
Noname manuscript No.
(will be inserted by the editor)

Machine Learning-Based Test Smell Detection

Valeria Pontillo · Dario Amoroso
d’Aragona · Fabiano Pecorelli · Dario
Di Nucci · Filomena Ferrucci · Fabio
Palomba

Received: date / Accepted: date

Abstract Test smells are symptoms of sub-optimal design choices adopted
when developing test cases. Previous studies have proved their harmfulness for
test code maintainability and effectiveness. Therefore, researchers have been
proposing automated, heuristic-based techniques to detect them. However,
the performance of these detectors is still limited and dependent on tunable
thresholds. We design and experiment with a novel test smell detection ap-
proach based on machine learning to detect four test smells. First, we develop
the largest dataset of manually-validated test smells to enable experimenta-
tion. Afterward, we train six machine learners and assess their capabilities
in within- and cross-project scenarios. Finally, we compare the ML-based ap-
proach with state-of-the-art heuristic-based techniques. The key findings of the
study report a negative result. The performance of the machine learning-based
detector is significantly better than heuristic-based techniques, but none of the
learners able to overcome an average F-Measure of 51%. We further elaborate
and discuss the reasons behind this negative result through a qualitative in-
vestigation into the current issues and challenges that prevent the appropriate
detection of test smells, which allowed us to catalog the next steps that the
research community may pursue to improve test smell detection techniques.

Keywords Test Smells · Test Code Quality · Machine Learning · Empirical
Software Engineering.

1 Introduction

Test cases are the first barrier against software faults, particularly during
regression testing [48]. Development teams rely on their outcome to decide

Valeria Pontillo, Dario Di Nucci, Filomena Ferrucci, Fabio Palomba
Software Engineering (SeSa) Lab - University of Salerno (Italy)
E-mail: vpontillo@unisa.it, ddinucci@unisa.it, fferucci@unisa.it, fpalomba@unisa.it

Dario Amoroso d’Aragona
Tampere University — Tampere, Finland
E-mail: dario.amorosodaragona@tuni.fi

Fabiano Pecorelli
Jheronimus Academy of Data Science & Tilburg University, The Netherlands
E-mail: f.pecorelli@jads.nl



2 Valeria Pontillo et al.

whether it is worth merging a pull request [26] or even deploying the sys-
tem [9]. At the individual level, the developer’s productivity is also partially
dependent on the ability of tests to find real defects in production code [86] and
the timely diagnosis of the underlying causes [60]. Unfortunately, when devel-
oping test cases, programmers may apply sub-optimal implementation choices
that could introduce test debt [37], namely potential design problems that
lead to unforeseen testing and debugging costs for developers [42]. Test smells,
i.e., symptoms of poor design or implementation choices in test code [79],
represent one of the most significant sources of test debt [71, 78]. Several em-
pirical studies in the recent past have focused on test smells to understand
their properties [78] and their impact on maintainability [7, 27, 75] and test
effectiveness [28], by showing compelling evidence of the risks associated with
the presence of test smells for software dependability and test code quality.

For these reasons, researchers have investigated methods for automatically
detecting test smells [25]. Such techniques discriminate tests affected (or not)
by a particular type of smell by applying detection rules that compare the
values of relevant metrics extracted from test code against some empirically
identified thresholds. For instance, van Rompaey et al. [81] proposed a metric-
based technique that computes several structural metrics (e.g., number of pro-
duction code calls made by a test case) and combines them into detection rules
to highlight the likelihood of a test being smelly. A test is marked as smelly
if the value overcomes a threshold. Despite the effort spent by researchers so
far, existing test smell detectors still suffer from two key limitations. First
and foremost, they have limited detection capabilities, behaving similarly to a
random guessing approach [29,54,81]. Second, their performance is strongly in-
fluenced by the thresholds used in the detection rules to discriminate between
smelly and non-smelly tests [22, 25]. These restrictions threaten the practi-
cal applicability of these approaches. Machine learning represents one of the
possible solutions to the limitations mentioned above. Besides avoiding the
need to combine metrics using detection rules, a machine learning approach
would avoid the problem of selecting thresholds, thus representing a promising
solution to alleviate the limitations of heuristic-based techniques.

In this paper, we aim to build on top of the existing knowledge, exploring
the capabilities of machine learning to improve the performance of existing
test smell detectors through an empirical investigation. More specifically, the
proposed approach employs structural and textual metrics as features to esti-
mate the likelihood of a test being smelly and is instantiated for the detection
of four test smell types, i.e., Eager Test, Mystery Guest, Resource Optimism,
and Test Redundancy. Afterward, we empirically evaluate the performance of
the devised detector on a new dataset of Java projects—which we manually
build, publicly releasing the largest manually-crafted dataset of test smells
to date [25]—and compare its performance with three state-of-art heuristic-
based techniques. The findings of our study can be configured as a negative
result. The machine learning approach performs better than the traditional,
heuristic-based techniques but it is ineffective when detecting all test smells.



Machine Learning-Based Test Smell Detection 3

As a consequence of our negative result, we conduct a qualitative investi-
gation into the issues and challenges that prevent the proper identification of
test smells. Such a qualitative investigation allows us to elicit and catalog the
root causes of failures of machine learning- and heuristic-based detectors, pro-
viding the research community with insights and practical examples of when
and why current test smell detectors fail, other than how to improve the cur-
rently available instruments. We specifically identify several issues related to
the inaccurate definition of test smells, improper analysis and measurement of
the characteristics of those smells and inappropriate treatment of corner cases.
Based on our qualitative analysis, we finally outline take-away messages and
actionable insights for future research in the field.

Structure of the paper. Section 2 overviews the related literature and explains
how we advance the state of the art. In Section 3, we elaborate on the research
questions driving our study, while Section 4 reports the method used to define
the novel test smell dataset. The machine learning approach to detecting code
smells is discussed in Section 5, while its empirical evaluation is reported in
Section 6 and discussed in Section 7. The potential limitations of the study
are reported in Section 8, other than the mitigation strategies applied. Finally,
Section 9 concludes the paper and outlines our future research agenda.

2 Related Work

Investigations on the design of test code were initially pointed out by Beck [8].
Van Deursen et al. [79] and Maszaros [47] defined catalogs of test smells
along with their refactoring actions. More recently, Greiler et al. [29] devised
TestHound, a heuristic-based approach to identify six test smell types eval-
uated through semi-structured interviews. Palomba et al. [54] devised Taste,
a test smell detector that leverages textual metrics (e.g., the conceptual co-
hesion of test methods [43]) to complement previous techniques and identify
three test smell types. The detection rules proposed by Palomba et al. [54] were
later implemented inDarts [38], an Intellij plugin that makes Taste usable
through a user interface. Peruma et al. [61] proposed tsDetect, a test smell
detector that identifies 19 test smell types, including Assertion Roulette, Eager
Test, and Lazy Test. Maier and Felderer [41] recently introduced SniffTest,
a test smell detector based on language analysis methods to identify instances
of five test smell types such as Anonymous Test, Long Test, Conditional Test
Logic, Assertion Roulette, and Rotten Green Test. Pecorelli et al. [56] im-
plemented VITRuM, a Java plugin to provide developers with static and
dynamic test-related metrics and identify seven test smell types. Similarly,
Wang et al. [83] proposed PyNose, a Python plugin to detect 17 test smells.
Koochakzadeh et al. [35] designed TeReDetect, a tool that uses rules and
dynamic metrics to detect Test Redundancy, i.e., a test that could be removed
without impacting the test suite. De Bleser et al. [18] proposed SoCRATES, a
fully automated tool that combines syntactic and semantic data to identify six



4 Valeria Pontillo et al.

test smells in Scala software systems. Our paper is complementary to this re-
search since it introduces an orthogonal method based on machine learning to
identify test smells; compared to previous work, the proposed approach would
not require tuning thresholds and may be designed to combine multiple met-
rics previously employed in isolation. Furthermore, we conduct a large-scale
empirical study on a manually-validated dataset, making our investigation the
largest in test smell detection research.

Other related work concerns the empirical analyses of test smells. Tufano
et al. [78] investigated the lifecycle of test smells, while Bavota et al. [7] showed
that test smells are highly diffused in software projects and impact the under-
standability of test code. Similar results were later confirmed [44] and achieved
when considering automatically generated test cases [27] and in software sys-
tems developed using the combination of Scala and ScalaTest [17]. In
addition, Rwemalika et al. [69] investigated test smells in interactive user test
cases, finding that these are highly diffused and potentially harmful. Further-
more, Spadini et al. [75] showed that test smells impact the maintainability
of both test and production code. Spadini et al. [74] also discovered that test-
driven code reviews might help developers discover design flaws in test code.
All these studies serve as motivation for our paper. Based on the empirical ev-
idence provided in the past, test smells represent a relevant threat to software
reliability that should be promptly detected. We aim to employ machine learn-
ing (ML) algorithms previously used for code smell detection—the interested
reader may find a comprehensive literature analysis on machine learning for
code smell detection by Azeem et al. [3]. Although code and test smells share
a similar high-level definition, they do not share the same characteristics. It
is, therefore, worth analyzing the main differences we expect compared to the
previous research on code smell detection. According to the literature avail-
able, ML-based code smell detection comes with three significant limitations
concerning (i) data imbalance, (ii) subjectivity of code smell data, and (iii) a
set of predictors that poorly contribute to the accuracy of the detection [58].

As for the data imbalance limitation, previous literature has shown that
test smells are more diffused than code smells, e.g., Bavota et al. [7] found
Eager Test instances to affect around 35% of test classes. Conversely, code
smells typically affect a meager percentage of classes (i.e., around 2%) [53].
Therefore, it is reasonable to believe that the limitation of data imbalance
could have a lower significance when dealing with test smells. Nevertheless, in
the context of our empirical study, we investigate the use of data balancing to
understand whether this additional step could benefit the models.

Concerning subjectivity, we envision a strong relationship between test
and code smells—this was already shown by Tufano et al. [78]. The manually-
validated dataset discussed in Section 4 may have suffered from the subjec-
tivity of the authors who made the validation; in response, we also involved
external developers to double-check the manual validations performed when
building the dataset. As for the predictors, we rely on metrics adopted by exist-
ing heuristic techniques to verify the contributions provided by those metrics,
other than identifying potential limitations resulting from their adoption.



Machine Learning-Based Test Smell Detection 5

3 Goals and Research Questions

The goal of the study was to evaluate the suitability of machine learning for
test smell detection, with the purpose of improving test code quality through
the removal of detrimental design flaws. The perspective is of researchers and
practitioners interested in understanding the performance and limitations of
machine learning techniques for test smell detection. Specifically, our paper
was structured around three research questions (RQs), namely:

RQ1. Which features provide more information gain to a machine learning-
based test smell detector?

RQ2. What is the performance of a machine learning-based test smell de-
tector?

RQ3. How does a machine learning-based test smell detector perform com-
pared to heuristic-based approaches?

With the first research question (RQ1), we sought to understand which
metrics contribute the most to detecting test smells. These observations were
used to (i) quantify the predictive power of metrics and (ii) identify the most
promising features to include in our machine-learning approach. In RQ2, we
run our machine learning approach against a manually validated oracle of test
smells (built according to the operations reported in Section 4) to quantify its
detection performance capabilities. Afterward, with RQ3, we aimed to com-
pare the performance of our technique with the one achieved by state-of-the-art
approaches based on heuristics: Such validation allowed us to understand the
actual value of a machine learning approach, i.e., should it work worse than
heuristic approaches, its usefulness would be limited, as practitioners might
still find heuristic approaches more beneficial.

To design and report our empirical study, we followed the empirical soft-
ware engineering guidelines by Wohlin et al. [84], other than the ACM/SIG-
SOFT Empirical Standards.1

4 Dataset Construction

Creating a manually-validated dataset of test smells represented the first step
of our investigation. This step included selecting projects and test smell types,
besides the manual data collection to build the dataset. The following sections
report on each of these points.

1 Available at https://github.com/acmsigsoft/EmpiricalStandards.

https://github.com/acmsigsoft/EmpiricalStandards


6 Valeria Pontillo et al.

4.1 Projects Selection

We collected test data from a dataset of 66 open-source Java projects, pub-
licly available on GitHub, and 51,549 test cases. These projects are part of
a larger, popular dataset known as the International Dataset of Flaky Tests
(IDoFT).2 The selection was driven by two main factors. First, we considered
the entire set of test cases contained in these projects, i.e., not only those
labeled as flaky, to complement IDoFT with additional information related to
test smells. In this way, researchers might have been provided with a unique
database containing various test code-related issues, which would be beneficial
to stimulate further research on test code quality. These projects were highly
diverse in terms of scopes and sizes, hence representing an ideal source to
mitigate possible threats to external validity—our online appendix provides
detailed statistics on those projects [63]. Second, the rationale for using this
dataset came from previous observations made by Pontillo et al. [64, 65]. In
their study, the authors ran a state-of-the-art test smell detector named VIT-
RuM [56] and identified a high number of test smells, i.e., they found that
around 80% of test cases were smelly. While we did not use automated tools
to collect test smell data, the high diffuseness of test smells in the dataset
suggested that it may be worth manually analyzing those projects—as docu-
mented in the next sections, this resulted in a reasonable choice, as we found
that the percentage of test smells validated as smelly by both us and VIT-
RuM for Eager Test, Mystery Guest, and Resource Optimism was 66%, 36%,
and 7%, respectively.

4.2 Test Smell Selection

In the context of our work, we needed to experiment with test smells detectable
using machine learning algorithms. In addition, we aimed to compare the per-
formance of those algorithms with the ones of state-of-the-art heuristic tools.
As such, we needed to identify a set of test smells that would have allowed
us to meet two requirements: (1) their detection should have been based on
at least two metrics—if a test smell can be detected through an individual
metric, it would not have made sense to experiment with machine learning
solutions as this would have contributed to neither RQ1 and RQ2; (2) their
detection should have been supported by at least one tool—otherwise, we could
not have addressed RQ3. Based on these requirements, we first performed a
comprehensive literature analysis to extract all the test smells automatically
detectable by the current techniques. We started from the list of test smell
detection tools reported in a systematic mapping study by Aljedaani et al. [1].
This study reports all the test smell detection tools available in the literature
and the test smells they detect. From an initial set of 22 tools, we included only
those (i) supporting Java as a programming language, as the vast majority

2 https://mir.cs.illinois.edu/flakytests/

https://mir.cs.illinois.edu/flakytests/


Machine Learning-Based Test Smell Detection 7

of tools use only Java as the target language, and (ii) relying on a metric-
based approach, since machine learning classifiers require a set of metrics to
be used as predictors. Specifically, we excluded three tools that do not support
Java as a target programming language and nine tools that do not rely on a
metric-based approach to detect test smells. This filtering phase led us to a
final number of ten tools.

Afterward, we analyzed each tool and extracted information about the test
smells they detect and the metrics they use for the detection. We extracted a
total number of 31 different test smells. We further considered only the test
smells for which at least two metrics have been defined (more details about the
metrics are reported in Section 4.2), leading us to select a set of six test smell
types, namely Empty Test, Eager Test, Mystery Guest, Sensitive Equality,
Resource Optimism, and Test Redundancy. We discarded 25 of them because
their detection was based only on a single metric. It is important to note that,
in this case, the second requirement (i.e., the detection must be supported by
at least one tool) is intrinsically guaranteed since we extracted only the smells
that are detected by the ten selected tools—more details are reported in out
online appendix [63].

However, we noticed that detecting two of these smells was very trivial (i.e.,
Empty Test and Sensitive Equality); therefore, the use of a machine learning-
based approach would not lead to any detection performance improvement
other than being an overkill in terms of computational costs.

