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Abstract Unit testing verifies the presence of faults in individual software
components. Previous research has been targeting the automatic generation of
unit tests through the adoption of random or search-based algorithms. Despite
their effectiveness, these approaches aim at creating tests by solely optimiz-
ing metrics like code coverage, without ensuring that the resulting tests have
granularities that would allow them to verify both the behavior of individual
production methods and the interaction between methods of the class under
test. To address this limitation, we propose a two-step systematic approach to
the generation of unit tests: we first force search-based algorithms to create
tests that cover individual methods of the production code, hence implement-
ing the so-called intra-method tests; then, we relax the constraints to enable
the creation of intra-class tests that target the interactions among production
code methods. The assessment of our approach is conducted through a mixed-
method research design that combines statistical analyses with a user study.
The key results report that our approach is able to keep the same level of code
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and mutation coverage while providing test suites that are more structured,
more understandable and aligned to the design principles of unit testing.

Keywords Search-based Software Testing, Test Code Quality, Automatic
Test Case Generation

1 Introduction

Software testing is the process adopted to verify the presence of faults in pro-
duction code [47]. The first step of this process consists of assessing the qual-
ity of individual production code units [3], e.g., classes of an Object-Oriented
project. Previous studies [17, 71] have shown that unit testing alone may iden-
tify up to 20% of a project’s defects and reduce up to 30% the costs connected
with development time. Despite the undoubted advantages given by unit test-
ing, things are worse in reality: most developers do not actually practice testing
and tend to over-estimate the time spent in writing, maintaining, and evolving
unit tests, especially when it comes to regression testing [10].

To support developers during unit testing activities, the research commu-
nity has been developing automated mechanisms—relying on various method-
ologies like random or search-based software testing [4]—that aim at gener-
ating regression test suites targeting individual units of production code. For
instance, Fraser and Arcuri [21] proposed a search-based technique, imple-
mented in the Evosuite toolkit,1 able to optimize whole test suites based on
the coverage achievable on production code by tests belonging to the suite.
Later on, Panichella et al. [51] built on top of Evosuite to represent the
search process in a multi-objective, dynamic fashion that allowed them to
outperform the state-of-the-art approaches. Further techniques in literature
proposed to (1) optimize code coverage along with other secondary objectives
(i.e., performance [18, 30, 59], code metrics [49, 50], and others [42]) or (2)
empower the underlying search-based algorithms by working on their configu-
ration [6, 40, 72]. Yet, these approaches often fail to generate tests that are well-
designed, easily understandable, and maintainable [21]. In addition, existing
approaches do not explicitly follow well-established methodologies that suggest
taking test case granularity into account [58]. In particular, when developing
unit test suites, two levels of granularity should be preserved [35, 48, 58]: first,
the creation of tests covering single methods of the production code should
be pursued, i.e., intra-method [58] or basic-unit testing [48]; afterwards, tests
exercising the interaction between methods of the class should be developed in
order to verify additional execution paths of the production code that would
not be covered otherwise, i.e., intra-class [58] or unit testing [48].

In this paper, we target the problem of granularity in automatic test case
generation, advancing the state of the art by pursuing the first steps toward
the integration of a systematic strategy within the inner-working of automatic
test case generation approaches that might possibly support the production of

1http://www.evosuite.org
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more effective and understandable test suites. We build on top of Mosa [51]
to devise an improved technique, coined Granular-Mosa (G-Mosa here-
after), that implements the concepts of intra-method and intra-class testing.
Our technique splits the overall search budget in two. In the first half,G-Mosa
forces the search-based algorithm to generate intra-method tests by limiting
the number of production calls to one. In the second half, the standard Mosa
implementation is executed so that the generation can cover an arbitrary num-
ber of production methods, hence producing intra-class test cases that exercise
the interaction among methods.

We envision the proposed approach to be useful in multiple scenarios. On
the one hand, intra-method testing allows the isolation of issues, supporting
regression testing of individual components. There are two specific use cases
where this testing strategy would be particularly useful. First, the regression
testing of changes targeting the evolution of individual methods: intra-method
testing would indeed help developers in the detection of defects, logic errors,
and exceptions that may be present within a single method. By testing a
method in isolation, a developer may pinpoint issues without the complexity
introduced by the interactions with other methods or classes, favoring a quick
resolution of these issues. Second, intra-method testing would be essential
when refactoring operations are applied at the level of individual methods,
e.g., an Inline Method refactoring that aims at merging together the code
of two original methods [19]: in such a use case, developers would aim at
improving the design of the code without altering its functional behavior.
Having a comprehensive suite of intra-method tests would provide a safety net
that would support developers in ensuring that no regressions are introduced
during the refactoring process, hence verifying that the refactoring process
worked as expected. On the other hand, intra-class testing focuses on the
interactions between methods within the same class. In the first place, it helps
identify issues that arise when methods collaborate to achieve a higher-level
functionality, thus targeting more complex behaviors than those considered
with intra-method testing. Additionally, it is worth considering that some
defects can only be detected by looking at the way methods of a class interact
with each other, i.e., some defects are complex enough not to be spotted when
verifying individual methods. As a consequence, intra-class tests are essential
for catching such issues, ensuring that the class functions as intended. Last
but not least, this category of test cases might also be relevant when verifying
the outcome of refactoring operations affecting classes, e.g., a Move Method
operation that moves a method from a class to another, affecting the way
the methods in both original and target classes communicate with each other
[19]. In this condition, the proper application of refactoring can only be tested
through intra-class test cases, as the refactoring operation itself is not limited
to individual methods but may affect the behavior of entire classes.

On the basis of the considerations above, we see the definition of an au-
tomated approach able to include both types of tests within automatically
generated tests as instrumental to enlarge the conceptual scope of test case
generators and potentially lead to their higher adoption in practice. In the first
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place, current approaches do not provide developers with test cases that can
explicitly support the use cases mentioned above. In this sense, our approach
may increase the confidence that developers have in automatically generated
test cases by letting them experiment with tests that can cover multiple situ-
ations occurring when evolving a software system. In the second place, forcing
the automated test case generators to design intra-method and intra-class
tests may have implications for usability and readability: we indeed hypothe-
size that the test suite resulting from the adoption of a method that explicitly
consider the two types of test cases may be more readable and understandable
for developers, making these test cases more useful from their own perspective.

We evaluate G-Mosa in the context of an empirical study featuring both
statistical analyses and a user study, in an effort of assessing its effectiveness
under multiple parameters such as (1) branch and mutation coverage, (2) test
suite size, (3) complexity and coupling of the generated suites, (4) number of
test smells, and (5) developers’ understandability. We conduct our empirical
investigation on a dataset of 100 non-trivial classes which has been previously
employed in similar studies. In doing so, we also compare G-Mosa against
Mosa, so that we may have a measure of the effect size of our results.

Our key findings show that the defined systematic strategy actually allows
G-Mosa to create intra-method and intra-class test cases. More importantly,
the resulting suites have a lower size per test case, a lower presence of test
smells, and a higher understandability than those generated by Mosa, yet
having a statistically similar level of code and mutation coverage. In other
terms, G-Mosa can advance the state of the art by providing developers with
an automated strategy able to ensure similar coverage levels than previous
approaches while improving the overall degree of maintainability and under-
standability of the generated test suites.

To sum up, our paper provides four main contributions:

1. The definition and implementation of a novel, granular approach for auto-
matic test case generation;

2. An empirical assessment of the approach as well as its comparison with a
baseline technique;

3. A user study that evaluates the understandability of the generated test
suites compared to the selected baseline.

4. A publicly available appendix [5] including both the implementation of
G-Mosa and the data/scripts used to assess it, that might be used by
researchers to replicate our study and/or build on top of our findings.

Structure of the paper. Section 2 provides background required to prop-
erly understand our research. In Section 3 we present the algorithmic details
of G-Mosa, while Section 4 overviews the research questions that we will ad-
dress. In Section 5 we report on the experimental details of the evaluation of
our technique. Section 6 reports and discusses the results achieved over our
experimentation while Section 7 discusses the possible threats to validity of
our study. Finally, Section 8 outlines our next steps.



Toward Granular Search-Based Automatic Unit Test Case Generation 5

2 Background and Related Work

This section reports the basic concepts on automated tools to generate unit
test suites as well as a discussion on related work.

2.1 Automatic Unit Test Case Generation

The problem of automatically generating test data has been largely investi-
gated in the last decade [45]. Search-based heuristics—genetic algorithms [28]
in particular—have been successfully applied to solve such a problem [45]
with the goal to generate tests with high code coverage. Single-target ap-
proaches have been the first techniques proposed in the context of white-box
testing [64]. These approaches divide the search budget among all the targets
(typically branches) and attempt to cover each of them at a time. To overcome
the limitation of single-target approaches, Fraser and Arcuri [21] proposed a
multi-target approach, called whole suite test generation (WS), that tackles
all the coverage targets at the same time. Building on such idea, Panichella
et al. [51] proposed a many-objective algorithm called MOSA. While WS is
guided by an aggregate suite-level fitness function, MOSA evaluates the over-
all fitness of a test suite based on a vector of n objectives, one for each branch
to cover. The basic working of MOSA can be summarized as follows. At first,
an initial population of randomly generated tests is initialized. Such a pop-
ulation is then evolved through consecutive generations: new offsprings are
generated by selecting two parents in the current population and then both
crossover and mutation operators are applied [51]. MOSA introduced a novel
preference-sorting algorithm to focus the search toward uncovered branches.
This heuristic solves the problem of selecting non-dominated solutions that
typically occurs in many-objective algorithms [43].

Algorithm 1: Random Generation of the Initial Population of Tests
Input: M = {m1,m2, ...,mi}: methods of the CUT we want to cover

Maximum attempts A
Maximum size L

Result: T{s1, s2, ..., sn}: test case with with n statements
1 begin
2 T ← ∅
3 r ← RANDOM-NUMBER(1, L)
4 while not(max attempts reached) AND (|T | ≤ L) do
5 p← RANDOM-NUMBER(0, 1)
6 if p ≤ INSERTION-UUT then
7 INSERT-CALL-ON-CUT(T )
8 else
9 v ← SELECT-VALUE(T )

10 INSERT-CALL-ON-VALUE(T , v)

11 return T
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Random Test Case Generation. To provide the reader with the necessary con-
text, we introduce the basics of the mechanism used by EvoSuite [20] to ran-
domly initialize the first generation of tests. More details can be found in the
paper by Fraser and Arcuri [21]. A tests case is represented in EvoSuite by a se-
quence of statements T = {s1, s2, ..., sl} where |T | = l. Each si has a particular
value v(si) of type τ . The pseudo-code for the random test cases generation is
showed in Algorithm 1. At first, EvoSuite chooses a random r ∈ (1, L) where L
is the test maximum length (i.e., number of statements) (line 3 of Algorithm 1).
Thus, EvoSuite initializes an empty test and tries to add new statements to
it. Such a logic is implemented in the RandomLengthTestFactory class. Evo-
Suite defines five different kinds of statements [21]: (i) primitive statements
(Sp), e.g., creating an Integer or a String variable, (ii) constructor statements
(Sc), that instantiate an object of a given type, (iii) field statements (Sf ) that
access public member variables, (iv) method statements (Sm), i.e., method
invocations on objects (or static method calls), and (v) assignment statements
(Sa) that assign a value to a defined variable. The value v and the type τ
of each statement depend on the generated statement itself, e.g., the value
and type of method statement will depend on the return value of the invoked
method. In the preprocessing phase, a test cluster [70] analyzes the entire SUT
(system under test) and identifies all the available classes Ω. ∀c ∈ Ω, the test
cluster defines a set of {C,M,F}, where C is the set of constructors, M if the
set of instance method and F is the set of instance fields available for a class
c, respectively.

EvoSuite tries to repetitively generate new statements (the loop from line
4 to line 10 in Algorithm 1) and add them to a test. The process continues
until the test hits the maximum random length or the maximum number of
attempts (a parameter in EvoSuite set to 1,000 by default) is reached (line
4 in Algorithm 1). EvoSuite can insert two main kinds of statements. With
a probability lower than INSERTION-UUT (a property defined as 0.5 by
default), EvoSuite generates a random call of either a constructor of the class
under test (CUT) or a member class, i.e., instance field of method (lines 6-
7 in Algorithm 1). Alternatively, the tool can generate a method call to a
value v(sj) where j ∈ (0, i] and i is the position on which the statements
will be added (lines 9-10 in Algorithm 1). In other words, EvoSuite invokes a
method on a value of a statement already inserted into the test. Such a value is
randomly selected among all the values from the statements from the position
0 to the actual position (line 9 in Algorithm 1) EvoSuite also takes care of
the parameters or the callee objects needed to generate a given statement. For
example, a call to an instance method of the CUT requires (i) the generation of
a statement instantiating the CUT itself and (ii) the generation of a statement
defining values needed as argument for the method call. The values for such
parameters can either (i) be selected among the sets of values already in the
test, (ii) set to null, or (iii) generated randomly.

To better understand the generation process, let consider the test case in
Listing 1, which has been generated for the class JavaParserTokenManager.
To create this test, Evosuite works as follows. Starting from an empty test, it
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StringReader stringReader0 = new StringReader("#<z-K~+* O4@s^W");

char[] charArray0 = new char [1];

stringReader0.read(charArray0);

JavaCharStream javaCharStream0 =

new JavaCharStream(stringReader0 , ( -1273), 1, 77);

JavaParserTokenManager javaParserTokenManager0 =

new JavaParserTokenManager(javaCharStream0);

Token token0 = javaParserTokenManager0.getNextToken ();

Listing 1 Example of a test generated by Evosuite

decides with a certain random probability to insert a statement invoking an
instance method of the CUT: in our example, the getNextToken() method
(line 6 of Listing 1). However, Evosuite needs first to generate two other state-
ments, i.e., line 5 and 6 of Listing 1, respectively: a statements returning a
value of type JavaParserTokenManager (i.e., the callee of the method) and
a statement returning a value of type JavaCharStream (i.e., the parameter
of the method). In turn the constructor of JavaCharStream will need a value
of type StringReader (line 1 of Listing 1). Line 3 of Listing 1 is instead the
result of the other kind of possible insertion, i.e., a method call to a value
already present in the test: the stringReader0 object in this case. Similarly,
the tool will generate the primitive statement at line 2 of Listing 1 to provide
the parameter needed by such a call.

2.2 Related Work

During the last decades, researchers have been working on the definition of
search-based solutions that automate the generation of test data [2]. Most of
the proposed approaches target branch coverage as primary goal to achieve
[46], but more recent investigations have attempted to consider additional
goals that would be desirable for making automatic test case generation more
practical and aligned to what testers would like to have: in this direction,
techniques have been proposed to complement code coverage with memory
consumption [42], oracle cost [18], execution time [59, 30], total amount of
number of test cases [49], and code quality [50]. Rojas et al. [62] also proposed
to combine multiple code coverage criteria during the generation process.

