
Noname manuscript No.
(will be inserted by the editor)

An Empirical Study Into the Effects of Transpilation
on Quantum Circuit Smells

Manuel De Stefano · Dario Di Nucci ·
Fabio Palomba · Andrea De Lucia

Received: date / Accepted: date

Abstract Quantum computing is a promising field that can solve complex
problems beyond traditional computers’ capabilities. Developing high-quality
quantum software applications, called quantum software engineering, has re-
cently gained attention. However, quantum software development faces chal-
lenges related to code quality. A recent study found that many open-source
quantum programs are affected by quantum-specific code smells, with long
circuit being the most common. While the study provided relevant insights
into the prevalence of code smells in quantum circuits, it did not explore
the potential effect of transpilation, a necessary step for executing quantum
computer programs, on the emergence of code smells. Indeed, transpilation
might alter those characteristics employed to detect the presence of a smell
on a circuit. To address this limitation, we present a new study investigating
the impact of transpilation on quantum-specific code smells and how different
target gate sets affect the results. We conducted experiments on 17 open-source
quantum programs alongside a set of 100 synthetic circuits. We found that
transpilation can significantly alter the metrics that are used to detect code
smells, even into previously smell-free circuits, with the long circuit smell being
the most susceptible to transpilation. Furthermore, the choice of the gate set
significantly influences the presence and severity of code smells in transpiled
circuits, highlighting the need for careful gate set selection to mitigate their im-
pact. These findings have implications for circuit optimization and high-quality
quantum software development. Further research is needed to understand the
consequences of code smells and their potential impact on quantum computa-
tions, considering the characteristics and constraints of different gate sets and
hardware platforms.

Keywords Empirical Software Engineering, Quantum Computing, Quantum
Software Engineering, Quantum Software Quality, Code Smells

Manuel De Stefano, Dario Di Nucci, Fabio Palomba, Andrea De Lucia
Software Engineering (SeSa) Lab - University of Salerno (Italy)
E-mail: madestefano@unisa.it, ddinucci@unisa.it, fpalomba@unisa.it, adelucia@unisa.it



2 De Stefano et al.

1 Introduction

Quantum computing has recently gained much attention due to its ability
to solve problems that traditional computers cannot [23, 24]. To make
this potential available to all, the field of quantum software engineering
has emerged [27, 38, 39, 40]. Researchers have been designing and imple-
menting high-quality quantum software applications to exploit the quan-
tum computer’s computational speed since the Talavera Manifesto was pub-
lished [4, 9, 10, 41, 47]. However, the field is still in its early stages, and more
research is needed to address the maintenance, evolution, and overall quality
aspects of quantum software development [16, 17, 19].

A recent study revealed that quantum software development faces challenges
similar to traditional software development, such as code smells affecting the
program’s quality [14]. This study investigated the prevalence of these code
smells in 15 open-source quantum programs using QSmell, which detected
eight quantum-specific smells. The results showed that 73.33% of the programs
contained at least one smell, the most common being the Long Circuit smell.

However, the study did not investigate the effects of transpilation on the
presence of these code smells, which might be a limitation. Indeed, transpiling a
quantum circuit involves converting a high-level quantum program into a form
suitable for specific quantum hardware. It optimizes the circuit by decomposing
complex gates, rearranging qubits to match hardware connectivity, minimizing
gate count, and managing available resources. The process ensures the circuit
retains functionality while maximizing performance and compatibility with the
target hardware platform. Hence, it is a necessary step to execute the program
on a quantum computer. However, it can alter the circuit’s characteristics, such
as the width, the depth, and the gates. Characteristics that QSmell uses to
detect quantum code smells.

To address this limitation, we present a new study investigating whether
the quantum-specific code smells detected in the original circuit persisted after
transpilation. We also investigated whether different target gate sets affect the
results. The experiment was conducted on the same set of circuits employed
by the original study [14].

Our research suggests that transpilation can significantly alter the metrics
indicating the presence of smells even in circuits that previously showed non-
troublesome metrics values. The long circuit and initialization of quibits smell
are particularly vulnerable to transpilation. The gate set plays a significant
role in detecting code smells in transpiled circuits. Therefore, it is important
to envision and develop detection techniques considering the target gate set
on which the circuit will be transpiled. Further research is necessary to fully
understand the consequences of code smells and their potential impact on
quantum computations, considering the specific characteristics and limitations
of different gate sets and hardware platforms.

