
Dynamic Selection of Classifiers
in Bug Prediction: an Adaptive Method

Dario Di Nucci1, Fabio Palomba2, Rocco Oliveto3, Andrea De Lucia1

1University of Salerno, Italy — 2TU Delft, The Netherlands — 3University of Molise, Italy

Abstract—In the last decades the research community has devoted a lot of effort in the definition of approaches able to predict the
defect proneness of source code files. Such approaches exploit several predictors (e.g., product or process metrics) and use machine
learning classifiers to predict classes into buggy or not buggy, or provide the likelihood that a class will exhibit a fault in the near future.
The empirical evaluation of all these approaches indicated that there is no machine learning classifier providing the best accuracy
in any context, highlighting interesting complementarity among them. For these reasons ensemble methods have been proposed to
estimate the bug-proneness of a class by combining the predictions of different classifiers. Following this line of research, in this paper
we propose an adaptive method, named ASCI (Adaptive Selection of Classifiers in bug predIction), able to dynamically select among
a set of machine learning classifiers the one which better predicts the bug proneness of a class based on its characteristics. An
empirical study conducted on 30 software systems indicates that ASCI exhibits higher performances than 5 different classifiers used
independently and combined with the majority voting ensemble method.

Keywords—Bug Prediction, Classifier Selection, Ensemble Techniques

F

1 INTRODUCTION

Continuous changes, close deadlines, and the need to
ensure the correct behaviour of the functionalities be-
ing issued are common challenges faced by developers
during their daily activities [1]. However, limited time
and manpower represent serious threats to the effective
testing of a software system. Thus, the resources avail-
able should be allocated effectively upon the portions
of the source code that are more likely to contain bugs.
One of the most powerful techniques aimed at dealing
with the testing-resource allocation is the creation of bug
prediction models [2] which allow to predict the software
components that are more likely to contain bugs and
need to be tested more extensively.

Roughly speaking, a bug prediction model is a su-
pervised method where a set of independent variables
(the predictors) are used to predict the value of a de-
pendent variable (the bug-proneness of a class) using
a machine learning classifier (e.g., Logistic Regression
[3]). The model can be trained using a sufficiently large
amount of data available from the project under analysis,
i.e., within-project strategy, or using data coming from
other (similar) software projects, i.e., cross-project strategy.

A factor that strongly influences the accuracy of bug
prediction models is represented by the classifier used
to predict buggy components. Specifically, Ghotra et al.
[4] found that the accuracy of a bug prediction model
can increase or decrease up to 30% depending on the
type of classification applied [4]. Also, Panichella et al. [5]
demonstrated that the predictions of different classifiers
are highly complementary despite the similar prediction
accuracy.

Based on such findings, an emerging trend is the def-
inition of prediction models which are able to combine
multiple classifiers (a.k.a., ensemble techniques [6]) and
their application to bug prediction [5], [7], [8], [9], [10],
[11], [12], [13]. For instance, Liu et al. [7] proposed the
Validation and Voting (VV) strategy, an approach where
the prediction of the bug-proneness of a class is assigned
by considering the output of the majority of the classi-
fiers. Panichella et al. [5] devised CODEP, an approach
that uses the outputs of 6 classifiers as predictors of a
new prediction model, which is trained using Logistic
Regression (LOG). However, as highlighted by Bowes
et al. [14], traditional ensemble approaches miss the
predictions of a large part of bugs that are correctly
identified by a single classifier and, therefore, “ensemble
decision-making strategies need to be enhanced to account for
the success of individual classifiers in finding specific sets of
bugs” [14]. An alternative approach to deal with non
homogeneous data in the context of cross-project bug
prediction is the local bug prediction [12]. This technique
firstly clusters homogeneous data and then builds, for
each of them, a different model using the same classifier.
Unfortunately, local bug prediction is hardly applicable
in the context of within-project bug prediction because
it tends to create too small clusters hardly usable as
training sets.

Based on the results of these previous approaches, we
conjecture that a successful way to combine classifiers
can be obtained by choosing the most suitable classifier based
on the characteristics of classes, rather than combining the
output of different classifiers. From this point of view, our
idea is different than other ensemble methods, but also
different than local bug prediction [12] as we build dif-

1

2

ferent models for homogeneous dataset using different
classifiers.

To verify this conjecture, we propose a novel adaptive
prediction model, coined as ASCI (Adaptive Selection
of ClassIfiers in bug prediction), which dynamically
recommends the classifier able to better predict the bug-
proneness of a class, based on the structural characteris-
tics of the class (i.e., product metrics). Specifically, given
a set of classifiers our approach firstly trains these clas-
sifiers using the structural characteristics of the classes
in the training set, then a decision tree is built where
the internal nodes are represented by the structural
characteristics of the classes contained in the training set,
and the leafs are represented by the classifiers able to
correctly classify the bug-proneness of instances having
such structural characteristics. In other words, we use a
decision tree learning approach to train a classifier able
to predict which classifier should be used based on the
structural characteristics of the classes.

To build and evaluate our approach, we firstly carry
out a preliminary investigation aimed at understanding
whether a set of five different classifiers, i.e., Binary
Logistic Regression (LOG), Naive Bayes (NB), Radial
Basis Function Network (RBF), Multi-Layer Perceptron
(MLP), and Decision Trees (DTree), is complementary in
the context of within-project bug prediction: the study is
designed to answer the following research question:
• RQ0: Are different classifiers complementary to each

other when used in the context of within-project bug
prediction?

Our results corroborate previous findings achieved in
the context of cross-project bug prediction [4], [5], in-
dicating high complementarity among the five different
experimented classifiers.

Afterwards, we experimented the proposed adaptive
method on the data of 30 software systems extracted
from the PROMISE repository [15], comparing the accu-
racy achieved by ASCI with the ones obtained by (i) the
bug prediction models based on each of the five classi-
fiers independently, and (ii) the VV ensemble technique
combining the predictions of the five classifiers through
majority voting. Specifically, our second study is steered
by the following research questions:
• RQ1: Does the proposed adaptive technique outperform

stand-alone classifiers?
• RQ2: Does the proposed adaptive technique outperform

the Validation and Voting ensemble technique?
The results of our study highlight the superiority of

ASCI with respect to all the baselines, indicating that
the use of the adaptive model increases the F-measure
of the predictions up to 7% with respect to the the best
model built using a single classifiers, and up to 5% with
respect to the VV model.
Structure of the paper. Section 2 discusses the back-
ground and the related literature. Section 3 presents
ASCI in details. In Section 4 we report the prelimi-
nary study aimed at investigating the complementarity

of classifiers, while Section 5 reports the design and
the results of the empirical evaluation of the proposed
approach. We discuss possible threats that could affect
the validity of our empirical study in Section 6, before
concluding the paper in Section 7.