A more recent trend is represented by the adoption of natural language
models to increase the overall readability of the generated tests [1]. As an
example, Daka et al. [14] proposed a post-processing method that optimizes
the readability of test cases by mutating them through a domain-specific model
of unit test readability based on human judgment. Further strategies include
the optimization of assert statements relying on mutation analysis [21].

Our paper builds upon the research conducted so far and proposes the
introduction of a systematic approach to the generation of test cases. In this
sense, the technique proposed can be applied on top of all the approaches
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Algorithm 2: G-Mosa Algorithm
Input: B = {τ1, ..., τm}: set of coverage targets of a program

Population size M
Result: A test suite T

1 begin
2 T ← ∅
3 α← intra-method-testing(M)
4 γ ← MOSA(M)
5 Tα, Bα ← GENERATE-TESTS(α,B) /* half search budget */
6 if Bα == ∅ then
7 return Tα

8 T ← T
⋃

Tα

9 Tγ , Bγ ← GENERATE-TESTS(γ,Bγ) /* half search budget */
10 T ← T

⋃
Tγ

11 return T

mentioned above. In the context of our research, we selected Mosa as base-
line since this represents a state of the art technique that has been shown to
overcome other approaches reported in literature [53]; yet, the underlying idea
of building intra-method tests first is general and can be complemented by the
optimization of any primary/secondary objective.

It is also worth to mention the many empirical studies conducted on test
cases automatically generated [2]. Researchers have indeed empirically com-
pared the performance of multiple approaches to the generation [69], other
than investigating on a large-scale the performance of those tools [22, 23], the
usability of testing tools in practice [12, 26, 63], and their quality characteris-
tics [31, 29, 55].

The empirical study discussed in this paper clearly has a different conno-
tation, as it aims to assess the capabilities of the proposed technique. Yet, it
contributes to the body of knowledge since we also evaluated how test code
maintainability can be improved by means of the systematic strategy imple-
mented within our approach.

3 G-Mosa: A Two-Step Automatic Test Case Generation Approach

G-Mosa is defined as a two-step methodology that combines intra-method
and intra-class unit testing [48, 58]. The pseudo-code of G-Mosa is outlined
in Algorithm 2. The first step of the methodology generates tests that exercise
the behavior of production methods in isolation: we indeed only allowed by
design to generate intra-method tests (details in Section 3.1). The second step
is based on the standard MOSA implementation [51] that performs intra-class
unit testing by exercising a class trough a sequence of method call invocations.
In the following, we detail each of these two steps.
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Algorithm 3: Insert Random Call
Input: T{s1, s2, ..., sn}: test case with with n statements

S = {s1, s2, ..., sj}: setters of the CUT
Result: T : test case with with n + 1 statements

1 begin
2 o← GET-RANDOM-TEST-CALL
3 if (o is a method) then
4 if RANDOM-NUMBER(0, 1) ≤ INSERTION-SET then
5 T ← T

⋃
ADD-METHOD(sj ∈ S)

6 return T

7 T ← T
⋃

ADD-METHOD(o)
8 Tc ← true

9 else
10 T ← T

⋃
(ADD-COSTRUCTOR(o) OR T

⋃
ADD-FIELD(o))

11 return T

3.1 Step I - Intra-Method Tests Generation

The intra-method testing process is the first step to be initialized (line 3 of
Algorithm 2). Like any other test-case generation technique, a set of coverage
targets B is given as input, namely the set of branches within the production
class under test that the prospective test cases aim at covering. The intra-
method process starts (line 5 of Algorithm 2) with B as target of the search
and sets its search budget to the half of the overall budget available: in other
words, if G-Mosa is given 180 seconds as budget, the intra-method testing
process will run for 90 seconds. At the end of its search, the first step returns (i)
Tα, the set of generated tests cases, and (ii) Bα, the set of uncovered targets.
Tα and Bα will be used then as input for the second phase (see Section 3.2).

Intra-Method Code-Generation Engine G-Mosa is a variant of Mosa that
applies first an intra-method testing methodology [48]: each generated test
exercises a single production method of the CUT. To enable intra-method
testing, we modified the code-generation engine used by EvoSuite to ran-
domly generate new tests. In Section 2 we described such a mechanism: in
a nutshell, EvoSuite inserts randomly generated statements (e.g., calls to a
class constructor or invocation of instance methods) in a test until a maximum
number of statements is reached. This approach does not guarantee—nor has
been designed to do it—any control on the number of instance method invo-
cations of a test. As a consequence, tests might end up containing a sequence
of method calls for the CUT and thus, perform intra-class unit testing.

To enable intra-method testing, we modified the algorithm described in
Algorithm 1. With the current formulation, the insertion loop (from line 4 to
line 10 in Algorithm 1) has two stopping conditions: either a maximum number
of attempts or the maximum length L of the test is reached. We defined a third
stopping criterion: as soon as a statement si representing a method invocation
on a CUT object is inserted, we considered the test as complete. To store this
information, in our implementation each test T has a property Tc, initially set
to false, that indicates whether such a statement si has been inserted in T .
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Therefore, we added not(Tc) as additional stopping criterion for the insertion
loop at line 4 of Algorithm 1. It is worth remarking that insertions of CUT
instance methods are managed by the INSERT-CALL-ON-CUT procedure
(line 7 of Algorithm 1). Thus, we re-implemented such a procedure to handle
the newly defined stopping criterion.

Algorithm 3 shows our ad-hoc implementation of the INSERT-CALL-ON-
CUT procedure. The algorithm takes as input a test T with 1 ≤ n < L
statements and a set S ⊆ ⟨MCUT ∪FCUT ⟩ of setters for the CUT. For a class
c, S is composed of all its instance fields F and of a subset of its instance meth-
ods M. We defined the following heuristic to detect the instance method ∈ S
for the CUT. We considered as setter every m ∈ M whose method name has
the ⟨prefix⟩⟨keyword⟩⟨suffix⟩ structure, with keyword ∈ {set, get,put}, if and
only if ∃ m′ ∈ M | ⟨keyword⟩′ == get and ⟨prefix⟩′ == ⟨prefix⟩ & ⟨suffix⟩′ ==
⟨suffix⟩. It is worth noting that the ⟨prefix⟩ part of the method name is op-
tional. For instance, let consider the class SimpleNode of the jmca project:
this has two instance methods named jjtSetParent and jjtGetParent. Ac-
cording to our heuristic, the method jjtSetParent is considered as a setter
method of the class SimpleNode.

The first step for generating a random call on the CUT is to extract a
random call o in the set {C,M,F}. This is done by the GET-RANDOM-
TEST-CALL procedure (line 2 of Algorithm 3). If o ∈ {C∪F}, a new statement
si including a call to o is inserted into the test (as described in Section 2). In
case o ∈ M—with a certain probability (set as property to 0.3 by default)—a
new statement with a randomly selected setter is generated and inserted into
T ; therefore, the test is returned (lines from 4 to 6 in Algorithm 3). In the
opposite case, o is added to the test T and its property Tc is set to true (lines
7 and 8 of Algorithm 3). As a consequence, the code-generation engine stops
attempting new insertions: Tc is now true and the condition not(Tc) is not
met anymore. Our implementation of GET-RANDOM-TEST-CALL enables
intra-method testing since it allows by design the invocation of a single instance
method of the CUT. Note that our formulation does not consider setters as
units under test since they are needed only to set the state of the CUT object
required to properly exercise the method under test.

3.2 Step II - Intra-Class Tests Generation

The procedure described so far generate intra-method test cases, each of them
targeting individual methods of the class under test. To better understand the
following, intra-class test generation step, let us reason on the outcome of the
intra-method testing and the implications it has.

A production method may have one or multiple branches, with each pred-
icate of a branch being either true or false. In the case a production method
has a single branch and this is fully covered during the intra-method testing
procedure, this means that G-Mosa has been able to generate two unit tests
that were able to verify both true and false predicates of the branch. In this
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situation, coverage testing would indicate the branch as covered, hence sug-
gesting that no further test cases are required. As our approach exploits the
concepts of coverage testing, methods in this category would not be considered
further in the intra-class testing generation phase.

On the contrary, if a production method has branches that were not covered
yet or branches not fully covered in the intra-method testing phase, this means
that G-Mosa was unable to generate an appropriate number of test cases for
the method: this might be either caused by (i) the inability of our approach
to cover a branch or a predicate thereof or (ii) the necessity to generate more
complex test cases that let the methods of the production class interact. As
such, any branches that remained uncovered following the intra-method testing
process were subsequently given as input for the second phase of the generation
(i.e., intra-class testing), where we let the baseline MOSA work without any
constraint on the amount of method calls that the test should contain. This
step allows our approach to keep generating test cases for the production
methods of the class under test in an effort to further increase the overall
branch coverage obtained and generate tests that may be able to identify
defects caused by the interaction of multiple method calls.

From an algorithmic standpoint, the GENERATE-TESTS procedure re-
turns a set of generated tests (Tα) and a set of uncovered targets Bα ⊆ B,
where (i) Tα represents the set of intra-method test cases generated at the
first step and (ii) Bα represents the production code branches that were not
successfully covered within the first part of the generation process.

If Bα == ∅, the intra-method testing process achieved full coverage on the
CUT and Tα is returned (lines 6-7 of Algorithm 2). In the opposite case, Tα

is added to T (line 8 of Algorithm 2). In the second step, Mosa is selected as
algorithm for the search. This time, Bα is given as set of target to Mosa (line
9 of Algorithm 2). In other words, Mosa will attempt to cover only the targets
that have not been covered in the first step. At the end of the GENERATE-
TESTS procedure, the resulting Tγ is added to T and the final test suite T
is returned (lines 9-10 of Algorithm 2). T is formed by two different kinds of
tests: Tα generated by the intra-method process, that tests single production
methods in isolation and Tγ generated by Mosa, that exercise a class by
constructing sequences of method calls.

4 Research Questions and Objectives

The primary goal of the proposed approach is that of improving the structure
and quality of the automatically generated test cases. As such, the ultimate
goal of the empirical study is to analyze the quality implications of G-Mosa
in terms of size, maintainability, and understandability, with the purpose of
understanding how our approach can generate higher-quality unit test cases
when compared to a state of the art automatic test case generation technique
like Mosa. To address our goal, we set up three research questions (RQs).
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Before assessing the quality implications of G-Mosa, we target one of
the risks associated with the mechanisms implemented within our approach
that might have impacted its actual usefulness. By design, G-Mosa forces the
generation of intra-method tests, possibly limiting its scope and lowering the
number of tangentially covered branches. As a consequence, both code and
mutation coverage might have been impacted. Should this be the case, our
approach might be considered poorly useful in practice, as the improvement
of test quality would be accompanied by a decrease of effectiveness. As such,
we first assess the level of code and mutation coverage achieved and, only
after verifying that our approach does not compromise them, we proceed with
the analysis of additional perspectives. Our first RQ can therefore be seen as
preliminary and instrumental to the quality analysis: it aims at comparing the
effectiveness of test suites generated by G-Mosa and Mosa [51]. We consider
Mosa as baseline because (1) previous techniques aimed at improving the
quality of generated tests were compared to Mosa as well (e.g., [50]) and (2)
we builtG-Mosa on top of Mosa, making the comparison required. We define
the following research question:

RQ1 - Effectiveness. How does G-Mosa compare to MOSA in terms of
branch and mutation coverage?

Once assessed the implications of G-Mosa for the effectiveness of test
cases, we investigate the potential benefits given by our technique. We take
into account the size of the generated test cases: according to previous research
in the field [51, 21, 32], this is an indicator that has been often used to estimate
the effort that developers would spend to comprehend and interact with the
tests, indeed, a number of previously proposed search-based automatic test
case generation approaches used it as a metric to optimize [52, 49, 59]. Also in
this case, we compare the size of test cases generated by G-Mosa and Mosa,
addressing the following RQ:

RQ2 - Size. How does G-Mosa compare to MOSA in terms of test case
size?

While the size assessment could already provide insights into the compre-
hensibility of the generated test cases, in the context of our research we provide
additional analyses to assess their potential usefulness from a maintainability
perspective. In particular, once generated, test cases not only need to be man-
ually validated by testers to verify assertions [1, 9], but also maintained to
keep them updated as a consequence of the changes to the production code
[50]. Hence, it is reasonable to assess the capabilities of our approach in this
respect. We compare G-Mosa and Mosa in terms of the metrics that have
been previously designed to describe the quality and maintainability of test
cases and that we have surveyed in our previous work [56]. These pertain to
(1) code complexity, as measured by the weighted method count of a test suite
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[67]; (2) fan-out [37]; and (3) test smells, i.e., suboptimal design or implemen-
tation choices applied when developing test cases [27]. This lead to our third
research question:

RQ3 - Maintainability. How does G-Mosa compare to MOSA in terms
of maintainability of test cases?

On the one hand, the quantitative measurements computed so far can
provide a multifaceted view of how the proposed approach compares to state
of the art in terms of performance. On the other hand, these analyses cannot
quantify the actual gain given by G-Mosa in practice. For this reason, the last
step of our methodology includes a user study where we inquiry developers on
the understandability of the test cases output by G-Mosa when compared to
those of Mosa. This leads to the formulation of our last research question:

RQ4 - Understandability. How does G-Mosa compare to MOSA in
terms of understandability of test cases?

5 Study Design

To answer our research questions, we aim to perform an empirical study on
Java classes comparing G-Mosa to MOSA [51]. This section reports details
about the experimental procedure planned to address our RQs.

5.1 Experimental Environment

We run G-Mosa and Mosa against a dataset of Java classes, collecting the
generated tests and the corresponding code coverage indicators. In particu-
lar, we consider around 100 classes pertaining to the SF110 corpus [22]. This
benchmark2 contains a set of Java classes extracted from 110 projects of the
SourceForge repository. We select it since this is typically used in automatic
test case generation research [22, 51, 31, 21] and, therefore, can allow us to
experiment our technique on a “standard” benchmark that would enable other
researchers to build upon our findings and compare other techniques. As part
of our online appendix [5], we provide a table reporting the name of the classes
considered in our study—for the sake of readability, we could not report it in
the paper. These classes are associated with a unique identifier (column “ID”)
that we use when reporting the results. In this stage, nine of those classes led
the approaches to crash because of an internal error produced by Evosuite
[53] and, for this reason, we had to exclude them from our analysis resulting
in a final set of 91 classes.

2http://www.evosuite.org/experimental-data/sf110/
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To account for the intrinsic non-deterministic nature of genetic algorithms,
we run each approach on each class in the dataset for 30 times, as recommended
by Campos et al. [11]. We use the time criterion as search budget, allowing
180 seconds for the search [11]. In G-Mosa, this time is equally distributed
amongst the two steps of the approach, i.e., we reserve 90 seconds for intra-
method and 90 for intra-class testing. Mosa could instead rely on the entire
search budget to generate tests, as it does not have multiple steps.

To run the experimented approaches, we rely on the default parameter
configuration given by Evosuite. As shown by Arcuri and Fraser [7], the
parameter tuning process is long and expensive, other than not necessarily
paying off in the end.