Empty Test is defined as “a test method that is empty or does not have ex-
ecutable statements”; thus, a heuristic approach could objectively identify test
cases that suffer from this issue. As a proof of that, Peruma et al. [61] applied
this heuristic to detect Empty Test instances within TsDetect, obtaining
an F-Measure of 100%. The same consideration applies to Sensitive Equality,
which occurs when “an assertion has an equality check by using the toString
method”. Two existing heuristic-based detectors, namely TsDetect [61] and
the one introduced by Bavota et al. [6], are able to detect Sensitive Equal-
ity instances with high accuracy. In particular, TsDetect [61] detects a test
method as smelly if it invokes the toString method of an object, while the
detector by Bavota et al. [6] verifies that a toString method of an object is
called within an assertion. According to the performance reported within these
previous papers, TsDetect [61] reaches an F-Measure of 90%, while Bavota et
al. [6] claimed an F-Measure of 100%. Based on the above consideration, we
decided to discard these two test smells, resulting in a final set of four test
smells reported in Table 4 together with their definition.

Another discussion point concerns the Resource Optimism smell. Given
its definition, it is likely that information-flow or dynamic analyses might be
potentially more suitable for detecting it. In this sense, a machine learning
solution might be sub-optimal, yet we aimed to assess the extent to which it
may provide valuable insights to detect the smell. These observations might
be used to understand how the performance of machine learning compares to
existing approaches and, perhaps, be later used by researchers to combine it
with novel, more precise information flows or dynamic sources of information.



8 Valeria Pontillo et al.

4.3 Test Smell Data Collection

Once we had selected projects and test smell types, we then proceeded with
the manual test smell classification. The first two authors of the paper acted
as the “inspectors” to mitigate potential subjectiveness issues due to a sin-
gle inspector performing the manual validation. The other authors were also
involved whenever needed, as further discussed later in this section. For the
sake of transparency, it is worth remarking that the authors involved have 3
to 15 years of experience on themes connected to test code quality, test smells,
and empirical software engineering. In addition, most of the authors were also
experienced in devising manually-built datasets. Overall, the amount of effort
required by the dataset-building phase was quantified in 320 hours/person.

Given the impracticability of manually analyzing all 51,549 test cases, the
process was conducted on a statistically significant stratified sample of 9,633
test cases (confidence level = 99%, margin of error = 1%). When defining
the sample, we used the distribution of test cases per software project as
stratification criterion. In this way, we could analyze a sample that kept the
same proportion of test cases of the original population, i.e., a larger project
will account for more tests than a smaller one. It is worth pointing out that
we could not take the distribution of test smells into account when sampling
the initial population of test cases, as the sample was built exactly for the
sake of manually detecting test smells. Indeed, the idea of sampling the initial
population of test cases came from our willingness to assess the smelliness
of test cases manually —in other terms, when sampling the population we
did not have information about test smells - this was indeed the intended
result of the manual validation. After defining the sample, we proceeded with
the actual validation, which was approached through a three-step process—
Table 1 reports the number of test cases analyzed at each stage:

Table 1: Number of test cases analyzed at each stage of the validation process.

Inspector #1 Inspector #2 200 external practitioners

#1 Initial Validation 963 test cases

#2 Internal Validation 4335 test cases 4335 test cases

#3 External Validation 480 test cases

Step #1: Initial Validation. As a first step, both inspectors independently
analyzed a subset of 963 test methods (equal to 10% of the total)—a third
inspector (i.e., the third author of the paper) was in charge of making the final
decision about the disagreements. Specifically, the tasks performed by the two
inspectors are elaborated in the following:

1. They consider each test method they were assigned to, opening the corre-
sponding code in their preferred IDE, i.e., they were both IntelliJ users.



Machine Learning-Based Test Smell Detection 9

2. By taking the definitions of the test smells considered in our work, they
assessed whether the test code was affected by any of them. The inspec-
tors were allowed to navigate the code as they liked so that they could
assess the test method on its own and how it interacted with other test or
production methods. They could also rely on additional data, e.g., project
documentation, contribution guidelines, or developer’s discussion, to ac-
quire contextual information and more appropriately assess the smelliness
of the test method.

3. They filled a spreadsheet that was designed to have six columns: the first,
named ‘Test Method’, took track of the name (and path) of the test method
analyzed; the second to fifth columns, named Eager Test, ‘Mystery Guest’,
‘Resource Optimism’, and ‘Test Redundancy’, respectively, stored boolean
values representing whether the test method contained or not each of the
considered test smells; finally, the last column, named ‘Notes’, was included
to let the inspectors write down notes and observations that might be useful
for the subsequent validation steps.

Upon completion, the results of this first validation were compared through
Cohen’s κ [16], which measures the inter-rater agreement of the inspection
task. As an outcome, the two inspectors reached an agreement of 0.76, which
indicates a substantial agreement [45]. The inspectors, including the third one,
also scheduled an online meeting to discuss the validation process, the cases
of disagreement, the challenges they faced, the annotations reported in the
‘Notes’ field of the spreadsheet, and how they dealt with corner cases. The
meeting was performed through Skype and lasted 1.5 hours. The result of the
meeting was instrumental for the second step, as it allowed the inspectors to
do a retrospective and set a baseline.

Step #2: Internal Validation. As a second step, the unclassified instances were
equally split between the two inspectors, reiterating the same tasks described
above. Upon completion of the validation, we scheduled two meetings. In the
first, the three inspectors mainly involved in the process met again to dis-
cuss further the operations performed. This meeting was performed on Skype
and lasted 1.5 hours. In the second, more formal, all the authors of the pa-
per in which the specific actions conducted during the inspection process were
critically reviewed to discover possible inconsistencies in the way the inspec-
tors conceptually classified test smell instances. The meeting was hybrid (the
remote component was realized through Skype) and lasted 3 hours. As an out-
come of the meeting, we decided to perform an additional round of cross-check
validation: each of the two main inspectors involved in the process double-
checked the validations made by the other to increase the robustness of the
dataset. As a result of the cross-check, the Cohen’s κ measured 0.84, indicating
an almost perfect agreement [45].

Step #3: External Validation. While the formal process described above was
supposed to mitigate possible bias when labeling the smelliness of test code,



10 Valeria Pontillo et al.

this may still contain subjective test smell instances. For this reason, we
planned an external validation of the test smells included in the dataset, which
involved experienced software testers. We approached such an external valida-
tion as a coherence check of the internal validation rather than as an extensive
assessment thereof—indeed, the external validation must be seen as a miti-
gation of the possible subjectivity bias affecting the internal validation. The
goal was to assess the extent to which external practitioners would label the
smelliness of test cases similarly to the internal validation: in the positive case,
this coherence check would have highlighted the soundness of the internal val-
idation procedure, other than the reliability of the dataset constructed in our
work. Since it was unreasonable to ask for an external validation of the entire
set of 9,633 test cases (it would have been excessively costly in terms of time
and effort required by external developers), we randomly selected a subset
of 480 test cases (around 5% of the test cases considered). There are some
observations to make in terms of the sampling strategy and its impact. We
preferred a random selection as opposed to a stratification based on the distri-
bution of the test smells identified during our manual validation. In this case,
the rationale was to let practitioners validate test cases having different prop-
erties according to their own experience with the aim of challenging and/or
corroborating our own validation. On the one hand, the validation of random
samples might have led practitioners to identify false negatives of the internal
validation, i.e., instances labeled by us as non-smelly and by practitioners as
smelly—this would have potentially imposed another round of internal, man-
ual validation. On the other hand, practitioners might have assessed a random
sample of test cases labeled as smelly during the internal validation, providing
indications on the soundness of the operations performed by the inspectors. A
distribution-aware selection solely looking at the distribution of the test cases
labeled as smelly could have not reached the same result, as we would have
not selected test cases labeled as non-smelly in our internal validation, hence
possibly missing information on false negatives. In any case, it is worth report-
ing that the random sample still kept a similar proportion of the test smells
within the validation set. We indeed had 127 Eager Test instances (26% of the
test cases of the sample), 68 Mystery Guest instances (14%), 31 Resource Op-
timism instances (6%), and 2 Test Redundancy instances (0.4%); in addition,
252 test cases (53%) were labeled as non-smelly in the internal validation. In
the sampled population, Eager Test instances represented 28% of all test cases,
Mystery Guest instances formed the 16% of the test cases, Resource Optimism
instances the 8%, and Test Redundancy the 0.4%, with the non-smelly tests
representing 48% of all test cases—Table 3 reports information on the diffuse-
ness of smelliness in the sample. In other terms, the random sample did not
negatively impact the representativeness of smelly and non-smelly test cases.

Table 2 reports questions related to the participant’s background. In par-
ticular, we asked for information on the context in which participants usually
developed, e.g., industrial or academic, their knowledge of the Java program-
ming language, how much and which testing they typically do when developing,
and their familiarity with test smells.



Machine Learning-Based Test Smell Detection 11

Table 2: List of questions for the background part in the survey with the type
of response provided.

Section 1: Participant’s background Type

#1 What kind of developer are you? Multiple choice (Industrial, Open-source,
Startup, Student, Researcher)

#2 How many years of experience do you have
with the Java programming language?

Paragraph

#3 Please rate your level of expertise with the
Java programming language.

5-point Likert scale

#4 How many years of experience do you have in
Software Testing?

Paragraph

#5 To what extent do you perform each of the
following types of testing in your projects?

Multiple-choice grid (Unit, Integration, Sys-
tem, Acceptance, Usability testing from
“Never” to “Frequently”)

#6 How familiar are you with the concept of test
smells, i.e., symptoms of sub-optimal design
choices adopted when developing test cases?

5-point Likert scale

We involved 200 external developers through the Prolific platform,3 a
research instrument to select research participants. To mitigate the possible
self-selection or voluntary response bias, we introduced a monetary incentive
of 9 USD. Incentives are well-known to mitigate self-selection or voluntary re-
sponse bias, other than increasing the response rate, as shown in previous stud-
ies targeting the methods to increase response rate in survey studies [34,70]. By
setting the appropriate filters, we involved practitioners working in IT. More
specifically, the developers were provided with a definition of the test smells
subject of the study and asked to assess the smelliness of four test cases, i.e.,
the external developers performed very similar tasks as the inspectors in the
internal validation, allowing us to compare the outcomes produced fairly. The
four test cases to show to practitioners were randomly selected from the sam-
ple of 480 test cases, which means that they may have dealt with either one or
more smelly or non-smelly test cases. The choice of limiting the amount of test
cases to assess to four was dictated by two main reasons. First and foremost,
we aimed at limiting the cognitive load required by practitioners to perform
the task: we deemed four test cases a reasonable amount to let practitioners be
focused on the task and provide us with reliable insights - a higher number of
test cases might have negatively impacted the cognitive load, possibly biasing
the external validation. Second, our choice was motivated by the willingness to
take the survey short, which is a relevant factor impacting the response rate of
survey studies: we designed the external validation to be conducted within 10
minutes—including both answers to background questions and validation of
the four test cases. A longer study involving the validation of more test cases
may have lowered participation, affecting the validity of the external valida-
tion. Note that, having 480 tests and 200 developers, we could also perform
cross-checking, i.e., several developers assessed a subset of 262 test cases to
verify the consistency among the evaluations provided.

3 Prolific website: https://www.prolific.co/.

https://www.prolific.co/


12 Valeria Pontillo et al.

Upon completing the data collection, we first filtered out 16 answers from
developers with less than one year of experience in testing—we considered
them not experienced enough to provide reliable insights. Regarding demo-
graphic details, we analyzed the data collected directly from Prolific, looking
at the self-declared information made available by the participants. We focused
on Age, Nationality, Language, and Sex. In terms of age, the lowest age is 18,
while the highest age is 62. The median is 26. Analyzing the nationality, 66%
of respondents came from Europe, 19% from Africa, 13% from Asia, and 2%
from America. English and Portuguese are the most common languages spo-
ken by the participants (each for 32%), while other languages such as Italian,
German, Greek, etc. contribute between 5% and 1%. Finally, 77% of the par-
ticipants are male, while 23% are female—we reported all data anonymously
in the online appendix [63]. As for the other 184 responses, 81% of the par-
ticipants have more than three years of software development experience, and
53% have more than three years of experience with Java. Almost 37% of the
participants have more than three years of software testing experience, and
50% of the practitioners declared that they perform unit testing frequently—
more details about the participants’ background and their experience with
software development and testing are reported in our online appendix [63].

Table 3: Diffuseness of test smells in the dataset used for the external validation
(480 test cases) and in the entire dataset (9,633 test cases). We reported the
various combinations of test smells and non-test smells present in the datasets.
The first row represents test cases that are no-smelly, the last row represents
the test cases with all four test smells analyzed, and the rows in between are
all combinations.

Test Red. Res. Opt. Mystery Guest Eager Test Total

Ext. Valid. Entire Dataset

0 0 0 0 307 5,981

0 0 0 1 103 2,085

0 0 1 0 22 413

0 0 1 1 14 391

0 1 0 0 0 3

0 1 0 1 0 0

0 1 1 0 23 513

0 1 1 1 8 207

1 0 0 0 0 17

1 0 0 1 1 13

1 0 1 0 0 0

1 0 1 1 1 3

1 1 0 0 0 0

1 1 0 1 1 0

1 1 1 0 0 7

1 1 1 1 0 0



Machine Learning-Based Test Smell Detection 13

Afterward, we assessed the consistency of the answers provided by devel-
opers: on average, for each test smell instance, 88% of participants assessed it
in the same manner. This result looks interesting, especially when compared
to the existing body of knowledge that assessed the developer’s perception of
test smells [78]. Our findings suggest that developers’ awareness of test code
quality issues may increase when providing them with specific definitions of
test smells—we plan to further investigate this matter as part of our future
research agenda. Finally, we computed the Cohen’s κ coefficient between the
evaluations provided by the inspectors on the sample instances and the eval-
uations provided by the majority of the developers in the survey study—in
other terms, in the case an instance was evaluated differently by different de-
velopers, we applied a majority voting strategy to identify the most popular
evaluation of that instance. The Cohen’s κ measured 0.67, indicating a good
agreement [45]. We did not observe any case where the developer’s recommen-
dations drastically differed from those performed by the inspectors; therefore,
we did not change the original classification. The results obtained from this
external validation were deemed sufficient to address the question about the
potential bias of the internal validation; as such, we considered the dataset
construction phase concluded.

The process described above led to the creation of the most extensive
test smell dataset up to date—Table 3 reports details on the diffuseness of
smelliness in the dataset. We obtained 2,699 instances of Eager Test (of which
2,082 test cases have only this smell), 1,534 instances of Mystery Guest 413
istances present only Mystery Guest as test smell , 730 instances of Resource
Optimism (of which only three test cases have only this smell), and 40 instances
of Test Redundancy (17 instances are pure Test Redundancy). We publicly
released the dataset in our appendix [63]. Besides indicating the smelliness of
each test smell, we also released the anonymized evaluations received by the
developers. We hope this dataset will be helpful to test code quality researchers
to investigate further both test smell detectors and the developer’s awareness
of test quality concerns.

5 Machine Learning-based Test Smell Detection

We illustrate the approach employed to develop and experiment with a ma-
chine learning-based approach for test smell detection.

Dependent Variable. As we aimed at automatically detecting the presence of
test smells, the dependent variable is a binary value indicating the presence/ab-
sence of a specific test smell type. We considered the outcome of the validation
process discussed in Section 4 as a dependent variable.

Independent Variables. To collect a set of reliable predictors for each test smell
under consideration, we used the metrics from heuristic approaches already
available in the literature—the identification of new features was not in the



14 Valeria Pontillo et al.

Table 4: Test smells included in our study, their definition, and the independent
variables for each smell under investigation.

Test Smell Definition Metric Description Structural/Textual

Eager Test
A test method involving many meth-
ods of the object being tested.

NMC Number of Method Calls Structural

TMC
Test Method Cohesion, i.e., the aver-
age textual similarity between all the
pairs methods called by a test method

Textual

TS
Textual Scattering, i.e., the extent to
which the text within the method body
is conceptually scattered

Textual

NRF Number of References to Files Structural
Mystery Guest

A test that uses external resources
(e.g., databases or files). NRDB Number of References to Database Structural

Resource Optimism
A test that uses external resources
without checking the state of these.

