect-proneness
of source code is only partially dependent on reusability metrics. On the other
hand, the coefficients of the metrics vary without a common pattern. As an
example, the coefficient for specification inheritance was positive for “↑” in
Commons-Cli and negative in Joda-Time. On the same line, implementation
inheritance had a slightly positive coefficient for “↑” in Jackson-Databind,
while a negative coefficient in JxPath. As for the delegation, this turned to be
statistically relevant on just two projects, i.e., Jackson-Databind and Jx-
Path without a consistent sign. Hence, we could conclude that the reusability
metrics themselves have a limited connection to defect-proneness. Other indi-
cators, like the structure of the hierarchies computed by NOC, seem to have
more statistical power. As such, it is not the amount of reusability mecha-
nisms used by developers to influence the defect-proneness of source code, but
rather the way these mechanisms are used in the specific cases. This result
has two main implications. First, we could not identify a drawback in the use
of inheritance and delegation with respect to software reliability: hence, the
application of reusability mechanisms is not per se something to avoid. How-
ever, this result represents a call to researchers in software quality, who are
required to devise novel quality checkers and/or empirical investigations to
monitor the way code reuse is implemented and how it may negatively affect
the defect-proneness of source code.

Another valuable consideration can be drawn when considering the con-
trol variables. According to our results, none of them seems to be statistically
impactful on defect-proneness. We believe this is a relevant result for the soft-
ware maintenance and evolution research community as a whole. Code quality
metrics have been indeed often used to estimate and/or predict defects: our
results indicate the lack of statistical significance and possibly imply that the
set of metrics considered within defect prediction models should be reconsid-
ered - in this sense, we corroborate previous findings on the limited value of
the Chidamber-Kemerer metric suite for defect prediction [47,53,82] as well
as further stimulate the research on alternative predictors [11,28,76,79].

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 23

ø Key findings for RQ2.

Our findings suggest that the use itself of inheritance and delegation does
not influence the defect-proneness of source code. Rather, the specific adop-
tion, e.g., how developers structure the hierarchy of the systems being
developed, tends to influence more the likelihood of source code being de-
fective. Furthermore, we found a limited connection between code quality
metrics and defect-proneness, possibly revealing that previous research on
the relation between metrics and defects should be reconsidered.

4.3 RQ3. On the impact of reusability mechanisms in code churns

Table 4 reports the statistical results obtained when building a Generalized
Linear model on the data collected for RQ3. Differently from RQ2, the de-
pendent variable was the code churn, namely a numerical variable.

Statistical model explanation. The statistical model output a single coeffi-
cient for each independent variable: this coefficient corresponds to the impact
of a one-unit increase on the amount of code churn. Also in this case, the
statistically significant coefficients are highlighted with a ‘*’ symbol - a higher
amount of ‘*’ implies a higher statistical relevance of a variable with respect to
the code churn computed on a defect-fixing commit i. The variables discarded
through the multi-collinearity are the same as RQ2.

Statistical model analysis. Looking at the table, we can draw various con-
clusions. As expected, the LOC metric was found to be statistically significant
in 9 systems out of 12. The coefficients are also relatively high in all cases,
meaning that larger classes are typically harder to maintain - in this respect,
we could corroborate previous findings in literature [46,92]. The CBO metric,
which computes the coupling between objects, was also statistically significant
in nine projects, confirming that developers spend more effort in fixing defects
pertaining to highly-coupled classes [59]. Other code quality metrics were not
statistically significant. So, in conclusion of this first point of discussion, we
could report that, besides LOC and CBO, the role of code metrics to esti-
mate the maintenance effort seems to be limited. Once again, this finding is
of the interest of the software maintenance and evolution research community,
which might be called to define novel metrics and/or instruments to monitor
maintenance effort over time.

Turning the focus on our independent variables, we could find similar con-
clusions as in RQ2 when considering inheritance. Both specification and im-
plementation inheritance were indeed most not statistically significant, with
some exceptions. The former was relevant for the projects Commons-Cli,
Jackson-Dabind, and Joda-Time. However, the sign of the coefficients re-
vealed that the metric was statistically related to the increase of code churn
only in the case of Commons-Cli. By analyzing this case further and relating
the statistical result with the trend analysis conducted inRQ1, we could better



24 Giammaria Giordano et al.

Com.-Codec N=2,134 Com.-Cli N=1,099 Com.-Col. N=3,560 Com.-CSV N=1,634 Comp. N=3,305 Gson N=1,478

DiffWMC
163.951

(105.295)

26.263

(227.457)

-20.375

(56.965)

-20.375

(56.965)

-1,988.919∗∗∗

(210.722)

-377.039

(269.203)

DiffNOC
10,213.080∗∗∗

(2,341.143)

-132.074

(1,357.614)

-10,740.970∗∗∗

(1,699.369)

17,827.570∗∗∗

(3,288.230)

DiffLCOM
1.383

(2.713)

-12.154

(16.169)

7.799∗

(4.680)

10.673∗∗∗

(1.905)

26.285∗∗∗

(6.021)

-15.488

(12.955)

DiffDIT
3,341.228∗∗∗

(903.732)

-2,378.489

(1,497.270)

-1,787.167

(1,192.199)

52,852.530∗∗∗

(2,813.141)

-6,958.231∗∗

(2,826.673)

DiffCBO
1,021.357∗∗∗

(150.161)

-108.063

(134.420)

6,717.225∗∗∗

(652.191)

-56.282

(94.958)

5,529.115∗∗∗

(307.003)

1,916.428∗∗∗

(145.944)

DiffRFC
192.611∗∗∗

(57.094)

4.682

(60.012)

DiffLOC
1.293

(2.158)

-9.992∗

(5.254)

-58.840∗∗∗

(10.760)

2.994

(2.693)

5.769

(5.471)

46.604∗∗∗

(10.894)

Delegation
0.017

(0.045)

-0.697∗∗∗

(0.229)

-0.003

(0.057)

0.165

(0.124)

-0.080∗∗∗

(0.022)

-0.119∗∗

(0.050)

SpecInh
-1.217

(3.145)

39.595∗∗∗

(11.915)

1.143

(1.211)

-6.889

(6.984)

-0.710

(1.950)

1.415

(1.301)

ImpInh
-0.131

(1.747)

-1.026

(0.870)

-0.386

(4.387)

3.653∗∗∗

(1.093)

2.080

(2.226)

BugDecrease
1.433

(37.641)

-74.159

(102.978)

-106.139

(620.995)

-1.272

(69.685)

-26.208

(85.330)

-6.128

(90.985)

BugIncrease
-20.191

(37.620)

-70.799

(101.593)

-111.854

(620.996)

-14.892

(69.652)

-15.856

(86.311)

-14.031

(96.408)

Constant
52.948∗∗∗

(15.918)

126.288∗∗

(51.413)

103.349

(77.155)

11.161

(20.003)

91.271∗∗∗

(25.693)

111.100∗

(63.054)

Jack.-Core N=1,543 Jack.-Datab. N=5,228 Jack.-XML N=1,128 Com.-JxPath N=598 Joda-Time N=2,094 Clo.-Compiler N=17,171

DiffWMC
853.627∗∗∗

(71.347)

-889.089

(1,208.343)

-35,485.190 ∗∗∗

(1,024.124)

DiffNOC
21,588.520∗∗∗

(1,212.595)

22,830.430∗∗∗

(1,564.318)

333.786

(509.649)

24,786.920∗∗∗

(5,760.288)

54,104.760∗∗∗

(3,864.815)

204,776.100∗∗∗

(25,377.820)

DiffLCOM
1.241

(0.765)

-28.862∗∗∗

(1.208)

-8.269∗∗∗

(0.992)

21.501∗∗∗

(5.505)

189.720∗∗∗

(23.536)

454.243∗∗∗

(9.841)

DiffDIT
50,782.460∗∗∗

(1,712.723)

305,846.900∗∗∗

(27,225.780)

DiffCBO
1,682.687∗∗∗

(131.899)

3,147.449∗∗∗

(74.440)

239.229∗∗∗

(19.892)

3,504.462∗∗∗

(363.997)

-31,929.670∗∗∗

(2,814.595)

-472.842

(643.145)

DiffRFC
1,358.532∗∗∗

(363.735)

DiffLOC
28.585∗∗∗

(1.371)

-8.353∗∗∗

(3.029)

8.568∗∗∗

(0.946)

-158.255∗∗∗

(12.875)

344.715∗∗∗

(42.978)

1,028.922∗∗∗

(38.580)

Delegation
-0.012

(0.017)

0.010∗

(0.006)

-0.096∗∗

(0.044)

-0.598∗∗

(0.294)

-0.580∗∗∗

(0.107)

-0.014∗

(0.008)

SpecInh
2.701

(3.677)

-1.281∗∗∗

(0.305)

-2.847

(2.324)

6.773

(14.133)

-156.445∗∗∗

(22.026)

0.868

(0.737)

ImpInh
-0.140

(0.499)

3.001∗∗

(1.408)

0.942

(3.559)

179.745∗∗∗

(20.294)

0.406

(0.407)

BugDecrease
83.885∗

(48.156)

28.236

(19.492)

19.831

(23.738)

-41.147

(149.800)

-625.949

(602.612)

-73.094

(91.940)

BugIncrease
-51.820

(48.181)

-7.043

(20.359)

-20.624

(26.005)

14.086

(149.626)

-690.321

(618.444)

-52.403

(91.954)

Constant
25.537

(47.505)

182.664∗∗∗

(57.987)

57.931∗∗∗

(9.413)

1,561.449∗∗∗

(387.616)

-6,729.363∗∗∗

(706.442)

89.824

(76.824)

Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table 4: RQ3. Results of the statistical model.

understand the reason behind this correlation. Most of the defects available for
Commons-Cli were introduced and fixed after the design erosion discussed in
RQ1. It is therefore reasonable to believe that it was the lack or the decrease
in the use of inheritance mechanisms which caused a higher maintenance effort
when fixing defects. This interpretation is in line with what observed on the
other systems, i.e., Jackson-Dabind and Joda-Time, where the specifica-
tion inheritance was negatively correlated to maintenance effort, meaning that
this was a significant factor to reduce the code churn required to fix defects.