5.2 Collecting Performance Metrics

In the context of RQ1, we rely on code and mutation coverage. We select
branch coverage to measure the proportion of a program’s source code branches
that is executed when a specific set of test cases is run. More specifically, a
branch is defined as a code instruction, e.g., an if statement, that may cause
a program to begin executing a different sequence of instructions based on the
verification of a certain condition. The branch coverage is instead computed by
dividing the number of branches executed by the code included within a test
suite over the total number of branches available in the production code under
test. As for mutation coverage, this is a metric that estimates the effectiveness
of test suites in detecting the so-called mutants, namely artificial defects pur-
posely introduced into the production code through small modifications (i.e.,
mutations) aiming at altering its original behavior. The metric is computed
by dividing the number of mutants detected by the test suite over the total
number of mutants within the production code under test. To compute these
two metrics, we rely on the code and mutation coverage analysis engine of
Evosuite [24]. We let the tool collect the branch coverage of each test in each
of the 30 runs. Additionally, the tool also collects information on the mutation
score: despite the existence of other tools able to perform mutation analysis
(e.g., PiTest3), we rely on the one made by Evosuite since it can effectively
represent real defects [24] and has been used in a series of recent studies on
automatic test case generation [30, 53, 54]. We perform the mutation analysis
at the end of the search, once the unit tests have been generated for all the
approaches. To obtain meaningful results we give an extra-budget of 5 minutes
to the mutation analysis—this step is required to generate more mutants and
to verify the ability of tests to capture them [24].

As forRQ2, we start from the set of test suites output by the search process
for the two experimented approaches and first compute their overall size, i.e.,
the lines of code of the generated test classes. As shown by previous work in
the field [21, 53], this metric represents an indicator of the usability of the test

3The Pitest analyzer: https://pitest.org.
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suites given by the tools. While recognizing the value of this perspective, we
also know that such a validation could be excessively unfair in our case. By
design, G-Mosa aims at creating a larger amount of test cases with respect to
Mosa, with a first set of many small tests implementing the concept of intra-
method testing and a second set composed of larger tests that implement
the concept of intra-class testing. On the contrary, Mosa does not explicitly
target the creation of maintainable test cases, hence possibly generating a fewer
amount of tests that account for a lower overall test suite size while reaching
high branch coverage. As a consequence, the assessment of the overall test suite
size could be too simplistic, other than providing coarse-grained considerations
on the usefulness of test suites, i.e., in practice, developers rarely look at
the entire test suite while fixing defects [12]. Hence, we aim to complement
the overall test suite size assessment with an analysis of the properties of
the individual test cases: we compute the mean size per test case, namely
the average amount of lines of code of the automatically generated test cases
within a test suite. Such a measurement can allow us to verify whether our
approach could provide developers with smaller units that might better align
to the actual effort required by a developer to deal with the tests generated
by G-Mosa when compared to our baseline Mosa [12].

To answer our third research question (RQ3), we compute three metrics
which have been previously associated with maintainability and that might
affect the way developers interact with test cases [65, 56, 32, 33]. Weighted
Method Count of a Test Suite (TWMC) [67] represents a complexity metric
whose computation implies the sum of the complexity values of the individual
test methods of a test class. The metric provides an estimation of how com-
plex a test class would be to understand for a developer [16, 33]. We compute
TWMC as the sum of the cyclomatic complexity of all test cases in a test
suite.. In the second place, we compute the fan-out metric [37], which provides
an estimation of outgoing dependencies of the test cases in a test suite. It
quantifies the number of dependencies that exist between a module/class and
other modules/classes. Keeping coupling under control is a key concern when
writing test cases, as an excessive dependence among tests might potentially
lead to some sort of flakiness [34]. Finally, we detect the number of test smells
per test suite: these smells have been often associated to the decrease of main-
tainability and effectiveness of test suites [65, 31] and likely represent the most
suitable maintainability aspect to verify within the test code. In this respect,
it is worth remarking that automatically generated test code is by design af-
fected by certain test smells: for instance, the generated tests come without
assertion messages and, therefore, are naturally affected by the smell known
as Assertion Roulette [27], which arises when a test has no documented asser-
tions. At the same time, automatic tests might not suffer from other types of
smells. For example, external resources are mocked by the Evosuite frame-
work, making the emergence of a test smell like Mystery Guest [27]—which
has to do with the use of external resources—not possible. As such, comparing
the experimented approaches based on the presence of these smells would not
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make sense. Hence, we only consider the test smells whose presence can be
actually measured. Specifically we computed the following test smells:

– Eager Test: occurs when a test case tries to cover multiple scenarios or
test multiple functionalities in one go instead of being focused on a specific
behavior or functionality of the system under test.

– General Fixture: occurs when a test case relies on a common setup or
configuration for multiple test scenarios, making it difficult to isolate and
identify specific issues in the system.

– Lazy Test: occurs when a test case does not adequately cover all possible
scenarios or behaviors of the system under test, leading to potential gaps
in test coverage and inadequate identification of issues or bugs.

– Sensitive Equality: occurs when a test case compares two values using direct
equality checks, such as equals(), without considering the possible tolerance
for slight variations in values.

– Indirect Testing: occurs when a test case indirectly tests the functionality
of the system under test by relying on the behavior of other components
or dependencies.

In more practical terms, we employ the tool by Spinellis [66] to compute
TWMC and EC metrics. As for test smells, we rely on TsDetect [57], which
is a tool able to identify more than 25 different types of test smells—in this
case, however, we limit the detection to the test smells that might actually
arise in automatically generated tests.

5.3 Collecting Understandability Metrics

The last step of our experimentation concerns with the assessment of the ac-
tual gain provided by G-Mosa in practice. We therefore conducted an online
experiment where we (1) involved developers in tasks connected to the under-
standability of the test cases generated by our approach and (2) compared our
approach with the baseline Mosa.

Experimental setting. We designed a user study that allowed partici-
pants to first provide demographics information and then provide indications
about the level of understandability of the test classes generated by the two
approaches compared, i.e., G-Mosa and Mosa. To run the experiment, we
used an online platform we have recently developed, which allows external
participants to (1) navigate and interact with source code elements and (2)
answer closed and open questions.

More specifically, the participants were first asked to answer demographic
questions that will serve to address their background and level of expertise in
software development and testing. We also inquired them about the type of
development they use to do, e.g., whether they consider themselves as indus-
trial or open-source developers. In addition, we asked to report how frequently
the participants are involved in unit testing tasks with respect to other types
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of testing activities: in this way, we could assess the suitability of participants
with the goal of our study, which was to assess the maintainability/under-
standability of unit test classes.

In the second place, participants were asked to perform the same task twice.
They were provided with the source code of two Java test classes aiming at
exercising the same production class. One of them generated by G-Mosa and
the other one by Mosa. In each task, after reading each of the two test classes
participants were asked to (1) rate the overall understandability of the class
with a 5-points Likert scale (from 1, which indicates poorly understandable
code, to 5, which indicates fully understandable code); (2) explain the reasons
for the rating provided; (3) write the assertion and corresponding assertion
message for two methods randomly selected from the test class under consid-
eration. While the responses to the first two questions were used to assess the
perceived understandability of test cases, the responses to the last question
were used to verify the validity of the assertions produced by developers.

Table 1 User study configurations. The class ID refers to the table with all the considered
classes reported in our online apppendix [5].

Configuration ID 1st Treatment 2nd Treatment Class ID
Configuration 1 Mosa G-Mosa Class #5
Configuration 2 G-Mosa Mosa Class #9
Configuration 3 Mosa G-Mosa Class #2
Configuration 4 G-Mosa Mosa Class #34

The pairs of test classes were randomly selected from the dataset employed
to address the previous research questions. We selected 4 pairs of test classes
and prepared 4 different configurations of the study (one for each class). This
was done to avoid biased interpretations of the results due to specific char-
acteristics of a selected class. We had to limit the scope of the study to few
classes in order to preserve the compromise between having enough informa-
tion to address RQ4 and design a short-enough user study that allowed the
participation of a large amount of developers—and that, therefore, would have
allowed us to draw statistically significant conclusions. It is worth remarking
that the choice of selecting four pairs of test classes for the user study was
not random, but driven by the results of a pilot study, which revealed that
this amount of test classes was the optimal choice for the kind of assessment
participants should have done. More details on the pilot study and the results
obtained are discussed in Section 7.4.

As for the order of the test classes, half of the participants first engaged
with a test class generated by Mosa and then with the one generated by G-
Mosa. Conversely, the other half of the participants read the two test classes
in the reverse order. Through the experiment, we assessed the extent to which
developers can understand and deal with the information provided by the test
cases generated by the two approaches. Table 1 reports an overview of the four
resulting user study configurations.
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Participant’s recruitment. We recruited developers using various chan-
nels. In the first place, we invited the original open-source developers of the
classes considered in the study. This has been done via e-mail. Of course,
we only approached the developers who have publicly released their e-mail
address on GitHub. In a complementary manner, we recruited participants
through Prolific4 by carefully considering the guidelines recently proposed
by Reid et al. [61]. This is a research-oriented web-based platform that enables
researchers to find participants for user studies: in particular, it allowed to pre-
set the desired number of responses (in our case, 140) and automatically closes
the survey once this target is met—because of these characteristics, it would
not be accurate to report a response rate. One of the features of Prolific is
the specification of constraints over participants, which in our case enabled to
limit the participation to software developers that are knowledgeable about
Java development and unit testing. It is important to point out that Prolific
implements an opt-in strategy [38], meaning that participants get voluntarily
involved. This might potentially lead to self-selection or voluntary response
bias [36]. To mitigate this risk, we introduced an incentive of 2 pounds per
valid respondent. Once we received the answers, we filtered out the answers
coming from participants who did not take the task seriously—this was done
by manually validating the answers received, looking for cases where partic-
ipants clearly replied to questions in a shallow manner or just for the sake
of getting the experiment done within the lowest amount of time possible.
Overall, we discarded 20 responses out of the 140 received.

We could rely on a total of 120 valid responses. Unfortunately, we did not
receive any reply from the original developers (response rate=0%)—this was
likely due to a reflection of the issues raising when involving developers from
GitHub, who are typically overwhelmed by requests coming from researchers
and which, because of that, are less and less prone to be involved [8]. On
the contrary, we could get a notable amount of answers from developers con-
tributing to Prolific. Figure 1 reports the background of the respondents,
as self-assessed by themselves when filling the survey out. As shown, they in-
dicated a programming experience between 1 and 35 years and an experience
with unit testing ranging between 1 and 24 years. Perhaps more importantly,
70% of the participants reported that they often or frequently conduct unit
testing activities, hence being qualified enough to take part of our study. In
addition, most of the participants were industrial developers (40%).

From the analysis of the background information reported by our partici-
pants, we could conclude that our sample was mainly composed of industrial
developers with a solid knowledge of unit testing and that perform such an
activity quite often during their daily work activities. As such, we deemed the
sample valid for the goals of our study.

4Prolific website: https://www.prolific.co/.
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Fig. 1 Background of survey respondents.

5.4 Data Analysis

After collecting the metrics, we ran statistical tests to verify whether the differ-
ences observed between G-Mosa and Mosa are statistically significant. More
specifically, we employed the non-parametric Wilcoxon Rank Sum Test [13]
(with α == 0.05) on the distributions of (1) code coverage, (2) mutation cov-
erage, (3) size per test case, (4) weighted method count of a test suite, (5)
fan-out, (6) number of test smells, and (7) understandability scores assigned
by developers in the user study. In this respect, we formulated the following
null hypotheses:

Hn 1. There is no significant difference in terms of branch coverage achieved
by G-Mosa and MOSA.

Hn 2. There is no significant difference in terms ofmutation coverage achieved
by G-Mosa and Mosa.

Hn 3. There is no significant difference in terms of size per unit achieved by
G-Mosa and Mosa.

Hn 4. There is no significant difference in terms of weighted method count of
a test suite achieved by G-Mosa and Mosa.

Hn 5. There is no significant difference in terms of fan-out achieved by G-
Mosa and Mosa.

Hn 6. There is no significant difference in terms of the number of test smells
achieved by G-Mosa and Mosa.
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Hn 7. There is no significant difference in terms of the understandability scores
achieved by G-Mosa and Mosa.

From a statistical perspective, we have to take into account the fact that,
if one of the null hypothesis is rejected, then one between G-Mosa and Mosa
is statistically better than the other. Hence, we defined a set of alternative
hypotheses such as the following:

An 1. The branch coverage achieved by G-Mosa and MOSA is statistically
different.

An 2. The mutation coverage achieved by G-Mosa and Mosa is statistically
different.

An 3. The size per unit of the unit test suites generated by G-Mosa and
Mosa is statistically different.

An 4. The weighted method count of a test suite of the unit test suites gener-
ated by G-Mosa and Mosa is statistically different.

An 5. The fan-out of the unit test suites generated by G-Mosa and Mosa is
statistically different.

An 6. The number of test smells of the unit test suites generated by G-Mosa
and Mosa is statistically different.

An 7. The understandability scores of the unit test suites generated by G-
Mosa and Mosa is statistically different.

We reject the null hypotheses if Hni ⇐⇒ p < 0.05. In addition to the
Wilcoxon Rank Sum Test, we rely on the Vargha-Delaney (Â12) [68] statistical
test to measure the magnitude of the differences in the distributions of the con-
sidered metrics. Based on the direction given by Â12, we can make a practical
sense to the alternative hypotheses. Should the Â12 values be lower than 0.5,
this would denote that the test suites generated by G-Mosa would be better
than those provided by Mosa. For instance, a Â12 < 0.50 in the distribution
of code coverage would indicate that the code coverage achieved by G-Mosa is
higher than the one reached by the baseline. Similarly, a Â12 > 0.50 indicates
the opposite, while Â12 == 0.50 points out that the results are identical.

public void testX() throws Throwable {

Configuration configuration0 =

Configuration.getSystemConfiguration(true);

ConnectionConsumer <String > connectionConsumer0 = new

ConnectionConsumer <String >( configuration0 ,

"summa.configuration");

connectionConsumer0.releaseConnection ();

.....

}

Listing 2 A test method, for which participants have provided both valid and not valid
assertions.
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Besides the statistical analysis of the distributions collected in our empirical
study, we also proceeded with the verification of the assertions and assertion
messages written by the user study participants. The first two authors of the
paper acted as inspectors and assessed whether the reported assertions were
in line with the actual behavior of the test cases. The two inspectors jointly
performed the task in an effort of having two expert opinions on the validity
of the assertions analyzed and immediately discuss and solve possible cases of
disagreements. In the verification process, the inspectors exploited two main
pieces of information: (1) the assertion message left by participants, which ex-
plained the rationale behind the assertion and the condition that the assertion
was aimed at addressing; and (2) the path covered by the test, as indicated by
JaCoCo, i.e., a code coverage analysis tool, which helped assess the match
between the assertion, the assertion message, and the goals of the test case.
Through these pieces of information, the inspectors marked an assertion as
“valid” if it correctly captured the condition verified by the test case, “not
valid” otherwise. t To better understand this criteria, let’s examine the test
method presented in Listing 2. This was one of the test methods utilized in our
survey to solicit assertions from participants. For this test case, a participant
reported the following assertion: “assertNull(‘The connection should be null af-
ter calling releaseConnection’, connectionConsumer0.getConnection());”. This
case was considered “valid” because the assertion effectively verifies the in-
tended outcome in this specific test case.