ERNC State of External Resources, which are
not files, Not Checked

Structural

FRNC State of File Resources Not Checked Structural

PR Pair Redundancy is the ratio between
the items covered by a test and those
covered by another one

Structural

Test Redundancy
A test that could be removed without
impacting the test suite. SR Suite Redundancy is the ratio between

the items covered by a test compared
and those covered by all other tests in
the test suite

Structural

scope of our investigation. Specifically, while performing the process described
in Section 4 to select test smells, we collected all the metrics defined and used
by the available detection approaches. Table 4 reports the list of metrics used
for classifying each test smell with their description. We used these metrics as
features to learn the machine learning algorithms. Our online appendix [63]
also includes references to all the tools relying on the same metrics.

Selecting Machine Learning Algorithms. To the best of our knowledge, our
work investigates the first machine learning-based test smell detector; there-
fore, the most suitable classifier is still unknown. We have experimented with
a set of classifiers belonging to different families that have been widely used in
problems related to software maintenance and evolution [12–14,19,57,58]. The
goal of such extensive experimentation was to (i) understand which machine
learning algorithm was the best for test smell detection and (ii) increase the
generalizability of the results. More specifically, we assessed the capabilities
of Decision Tree [24], Naive Bayes [20], Multilayer Perceptron [77], and Sup-
port Vector Machine [50], as basic classifier. We also considered two ensemble
techniques, such as Ada Boost [72] and Random Forest [11].

Model Configuration and Training. When training the selected machine learn-
ers, we experimented with multiple under- and over-sampling techniques to
balance our data to understand how those algorithms may improve the test
smell detection capabilities. As for the under-sampling, we considered the use
of NearMiss 1, NearMiss 2, and NearMiss 3 algorithms [85]. These compute
the distance between instances of the majority and minority classes. Then, the
algorithms select the instances of the majority class that have the shortest dis-
tance from instances of the minority class and remove them. The underlying
idea is that removing the most similar majority samples increases the diversity
of the training set and, therefore, lets a machine learner more appropriately
learn features. We also experimented with a Random Undersampling approach,



Machine Learning-Based Test Smell Detection 15

which randomly explores the distribution of majority instances and under-
samples them. As for the over-sampling, we investigated Synthetic Minority
Over-sampling Technique, a.k.a SMOTE [15], and advanced versions of this
algorithm, i.e., Adaptive Synthetic Sampling Approach, a.k.a ADASYN [33]
and the Borderline-SMOTE [31]. While the basic SMOTE uses a simple
k-nearest neighbor function to identify the minority class instances to over-
sample, ADASYN over-samples the instances according to their learning dif-
ficulty. Instead, Borderline-SMOTE selects the minority class instances based
on their similarity compared to the majority class instances. We also experi-
mented with a Random Oversampling approach, which randomly explores
the distribution of the minority class and over-samples them.

Finally, concerning the classifiers configuration, we experimented with the
hyper-parameters of the classifiers using the Random Search strategy [10]: this
search-based algorithm randomly samples the hyper-parameters space to find
the best combination of hyper-parameters maximizing a scoring metric (i.e.,
the Matthews Correlation Coefficient). We developed the entire pipeline with
the Scikit-Learn library [59] in Python.

Model Validation. To assess the performance of our models, we performed both
within- and cross-project validation. These validations aimed to quantify the
performance of the models in two different scenarios. We were indeed interested
to understand (i) how accurate can the performance be when a test smell
detection model was trained using data of the same project where it should be
applied and (ii) how accurate the model was when trained using external data
to the project where it should be applied. For the within-project validation,
we performed a stratified ten-fold cross-validation [76] for each project. This
strategy randomly partitions the data into ten folds of equal size, allowing
us to maintain the correct proportion in every split between smelly and non-
smelly instances. It iteratively selects a single fold as a test set while the other
nine are used as a training set. For the cross-project validation, we adopted
the Leave-One-Out Cross-Validation strategy [68], a particular case of K-fold
cross-validation with K equal to N , the number of projects in the set. We
trained models using the test cases of N − 1 projects and used the test cases
of the remaining project as the test set. The process was repeated N times to
ensure each project would occur in the test set once.

6 Research Method and Results

This section discusses the research methods employed to address the three
main research questions targeted by our work.



16 Valeria Pontillo et al.

Table 5: The mean of the information gain obtained by all the considered
metrics during the within- and cross-project validation.

Test Smell Metric Within-project Cross-project

Eager Test NMC: Number of Method Calls 0.037 0.007

TMC: Test Method Cohesion, i.e., the average
textual similarity between all the pairs meth-
ods called by a test method

0.428 0.559

TS: The extent to which the text within the
method body is conceptually scattered

0.428 0.559

Mystery Guest NRF: Number of References to Files 0.661 0.042

NRDB: Number of References to Database 0.015 0.001

Resource Optimism ERNC: state of External Resources, which are
not files, Not Checked

0.012 0.007

FRNC: state of File Resources Not Checked 0.052 0.022

Test Redundancy PR: Pair Redundancy, i.e., the ratio between
the items covered by a test and those covered
by another one

0.001 0.000

SR: Suite, i.e., Redundancy the ratio between
the items covered by a test compared and those
covered by all other tests in the test suite

0.001 0.001

6.1 RQ1 - In Search of Suitable Metrics for Machine Learning-Based Test
Smell Detection

Research Method. As explained in Section 4, we focused on the metrics used by
previous researchers when detecting test smells, i.e., we investigated whether
a machine learning solution was suitable to combine structural and textual
metrics considered in isolation by previous work. Table 4 lists and describes
each considered test smell and the independent variables taken into account for
each smell under investigation. These metrics captured the smelliness of tests
under different perspectives, considering the size of fixtures and test suites,
cohesion and coupling aspects of tests, and conceptual relationships between
the methods composing test suites. We quantified the predictive power of
each metric by computing their information gain [66]. This step was used
as a probing method, i.e., this step allowed us to estimate the contribution
provided by each metric. In addition, information gain has also been used as a
feature selection instrument for RQ2, and RQ3: we indeed used as predictors
the metrics having an information gain higher than zero, i.e., we discarded the
metrics that did not provide any expected beneficial effect on the performance.
The output of the information gain algorithm consists of a ranked list where
the features of the model are placed in a descending manner, meaning that
those contributing the most are placed at the top. We employed the Gain Ratio
Feature Evaluation algorithm [66] available in the Scikit-Learn library [36].

Analysis of the Results. Table 5 reports the results for RQ1, considering the
within- and cross-project scenarios. As for the Eager Test smell, we could
notice that TMC and TS provide a higher information gain than NMC. Both
these metrics are textual, and, according to our results, textual metrics seem
to behave better than structural ones, possibly confirming the findings by



Machine Learning-Based Test Smell Detection 17

Palomba et al. [54]. This result holds for both (of the) validation scenarios
considered in our work. Perhaps more interestingly, it is worth discussing the
low contribution of NMC. While an Eager Test is a test exercising multiple
production methods, our results report that the number of method calls done
by the test—which might be a proxy of the number of production methods
exercised—is not a suitable metric. This result contradicts previous findings,
raising questions on the metrics that may be used to identify Eager Test smells.

As for Mystery Guest, the number of references to files was the most im-
pactful metric, especially in the within-project scenario. At the same time,
the NRDB was found to be less impactful. Also in this case, the results were
consistent in both validation scenarios. In any case, conceptually speaking,
both the metrics were very close to the definition of the smell, hence possibly
contributing to its detection. Likely, most considered systems store data using
files, influencing our results.

When it turns to Resource Optimism, the information gain achieved for
both (of) the considered metrics, i.e., ERNC and FRNC, is relatively less
significant in both scenarios. This result is somehow surprising, as these metrics
align with the definition of the smell—yet they are not only based on external
files, possibly neglecting other data storage solutions. Our findings can suggest
that further points of view, and therefore metrics, may be relevant.

Finally, when considering Test Redundancy, we found that the metrics had
a very low information gain in both validation scenarios. On the one hand,
this finding might be due to the limited diffuseness of this smell, i.e., we could
find just 40 instances of this smell over 66 projects. On the other hand, the
metrics considered were likely unable to characterize the problem, possibly
making this smell detection hard.

 Answer to RQ1. Overall, we observed that the metrics considered by pre-
vious research might provide a limited information gain to machine learning-
based test smell detectors. We investigate the effects of those findings on the
actual detection performance in the following research questions.

6.2 RQ2 - Assessing the Performance of Our Machine Learning-Based Test
Smell Detector

Research Method. When assessing the performance of the machine-learning
models, we proceeded with a stepwise analysis of the various components in-
cluded in the experimentation. We performed an ablation study to analyze the
contribution of each configuration and training step to the overall models’ per-
formance. We experimented with multiple combinations, i.e., we analyzed how
the performance varies when including (and not) the feature selection step, the
data balancing, and the hyper-parameter optimization, other than consider-
ing the performance variations given by the different validation procedures.
In this way, we could also assess the best possible pipeline for the problem of



18 Valeria Pontillo et al.

test smell detection. To evaluate the performance of the various combinations
experimented and address RQ2, we computed several state-of-the-art met-
rics such as precision, recall, F-Measure [4], Matthews Correlation Coefficient
(MCC) [5], and the Area Under the Curve - Precision-Recall (AUC-PR).

We statistically verified our conclusions by using the Friedman [73] and
Nemenyi tests [49] on the distribution of MCC values of machine learning
models over the different projects, configurations, and test smell types for sta-
tistical significance. We used the former to determine whether or not there is
a statistically significant difference between the MCC value, while we used the
latter to report its results using MCM (i.e., Multiple Comparisons with the
best) plots [46]. We used 0.05 as a significance level, so the elements plotted
above the gray band were statistically larger than the others. In addition, the
dots in the plot represented the median MCC that the algorithms obtained in
the projects: a blue dot indicated that the MCC of an algorithm was statis-
tically better than the other algorithms. In contrast, red dots indicated that
the performance was not statistically different. To perform this last step, we
relied on the nemenyi function available in R toolkit.4

Analysis of the Results. Our study analyzed the machine learning approach
when considering both within- and cross-project scenarios. For the sake of
readability, we first discuss the results obtained from the ablation study con-
ducted on the features, as the results of this step informed all the other steps.
Afterward, we split the analysis of the results by validation strategy.

Ablation Study for Feature Selection. To conduct such an ablation study, we
relied on the outcome of the information gain analysis to understand whether
and which features should have been excluded. The results of RQ1 reported
that all the metrics considered provided a non-null information gain, indicat-
ing that none of them could be excluded by the set of features used by a ma-
chine learning instrument. Consequently, we could conclude that the ablation
study on feature selection did not reveal findings that should have informed
the set of features to use when building the machine learning-based detector.

These observations were also backed up by an additional analysis we per-
formed when considering the performance of the machine learning-based de-
tectors when relying on individual metrics as features. In the within-project
scenario, we built nine machine learning-based detectors for each software
project considered in the study, summing up to 108 configurations for each
test smells. In the cross-project scenario, we devised additional 54 configura-
tions for each test smell, i.e., nine machine learning-based detectors for each
execution of the Leave-One-Out Cross-Validation. While the detailed results of
this additional analysis are reported in our online appendix [63], we found the
machine learning-based detectors perform even worse when relying on individ-
ual metrics than the detectors relying on all metrics. On the one hand, this
finding corroborated the results from RQ1: all the metrics provide some infor-
mation gain, and, therefore, they should be considered together when training
a machine learning instrument. On the other hand, this finding suggests that

4 https://www.r-project.org/

https://www.r-project.org/


Machine Learning-Based Test Smell Detection 19

0.00

0.25

0.50

0.75

adaboost

decisiontre
e

multila
yerperceptro

n

naive
bayes

randomforest
svm

M
C

C
 −

 E
ag

er
 T

es
t

0.00

0.25

0.50

adaboost

decisiontre
e

multila
yerperceptro

n

naive
bayes

randomforest
svm

M
C

C
 −

 M
ys

te
ry

 G
ue

st

0.0

0.2

0.4

0.6

0.8

adaboost

decisiontre
e

multila
yerperceptro

n

naive
bayes

randomforest
svm

M
C

C
 −

 R
es

ou
rc

e 
O

pt
im

is
m

0.00

0.02

0.04

0.06

adaboost

decisiontre
e

multila
yerperceptro

n

naive
bayes

randomforest
svm

M
C

C
 −

 T
es

t R
ed

un
da

nc
y

Fig. 1: Boxplot representing the MCC values obtained by classifiers for all
considered test smells in the within-project setting.

the metrics are orthogonal to each other, meaning that they do not operate in
a conflicting fashion when classifying the smelliness of test cases. In conclusion
of this first step, we could observe that the best configuration of features to use
is the one that includes all the metrics, and for this reason, the next sections
describe the results obtained by this configuration.

Within-project Results. The ablation study led us to build 108 configura-
tions for each project—7,128 models in total. Each model was configured and
run for each of the four test smells considered in our study, resulting in 28,512
different runs. We only discuss the best configuration for each test smell for
readability while we report the full results in our online appendix [63].

Looking at Figure 1, we could observe that the median MCC achieved
by Random Forest on Eager Test, Mystery Guest, and Resource Optimism is
slightly higher than the other algorithms (respectively 0.1, 0.09 and 0.05)—
detailed result for all models are in our online appendix [63]. In contrast, in the
case of Test Redundancy, Naive Bayes seems to be the only classifier capable of
detecting this smell the median was 0.01. The Friedman test showed that the
distributions for Eager Test and Resource Optimism do not show statistically
significant differences. However, we still decided to apply the Nemenyi test
to all test smells to analyze which model showed higher values, even if not



20 Valeria Pontillo et al.
Li

ke
lih

oo
d 

M
C

C
 E

ag
er

 T
es

t

sv
m

 −
 3

.0
5

ad
ab

oo
st

 −
 3

.5
0

m
ul

til
ay

er
pe

rc
ep

tr
on

 −
 3

.5
3

na
iv

eb
ay

es
 −

 3
.5

9

de
ci

si
on

tr
ee

 −
 3

.6
3

ra
nd

om
fo

re
st

 −
 3

.7
0

2.
5

3.
5

Li
ke

lih
oo

d 
M

C
C

 M
ys

te
ry

 G
ue

st

na
iv

eb
ay

es
 −

 2
.6

4

sv
m

 −
 3

.0
7

m
ul

til
ay

er
pe

rc
ep

tr
on

 −
 3

.4
8

ad
ab

oo
st

 −
 3

.5
9

de
ci

si
on

tr
ee

 −
 4

.1
1

ra
nd

om
fo

re
st

 −
 4

.1
1

2.
0

3.
5

Li
ke

lih
oo

d 
M

C
C

 R
es

ou
rc

e 
O

pt
im

is
m

na
iv

eb
ay

es
 −

 2
.9

3

sv
m

 −
 3

.2
2

m
ul

til
ay

er
pe

rc
ep

tr
on

 −
 3

.5
4

ad
ab

oo
st

 −
 3

.6
7

de
ci

si
on

tr
ee

 −
 3

.7
8

ra
nd

om
fo

re
st

 −
 3

.8
7

2.
5

3.
5

4.
5

Li
ke

lih
oo

d 
M

C
C

 T
es

t R
ed

un
da

nc
y

ad
ab

oo
st

 −
 3

.0
0

de
ci

si
on

tr
ee

 −
 3

.0
0

m
ul

til
ay

er
pe

rc
ep

tr
on

 −
 3

.0
0

ra
nd

om
fo

re
st

 −
 3

.0
0

sv
m

 −
 3

.0
0

na
iv

eb
ay

es
 −

 6
.0

0

2
4

6
8

Fig. 2: The likelihood of each model for the four test smells in within-project
validation in Nemenyi rank in MCC. The circle dots are the median likelihood,
while the error bars indicate the 95% confidence interval. 60% of likelihood
means that a classification technique appears at the top rank for 60% of the
studied projects.

statistically significant. Figure 2 plots the outcome of the Nemenyi Test on
the four test smells in the within-project validation. We can observe that
for two test smells, i.e., Eager Test and Resource Optimism, no algorithm
performed statistically better than others—all the dots are red. Differently,
for Mystery Guest, Random Forest and Decision Tree are shown to achieve
better performance than the others with a statistically significant difference.
Based on these considerations, we will discuss the following results relying on
Random Forest for Eager Test, Resource Optimism, and Mystery Guest. In
contrast, Naive Bayes will be used for further analyses on Test Redundancy.