The remainder of the paper is organized as follows. Section 2 presents all
the necessary background information and the relevant related work. Section 3
describes the experimental procedure in all stages, and its limitations. Section 4



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 3

describes the achieved results, while section 5 discusses them. Section 6 wraps
up and proposes future research directions.

2 Background and Related Work

2.1 Quantum Computing and Transpilation

Quantum computing utilizes principles from quantum mechanics to perform
computations [23, 24]. Unlike classical computing, which uses bits with values
of zero or one, quantum computing uses qubits that can exist in superpositions
of the zero and one states. Quantum information is manipulated using quantum
gates, which are unitary transformations. Quantum programming languages
store classical and quantum information in registers and express quantum
programs as quantum circuits, where gates are applied in a specific order.
Quantum circuits can be executed on real quantum devices or simulators, and
the output is measured and stored in classical registers. A fault occurs if the
observed probability distribution from running the circuit multiple times does
not match the expected distribution.

Transpiling a quantum circuit refers to transforming a quantum circuit
written in one quantum programming language or representation into another,
often to optimize the circuit for a specific quantum hardware platform. Quan-
tum circuits are typically expressed using a high-level quantum programming
language, such as Qiskit, Cirq, or Quil. These languages provide a convenient
way for researchers and developers to describe quantum algorithms and opera-
tions. However, quantum hardware platforms often have specific requirements
and constraints, such as limitations on gate connectivity, gate set availability,
and gate execution times. Transpiling bridges the gap between the high-level
quantum programming language and the specific hardware platform. It involves
converting the circuit into a form compatible with the target hardware while
preserving the functionality of the original circuit. The transpiler performs a
series of optimizations and transformations to achieve this goal [3]:

Gate Synthesis. Converting gates or gate sequences into an equivalent set
of gates supported by the target hardware. This operation may involve
decomposing complex gates into a combination of simpler gates from the
hardware’s gate set.

Gate Mapping. Rearranging the qubits in the circuit to match the connectivity
constraints of the target hardware. Different hardware platforms have
different qubit connectivity layouts, and the transpiler aims to find an
optimal mapping that minimizes the number of required additional gates
(e.g., SWAP gates) for connecting qubits that are not directly connected.

Gate Optimization. Applying techniques to minimize the overall number of
gates in the circuit, reduce gate depth, or optimize other metrics. This
optimization can improve the circuit’s performance by reducing the potential
for errors and minimizing the time required for execution.



4 De Stefano et al.

Resource Allocation. Ensuring that the circuit does not exceed the resources
available on the target hardware, e.g., the number of qubits.

By transpiling a quantum circuit, developers can make their quantum
algorithms compatible with specific quantum hardware, improve the circuit’s
performance, and take advantage of different platforms’ unique features and
constraints.

In quantum computing, a basis gate set is a specific set of quantum gates
that are the building blocks for creating and describing quantum circuits [46].
These gates are carefully chosen for basic quantum operations such as rotation
and phase shift [46]. A set of universal quantum gates refers to any set of
gates that can be used to build any quantum operation possible on a quantum
computer. Any other unitary operation can be expressed as a finite sequence
of gates from the set [46]. However, since the number of possible quantum
gates is uncountable, whereas the number of finite sequences from a finite
set is countable, it is technically impossible to have anything less than an
uncountable set of gates [46]. To solve this problem, it is only required that
any quantum operation can be approximated by a sequence of gates from this
finite set [46]. One universal gate set commonly used in quantum computing
includes the rotation operators Rx(θ), Ry(θ), Rz(θ), the phase shift gate P (ϕ),
and CNOT . When a circuit is transpiled, it is transpiled in the basis gate set
that is supported by the target machine [2].

1 from qiskit import QuantumCircuit
2

3 qc = QuantumCircuit (2, 2)
4 qc.h(0)
5 qc.cx(0, 1)
6 qc. measure ([0 , 1], [0, 1])

Listing 1 Python example

Listing 1 represents a simple quantum circuit designed to create the
renowned Bell state [29]. Visualizing this circuit without any transpilation, it
appears as illustrated in Figure 1. This circuit is relatively straightforward,
employing only Hadamard and C-NOT gates. However, when we transpile this
uncomplicated circuit into the basis gate set supported by the IBM quantum
machine ’ibm_perth,’ the circuit undergoes significant transformations, as
depicted in Figure 2. Notably, two RZ gates and an SX gate (represented
as

√
X in the figure) are required to achieve the same quantum effect as a

Hadamard gate.