2 BACKGROUND AND RELATED WORK

Most of the work on bug prediction refers to the def-
inition of models using different types of predictors,
e.g., CK metrics [16], process metrics [17], history-based
metrics [18], [19]. Extensive surveys of the different
approaches proposed in the literature can be found in
[1] and [2]. In the following, we overview the main
approaches based on single classifiers, the differences
between within- and cross-project bug prediction, and
the use of ensemble techniques in these contexts.

Classifiers for Bug Prediction. Several machine learn-
ing classifiers have been used in literature [2], e.g., Logis-
tic Regression (LOG), Support Vector Machines (SVM),
Radial Basis Function Network (RBF), Multi-Layer Per-
ceptron (MLP), Bayesian Network (BN), Decision Trees
(DTree), and Decision Tables (DTable).

However, results of previous studies demonstrated no
clear winner among these classifiers [20], [21], [22], [23],
[24]. In particular, depending on the dataset employed,
researchers have found different classifiers achieving
higher performances with respect to the others, i.e., (i)
RBF and its modified version, namely RBF trained with
enhanced Dynamic Decay Adjustment algorithm (RBF-
eDDA) [20], [21], (ii) Dynamic Evolving Neuro-Fuzzy
Inference System (DENFIS), Support Vector Regression
(SVR), and Regression Tree (RT) [22], (iii) ADTrees [23],
and (iv) Naive Bayes and Multilayer Perceptron [24].

Moreover, Lessman et al. [25] conducted an empirical
study with 22 classification models to predict the bug
proneness of 10 publicly available software develop-
ment data sets from the NASA repository, reporting
no statistical differences among the top-17 models. As
demonstrated by Shepperd et al. [26], the NASA dataset
that is used in the work by Lessman et al. [25] was
noisy and biased. A subsequent investigation on the
cleaned NASA dataset performed by Ghotra et al. [4]
found that the impact of classifiers on the performance
of a bug prediction model is instead relevant. Indeed, the
performance of a bug prediction model can increase or
decrease up to 30% depending on the type of classifier
applied [4].

Within- vs. Cross-Project Bug Prediction. Prediction
approaches can be defined by training a classification
model on past data of the same software project (within-
project strategy) [8], [9], [10], [14], [20], [21], [22], [23],
[24], [27] or belonging to different projects (cross-project
strategy) [5], [7], [11], [12], [13], [28], [29], [30].

Each strategy has its pros and cons. The within-project
strategy can be applied only on mature projects, where
a sufficiently large amount of project history (i.e., past

3

faults) is available. Thus, such a strategy cannot be
used on new projects. In this scenario, the cross-project
strategy can be used. The main problem of the cross-
project strategy is represented by the heterogeneity of
data. Even if some approaches [11], [12] try to mitigate
such a problem, the within-project strategy should still
be preferred when sufficiently large amount of data is
available. This means that the two strategies are de facto
complementary to each other.

Ensemble Techniques for Bug Prediction. Ensemble
techniques aim at combining different classifiers to
achieve better classification performances.

Misirli et al. [8] used the Validation and Voting ensem-
ble technique to combine different classifiers in the con-
text of within-project [8] bug prediction. This technique
can be considered as a Boosting [6] specialization where
a function is applied on the output of the classifiers
to improve the prediction performances. In the case of
Validation and Voting [7], if the majority of models (ob-
tained using different classifiers on the same training set)
predicts an entity as bug-prone, then it is predicted as
bug-prone; otherwise, it is predicted as non bug-prone.
Wang et al. [9] compared the performances achieved by
7 ensemble techniques in the context of within-project
bug prediction, showing that often Validation and Voting
stand out among them. With the same aim Liu et al.
[7] experimented 17 different machine learning models
in the context of cross-project bug prediction reaching
similar conclusions.

Other ensemble techniques have also been applied.
Kim et al. [10], He et al. [11], and Menzies et al. [12]
proposed approaches similar to the Bagging ensemble
technique [6] which combines the outputs of different
models trained on a sample of instances taken with
a replacement from the training set. Kim et al. [10]
combined multiple training data obtained applying a
random sampling in the context of within-project bug
prediction. He et al. [11] proposed an approach for
automatically select training data from other projects in
the cross-project context. Menzies et al. [12] introduced
the concept of local bug prediction, namely an approach
in which classes that will be used for training the
classifier are firstly clustered into homogeneous groups
in order to reduce the differences among such classes.
Leveraging on Boosting, Xia et al. [31] devised HYDRA.
This approach combines different models, obtained from
different sources, using Boosting (e.g., AdaBoost).

Recently some approaches [5], [13], [32] have been
proposed based on the Stacking ensemble technique [6],
which uses a meta-learner to induce which classifiers
are reliable and which are not. These techniques use
the predicted classifications by the classifier as input. In
the context of cross-project defect prediction, Panichella
et al. [5] devised an approach, named CODEP, which
firstly applies a set of classification models indepen-
dently, afterwards it uses the output of the first step as
predictors of a new prediction model, which is trained

Fig. 1: The workflow of ASCI.

using LOG [3]. Zhang et al. [28] conducted a study
similar to the one performed by Panichella et al. [5]
comparing different ensemble approaches. Their results
showed that several ensemble techniques improve the
performances achieved by CODEP and that often Vali-
dation and Voting performs better. Petric et al. [13] used
4 families of classifiers in order to build a Stacking
ensemble technique [6] based on the diversity among
classifiers in the cross-project context. Their empirical
study showed that their approach can perform better
than other ensemble techniques and that the diversity
among classifiers is an essential factor. In the context of
just-in-time defect prediction, Yang et al. [32] proposed
TLEL. This technique firstly trains different Random
Forest models using Bagging and then combines them
using Stacking.

To some extent, ASCI is similar to Stacking [6], because
it builds a meta-model combining a set of base mod-
els. However, unlike Stacking, our meta-model classifier
does not use the predictions of the base classifiers to
better predict the bugginess of a class, but uses the
characteristics of the class (i.e., the original predictors)
to predict the classifier able to better predict the bug-
proneness of the class. For the same reason ASCI is
different from Validation and Voting, and Boosting.
Moreover it is different with respect to Bagging as it does
not work on the composition of the training set.

3 ASCI: AN ADAPTIVE METHOD FOR BUG
PREDICTION

In this section we present ASCI (Adaptive Selection of
Classifiers in bug predIction), our solution to dynami-
cally select classifiers in bug prediction. The implemen-
tation of ASCI is available in our online appendix [33].

Figure 1 depicts the three main steps that our approach
employs to recommend which classifier should be used
to evaluate the bugginess of a given class. In particular:

1) Let C = {c1, ..., cn} be a set of n different classifiers,
and let T = {e1, ..., em} be the set of classes com-
posing the training set. Each ci ∈ C is experimented

4

against the set T , in order to find its configuration.
As an example, for the Logistic Regression [3], this
step will configure the parameters to use in the
logistic function. At the same time, each ci ∈ C out-
puts the predictions regarding the bug-proneness
of each ej ∈ T . Note that the proposed technique
is independent from the underlying pool of classi-
fiers, however it would be desirable that the base
classifiers exhibit some level of complementarity.
The time efficiency of this step is influenced by (i)
the number and type of classifiers to configure and
(ii) the size of the training set: however, on systems
similar to those we analyzed in the evaluation of
the model (see Section 5) it requires few seconds.