Concerning the impact of the balancing techniques, the Friedman test
found no statistically significant differences between the distributions except
for Mystery Guest. Figures 3 and 4 show the distributions of MCC and the
Nemenyi ranks for each smell. We can observe that no balancing technique
performed statistically better than the others in the cases of Eager Test and
Resource Optimism—BorderlineSMOTE seems to have slightly higher perfor-
mance. When it turns to Mystery Guest, the Random Forest classifier, without



Machine Learning-Based Test Smell Detection 21

−0.25

0.00

0.25

0.50

0.75

Random Forest

adasyn_RF

borderlin
esmote_RF

nearm
issunder1_RF

nearm
issunder2_RF

nearm
issunder3_RF

randomover_RF

randomunder_RF

smoteover_RF

M
C

C
 −

 E
ag

er
 T

es
t

−0.25

0.00

0.25

0.50

Random Forest

adasyn_RF

borderlin
esmote_RF

nearm
issunder1_RF

nearm
issunder2_RF

nearm
issunder3_RF

randomover_RF

randomunder_RF

smoteover_RF

M
C

C
 −

 M
ys

te
ry

 G
ue

st

−0.25

0.00

0.25

0.50

0.75

Random Forest

adasyn_RF

borderlin
esmote_RF

nearm
issunder1_RF

nearm
issunder2_RF

nearm
issunder3_RF

randomover_RF

randomunder_RF

smoteover_RF

M
C

C
 −

 R
es

ou
rc

e 
O

pt
im

is
m

0.02

0.04

0.06

Naive
 Bayes

adasyn_NB

borderlin
esmote_NB

nearm
issunder1_NB

nearm
issunder2_NB

nearm
issunder3_NB

M
C

C
 −

 T
es

t R
ed

un
da

nc
y

Fig. 3: Boxplot representing the MCC values obtained by balancing techniques
for all considered test smells in the within-project setting.

any balancing algorithm, performed statistically better than all the alterna-
tives. This observation is also true for Test Redundancy, yet in this case, the
performance differences are not statistically significant. All in all, our findings
seem to corroborate previous observations showing that balancing algorithms
are not always effective in the context of code smell detection [57].

Therefore, the best machine learning classifiers for the four test smells ana-
lyzed are (i) Random Forest with Borderline-SMOTE for Eager Test, (ii) Ran-
dom Forest for Mystery Guest, (iii) Random Forest with Borderline-SMOTE
for Resource Optimism, and (iv) Naive Bayes for Test Redundancy.

The last step of the ablation study concerns hyperparameter optimization.
We compared the performance of the best models with and without hyperpa-
rameters optimization to understand whether and to what extent such addi-
tional steps could improve the models.

It is important to point out that, since we considered several systems, we
needed to aggregate the results achieved for each system to have a more trans-
parent overview of the performance [2]. Therefore, we aggregated the obtained
confusion matrices before computing Precision, Recall, F-Measure, and MCC.
Moreover, we must also point out that we could not produce results for all the
smells analyzed and all individual projects. By diagnosing the reasons behind



22 Valeria Pontillo et al.
Li

ke
lih

oo
d 

M
C

C
 E

ag
er

 T
es

t B
al

an
c.

ne
ar

m
is

su
nd

er
2_

R
F

 −
 4

.3
6

ne
ar

m
is

su
nd

er
1_

R
F

 −
 4

.3
9

ne
ar

m
is

su
nd

er
3_

R
F

 −
 4

.7
0

ra
nd

om
ov

er
_R

F
 −

 4
.8

8

ad
as

yi
n_

R
F

 −
 4

.9
7

sm
ot

eo
ve

r_
R

F
 −

 5
.0

0

R
an

do
m

 F
or

es
t −

 5
.5

5

ra
nd

om
un

de
r_

R
F

 −
 5

.5
6

bo
rd

er
lin

es
m

ot
e_

R
F

 −
 5

.5
9

3.
5

5.
0

6.
5

Li
ke

lih
oo

d 
M

C
C

 M
ys

te
ry

 G
ue

st
 B

al
an

c.

ne
ar

m
is

su
nd

er
3_

R
F

 −
 3

.1
0

ra
nd

om
un

de
r_

R
F

 −
 4

.3
8

ad
as

yi
n_

R
F

 −
 4

.6
9

ra
nd

om
ov

er
_R

F
 −

 5
.1

4

bo
rd

er
lin

es
m

ot
e_

R
F

 −
 5

.3
6

ne
ar

m
is

su
nd

er
2_

R
F

 −
 5

.4
5

ne
ar

m
is

su
nd

er
1_

R
F

 −
 5

.5
2

sm
ot

eo
ve

r_
R

F
 −

 5
.6

0

R
an

do
m

 F
or

es
t −

 5
.7

6

2
4

6

Li
ke

lih
oo

d 
M

C
C

 R
es

ou
rc

e 
O

pt
. B

al
an

c.

ra
nd

om
ov

er
_R

F
 −

 3
.4

2

ne
ar

m
is

su
nd

er
2_

R
F

 −
 4

.0
8

ra
nd

om
un

de
r_

R
F

 −
 4

.5
4

ne
ar

m
is

su
nd

er
1_

R
F

 −
 4

.8
1

ne
ar

m
is

su
nd

er
3_

R
F

 −
 4

.8
8

sm
ot

eo
ve

r_
R

F
 −

 5
.4

2

R
an

do
m

 F
or

es
t −

 5
.5

4

ad
as

yi
n_

R
F

 −
 5

.9
2

bo
rd

er
lin

es
m

ot
e_

R
F

 −
 6

.3
8

2
4

6
8

Li
ke

lih
oo

d 
M

C
C

 T
es

t R
ed

. B
al

an
c.

ne
ar

m
is

su
nd

er
2_

N
B

 −
 3

.6
7

ne
ar

m
is

su
nd

er
3_

N
B

 −
 4

.6
7

ra
nd

om
ov

er
_N

B
 −

 4
.6

7

ra
nd

om
un

de
r_

N
B

 −
 4

.6
7

sm
ot

eo
ve

r_
N

B
 −

 4
.6

7

ad
as

yi
n_

N
B

 −
 5

.6
7

bo
rd

er
lin

es
m

ot
e_

N
B

 −
 5

.6
7

ne
ar

m
is

su
nd

er
1_

N
B

 −
 5

.6
7

N
ai

ve
 B

ay
es

 −
 5

.6
7

0
2

4
6

8

Fig. 4: The likelihood of each balancing technique for the four test smells in
within-project validation in Nemenyi rank in MCC. The circle dots are the
median likelihood, while the error bars indicate the 95% confidence interval.
60% of likelihood means that a classification technique appears at the top rank
for 60% of the studied projects.

the failures of the models, we identified a main factor: on some projects, the
number of test smells was equal to one, causing a training error. Therefore,
we created and tested machine learning models for 37 projects for Eager Test,
28 projects for Mystery Guest, 18 projects for Resource Optimism, and three
projects for Test Redundancy.

Table 6 shows the achieved performance in terms of Precision, Recall, Accu-
racy, F-Measure, MCC, and AUC-PR. The result immediately highlights that
the performance of the approaches is generally low. The maximum F-Measure
achieved is for Eager Test (i.e., 51%). Analyzing the MCC, we notice that the
performance ranges from 0.01 (Test Redundancy) to 0.39 (Mystery Guest).
Overall, we found that the hyper-parameter optimization did not improve the
performance as much as to justify the high computational cost required.

Cross-project Results. Regarding the cross-project validation, we performed
the same ablation study applied for the within-project validation. While the
entire process is shown in our online appendix [63], here we only report and



Machine Learning-Based Test Smell Detection 23

Table 6: Aggregate results for Precision, Recall, Accuracy, F-Measure, MCC,
and AUC-PR without (i.e., “w/o HT”) and with (i.e., “w/ HT”) the hyper-
parameter optimization by Random Search in the within-project setting.

Precision Recall Accuracy

Test Smell w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT

Eager Test 0.47 0.48 0.53 0.54 0.68 0.68

Mystery Guest 0.64 0.64 0.34 0.34 0.83 0.84

Resource Opt. 0.33 0.33 0.31 0.36 0.85 0.84

Test Red. 0.08 0.01 1.00 0.97 0.05 0.03

F-Measure MCC AUC-PR

Test Smell w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT

Eager Test 0.50 0.51 0.27 0.28 0.49 0.50

Mystery Guest 0.45 0.44 0.39 0.38 0.59 0.55

Resource Opt. 0.32 0.34 0.24 0.25 0.53 0.53

Test Red. 0.01 0.01 0.01 0.01 0.52 0.52

discuss the results of the Nemenyi Test and the distribution for each test smell
after applying the various balancing techniques.

Differently from the within-project configuration, we found Ada Boost to
be the best classifier for Eager Test and Support Vector Machine for Resource
Optimism in the cross-project setting. As for Mystery Guest and Test Redun-
dancy, the best classifiers are the same as the within-project setting, namely
Random Forest and Naive Bayes, respectively.

Figure 5 reports the boxplots showing the performance of different data
balancing algorithms in the cross-project setting. As we can observe, the per-
formance is generally poor, with MCC values close to zero. However, differently
from the within-project configuration, the Friedman test and the Nemenyi test
found statistically significant differences between the experimented data bal-
ancing techniques. From Figure 6, we can observe that the various distribu-
tions exhibit statistical significance except for Eager Test. In addition,Mystery
Guest shows several blue dots, i.e., some balancing techniques perform statis-
tically better than others. Our results report that, in the cross-project context,
undersampling techniques are more useful than oversampling techniques ex-
cept for Test Redundancy. In this case, the classifier without any balancing
technique performed better, although no statistically-significant difference is
reported compared to the other techniques. These differences with within-
project validation can be explained by the training data containing way more
instances in a cross-project setting, thus enabling more exhaustive training of
the machine learning models.

Based on the results discussed so far, the following discussion will focus on
(i) Ada Boost with NearMiss2 for the Eager Test detection, (ii) Random Forest
with NearMiss1 for the Mystery Guest detection, (iii) SVM with Random



24 Valeria Pontillo et al.

−0.4

−0.2

0.0

0.2

0.4

Ada Boost

adasyn_AB

borderlin
esmote_AB

nearm
issunder1_AB

nearm
issunder2_AB

nearm
issunder3_AB

randomover_AB

randomunder_AB

smoteover_AB

M
C

C
 −

 E
ag

er
 T

es
t C

ro
ss

−0.2

0.0

0.2

0.4

0.6

Random Forest

adasyn_RF

borderlin
esmote_RF

nearm
issunder1_RF

nearm
issunder2_RF

nearm
issunder3_RF

randomover_RF

randomunder_RF

smoteover_RF

M
C

C
 −

 M
ys

te
ry

 G
ue

st
 C

ro
ss

−0.25

0.00

0.25

0.50

SVM

adasyn_SVM

borderlin
esmote_SVM

nearm
issunder1_SVM

nearm
issunder2_SVM

nearm
issunder3_SVM

randomover_SVM

randomunder_SVM

smoteover_SVM

M
C

C
 −

 R
es

ou
rc

e 
O

pt
im

is
m

 C
ro

ss

−0.02

0.00

0.02

0.04

Naive
 Bayes

adasyn_NB

borderlin
esmote_NB

nearm
issunder1_NB

nearm
issunder2_NB

nearm
issunder3_NB

randomover_NB

randomunder_NB

smoteover_NB

M
C

C
 −

 T
es

t R
ed

un
da

nc
y 

C
ro

ss

Fig. 5: Boxplot representing the MCC values obtained by balancing techniques
during the cross-project validation for all considered test smells.

Undersampling for the Resource Optimism detection, and (iv) Naive Bayes
for the Test Redundancy detection.

Table 7 reports the aggregate results in terms of Precision, Recall,Accuracy,
F-Measure, MCC, and AUC-PR of the best models with and without hyper-
parameter optimization. The results obtained were generally low, even more
than the within-project validation. The maximum F-Measure achieved was for
Mystery Guest (40%), while the MCC ranges from -0.01 to 0.3. Hence, cross-
project validation is ineffective in classifying negative class samples. Finally,
analyzing the AUC-PR, the maximum results obtained was 46% for Mystery
Guest. It is important to point out that also for the cross-project validation,
the hyper-parameter optimization did not improve the performance.



Machine Learning-Based Test Smell Detection 25
M

C
C

 E
ag

er
 T

es
t B

al
an

c.
 C

ro
ss

bo
rd

er
lin

es
m

ot
e_

A
B

 −
 4

.5
1

ne
ar

m
is

su
nd

er
3_

A
B

 −
 4

.7
5

sm
ot

eo
ve

r_
A

B
 −

 4
.8

7

ra
nd

om
ov

er
_A

B
 −

 5
.0

5

A
da

 B
oo

st
 −

 5
.0

5

ra
nd

om
un

de
r_

A
B

 −
 5

.1
3

ad
as

yn
_A

B
 −

 5
.1

6

ne
ar

m
is

su
nd

er
1_

A
B

 −
 5

.1
7

ne
ar

m
is

su
nd

er
2_

A
B

 −
 5

.3
1

4.
0

5.
0

6.
0

M
C

C
 M

ys
te

ry
 G

ue
st

 B
al

an
c.

 C
ro

ss

ne
ar

m
is

su
nd

er
2_

R
F

 −
 3

.7
2

ne
ar

m
is

su
nd

er
3_

R
F

 −
 3

.9
2

R
an

do
m

 F
or

es
t −

 5
.1

5

ad
as

yn
_R

F
 −

 5
.2

1

bo
rd

er
lin

es
m

ot
e_

R
F

 −
 5

.2
2

sm
ot

eo
ve

r_
R

F
 −

 5
.3

7

ra
nd

om
ov

er
_R

F
 −

 5
.3

9

ra
nd

om
un

de
r_

R
F

 −
 5

.4
7

ne
ar

m
is

su
nd

er
1_

R
F

 −
 5

.5
5

3.
0

4.
5

6.
0

M
C

C
 R

es
ou

rc
e 

O
pt

. B
al

an
c.

 C
ro

ss

ne
ar

m
is

su
nd

er
2_

S
V

M
 −

 4
.4

3

S
V

M
 −

 4
.4

8

ne
ar

m
is

su
nd

er
3_

S
V

M
 −

 4
.6

3

bo
rd

er
lin

es
m

ot
e_

S
V

M
 −

 4
.8

2

ad
as

yn
_S

V
M

 −
 5

.2
9

ne
ar

m
is

su
nd

er
1_

S
V

M
 −

 5
.3

0

sm
ot

eo
ve

r_
S

V
M

 −
 5

.3
3

ra
nd

om
ov

er
_S

V
M

 −
 5

.3
4

ra
nd

om
un

de
r_

S
V

M
 −

 5
.3

9

4.
0

5.
0

6.
0

M
C

C
 T

es
t R

ed
un

d.
 B

al
an

c.
 C

ro
ss

ne
ar

m
is

su
nd

er
1_

N
B

 −
 4

.8
1

ne
ar

m
is

su
nd

er
2_

N
B

 −
 4

.8
1

ne
ar

m
is

su
nd

er
3_

N
B

 −
 4

.8
7

ra
nd

om
un

de
r_

N
B

 −
 4

.9
0

ad
as

yn
_N

B
 −

 5
.1

2

bo
rd

er
lin

es
m

ot
e_

N
B

 −
 5

.1
2

ra
nd

om
ov

er
_N

B
 −

 5
.1

2

sm
ot

eo
ve

r_
N

B
 −

 5
.1

2

N
ai

ve
 B

ay
es

 −
 5

.1
2

4.
0

5.
0

Fig. 6: The likelihood of each balancing technique for the four test smells
in cross-project validation in Nemenyi rank in MCC. The circle dots are the
median likelihood, while the error bars indicate the 95% confidence interval.
60% of likelihood means that a classification technique appears at the top rank
for 60% of the studied projects.