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 25

Implementation inheritance was found to be statistically relevant in just
two cases, i.e., on Jackson-Databind and JxPath. While in the former
case the coefficient was close to zero—indicating little to no correlation to
the dependent variable—, it was of -15.482 in the second case. Hence, also in
this case we could conclude that this metric was negatively correlated to the
maintenance effort. Enlarging the discussion to the other inheritance metrics
subject of the study, namely NOC and DIT, we could discover similar results as
RQ2. Both NOC and DIT were positively correlated to the dependent variable
and the coefficients were relatively large in all cases: these results imply that
the structure of hierarchies might strongly influence the maintenance effort to
fix defects, hence corroborating the results obtained in our previous research
question, other than the results of empirical studies reporting how NOC and
DIT could worsen software maintainability [25,26,81].

As for delegation, the coefficients were mostly negative, even if relatively
small. Hence, we could conclude that there exist a small negative correlation
between the metric and maintenance effort, which implies that the use of del-
egation may decrease the overall amount of code churn required to fix defects.

ø Key findings for RQ3.

Reusability metrics mostly reduce the effort required to fix defects, as
measure by code churn. Also in this case, we found that the structure
of the hierarchies might affect more maintenance effort than the mere
use of inheritance. Finally, the lines of code and coupling between classes
represent factors that strongly influence the maintenance effort.

5 Discussion and Implications

The results of our study revealed a number of insights which are worth to fur-
ther discuss. This section elaborates on the analyses conducted and discusses
the key implications of our findings for researchers and practitioners.

5.1 Further Discussion and Analyses

In this respect, there are three main points to discuss.

Relation to Existing Literature. In the first place, it is worth discussing
the way our findings relate to previous research on the matter. As discussed
already in Section 2, various empirical studies have linked implementation
and specification inheritance to source code quality. Some of them, like the
works by Mahmood [2] and Goel and Bathia [41], discovered negative correla-
tions between the use of those reuse instruments and source code quality. Our
results could not corroborate those observations: according to our analyses,
indeed, implementation and specification inheritance are mostly correlated



26 Giammaria Giordano et al.

with positive improvements of source code. As such, we could instead con-
firm the “common wisdom” for which a higher degree of reusability leads to
a higher maintainability of source code [15]. At the same time, we could ex-
tend the set of observations conducted on implementation and specification
inheritance with respect to our previous work [38]: not only those mecha-
nisms tend to decrease the severity of code smells over time, but also other
desirable software maintenance properties, like defect-proneness and effort
to fix defects. Last but not least, the statistical results provide additional
insights to the body of knowledge on software evolution and maintenance
effort estimation. In the former case, our commit-level analysis could provide
finer-grained information on how the adoption of the three considered code
reuse mechanisms evolves over time. In the latter case, instead, the results
of our RQ3 unveiled the actual relation between code reuse and corrective
maintenance—this represents a premier of our study.

Making Sense of the Statistical Data. By definition, our empirical study
had a statistical connotation and aimed at analyzing patterns and correla-
tions extracted through the mining of software repositories. As such, the
relation between code reuse and defect-proneness has been observed quanti-
tatively. The nature of such an analysis naturally brings some considerations
about the reliability of the conclusions provided. In particular, the indepen-
dent variables in our statistical exercise were computed by means of metrics
accounting for their adoption and were assessed against defect-proneness
through statistical correlations. The relations unveiled might therefore due
to spurious correlations among metrics rather than being the result of causal
inference. To account for this potential threat to validity and strengthen the
conclusions of the study, we conducted an additional qualitative analysis
aimed at assessing the relation between code reuse and defects. In partic-
ular, starting from the dataset considered in the study, we (1) computed
the number of cases in which defect-inducing and defect-fixing commits in-
volved the variation of inheritance and delegation metrics and (2) manually
analyzed those cases to better understand the way these metrics can af-
fect defect-proneness of source code. Such an analysis allowed us to verify
more closely which kind of modifications have been applied by developers
in terms of inheritance and delegation and how these led to the variations
of defect-proneness. The analysis was led by the first author of the paper,
who selected the relevant commits and analyzed the diffs between these and
their predecessor. To support the manual investigation, the inspector em-
ployed automated static analysis tools such as RefactoringMiner [104]
and SonarQube [61]—these tools were used to the sole scope of extracting
additional information on the code changes applied within the commits.
Such an additional analysis first revealed that in a non-negligible amount
of cases, i.e., in about 50% of the defect-fixing commits, the changes ap-
plied by developers included modifications that impacted inheritance and
delegation metrics. Perhaps more importantly, those modifications were
instrumental to accommodate the defect-fixing activities. For instance,

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 27

let consider the commit 40689aa of the project JXPath. This commit
addressed a defect concerning the evaluation of strings as boolean ex-
pressions. To fix it, the developer moved methods from the subclasses
CoreOperationEqual and CoreOperationNotEqual to the abstract super-
class CoreOperationCompare, and add a parameter in the super method of
the subclass CoreOperationNotEqual. These operations had the effect of
modifying the implementation inheritance relations of the CoreOperation

hierarchy. This example well shows how code reuse is employed in practice
to reduce the overall complexity of the system and possibly reduce defect-
proneness. Indeed, the developer exploited code reuse to let propogate the
fix to all subclasses that would have possibly been affected by the string
evaluation defect, hence reducing defect-proneness while improving software
maintainability. We observed similar cases in the dataset, particularly in 75%
of the commits where inheritance and delegation metrics varied as a conse-
quence of defect-fixing activities - for the sake of completeness, we report
the details of this qualitative investigation in our online appendix [39]

On Metrics and Their Relation to Defect-Proneness. The last point
to further discuss is concerned with the role of the considered metrics with
respect to their relation to defect-proneness. In this respect, two observations
should be made. In the first place, we discovered that our inheritance and del-
egation metrics, coming from the operationalization of the reusability mech-
anisms used by developers, have a relatively low impact on defect-proneness.
In the second place, we found out that the control variables of our statis-
tical analysis, namely the metrics pertaining to the Chidamber & Kemerer
[22] metric suite, have also a limited connection to defect-proneness. Both
findings are somehow surprising: these metrics were indeed experimented in
plenty of studies on source code quality and researchers have been often an-
alyzing the extent to which they can support the monitoring and prediction
of defect-proneness of source code [9,42].
To provide further, more actionable insights into our findings and better
understand the extent to which our statistical analysis would be actually
corroborated when considering the impact of code quality metrics on de-
fect prediction, we conducted an additional analysis where we (i) built a
defect prediction model and (ii) assessed whether the findings obtained in
the context of RQ2 might have been confirmed.
More specifically, given that our analysis granularity level was the commit
and that we needed to account for the time relations between commits, we
focused on the so-called just-in-time defect prediction [56], that is, the cre-
ation of defect prediction models able to assess the defectiveness of individual
code commits based on the data collected through the analysis of previous
commits.
To make our analysis as precise and sound as possible, we conducted a par-
tial replication of the work by Pascarella et al. [77], who experimented with a
large set of features composed of 24 process, product, and developer-oriented
metrics to capture the defectiveness of code commits. As product metrics, the



28 Giammaria Giordano et al.

original authors used the metrics also employed within our study. Through
this replication, we could therefore assess the role of these metrics when con-
sidering their contribution to defect prediction, other than comparing such a
contribution with respect to additional metrics typically used in defect pre-
diction, hence enlarging our overview on the value of the considered metrics.
While Pascarella et al. [77] mainly focused on a variant of the problem of
just-in-time defect prediction aiming at predicting defective files within com-
mits rather than defective commits, they also compared against a standard
just-in-time defect prediction model, hence enabling an analysis at commit-
level. The reason for relying on this work was threefold. In the first place,
Pascarella et al. [77] released an online appendix with all the scripts used
in their study and documentation that enables the exact replication of their
work: as such, we avoided possible bias due to the re-implementation of the
defect prediction model. Second, one of the authors of the work by Pas-
carella et al. [77] is also a co-author of this submission: as a consequence, we
could exploit his knowledge in case of replication issues. Third, Pascarella et
al. [77] took into account a large amount of metrics having different nature
and coming from previous literature on defect prediction [56,83]: as such,
we could conduct a larger and sound experimentation of how quality met-
rics affect the performance of just-in-time defect prediction. To conduct our
analysis, we performed the following steps:

– For each project considered in our study, we mined all the commits to
compute the 24 process, product, and developer-oriented metrics. Since
the metrics were computed on the files modified within the considered
commits, we aggregated them to have a unique commit-level value for
each metric. This was done using the “group by” operation, considering
the commit hash as the primary key, and applying the mean and median
over all the metrics;

– We merged the information collected with the one available in our
dataset: for each project and for each commit, we combined the 24 pro-
cess, product, and developer-oriented metrics with the inheritance and
delegation metrics;

– We trained and tested a Random Forest classifier, i.e., the best classifier
identified in the work by Pascarella et al. [77], by applying a Time Series
Split validation. This is a time-aware variant of the cross-fold validation
that (i) divides the dataset into K (in our case, K = 10) folds and (ii) in
the kth split, it returns first k folds as train set and the (k+1)th fold as
test set.6

– This validation can be applied when the time order may impact the
results and avoid training the model using future commits to predict
the defectiveness of past commits. The performance of the model was
assessed through multiple evaluation metrics such as precision, recall,
F-Measure, and AUC-ROC.

6https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

TimeSeriesSplit.html

https://orcid.org/0000-0003-2567-440X
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html


On the Adoption and Effects of Source Code Reuse 29

We investigated two predictive configurations. In the first one, we devised a
binary defect prediction model that predicts a commit as defective or not,
i.e., the standard defect prediction scenario. In the second configuration, we
devised a multi-class defect prediction model able to assess how the source
code defectiveness varies over the evolution of the project, i.e., a defect pre-
diction scenario where the task is to foresee the defectiveness trend in terms
of increase, decrease, or stability of the number of defects within a software
project. This latter scenario is closer to the research methods employed in
our study and was set up with the aim of embedding additional evolution-
ary considerations within the defect prediction model and investigating the
contribution of code quality metrics to assess the overall defectiveness of a
software project. From a more technical perspective, the model was devised
to assign a commit to a categorical variable within the set {‘Increased’, ‘De-
creased’, ‘Stable’}, namely the same variables used within the Multinomial
Log-Linear statistical model built to address RQ2.
For both predictive scenarios, we ran the model twice: the first time relying
on all the metrics and the second time relying on all metrics but those
concerned with inheritance and delegation. This was done in an effort to
more closely monitor the impact of the main variables of our work, i.e.,
inheritance and delegation metrics, by quantifying the accuracy gain/drift
achieved when considering them as features of the defect prediction models.
In addition, we also computed the feature importance to verify which metrics
were most relevant for the experimented models.
In terms of results, we could draw multiple considerations. When considering
the binary defect prediction scenario, the performance achieved was close to
94% in terms of F-Measure both when considering the models with and with-
out inheritance and delegation metrics. On the one hand, this result seems
to indicate that the overall defect prediction capabilities cannot be improved
through the use of reusability metrics, hence confirming the results of RQ2,
i.e., inheritance and delegation metrics have a limited connection to defect
proneness. On the other hand, it is worth observing that improving over an
F-Measure of 94% is always particularly tough: in this sense, the contribu-
tion given by inheritance and delegation metrics may be somehow “hidden”
by the high performance of the defect prediction model. As a consequence, a
more reasonable way to assess the contribution of reusability metrics was to
assess the feature importance of the metrics considered by the model relying
on inheritance and delegation indicators. Through this analysis, we discov-
ered that (1) the Random Forest classifier never selects specification and
implementation inheritance among the top-20 features to use for predicting
defective commits in the considered projects; (2) the amount of delegations
was in the top-15 features employed by the model in all the projects; (3)
the specification and implementation inheritance metrics had limited pre-
dictive power, with other inheritance metrics such as NOC and DIT having
a slightly higher impact on the predictions. These findings were perfectly in
line with the observations reported in RQ2: we could indeed further corrob-
orate that the defect-proneness of source code is only partially dependent



30 Giammaria Giordano et al.

on reusability metrics and that, instead, the way developers structure hier-
archies might impact defects more than the specific reusability mechanisms
employed.
In addition, our RQ2 revealed that the control variables used in our sta-
tistical analysis, i.e., the Chidamber-Kemerer metrics, were not statistically
impactful on defect proneness. The defect prediction investigation confirmed
these findings as well. Indeed, the feature importance analysis constantly re-
ported process metrics such as the entropy of changes [45], the scattering
of code changes [28], and commit date [83] as the most impactful features.
In the first place, our findings corroborate previous research showing that
process metrics can better predict defects with respect to traditional code
quality attributes [83] and, as a consequence, provides additional support to
the research field involved in the definition of process and developer-oriented
metrics for defect prediction. Secondly, our research outlines that the use of
code quality metrics, including the inheritance and delegation ones, to assess
the defectiveness of source code may result in suboptimal recommendations
for developers and, for this reason, these metrics should be used for differ-
ent purposes and/or for different use cases: for instance, our previous work
[38] revealed that quality, inheritance, and delegation metrics can positively
contribute to the evolutionary analysis of code smells.
A similar discussion could be done when considering the multi-class predic-
tion model. Also in this case, we found that the models relying and not on
reusability metrics had similar performance in terms of F-Measure (94%),
with inheritance and delegation metrics that were selected by the Random
Forest classifier for all projects. While they had a lower predictive power
than NOC and DIT, we found that both inheritance and delegation met-
rics were more impactful than cohesion, coupling, and complexity metrics,
e.g., LCOM, CBO, WMC. As such, we could further corroborate that qual-
ity, inheritance, and delegation metrics have a limited connection to defect
proneness. Similarly to the previous experiment, the entropy of changes [45],
the scattering of code changes [28], and commit date [83] were the most im-
portant characteristics to predict defective commits, hence suggesting that
evolutionary considerations on the defect proneness of source code should
be made through the analysis of historical information coming from the the
complexity of the development process.
All in all, our findings corroborated the negative results obtained by previous
researchers who experimented with code quality metrics in defect prediction
[47,53,82]. While this is already worrisome for the entire software mainte-
nance and evolution research community, our findings should be considered
as even more worrisome because of the granularity of the analysis conducted.
We indeed elaborated on the change history information of software projects,
analyzing how code quality metrics were related to defect-proneness through-
out the evolution of the considered projects, discovering that none of them
was statistically correlated to the variation of defect-proneness. As such, our
results represent an additional alarm signal for the research community. Our
future research agenda includes experimentations aiming at elaborating on

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 31

code quality metrics and their actual relation to software maintenance. For
the sake of completeness, we report the details of this analysis in our online
appendix [39]

5.2 Implications of the Study

On the basis of the results achieved and the additional discussion points elab-
orated in the previous section, we identified a number of implications for re-
searchers and practitioners.

Fig. 4: Use case scenario in which the monitoring of reusability metrics might
be exploited.

Monitoring Usage Trends to Improve Software Quality. The usage
trends elicited in the context of RQ1 revealed various forms in which code
reusability mechanisms are employed throughout software evolution, while
the results obtained in RQ2 and RQ3 - and the additional qualitative
analysis discussed in Section 5.1 - pointed out the benefits reusability may
have to reduce both risks connected to poor software reliability and effort
required for corrective maintenance activities.
Altogether, these findings seem to suggest that an advanced knowledge on
how to improve software quality might be obtained by exploiting precious
pieces of information coming from the analysis of the change history of soft-
ware projects. For instance, we envision the definition of monitoring tech-
niques that, by exploiting the way developers use to adopt code reusability