2) At the end of the first step, each ej ∈ T is labeled
with the information about the best classifier ci ∈ C
which correctly identified its bugginess. In this
stage, there are two possible scenarios to consider.
If a unique machine learning classifier ci is able
to predict the bug-proneness of ej , then ej will be
associated with ci. On the other hand, if more clas-
sifiers or none of them correctly identified the bug-
giness of ej , we assign to ej the classifier ci having
the highest F-Measure on the whole training set.
The output of this step is represented by an anno-
tated training set T ′. Note that, while there would
be other alternatives to build the annotated training
set (e.g., the usage of multi-label classifiers [34]),
we empirically evaluated them observing that our
solution results in higher performances. A detailed
comparison between our approach, the multi-label
solution, and a baseline where the choice is made
randomly is available in our online appendix [33].

3) Finally, based on T ′, we build a classifier prediction
model using a decision tree DT as classifier. Specif-
ically, given the structural characteristics of the
classes in the annotated training set (independent
variables), the goal of this final step is to build a
model able to predict the classifier ci ∈ C to use
(dependent variable). In other words, the role of
the DT is to predict a nominal variable indicating
the name of the classifier ci ∈ C most suitable
for classifying a class that is characterized by the
structural properties reported as independent vari-
ables. Note that we decide to use a decision tree
learning approach since a decision tree captures
the idea that if different decisions were to be taken,
then the structural nature of a situation (and, there-
fore, of the model) may have changed drastically
[35]. This is in line with what we want to obtain,
namely a model where a change in the structural
properties of a class implies a different evaluation
of suitability of a classifier. In order to build DT ,
we propose to use Random Forest [36], a classifier
widely used in literature built from a combination
of tree predictors.

Once the adaptive model has been built, the bugginess

of a new class is predicted by using the classifier that
the DT has selected to be the most suitable one and
not all the base classifiers as required by other ensemble
techniques, such as VV, Boosting, and Stacking.

4 ON THE COMPLEMENTARITY OF MACHINE
LEARNING CLASSIFIERS

This section describes the design and the results of the
empirical study we conducted in order answer our RQ0

with the purpose of verifying whether the investigated
classifiers are complementary and thus good candidates
for being combined by ASCI.
• RQ0: Are different classifiers complementary to each

other when used in the context of within-project bug
prediction?

TABLE 1: Characteristics of the software systems used
in the study

Project Release Classes KLOC Buggy Classes (%)
1 Ant 1.7 745 208 166 22%
2 ArcPlatform 1 234 31 27 12%
3 Camel 1.6 965 113 188 19%
4 E-Learning 1 64 3 5 8%
5 InterCafe 1 27 11 4 15%
6 Ivy 2.0 352 87 40 11%
7 jEdit 4.3 492 202 11 2%
8 KalkulatorDiety 1 27 4 6 22%
9 Log4J 1.2 205 38 180 92%
10 Lucene 2.4 340 102 203 60%
11 Nieruchomosci 1 27 4 10 37%
12 pBeans 2 51 15 10 20%
13 pdfTranslator 1 33 6 15 45%
14 Poi 3.0 442 129 281 64%
15 Prop 6.0 660 97 66 10%
16 Redaktor 1.0 176 59 27 15%
17 Serapion 1 45 10 9 20%
18 Skarbonka 1 45 15 9 20%
19 SklepAGD 1 20 9 12 60%
20 Synapse 1.2 256 53 86 34%
21 SystemDataManagement 1 65 15 9 14%
22 SzybkaFucha 1 25 1 14 56%
23 TermoProjekt 1 42 8 13 31%
24 Tomcat 6 858 300 77 9%
25 Velocity 1.6 229 57 78 34%
26 WorkFlow 1 39 4 20 51%
27 WspomaganiePI 1 18 5 12 67%
28 Xalan 2.7 909 428 898 99%
29 Xerces 1.4 588 4 437 74%
30 Zuzel 1 39 14 13 45%

4.1 Empirical Study Design
The goal of the empirical study is to assess the com-
plementarity of different classifiers when used to pre-
dict bugs at class level granularity, with the purpose
of investigating whether they classify different sets of
software components as bug-prone. The quality focus is
on the improvement of the effectiveness of bug pre-
diction approaches in the context of within-project bug
prediction, while the perspective is of a researcher who is
interested to understand to what extent different classi-
fiers complement each other when used to predict buggy
classes. Indeed, if classifiers are complementary it could
be worth to combine them using an ensemble technique.
The context of the study consists of 30 software systems
from the Apache Software Foundation ecosystem1.
Table 1 reports the specific release taken into account
as well as the characteristics of the projects considered

1. http://www.apache.org

5

in the study in terms of size, expressed as number
of classes and KLOC, and number and percentage of
buggy classes. All the systems are publicly available
in the PROMISE repository [15], which provides for
each project (i) the independent variables, i.e., LOC and
CK metrics [37], and (ii) the dependent variable, i.e., a
boolean value indicating whether a class is buggy or not.

In order to answer RQ0, we run five different ma-
chine learning classifiers [3], namely Binary Logistic
Regression (LOG), Naive Bayes (NB), Radial Basis Func-
tion Network (RBF), Multi-Layer Perceptron (MLP), and
Decision Trees (DTree). The selection of the machine
learning classifiers is not random. On the one hand,
they have been used in many previous work on bug
prediction [5], [7], [14], [21], [24], [28], while on the other
hand they are based on different learning peculiarities
(i.e., regression functions, neural networks, and decision
trees). This choice increases the generalizability of our
results.

As evaluation procedure, we adopt the 10-fold cross
validation strategy [38]. This strategy randomly parti-
tions the original set of data, i.e., data of each system, into
10 equal sized subset. Of the 10 subsets, one is retained
as test set, while the remaining 9 are used as training set.
The cross-validation is then repeated 10 times, allowing
each of the 10 subsets to be the test set exactly once [38].
We use this test strategy since it allows all observations
to be used for both training and test purpose, but also
because it has been widely-used in the context of bug
prediction (e.g., see [39], [40], [41], [42]).

As evaluation methodology, we firstly evaluate the
performances of the experimented classifiers using
widely-adopted metrics, such as accuracy, precision and
recall [43]. In addition, we also computed (i) the F-
measure, i.e., the harmonic mean of precision and re-
call, and (ii) the Area Under the Curve (AUC), which
quantifies the overall ability of a prediction model to dis-
criminate between buggy and non-buggy classes. Note
that the analysis of the accuracy achieved by different
classifiers is necessary to corroborate previous findings
which report how different classifiers exhibit similar
accuracy, even if they are complementary to each other
[5], [14].