 Answer to RQ2. The performance of ML-based test smell detection tech-
niques was generally low, regardless of the configuration adopted. The within-
project setting achieved better performance than the cross-project. While
over-sampling techniques performed better in the within-project configura-
tion, under-sampling seems more appropriate in the case of cross-project.
Finally, the hyper-parameter optimization did not significantly improve the
models’ performance.



26 Valeria Pontillo et al.

Table 7: Aggregate results for Precision, Recall, Accuracy, F-Measure, MCC,
and AUC-PR without (i.e., “w/o HT”) and with (i.e., “w/ HT”) the hyper-
parameter optimization by Random Search in the cross-project setting.

Precision Recall Accuracy

Test Smell w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT

Eager Test 0.27 0.30 0.64 0.54 0.42 0.53

Mystery Guest 0.44 0.44 0.37 0.37 0.82 0.82

Resource Opt. 0.25 0.24 0.32 0.30 0.87 0.87

Test Red. 0.004 0.01 0.97 0.97 0.05 0.03

F-Measure MCC AUC-PR

Test Smell w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT

Eager Test 0.38 0.39 -0.01 0.06 0.32 0.33

Mystery Guest 0.40 0.40 0.30 0.30 0.46 0.41

Resource Opt. 0.28 0.26 0.22 0.20 0.27 0.28

Test Red. 0.01 0.01 0.01 0.00 0.41 0.13

6.3 RQ3 - Comparing Machine Learning- and Heuristic-Based Techniques for
Test Smell Detection

Research Method. While the results achieved in the context of RQ2 reported
that machine learning-based test smell detectors did not sufficiently perform,
we still conducted a benchmark study to address two specific objectives. On
the one hand, we could assess the real usefulness of the machine learning-
based technique: should our model be less performing than the baselines, its
practical use would be further limited, and, because of that, we could rec-
ommend researchers invest effort in the improvement of heuristic approaches
rather than of machine learning-based solutions. On the other hand, we could
measure the extent to which our technique compares to existing approaches,
thus understanding the strengths and weaknesses of the proposed test smell
detector compared to existing detectors. More particularly, our study aimed at
comparing the machine learning-based test smell detectors against the three
heuristic-based baselines described in the following:

tsDetect [61]. We selected this tool as it represents the current state of the
art in test smell detection [1] and can detect the highest number of test
smell types. Out of the four test smells included in our study, tsDetect
could identify three of them, i.e., Eager Test, Mystery Guest, and Resource
Optimism. In particular, the first is detected by computing the number of
the multiple calls made by a test method to multiple production meth-
ods. The second is identified by analyzing whether a test method contains
instances of files and database classes. Finally, the third is identified by
looking at whether a test method utilizes a File instance without calling
the method exists(), isFile(), or notExist().



Machine Learning-Based Test Smell Detection 27
Li

ke
lih

oo
d 

M
C

C
 E

ag
er

 T
es

t S
m

el
l

ts
de

te
ct

 −
 1

.9
9

da
rt

s 
−

 2
.2

6

M
L_

cr
os

s 
−

 2
.5

9

M
L_

w
ith

in
 −

 3
.1

6

2.
0

2.
5

3.
0

3.
5

Li
ke

lih
oo

d 
M

C
C

 M
ys

te
ry

 G
ue

st
 S

m
el

l

M
L_

cr
os

s 
−

 1
.8

6

ts
de

te
ct

 −
 1

.9
3

M
L_

w
ith

in
 −

 2
.2

1

1.
6

1.
8

2.
0

2.
2

2.
4

Li
ke

lih
oo

d 
M

C
C

 R
es

ou
rc

e 
O

pt
im

is
m

 S
m

el
l

ts
de

te
ct

 −
 1

.7
5

M
L_

cr
os

s 
−

 1
.9

4

M
L_

w
ith

in
 −

 2
.3

1

1.
4

1.
8

2.
2

2.
6

Li
ke

lih
oo

d 
M

C
C

 T
es

t R
ed

un
da

nc
y 

S
m

el
l

M
L_

cr
os

s 
−

 1
.3

3

te
re

de
te

ct
 −

 1
.6

7

M
L_

w
ith

in
 −

 3
.0

0

0.
5

1.
5

2.
5

3.
5

Fig. 7: The likelihood of the heuristic- and machine learning-based techniques
to detect the four test smells ranked by Nemenyi computed on the MCC. The
circle dots are the median likelihood, while the error bars indicate the 95%
confidence interval. 60% of likelihood means that a classification technique
appears at the top rank for 60% of the studied projects.

TeReDetect [35]. We selected this tool as it is the only one to detect Test
Redundancy smell instances. The tool detects the smell by computing code
coverage and analyzing whether two tests cover similar paths.

Darts [38]. The model built for Eager Test relies on an information retrieval
metric (i.e., TC). For this reason, we also considered it worth comparing
the model against an information retrieval-based heuristic technique, which
is the one implemented within Darts [38]. The tool relies on the detec-
tion rule proposed by Palomba et al. [54]. It detects Eager Test instances
through a two-step process: first, the test method calls are replaced with the
actual production code methods called by the test method; then, the con-
ceptual cohesion metric is computed, taking into account the constituent
methods and, whether this metric exceeds 0.5 the smell is detected.

We run the heuristic approaches against the same systems considered in
RQ2 to enable a fair comparison. None of these heuristic tools required addi-



28 Valeria Pontillo et al.

tional configuration, i.e., they could be run against the source code without
the need to specify any parameter: this ensured the execution of their original
implementations, hence avoiding possible bias due to the wrong configuration
of the tools. We employed the same evaluation metrics used to assess the ma-
chine learning models, i.e., Precision, Recall, F-Measure, and MCC. Similarly
to RQ2, we also statistically verified the validity of the findings between our
machine learning-based detector and baseline techniques using the Nemenyi
test [49] on the distribution of MCC values they obtained.

Table 8: Aggregate results for Precision, Recall, F-Measure, and MCC, com-
paring the machine learning approach to TsDetect.

Precision Recall

Test Smell ML within TSDETECT ML within TSDETECT

Eager Test 0.47 0.37 0.53 0.17

Mystery Guest 0.64 0.42 0.34 0.44

Resource Opt. 0.33 0.21 0.31 0.37

F-Measure MCC

Test Smell ML within TSDETECT ML within TSDETECT

Eager Test 0.50 0.23 0.27 0.06

Mystery Guest 0.45 0.43 0.39 0.29

Resource Opt. 0.32 0.27 0.24 0.15

Precision Recall

Test Smell ML cross TSDETECT ML cross TSDETECT

Eager Test 0.27 0.35 0.64 0.16

Mystery Guest 0.44 0.40 0.37 0.40

Resource Opt. 0.25 0.18 0.32 0.37

F-Measure MCC

Test Smell ML cross TSDETECT ML cross TSDETECT

Eager Test 0.38 0.22 -0.01 0.06

Mystery Guest 0.40 0.40 0.30 0.29

Resource Opt. 0.28 0.25 0.22 0.17

Analysis of the Results. Similarly to RQ2, we split the analysis of the re-
sults by validation strategy so that we could benchmark the machine learning
approach and heuristic-based techniques in two different scenarios. Within-

project Results. Figure 7 reports the outcome obtained from the Nemenyi
test comparing the various distributions of MCC. We can observe that for
Eager Test, the machine learning in a within-project setting performs statisti-
cally better compared to the other approaches. For Mystery Guest, Resource



Machine Learning-Based Test Smell Detection 29

Optimism, and Test Redundancy, the machine learning approach has higher
performance even if there are no statistically significant differences.

Table 9: Aggregate results for Precision, Recall, F-Measure, and MCC, com-
paring the machine learning approach to Darts.

Precision Recall

Test Smell ML within Darts ML within Darts

Eager Test 0.47 0.33 0.53 0.31

F-Measure MCC

Test Smell ML within Darts ML within Darts

Eager Test 0.50 0.32 0.27 0.04

Precision Recall

Test Smell ML cross Darts ML cross Darts

Eager Test 0.27 0.30 0.64 0.31

F-Measure MCC

Test Smell ML cross Darts ML cross Darts

Eager Test 0.38 0.30 -0.01 0.03

Table 10: Aggregate results for Precision, Recall, F-Measure, and MCC, com-
paring the machine learning approach to TeReDetect.

Precision Recall

Test Smell ML within TeReDetect ML within TeReDetect

Test Red. 0.01 0.00 1.00 0.00

F-Measure MCC

Test Smell ML within TeReDetect ML within TeReDetect

Test Red. 0.01 0.00 0.01 -0.01

Precision Recall

Test Smell ML cross TeReDetect ML cross TeReDetect

Test Red. 0.01 0.00 0.97 0.00

F-Measure MCC

Test Smell ML cross TeReDetect ML cross TeReDetect

Test Red. 0.01 0.00 0.01 -0.01

Tables 8 and 9 show the aggregate results for Eager Test, Mystery Guest,
and Resource Optimism over the machine learning approach and two heuristic-



30 Valeria Pontillo et al.

Table 11: The overlap results in a within-project scenario. We reported the
results for each test smell by comparing the machine learning-based approach
to the heuristic-based one.

Eager Test

ML corr ∩ Darts corr ML corr \ Darts corr Darts corr \ ML corr

26% 53% 21%

ML corr ∩ TsDetect corr ML corr \ TsDetect corr TsDetect corr \ ML corr

12% 76% 12%

Mystery Guest

ML corr ∩ TsDetect corr ML corr \ TsDetect corr TsDetect corr \ ML corr

72% 5% 23%

Resource Optimism

ML corr ∩ TsDetect corr ML corr \ TsDetect corr TsDetect corr \ ML corr

60% 13% 27%

Test Redundancy

ML corr ∩ TeReDetect corr ML corr \ TeReDetect corr TeReDetect corr \ ML corr

0% 100% 0%

based techniques (i.e., TsDetect and Darts). Concerning the three test
smells detected by TsDetect, the performance was generally lower in terms
of Precision, F-Measure, and MCC compared to machine learning-based ap-
proaches. Looking at the Recall, we notice that compared with the machine
learning approach, TsDetect has higher values when it comes to the detec-
tion of Mystery Guest and Resource Optimism.

The results obtained by Darts confirmed that the machine learning-based
approach performed better than the heuristic baselines for all the metrics
evaluated, e.g., the MCC (27% vs. 4%).

To further elaborate on the differences between the approaches we con-
ducted an additional analysis focused on understanding the overlap among
them. Given two prediction models mi and mj , we computed (i) the number
of test smells correctly predicted by both mi and mj and (ii) the number of
test smells correctly predicted by only mi and missed by mj .

The overlap analysis for the within-project scenario is reported in Ta-
ble 11. The analysis confirms the previous results and shows that the machine
learning-based approach detects more test smells than the heuristic-based ap-
proaches when analyzing Eager Test and Test Redundancy. For Mystery Guest
and Resource Optimism, the amount of common predictions is higher than that
of the individual machine learning- and heuristic-based approaches.

Cross-project results. Different conclusions can be drawn in the cross-
project setting. While the cross-project machine learning is still shown to
perform better than TsDetect in terms of MCC for most of the code smells
under analysis, there is no statistical significance. Moreover, looking at the
other indicators, we notice that the machine learning approach is, overall, less
precise. The explanation behind this result could be that in a cross-project



Machine Learning-Based Test Smell Detection 31

configuration, instances coming from heterogeneous systems are used for train-
ing. Therefore, the classifiers are brought to infer a more generic detection and
generate more false positives.

The only smell that deserves a separate discussion is Test Redundancy,
whose results are reported in Table 10. In this case, the performance of the
various approaches is very low (close to zero), even if machine learning still
performs slightly better than TeReDetect, particularly for the Recall.

Table 12: The overlap results in a cross-project scenario. We reported the
results for each test smell by comparing the machine learning-based approach
to the heuristic-based one.

Eager Test

ML corr ∩ Darts corr ML corr \ Darts corr Darts corr \ ML corr

26% 60% 14%

ML corr ∩ TsDetect corr ML corr \ TsDetect corr TsDetect corr \ ML corr

15% 78% 7%

Mystery Guest

ML corr ∩ TsDetect corr ML corr \ TsDetect corr TsDetect corr \ ML corr

14% 67% 19%

Resource Optimism

ML corr ∩ TsDetect corr ML corr \ TsDetect corr TsDetect corr \ ML corr

11% 71% 18%

Test Redundancy

ML corr ∩ TeReDetect corr ML corr \ TeReDetect corr TeReDetect corr \ ML corr

0% 100% 0%

Looking at the overlap analysis for the cross-project scenario (reported in
Table 12), the results showed that the machine learning-based approach detects
more test smells than the heuristic-based approaches for all test smells. In
addition, we could observe that for Eager Test, only 26% of the predicted smells
are in common between machine learning and Darts and further decreased
to 15% when analyzing TsDetect. A similar discussion can be drawn for
Mystery Guest and Resource Optimism, while again for Test Redundancy, this
analysis is infeasible because the number of smells detected by TereDetect
but missed by the machine learning approach is zero.

 Answer to RQ3. The machine learning-based approach performs signifi-
cantly better than its heuristic counterparts when run in a within-project set-
ting. However, we point out that machine learning and heuristic approaches
achieve low performance when detecting most test smells. The overlap anal-
ysis seems to suggest that the machine learning-based approach works better
for test smells with high or low frequency, such as Eager Test and Test Re-
dundancy, while for test smells like Mystery Guest and Resource Optimism
both approaches can be employed.



32 Valeria Pontillo et al.

7 Discussion, Further Analysis, and Qualitative Insights

Our findings reveal several points worthy of further analysis and discussion,
which we elaborate on in this section.

7.1 Machine Learning-based Test Smell Detection: How Bad Is It?

According to our findings, a machine learning-based detector might perform
better than heuristic-based alternatives. Yet, this seems not to be enough, as
a key result of our investigation concerns the low performance achieved by the
machine learning-based detector in terms of all the evaluation metrics consid-
ered. Regardless of the type of test smell considered and the machine learning
configuration adopted in within- and cross-project scenarios, it cannot solve
the problem effectively. To provide a more pragmatic measure of how low
the performance achieved is, we conducted an additional analysis to compare
the machine learning-based detector with the so-called dummy classifiers, i.e.,
classifiers that make predictions ignoring the input features. More specifically,
we compared the best model, both in within- and cross-project scenarios, com-
ing from our empirical study with three baselines such as (i) the Optimistic
Constant Classifier, which consistently classifies an instance as smelly; (ii)
the Pessimistic Constant Classifier, which consistently classifies an instance
as non-smelly; and (iii) a Random Classifier, which randomly classifies an in-
stance as smelly or non-smelly. Through this comparison, we could assess how
far we are, as researchers, to the definition of a usable and effective machine
learning-based test smell detector by measuring the distance between the per-
formance it achieved and those of simple classifiers. In addition, if any of these
baselines would have outperformed our solution, this might have potentially
indicated an issue with the features exploited by the model, i.e., if a classifier
that ignores the input features perform better than one based on features, this
would imply that the features themselves are not impactful enough.

Following the research method taken in previous studies [30], we compared
Type I and Type II errors, namely the total number of false positive and false
negative errors, respectively.

Table 13 reports the results obtained when considering the within-project
scenario. As for the Type I errors, the machine learning-based approach out-
performed both the Optimistic Constant Classifier and Random Classifier,
reaching lower false positive rates for all the test smells. For instance, the
false positive rate for Eager Test was 17%, namely 53% and 20% lower than
the Optimistic Constant Classifier and Random Classifier, respectively. At the
same time, the difference compared to the Pessimistic Constant Classifier was
still evident, especially when considering the absolute number of errors, par-
ticularly in the case of Test Redundancy, where the machine learning-based



Machine Learning-Based Test Smell Detection 33

Table 13: Comparison between the experimented machine learning-based test
smell detector and the dummy classifiers in the within-project scenario.