32 Giammaria Giordano et al.

mechanisms, may recommend the most appropriate actions to conduct while
performing corrective maintenance. Similarly, we can envision the definition
of novel approaches based on nudge-theory [14] to stimulate developers to-
ward the more frequent or most appropriate adoption of code reuse to reduce
the overall defect-proneness of source code. To make our conjectures more
tangible, let us consider the scenario depicted in Figure 4, which represents
the way we envision a monitoring system may support developers during
software maintenance and evolution. More specifically, suppose that a sys-
tem ‘S’ contains a module ‘A’ having (1) multiple submodules, i.e., ‘B’, ‘C’,
‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’ and ‘L’ in Figure 4, each either directly or indirectly
inheriting from ‘A’; (2) some operations through which the submodules dele-
gate operations to ‘A’. In such a scenario, a regular monitoring of reusability
metrics or the prediction of usage trends may allow the developer to observe
or predict the way the inheritance and delegation relations vary over time,
possibly detecting or even preventing the increasing complexity affecting ‘A’
and its submodules, other than the presence of suboptimal design decisions
that would require some refactoring actions.
For instance, suppose that in the scenario proposed in Figure 4 a moni-
toring system realizes that the amount of functionalities provided by ‘A’ is
steadily increasing, with the frequency of ‘A’ being reused decreasing in the
submodules—this case may indicate that the system is in the descending
path of a ‘increasing-decreasing’ implementation inheritance pattern iden-
tified in RQ1. This may indicate a suboptimal use of inheritance and del-
egation: ‘A’ offers more services, but the submodules inheriting from it do
not fully exploit them, suggesting that they are not properly exploiting the
inheritance mechanism—note that a similar scenario has been associated
with multiple risks for software reliability, including an increasing change-
and defect-proneness [74] and a higher likelihood of the system being ma-
liciously attacked because of the suboptimal visibility granted to fields and
operations [98]. By monitoring reusability metrics, multiple insights may be
provided. On the one hand, developers may be informed of the evolution
of reusability metrics and exploit such an information to schedule quality
assurance sessions aiming at reducing quality and security concerns, e.g.,
code review targeting ‘A’ and the way the submodules interact with it. On
the other hand, automated instruments might exploit reusability metrics to
recommend refactoring actions aiming at simplifying the hierarchy: for in-
stance, the situation described above, i.e., submodules not fully exploiting
the features of ‘A’, may suggest the presence of a Refused Bequest smell [35],
whose refactoring may either consist of defining a new superclass only con-
taining the fields and operations that are actually needed to the submodules,
i.e., Extract Superclass refactoring, or replacing the inheritance mechanism
with delegations, Replace Inheritance with Delegation refactoring.
On the basis on the considerations above, the multifaceted ways our findings
can be exploited therefore represent a call for researchers in the field of
software quality and software maintenance and evolution.

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 33

Code Reuse and Its Adoption: Two Sides of the Same Coin. Our
empirical investigation (RQ2 and RQ3) revealed a dichotomy between
the concept of code reusability and its actual application. In particular,
we found that while reusability itself is a useful instrument to improve
software quality and reduce maintenance effort, an inappropriate adoption
of these mechanisms may have negative implications. This is indeed the
case observed with DIT and NOC in our statistical exercise, two well-known
metrics that measure the extent of the hierarchical relations among classes.
We found that increases in terms of hierarchical relations lead to negative
variations of the defect-proneness of software artifacts. As such, we argue
the need for further research, especially in terms of software refactoring
optimization. Researchers are indeed called to better investigate the reasons
behind the misuse of inheritance and delegation mechanisms and when
and why these can deteriorate software quality. These investigations would
be instrumental to the definition of novel refactoring techniques that may
support developers while optimizing hierarchies of classes.
At the same time, our findings provide two key implications for practition-
ers. On the one hand, an improved knowledge of the usage patterns might
be beneficial to understand the way code reusability evolves in their own
projects: practitioners would therefore put in place monitoring instruments
to verify the evolution of inheritance and delegation uses and assess how
the usage trends co-evolves with software quality. On the other hand, our
results might be exploited by practitioners to reason on the use and misuse
of inheritance and delegation mechanisms, other than on how the creation of
complex hierarchies might possibly worsen source code quality and increase
corrective maintenance effort.

Prediction of Code Quality Properties: The Road Ahead. Another
aspect to consider is the one concerned with the prediction of code quality
properties. In this respect, the findings coming from our research questions
altogether contribute to increase the research community awareness with
respect to the need for novel code quality prediction techniques and
tools. First, the traditional code quality metrics employed in prediction
models have little to no correlation to defect-proneness. Second, code
reusability mechanisms might potentially boost the code quality analysis
and possibly being used within predictive modeling techniques. In addition,
the usage trends can be exploited to recommend which of the features
would be more worth to use in specific moments of the evolution. All
these aspects, emerged from our analyses, represent future perspectives
that our research community would like to further investigate. We envision
multiple experimentations aiming at revisiting previous findings obtained in
literature to account for the evolutionary nature of software - the research
method employed in our study, which took the change history information
into account, may indeed be generalized to understand how different code
quality metrics evolve over time and how they impact software quality. In
our opinion, analyses of this type would potentially lead to revolutionize



34 Giammaria Giordano et al.

code quality as we know, revealing insights driven by the actual adoption
of code metrics by developers.
At the same time, we envision novel techniques that, by analyzing the evolu-
tionary development context, may feed predictive models with the most rele-
vant metrics to predict source code quality. Also in this case, we believe that
an evolution- and context-aware view of predictive software maintenance
might potentially substantially boost the support that we, as researchers,
may provide to practitioners.
These observations represent the road ahead of software quality prediction
models and are part of our future research agenda on the matter.

On the Teaching of Reusability Mechanisms. From an educational per-
spective, our findings provided multiple insights that may be useful to guide
or tune the teaching of reusability mechanisms. In the first place, the find-
ings coming from RQ1 reported that inheritance and delegation instruments
typically follow four well-defined adoption patterns, each of them having im-
plications on source code quality and being motivated by contextual develop-
ment factors. For instance, we observed that a “decreasing-increasing” pat-
tern in terms of inheritance adoption might be motivated by the substantial
rework required to include third-party libraries or adapt the architecture of
the system being developed and may naturally favor these complex modifica-
tions. As a consequence, teaching the contextual circumstances making these
patterns instrumental for software maintenance and evolution tasks may po-
tentially increase the awareness of the next generation of software engineers
toward the adoption of reusability mechanisms, other than increasing their
willingness to actually employ them in practice. In other terms, rather than
teaching reusability on its own, our findings suggest that an improved way of
teaching those principles might involve more complex scenarios where stu-
dents are exposed to contextual situations requiring them to understand the
benefits and drawbacks of reusability, other than the impact that reusability
may have on other evolutionary tasks.
Also, RQ2 showed that the defect-proneness of source code is not influ-
enced by the reliance on inheritance and delegation mechanisms, but rather
by the specific adoption of these mechanisms. In our opinion, this is a key
finding from the educational perspective: we argue that case-based learning
[32] might be a notable advance to let students reason on the effects that
reusability may have in specific use cases, hence having a tangible and con-
crete understanding of the implications of reusability for software quality.
In this sense, the use of gamification [16] might further stimulate the capa-
bilities of students to distinguish when and why reusability may represent
a valuable tool to improve software quality and reduce risks to software re-
liability. On a similar note, the results of RQ3 indicated that the adoption
of inheritance and delegation may reduce the effort required to fix defects.
Also in this case, the use of case-based learning and gamification may allow
students to work on specific, ad-hoc use cases where they are required to fix

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 35

defects through the use of reusability mechanisms and assess the impact of
their actions on software quality and reliability.
It is our hope that the insights of our study can be of inspiration for edu-
cators, who may partially redesign their courses to account for our findings,
and software engineering education researchers, who may further investigate
the way teaching reusability differently impacts the students’ abilities to use
inheritance and delegation instruments in practice.

6 Threats To Validity

A number of potential threats might have biased the study. This section dis-
cusses them and reports the mitigation strategies applied.

Threats to Construct Validity. Threats in this category refer to a possi-
ble mismatch between theory and observation. In this respect, the selection of
the dataset represents a crucial point for which there are various observations
and remarks to make. We used Defects4J (version 2.0.0), which has been al-
ready widely used by the research community in several previous studies (e.g.,
[52,78,94]) and that reduced possible bias due to the presence of uncontrolled
conditions, e.g., tangled changes [48], allowing us to investigate the impact of
reuse mechanisms on defect-proneness and maintenance effort more precisely.

As for the defects considered, the Git repositories of the considered
projects may contain more issues than those reported inDefects4J. However,
there are two observations to make in this respect. First, a notable amount
of these issues do not actually pertain to defects but to other maintenance
and evolution tasks. For instance, let us consider the case of the commons-
collections project, i.e., the project having the least amount of defects in
our study. According to the issue tracker,7 the project has a total of 787 is-
sues (filtering by Type=‘All’ and Status=‘All’): of those, only 374 pertain
to defects (filtering by Type=‘Bug’ and Status=‘All’), while the remaining
413 issues refer to enhancements, implementation of new features, and other
evolutionary tasks. As such, the set of candidate defects that we might have
considered is much lower in size with respect to the raw data reported on the
issue trackers. In the second place, a number of issues do not report reliable
information. Still taking the commons-collections project as an example,
we noticed that 159 of the issues marked as ‘Closed’ or ‘Resolved’ (filtering
by Type=‘Bug’ and Status=‘Resolved, Closed’) report the strings “Invalid”,
“Not a Bug”, “Won’t Fix”, “Cannot Reproduce”, and “Duplicate” as actual
resolution, hence indicating that these defects were false positives, not taken
into account by the developers, or already addressed as part of duplicated
issue reports. As a conclusion, we found out that issue trackers contain a non-
negligible amount of noise that would require substantial filtering and data
quality procedures, which is indeed what Defects4J guarantees.