In contrast, another survey respondent provided the following assertion:
“assertNotNull(configuration0);”. Since “configuration0” is merely a variable
used in the test case to instantiate the connection consumer and the goal of
the test is not to determine whether this variable is null or not, this case
was marked as “not valid.” In addition, we made use of the free answers
provided by participants when explaining the reasons for the understandability
score (question #2 of the task) to identify the reasons for the correct/wrong
assertion definitions. We finally provided an overview of the (dis)advantages
of each test case generation tool with respect to the understandability of the
resulting test cases.

5.5 Publication of generated data

G-Mosa source code, as well as all the other data generated from our study
are publicly available in our online appendix [5].

We also released the scripts to automatically generate the test suites, other
than the data collected and used for the statistical and content analysis that
we present in the paper.

6 Analysis of the Results

This section discusses the results achieved while addressing our three research
questions.
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Table 2 Branch coverage achieved by Mosa and G-Mosa, with p-values resulting from
the Wilcoxon test and Vargha-Delaney A12 effect size. We use N, S, M, and L to indicate
negligible, small, medium and large effect size respectively. Significant p-values are reported
in bold-face.

Branch Coverage
Average Mosa vs. G-Mosa Average Mosa vs. G-Mosa

ID Mosa G-Mosa p-value Â12 ID Mosa G-Mosa p-value Â12

1 0.08 0.08 1.00 0.48 (N) 47 0.95 0.91 0.01 0.67 (M)
2 0.37 0.17 <0.01 0.80 (L) 48 0.70 0.56 0.14 0.61 (S)
3 0.86 0.84 0.08 0.62 (S) 49 0.94 0.94 0.71 0.53 (N)
4 0.23 0.24 0.09 0.40 (S) 50 0.91 0.91 1.00 0.52 (N)
5 0.88 0.89 <0.01 0.33 (M) 51 0.43 0.42 0.11 0.53 (N)
6 0.03 0.03 1.00 0.52 (N) 52 0.92 0.90 0.13 0.63 (S)
7 0.88 0.85 0.14 0.60 (S) 53 0.07 0.07 1.00 0.52 (N)
8 1.00 1.00 1.00 0.52 (N) 54 0.97 0.96 0.13 0.60 (S)
9 1.00 0.97 <0.01 0.77 (L) 55 0.87 0.84 0.08 0.60 (S)
10 0.93 0.91 0.15 0.60 (S) 56 0.47 0.46 0.58 0.54 (N)
11 0.61 0.61 0.48 0.58 (S) 57 0.77 0.68 <0.01 0.87 (L)
12 0.22 0.22 0.46 0.55 (N) 58 0.83 0.83 1.00 0.53 (N)
13 0.12 0.11 0.69 0.55 (N) 59 0.93 0.93 0.52 0.56 (N)
14 0.52 0.52 0.19 0.58 (S) 60 0.93 0.93 0.41 0.58 (S)
15 0.98 0.94 <0.01 0.86 (L) 61 1.00 1.00 1.00 0.52 (N)
16 0.32 0.35 <0.01 0.20 (L) 62 0.83 0.79 0.06 0.63 (S)
17 0.95 0.97 <0.01 0.31 (M) 63 1.00 1.00 1.00 0.52 (N)
18 0.76 0.73 0.04 0.63 (S) 64 0.73 0.68 0.04 0.63 (S)
19 0.69 0.72 0.50 0.47 (N) 65 0.08 0.08 1.00 0.50 (N)
20 0.05 0.05 1.00 0.50 (N) 66 0.17 0.17 1.00 0.52 (N)
21 0.09 0.09 1.00 0.48 (N) 67 0.09 0.08 <0.01 0.75 (L)
22 1.00 1.00 1.00 0.50 (N) 68 0.51 0.50 0.07 0.63 (S)
23 0.22 0.22 0.76 0.54 (N) 69 0.44 0.43 0.01 0.65 (S)
24 0.96 0.96 0.49 0.47 (N) 70 0.78 0.77 0.76 0.56 (N)
25 0.98 0.95 0.03 0.65 (S) 71 0.14 0.14 1.00 0.52 (N)
26 1.00 1.00 0.49 0.50 (N) 72 0.92 0.93 0.68 0.49 (N)
27 0.87 0.84 0.01 0.69 (M) 73 0.01 0.01 1.00 0.50 (N)
28 0.21 0.22 0.64 0.47 (N) 74 0.76 0.76 1.00 0.50 (N)
29 0.03 0.03 0.49 0.47 (N) 75 0.68 0.65 <0.01 0.65 (S)
30 1.00 1.00 1.00 0.53 (N) 76 1.00 1.00 1.00 0.47 (N)
31 0.97 0.97 0.49 0.50 (N) 77 1.00 1.00 1.00 0.53 (N)
32 0.78 0.77 0.05 0.62 (S) 78 1.00 0.93 0.02 0.66 (S)
33 0.23 0.25 0.19 0.47 (N) 79 0.91 0.88 0.01 0.64 (S)
34 0.01 0.02 0.04 0.37 (S) 80 1.00 1.00 1.00 0.48 (N)
35 0.76 0.78 0.08 0.46 (N) 81 0.18 0.17 0.06 0.66 (M)
36 0.98 0.98 0.46 0.54 (N) 82 0.02 0.02 1.00 0.50 (N)
37 0.96 0.97 0.49 0.47 (N) 83 0.10 0.10 1.00 0.50 (N)
38 0.02 0.03 0.58 0.45 (N) 84 0.14 0.14 0.89 0.54 (N)
39 0.70 0.74 0.12 0.37 (S) 85 0.68 0.62 <0.01 0.78 (L)
40 0.83 0.85 0.03 0.34 (S) 86 0.00 0.00 1.00 0.50 (N)
41 0.04 0.04 <0.01 0.62 (S) 87 0.66 0.63 0.16 0.53 (N)
42 0.17 0.17 1.00 0.50 (N) 88 0.92 0.92 0.78 0.43 (N)
43 0.35 0.36 0.96 0.52 (N) 89 0.36 0.36 1.00 0.47 (N)
44 0.77 0.77 0.49 0.50 (N) 90 0.74 0.74 1.00 0.50 (N)
45 0.91 0.87 0.02 0.69 (M) 91 0.60 0.58 <0.01 0.74 (M)
46 0.39 0.39 1.00 0.50 (N)

6.1 RQ1 - Effectiveness

We addressed RQ1 by comparing G-Mosa and Mosa effectiveness in terms of
branch and mutation coverage. As for the former, Table 2 reports the average
branch coverage achieved by the two experimented techniques over 30 inde-
pendent runs as well as the results of the Wilcoxon and the Vargha-Delaney
tests. Just looking at the average, the results seem to indicate that G-Mosa
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Table 3 Mutation score achieved by Mosa and G-Mosa, with p-values resulting from the
Wilcoxon test and Vargha-Delaney A12 effect size. We use N, S, M, and L to indicate
negligible, small, medium and large effect size respectively. Significant p-values are reported
in bold-face.

Mutation Score
Average Mosa vs. G-Mosa Average Mosa vs. G-Mosa

ID Mosa G-Mosa p-value A12 ID Mosa G-Mosa p-value A12

1 0.00 0.00 1.00 0.48 (N) 47 0.13 0.14 <0.01 0.35 (S)
2 0.01 0.00 1.00 0.50 (N) 48 0.47 0.26 0.06 0.64 (S)
3 0.37 0.31 0.91 0.51 (N) 49 0.53 0.54 0.26 0.41 (S)
4 0.01 0.01 0.19 0.40 (S) 50 0.00 0.00 1.00 0.52 (N)
5 0.46 0.47 0.64 0.47 (N) 51 0.57 0.55 0.18 0.43 (N)
6 0.00 0.00 1.00 0.52 (N) 52 0.61 0.61 0.43 0.58 (S)
7 0.48 0.41 0.28 0.58 (S) 53 0.00 0.00 1.00 0.52 (N)
8 0.74 0.74 1.00 0.52 (N) 54 0.17 0.15 0.43 0.56 (N)
9 0.24 0.23 0.30 0.59 (S) 55 0.32 0.32 0.17 0.57 (N)
10 0.74 0.74 0.61 0.54 (N) 56 0.05 0.05 1.00 0.50 (N)
11 0.19 0.18 0.53 0.58 (S) 57 0.44 0.44 0.51 0.45 (N)
12 0.07 0.07 0.92 0.51 (N) 58 0.55 0.50 <0.01 0.79 (L)
13 0.03 0.04 0.34 0.45 (N) 59 0.48 0.48 0.70 0.55 (N)
14 0.78 0.78 1.00 0.52 (N) 60 0.66 0.67 0.89 0.53 (N)
15 0.71 0.74 0.62 0.54 (N) 61 0.51 0.53 0.21 0.45 (N)
16 0.05 0.05 0.86 0.51 (N) 62 0.64 0.65 0.42 0.45 (N)
17 0.52 0.54 0.50 0.43 (N) 63 0.28 0.28 1.00 0.52 (N)
18 0.28 0.28 0.43 0.44 (N) 64 0.42 0.39 0.05 0.63 (S)
19 0.97 1.00 0.49 0.50 (N) 65 0.00 0.00 1.00 0.50 (N)
20 0.00 0.00 1.00 0.50 (N) 66 0.06 0.06 1.00 0.52 (N)
21 0.00 0.00 1.00 0.48 (N) 67 0.04 0.03 <0.01 0.78 (L)
22 0.53 0.53 1.00 0.50 (N) 68 0.27 0.27 0.63 0.54 (N)
23 0.08 0.11 <0.01 0.33 (M) 69 0.37 0.37 0.33 0.58 (S)
24 0.63 0.63 0.21 0.41 (S) 70 0.30 0.33 <0.01 0.12 (L)
25 0.20 0.20 1.00 0.50 (N) 71 0.00 0.00 1.00 0.52 (N)
26 0.15 0.18 <0.01 0.23 (L) 72 0.37 0.38 0.19 0.45 (N)
27 0.25 0.24 0.03 0.67 (M) 73 0.00 0.00 1.00 0.50 (N)
28 0.01 0.00 1.00 0.52 (N) 74 0.02 0.02 1.00 0.50 (N)
29 0.05 0.05 0.73 0.47 (N) 75 0.33 0.33 0.02 0.57 (N)
30 0.70 0.70 0.98 0.53 (N) 76 0.73 0.74 0.07 0.36 (S)
31 0.70 0.74 <0.01 0.30 (M) 77 0.31 0.36 <0.01 0.26 (L)
32 0.53 0.53 1.00 0.50 (N) 78 0.48 0.54 0.26 0.48 (N)
33 0.00 0.00 1.00 0.52 (N) 79 0.66 0.62 0.30 0.57 (N)
34 0.00 0.00 1.00 0.50 (N) 80 0.21 0.25 0.04 0.38 (S)
35 0.08 0.08 <0.01 0.23 (L) 81 0.09 0.08 0.50 0.58 (S)
36 0.49 0.50 0.48 0.43 (N) 82 0.00 0.00 1.00 0.50 (N)
37 0.71 0.74 <0.01 0.10 (L) 83 0.00 0.00 1.00 0.50 (N)
38 0.00 0.00 1.00 0.50 (N) 84 0.00 0.00 1.00 0.55 (N)
39 0.37 0.39 0.15 0.38 (S) 85 0.11 0.10 <0.01 0.79 (L)
40 0.57 0.58 0.12 0.37 (S) 86 0.00 0.00 1.00 0.50 (N)
41 0.00 0.00 0.04 0.54 (N) 87 0.32 0.41 <0.01 0.19 (L)
42 0.00 0.00 1.00 0.50 (N) 88 0.67 0.66 0.94 0.46 (N)
43 0.00 0.00 1.00 0.52 (N) 89 0.20 0.20 0.59 0.52 (N)
44 0.46 0.46 0.70 0.48 (N) 90 0.28 0.28 0.78 0.47 (N)
45 0.38 0.37 0.80 0.54 (N) 91 0.36 0.37 0.15 0.39 (S)
46 0.01 0.00 0.01 0.68 (M)

and Mosa achieve very similar performance in terms of branch coverage. In-
deed, the great majority of rows show Â12 values around 0.5, reinforcing the
observation above. Only in 23 out of 91 cases, (≈ 25%) there is a statistically
significant difference in the performance achieved, while in the remaining 75%
of cases there is no statistical difference between the branch coverage achieved
by the two approaches. Based on these results, we cannot reject the null hy-
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pothesis Hn 1. Therefore, we can claim that there is no statistically significant
difference in terms of branch coverage achieved by G-Mosa and Mosa.

Table 3 reports the average mutation score achieved byG-Mosa andMosa
together with the results of Wilcoxon and Vargha-Delaney statistical tests. The
first interesting observation is that in 67 out of 91 cases (≈ 74%), both ap-
proaches achieve low performance, i.e., average mutation score < 0.5. While
this represents a scientifically relevant result, we could not provide a detailed
explanation behind the poor mutation capabilities of the experimented ap-
proaches. In particular, the mutation analysis is performed as part of the
inner-working of EvoSuite, i.e., the framework G-Mosa and Mosa build
upon, and is based on the application of multiple mutation operators (e.g.,
statement deletion) which are individually used to modify the production code
under test and assess the extent to which the corresponding test case is able to
detect the artificial defect introduced. Such a mutation analysis is performed
multiple times for each test case considered and for each of the 30 runs of both
G-Mosa and Mosa. Also, the algorithms behind the test case generators are
inherently non-deterministic, which means that for each of their executions
there might have been a different reason leading to miss mutants. These rea-
sons make the mutation analysis step hardly explainable - at least until an
explainable model able to work under these conditions would not be available.

Hence, we could limit ourselves to the observation of the overall mutation
score obtained by the approaches, interpreting the conceptual causes of this
result and the tangible implications that such a low mutation score may have.

In terms of conceptual causes, it is worth remarking that both G-Mosa
and Mosa have branch coverage as main target, while they are not designed
to optimize the mutation score. This may possibly explain why the good level
of branch coverage is not accompanied by adequate mutation coverage. As
for the implications of the low mutation coverage achieved by the approaches,
our findings suggest that the automated test case generation approaches are
still unable to satisfactorily detect artificial defects. This seems to be a com-
mon limitation and, in this sense, our work outlines a limitation that further
research may want to address.

As for the comparison, similarly to what happened for branch coverage,
there were only a few cases highlighting a clear statistical difference in the
distributions of G-Mosa andMosa. Specifically, this happened only for 17 out
of 91 classes (≈ 19%), 14 (≈ 15%) if we exclude those with negligible or small
effect size. Of these 14, 8 indicated G-Mosa as the best performing technique
(Â12 < 0.5), while Mosa achieved higher performance in the remaining 6 cases
(Â12 > 0.5). These results do not allow to reject the null hypothesisHn 2. thus
indicating that there is no statistically significant difference in the mutation
coverage achieved by G-Mosa and Mosa.