2.2 Quantum Software Engineering

Research in quantum software engineering (QSE) is still in its early stages. The
“Talavera Manifesto” was proposed during the first International Workshop
on Quantum Software Engineering, outlining the fundamental principles of
QSE [39]. Subsequent studies have discussed various challenges and directions



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 5

Fig. 1 Quantum circuit representing the Bell state before transpilation.

Fig. 2 Quantum circuit representing the Bell state transpiled for the ’ibm_perth’ gate set.

in QSE research. Zhao et al. [48] provided a comprehensive overview of the
quantum software life cycle, including requirements analysis, design, implemen-
tation, and testing. They highlighted the need for a comprehensive software
engineering discipline for quantum software development.

Piattini et al. [40] emphasized four priority areas: software design of quan-
tum hybrid systems, testing techniques for quantum programming, quantum
program quality, and re-engineering and modernization of classical-quantum
information systems. They suggested that researchers should consider the lack
of software engineering knowledge among quantum computer scientists and
should not wait for stable quantum programming languages to develop software
engineering techniques.

Developing quantum programs presents various challenges that must be
overcome for effective design and development. El Aoun et al. [19] conducted
an empirical investigation to understand these challenges from a developer’s
perspective. They analyzed popular forums and platforms like Stack Exchange
and GitHub to identify frequently asked questions and concerns about quan-
tum software engineering. Their findings revealed that developers often inquire
about the theory behind quantum programming, specific data structures and
algorithms, the implementation of quantum-related tasks, and the lack of learn-
ing resources. These challenges highlight the need for a better understanding



6 De Stefano et al.

of quantum theory and the development of appropriate techniques and tools
for quantum programming.

De Stefano et al. [16] emphasized the importance of systematic investigations
into the state of quantum programming. They conducted a mining analysis
of popular quantum programming frameworks on GitHub and surveyed the
contributors of these repositories. The study revealed that the adoption of
quantum programming still needs to be improved, and various challenges must
be addressed. These challenges extend beyond technical concerns and encompass
socio-technical matters as well. The research community must pay attention
to these challenges and work towards advancing the field of quantum software
engineering. Researchers and practitioners can facilitate knowledge transfer and
contribute to the growth and development of quantum programming and its
associated disciplines by conducting systematic investigations and addressing
the identified challenges.

Afterward, they conducted a systematic mapping study [17] of QSE research
to identify the most investigated topics and the types of studies conducted.
They found that most research has primarily focused on software testing. In
contrast, other areas, such as software engineering management or quantum
software maintenance and quality, have received less attention. This lack of
research in quantum software maintenance and quality indicates a gap in
understanding and addressing the challenges associated with these aspects. It
emphasizes the need for further investigations to develop effective methods and
techniques for maintaining and ensuring the quality of quantum software.

2.3 Code Smells

Developing and maintaining software code is time-consuming and puts de-
velopers under constant pressure. This pressure makes developers prioritize
tasks to release software quickly, sometimes sacrificing quality, introducing
technical debt [15]. One common form of technical debt is code smells, i.e.,
developers’ poor design or implementation choices during software development
and maintenance [20].

In recent years, researchers have extensively studied code smells, examining
their causes, evolution, and impact on software [7, 13, 30, 43, 44]. They have
also investigated methods to detect these design issues automatically. Many
of these techniques rely on heuristic approaches based on structural code
metrics, such as size and complexity, while others use textual content or version
history [28, 31, 32, 42]. However, these heuristic techniques have limitations,
leading to suboptimal results.

Therefore, researchers have explored machine-learning-based approaches for
code smell detection to address the limitations of heuristic techniques. While
initial results appeared promising [6], these techniques also have practical
limitations [18, 34, 35, 36, 37]. One major challenge across both heuristic and
machine-learning-based methods is the choice of metrics, as existing metrics



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 7

Table 1 Original catalog of smells provided by Chen et al. [14] alongside the violated best
practice, acronym, and description. CG, LPQ, and IM were never found to occur.

Best Practice Smell Name Acronym Description

Getting a cir-
cuit to run on
hardware

Use of Cus-
tomized
Gates

CG Any customized gate is decomposable into
built-in framework operators. This decompo-
sition requires a substantially higher number
of operators when compared to the equivalent
solution made exclusively of built-in operators.

Using Circuit-
Operation to
reduce circuit
size

Repeated set
of Operations
on Circuit

ROC Due to technological and physical limitations,
the number of operations one can pass to a
quantum computer is limited; therefore, the cir-
cuit implementing the whole algorithm should
be prepared in such a way that the number of
a sequential repeated set of operations to be
performed is the least possible.