7The commons-collections issue tracker: https://issues.apache.org/jira/

projects/COLLECTIONS/issues/.

https://issues.apache.org/jira/projects/COLLECTIONS/issues/
https://issues.apache.org/jira/projects/COLLECTIONS/issues/


36 Giammaria Giordano et al.

Still reasoning on the number of issues reported on the issue trackers of the
considered systems, it is worth remarking that the candidate set of defects was
limited by the types of defects and the types of fixes performed. We should
distinguish multiple cases. First, some defects may not pertain to production
code, e.g., test code defects, or might relate to the update of third-party li-
braries or configuration files. As explained in Section 3.1, these defects were not
considered by Defects4J and, as a consequence, by our work. However, these
defects would have not created any noise for our analysis: indeed, our work
aims at understanding how reusability metrics affect the defect proneness of
the production code and, for this reason, all the defects that are not related to
production code cannot affect our measurements. Second, some defects might
not be verifiable or not traceable, even though they relate to the production
code. As for the former, they might either represent true defects that devel-
opers did not have enough time to deal with or false positives, namely defects
that developers ignored and that were marked as ‘Resolved’ or left opened in
the issue tracker without any further action: considering these defects in our
analysis would have caused some degree of uncertainty in terms of number of
defects considered and, for this reason, we would have likely introduced some
bias. As for the latter, these are defects that we could not trace back in the
history of the considered projects and, as such, we could not technically ana-
lyze without approximation or heuristics that would have, again, introduced
some degree of uncertainty. Last but not least, the candidate set of defects
might have been limited by the types of fixing activities: Defects4J indeed
discards defects whose fixes were performed along with other maintenance and
evolution activities, e.g., tangled changes. Among the various cases discussed,
this latter was the most critical in our case, as it refers to real defects that
were not considered in the scope of the analysis and that might have biased
the computation of the number of defects in the change history of the projects
considered. A systematic assessment of the noise caused by these missing de-
fects would have required the definition of dedicated data quality protocols
through which we could have (i) systematically classified real defects among
those not considered by Defects4J; (ii) analyzed the corresponding fixes to
understand their nature; and (iii) assessed the extent to which our findings
varied when considering the newly classified defects. To the best of our knowl-
edge, the current literature does not offer any (semi-)automated instrument to
perform a similar assessment nor guidelines to follow. We deemed the research
investigation and methods required to perform such a systematic assessment
as out of scope. Nonetheless, to partially analyze the potential noise given by
those missing defects, we have attempted to estimate the noise of our analysis
in the case of the commons-collections project through a simple, likely
suboptimal approach based on text mining and manual analysis. We first (i)
mined the summary of each of the 215 marked as ‘Closed’ or ‘Resolved’ de-
fects having as resolution the string “Fixed”, and (ii) used a keyword-based
approach to classify those issues according to their type. More specifically,
we classified an issue as ‘test-related’ if the summary contained the keyword
“test”, as ‘documentation-related’ if it contained keywords such as “JavaDoc”

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 37

and “comment”, and as ‘configuration-related’ if it contained keywords such
as “JDK”, “compil*”, “build”, and “CI”. In this way, we could estimate the
amount of issues whose fixes did not modify the production code, hence cov-
ering the first case described above. Afterwards, we manually went through
the summaries of the remaining issues to assess how many of them revolved
around modifications that were not verifiable, not traceable, or that performed
modifications other than defect fixes—hence covering the other possible cases
of noise. As a result, we discovered that 181 issues were not considered within
Defects4J. Among them, 1% referred to Continuous Integration concerns,
7% to JDK compilation issues, 13% to test code defects, e.g., flaky tests, and
17% to documentation issues, e.g., unclear JavaDoc comments. Hence, 69 of
them (38%) of the discarded defects did not concern production code. From
the subsequent manual analysis, we discovered that 21 were untraceable (19%),
while 84 were issues raised by specific users that the maintainers of the sys-
tem solved by recommending configuration changes, hence not making any
change to the system itself (46%). The remaining 7 defects were not correctly
classified by the keyword-based approach and pertaining to documentation or
configuration issues - in these cases, the summaries reported keywords differ-
ent from those used by the classifier, e.g., “typo”. Perhaps more interestingly,
we found that 34 defects matched the requirements of Defects4J: yet, six
were reported between November 2020 and June 2023, namely after the re-
lease of Defects4J 2.0.0 (issued on September 15, 2020), while 24 were part
of the defects deprecated by Defects4J. As such, the set of defects actu-
ally analyzable was four, which is exactly the number of defects we analyzed.
While such an additional analysis was not performed on all the considered
systems, it let us provide some insights on the noise possibly affecting our
results. While we acknowledge that our study took into account only a subset
of defects having specific properties, it actually contains most of the real de-
fects that should be taken into account. The noise caused by the presence of
additional issues on the issue trackers is likely to be limited, as most defects
and corresponding fixes are not related to production code. In conclusion, we
argue that our conservative approach in terms of defect selection, i.e., that of
relying on the defects pointed out by Defects4J, represents the best option
to properly measure the extent to which reusability mechanisms impact the
defect proneness of source code. As a side result of our additional analysis, we
could also further corroborate the validity of Defects4J - which we consider
as a valuable outcome for our research community.

A second threat to validity relates to the selection of the metric used to op-
erationalize maintenance effort. We used code churn [71]: we are aware that this
metric can only proxy the actual effort spent when maintaining source code,
yet this choice is required in our case because of the unavailability of precise
data regarding the maintenance effort in our dataset. Nonetheless, proxy mea-
surements are still used and considered in the field[87]. The tool we used to
extract metrics, e.g., reusability or CK metrics, represents another potential
threat to validity. We used tools already validated and used by the research
community [38,97]. Finally, as mentioned in Section 3.1, in Defects4j a sin-



38 Giammaria Giordano et al.

gle bug can be introduced by multiple factors, but its resolution will always
occur within a Java file. Thus, to avoid possible threats to contraction valid-
ity, we discard commits that introduced defects caused by issues not involving
source code. This allowed us to only focus on defects introduced and resolved
through changes to the source files.

Threats to Internal Validity. These threats refer to factors that might
have impacted the results of the study. In our context, these might be con-
nected to the selection of the metrics used to build the statistical models.
On the one hand, we were interested in understanding the role of reusability
metrics and, for this reason, we operationalized implementation and specifi-
cation inheritance, other than delegation, following their exact definition. On
the other hand, we used control variables previously shown to be significantly
correlated to source code quality [100,99,21,26]. Through these actions, we
could rely on a set of independent variables and control metrics which come
from either our working hypotheses or the state of the art.

Threats to Conclusion Validity. Threats related to this category refer
to the selection and the use of the statistical test. When addressing RQ2 we
modeled the problem using a Multinomial Logistic Linear model [103], while
we built a Generalized Linear model [33] in the context of RQ3. These choices
come from the nature of our response variables, i.e., multiclass and continu-
ous, respectively. Moreover, the research community used these types of model
in similar contexts [18,38,57]. The empirical analysis conducted in this study
had a quantitative connotation and, in particular, we sought to understand
the relation between code reusability and defects through statistical model-
ing. Nonetheless, we are aware that more qualitative investigations aiming at
linking the root cause of defects with the reuse mechanisms might potentially
reveal further insights into the matter. While a more complete overview of
this type is part of our future research agenda, in the context of this work
we already provided some preliminary insights through the manual analysis
discussed in Section 5. Such an analysis was in line with the statistical con-
clusions drawn when addressing RQ2 and RQ3, increasing our confidence in
the results reported in the paper.

Threats to External validity. As for the generalizability of the results,
the main threat might be connected to the target of our work. In particular,
we focused on 12 Java projects having more than 44,900 commits and coming
from the Defects4J dataset. As such, our work was based on the analyses
conducted on a sample: our generalization strategy can be identified within
the sample-based generalization strategies proposed by Wieringa and Daneva
[109]. In particular, among those strategies, the “statistical learning” seems
to be the most appropriate. Wieringa and Daneva [109] reported that the
“descriptions of statistical sample phenomena can be used to predict similar
phenomena in new samples. [...]. The goal is not to generalize to a population,
but to generalize to the next few cases”. This strategy is basically in line with
the generalizing by similarity principle described by Ghaisas et al. [37]. When
contextualizing those strategies in our case, it is likely that similar results

https://orcid.org/0000-0003-2567-440X


On the Adoption and Effects of Source Code Reuse 39

might be obtained in projects having similar characteristics with respect to
those analyzed in our work (see Table 1). Therefore, we cannot claim the
generalizability of our findings to projects having different properties or even
written in different programming languages. Replications in these contexts
would still be desirable and already part of our future research agenda.

7 Conclusion

In this paper, we empirically assessed the evolution of reusability metrics and
their impact on defect-proneness and maintenance effort to fix defects. To
conduct our analysis, we focused on two specific reusability metrics such as
inheritance and delegation. Our empirical study was conducted on the projects
available in Defects4J, a well-known dataset reporting a set of Java projects
along with their own defects. Notably, we conducted the study using a commit-
level granularity, in an effort of providing finer-grained observations into the
relevance of reusability mechanisms for handling defects.