Due to space limitations, we report and discuss the
boxplots of the distributions of the accuracy, the F-
Measure, and the AUC achieved by the single classi-
fiers independently on the 30 considered systems. A
complete report of the results is available in our online
appendix [33]. Furthermore, we verified whether the
differences are statistically significant by exploiting the
Mann-Whitney U test [44]. The results are intended as
statistically significant at α = 0.05. We also estimated the
magnitude of the observed differences using the Cliff’s
Delta (or d), a non-parametric effect size measure [45] for
ordinal data. We followed the guidelines in [45] to inter-
pret the effect size values: small for d < 0.33 (positive as
well as negative values), medium for 0.33 ≤ d < 0.474
and large for d ≥ 0.474.

After the analysis of the performance of the different
classifiers, we analyze their complementarity by com-
puting the overlap metrics. Specifically, given two sets
of predictions obtained by using classifiers ci and cj , we
compute:

corrci∩cj =
|corrci ∩ corrcj |
|corrci ∪ corrcj |

% (1)

corrci\cj =
|corrci \ corrcj |
|corrci ∪ corrcj |

% (2)

where corrci represents the set of bug-prone classes
correctly classified by the classifier ci, corrci∩cj measures
the overlap between the set of buggy classes correctly
identified by both classifiers ci and cj , and corrci\cj
measures bug-prone classes correctly classified by ci only
and missed by cj . Also in this case, we aggregated
the results of the 30 considered systems by summing
up the single corrci∩cj , corrci\cj , and corrcj\ci obtained
after the evaluation of the complementarity between
two classifiers on a system. The fine-grained results are
available in our online appendix [33].

4.2 Analysis of the Results
The results achieved running the stand-alone classifiers
over all the considered software systems are reported in
Figure 2.

Looking at the boxplots, we can confirm previous
findings in the field [5], [14], demonstrating once again
that there is no a clear winner among different clas-
sifiers in bug prediction. Indeed the differences in the
terms of accuracy, F-Measure, and AUC achieved by the
classifiers are quite small, as highlighed by the median
values presented in Figure 2. Despite this, the average F-
Measure (0.56) achieved by MLP is slightly higher with
respect to the other classifiers (i.e., NB=+3%, LOG=+4%,
RBF=+2%, DTree=+4%). As shown in Table 2 such su-
periority is statistically significant when considering the
differences between the performances of MLP and the
ones achieved by LOG and RBF, even though with
negligible effect size.

Particularly interesting is the discussion of the results
achieved on the Apache Xalan project. Here all the
classifiers achieve good precision and recall. This is due
to the fact that in this project there is 99% of buggy
classes. The classifiers can be mainly trained using data
related to buggy components and, thus, they do not have
enough information to distinguish those components not
affected by bugs. However, the presence of an extremely
low number of non-buggy classes (11) does not influence
too much the performances of the classifiers, which
correctly predicted most of the buggy classes.

Another interesting result concerns LOG. As reported
in recent papers [1], [5], this classifier is the more suitable
in the context of cross-project bug prediction. According
to our findings, this is not true when the training set
is built using a within-project strategy. A possible ex-
planation of the result is that LOG generally requires

6

Fig. 2: Boxplots of the accuracy, F-Measure, and AUC-ROC achieved by the single classifiers.

NB LOG RBF MLP DTree

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Accuracy of Single-Classifiers Models

NB LOG RBF MLP DTree

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F-Measure of Single-Classifiers Models

NB LOG RBF MLP DTree

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC-ROC of Single-Classifiers Models

TABLE 2: p-values and Cliff’s Delta obtained between each pair of single classifiers. p− values that are statistically
significant are reported in bold face.

NB LOG RBF MLP DTree
p− value d magn. p− value d magn. p− value d magn. p− value d magn. p− value d magn.

NB - - - 0.28 0.03 neg. 0.16 0.04 neg. 0.44 -0.04 neg. 0.34 0.02 neg.
LOG 0.73 -0.03 neg. - - - 0.18 0.01 neg. 0.96 -0.07 neg. 0.64 -0.04 neg.
RBF 0.73 -0.03 neg. 1.00 -0.00 neg. - - - 0.96 -0.07 neg. 0.64 -0.04 neg.
MLP 0.57 0.04 neg. 0.04 0.07 neg. 0.04 0.07 neg. - - - 0.49 0.05 neg.
DTree 0.67 -0.02 neg. 0.36 0.04 neg. 0.36 0.04 neg. 0.52 -0.05 neg. - - -

TABLE 3: Overlap analysis among the classifiers considered in the preliminary study in all the considered classes.

A=NB A=Log A=RBF A=MLP A=DTree
A∩B A-B B-A A∩B A-B B-A A∩B A-B B-A A∩B A-B B-A A∩B A-B B-A

B=NB - - - 83 12 5 91 5 4 92 4 4 90 5 5
B=Log 83 5 12 - - - 83 5 12 81 6 13 80 6 14
B=RBF 91 4 5 83 12 5 - - - 89 5 6 89 5 6
B=MLP 92 4 4 81 13 6 89 6 5 - - - 90 5 5
B=DTree 90 5 5 80 14 6 89 6 5 90 5 5 - - -

much more data in the training set to achieve stable and
meaningful results [46]. In the cross-project strategy, the
training set is built using a bunch of data coming from
external projects, while in the within-project solution the
construction of the training set is limited to previous
versions of the system under consideration. As a conse-
quence, LOG is not more suitable than other classifiers
in this context.

Concerning the analysis of the complementarity, Table
3 summarizes the results achieved. In particular, for each
pair of classifiers, the table reports the percentage of
classes that are correctly classified as bug-prone by (i)
both the compared classifiers (i.e., column A∩B), (ii) only
the first classifier (i.e., column A-B), and (iii) only the
second classifier (i.e., column B-A). From this table, we
can observe that the overlap between the set of correctly
classified instances by a classifiers pair is at least 80%,
i.e., 80% of the instances are correctly classified by both
the classifiers in the comparison. This means that the
bug-proneness of most of the classes may be correctly
predicted by an arbitrary classifier, while less than the
remaining 20% of predictions are correctly classified by
only one of the classifiers. However, the majority of the
non-overlapping predictions are related to buggy classes
(83%): such missing predictions can result in a reduction
up to 35% of the performances of a bug prediction
model.

More importantly, we noticed that these performances
may be increased by analyzing how different classifiers

behave on classes having different structural characteris-
tics. As an example of the impact of the characteristics of
classes on the effectiveness of bug prediction classifiers,
consider the predictions provided by NB and MLP in the
Apache Velocity project. We found the former more
effective in predicting the bugginess of classes having
more than 500 lines of code: indeed, although the F-
Measure achieved by NB on this system is quite low
(35%), the correct predictions refer to large classes con-
taining bugs. An example is the io.VelocityWriter,
which has 551 LOCs, and a low values cohesion and cou-
pling metrics (e.g., Coupling Between Methods (CBM) =
5). On the other hand, MLP is the classifier obtaining the
highest F-Measure (62%), however its correct predictions
refer to classes having a high level of coupling: indeed,
most of the classes correctly predicted as buggy are
the ones having the value of the Coupling Between
Methods (CBM) metric higher than 13 and a limited
number of lines of code (<400). For instance, the class
velocity.Template contains 320 LOCs, but it has a
CBM = 19. Thus, an adequate selection of the classifiers
based on the characteristics of classes may increase the
effectiveness of bug prediction.