Use sweeps
when possoble

Non-
parametrized
Circuit

NC Real devices work in a shared policy. The cir-
cuit should be designed parametrically to pro-
vide the different initial values simultaneously,
avoid queuing different ones, and reduce com-
munication payloads.

Short Gate
Depth

Long Circuit LC Unitary gates and measurements are prone to
errors (especially due to quantum noise). The
higher the depth of the circuit and/or wider the
circuit, the higher the probability of affecting
a quantum circuit’s intended behavior.

Terminal
Measure-
ments

Intermediate
Measurement

IM Measurements affect the state of the entire
system, making it prone to more errors. They
should be postponed to the last operation on
the circuit to avoid error propagation.

Keep Qubits
Busy

Idle Qubits IdQ With current technology, it is possible to en-
sure the correctness of a state only for very
short periods. Idle qubits for too long increase
the loss of quantum information that may jeop-
ardize the results of a quantum circuit.

Delay Ini-
tialization of
Qubits

Initialization
of Qubits

IQ Keeping the coherence of a quantum excited
state is technologically difficult. Hence, ini-
tially, one should keep it in its ground state
(i.e., in state |0〉) as long as possible.

Qubit Picking No-alignment
between the
Logical and
Physical
Qubits

LPQ The topology of real qubits impacts the circuit
behavior, i.e., the results obtained from the
circuit can change according to the physical
qubits configuration. Not aligning the logical
qubits to the proper physical qubits may lead
to less accurate results.

often have limited explanatory power in distinguishing between smelly and
non-smelly code instances.



8 De Stefano et al.

As a result, code smell detection remains an open challenge, and researchers
are beginning to explore alternative approaches, including deep learning [25, 26],
to find more effective solutions to this problem.

2.4 Quantum-specific Code Smells

Chen et al. [14] recently focused on the quality aspects of quantum programs.
They conducted an empirical study to answer two research questions:

RQ1 How do practitioners perceive quantum-specific code smells?
RQ2 What is the prevalence of quantum-specific code smells?

To answer RQ1, eight quantum-specific smells were identified based on
best practices in QC, and developers who have contributed to quantum open-
source projects were surveyed to assess their opinions on these smells. The
results achieved by answering this question were collected in a catalog of
quantum-specific code smells, which is summarized in Table 1.

To answer RQ2, the authors developed a tool called Qsmell, which auto-
matically computes metrics indicating the presence of quantum-specific smells
(depicted in Table 1) in quantum programs (QPs) through dynamic and static
analysis. They defined specific thresholds that can be applied to these metrics
to conduct this task. When conducting a dynamic analysis of a QP, QSmell
requires an execution matrix as input. Each row of this matrix corresponds to
either a quantum or classical bit, while each column represents a timestamp
in the circuit. Each cell of the matrix indicates a quantum operation that
took place in the circuit. To begin, the module collects the set of qubits from
the qc object’s data and then proceeds to iterate through all the operations
performed on each qubit. In summary, this process involves analyzing the
quantum operations that occur in a circuit by examining the execution matrix
for the QP. This dynamic analysis procedure computes all smells except NC
and LPQ. NC and LPQ smells are computed by static analysis. It takes a
source code Python files and analyzes it using Python AST to detect the smells
that are concerned with information about the execution backend.

The tool was then used to evaluate 15 QPs (circuits) empirically. They
showed that 11 QPs (73.33%) contain at least one smell and, on average,
a program has three smells. Furthermore, the long circuit (LC) is the most
prevalent smell present in 53.33% of the subjects. Interestingly, CG, LPQ, and
IM were never found to occur. The study’s main limitation was that it did not
consider the transpilation of quantum programs that might alter the properties
of the circuit used by QSmell to detect the quantum-specific smells.

Although the study provided valuable insights, it also had limitations,
including the transpilation process. The study excluded smells that required
direct source code evaluation. All source code was transpiled into a target
gate set before being analyzed. This choice was applied to all smells except
for CG. As a result, the identification of smells was conducted solely on the
transpiled code, not the original code. The code analyzed for the CG smell



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 9

was not transpiled because this step would have removed custom gates. These
limitations make it difficult to determine to what extent the transpilation
process impacted the persistence of the smells and whether the circuits were
considered smelly solely because they were evaluated with a particular gate
set. Our study aims to overcome this limitation by investigating the effect of
transpilation on the presence of code smells from two points of view. On the
one hand, we evaluate the smelliness pre and post-transpilation. On the other
hand, we evaluate the smelliness among multiple versions of the same circuit
transpiled to different gate sets.