In the first place, the results let emerge five usage patterns through which
specification inheritance, implementation inheritance, and delegation are used
throughout software evolution. Secondly, we discovered that the reusability
mechanisms are, overall, associated to a decrease of defect-proneness and main-
tenance effort. At the same time, we found out that other inheritance metrics,
like NOC and DIT, relate more to the dependent variables, hence suggest-
ing that it is not the reuse itself that influences defects, but rather the way
these mechanisms are used by developers to create hierarchies. These findings
raised a number of implications for researchers and practitioners, especially
with respect to the need for (1) novel code quality checkers that might moni-
tor how developers adopt reuse mechanisms and how these impact on source
code quality; (2) revising previously proposed code quality prediction models
on the basis of how code reuse evolves over time.

To sum up, this article proposed the following contributions:

1. The first large-scale empirical study conducted at commit-level to under-
stand how reusability mechanisms are employed by developers over time;

2. Statistical insights into the relation between three code reuse mechanisms,
i.e., implementation inheritance, specification inheritance, and delegation,
and defect-proneness of source code, both considering the likelihood of code
being defective and the effort required to fix defects;

3. A publicly available replication package [39], which releases data and scripts
used to conduct this study and that can be used by fellow researchers to
replicate the study and build on top of our findings.

Our future research agenda will be devoted to the replication of the anal-
yses conducted on different datasets—including projects written in different
programming languages—and considering a larger amount of code reuse mech-
anisms, e.g., design patterns. In addition, we plan to conduct qualitative in-
vestigations to corroborate the findings of the study. Last but not least, we



40 Giammaria Giordano et al.

will work toward the definition of novel code quality monitoring systems and
prediction models that exploit the results of our empirical study to improve
the support provided to practitioners.

Declaration of Interest

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported
in this paper.

Data Availability Statement

The manuscript has data included as electronic supplementary material.
In particular: datasets generated and analyzed during the current study,
detailed results, as well as scripts and additional resources useful for re-
producing the study are available as part of our online appendix https:

//giammariagiordano.github.io/On_the_Adoption_and_Effects_of_

Source_Code_Reuse_on_Defect_Proneness_and_Maintenance_Effort/.

Credits

Giammaria Giordano: Formal analysis, Investigation, Data Curation, Val-
idation, Writing - Original Draft, Visualization. Gerardo Festa: Data Cura-
tion, Validation, Writing - Original Draft, Visualization. Gemma Catolino:
Supervision, Resources, Writing - Review & Editing. Fabio Palomba: Super-
vision, Resources, Writing - Review & Editing. Filomena Ferrucci: Supervi-
sion, Resources, Writing - Review & Editing.Carmine Gravino: Supervision,
Resources, Writing - Review & Editing.

Acknowledgements Gemma is partially supported by the European Commission grant
no. 825040 (RADON). Fabio is supported by the Swiss National Science Foundation through
the SNF Project No. PZ00P2 186090 (TED).

References

1. e Abreu, F.B., Melo, W.: Evaluating the impact of object-oriented design on software
quality. In: Proceedings of the 3rd international software metrics symposium, pp.
90–99. IEEE (1996)

2. Albalooshi, F., Mahmood, A.: A comparative study on the effect of multiple inher-
itance mechanism in java, c++, and python on complexity and reusability of code.
International Journal of Advanced Computer Science and Applications 8(6), 109–116
(2017)

3. Allison, P.: When can you safely ignore multicollinearity. Statistical horizons 5(1), 1–2
(2012)

https://orcid.org/0000-0003-2567-440X
https://giammariagiordano.github.io/On_the_Adoption_and_Effects_of_Source_Code_Reuse_on_Defect_Proneness_and_Maintenance_Effort/
https://giammariagiordano.github.io/On_the_Adoption_and_Effects_of_Source_Code_Reuse_on_Defect_Proneness_and_Maintenance_Effort/
https://giammariagiordano.github.io/On_the_Adoption_and_Effects_of_Source_Code_Reuse_on_Defect_Proneness_and_Maintenance_Effort/


On the Adoption and Effects of Source Code Reuse 41

4. Ampatzoglou, A., Chatzigeorgiou, A., Charalampidou, S., Avgeriou, P.: The effect
of gof design patterns on stability: a case study. IEEE Transactions on Software
Engineering 41(8), 781–802 (2015)

5. Amrit, C., Van Hillegersberg, J.: Exploring the impact of soclo-technlcal core-periphery
structures in open source software development. journal of information technology
25(2), 216–229 (2010)

6. Anbalagan, P., Vouk, M.: On predicting the time taken to correct bug reports in open
source projects. In: IEEE International Conference on Software Maintenance, pp. 523–
526 (2009)

7. Arcelli Fontana, F., Mäntylä, M.V., Zanoni, M., Marino, A.: Comparing and exper-
imenting machine learning techniques for code smell detection. Empirical Software
Engineering 21(3), 1143–1191 (2016)

8. Arnold, K., Gosling, J., Holmes, D.: The Java programming language. Addison Wesley
Professional (2005)

9. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design metrics
as quality indicators. IEEE Transactions on software engineering 22(10), 751–761
(1996)

10. Bieman, J.M., Zhao, J.X.: Reuse through inheritance: A quantitative study of c++
software. ACM SIGSOFT Software Engineering Notes 20(SI), 47–52 (1995)

11. Bird, C., Nagappan, N., Murphy, B., Gall, H., Devanbu, P.: Don’t touch my code!
examining the effects of ownership on software quality. In: Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering, pp. 4–14 (2011)

12. Bougie, G., Treude, C., German, D.M., Storey, M.A.: A comparative exploration of
freebsd bug lifetimes. In: IEEE Working Conference on Mining Software Repositories
(MSR), pp. 106–109. IEEE (2010)

13. Breesam, K.M.: Metrics for object-oriented design focusing on class inheritance metrics.
In: Inter. conference on dependability of computer systems (DepCoS-RELCOMEX’07),
pp. 231–237. IEEE (2007)

14. Brown, C.: Digital nudges for encouraging developer actions. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), pp. 202–205. IEEE (2019)

15. Bruegge, B., Dutoit, A.H.: Object-Oriented Software Engineering Using UML, Pat-
terns, and Java, 3rd edn. Prentice Hall, USA (2009)

16. Caponetto, I., Earp, J., Ott, M.: Gamification and education: A literature review. In:
European Conference on Games Based Learning, vol. 1, p. 50. Academic Conferences
International Limited (2014)

17. Catolino, G., Palomba, F., Fontana, F.A., De Lucia, A., Zaidman, A., Ferrucci, F.:
Improving change prediction models with code smell-related information. Empirical
Software Engineering 25(1), 49–95 (2020)

18. Catolino, G., Palomba, F., Tamburri, D.A., Serebrenik, A.: Understanding community
smells variability: A statistical approach. In: International Conference on Software
Engineering: Software Engineering in Society, p. 77–86 (2021)

19. Chawla, S., Nath, R.: Evaluating inheritance and coupling metrics. International Jour-
nal of Engineering Trends and Technology (IJETT) 4(7), 2903–2908 (2013)

20. Cherkaoui, O., Obaid, A., Serhouchni, A., Simoni, N.: Qos metrics tool using man-
agement by delegation. In: IEEE Network Operations and Management Symposium,
vol. 3, pp. 836–839. IEEE (1998)

21. Chhikara, A., Chhillar, R., Khatri, S.: Evaluating the impact of different types of
inheritance on the object oriented software metrics. International Journal of Enterprise
Computing and Business Systems 1(2), 1–7 (2011)

22. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on software engineering 20(6), 476–493 (1994)

23. Craig, I.D.: Inheritance and delegation. In: Object-Oriented Programming Languages:
Interpretation, pp. 83–128. Springer (2007)

24. Dalla Palma, S., Di Nucci, D., Palomba, F., Tamburri, D.A.: Within-project defect
prediction of infrastructure-as-code using product and process metrics. IEEE Trans-
actions on Softw. Engineer. pp. 1–1 (2021)



42 Giammaria Giordano et al.

25. Daly, J., Brooks, A., Miller, J., Roper, M., Wood, M.: The effect of inheritance on
the maintainability of object-oriented software: an empirical study. In: Proceedings of
International Conference on Software Maintenance, pp. 20–29. IEEE (1995)

26. Daly, J., Brooks, A., Miller, J., Roper, M., Wood, M.: Evaluating inheritance depth on
the maintainability of object-oriented software. Empirical Software Engineering 1(2),
109–132 (1996)

27. De Lucia, A., Deufemia, V., Gravino, C., Risi, M.: Design pattern recovery through
visual language parsing and source code analysis. Journal of Systems and Software
82(7), 1177–1193 (2009)

28. Di Nucci, D., Palomba, F., De Rosa, G., Bavota, G., Oliveto, R., De Lucia, A.: A
developer centered bug prediction model. IEEE Transactions on Software Engineering
44(1), 5–24 (2017)