ML-based approach Optimistic Constant

Test Smell Type I Type II Type I Type II

Eager Test 1,524 (17%) 1,240 (14%) 6,079 (70%) 0 (0%)

Mystery Guest 239 (3%) 817 (10%) 6,118 (80%) 0 (0%)

Resource Opt. 445 (7%) 481 (8%) 5,576 (89%) 0 (0%)

Test Red. 2,302 (72%) 0 (0%) 3,169 (99%) 0 (0%)

Pessimistic Constant Random Constant

Test Smell Type I Type II Type I Type II

Eager Test 0 (0%) 2,648 (30%) 3,246 (37%) 1,293 (15%)

Mystery Guest 0 (0%) 1,487 (20%) 3,409 (45%) 764 (10%)

Resource Opt. 0 (0%) 688 (11%) 2,995 (48%) 346 (6%)

Test Red. 0 (0%) 40 (1%) 2,089 (65%) 26 (1%)

approach output 2,302 false positives (72%). Based on these results, we could
conclude that the machine learning approach was too eager to recommend the
smelliness of test cases, producing a notable amount of false positives.

When it turns to Type II errors, we could observe that the approach ob-
tained results close to those of the Random Classifier for all the considered test
smells, with absolute numbers indicating a similar behavior. By interpreting
those numbers, we could conclude that the machine learning-based approach
was often unable to properly recognize the smelliness of test code, performing
no better than a random choice. This finding is even more worrisome than
the one obtained for the Type I errors, as it possibly indicates that the fea-
tures or the configuration exploited by the approach often could not correctly
characterize the presence of test smells.

The conclusions drawn were similar when considering the cross-project sce-
nario. As shown in Table 14, the trend looks similar to what was just discussed.
Regarding Type I error, the machine learning-based approach typically worked
better than the Optimistic Constant Classifier and Random Classifier alter-
natives. The only exception concerned with Eager Test : in the cross-project
scenario, the false positive rate was indeed higher than the previous case when
compared to the Random Classifier, possibly indicating that the approach was
even more prone to highlight the presence of test smells. As for the Type II
errors, we could instead confirm the similar behavior between the machine
learning-based approach and the Random Classifier.

On the basis of the argumentation above, we can conclude that the machine
learning-based detector was quite unstable, both considering false positives
and negatives: this suggests that either the features or other characteristics
of the problem exploited were not suitable enough for the classification task
- we elaborate on this matter in the next section. Also, our results suggest
that the research on machine learning-based test smell detection is still far



34 Valeria Pontillo et al.

Table 14: Comparison between the experimented machine learning-based test
smell detector and the dummy classifiers in the cross-project scenario.

ML-based approach Optimistic Constant

Test Smell Type I Type II Type I Type II

Eager Test 4,578 (48%) 942 (10%) 6,934 (72%) 0 (0%)

Mystery Guest 723 (8%) 955 (10%) 8,099 (84%) 0 (0%)

Resource Opt. 691 (7%) 492 (5%) 8,903 (92%) 0 (0%)

Test Red. 9,105 (95%) 1 (0.01%) 9,593 (99%) 0 (0%)

Pessimistic Constant Random Constant

Test Smell Type I Type II Type I Type II

Eager Test 0 (0%) 2,699 (28%) 3,485 (36%) 1,388 (14%)

Mystery Guest 0 (0%) 1,534 (16%) 4,121 (43%) 780 (8%)

Resource Opt. 0 (0%) 730 (8%) 4,462 (46%) 364 (4%)

Test Red. 0 (0%) 40 (0.4%) 4,822 (50%) 27 (0.3%)

from reaching a decent point. Indeed, the current solution is unsuitable for a
practical case and too close to dummy alternatives. On the one hand, in the
within-project scenario, a model ensemble (i.e., Random Forest) is the best
classifier for three out of four test smells. On the other hand, in the cross-
project scenario, two ensemble models (ii.e., Random Forest and AdaBoost)
are the best classifiers for two out of four test smells. Please consider that
Random Forest is an ensemble of pruned decision trees, where each decision
tree is built using Bootstrap Aggregating (i.e., Bagging), and the combination
of the prediction of the decision trees is performed by using majority voting.
Hence, the results of RQ2 suggest that ensemble learning can help achieve
better performance, and their employment can leverage the results obtained
by other classifiers (e.g., Naive Bayes, Multi-layer Perceptron, and Support
Vector Machine). In this sense, our work may pose the basis for additional
studies, for instance, by targeting a larger variety of machine learning and
natural language processing techniques, which might potentially improve the
test smell detection capabilities by relying on different data representations
and/or features.

∠ Take Away Message 1. Our machine learning-based test smell detector
performs better than heuristic-based approaches, even though they act sim-
ilarly to dummy classifiers when considering false positives and negatives.
Based on our considerations, we argue that machine learning for classifying
test smells is not yet at a level that would effectively support practition-
ers. While one of the possible motivations falls into the features exploited—
which seem not to characterize the presence of test smells properly—further
advances might be obtained through the use of different, more powerful ma-
chine learning and natural language processing techniques.



Machine Learning-Based Test Smell Detection 35

7.2 Test Smell Detection: A Research Field to Revisit?

The underwhelming performance demonstrated by the machine learning-based
approach and the limitations exposed through the comparison with the dummy
classifiers raises significant concerns regarding the current approach to test
smell detection. The analysis of false positive and negative rates suggests that
multiple aspects should be revisited in terms of either features or formulation
of the test smell detection problem. In the first place, the probing and ablation
studies conducted on the features (RQ1 and RQ2) highlighted that, despite
they all contribute to increase the prediction power, their actual contribu-
tion is limited and, indeed, the resulting performance improved when putting
them together, as the machine learning-based approach could exploit the or-
thogonality between the features. Perhaps more importantly, the results for
RQ3 suggest that the performance of the heuristic-based approaches is slightly
lower, possibly highlighting fundamental, general problems pertaining to all
test smell detectors. Indeed, when experimenting with those heuristic-based
approaches against a large dataset of manually-validated instances, we were
unable to generalize the performance reported in the original papers [35,38,61].
These observations call for some more reflections. To further understand those
aspects and provide the research community with insights into the challenges
that should be addressed in future research, we proceeded with an additional
qualitative investigation into the false positive and false negative instances
output by machine learning- and heuristic-based approaches.

Our goal was to identify and classify the root causes of failure for each con-
sidered test smell so that we could point out indications for designing more
accurate test smell detectors. To this aim, we set up a similar inspection pro-
cess as described in Section 4. This time, the first and third authors of the
paper took the role of inspectors. They manually went through the erroneous
instances predicted by the experimented approaches, attempting to elicit the
potential motivation(s) behind the errors. The inspectors first individually an-
alyzed all the false positive and negative instances, writing down notes and
observations to be further discussed—this task took around 100 hours/person.
Afterward, they opened a discussion to elaborate on their individual observa-
tions: this was implemented through a Skype meeting that took around two
hours. The outcome was a collection of representative qualitative examples
that could explain the reasons behind the failures of the machine learning-
based approach. Such a collection was finally discussed with the other paper
authors, who provided additional feedback. In the following, we report on the
specific root-cause analysis performed for each test smell, although there is a
general consideration to make. From our additional analysis, we could realize
that the errors made by the experimented detectors were similar, as these er-
rors come from inaccurate interpretation of the test smell sources, improper
measurement of the characteristics of those smells, or inappropriate treatment
of corner cases. In other terms, the causes of failure are the same for all the
detectors and may provide insight to improve the design of such detectors.



36 Valeria Pontillo et al.

Eager Test. When considering this test smell, we could classify three main
root causes leading the approaches to fail. More specifically:

1. Misleading definition of the problem. First and foremost, we identified 458
test cases with a serious concern regarding the definition of Eager Test
enclosed by the detectors. Van Deursen et al. defined this test smell as a
“test method [that] checks several methods of the object to be tested” [79].
Consequently, the structural detector identifies the smell by considering
the number of production method calls, while the textual detector com-
putes the conceptual similarity between the methods exercised by the test.
The machine learning-based approach combines these metrics. The prob-
lem with the definition arises because it does not explicitly consider the
difference between intra-method and intra-class unit testing [62]. In par-
ticular, when designing unit test cases, two levels of granularity should
be preserved [32, 51, 62]. On the one hand, developers should create tests
covering individual methods of the production code, i.e., intra-method [62]
or basic-unit testing [51]. On the other hand, they should implement tests
exercising the interaction between the methods of the class to verify addi-
tional execution paths of the production code that would not be covered
otherwise, i.e., intra-class [62] or unit testing [51]. While it is reasonable
to consider smelly an intra-method test that exercises more production
methods, it is not the same for intra-class tests: these must necessarily call
more production methods to perform unit testing effectively and should
not be considered smelly. Unfortunately, the definition provided by van
Deursen et al. [79] does not account for unit test granularity, possibly bi-
asing the interpretation of the smell to enclose within the detectors. As
a consequence, the vast majority of false positive instances were due to
the presence of intra-class tests that were erroneously classified as Eager
Test, but that instead should not be considered as such. A representative
example is shown in Listing 1.

1 @Test

2 public void testSetDataWithVersion () throws Exception {

3 ZKUtil.createWithParents(ZKW , "/s1/s2/s3");

4 int v0 = getZNodeDataVersion("/s1/s2/s3");

5 assertEquals (0, v0);

6

7 ZKUtil.setData(ZKW , "/s1/s2/s3", Bytes.toBytes (12L));

8 int v1 = getZNodeDataVersion("/s1/s2/s3");

9 assertEquals (1, v1);

10

11 ZKUtil.multiOrSequential(ZKW ,

12 ImmutableList.of(ZKUtilOp.setData("/s1/s2/s3", Bytes.

toBytes (13L), v1)), false);

13 int v2 = getZNodeDataVersion("/s1/s2/s3");

14 assertEquals (2, v2);

15 }

Listing 1: Example of false positive Eager Test.



Machine Learning-Based Test Smell Detection 37

The test exercises a class named ZKUtil of the HBase project, i.e., a frame-
work implementing a centralized service to maintain configuration infor-
mation and provide distributed synchronization. The production method
under test is named setData and is responsible for storing version data
within an internal data structure. The test exercises an individual pro-
duction method, i.e., setData, yet it calls various methods of the same
production class, i.e., createWithParents and multiOrSequential. All
the experimented detectors classified this instance as smelly. However, this
is a false positive case because the calls performed to the production class
methods are required to experiment with the setData method with dif-
ferent configurations to cover an execution path that could not be covered
without performing those calls. For this reason, the test cannot be con-
sidered an Eager Test. Based on the argumentations above, we argue that
the definition of this smell should be revisited to consider the levels of
granularity that should be preserved in unit testing.

2. Inability to Handle Mocks. When writing unit test cases, developers may
simulate dependencies’ expected behaviors through the use of mock ob-
jects [40]. According to our analysis, in 380 test cases, the use of mocks
represents a second threat to the accuracy of the detectors. In particular,
when simulating the behavior of the dependencies, developers have to add
a call to a mock object. This addition should not influence the test smell
detectors, yet it does. In other terms, the metrics employed by the detectors
do not consider mocking practices. Listing 2 presents an example.

1 @Test

2 public void testWhenValidPreProcessorsSet () {

3 createManager ();

4

5 configureValidUriLocators(mockFilterConfig);

6 Mockito.when(mockFilterConfig.getInitParameter(

ConfigurableProcessorsFactory.PARAM_PRE_PROCESSORS)).

thenReturn("cssUrlRewriting");

7 assertEquals (1, processorsFactory.getPreProcessors ().size());

8 }

Listing 2: Example of false positive Eager Test due to mock objects.

As shown, the test testWhenValidPreProcessorsSet leverages the Mock-
ito framework,5 a well-known instrument to enable mocking, to simulate
the behavior of the ConfigurableProcessorsFactory class and get pa-
rameters to use within the test. In this case, all detectors failed, as they
mistakenly accounted for this call. As such, the definition of mocking-aware
metrics would boost test smell detection capabilities.

3. Limited Information Gathering. The third issue identified in 1,738 cases,
significantly impacted the amount of false negative instances of all the
experimented detectors. The limited information gathering arises when a
detector has no or limited access to the production class related to the test
method under account. More specifically, the metrics exploited to charac-

5 The Mockito framework: https://site.mockito.org.

https://site.mockito.org


38 Valeria Pontillo et al.

terize Eager Test instances assume the existence of a linking between the
test method under consideration and its corresponding production class.,
e.g., this linking is required to estimate the amount of calls made by the test
method to the production class or compute the textual similarity metrics
between the production methods involved in the test case. Unfortunately,
such a linking is not always available nor reliable. All the experimented
detectors perform an initial information-gathering phase which consists of
linking test classes and methods to production code through a traceability
technique based on pattern matching and naming conventions. In particu-
lar, this traceability technique takes the name of test class as input (e.g.,
DoubleConverterTest.java) and looks for the production class having
the same name of the test class after removing the suffix or prefix Test

(e.g., DoubleConverter.java). In case the search succeeds, the test class
is associated to the production class and, in a subsequent information-
gathering phase, the individual test methods of the test suite are linked
to production methods using the same traceability technique. In the case
the search fails, the linking is not performed and, therefore, the Eager Test
detection fails. In this respect, there are two considerations to make. In the
first place, the traceability technique employed by the tools is well-known
in literature and has been experimented multiple times [55,67,80], showing
an accuracy close to 85%, which is comparable with more sophisticated
but less scalable techniques (e.g., the slicing-based approach proposed by
Qusef et al. [67]). Of course, the overall accuracy of the test smell detec-
tion process is bounded to the accuracy of the linking process. As such, the
improvements in the field of traceability recovery might provide insights
into the field of test smell detection. In the second place, it is also worth
discussing the sneakiest failure motivation, where the linking is correctly
performed but the information available in the production class is not suffi-
cient to perform the detection. To reason on this motivation, let us consider
the example shown in Listing 3.

1 public void testCacheInstanceWithManyThreads () throws

BrokenBarrierException , InterruptedException {

2

3 // Code suppressed for the sake of readability.

4 }

Listing 3: Example of false negative Eager Test due to limited information
gathering.

The test method belongs to the test suite EmbeddedJSPResultTest and
has been classified as an Eager Test instance. According to the out-
come of the information gathering phase, the test suite was linked to
the EmbeddedJSPResult production class. Nonetheless, such a produc-
tion class was only an interface for another class, i.e., JSPRuntime,
which was responsible for the actual operations exercised by the
testCacheInstanceWithManyThreads method. More specifically, the code
of the EmbeddedJSPResult class is shown in Listing 4.



Machine Learning-Based Test Smell Detection 39

1 public class EmbeddedJSPResult extends StrutsResultSupport {

2 protected void doExecute(String finalLocation ,

ActionInvocation invocation) throws Exception {

3 JSPRuntime.handle(StringUtils.removeStart(

finalLocation , "/"));

4 }

5 }

Listing 4: Production class identified through the traceability technique
based on pattern matching and naming convention.

As shown in the listing, EmbeddedJSPResult just contains one
method, i.e., doExecute, that delegates its own operations to
the method handle of the JSPRuntime class. Because of that,
EmbeddedJSPResult does not contain any method that could be linked
to the testCacheInstanceWithManyThreads test and, for this reason, the
test smell detectors could not compute the metrics that would have allowed
its detection. In other terms, we may consider this example as a case of
conceptual false positive link given by the traceability technique, i.e., the
link is technically correct, yet the linked class is not the actual production
class under test. On the one hand, the use of more advanced test-to-code
traceability techniques (e.g., [55,67]) might boost the overall test smell de-
tection capabilities. On the other hand, the example provided may inform
the possible improvements to make in terms of test-to-code traceability
based on pattern matching and naming convention. As a final point of
discussion, we may argue that the EmbeddedJSPResult class (Listing 4)
could be affected by the so-called Middle Man [23], i.e., a type of code
smell that arises when a class delegates all its operations to other classes,
hence uselessly increasing the complexity and computational costs of the
system [23]. In other terms, our analysis may suggest that the presence of
code smells in production code may affect the test smell detection capabil-
ities: the intrinsic relation between code and test smells is something we
plan to explore as part of our future research agenda.