Besides the statistical analysis, we aimed at collecting qualitative insights
that could better delineate strengths and weaknesses of the devised technique.
For this reason, we dived into the quantitative results and manually analyzed
the classes for which the performance indicators computed revealed a signifi-
cant difference, either in favor of G-Mosa or Mosa. This qualitative investi-
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gation was mainly conducted by the first author of this paper, who acted as a
code inspector: the task was that of performing a code review of the selected
classes aiming at understanding the main code quality aspects influencing the
branch coverage achieved by the corresponding test cases and the differences
observed in the way the two approaches generated test cases. In doing so, the
inspector could rely on the metric values computed on the production classes,
which supported the analysis of the code. During the review task, the inspec-
tor took notes reporting the main insights and observations coming from the
analysis. These notes were later used as a basis for a larger discussion which
was opened with the second and third authors of the article. More particularly,
the three authors jointly navigated the source code of the classes considered
and discussed on the notes of the first author, deriving insights that can be
well summarized through the following three qualitative examples.

As a first discussion point, let consider the classes
org.gudy.azureus2.ui.console.commands.Show (id. 16) and
de.progra.charting.render.PieChartRenderer (id. 2). The former is
characterized by a total number of 356 branches, thus being very complex
[44]: when generating tests for such a class, G-Mosa achieved a significantly
better branch coverage with a large effect size. The latter is characterized by
12 branches: unlike the previous case, Mosa performed significantly better
with a large effect size. These two examples indicate that, while in most cases
the two techniques perform similarly in terms of branch coverage, G-Mosa
can act better when testing more complex classes. This observation could
be attributed to the fact that the granular nature of G-Mosa can lead to
simplifying the testing of complex classes. In the first step, all the tests that
cover more fine-grained cases are generated. Therefore, in the second step,
the remaining search budget is spent solely on those branches that are more
difficult to cover, thus resulting in higher coverage. In other words, half of
the total search budget—the one relative to step 2—is completely dedicated
to covering hard targets. This trend was also confirmed when looking at
other test suites of the dataset, hence potentially indicating additional
capabilities of our approach. We plan to investigate this aspect further as
part of our future research agenda, especially by conducting larger qualitative
investigations into the peculiarities of G-Mosa.

Similar conclusions could be drawn when consider-
ing the mutation score. As an example, on the class
portlet.shopping.model.ShoppingCategoryWrapper (id. 26), G-
Mosa had a significantly higher mutation score with a large effect
size. This class is characterized by 53 methods and 2,384 lines, being
one of the largest in our dataset. Differently, when considering smaller
classes, Mosa achieved better performance. This is the case of the class
weka.core.tokenizers.AlphabeticTokenizer (id. 58) that only contains
7 lines of code. As such, it seems that our approach cannot only produce
better results on large classes in terms of code coverage, but also in terms of
mutation score.
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Table 4 Lines of code in test classes generated by Mosa and G-Mosa, with p-values re-
sulting from the Wilcoxon test and Vargha-Delaney A12 effect size. We use N, S, M, and L
to indicate negligible, small, medium and large effect size respectively. Significant p-values
are reported in bold-face.

Lines of code
Average Mosa vs. G-Mosa Average Mosa vs. G-Mosa

ID Mosa G-Mosa p-value Â12 ID Mosa G-Mosa p-value Â12

1 9.70 13.00 <0.01 0.32 (M) 47 12.00 11.00 <0.01 1.00 (L)
2 361.48 660.79 <0.01 0.00 (L) 48 183.07 220.97 <0.01 0.01 (L)
3 50.43 59.03 <0.01 0.19 (L) 49 124.10 181.24 <0.01 0.01 (L)
4 235.71 330.27 <0.01 0.00 (L) 50 12.00 13.10 0.08 0.45 (N)
5 191.27 194.69 0.36 0.58 (S) 51 118.72 152.07 <0.01 0.00 (L)
6 178.37 174.93 0.62 0.54 (N) 52 612.73 922.50 <0.01 0.00 (L)
7 66.31 74.22 <0.01 0.20 (L) 53 164.64 176.17 0.12 0.38 (S)
8 394.86 578.60 <0.01 0.00 (L) 54 118.53 127.37 0.03 0.34 (S)
9 66.55 93.77 <0.01 0.15 (L) 55 824.63 1036.67 <0.01 0.00 (L)
10 521.97 731.90 <0.01 0.00 (L) 56 34.00 37.80 <0.01 0.03 (L)
11 228.07 248.50 <0.01 0.28 (M) 57 187.00 177.13 <0.01 0.80 (L)
12 263.20 321.67 <0.01 0.13 (L) 58 765.33 897.93 <0.01 0.01 (L)
13 45.37 56.57 <0.01 0.01 (L) 59 585.67 1117.17 <0.01 0.00 (L)
14 144.14 173.43 <0.01 0.01 (L) 60 35.41 46.00 <0.01 0.00 (L)
15 57.53 103.77 <0.01 0.00 (L) 61 71.90 105.93 <0.01 0.00 (L)
16 234.10 311.27 <0.01 0.01 (L) 62 209.00 240.72 <0.01 0.16 (L)
17 12.00 20.10 <0.01 0.12 (L) 63 586.33 680.17 <0.01 0.12 (L)
18 58.89 61.40 0.14 0.39 (S) 64 232.26 318.64 <0.01 0.00 (L)
19 37.13 41.33 0.06 0.36 (S) 65 65.60 107.83 <0.01 0.00 (L)
20 4.00 22.00 <0.01 0.00 (L) 66 171.10 174.10 0.03 0.34 (S)
21 60.81 99.53 <0.01 0.05 (L) 67 1117.55 1846.27 <0.01 0.00 (L)
22 456.55 534.80 <0.01 0.21 (L) 68 117.79 124.77 0.01 0.31 (M)
23 114.90 135.17 <0.01 0.04 (L) 69 572.50 578.90 0.53 0.45 (N)
24 248.00 371.92 <0.01 0.03 (L) 70 175.17 316.97 <0.01 0.00 (L)
25 754.21 1078.38 <0.01 0.05 (L) 71 6.00 583.60 <0.01 0.00 (L)
26 224.75 145.38 <0.01 0.95 (L) 72 702.73 826.37 <0.01 0.04 (L)
27 312.33 322.76 0.53 0.45 (N) 73 212.28 334.70 <0.01 0.00 (L)
28 448.90 344.47 <0.01 1.00 (L) 74 1217.43 2325.00 <0.01 0.00 (L)
29 11.72 12.69 0.09 0.45 (N) 75 310.14 421.34 <0.01 0.00 (L)
30 84.70 107.97 <0.01 0.06 (L) 76 252.62 166.20 <0.01 0.97 (L)
31 90.77 79.83 <0.01 0.84 (L) 77 243.31 274.33 <0.01 0.09 (L)
32 41.43 52.57 <0.01 0.05 (L) 78 46.47 69.37 <0.01 0.02 (L)
33 90.77 132.37 <0.01 0.00 (L) 79 51.14 77.83 0.07 0.36 (S)
34 764.00 821.93 0.15 0.39 (S) 80 61.93 101.20 <0.01 0.00 (L)
35 44.86 41.10 <0.01 0.83 (L) 81 19.00 17.00 <0.01 1.00 (L)
36 21.00 20.00 <0.01 1.00 (L) 82 14.00 14.00 1 0.50 (N)
37 246.40 129.78 0.01 0.73 (M) 83 92.87 111.40 <0.01 0.02 (L)
38 420.55 821.53 <0.01 0.00 (L) 84 351.83 238.63 <0.01 0.72 (M)
39 195.47 246.80 <0.01 0.15 (L) 85 2126.70 2210.73 <0.01 0.15 (L)
40 733.38 1344.70 <0.01 0.00 (L) 86 763.21 973.23 <0.01 0.03 (L)
41 113.45 139.77 <0.01 0.02 (L) 87 143.07 162.18 <0.01 0.16 (L)
42 74.33 65.55 <0.01 0.80 (L) 88 4517.48 3494.41 <0.01 0.26 (L)
43 5.10 8.93 0.01 0.35 (S) 89 31.87 33.93 0.74 0.47 (N)
44 4.00 75.10 0.02 0.42 (S) 90 12.00 14.33 0.01 0.38 (S)
45 5.40 7.17 0.13 0.41 (S) 91 152.04 194.79 <0.01 0.00 (L)
46 11.73 21.31 <0.01 0.03 (L)

¤ Summing Up: There is no statistically significant difference in terms of branch and
mutation coverage achieved by G-Mosa and Mosa. G-Mosa seems to perform better
when generating tests for more complex classes. On the contrary, Mosa achieves better
coverage when testing simpler classes.
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Table 5 Number of methods in test classes generated by Mosa and G-Mosa, with p-values
resulting from the Wilcoxon test and Vargha-Delaney A12 effect size. We use N, S, M, and
L to indicate negligible, small, medium and large effect size respectively. Significant p-values
are reported in bold-face.

Number of methods
Average Mosa vs. G-Mosa Average Mosa vs. G-Mosa

ID Mosa G-Mosa p-value Â12 ID Mosa G-Mosa p-value Â12

1 1.00 1.00 NaN 0.50 (N) 47 1.00 1.00 NaN 0.50 (N)
2 38.45 65.50 <0.01 0.00 (L) 48 19.07 23.83 <0.01 0.01 (L)
3 7.97 10.14 <0.01 0.09 (L) 49 15.20 21.03 <0.01 0.00 (L)
4 24.50 30.67 <0.01 0.00 (L) 50 1.00 1.10 0.08 0.45 (N)
5 12.80 13.56 0.24 0.40 (S) 51 19.28 25.43 <0.01 0.00 (L)
6 24.77 28.20 <0.01 0.15 (L) 52 65.77 92.03 <0.01 0.00 (L)
7 4.83 5.33 0.01 0.29 (M) 53 22.32 27.10 <0.01 0.12 (L)
8 42.79 59.83 <0.01 0.00 (L) 54 22.43 28.00 <0.01 0.00 (L)
9 3.83 5.69 <0.01 0.07 (L) 55 104.93 122.37 <0.01 0.02 (L)
10 80.43 78.28 0.01 0.69 (M) 56 3.90 4.00 0.33 0.48 (N)
11 33.23 35.70 <0.01 0.19 (L) 57 32.37 38.03 <0.01 0.03 (L)
12 38.13 46.50 <0.01 0.06 (L) 58 111.80 106.59 <0.01 0.86 (L)
13 4.00 4.97 <0.01 0.02 (L) 59 39.00 62.67 <0.01 0.00 (L)
14 14.59 17.83 <0.01 0.01 (L) 60 7.31 8.83 <0.01 0.04 (L)
15 5.80 9.07 <0.01 0.01 (L) 61 8.90 13.80 <0.01 0.00 (L)
16 20.60 27.93 <0.01 0.00 (L) 62 27.67 33.83 <0.01 0.00 (L)
17 1.00 1.73 <0.01 0.13 (L) 63 70.17 70.93 0.63 0.46 (N)
18 5.86 7.00 <0.01 0.17 (L) 64 27.11 37.57 <0.01 0.00 (L)
19 3.80 4.53 <0.01 0.28 (M) 65 7.97 12.72 <0.01 0.00 (L)
20 1.00 2.00 <0.01 0.00 (L) 66 22.10 27.03 <0.01 0.00 (L)
21 6.37 9.60 <0.01 0.03 (L) 67 157.34 217.67 <0.01 0.00 (L)
22 58.31 71.33 <0.01 0.04 (L) 68 15.55 19.40 <0.01 0.01 (L)
23 12.07 14.93 <0.01 0.03 (L) 69 78.33 79.83 0.03 0.34 (S)
24 27.83 32.00 <0.01 0.19 (L) 70 16.73 26.90 <0.01 0.00 (L)
25 60.17 80.12 <0.01 0.02 (L) 71 1.00 62.23 <0.01 0.02 (L)
26 21.96 14.62 <0.01 0.96 (L) 72 101.07 108.70 <0.01 0.16 (L)
27 26.80 31.17 <0.01 0.18 (L) 73 25.59 32.47 <0.01 0.01 (L)
28 45.70 48.07 <0.01 0.20 (L) 74 108.40 179.00 <0.01 0.00 (L)
29 1.00 1.07 0.16 0.47 (N) 75 33.03 44.00 <0.01 0.00 (L)
30 9.77 10.33 <0.01 0.30 (M) 76 33.31 25.17 <0.01 0.99 (L)
31 15.30 14.27 <0.01 0.73 (M) 77 31.17 38.30 <0.01 0.02 (L)
32 3.80 4.63 <0.01 0.15 (L) 78 6.53 7.37 <0.01 0.28 (M)
33 12.53 19.30 <0.01 0.00 (L) 79 5.17 6.70 0.02 0.33 (M)
34 44.57 40.93 0.05 0.65 (S) 80 6.93 9.73 <0.01 0.01 (L)
35 8.59 10.03 <0.01 0.19 (L) 81 2.00 2.00 NaN 0.50 (N)
36 2.00 2.00 NaN 0.50 (N) 82 1.00 1.00 1 0.50 (N)
37 10.30 14.72 <0.01 0.08 (L) 83 11.40 14.67 <0.01 0.00 (L)
38 52.14 81.63 <0.01 0.00 (L) 84 25.50 35.03 <0.01 0.00 (L)
39 21.73 29.07 <0.01 0.07 (L) 85 150.37 145.86 0.06 0.66 (S)
40 69.03 118.33 <0.01 0.00 (L) 86 97.24 114.41 <0.01 0.03 (L)
41 14.79 19.33 <0.01 0.00 (L) 87 16.39 20.05 <0.01 0.01 (L)
42 10.73 10.17 0.14 0.60 (S) 88 175.24 168.07 <0.01 0.72 (M)
43 1.00 1.03 0.33 0.48 (N) 89 3.33 3.30 0.88 0.51 (N)
44 1.00 8.27 0.02 0.42 (S) 90 1.00 1.23 0.01 0.38 (S)
45 1.00 1.03 0.33 0.48 (N) 91 18.04 22.52 <0.01 0.00 (L)
46 1.00 1.93 <0.01 0.03 (L)

6.2 RQ2 - Size

We addressed RQ2 by first computing the overall size of the test classes gen-
erated by the experimented approaches. Tables 4 and 5 report the average val-
ues and the comparison between the two approaches in terms of lines of code
(LOCs) and number of methods respectively. As expected, G-Mosa produced
test classes having a statistically higher size than Mosa when considering lines
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Table 6 Mean methods length achieved by Mosa and G-Mosa, with p-values resulting
from the Wilcoxon test and Vargha-Delaney A12 effect size. We use N, S, M, and L to
indicate negligible, small, medium and large effect size respectively. Significant p-values are
reported in bold-face.