29. Di Nucci, D., Palomba, F., Tamburri, D.A., Serebrenik, A., De Lucia, A.: Detecting
code smells using machine learning techniques: are we there yet? In: International
conference on software analysis, evolution and reengineering (SANER), pp. 612–621.
IEEE (2018)

30. Do, L.N.Q., Wright, J., Ali, K.: Why do software developers use static analysis tools?
a user-centered study of developer needs and motivations. IEEE Transactions on
Software Engineering (2020)

31. Durieux, T., Martinez, M., Monperrus, M., Sommerard, R., Xuan, J.: Automatic repair
of real bugs: An experience report on the defects4j dataset (2015)

32. Eshach, H., Bitterman, H.: From case-based reasoning to problem-based learning. Aca-
demic Medicine 78(5), 491–496 (2003)

33. Faraway, J.J.: Extending the linear model with R: generalized linear, mixed effects and
nonparametric regression models. Chapman and Hall/CRC (2016)

34. Fontana, F.A., Maggioni, S., Raibulet, C.: Design patterns: a survey on their micro-
structures. Journal of Software: Evolution and Process 25(1), 27–52 (2013)

35. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley Pro-
fessional (2018)

36. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Abstraction and
reuse of object-oriented design. In: European Conference on Object-Oriented Pro-
gramming, pp. 406–431. Springer (1993)

37. Ghaisas, S., Rose, P., Daneva, M., Sikkel, K., Wieringa, R.J.: Generalizing by similarity:
Lessons learnt from industrial case studies. In: 2013 1st International Workshop on
Conducting Empirical Studies in Industry (CESI), pp. 37–42. IEEE (2013)

38. Giordano, G., Fasulo, A., Catolino, G., Palomba, F., Ferrucci, F., Gravino, C.: On
the evolution of inheritance and delegation mechanisms and their impact on code
quality. In: IEEE Inter. Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 1–12 (2022)

39. Giordano, G., Festa, G., Catolino, G., Palomba, F., Ferrucci, F., Gravino, C.: Web Ap-
pendix of the paper. https://giammariagiordano.github.io/On_the_Adoption_and_

Effects_of_Source_Code_Reuse_on_Defect_Proneness_and_Maintenance_Effort/.
Online

40. Giordano, G., Festa, G., Catolino, G., Palomba, F., Ferrucci, F., Gravino, C.: On the
adoption and effects of source code reuse on defect proneness and maintenance effort.
arXiv preprint arXiv:2208.07471 (2022)

41. Goel, B.M., Bhatia, P.K.: Analysis of reusability of object-oriented systems using
object-oriented metrics. ACM SIGSOFT Software Engineering Notes 38(4), 1–5 (2013)

42. Gyimóthy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics on
open source software for fault prediction. IEEE Transactions on Software engineering
31(10), 897–910 (2005)

43. Haefliger, S., Von Krogh, G., Spaeth, S.: Code reuse in open source software. Manage-
ment science 54(1), 180–193 (2008)

44. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature re-
view on fault prediction performance in software engineering. IEEE Transactions on
Software Engineering 38(6), 1276–1304 (2011)

45. Hassan, A.E.: Predicting faults using the complexity of code changes. In: 2009 IEEE
31st international conference on software engineering, pp. 78–88. IEEE (2009)

https://orcid.org/0000-0003-2567-440X
https://giammariagiordano.github.io/On_the_Adoption_and_Effects_of_Source_Code_Reuse_on_Defect_Proneness_and_Maintenance_Effort/
https://giammariagiordano.github.io/On_the_Adoption_and_Effects_of_Source_Code_Reuse_on_Defect_Proneness_and_Maintenance_Effort/


On the Adoption and Effects of Source Code Reuse 43

46. Hayes, J.H., Patel, S.C., Zhao, L.: A metrics-based software maintenance effort model.
In: Eighth European Conference on Software Maintenance and Reengineering, 2004.
CSMR 2004. Proceedings., pp. 254–258. IEEE (2004)

47. He, P., Li, B., Liu, X., Chen, J., Ma, Y.: An empirical study on software defect predic-
tion with a simplified metric set. Information and Software Technology 59, 170–190
(2015)

48. Herzig, K., Just, S., Zeller, A.: The impact of tangled code changes on defect prediction
models. Empirical Software Engineering 21(2), 303–336 (2016)

49. Hosseini, S., Turhan, B., Gunarathna, D.: A systematic literature review and meta-
analysis on cross project defect prediction. IEEE Transactions on Software Engineering
45(2), 111–147 (2017)

50. Huston, B.: The effects of design pattern application on metric scores. Journal of
Systems and Software 58(3), 261–269 (2001)

51. Jalender, B., Govardhan, A., Premchand, P.: Designing code level reusable software
components. International Journal of Software Engineering & Applications 3(1), 219
(2012)

52. Jiang, J., Xiong, Y., Xia, X.: A manual inspection of defects4j bugs and its implications
for automatic program repair. Sci. China Inf. Sci. 62(10), 200102:1–200102:16 (2019)

53. Jureczko, M.: Significance of different software metrics in defect prediction. Software
Engineering: An International Journal 1(1), 86–95 (2011)

54. Jureczko, M., Madeyski, L.: Towards identifying software project clusters with regard
to defect prediction. In: International conference on predictive models in software
engineering, pp. 1–10 (2010)

55. Jureczko, M., Spinellis, D.: Using object-oriented design metrics to predict software de-
fects. Models and Methods of System Dependability. Oficyna Wydawnicza Politechniki
Wroc lawskiej pp. 69–81 (2010)

56. Kamei, Y., Shihab, E., Adams, B., Hassan, A.E., Mockus, A., Sinha, A., Ubayashi, N.:
A large-scale empirical study of just-in-time quality assurance. IEEE Transactions on
Software Engineering 39(6), 757–773 (2012)

57. Lambiase, S., Catolino, G., Tamburri, D.A., Serebrenik, A., Palomba, F., Ferrucci,
F.: Good fences make good neighbours? on the impact of cultural and geographical
dispersion on community smells. In: IEEE/ACM International Conference on Software
Engineering: Software Engineering in Society (ICSE-SEIS), p. to appear. ACM (2022)

58. Lange, B.M., Moher, T.G.: Some strategies of reuse in an object-oriented program-
ming environment. In: Proceedings of the SIGCHI conference on Human factors in
computing systems, pp. 69–73 (1989)

59. Leach, R.J.: Software metrics and software maintenance. Journal of Software Mainte-
nance: Research and Practice 2(2), 133–142 (1990)

60. Lehman, M.M.: Laws of software evolution revisited. In: European Workshop on Soft-
ware Process Technology, pp. 108–124. Springer (1996)

61. Lenarduzzi, V., Pecorelli, F., Saarimaki, N., Lujan, S., Palomba, F.: A critical com-
parison on six static analysis tools: detection, agreement, and precision. Journal of
Systems and Software p. 111575 (2022)

62. Lieberman, M.G., Morris, J.D.: The precise effect of multicollinearity on classification
prediction. Multiple Linear Regression Viewpoints 40(1), 5–10 (2014)

63. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems (TOPLAS) 16(6), 1811–1841 (1994)

64. Liu, J., Zhou, Y., Yang, Y., Lu, H., Xu, B.: Code churn: A neglected metric in effort-
aware just-in-time defect prediction. In: ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pp. 11–19 (2017)

65. Mal, S., Rajnish, K.: New quality inheritance metrics for object-oriented design. In-
ternational Journal of Software Engineering and Its Applications 7(6), 185–200 (2013)

66. Mantyla, M., Vanhanen, J., Lassenius, C.: A taxonomy and an initial empirical study
of bad smells in code. In: International Conference on Software Maintenance (ICSM),
pp. 381–384. IEEE (2003)

67. Martinez, M., Durieux, T., Sommerard, R., Xuan, J., Monperrus, M.: Automatic repair
of real bugs in java: A large-scale experiment on the defects4j dataset. Empirical
Software Engineering 22(4), 1936–1964 (2017)



44 Giammaria Giordano et al.

68. McIntosh, S., Adams, B., Nguyen, T.H., Kamei, Y., Hassan, A.E.: An empirical study
of build maintenance effort. In: 2011 33rd International Conference on Software Engi-
neering (ICSE), pp. 141–150. IEEE (2011)

69. Mishra, R., Sureka, A.: Mining peer code review system for computing effort and
contribution metrics for patch reviewers. In: IEEE Workshop on mining unstructured
data, pp. 11–15. IEEE (2014)

70. Munro, M.J.: Product metrics for automatic identification of” bad smell” design prob-
lems in java source-code. In: IEEE International Software Metrics Symposium (MET-
RICS’05), pp. 15–15. IEEE (2005)

71. Munson, J.C., Elbaum, S.G.: Code churn: A measure for estimating the impact of code
change. In: Proceedings. International Conference on Software Maintenance (Cat. No.
98CB36272), pp. 24–31. IEEE (1998)

72. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect
density. In: International conference on Software engineering, pp. 284–292 (2005)

73. O’brien, R.M.: A caution regarding rules of thumb for variance inflation factors. Qual-
ity & quantity 41(5), 673–690 (2007)

74. Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., De Lucia, A.: On the
diffuseness and the impact on maintainability of code smells: a large scale empirical
investigation. Empirical Software Engineering 23(3), 1188–1221 (2018)

75. Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D., De Lucia, A.:
Mining version histories for detecting code smells. IEEE Transactions on Software
Engineering 41(5), 462–489 (2014)

76. Palomba, F., Zanoni, M., Fontana, F.A., De Lucia, A., Oliveto, R.: Toward a smell-
aware bug prediction model. IEEE Transactions on Software Engineering 45(2), 194–
218 (2017)

77. Pascarella, L., Palomba, F., Bacchelli, A.: Fine-grained just-in-time defect prediction.
Journal of Systems and Software 150, 22–36 (2019)

78. Perera, A.: Using defect prediction to improve the bug detection capability of search-
based software testing. In: IEEE/ACM Inter. Conf. on Automated Software Engineer-
ing (ASE), pp. 1170–1174 (2020)

79. Posnett, D., D’Souza, R., Devanbu, P., Filkov, V.: Dual ecological measures of focus in
software development. In: 2013 35th International Conference on Software Engineering
(ICSE), pp. 452–461. IEEE (2013)

80. Prechelt, L., Unger, B., Philippsen, M., Tichy, W.: A controlled experiment on inher-
itance depth as a cost factor for code maintenance. Journal of Systems and Software
65(2), 115 – 126 (2003)

81. Prechelt, L., Unger, B., Philippsen, M., Tichy, W.: A controlled experiment on inher-
itance depth as a cost factor for code maintenance. Journal of Systems and Software
65(2), 115–126 (2003)

82. Radjenović, D., Heričko, M., Torkar, R., Živkovič, A.: Software fault prediction metrics:
A systematic literature review. Information and software technology 55(8), 1397–1418
(2013)

83. Rahman, F., Devanbu, P.: How, and why, process metrics are better. In: 2013 35th
International Conference on Software Engineering (ICSE), pp. 432–441. IEEE (2013)

84. Rajnish, K., Bhattacherjee, V.: Class inheritance metrics-an analytical and empirical
approach. INFOCOMP Journal of Computer Science 7(3), 25–34 (2008)

85. Salza, P., Palomba, F., Di Nucci, D., De Lucia, A., Ferrucci, F.: Third-party libraries
in mobile apps. Empirical Software Engineering 25(3), 2341–2377 (2020)

86. Sharma, A., Grover, P., Kumar, R.: Reusability assessment for software components.
ACM SIGSOFT Software Engineering Notes 34(2), 1–6 (2009)

87. Shihab, E., Kamei, Y., Adams, B., Hassan, A.E.: Is lines of code a good measure of
effort in effort-aware models? Information and Software Technology 55(11), 1981–
1993 (2013). DOI https://doi.org/10.1016/j.infsof.2013.06.002. URL https://www.

sciencedirect.com/science/article/pii/S0950584913001316

88. Shin, Y., Meneely, A., Williams, L., Osborne, J.A.: Evaluating complexity, code churn,
and developer activity metrics as indicators of software vulnerabilities. IEEE transac-
tions on software engineering 37(6), 772–787 (2010)

https://orcid.org/0000-0003-2567-440X
https://www.sciencedirect.com/science/article/pii/S0950584913001316
https://www.sciencedirect.com/science/article/pii/S0950584913001316


On the Adoption and Effects of Source Code Reuse 45

89. Singh, P.D., Chug, A.: Software defect prediction analysis using machine learning algo-
rithms. In: Inter. Conf. on Cloud Computing, Data Science & Engineering-Confluence,
pp. 775–781. IEEE (2017)

90. Singh, S., Singh, S., Singh, G.: Reusability of the software. Inter. journal of computer
applications 7(14), 38–41 (2010)

91. Singh, Y., Kaur, A., Malhotra, R.: Empirical validation of object-oriented metrics for
predicting fault proneness models. Software quality journal 18(1), 3–35 (2010)

92. Sjøberg, D.I., Yamashita, A., Anda, B.C., Mockus, A., Dyb̊a, T.: Quantifying the effect
of code smells on maintenance effort. IEEE Transactions on Software Engineering
39(8), 1144–1156 (2012)

93. Sobreira, V., Durieux, T., Madeiral, F., Monperrus, M., de Almeida Maia, M.: Dissec-
tion of a bug dataset: Anatomy of 395 patches from defects4j. In: 2018 IEEE 25th In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 130–140. IEEE (2018)

94. Sobreira, V., Durieux, T., Madeiral, F., Monperrus, M., de Almeida Maia, M.: Dis-
section of a bug dataset: Anatomy of 395 patches from defects4j. In: International
Conference on Software Analysis, Evolution and Reengineering, SANER, pp. 130–140.
IEEE Computer Society (2018)

95. Sommerville, I.: Software engineering 9th edition. ISBN-10 137035152, 18 (2011)
96. Soundarajan, N., Fridella, S.: Inheritance: From code reuse to reasoning reuse. In:

International Conference on Software Reuse (Cat. No. 98TB100203), pp. 206–215.
IEEE (1998)

97. Spadini, D., Aniche, M., Bacchelli, A.: Pydriller: Python framework for mining software
repositories. In: ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 908–911 (2018)

98. Spooner, D.L., et al.: The impact of inheritance on security in object-oriented database
systems. In: DBSec, pp. 141–150. Citeseer (1988)

99. Succi, G., Pedrycz, W., Djokic, S., Zuliani, P., Russo, B.: An empirical exploration of
the distributions of the chidamber and kemerer object-oriented metrics suite. Empirical
Software Engineering 10(1), 81–104 (2005)

100. Tamburri, D.A., Palomba, F., Kazman, R.: Success and failure in software engineering:
A followup systematic literature review. IEEE Transactions on Engineering Manage-
ment (2020)

101. Taylor, R.: Interpretation of the correlation coefficient: a basic review. Journal of
diagnostic medical sonography 6(1), 35–39 (1990)

102. Tempero, E., Yang, H.Y., Noble, J.: What programmers do with inheritance in java. In:
European Conference on Object-Oriented Programming, pp. 577–601. Springer (2013)

103. Theil, H.: A multinomial extension of the linear logit model. International economic
review 10(3), 251–259 (1969)

104. Tsantalis, N., Ketkar, A., Dig, D.: Refactoringminer 2.0. IEEE Transactions on Soft-
ware Engineering (2020)

105. Van Gurp, J., Bosch, J.: Design erosion: problems and causes. Journal of systems and
software 61(2), 105–119 (2002)

106. VanHilst, M., Fernandez, E.B.: Reverse engineering to detect security patterns in code.
In: International Workshop on Software Patterns and Quality. Information Processing
Society of Japan. Citeseer (2007)

107. Vassallo, C., Palomba, F., Bacchelli, A., Gall, H.C.: Continuous code quality: are we
(really) doing that? In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pp. 790–795 (2018)

108. Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Gall, H.C., Zaidman, A.: How
developers engage with static analysis tools in different contexts. Empirical Software
Engineering 25(2), 1419–1457 (2020)

109. Wieringa, R., Daneva, M.: Six strategies for generalizing software engineering theories.
Science of computer programming 101, 136–152 (2015)

110. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in software engineering. Springer Science & Business Media (2012)

111. Wu, H., Shi, L., Chen, C., Wang, Q., Boehm, B.: Maintenance effort estimation for
open source software: A systematic literature review. In: IEEE international conference
on software maintenance and evolution (ICSME), pp. 32–43 (2016)



46 Giammaria Giordano et al.

112. Yu, P., Systa, T., Muller, H.: Predicting fault-proneness using oo metrics. an industrial
case study. In: European Conference on Software Maintenance and Reengineering, pp.
99–107. IEEE (2002)

113. Zaimi, A., Ampatzoglou, A., Triantafyllidou, N., Chatzigeorgiou, A., Mavridis, A.,
Chaikalis, T., Deligiannis, I., Sfetsos, P., Stamelos, I.: An empirical study on the reuse
of third-party libraries in open-source software development. In: Balkan Conference
on Informatics Conference, pp. 1–8 (2015)

114. Zhan, X., Liu, T., Fan, L., Li, L., Chen, S., Luo, X., Liu, Y.: Research on third-
party libraries in android apps: A taxonomy and systematic literature review. IEEE
Transactions on Software Engineering (2021)

115. Zhang, C., Budgen, D.: A survey of experienced user perceptions about software design
patterns. Information and Software Technology 55(5), 822–835 (2013)

https://orcid.org/0000-0003-2567-440X

	Introduction
	Background and Related work
	Research Questions and Methods
	Analysis of the Results
	Discussion and Implications
	Threats To Validity
	Conclusion