Summary for RQ0. Despite some differences, the five
experimented machine learning classifiers achieve com-
parable results in terms of accuracy. However, their
complementarity could lead to combined models able
to achieve better results.

7

Fig. 3: Boxplots of the accuracy, F-Measure, and AUC-ROC achieved by MLP, VV, and ASCI.

MLP Voting ASCI

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Accuracy of Ensemble Models

MLP Voting ASCI

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F-Measure of Ensemble Models

MLP Voting ASCI

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC-ROC of Ensemble Models

TABLE 4: p− values and Cliff’s Delta obtained between VV and ASCI along with MLP as baseline. p− values that
are statistically significant are reported in bold face.

MLP VV ASCI
p− value d magn. p− value d magn. p− value d magn.

MLP - - - 0.91 -0.02 neg. 1.00 -0.17 small
VV 0.09 0.02 neg. - - - 1.00 -0.12 neg.
ASCI <0.01 0.17 small <0.01 0.12 neg. - - -

5 EVALUATING THE PROPOSED ADAPTIVE
METHOD

In this section, we describe the empirical study con-
ducted in order to evaluate the performances of the
proposed adaptive method. In particular, we aim at
providing answers to the following RQs:
• RQ1: Does the proposed adaptive technique outperform

stand-alone classifiers?
• RQ2: Does the proposed adaptive technique outperform

the Validation and Voting ensemble technique?

5.1 Empirical Study Design

The goal of the study is to evaluate the proposed adap-
tive method ASCI in within-project bug prediction and
to compare it to the base classifiers, as well as to a
different ensemble technique. Consequently, the quality
focus is on improving the effectiveness of bug prediction
approaches, while the perspective is of researchers, who
want to evaluate the effectiveness of using the proposed
adaptive method when identifying bug-prone classes.
The context of the study consists of the 30 software
systems used in Section 4.

In order to answer the two research questions, we
used the same classifiers evaluated in Section 4, i.e.,
NB, LOG, RBF, MLP, and DTree, as basic classifiers
for both ASCI and Validation and Voting, and the same
independent variables (i.e., LOC and CK metrics). Also
in this case, we used as evaluation procedure the 10-
fold cross-validation strategy [38]. Then, we evaluated
the performances achieved by our model with the ones
achieved by the base classifiers (RQ1) and by Validation
and Voting (RQ2) in terms of the metrics used in Section
4, i.e., accuracy, precision, recall, F-measure, and AUC-
ROC [43]. We also verified the statistical significance and

the effect size of the differences using the Mann-Whitney
test [44] and the Cliff’s delta [45], respectively.

Regarding RQ2, we choose the Validation and Voting
(VV) ensemble classifier defined by Liu et al. [7], which
predicts the bug-proneness of a class based on the ma-
jority of “votes” of the base classifiers. The choice is
driven by the findings provided by by Wang et al. [9]
and Zhang et al. [28], which demonstrated that the VV
method is able to outperform other ensemble classifiers
in the contexts of within-project [9] and cross-project [28]
bug prediction.

5.2 Analysis of the Results
Figure 3 shows the results achieved on the 30 subject
systems by (i) ASCI, (ii) VV, and (iii) MLP, the base
classifier achieving the best prediction performances in
Section 4. For sake of readability, we do not report in
Figure 3 the results obtained by the other base classifiers
which are shown in Figure 2. Indeed if the performance
of ASCI are better than MLP, then they are also better
than the other base classifiers. However, the comparison
of ASCI with all the base classifiers is reported in our
online appendix [33].

Does the proposed adaptive technique outperform
stand-alone classifiers? The proposed adaptive method
shows an F-Measure ranging between 18% and 100%,
while the accuracy of the classification is between 44%
and 100%. Moreover the average AUC-ROC is 73%.
These results indicate that the proposed solution has
a good prediction accuracy, and it is not negatively
influenced by the intrinsic degree of uncertainty created
by the usage of a classifier prediction model. Moreover,
when compared to the MLP model, we observed that
ASCI performs better in 77% of the cases (23 out of the
total 30 systems), with an F-Measure, an accuracy, and

8

an AUC-ROC 7%, 2%, and 1% higher than the baseline
model, respectively. Table 4 shows that the superiority
of our method is statistically significant (α < 0.01) even
though with a small effect size (d = 0.17). As MLP is
the model achieving the best performances with respect
to all the other classifiers experimented in Section 4, we
can claim that on our dataset ASCI also works better
than all the other classifiers, i.e., NB, LOG, RBF, and
DTree. However, complete results aimed at comparing
ASCI with the other classifiers are available in our online
appendix [33].

It is interesting to discuss the case of the Redaktor
project. In this case, NB is the best classifier and the
resulting model has 45% of F-Measure, 77% of accuracy,
and 92% of AUC-ROC, while the model built using MLP
achieves slightly lower performances. The two classifiers
have a quite high complementarity (54% of buggy classes
are correctly classified by only one of the two models)
that does not allow the single stand-alone models to
correctly capture the bug-proneness of all the classes
of the system. In this case, the use of ASCI helps the
prediction model to increase its F-measure up to 66%,
i.e., the adaptive model is able to correctly identify
almost 21% more buggy classes. Moreover, the benefits
provided by the use of our adaptive method are visible
even when considering the other accuracy indicators.
Indeed, there is an increase in precision values by 29%
(from 35% to 64%), in accuracy values by 12%, and
in the AUC-ROC values by 4%. As an example, let us
consider the predictions provided by the different mod-
els on the classes article.EditArticleForm and
contact.NewContactForm. The former class contains
367 lines of code and has a cyclomatic complexity equals
to 6. The latter is composed of 132 lines of code and has
a lower complexity (i.e., cyclomatic complexity=4). In the
case of stand-alone models, the first class is correctly
classified as buggy only by NB, while the second one
only by MLP. Thus, the individual classifiers correctly
predict only one instance. Our model, instead, is able to
correctly predict the bug-proneness of such components
since it is able to correctly identify the right classifiers to
use in both the situations. Specifically, the decision tree
built on this system (step 3 in Section 3) recommends,
for classes having more than 268 LOCs and cyclomatic
complexity higher than 5, the application of the NB clas-
sifier, while the MLP is suggested when a class has less
than 144 LOCs and cyclomatic complexity lower than 5.
This example is quite representative of the ability of the
proposed method to suggest which classifier should be
used based on the structural characteristics of the classes,
and highlights the beneficial effect of ensemble classifiers
in the context of within-project bug prediction.