Mean Test Cases Length
Average Mosa vs. G-Mosa Average Mosa vs. G-Mosa

ID Mosa G-Mosa p-value A12 ID Mosa G-Mosa p-value A12

1 1.00 1.20 0.49 0.47 (N) 47 3.68 3.38 <0.01 0.93 (L)
2 4.86 3.59 <0.01 0.80 (L) 48 4.68 3.48 0.03 0.68 (M)
3 3.29 3.31 0.16 0.39 (S) 49 2.24 2.16 <0.01 0.88 (L)
4 4.53 3.41 <0.01 0.97 (L) 50 2.44 2.45 0.97 0.51 (N)
5 2.51 2.21 <0.01 1.00 (L) 51 2.53 2.46 <0.01 0.72 (M)
6 1.00 6.94 <0.01 0.03 (L) 52 2.38 2.41 0.02 0.69 (M)
7 3.28 3.02 <0.01 0.92 (L) 53 2.63 2.53 <0.01 0.78 (L)
8 1.23 1.30 <0.01 0.08 (L) 54 3.24 3.16 <0.01 0.78 (L)
9 4.43 4.27 <0.01 0.87 (L) 55 3.25 2.96 <0.01 0.72 (M)
10 4.15 4.00 <0.01 0.79 (L) 56 2.71 2.46 <0.01 0.86 (L)
11 3.84 3.31 <0.01 1.00 (L) 57 3.77 3.41 <0.01 0.99 (L)
12 3.98 4.14 0.01 0.31 (M) 58 2.83 2.75 <0.01 0.83 (L)
13 4.75 4.70 0.34 0.59 (S) 59 2.81 2.69 0.97 0.52 (N)
14 2.61 1.59 <0.01 0.97 (L) 60 3.20 2.65 <0.01 0.74 (L)
15 8.10 5.61 <0.01 0.81 (L) 61 5.15 5.03 <0.01 0.74 (M)
16 3.41 2.36 0.05 0.66 (S) 62 3.22 2.97 <0.01 0.84 (L)
17 3.22 2.91 <0.01 0.80 (L) 63 3.04 2.81 <0.01 0.99 (L)
18 3.48 3.25 0.04 0.65 (S) 64 5.54 4.83 <0.01 0.76 (L)
19 2.05 2.07 0.02 0.35 (S) 65 1.00 1.00 1.00 0.50 (N)
20 2.00 2.00 1.00 0.50 (N) 66 3.00 2.68 <0.01 0.98 (L)
21 1.00 1.00 1.00 0.48 (N) 67 4.16 4.36 <0.01 0.26 (L)
22 3.01 2.90 <0.01 0.87 (L) 68 4.07 3.75 <0.01 0.93 (L)
23 4.98 5.26 0.01 0.33 (M) 69 2.54 2.68 <0.01 0.25 (L)
24 2.67 2.63 <0.01 0.78 (L) 70 3.19 2.88 <0.01 0.97 (L)
25 4.77 4.55 0.01 0.68 (M) 71 2.00 2.00 1.00 0.52 (N)
26 2.88 2.80 <0.01 0.85 (L) 72 2.64 2.49 <0.01 0.95 (L)
27 2.53 2.55 0.77 0.50 (N) 73 1.00 1.00 1.00 0.50 (N)
28 2.87 2.83 0.14 0.39 (S) 74 3.74 3.42 <0.01 0.78 (L)
29 3.67 3.53 0.01 0.69 (M) 75 3.45 3.21 <0.01 0.83 (L)
30 3.13 3.02 0.28 0.61 (S) 76 3.28 3.10 <0.01 0.97 (L)
31 3.14 2.89 <0.01 0.86 (L) 77 4.02 3.65 <0.01 1.00 (L)
32 2.27 2.24 0.27 0.58 (S) 78 4.55 3.94 0.01 0.74 (L)
33 3.86 3.24 <0.01 0.99 (L) 79 5.47 4.73 <0.01 0.90 (L)
34 4.00 4.83 0.96 0.37 (S) 80 5.11 4.90 <0.01 0.77 (L)
35 3.31 3.22 0.07 0.65 (S) 81 6.17 6.28 0.74 0.51 (N)
36 2.78 2.78 0.84 0.50 (N) 82 1.00 2.25 0.05 0.42 (S)
37 2.99 2.68 <0.01 1.00 (L) 83 1.75 1.89 <0.01 0.00 (L)
38 2.00 2.00 1.00 0.50 (N) 84 6.75 9.00 <0.01 0.10 (L)
39 4.16 3.85 <0.01 0.69 (M) 85 3.65 3.09 <0.01 0.89 (L)
40 3.10 2.89 <0.01 0.78 (L) 86 1.40 2.10 0.81 0.30 (M)
41 2.47 7.61 <0.01 0.00 (L) 87 11.43 6.41 <0.01 0.80 (L)
42 1.84 1.75 0.03 0.66 (S) 88 3.36 2.72 0.01 0.64 (S)
43 4.22 4.30 <0.01 0.82 (L) 89 5.98 5.72 <0.01 0.84 (L)
44 2.51 2.37 <0.01 0.96 (L) 90 2.51 2.48 0.02 0.66 (S)
45 7.54 7.09 0.02 0.68 (M) 91 3.02 2.83 <0.01 0.91 (L)
46 3.16 2.72 <0.01 0.90 (L)

of code and number of test methods. Specifically, for ≈73% of the classes under
test, G-Mosa generates significantly larger test classes than Mosa. A simi-
lar results is achieved when considering the average number of test methods
generated by the two approaches. The results highlight a statistical significant
difference in 82% of cases, 77% in favor of Mosa and the remaining 5% in favor
of G-Mosa. This is a clear evidence that test classes generated by Mosa are
significantly smaller. Looking deeper at this result, G-Mosa tends to generate



Toward Granular Search-Based Automatic Unit Test Case Generation 29

larger test suites having both a higher count of methods and increased total
lines of code. This is due to the intrinsic design of the approach. The larger
method count can be readily understood by recognizing that G-MOSA places
emphasis on producing a set of tests that covers individual branches of the
production methods. This step influences the quantity of intra-method test
cases produced, since the approach does not allow tests to tangentially cover
multiple branches but require single tests to cover single branches. As such,
more tests are required to cover branches individually. This design choice has
an immediate impact on the higher volume of total lines of code: more test
cases naturally lead to have additional lines of code in the form of method sig-
natures, variable definitions/initializations, and single assertion statements.

However, to make a more fair comparison, we also computed the size per
test case, namely the mean lines of code of each test method generated by the
experimented approaches. Table 6 reports the results achieved for this analysis.
Â12 > 0.5 indicates that test cases generated by G-Mosa are, on average,
smaller than those of Mosa. The results highlighted a clear difference in the
size of tests generated by the two approaches. In particular, for 68 out of 91
classes (≈ 75%) there is a statistically significant difference in the mean length
of generated test cases. Of these 68 classes, G-Mosa produced smaller tests
than Mosa in 58 cases (≈ 85%), 51 with large or medium effect size with an
average size reduction raging between ≈ 1% and ≈ 44%. Such results led us to
reject the null hypothesis Hn 3, thus accepting the alternative hypothesis An
3 in favor of G-Mosa: it generates test methods having a size significantly
lower than Mosa. In spite of the statistical results, the average size per test
case of G-Mosa and Mosa looks similar if we consider the absolute number
of lines of code of the tests generated. This may potentially limit the relevance
of our findings in practice, as both the approaches tend to generate small test
cases, with G-MOSA able to further minimize the size. In this respect, it is
worth remarking that the generation of statistically smaller test cases may
have implications on their overall maintainability and understandability. This
is what we aim at assessing in the context of RQ3 and RQ4, where our goal
will be to evaluate whether the difference in terms of size per test case, which
may seem marginal at a first glance, has serious implications in practice.

While G-Mosa produces test methods of smaller size than
Mosa, it is worth remarking that, in rare cases, the base-
line outperformed our technique. This is the case of the class
azureus2.core3.disk.impl.resume.RDResumeHandler (id. 41), which
is characterized by 300 branches. When generating tests for such a class,
Mosa was able to significantly reduce the mean methods size of the generated
test class (i.e., ≈ 67% of average size reduction over the 30 runs). By manually
investigating the class, we observed that the high cyclomatic complexity
influenced G-Mosa- the McCabe cyclomatic complexity measured 97 in this
case, hence confirming the complexity of testing the class. By construction,
our technique equally splits the search budget between the two steps: this may
clearly impact the intra-class testing process, namely the one responsible to
exercise the target class by employing multiple calls of the production code.
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In cases like the one of the example, the excessive cyclomatic complexity
did not allow G-Mosa to generate effective intra-class tests, while Mosa
could spend the entire search budget for the generation of those tests. This
example highlights a possible limitation of our approach: the configuration
of the search budget may have an influence on the results. While we plan to
investigate how to best tune the approach in our followup research on the
matter, we could still conclude that this is not something arising frequently,
hence making G-Mosa a valid alternative for automatic test case generation.

¤ Summing Up: Mosa generates test classes that are significantly smaller than G-
Mosa. However, G-Mosa is able to generate tests that are significantly better in terms
of size per method with respect to Mosa. Moreover, we observed that the configuration
of the search budget might influence the resulting performance in some cases.

6.3 RQ3 - Maintainability

In the context of the RQ3 we compared the maintainability of test classes gen-
erated by Mosa and G-Mosa. To have a comprehensive view of test classes’
maintainability we relied on three different metrics capturing different aspects
of software maintainability, namely (i) the Weighted Methods Count (WMC)
to measure class complexity, (ii) the Fan-out to measure class coupling, and
(iii) the number of test smells contained in the generated test suites.

Table 7 reports the average WMC and the pairwise statistical analysis for
the test classes generated by the two approaches. The results clearly highlight
that test classes generated by Mosa have significantly lower complexity. In-
deed, for 65 out of the 91 classes in our dataset (i.e., ≈71%) Mosa achieves
significantly better results than G-Mosa with large or medium effect size.
Therefore, we can reject the null hypothesis Hn 4, thus accepting the alterna-
tive hypothesis An 4 in favor of Mosa. This result could immediately suggest
that Mosa generates more maintainable test suites. Therefore, a deeper dis-
cussion is deserved. The metric we used for measuring code complexity is the
Weighted Methods Count (WMC). This metric sums the complexities of all
test methods in a test class, therefore, the higher the number of methods, the
higher the overall complexity. In RQ2, we demonstrated that the test classes
generated by G-Mosa are larger in terms of total size and number of methods:
because of that, it is not really surprising to see that the statistical tests for
this metric are in favor of Mosa. Nonetheless, it is also worth remarking that
RQ2 showed that our approach tends to preserve the conciseness of individ-
ual test methods. As such, it might still be possible that the individual tests
generated by G-Mosa are more understandable and maintainable. While the
quantitative analysis made to answer RQ3 aims at addressing this question
in a systematic manner, a manual investigation of the test cases generated
by the two approaches already revealed some insights. More specifically, we
can consider the case of class com.lts.util.scheduler.NewScheduler (id.
87) as an example. As reported in Table 7, G-Mosa generates more complex
tests classes in this case. Manually inspecting the source code we were able
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Table 7 Weighted Methods Count (WMC) of test classes generated by Mosa and G-Mosa,
with p-values resulting from the Wilcoxon test and Vargha-Delaney A12 effect size. We use
N, S, M, and L to indicate negligible, small, medium and large effect size respectively.
Significant p-values are reported in bold-face.

Weighted Methods Count (WMC)
Average Mosa vs. G-Mosa Average Mosa vs. G-Mosa

ID Mosa G-Mosa p-value Â12 ID Mosa G-Mosa p-value Â12

1 2.90 4.00 <0.01 0.32 (M) 47 4.00 3.00 <0.01 1.00 (L)
2 110.03 204.68 <0.01 0.00 (L) 48 47.97 59.20 <0.01 0.01 (L)
3 25.30 24.72 0.34 0.57 (N) 49 40.10 57.72 <0.01 0.00 (L)
4 86.57 121.13 <0.01 0.00 (L) 50 4.00 4.40 0.08 0.45 (N)
5 38.77 44.56 <0.01 0.13 (L) 51 50.69 70.90 <0.01 0.00 (L)
6 54.37 61.10 <0.01 0.19 (L) 52 169.83 268.93 <0.01 0.00 (L)
7 21.24 24.22 <0.01 0.19 (L) 53 60.07 64.63 0.05 0.35 (S)
8 130.86 193.93 <0.01 0.00 (L) 54 44.90 56.03 <0.01 0.00 (L)
9 19.00 23.38 0.18 0.37 (S) 55 253.77 325.13 <0.01 0.00 (L)
10 187.60 210.79 <0.01 0.08 (L) 56 13.60 11.97 <0.01 0.97 (L)
11 76.67 78.07 0.71 0.47 (N) 57 64.73 76.23 <0.01 0.03 (L)
12 81.93 105.10 <0.01 0.03 (L) 58 283.27 258.52 <0.01 0.98 (L)
13 16.00 19.87 <0.01 0.02 (L) 59 154.30 233.40 <0.01 0.00 (L)
14 52.21 55.93 <0.01 0.29 (M) 60 14.62 17.67 <0.01 0.04 (L)
15 20.27 34.27 <0.01 0.01 (L) 61 20.73 33.93 <0.01 0.00 (L)
16 71.90 100.93 <0.01 0.00 (L) 62 68.40 84.00 <0.01 0.03 (L)
17 4.00 6.93 <0.01 0.13 (L) 63 197.40 220.45 <0.01 0.12 (L)
18 18.71 18.87 0.83 0.48 (N) 64 77.78 111.96 <0.01 0.00 (L)
19 11.60 11.60 0.67 0.47 (N) 65 20.63 34.14 <0.01 0.00 (L)
20 1.00 8.00 <0.01 0.00 (L) 66 57.33 65.77 <0.01 0.01 (L)
21 21.59 30.30 <0.01 0.10 (L) 67 418.62 616.37 <0.01 0.00 (L)
22 161.66 197.07 <0.01 0.11 (L) 68 44.90 48.83 <0.01 0.12 (L)
23 42.14 43.50 0.78 0.48 (N) 69 165.13 173.03 <0.01 0.17 (L)
24 94.33 117.12 <0.01 0.09 (L) 70 51.40 101.50 <0.01 0.00 (L)
25 152.17 209.62 <0.01 0.00 (L) 71 2.00 190.07 <0.01 0.00 (L)
26 65.07 51.72 <0.01 0.82 (L) 72 222.37 248.96 <0.01 0.01 (L)
27 88.03 105.97 <0.01 0.15 (L) 73 78.79 111.33 <0.01 0.00 (L)
28 98.67 104.57 <0.01 0.14 (L) 74 399.93 655.50 <0.01 0.00 (L)
29 3.90 4.28 0.09 0.45 (N) 75 106.48 144.10 <0.01 0.00 (L)
30 23.37 26.83 <0.01 0.12 (L) 76 95.52 72.60 <0.01 0.93 (L)
31 36.87 34.57 <0.01 0.73 (M) 77 73.93 96.13 <0.01 0.00 (L)
32 11.53 15.47 <0.01 0.00 (L) 78 16.57 21.70 <0.01 0.04 (L)
33 28.63 44.03 <0.01 0.00 (L) 79 17.14 24.03 <0.01 0.24 (L)
34 113.89 117.37 0.63 0.46 (N) 80 19.53 31.30 <0.01 0.00 (L)
35 23.79 28.70 <0.01 0.09 (L) 81 6.00 5.00 <0.01 1.00 (L)
36 8.00 7.00 <0.01 1.00 (L) 82 5.00 5.00 1 0.50 (N)
37 28.13 38.72 <0.01 0.12 (L) 83 32.50 41.37 <0.01 0.00 (L)
38 154.48 260.97 <0.01 0.00 (L) 84 63.20 88.57 <0.01 0.00 (L)
39 64.37 85.20 <0.01 0.13 (L) 85 334.83 364.36 <0.01 0.26 (M)
40 225.59 398.17 <0.01 0.00 (L) 86 264.34 338.00 <0.01 0.00 (L)
41 36.55 49.00 <0.01 0.00 (L) 87 46.07 51.92 <0.01 0.12 (L)
42 23.47 21.86 0.14 0.60 (S) 88 390.48 404.72 0.05 0.35 (S)
43 1.30 2.30 0.01 0.35 (S) 89 9.23 9.07 0.64 0.53 (N)
44 1.00 18.67 0.02 0.42 (S) 90 4.00 4.93 0.01 0.38 (S)
45 1.50 2.13 0.13 0.41 (S) 91 60.54 78.45 <0.01 0.00 (L)
46 3.90 7.72 <0.01 0.03 (L)