Mystery Guest and Resource Optimism. When it turns to Mystery Guest and
Resource Optimism, both are connected to the usage of external resources
within a test method. By analyzing the reasons behind the detection failures,
we could draw very similar conclusions:

1. Inability to Handle Mocks. The use of mocks severely impacted the false
positive rate of both test smells (respectively 893 and 1,202 cases) but for
different reasons to those discussed for Eager Test. In particular, mocks
create fake external dependencies that all the detectors mistakenly inter-
pret as real. In the case of Mystery Guest, the detectors identified smelly
instances because of those fake dependencies, which were not present. In-
stead, in the case of Resource Optimism, the detector could not detect any
mechanism of verification of the existence/status of the resource, hence
highlighting the presence of the smell: however, since mocks simulate the



40 Valeria Pontillo et al.

behavior of external resources, there is no need to verify their status, hence
biasing the performance of all detectors.

1 @Test

2 public void shouldReturnNullValueFromSession

3 IfNoEntryWithSpecifiedKeyExists () {

4 String expectedKey = "FooBar";

5

6 when(mockSession.get(anyString ())).thenReturn(null);

7 when(mockRouteContext.getSession ()).thenReturn(mockSession);

8 when(mockPippoWebContext.getRouteContext ()).thenReturn(

mockRouteContext);

9

10 PippoSessionStore sessionStore = new PippoSessionStore ();

11

12 assertThat(sessionStore.get(mockPippoWebContext , expectedKey

), is(nullValue ()));

13

14 verify(mockSession , times (1)).get(expectedKey);

15 verify(mockRouteContext , times (1)).getSession ();

16 verify(mockPippoWebContext , times (1)).getRouteContext ();

17 }

Listing 5: Example of false positive Mystery Guest and Resource Optimism
due to mock objects.

A representative example of false positive impacting the perfor-
mance of both Mystery Guest and Resource Optimism detection is
reported in Listing 5. As shown in the piece of code, the test
shouldReturnNullValueFromSession of the project Pippo—a micro web
framework for Java—makes significant use of mocking objects to simulate
navigation session values. Such a dependency was therefore interpreted
as a Mystery Guest instance. At the same time, the code does not check
for the status of the mock; therefore, it was erroneously classified as a Re-
source Optimism instance. In conclusion, we could emphasize that mocking
practices notably impact the performance of test smell detectors and that,
therefore, novel mocking-aware detection strategies may provide significant
contributions to the field.

2. Incomplete operationalization of the definition. As for false negatives, we
could identify a common reason for failure: the incomplete operational-
ization of the definitions of Mystery Guest (919 test cases) and Resource
Optimism (453 test cases). Both smells arise when handling external re-
sources [79]: yet, the definition does not provide a comprehensive list of
what should be considered as an external resource—van Deursen et al. [79]
just made the examples of files and databases. We suppose that the orig-
inal definition was left open on purpose to include other types of external
resources. Nevertheless, it seems that most detectors based their own de-
tection rules solely on managing external files and databases without iden-
tifying issues when handling other types of resources. Therefore, this issue
impacted the number of false negatives. An example is shown in Listing 6.



Machine Learning-Based Test Smell Detection 41

1 @Test

2 public void shouldFindValidWebjar () throws Exception {

3 assertNotEmpty(victim.locate("webjar:jquery.js"));

4 assertNotEmpty(victim.locate("webjar:jquery /2.0.0/ jquery.js"

));

5 assertNotEmpty(victim.locate("webjar :/ jquery /2.0.0/ jquery.js

"));

6 }

Listing 6: Example of false negativeMystery Guest and Resource Optimism
due to the incomplete operationalization of the definitions.

The example reports the case of the shouldFindValidWebjar test of the
Wro4J project. The test checks if external JavaScript pages exist. All the
detectors did not identify the external resource, overlooking this potential
test smell. In conclusion, we argue that better detectors might be built by
devising novel taxonomies to systematically collect comprehensive knowl-
edge on how Mystery Guest and Resource Optimism instances may arise.

Test Redundancy. The performance obtained by the experimented detectors
on the Test Redundancy smell was close to 100% in terms of recall, meaning
that they could detect all instances of the smell. However, the precision of the
detectors was dramatically low, i.e., close to 0%. In this respect, there are two
main points of discussion:

1. Insufficient sample. As discussed in Section 4, our dataset contained very
few instances of Test Redundancy. The low diffuseness of the smell was
definitively one of the causes that let the machine learning-based approach
fail: it was unable to learn the properties characterizing this test smell.
In this sense, we may argue the need for alternative methods to feed ma-
chine learning-based approaches, e.g., defining synthetic training samples
to complement the information provided by manually-validated instances.

2. Lack of semantic redundancy analysis. The second critical threat to accu-
rately detecting the smell was the inappropriate measurement performed
by the current test redundancy metrics, which lack semantic analysis (iden-
tified in 43 test cases). Let us consider the example in Listing 7.

1 @Test

2 public void shouldParseSingular () {

3 final TimeSpan span = TimeSpan.valueOf("1 second");

4 assertThat(span.to(SECONDS), is(1L));

5 }

6

7 @Test

8 public void shouldParseNonLowerCase () {

9 final TimeSpan span = TimeSpan.valueOf("17 Seconds");

10 assertThat(span.to(SECONDS), is(17L));

11 }

Listing 7: Example of false positive Test Redundancy.

The example refers to the shoudParseSingular and
shoudParseNonLowerCase test cases of the Riptide project. These



42 Valeria Pontillo et al.

tests were identified as smelly by both TeReDetect and the machine
learning-based approach. The test cases seem to exercise the same
execution path, yet they do that in different manners. More specifically,
the test cases aim at verifying the behavior of the valueOf method of
the production class when this is supplied with timestamps expressed in
seconds. While this case may look like an instance of Test Redundancy, it is
worth considering that the values passed to the valueOf method have two
very different meanings: shouldParseSingular exercises the production
method with an extreme input (time cannot be negative; hence one
second represents an extreme value of the input range of the production
method), while shouldParseNonLowerCase with an in-range input (17
seconds). As such, the two methods cannot be considered redundant, as
none of them can be removed without impacting the test suite - otherwise,
developers would lose a relevant piece of information for the adequacy of
the production code. Unfortunately, the pair redundancy metric exploited
by the detectors only considers whether two test cases cover the same path
without accounting for the rationale behind them. Therefore, we argue
the need for more advanced metrics to combine dynamic and semantic
analysis to discriminate redundancy cases correctly.

Concluding our argumentation on the root causes of test smell detection
failures, we identified the current issues and challenges that researchers in the
field are called to address in future research efforts. In addition, our analysis
could shed lights on the limitations of currently available test smell detection
tools: they indeed seem to rely on rather simple detection tactics that may
fail in the wild because of the problems emerged from our analysis. Over-
all, we argue that the field of test smells would benefit from a systematic
reinterpretation of its ground, which would more effectively inform the next
generation of test smell detectors. This observation is especially true when con-
sidering contemporary testing practices, e.g., mocking, that naturally impact
how test code quality is managed and assessed. It is our hope that the limita-
tions of heuristic-based approaches highlighted by our work might stimulate
researchers to devise novel, more robust and realistic detectors that might be
resilient to the current issues.

∠ Take Away Message 2. Our qualitative study identified critical issues
with the definition of test smells and how test smell detectors were designed.
Misleading definitions of test smells, missing analysis of contemporary testing
practices, and incomplete operationalization represent the major causes of
failures. The outcomes of our qualitative investigation revealed some key
challenges and insights for possible improvements that researchers should
face in future research.



Machine Learning-Based Test Smell Detection 43

8 Threats to Validity

Multiple factors might have biased the conclusions drawn in our empirical
assessment. This section overviews the main limitations faced and how we
mitigated them, discussing them based on their impact on our study.

Construct Validity. When considering the relationship between theory and ob-
servation, the first potential limitation to discuss is concerned with the test
smell dataset we relied on. In our research, we contributed a novel, manually-
validated dataset composed of 9,633 test cases labeled according to their
smelliness. We opted for constructing a novel dataset as, to the best of our
knowledge, the current literature does not provide a sufficiently large dataset
to experiment with machine learning algorithms. We approached the dataset
construction through a formal validation procedure that involved multiple in-
spectors, who were called to label the smelliness of test methods available in
the well-known IDoFT dataset. The inspectors interleaved manual validation
sessions with open discussions of their actions to find a consistent procedure
to assess the smelliness of the artifacts considered. In addition, the inspectors
constantly monitored their agreement to tune the validation process. Since
the process could still suffer from subjectivity, we performed a further step
ahead by running a coherence check that involved real-world developers who
were asked to validate—using a similar process as the inspectors—part of the
test methods of the dataset. This additional step was performed to assess the
potential subjectivity bias affecting the internal validation of test smells and
measure how much our manual validation would align with the one performed
by experienced developers. The external validation results were positive (Co-
hen’s κ=0.67) and indicated a good level of agreement [45]. On the one hand,
this allowed us to establish the overall soundness of the manual validation
process. On the other hand, the lack of a full agreement was expected, as the
validation of test smells has an intrinsically subjective nature. For this reason,
it would have been nearly impossible to build a dataset that fully represents
the perspective of a generic developer. In any case, we publicly released the
dataset as part of our online appendix [63]; further researchers may want to
contribute to its understanding, improvement, and evolution.

A second limitation concerns how we computed the independent variables,
i.e., the features considered by the machine learning solutions and heuristic
approaches experimented with in the study. We specifically collected and re-
lied on the metrics previously defined in test smell research. First, this choice
allowed us to set a fair comparison between machine learning-based test smell
detectors and heuristic approaches. Second, the definition of novel metrics was
outside the scope of our study, as this would have required their preliminary
theoretical and empirical evaluations [21]. Nonetheless, as part of our further
analyses, we attempted to identify the limitations of current metrics to pro-
vide researchers with insights into the next steps that might be performed to
improve test smell detection.



44 Valeria Pontillo et al.

Conclusion Validity. As for the limitations due to the relation between treat-
ment and outcome, a key potential source of bias may have been related to
the presence of independent variables providing a similar contribution to the
performance of the experimented machine learning models: it has indeed been
shown that this situation may increase noise when training a machine learning
algorithm, finally biasing its performance [52]. To account for this potential
threat, we purposely defined RQ1 to probe each feature of the models, i.e.,
we computed the information gain provided by each feature used to feed the
models [66]. Such a process allowed us to verify that the independent vari-
ables were orthogonal, contributing to the models built. Along the same line,
another discussion point concerns the possible noise caused by specific pre-
processing steps applied when building the machine learning pipeline. In this
respect, we opted for an ablation study [39] through which we could assess the
contribution of each pre-processing step, hence identifying the best pipeline
configuration to use in our study.

We did not have a baseline for machine learning algorithms experimented
with, as our work represents the first attempt to study machine learning for
test smell detection. As such, we experimented with multiple techniques to
identify the best algorithm. For the sake of readability, we did not discuss all
the results in Section 6; yet, our online appendix [63] includes all our findings,
which researchers can use to understand further the impact of machine learning
techniques on the performance of test smell detection.

In the context of RQ2, we assessed test smell detectors based on machine
learning under two different use case scenarios, considering both within- and
cross-project training. This analysis was done to increase the scope of our anal-
ysis and provide insights into the capabilities of machine learning in different
contexts. We relied on well-established validation approaches such as cross-
fold [76] and leave-one-project-out validation [68]. To further corroborate the
conclusions drawn in the study, we finally applied the Nemenyi test [49], which
allowed us to report our findings from a statistical perspective.

External Validity. As for the generalizability of the conclusions, the dataset
exploited was based on open-source projects written in Java. We cannot, there-
fore, ensure that our findings hold when considering different programming
languages or types of software systems. In this regard, further replications
would still be desirable: for instance, recent efforts have been made to devise
test smell detectors working on Python code [82, 83]. To stimulate further
research, we made all our scripts available in our appendix [63].

9 Conclusion

The ultimate goal of our work was to experiment with machine learning al-
gorithms for test smell detection, relying on the set of features previously
defined to characterize the source of test smells. In the first place, we de-
fined a novel, publicly-available dataset of test smells, which we later used



Machine Learning-Based Test Smell Detection 45

to feed a machine-learning pipeline. We investigated the performance of the
devised machine learning solution in the context of an empirical study, where
we assessed (1) the features that most contribute to the prediction of test
smells; (2) the performance of 28,248 and 14,256 different configurations of
machine learning pipelines in within- and cross-project training scenarios, re-
spectively; and (3) how machine learning approaches compare to standard,
heuristic-based test smell detectors. Our findings reported a negative result:
none of the experimented machine learning pipelines reached an F-Measure
higher than 51%, even though a machine learning approach often outperforms
the heuristic-based techniques.

We did not limit ourselves to reporting on the negative result but also
performed additional qualitative investigations aimed at (1) assessing the per-
formance of the machine learning-based test smell detector when compared to
dummy classifiers to provide a more pragmatical view of the performance of
the detector, and (2) classifying the root-causes of failures that prevent test
smell detectors from identifying test smell instances correctly. The additional
insights of our study let emerge several open issues and challenges that the
research community should address through future research.

To sum up, our paper provided the following contributions:

1. A novel publicly-available dataset of manually-validated test smell in-
stances, which researchers may use to analyze test smells further;

2. An empirical investigation into the capabilities of machine learning ap-
proaches for test smell detection, which researchers can use as a baseline
to build additional research on the matter;

3. A catalog of root causes of failures for test smell detection, which provides
qualitative insights and practical examples of how the field of test smell
detection could be improved to better support practitioners;

4. An online appendix [63] that contains all data and scripts used in the
empirical study, which can be employed to replicate and extend ours.

The main considerations and conclusions of the study represent the input
of our future research agenda. We will work toward better understanding and
conceptualizing the test smell definitions and designing novel features that may
better capture the concept of test smells. Furthermore, we plan to investigate
the extent to which different machine learning and natural language processing
techniques might empower test smell detection. In addition, we plan to ana-
lyze which software project characteristics could help select the most suitable
approach for future work, considering that they should characterize the test
code, the application code, and the development process. Eventually, such an
analysis could lead to a meta-classifier to predict the most suitable detector.
We also plan to elaborate on how design issues in production code may affect
the performance of test smell detectors. Finally, to corroborate our findings,
we plan to replicate our work in different contexts, e.g., on Python code.



46 Valeria Pontillo et al.

Acknowledgement

Fabio gratefully acknowledges the support of the Swiss National Science Foun-
dation through the SNF project No. PZ00P2 186090. In addition, the work has
been partially supported by the EMELIOT national research project, which
the MUR has funded under the PRIN 2020 program (Contract 2020W3A5FY).

Declaration of Interest

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported
in this paper.

Data Availability Statement

The manuscript has data included as electronic supplementary mate-
rial. In particular: datasets generated and analyzed during the cur-
rent study, detailed results, as well as scripts and additional resources
useful for reproducing the study, are available as part of our online
appendix on GitHub: https://github.com/darioamorosodaragona-tuni/
ML-Test-Smell-Detection-Online-Appendix.

Credits

Valeria Pontillo: Formal analysis, Investigation, Data Curation, Validation,
Writing - Original Draft, Visualization. Dario Amoroso d’Aragona: Formal
analysis, Investigation, Data Curation, Validation, Writing - Original Draft,
Visualization. Fabiano Pecorelli: Formal analysis, Supervision, Resources,
Writing - Review & Editing. Dario Di Nucci: Supervision, Resources, Writ-
ing - Review & Editing. Filomena Ferrucci: Supervision, Resources, Writing
- Review & Editing. Fabio Palomba: Supervision, Resources, Writing - Re-
view & Editing.