Another interesting observation can be made by look-
ing at the results for the JEdit system. This project
contains only 11 buggy classes (i.e., 2% of the total
classes), and we observed that the stand-alone models
behave as a constant classifier which always predicts
instances as non-buggy. Therefore, none of the exper-

imented classifiers is able to correctly classify the 11
buggy classes of the system, while, instead, all of them
correctly predict the results for non-buggy classes. By
construction, in this case the annotated training set
used by our adaptive method is built only using the
results of the best classifier on the whole training set,
i.e., MLP. As a consequence, our model has exactly the
same performances as the MLP model (F-Measure=18%,
Accuracy=62%, AUC-ROC=69%). This example raises
the limitation of our method. Indeed, when none of
the stand-alone models is able to correctly predict the
bug-proneness of a class, the choice of the classifier
to use made by the adaptive model is useless, since
all of them will perform bad. However this limitation
affects also other ensemble classifiers, such as the VV
technique. Moreover, as part of our future agenda we
plan to combine ASCI with a Bagging technique able to
reduce the variance of the predictions.

Summary for RQ1. The proposed adaptive method out-
performs the performances achieved by stand-alone
models over all the software systems in our dataset. On
average, the performances against the best stand-alone
classifier increases up to 2% in terms of accuracy, 7% in
terms of F-measure.

Does the proposed adaptive technique outperform the
Validation and Voting ensemble technique? To answer
this research question we first compare the VV ensemble
technique with MLP, i.e., the best classifier resulting from
RQ0. As it is possible to see from Figure 3, the VV
technique, on average, performs 1% worse in terms of
F-Measure, 2% better in terms of accuracy, and almost
10% worse in terms of AUC-ROC with respect to the
stand-alone classifier: these results, especially the ones
achieved considering the AUC-ROC, demonstrate how
the VV model has often a low ability in discriminating
classes affected and not by a bug. Furthermore, the VV
technique actually outperforms the MLP model only on
50% of the systems (15/30), while on the other cases
the stand-alone model works slightly better than the
ensemble technique. The reason behind this result can
be found looking at the way the VV technique provides
its predictions. Specifically, the technique predicts a class
as buggy when the majority of classifiers predict the
class as buggy, while it predicts a class as bug-free in the
opposite case. As pointed out by Bowes et al. [14], the VV
technique does not take into account the success of the
individual classifiers in predicting bugs. Thus, when the
number of classifiers that provide a correct prediction is
low, the results of the VV method are quite unreliable.
On our dataset, this often happens. For instance, on the
Camel project, all the classifiers have low F-Measure
(ranging between 3% and 32%), and the overlap between
them is very high (90%, on average). Thus, in this case
the VV technique often answered by taking into account
the wrong predictions made by the majority of classifiers.

The aforementioned reasons still explain the differ-
ences in the performances achieved by the VV method

9

and by ASCI. Indeed, we observed that, on average, the
VV technique provides an F-Measure 5% lower than our
approach. Moreover, ASCI achieves higher values with
respect to all the other indicators (recall = +2%, precision
= +12%, AUC-ROC = +8%), confirming its superiority on
25 of the 30 total systems considered in this study (i.e.,
83% of the cases). Table 4 shows that the differences are
statistically significant (p − value < 0.01), even though
with a small effect size (d = 0.12). Interesting are the
cases of Systemdata and Apache Velocity, where
our approach performs 31% and 13%, respectively, better
than the VV method in terms of F-Measure.

To better understand the difference between our
approach and the VV technique, consider the class
resource.ResourceManager of the Apache
Velocity project mentioned in Section 4: it is
affected by a bug which is correctly classified by only
two classifiers that we experimented in our study, i.e.,
MLP and J48, while the three remaining classifiers
predicted this instance as non-buggy. In this case,
VV clearly provides an incorrect prediction, since
the majority of the classifiers wrongly predict the
bugginess of the class. Conversely, our approach is able
to identify the class as buggy because it selects MLP
as the classifier to use in this situation: in particular,
the resource.ResourceManager class has several
incoming dependencies, thus having high values for
the Afferent Coupling (CA) and Coupling Between
Methods (CBO) metrics [37]. For classes having CA > 8
and CBO > 13, our model suggested the usage of MLP
as classifier, thus being able to correctly mark the class
as buggy.

Other examples are represented by the
previously cited article.EditArticleForm and
contact.NewContactForm classes of the Redaktor
project. While our model is able to correctly predict
their bug-proneness (as explained above), the VV model
cannot perform well because there is only one classifier
out of the total five that correctly classify these instances
(NB in the first case, MLP in the second one).

When VV works better than ASCI, the improvement in
terms of F-Measure is between 3% and 14%. It is worth
noting that the latter case refers to SklepAGD, a system
composed of only 20 classes (12 of them containing
bugs). As already explained before, in situations like
this one it is possible that our model behaves in the
same manner as the best stand-alone model. Thus, we
can conclude that higher bug prediction performances
can be obtained by taking into account the structural
characteristics of the classes of a software project, rather
than combining the output of different classifiers.

Summary for RQ2. Our technique achieves perfor-
mances higher than the Validation and Voting ensemble
technique on 83% of the cases. This confirms that se-
lecting the classifiers based on the characteristics of the
class might be more effective than combining the results
of different classifiers.

6 THREATS TO VALIDITY
This section discusses the threats to the validity of
our empirical evaluation, classifying them into construct,
external, and conclusion validity.

Construct Validity. Threats to construct validity regard
the relation between theory and observation. In our
context, a threat in this category regards the dataset
used in the empirical study. All the datasets come from
the PROMISE repository [15], which is widely recog-
nized as reliable, and it has been also used in several
previous work in the field of bug prediction [4], [5],
[7], [9], [14], [25], [28]. However, we cannot exclude
possible imprecision or incompleteness. Another threat
is related to the re-implementation of the Validation
and Voting baseline approach which we used in the
context of RQ2. However, our re-implementation uses
the exact algorithm defined by Liu et al. [7]. We know
that parameter tuning is an important factor for defect
prediction models. In order to minimize this threat we
used the default parameters for each classifier used in
our study.

External Validity. Threats to external validity concern the
generalizability of our findings. To reduce this threat,
we analyzed 30 different software projects that arise
from very different application domains and present
different characteristics (i.e., developers, size, number of
components, etc.). However, replication of the study on a
larger set of systems would be desirable. Another threat
is related to the variations in the prediction obtained by
classifiers that we did not investigate. For this reason,
we chose five classifiers that are quite representative of
those used in previous studies on bug prediction (e.g.,
[5], [14]). Besides this, also the choice of the decision
tree builder algorithm (e.g., Random Forest) could have
impacted our results. As future work we plan to replicate
our study using more classifiers. Furthermore, we com-
pared ASCI only with the VV ensemble method [7]: this
choice was driven by recent findings showing the supe-
riority of this approach with respect to other ensemble
techniques [9], [28], future work will be devoted to com-
pare ASCI with other ensemble techniques to improve
the generalizability of the results. Finally, we tested the
proposed approach in a within-project scenario, while its
evaluation in a cross-project environment is part of our
future agenda.
Conclusion Validity. Threats to conclusion validity are
related to the relation between treatment and outcome.
The metrics used in order to evaluate the approaches (i.e.,
AUC-ROC, accuracy, precision, recall, and F-measure)
have been widely used in the evaluation of the per-
formances of bug prediction classifiers [4], [5], [7], [14].
However, we complement the quantitative analysis by
reporting several qualitative examples aimed at show-
ing the potential benefits provided by the use of the
proposed adaptive model. Furthermore, we support our
findings by using appropriate statistical tests, i.e., the
Mann-Whitney U and Cliff’s Delta tests.