to confirm our above consideration. In particular, we noticed that test classes
generated by G-Mosa have a mean number of ≈15 test methods per class
while the average number of test methods per class is ≈7 for Mosa. As such,
analyzing this case allows us to confirm that the higher complexity could be
associated to the higher number of methods generated. Indeed, by checking
the mean methods length for this example class in Table 6, we observe a value
of 6.41 for G-Mosa compared to 11.43 of Mosa. In this specific situation,
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Table 8 Fan-out of test classes generated by Mosa and G-Mosa, with p-values resulting
from the Wilcoxon test and Vargha-Delaney A12 effect size. We use N, S, M, and L to
indicate negligible, small, medium and large effect size respectively. Significant p-values are
reported in bold-face.

Fan-out
Average Mosa vs. G-Mosa Average Mosa vs. G-Mosa

ID Mosa G-Mosa p-value Â12 ID Mosa G-Mosa p-value Â12

1 1.27 2.00 <0.01 0.32 (M) 47 3.00 2.00 <0.01 1.00 (L)
2 122.07 184.89 <0.01 0.00 (L) 48 59.14 52.40 <0.01 0.87 (L)
3 18.43 15.86 <0.01 0.86 (L) 49 45.93 51.83 0.10 0.37 (S)
4 93.36 107.97 <0.01 0.07 (L) 50 2.00 2.20 0.08 0.45 (N)
5 117.70 103.25 <0.01 0.92 (L) 51 41.55 39.93 0.02 0.67 (M)
6 105.07 72.37 <0.01 0.98 (L) 52 266.33 227.40 <0.01 0.97 (L)
7 34.10 35.78 0.54 0.43 (N) 53 64.29 50.33 <0.01 0.95 (L)
8 99.48 129.33 <0.01 0.00 (L) 54 43.83 30.33 <0.01 0.97 (L)
9 34.07 47.46 <0.01 0.14 (L) 55 460.77 324.33 <0.01 0.95 (L)
10 233.27 249.86 <0.01 0.28 (M) 56 8.70 7.93 <0.01 0.97 (L)
11 109.73 91.20 <0.01 0.91 (L) 57 96.13 49.50 <0.01 1.00 (L)
12 126.23 109.27 <0.01 0.80 (L) 58 387.03 370.59 <0.01 0.78 (L)
13 9.00 11.10 <0.01 0.02 (L) 59 161.78 267.47 <0.01 0.00 (L)
14 52.00 48.63 <0.01 0.78 (L) 60 8.34 9.83 <0.01 0.12 (L)
15 14.67 36.07 <0.01 0.00 (L) 61 26.40 20.87 <0.01 0.89 (L)
16 50.83 53.70 0.02 0.33 (M) 62 79.50 46.72 <0.01 0.96 (L)
17 2.00 3.47 <0.01 0.13 (L) 63 219.30 248.79 <0.01 0.17 (L)
18 18.79 13.83 <0.01 0.91 (L) 64 114.00 92.61 <0.01 0.98 (L)
19 13.17 8.77 <0.01 0.91 (L) 65 15.53 18.79 <0.01 0.17 (L)
20 0.00 4.00 <0.01 0.00 (L) 66 72.63 40.80 <0.01 1.00 (L)
21 17.59 24.30 <0.01 0.16 (L) 67 403.10 526.37 <0.01 0.03 (L)
22 171.86 162.90 0.99 0.50 (N) 68 49.14 33.40 <0.01 1.00 (L)
23 41.59 35.90 <0.01 0.84 (L) 69 354.10 221.83 <0.01 1.00 (L)
24 81.97 129.73 <0.01 0.06 (L) 70 64.73 99.67 <0.01 0.01 (L)
25 371.55 449.38 <0.01 0.17 (L) 71 1.00 80.23 <0.01 0.00 (L)
26 112.54 52.31 <0.01 0.99 (L) 72 405.20 375.19 <0.01 0.78 (L)
27 140.67 96.34 <0.01 0.98 (L) 73 84.48 143.03 <0.01 0.00 (L)
28 277.67 119.00 <0.01 1.00 (L) 74 405.40 716.25 <0.01 0.00 (L)
29 1.93 2.14 0.09 0.45 (N) 75 99.90 127.45 <0.01 0.02 (L)
30 36.17 33.33 <0.01 0.77 (L) 76 92.00 56.03 <0.01 0.97 (L)
31 48.00 22.23 <0.01 1.00 (L) 77 105.66 77.77 <0.01 0.97 (L)
32 12.47 14.37 <0.01 0.26 (L) 78 16.53 19.07 0.01 0.29 (M)
33 33.53 36.53 0.07 0.36 (S) 79 15.69 20.43 0.55 0.46 (N)
34 578.71 513.43 0.05 0.65 (S) 80 17.53 16.03 0.02 0.67 (M)
35 18.90 11.77 <0.01 0.97 (L) 81 6.00 4.00 <0.01 1.00 (L)
36 5.00 4.00 <0.01 1.00 (L) 82 4.00 4.00 1 0.50 (N)
37 77.07 36.89 <0.01 0.86 (L) 83 35.53 31.80 <0.01 0.84 (L)
38 148.76 225.00 <0.01 0.00 (L) 84 106.80 63.17 <0.01 0.92 (L)
39 79.67 75.63 0.20 0.60 (S) 85 778.63 813.32 0.80 0.52 (N)
40 194.69 295.50 <0.01 0.00 (L) 86 344.28 356.86 0.31 0.42 (S)
41 54.62 55.37 0.30 0.58 (S) 87 69.50 61.58 <0.01 0.79 (L)
42 31.67 20.55 <0.01 0.97 (L) 88 1222.69 1022.03 0.02 0.68 (M)
43 0.20 0.93 0.01 0.35 (S) 89 7.90 6.97 0.15 0.61 (S)
44 0.00 20.57 0.02 0.42 (S) 90 3.00 3.70 0.01 0.38 (S)
45 0.40 0.90 0.13 0.41 (S) 91 46.32 56.14 <0.01 0.01 (L)
46 1.93 3.86 <0.01 0.03 (L)

it seems that the two approaches generate classes having approximately the
same overall size (class lines of code), however, the higher number of methods
negatively influences the overall class complexity.

When it turns to assess classes’ coupling, it seems that there is no a clear
winner between the two approaches. According to the results reported in Table
8, conflicting considerations could be drawn based on each specific class under
consideration. Indeed, by simply looking at the average values for the two
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Table 9 Number of Test Smells in test classes generated by Mosa and G-Mosa, with p-
values resulting from the Wilcoxon test and Vargha-Delaney A12 effect size. We use N, S,
M, and L to indicate negligible, small, medium and large effect size respectively. Significant
p-values are reported in bold-face.

Number of Test Smells
Average Mosa vs. G-Mosa Average Mosa vs. G-Mosa

ID Mosa G-Mosa p-value Â12 ID Mosa G-Mosa p-value Â12

1 0.00 0.00 NaN 0.50 (N) 47 0.00 0.00 NaN 0.50 (N)
2 3.00 1.00 <0.01 1.00 (L) 48 2.00 1.00 <0.01 1.00 (L)
3 1.00 0.00 <0.01 1.00 (L) 49 1.33 0.21 <0.01 0.93 (L)
4 1.11 0.00 <0.01 1.00 (L) 50 0.00 0.00 NaN 0.50 (N)
5 1.93 1.00 <0.01 0.97 (L) 51 1.00 0.03 <0.01 0.98 (L)
6 1.50 0.07 <0.01 0.98 (L) 52 1.00 0.00 <0.01 1.00 (L)
7 0.79 0.44 0.05 0.67 (M) 53 0.96 0.00 <0.01 0.98 (L)
8 1.52 1.13 0.27 0.58 (S) 54 0.97 0.00 <0.01 0.98 (L)
9 0.03 0.00 0.54 0.52 (N) 55 1.00 0.13 <0.01 0.93 (L)
10 1.67 0.34 <0.01 0.88 (L) 56 0.00 0.00 NaN 0.50 (N)
11 1.00 0.00 <0.01 1.00 (L) 57 1.00 0.00 <0.01 1.00 (L)
12 0.93 0.03 <0.01 0.95 (L) 58 1.00 0.00 <0.01 1.00 (L)
13 0.00 0.00 NaN 0.50 (N) 59 0.00 0.00 NaN 0.50 (N)
14 0.17 0.00 0.04 0.57 (N) 60 1.00 0.00 <0.01 1.00 (L)
15 0.77 0.00 <0.01 0.88 (L) 61 1.00 0.00 <0.01 1.00 (L)
16 1.17 0.00 <0.01 1.00 (L) 62 0.97 0.17 <0.01 0.90 (L)
17 0.00 0.00 NaN 0.50 (N) 63 1.00 0.00 <0.01 1.00 (L)
18 1.00 0.00 <0.01 1.00 (L) 64 1.00 0.00 <0.01 1.00 (L)
19 1.00 0.00 <0.01 1.00 (L) 65 1.00 0.07 <0.01 0.97 (L)
20 0.00 0.00 NaN 0.50 (N) 66 2.00 1.00 <0.01 1.00 (L)
21 1.00 0.07 <0.01 0.91 (L) 67 3.31 1.60 <0.01 0.96 (L)
22 1.17 0.37 <0.01 0.74 (L) 68 1.00 0.00 <0.01 1.00 (L)
23 1.00 0.00 <0.01 1.00 (L) 69 2.00 1.00 <0.01 1.00 (L)
24 0.97 1.08 0.33 0.47 (N) 70 0.67 0.03 <0.01 0.78 (L)
25 0.97 0.50 <0.01 0.73 (M) 71 1.00 0.03 <0.01 0.98 (L)
26 1.04 0.00 <0.01 1.00 (L) 72 1.07 0.04 <0.01 0.97 (L)
27 1.17 0.00 <0.01 1.00 (L) 73 1.00 1.00 NaN 0.50 (N)
28 1.00 0.07 <0.01 0.97 (L) 74 2.77 2.00 <0.01 0.90 (L)
29 0.00 0.00 NaN 0.50 (N) 75 1.03 0.00 <0.01 1.00 (L)
30 1.00 0.00 <0.01 1.00 (L) 76 1.00 0.00 <0.01 1.00 (L)
31 1.00 0.00 <0.01 1.00 (L) 77 1.00 0.00 <0.01 1.00 (L)
32 1.00 0.07 <0.01 0.97 (L) 78 1.03 0.03 <0.01 0.98 (L)
33 1.00 0.00 <0.01 1.00 (L) 79 1.03 0.00 <0.01 1.00 (L)
34 0.71 0.07 <0.01 0.81 (L) 80 1.00 0.00 <0.01 1.00 (L)
35 0.97 0.00 <0.01 0.98 (L) 81 1.00 0.00 <0.01 1.00 (L)
36 0.00 0.00 NaN 0.50 (N) 82 0.00 0.00 NaN 0.50 (N)
37 1.60 0.67 <0.01 0.86 (L) 83 1.00 0.00 <0.01 1.00 (L)
38 1.00 0.10 <0.01 0.95 (L) 84 1.03 0.03 <0.01 0.98 (L)
39 1.00 0.00 <0.01 1.00 (L) 85 1.40 0.23 <0.01 0.92 (L)
40 1.17 0.00 <0.01 0.98 (L) 86 1.48 0.36 <0.01 0.91 (L)
41 1.00 0.00 <0.01 1.00 (L) 87 1.71 0.00 <0.01 1.00 (L)
42 1.37 0.00 <0.01 1.00 (L) 88 1.41 0.21 <0.01 0.93 (L)
43 0.00 0.00 NaN 0.50 (N) 89 0.03 0.00 0.33 0.52 (N)
44 0.00 0.00 NaN 0.50 (N) 90 0.00 0.00 NaN 0.50 (N)
45 0.07 0.17 0.24 0.45 (N) 91 0.29 0.24 0.71 0.52 (N)
46 0.00 0.00 NaN 0.50 (N)

approaches we could see that in ≈48% of the cases Mosa achieves a better
(i.e., lower) coupling while G-Mosa performs better in the remaining ≈52%.
From a statistical point of view, we can observe that for 80% of the classes in
our dataset (i.e., 73 cases out of 91) there is a statistically significant difference
between the coupling achieved by the two approaches. As such, the results leads
to reject the null hypothesis Hn 5 in favor of the alternative hypotesis An 5.
By considering only these 73 classes in which there is a statistically significant
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Table 10 Understandability scores of test classes generated by Mosa and G-Mosa, with
p-values resulting from the Wilcoxon test and Vargha-Delaney A12 effect size. We use N, S,
M, and L to indicate negligible, small, medium and large effect size respectively. Significant
p-values are reported in bold-face.

Understandability scores
Average Mosa vs. G-Mosa

Mosa G-Mosa p-value Â12

2.50 2.90 0.01 0.41 (S)

difference, we observe that for 30 of them Mosa performs better (i.e., ≈41%),
while G-Mosa achieves a lower coupling for the remaining 43 (i.e., ≈59%).
While these results could suggest that G-Mosa outperforms Mosa in terms
of coupling, we cannot speculate on the results achieved, as they do not allow
to make a definitive conclusion. In this sense, more investigations would be
desirable.

As a last dimension to measure classes’ maintainability, we considered the
total number of test smells in classes generated by the two approaches. Table
9 reports the results achieved for this analysis. First and foremost, both ap-
proaches allow the generation of test classes having a limited number of test
smells, with average values ranging between 0 and 3.31. Additionally, there are
several cases in which both approaches generate classes with no test smells.
These cases are easily recognizable by the NaN values in the p-value column
(this is due to the Wilcoxon test failing in presence of ties).