References

1. Aljedaani, W., Peruma, A., Aljohani, A., Alotaibi, M., Mkaouer, M.W., Ouni, A., New-
man, C.D., Ghallab, A., Ludi, S.: Test smell detection tools: A systematic mapping
study. Evaluation and Assessment in Software Engineering pp. 170–180 (2021)

2. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability
links between code and documentation. IEEE transactions on software engineering
28(10), 970–983 (2002)

3. Azeem, M.I., Palomba, F., Shi, L., Wang, Q.: Machine learning techniques for code smell
detection: A systematic literature review and meta-analysis. Information and Software
Technology (2019)

https://github.com/darioamorosodaragona-tuni/ML-Test-Smell-Detection-Online-Appendix
https://github.com/darioamorosodaragona-tuni/ML-Test-Smell-Detection-Online-Appendix


Machine Learning-Based Test Smell Detection 47

4. Baeza-Yates, R., Ribeiro, B.d.A.N., et al.: Modern information retrieval. New York:
ACM Press; Harlow, England: Addison-Wesley, (2011)

5. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H.: Assessing the accuracy
of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424
(2000)

6. Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D.: An empirical analysis
of the distribution of unit test smells and their impact on software maintenance. In:
Software Maintenance, 2012 28th IEEE Int.l Conf. on, pp. 56–65. IEEE (2012)

7. Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D.: Are test smells really
harmful? an empirical study. Empirical Software Engineering 20(4), 1052–1094 (2015)

8. Beck, K.: Test-driven development: by example. Addison-Wesley Professional (2003)
9. Beller, M., Gousios, G., Zaidman, A.: Oops, my tests broke the build: An explorative

analysis of travis ci with github. In: Int.l Conf. on Mining Software Repositories (MSR),
pp. 356–367. IEEE (2017)

10. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of
Machine Learning Research 13(Feb), 281–305 (2012)

11. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
12. Catolino, G., Di Nucci, D., Ferrucci, F.: Cross-project just-in-time bug prediction for

mobile apps: An empirical assessment. In: Int.l Conf. on Mobile Software Engineering
and Systems, pp. 99–110. IEEE (2019)

13. Catolino, G., Ferrucci, F.: An extensive evaluation of ensemble techniques for software
change prediction. Journal of Software: Evolution and Process p. e2156 (2019)

14. Catolino, G., Palomba, F., De Lucia, A., Ferrucci, F., Zaidman, A.: Enhancing change
prediction models using developer-related factors. Journal of Systems and software 143,
14–28 (2018)

15. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority
over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)

16. Cohen, J.: A coefficient of agreement for nominal scales. Educational and psychological
measurement 20(1), 37–46 (1960)

17. De Bleser, J., Di Nucci, D., De Roover, C.: Assessing diffusion and perception of test
smells in scala projects. In: Int.l Conf. on Mining Software Repositories, pp. 457–467.
IEEE Press (2019)

18. De Bleser, J., Di Nucci, D., De Roover, C.: Socrates: Scala radar for test smells. In:
ACM SIGPLAN Symposium on Scala, pp. 22–26. ACM (2019)

19. Di Nucci, D., Palomba, F., De Rosa, G., Bavota, G., Oliveto, R., De Lucia, A.: A
developer centered bug prediction model. IEEE Transactions on Software Engineering
(2017)

20. Duda, R.O., Hart, P.E., et al.: Pattern classification and scene analysis. A Wiley-
Interscience publication. Wiley (1973)

21. Fenton, N., Bieman, J.: Software metrics: a rigorous and practical approach. CRC press
(2014)

22. Fernandes, E., Oliveira, J., Vale, G., Paiva, T., Figueiredo, E.: A review-based compar-
ative study of bad smell detection tools. In: Int.l Conf. on Evaluation and Assessment
in Software Engineering, p. 18. ACM (2016)

23. Fowler, M., Beck, K.: Refactoring: improving the design of existing code. Addison-
Wesley Professional (1999)

24. Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: icml, vol. 99,
pp. 124–133. Citeseer (1999)

25. Garousi, V., Küçük, B.: Smells in software test code: A survey of knowledge in industry
and academia. Journal of systems and software 138, 52–81 (2018)

26. Gousios, G., Zaidman, A., Storey, M., Van Deursen, A.: Work practices and challenges
in pull-based development: the integrator’s perspective. In: Int.l Conf. on Software
Engineering-Volume 1, pp. 358–368. IEEE Press (2015)

27. Grano, G., Palomba, F., Di Nucci, D., De Lucia, A., Gall, H.C.: Scented since the
beginning: On the diffuseness of test smells in automatically generated test code. Journal
of Systems and Software 156, 312–327 (2019)

28. Grano, G., Palomba, F., Gall, H.C.: Lightweight assessment of test-case effectiveness
using source-code-quality indicators. IEEE Transactions on Software Engineering (2019)



48 Valeria Pontillo et al.

29. Greiler, M., Van Deursen, A., Storey, M.A.: Automated detection of test fixture strate-
gies and smells. In: Software Testing, Verification and Validation (ICST), pp. 322–331
(2013)

30. Haiduc, S., Bavota, G., Oliveto, R., De Lucia, A., Marcus, A.: Automatic query perfor-
mance assessment during the retrieval of software artifacts. In: Proceedings of the 27th
IEEE/ACM international conference on Automated Software Engineering, pp. 90–99
(2012)

31. Han, H., Wang, W., Mao, B.: Borderline-smote: a new over-sampling method in imbal-
anced data sets learning. In: Int.l Conf. on intelligent computing, pp. 878–887. Springer
(2005)

32. Harrold, M.J., McGregor, J.D., Fitzpatrick, K.J.: Incremental testing of object-oriented
class structures. In: Proceedings of the 14th international conference on Software engi-
neering, pp. 68–80 (1992)

33. He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: Adaptive synthetic sampling approach for
imbalanced learning. In: Int.l joint Conf. on neural networks (IEEE world congress on
computational intelligence), pp. 1322–1328. IEEE (2008)

34. Heckman, J.J.: Selection bias and self-selection. In: Econometrics, pp. 201–224. Springer
(1990)

35. Koochakzadeh, N., Garousi, V.: A tester-assisted methodology for test redundancy de-
tection. Advances in Software Engineering 2010 (2010)

36. Kramer, O.: Scikit-learn. In: Machine learning for evolution strategies, pp. 45–53.
Springer (2016)

37. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: From metaphor to theory and
practice. Ieee software 29(6), 18–21 (2012)

38. Lambiase, S., Cupito, A., Pecorelli, F., De Lucia, A., Palomba, F.: Just-in-time test smell
detection and refactoring: The darts project. In: Int.l Conf. on Program Comprehension,
pp. 441–445 (2020)

39. Lipton, Z.C., Steinhardt, J.: Troubling trends in machine learning scholarship: Some
ml papers suffer from flaws that could mislead the public and stymie future research.
Queue 17(1), 45–77 (2019)

40. Mackinnon, T., Freeman, S., Craig, P.: Endo-testing: unit testing with mock objects.
Extreme programming examined pp. 287–301 (2000)

41. Maier, F., Felderer, M.: Detection of test smells with basic language analysis meth-
ods and its evaluation. In: 2023 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 897–904. IEEE (2023)

42. Maldonado, E.d.S., Shihab, E.: Detecting and quantifying different types of self-
admitted technical debt. In: Int.l Workshop on Managing Technical Debt (MTD), pp.
9–15. IEEE (2015)

43. Marcus, A., Poshyvanyk, D.: The conceptual cohesion of classes. In: Int.l Conf. on
Software Maintenance, pp. 133–142. IEEE (2005)

44. Martins, L., Costa, H., Machado, I.: On the diffusion of test smells and their relationship
with test code quality of java projects. Journal of Software: Evolution and Process p.
e2532

45. McHugh, M.L.: Interrater reliability: the kappa statistic. Biochemia medica 22(3), 276–
282 (2012)

46. McMinn, P.: Search-based software test data generation: a survey. Software Testing,
Verification and Reliability 14(2), 105–156 (2004)

47. Meszaros, G.: xUnit test patterns: Refactoring test code. Pearson Education (2007)
48. Myers, G.J., Sandler, C., Badgett, T.: The art of software testing. John Wiley & Sons

(2011)
49. Nemenyi, P.B.: Distribution-free multiple comparisons. Princeton University (1963)
50. Noble, W.S.: What is a support vector machine? Nature biotechnology 24(12), 1565–

1567 (2006)
51. Orso, A., Silva, S.: Open issues and research directions in object-oriented testing. In:

Proceedings of the 4th International Conference on” Achieving Quality in Software:
Software Quality in the Communication Society”(AQUIS’98) (1998)

52. O’brien, R.M.: A caution regarding rules of thumb for variance inflation factors. Quality
& quantity 41(5), 673–690 (2007)



Machine Learning-Based Test Smell Detection 49

53. Palomba, F., Di Nucci, D., Panichella, A., Oliveto, R., De Lucia, A.: On the diffusion of
test smells in automatically generated test code: An empirical study. In: Int.l Workshop
on Search-Based Software Testing, pp. 5–14. ACM (2016)

54. Palomba, F., Zaidman, A., De Lucia, A.: Automatic test smell detection using informa-
tion retrieval techniques. In: Int.l Conf. on Software Maintenance and Evolution, pp.
311–322. IEEE (2018)

55. Parizi, R.M., Lee, S.P., Dabbagh, M.: Achievements and challenges in state-of-the-art
software traceability between test and code artifacts. IEEE Transactions on Reliability
63(4), 913–926 (2014)

56. Pecorelli, F., Di Lillo, G., Palomba, F., De Lucia, A.: Vitrum: A plug-in for the visual-
ization of test-related metrics. In: AVI 2020, pp. 1–3 (2020)

57. Pecorelli, F., Di Nucci, D., De Roover, C., De Lucia, A.: On the role of data balancing
for machine learning-based code smell detection. In: ACM SIGSOFT Int.l workshop on
machine learning techniques for software quality evaluation, pp. 19–24 (2019)

58. Pecorelli, F., Palomba, F., Di Nucci, D., De Lucia, A.: Comparing heuristic and machine
learning approaches for metric-based code smell detection. In: Int.l Conf. on Program
Comprehension, pp. 93–104. IEEE Press (2019)

59. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12, 2825–2830 (2011)

60. Perez, A., Abreu, R., van Deursen, A.: A test-suite diagnosability metric for spectrum-
based fault localization approaches. In: Int.l Conf. on Software Engineering, pp. 654–664.
IEEE Press (2017)

61. Peruma, A., Almalki, K., Newman, C.D., M., M.W., Ouni, A., Palomba, F.: Tsdetect:
An open source test smells detection tool. In: ACM Joint Meeting on European Software
Engineering Conf. and Symposium on the Foundations of Software Engineering, pp.
1650–1654 (2020)

62. Pezzè, M., Young, M.: Software testing and analysis: process, principles, and techniques.
John Wiley & Sons (2008)

63. Pontillo, V., Amoroso D’Aragona, D., Pecorelli, F., Di Nucci, D., Ferrucci, F., Palomba,
F.: Machine learning-based test smell detection — online appendix. https://github.

com/darioamorosodaragona-tuni/ML-Test-Smell-Detection-Online-Appendix

64. Pontillo, V., Palomba, F., Ferrucci, F.: Toward static test flakiness prediction: a feasi-
bility study. In: Int.l Workshop on Machine Learning Techniques for Software Quality
Evolution, pp. 19–24 (2021)

65. Pontillo, V., Palomba, F., Ferrucci, F.: Static test flakiness prediction: How far can we
go? Empirical Software Engineering 27(7), 187 (2022)

66. Quinlan, J.R.: Induction of decision trees. Machine learning 1(1), 81–106 (1986)
67. Qusef, A., Bavota, G., Oliveto, R., Lucia, A.D., Binkley, D.W.: Recovering test-to-code

traceability using slicing and textual analysis. Journal of Systems and Software 88,
147–168 (2014). DOI 10.1016/j.jss.2013.10.019. URL https://doi.org/10.1016/j.

jss.2013.10.019

68. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Encyclopedia of database
systems, pp. 532–538. Springer (2009)

69. Rwemalika, R., Habchi, S., Papadakis, M., Le Traon, Y., Brasseur, M.C.: Smells in
system user interactive tests. Empirical Software Engineering 28(1), 20 (2023)

70. Sakshaug, J.W., Schmucker, A., Kreuter, F., Couper, M.P., Singer, E.: Evaluating active
(opt-in) and passive (opt-out) consent bias in the transfer of federal contact data to a
third-party survey agency. Journal of Survey Statistics and Methodology 4(3), 382–416
(2016)

71. Samarthyam, G., Muralidharan, M., Anna, R.K.: Understanding test debt. In: Trends
in Software Testing, pp. 1–17. Springer (2017)

72. Schapire, R.E.: Explaining adaboost. In: Empirical inference, pp. 37–52. Springer (2013)
73. Sheldon, M.R., Fillyaw, M.J., Thompson, W.D.: The use and interpretation of the fried-

man test in the analysis of ordinal-scale data in repeated measures designs. Physiother-
apy Research International 1(4), 221–228 (1996)

https://github.com/darioamorosodaragona-tuni/ML-Test-Smell-Detection-Online-Appendix
https://github.com/darioamorosodaragona-tuni/ML-Test-Smell-Detection-Online-Appendix
https://doi.org/10.1016/j.jss.2013.10.019
https://doi.org/10.1016/j.jss.2013.10.019


50 Valeria Pontillo et al.

74. Spadini, D., Palomba, F., Baum, T., Hanenberg, S., Bruntink, M., Bacchelli, A.: Test-
driven code review: an empirical study. In: Int.l Conf. on Software Engineering, pp.
1061–1072. IEEE Press (2019)

75. Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., Bacchelli, A.: On the relation of
test smells to software code quality. In: 2018 IEEE Int.l Conf. on Software Maintenance
and Evolution, pp. 1–12. IEEE (2018)

76. Stone, M.: Cross-validatory choice and assessment of statistical predictions. Journal of
the royal statistical society: Series B (Methodological) 36(2), 111–133 (1974)

77. Taud, H., Mas, J.: Multilayer perceptron (mlp). In: Geomatic Approaches for Modeling
Land Change Scenarios, pp. 451–455. Springer (2018)

78. Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., Poshy-
vanyk, D.: An empirical investigation into the nature of test smells. In: Int.l Conf. on
Automated Software Engineering, pp. 4–15 (2016)

79. Van Deursen, A., Moonen, L., van den Bergh, A., Kok, G.: Refactoring test code. In: Int.l
Conf. on extreme programming and flexible processes in software engineering (XP2001),
pp. 92–95 (2001)

80. Van Rompaey, B., Demeyer, S.: Establishing traceability links between unit test cases
and units under test. In: 2009 13th European Conf. on Software Maintenance and
Reengineering, pp. 209–218. IEEE (2009)

81. Van Rompaey, B., Du Bois, B., Demeyer, S., Rieger, M.: On the detection of test
smells: A metrics-based approach for general fixture and eager test. IEEE Transactions
on Software Engineering 33(12), 800–817 (2007)

82. Vavrová, N., Zaytsev, V.: Does python smell like java? tool support for design defect
discovery in python. arXiv preprint arXiv:1703.10882 (2017)

83. Wang, T., Golubev, Y., Smirnov, O., Li, J., Bryksin, T., Ahmed, I.: Pynose: a test smell
detector for python. In: 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 593–605. IEEE (2021)

84. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in software engineering. Springer Science & Business Media (2012)

85. Yen, S., Lee, Y.: Under-sampling approaches for improving prediction of the minority
class in an imbalanced dataset. In: Intelligent Control and Automation, pp. 731–740.
Springer (2006)

86. Zhang, Y., Mesbah, A.: Assertions are strongly correlated with test suite effectiveness.
In: Joint Meeting on Foundations of Software Engineering, pp. 214–224. ACM (2015)


	Introduction
	Related Work
	Goals and Research Questions
	Dataset Construction
	Machine Learning-based Test Smell Detection
	Research Method and Results
	Discussion, Further Analysis, and Qualitative Insights
	Threats to Validity
	Conclusion