10

7 CONCLUSION AND FUTURE WORK
In this paper we proposed ASCI, an approach able to
dynamically recommend the classifier to use to predict
the bug-proneness of a class based on its structural
characteristics. To build our approach, we firstly per-
formed an empirical study aimed at verifying whether
five different classifiers correctly classify different sets
of buggy components: as a result, we found that even
different classifiers achieve similar performances, they
often correctly predict the bug-proneness of different sets
of classes. Once assessed the complementarity among
the classifiers, we experimented ASCI on 30 open-source
software systems, comparing its performances with the
ones obtained by (i) the bug prediction models based
on each of the five classifiers independently, and (ii) the
Validation and Voting ensemble technique. Key results
of our experiment indicate that:
• Our model achieves higher performances than the

ones achieved by the best stand-alone model over
all the software systems in our dataset. On average,
the performances increases up to 7% in terms of F-
Measure.

• Ensemble techniques such as Validation and Voting
may fail in case of a high variability among the
predictions provided by different classifiers. Indeed,
in these cases the majority of them might wrongly
classify the bug-proneness of a class, negatively
influencing the performances of techniques which
combine the output of different classifiers.

• An ensemble technique that analyzes the structural
characteristics of classes to decide which classifier
should be used might be more effective than ensem-
ble techniques that combine the output of different
classifiers. Indeed, our model exhibits performances
which are on average 5% better than the Validation
and Voting technique in terms of F-measure.

Our future research agenda includes the comparison
of ASCI with other ensemble techniques. Furthermore,
we plan to extend our study in order to analyze how
the proposed model works in the context of cross-
project bug prediction. In this context, the combination
of ASCI with a technique able to reduce the variance
of the training set (e.g., Bagging) could improve the
prediction performances. For example, it would be in-
teresting to evaluate whether the local bug prediction
proposed by Menzies et al. [12] could complement our
model. Indeed, local models exploit similar information
with respect to those used in our approach (structural
characteristics of classes) to partially solve the problem
of data heterogeneity. Hence, an adaptive method may
be complementary to local bug prediction by selecting
the most suitable classifier for each data cluster in the
context of cross-project bug prediction.

REFERENCES
[1] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect pre-

diction approaches: a benchmark and an extensive comparison,”
Empirical Software Engineering, vol. 17, no. 4-5, pp. 531–577, 2012.

[2] R. Malhotra, “A systematic review of machine learning techniques
for software fault prediction,” Applied Soft Computing, vol. 27, pp.
504–518, 2015.

[3] E. Alpaydin, Introduction to machine learning. MIT press, 2014.
[4] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the im-

pact of classification techniques on the performance of defect
prediction models,” in Proceedings of the International Conference
on Software Engineering. IEEE, 2015, pp. 789–800.

[5] A. Panichella, R. Oliveto, and A. De Lucia, “Cross-project defect
prediction models: L’union fait la force,” in Proceedings of the
IEEE Conference on Software Maintenance, Reengineering and Reverse
Engineering. IEEE, 2014, pp. 164–173.

[6] L. Rokach, “Ensemble-based classifiers,” Artificial Intelligence Re-
view, vol. 33, no. 1, pp. 1–39, 2010.

[7] Y. Liu, T. M. Khoshgoftaar, and N. Seliya, “Evolutionary optimiza-
tion of software quality modeling with multiple repositories,”
IEEE Transactions on Software Engineering, vol. 36, no. 6, pp. 852–
864, Nov 2010.

[8] A. T. Mısırlı, A. B. Bener, and B. Turhan, “An industrial case study
of classifier ensembles for locating software defects,” Software
Quality Journal, vol. 19, no. 3, pp. 515–536, 2011.

[9] T. Wang, W. Li, H. Shi, and Z. Liu, “Software defect prediction
based on classifiers ensemble,” Journal of Information & Computa-
tional Science, vol. 8, no. 16, pp. 4241–4254, 2011.

[10] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise
in defect prediction,” in Proceedings of International Conference on
Software Engineering. IEEE, 2011, pp. 481–490.

[11] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation
on the feasibility of cross-project defect prediction,” Automated
Software Engineering, vol. 19, no. 2, pp. 167–199, 2012.

[12] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, and T. Zimmermann, “Local versus global lessons
for defect prediction and effort estimation,” IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 822–834, 2013.

[13] J. Petrić, D. Bowes, T. Hall, B. Christianson, and N. Baddoo,
“Building an ensemble for software defect prediction based on di-
versity selection,” in Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement.
ACM, 2016, p. 46.

[14] D. Bowes, T. Hall, and J. Petrić, “Software defect prediction:
do different classifiers find the same defects?” Software Quality
Journal, pp. 1–28, 2017.

[15] “The promise repository of empirical software engineering data,”
2015.

[16] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object ori-
ented design,” IEEE Transactions on Software Engineering, vol. 20,
no. 6, pp. 476–493, 1994.

[17] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for
defect prediction,” in Proceedings of the ACM/IEEE International
Conference on Software Engineering. IEEE, 2008, pp. 181–190.

[18] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and
A. De Lucia, “A developer centered bug prediction model,” IEEE
Transactions on Software Engineering, 2017.

[19] X. Xia, D. Lo, X. Wang, and X. Yang, “Collective personalized
change classification with multiobjective search,” IEEE Transac-
tions on Reliability, vol. 65, no. 4, pp. 1810–1829, 2016.

[20] M. E. Bezerra, A. L. Oliveira, P. J. Adeodato, and S. R. Meira,
Enhancing RBF-DDA algorithm’s robustness: Neural networks applied
to prediction of fault-prone software modules. Springer, 2008, pp.
119–128.

[21] M. E. Bezerra, A. L. Oliveira, and S. R. Meira, “A constructive
rbf neural network for estimating the probability of defects in
software modules,” in 2007 International Joint Conference on Neural
Networks. IEEE, 2007, pp. 2869–2874.

[22] M. O. Elish, “A comparative study of fault density prediction in
aspect-oriented systems using mlp, rbf, knn, rt, denfis and svr
models,” Artificial Intelligence Review, vol. 42, no. 4, pp. 695–703,
2014.