However, when it turns to the statistical comparison the results clearly
highlight that G-Mosa outperforms Mosa. For 68 out of the 91 analyzed
classes (≈75%) we have a p-value lower than 0.5 indicating a statistical signif-
icant difference. In all these 68 cases G-Mosa outperforms Mosa with a large
effect size. Based on such considerations, we can reject the null hypothesis Hn
6 and accept the alternative hypothesis An 6 in favor of G-Mosa.

¤ Summing Up: On the maintainability side, we could not reach a definitive conclusion.
When considering WMC, our findings report that Mosa is statistically better than G-
Mosa, even though we highlight that this may not necessarily indicate a lower level of
understandability and maintainability by G-Mosa. In terms of coupling, there seems not
be a clear winner. Finally, G-Mosa provides test cases with a significant lower amount of
test smells. The follow-up analysis of the practitioners’ perspective might provide further
insights into the merit of the experimented techniques in terms of maintainability.

6.4 RQ4 - Understandability

To answer RQ4, we compared the understandability scores given to test cases
generated by Mosa and G-Mosa. Figure 2 shows a plot reporting the under-
standability scores for both approaches. More particularly, the figure shows
the amount of participants who scored the understandability of test cases pro-
duced by the experimented approaches from 1 (low understandability) to 5
(high understandability). As we can observe, tests generated by Mosa are
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Fig. 2 Understandability scores achieved by MOSA and G-Mosa.
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associated with lower understandability scores, as 99 out of the 120 (≈82%)
respondents rated them with a score between 1 and 3. On the contrary, for
G-Mosa the ratings are higher, with 42 participants (35%) giving ratings of
4 or 5. This result already provides an indication of the goodness of the test
cases generated by a granular approach: according to our findings, G-Mosa is
actually able to generate test classes which are perceived by practitioners are
more understandable, overall.

Table 10 reports the results of the statistical analysis performed to com-
pare the understandability scores of Mosa and G-Mosa. The tests confirmed
the quantitative insights discussed above. On the one hand, the test classes
generated by our approach have higher ratings on average (2.9 against 2.5). On
the other hand, the Wilcoxon and Vargha-Delaney tests reported a p-value of
0.01, highlighting statistical significance with a small effect size. On the basis
of these observations, we could reject the null hypothesis Hn 7 and accept
the alternative hypothesis An 7 in favor of G-Mosa: our approach generates
more understandable test cases with a statistically significant difference with
respect to the baseline approach.

To further support our findings, we also looked at the assertions reported
by participants for tests generated by the two approaches. As introduced in
Section 5, we performed a manual analysis of all the assertion statements to
check whether they were consistent with the corresponding test case. From the
analysis, it turned out that for both approaches participants were able to write
valid assertion statements in most of the cases. In particular, as for Mosa, at
least one valid assertion was reported for 195 out of the 240 tests (≈ 81%).
When considering test cases generated by G-Mosa, 220 cases with at least one
valid assert statement were reported (≈92%). These results further corroborate
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the conclusion that the test cases generated by G-Mosa are, overall, more
understandable than those generated by Mosa.

In literature, a higher number of assertions per single test case, i.e., a higher
assertion density, has been often associated with an increased capability of
test classes to identify faults in production code [41]. As such, the reader may
possibly interpret the results so that, despite the lower understandability, the
test cases generated by Mosa could still be more effective when employed to
discover faults. While this perspective might be worth of assessment through
a dedicated empirical investigation, we believe that our findings should be
interpreted differently. By design, G-Mosa generates more test cases, but of
smaller size and more cohesive when compared to the baseline. This implies
that the developers involved in our survey study were called to analyze a larger
amount of tests of smaller size: when analyzing the assert statements, we could
realize that the developers were able to focus more the scope of the assertions,
hence letting the tests focusing on more specific targets of the production
code. In our view, this represents a valuable characteristic of our approach, as
it allows developers to develop better test cases. In addition, it is also worth
remarking that the results obtained on the number of assertions per test case
have significant implications for fault localization and debugging. Indeed, test
cases with less assertions but more focused on targets might allow developers
to potentially diagnose the root causes of faults with a reduced effort.

To further investigate on the motivations behind the understandability
ratings provided by the survey participants, we analyzed the comments left
when assessing the understandability of test cases. We noticed some responses
in which users assigned low ratings to both the test classes generated by the two
approaches, however, these ratings were influenced by the lack of comments
and assertions that are peculiarities of automatically generated test classes.
More interestingly, we found that in several cases the participants appreciated
the granular nature of our approach. Here we report two of these cases. The
entire list of responses can be found on our online appendix [5].

This is the case of participant #21 who reported “Very difficult to un-
derstand the purpose of each unit test. This can be inferred, but without
assertions, new developers will have to assume the purpose and fix the code.”
for Mosa (with a rating of 2), while they rated with a score of 4 the under-
standability of G-Mosa with the following comment: “Easy to understand
the purpose of each unit test, even with modules I do not have experience
with. With more comments in the code itself, the unit tests would be fully un-
derstandable.”. Similarly, participant #42 reported the following comment for
G-Mosa “The unit tests were clear and written well since they tested only
one thing at a time. I feel like more documentation, organization, or label-
ing would be better”. Also in this case, the ratings reported were 4 for G-Mosa
and 2 for Mosa with the following justification: “This class was harder to un-
derstand because there were few assertions and the code was more verbose”



Toward Granular Search-Based Automatic Unit Test Case Generation 37

¤ Summing Up: Test cases generated by G-Mosa are significantly more understandable
than those generated by Mosa. Participants of the survey were able to generate at least
one valid assertion statement in a higher number of cases for G-Mosa. Moreover, test
cases generated Mosa received a higher average number of asserts per single test case,
indicating that a major effort is required to write assertions for this approach.

7 Threats to Validity

In this section, we discuss the main threats that might have affected the va-
lidity of our study and how we mitigated them.

7.1 Threats to construct validity

Threats in this category refer to the relation between theory and observations.
Our context was originally composed of 100 classes but we only reported results
for 91 of them since the remaining 9 in our sample led EvoSuite to fail due to
internal errors. Nevertheless, the size of our experiment is inline with respect to
previous work [2]. Another possible threat could be connected to the selection
of the baseline technique on which we built G-Mosa. The selection of Mosa
was driven by the fact that this was the technique we knew best and felt
most confident with to modify. Yet, we believe that the selection of another
baseline would have not had an important impact on the results obtained in
the context of our study. In particular, our aim was to define a systematic
approach and to improve the resulting structure of the generated test cases,
independently from the baseline approach, i.e., the methodology implemented
in G-Mosa can be applied on any automatic test case generation technique.
As such, the results achieved would not be influenced by the technique chosen
as baseline. In any case, we already plan to replicate our study with different
core techniques in order to verify this consideration.

7.2 Threats to internal validity

As for the intrinsic factors that could have influenced our findings, our ap-
proach and the baseline used for comparison were implemented within the
same tool, i.e., Evosuite [20]. As such, they relied on exactly the same un-
derlying implementation of the genetic operators, avoiding possible confound-
ing effects due to the use of different algorithms. The parameter configuration
represents a second aspect possibly affecting our results. We used the default
settings available in Evosuite on the basis of previous research in the field
[7] which showed that the configuration of parameters is not only expensive
but also possibly ineffective in improving the performance of search-based al-
gorithms. To deal with the inherent randomness of genetic algorithms, we
re-executed the experimented approaches 30 times—as recommended by pre-
vious research [11]—and reported their average performance when discussing
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the results. Finally, we equally split the search budget of our technique in two:
this might have ledG-Mosa to underperform with respect to the optimal case,
i.e., as noticed in our qualitative analysis, the effectiveness of the intra-class
step could be negatively influenced in some cases. Nonetheless, our goal was
that of investigating the feasibility of using a two-step approach for automatic
test case generation; we plan to perform an extensive analysis aimed at iden-
tifying the optimal configuration for our technique in our followup research.

In the context of the user study conducted to assess the understandability
of the generated test cases, we did not limit our recruitment to original develop-
ers, but we also employed a research-oriented platform like Prolific. On the
one hand, we could not finally recruit any original developers: this implies that
we could not assess the understandability of the test classes generated by the
compared approaches from the perspective of the actual designers of the source
code under test. While the opinions of the original developers might have re-
vealed additional insights, the expertise and background of the participants
who took part to the survey make us confident of the results reported. On the
other hand, the choice of selecting Prolificmight have potentially introduced
some sort of selection bias [61]. To mitigate this risk, we have taken two main
actions. First, we introduced an incentive of 2 pounds per valid respondent,
which means that the participation was stimulated through the recognition
rather than left to the willingness of developers. Second, we manually verified
the actual validity of the answers received, in an effort of discarding the re-
sponses from participants who did not take the task seriously. In addition, it
is also worth mentioning that, other than collecting background information
by directly inquiring participants, the online platform used by participants to
execute the study is able to keep track of the time spent by each participant
on each answer: this enabled an improved analysis of the performance of the
participants and supported us when spotting cases to discard. Nonetheless, we
are aware of the limitations of an online experiment - yet, with the current
pandemic situation, this was the only viable solution.

Another aspect that might have affected the internal validity of the user
study concerns with the selection of the test classes shown to participants. To
avoid any biased selection, we proceeded with a random selection from the
entire set of classes considered in our study.

7.3 Threats to conclusion validity

Threats in this category concern with the relationship between treatment and
outcome. In the comparison of G-Mosa and Mosa, we adopted well-known
state-of-the-art metrics to assess their structure and performance. For example,
we computed branch coverage when understanding the effectiveness of the
tests generated by the two approaches. In addition, we employed appropriate
statistical tests to verify the significance of the differences achieved by our
approach and the baseline. Specifically, we first used the Wilcoxon Rank Sum
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Test [13] for statistical significance and then the Vargha-Delaney effect size
statistic [68] to estimate the magnitude of the observed difference.

7.4 Threats to external validity

Threats to the external validity regard the generalization of our findings. We
conducted our study considering the SF110 benchmark dataset [22], which has
been widely employed by previous researchers to conduct experimentations in
the context of automatic test case generation [22, 51, 31, 21]. To increase
the reliability of the reported results, we also filtered out trivial classes from
the initial dataset, ending up with a sample of 100 classes that allowed us
to analyze the results from a statistical point of view. Nevertheless, the re-
execution of the study in other contexts, e.g., the XCorpus dataset [15], might
lead to different results. We plan to tackle this potential issue in our future
work. Finally, we limited the study to classes written in Java because our
tooling can only deal with them: as such, replications of our work on systems
written in other languages would therefore be desirable.

In the user study, we had to limit the selection of the test classes to present
to participants to two. Such a limited scope was required to ensure a reason-
able compromise between the amount of classes to verify and the time required
to participants. Before opting for the selection of two classes, we run a pilot
study aimed at understanding the optimal amount of classes to consider in the
study. The pilot was conducted with 10 software engineering researchers work-
ing within the lab of the third and last authors of the paper. The researchers
have between 2 and 5 years of academic experience on software quality assur-
ance and testing, with two of them who had previous experience in industry.
In the pilot study, we verified the amount of time required by participants to
assess five pairs of test classes generated by G-Mosa and MOSA. We could
realize that after the first two pairs, not only the answers took significantly
longer, but the overall quality of the assertions provided decreased. By inter-
acting with the participants, we could understand that their level of attention
significantly decreased after the first two evaluations due to the fatigue-effect.
For this reason, we fixed the number of tasks for the actual participants to
two. Nonetheless, further replications of the study aiming at corroborating our
findings are already part of our future research agenda.

8 Conclusion

The ultimate goal of our research was to define a systematic strategy for the
automatic generation of test code. In this paper, we started working toward
this goal by implementing the concepts of intra-method and intra-class test-
ing within a state-of-the-art automatic technique for test case generation like
Mosa. One of the risks connected to these mechanisms is the decrease of
effectiveness: by forcing our approach to generate intra-method tests we nat-
urally limit its scope, potentially lowering the number of tangentially covered
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branches. It turned out that, instead, this was not the case. According to our
results,G-Mosa provided test cases that are comparable in terms of both code
and mutation coverage. Hence, it seems that it is actually possible to improve
the inner-working of automatic test case generators by creating more granular
tests that are still as effective as those produced by baseline techniques. The
empirical results of our study also suggest that our approach to the genera-
tion provides rewards in terms of other desirable properties of test cases. The
test cases produced by G-Mosa are indeed shorter, more maintainable, and
understandable than those produced by Mosa. Hence, we can conclude that:

◎ Overall conclusion of our work.

The granular approach to the generation of test cases provides promising
results. G-Mosa tends to generate a larger amount of test cases with re-
spect to the baseline, but these are significantly shorter. On the one hand,
this property does not damage code and mutation coverage, which remain
statistically comparable. On the other hand, it provides multiple benefits
in terms of maintainability and understandability, potentially providing
relevant implications to fields like fault localization and debugging.

We consider this as a key result of our research, as it might potentially lead
further researchers to consider the application of structured approaches that
may generate test classes that are potentially more focused, comprehensible,
and maintainable while keeping the same level of effectiveness.

The technique we proposed is also prepared to allow the generation at
different granularity levels. Indeed, one can simply increase the number of
production calls allowed in the first part of the generation, that we limit to
one in this first concept, to generate tests at incremental levels of granularity.
This would potentially have key implications, as the proposed strategy can be
easily extended from a two-step (i.e., intra-method + intra-class) to an n-step
approach in which the number of calls allowed to methods of the class under
test (CUT) is increased at each step. Since different number of calls to methods
of the class under test corresponds to different paths on the state machine of
the CUT, it would be possible to limit the length of the paths to execute on
the state machine, thus providing shorter and more comprehensible tests for
which it will be easier to generate an oracle. In this sense, our work poses the
basis for the definition of a brand new way to generate test cases that might
be of particular interest for the researchers working at intersection between
software testing and software code quality.

Perhaps more importantly, when diving into the tests generated by the
experimented techniques we found out that G-Mosa performed better than
Mosa on large classes. In a real-case scenario, this becomes particularly im-
portant when a failing test must be diagnosed. As shown in literature [60, 73],
developers use test cases to start the debugging activities and understand the
nature of a failure: in this sense, the availability of smaller test cases that
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contain a lower amount of assertions might help developers in finding defects
faster. More investigations into the implications of our technique for debugging
are part of our future research agenda.

In addition, we also plan to exploit the granular nature of G-Mosa to
perform multiple additional investigations. On the one hand, we plan to assess
how the test cases generated by our techniques behave when considering the
detection of real defects: in this respect, the use of Defects4J [39] as a
database of real defects might be instrument, even though such an analysis
might require some tuning and/or modifications to the inner-working of G-
Mosa to fit computation constraints [25]. On the other hand, we plan to
conduct further experimentation based on several granularity levels. Finally,
we plan to implement our approach on top of a broader set of baselines as well
as an in-vivo performance assessment involving real testing experts.
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