[23] G. J. Pai and J. B. Dugan, “Empirical analysis of software fault
content and fault proneness using bayesian methods,” IEEE Trans-
actions on Software Engineering, vol. 33, no. 10, pp. 675–686, Oct
2007.

[24] R. Malhotra, “An empirical framework for defect prediction using
machine learning techniques with android software,” Applied Soft
Computing, vol. 49, pp. 1034–1050, 2016.

11

[25] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 485–496, July 2008.

[26] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some
comments on the nasa software defect datasets,” IEEE Transactions
on Software Engineering, vol. 39, no. 9, pp. 1208–1215, 2013.

[27] A. Panichella, C. V. Alexandru, S. Panichella, A. Bacchelli, and
H. C. Gall, “A search-based training algorithm for cost-aware
defect prediction,” in Proceedings of the 2016 on Genetic and Evolu-
tionary Computation Conference. ACM, 2016, pp. 1077–1084.

[28] Y. Zhang, D. Lo, X. Xia, and J. Sun, “An empirical study of classi-
fier combination for cross-project defect prediction,” in Proceedings
of the IEEE Annual Computer Software and Applications Conference,
vol. 2. IEEE, 2015, pp. 264–269.

[29] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella,
and S. Panichella, “Multi-objective cross-project defect predic-
tion,” in Software Testing, Verification and Validation (ICST), 2013
IEEE Sixth International Conference on. IEEE, 2013, pp. 252–261.

[30] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data
vs. domain vs. process,” in Proceedings of the 7th ACM SIGSOFT
ESEC/FSE. ACM, 2009, pp. 91–100.

[31] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “Hydra: Mas-
sively compositional model for cross-project defect prediction,”
IEEE Transactions on Software Engineering, vol. 42, no. 10, pp. 977–
998, 2016.

[32] X. Yang, D. Lo, X. Xia, and J. Sun, “Tlel: A two-layer ensemble
learning approach for just-in-time defect prediction,” Information
and Software Technology, 2017.

[33] D. Di Nucci, F. Palomba, R. Oliveto, and A. De Lucia,
“Dynamic selection of classifiers in bug prediction: An adaptive
method - replication package,” 2016. [Online]. Available:
http://figshare.com/articles/Dynamic Selection of Classifiers
in Bug Prediction an Adaptive Method/4206294

[34] G. Tsoumakas and I. Katakis, “Multi-label classification: An
overview,” Int J Data Warehousing and Mining, vol. 2007, pp. 1–
13, 2007.

[35] L. M. Y. Freund, “The alternating decision tree learning algo-
rithm,” in Proceeding of the International Conference on Machine
Learning, 1999, pp. 124–133.

[36] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[37] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer, “Managerial use
of metrics for object-oriented software: An exploratory analysis,”
IEEE Transactions on Software Engineering, vol. 24, no. 8, pp. 629–
639, 1998.

[38] P. A. Devijver and J. Kittler, Pattern Recognition: A Statistical
Approach, 1982.

[39] R. Bell, T. Ostrand, and E. Weyuker, “The limited impact of in-
dividual developer data on software defect prediction,” Empirical
Software Engineering, vol. 18, no. 3, pp. 478–505, 2013.

[40] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G.
Guéhéneuc, “Is it a bug or an enhancement?: a text-based ap-
proach to classify change requests,” in Proceedings of the Conference
of the Center for Advanced Studies on Collaborative Research: Meeting
of Minds. ACM, 2008, p. 23.

[41] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, Bugs
as deviant behavior: A general approach to inferring errors in systems
code. ACM, 2001, vol. 35, no. 5.

[42] E. J. W. J. Sunghun Kim and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Transactions on Software Engineer-
ing, vol. 34, no. 2, pp. 181–196, 2008.

[43] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann,
2016.

[44] W. J. Conover, Practical Nonparametric Statistics, 3rd ed. Wiley,
1998.

[45] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach, 2nd ed. Lawrence Earlbaum Associates, 2005.

[46] C. Perlich, F. Provost, and J. S. Simonoff, “Tree induction vs.
logistic regression: A learning-curve analysis,” J. Mach. Learn. Res.,
vol. 4, pp. 211–255, Dec. 2003.

Dario Di Nucci Dario Di Nucci received the
masters degree in Computer Science from the
University of Salerno, Italy, in 2014. He is cur-
rently working toward the PhD degree at the Uni-
versity of Salerno, Italy, under the supervision of
Prof. Andrea De Lucia. His research interests in-
clude software maintenance and evolution, soft-
ware testing, search based software engineer-
ing, green mining, mining software repositories,
and empirical software engineering. He is a stu-
dent member of the IEEE and ACM.

Fabio Palomba Fabio Palomba is a Postdoctoral
Researcher at the Delft University of Technology,
The Netherlands. He received the PhD degree in
computer science from the University of Salerno,
Italy, in 2017. His research interests include
software maintenance and evolution, empirical
software engineering, change and defect predic-
tion, green mining and mining software reposito-
ries. He serves and has served as a program
committee member of international conferences
such as MSR, ICPC, ICSME, and others. He is

member of the IEEE and ACM.

Rocco Oliveto Rocco Oliveto is Associate Pro-
fessor at University of Molise (Italy), where he is
also the Chair of the Computer Science program
and the Director of the Software and Knowl-
edge Engineering (STAKE) Lab. He is also one
of the co-founders and CEO of datasounds, a
spin-off of the University of Molise aiming at
efficently exploiting the priceless heritage that
can be extracted from big data analysis. He co-
authored over 100 papers on topics related to
software traceability, software maintenance and

evolution, search-based software engineering, and empirical software
engineering. His activities span various international software engineer-
ing research communities. He has served as organizing and program
committee member of several international conferences in the field of
software engineering. He was program co-chair for ICPC 2015, TEFSE
2015 and 2009, SCAM 2014, WCRE 2013 and 2012. He will be general
chair for SANER 2018.

Andrea De Lucia Andrea De Lucia received
the Laurea degree in computer science from the
University of Salerno, Italy, in 1991, the MSc de-
gree in computer science from the University of
Durham, United Kingdom, in 1996, and the PhD
degree in electronic engineering and computer
science from the University of Naples Federico
II, Italy, in 1996. He is a full professor of software
engineering at the Department of Computer Sci-
ence, University of Salerno, Italy, the head of the
Software Engineering Lab, and the director of

the International Summer School on Software Engineering. His research
interests include software maintenance and testing, reverse engineering
and reengineering, source code analysis, code smell detection and
refactoring, defect prediction, empirical software engineering, search-
based software engineering, collaborative development, workflow and
document management, visual languages, and elearning. He has pub-
lished more than 200 papers on these topics in international journals,
books, and conference proceedings and has edited books and journal
special issues. He also serves on the editorial boards of international
journals and on the organizing and program committees of several
international conferences. He is a senior member of the IEEE and the
IEEE Computer Society. He was also at-large member of the executive
committee of the IEEE Technical Council on Software Engineering
(TCSE).