3 Experimental Design

Following the Goal-Question-Metric (GQM) approach delineated by Basili et
al. [11], we define the objective of our study as:

Characterize the influence of transpilation on quantum-specific code
smells for the purpose of assessing with respect to its potential in
mitigating or exacerbating the presence of these smells from the point of
view of both researchers and practitioners in the context of quantum
software development process.

Given our goal, we put forth the following Research Questions (RQs):

RQ1. How does transpilation affect the presence of quantum-specific code
smells?
RQ2. How does transpiling to different gate sets affect the presence of
quantum-specific code smells?

Figure 3 and Figure 4 overview the research method applied to address these
questions. As further elaborated in the remainder of the section, we applied a
quasi-experimental procedure on 17 quantum circuits, taken from literature [14],
affected by quantum-specific smells. We detected the smells before and after
transpilation. We also compared the smells of circuits transpiled to different
target gate sets.

3.1 Context of The Study

Independent Variable. The independent variable to answer both research
questions was the target gate set used for transpiling quantum circuits. The
target gate set represents the set of gates the circuit is transpiled to, affecting
the resulting properties and behavior of the circuit. Specifically, the study
considered five target gate sets, whose details are reported in Table 2, that
differ in the types of gates they contain. The transpilation process is consistent
across all the gate sets, but changing the target gate set also changes the final
circuit; therefore, the same circuit transpiled to different gate sets may produce



10 De Stefano et al.

Sampled Quantum
Programs

Transpilation

Hypothesis Testing

Qsmell Analysis

Qsmell Analysis

Fig. 3 Graphical representation of the experimental process for the RQ1. To answer the
first research question, we ran QSmell on the transpiled and non-transpiled versions for
each sample circuit to gather metrics and smells; then, we tested for the difference.

different results. Besides the original and none transpilations (representing
the target gate set from the original publication [14] and the untranspiled
circuit, respectively), we also considered four distinct gate sets: ibm_perth,
ibm_sherbrokee, rpcx, and simple. The rationale behind this selection stems
from both practicality and the need to capture diverse gate set representations.
The gate sets ibm_perth and ibm_sherbrokee were chosen due to their real-
world significance. The IBM quantum provider, the original developer and
distributor of Qiskit [2], supports both. Given our focus on Qiskit code execution,
these gate sets were the most relevant. However, different quantum machines can
share the same basis gate set. Specifically, the ibm_perth gate set, characterized
by the basis gates CX, ID, RZ, SX, and X, is not supported only by the IBM
machine ’ibm_perth’, but also by other, such as ’ibm_nairobi’. The same
applies to the ibm_sherbrokee gate set, which is not supported only by the
’ibm_sherbrokee’ machine but also by other machines. This observation leads
us to conclude that IBM machines predominantly support this configuration,
making our study directly applicable to real-world scenarios. The rpcx and
simple gate sets were chosen to capture the essence of universal gate sets [46]
but with a difference in granularity. The rpcx gate set is comprehensive,
comprising the CX, RX, RY, RZ, and P gates. This ensemble, including the
C-Not gate, phase gate, and rotation gates across all axes, encapsulates a
universal set and is well-acknowledged in quantum literature [46]. Contrarily,
the simple gate set is a more streamlined representation. It mimics the rpcx
set but utilizes only the CX and U3 gates. The U3 gate, specifically offered
by IBM, is a versatile, parametrized gate capable of rotations across all three
axes and phase alterations based on given parameters. It can emulate the
functionalities of RX, RY, RZ, and P gates by fixing two parameters. However,



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 11

Sampled Quantum
Programs

Hypothesis Testing

Qsmell Analysis
Transpilation to

original Gate Set

Transpilation to
ibm_perth Gate Set Qsmell Analysis

Transpilation to
ibm_sherbrooke

 Gate Set
Qsmell Analysis

Transpilation to
rpcx Gate Set Qsmell Analysis

Transpilation to
simple Gate Set Qsmell Analysis

Fig. 4 Graphical representation of the experimental process for the RQ2. To answer the
second research question, we transpiled each sample circuit to the chosen gate set; then, we
ran QSmell on each version to gather metrics and smells and tested for differences. If a
significant difference was observed, we conducted a posthoc analysis.

this simplicity means the transpiler has a different set of gates to work with
during the transpilation phase, offering alternate (but not necessarily superior
or inferior) transpilation strategies. In essence, these two gate sets, while both
being universal, present varied gate counts, further enriching our study. To
answer our first research question, we considered only None and original
transpilation to measure the before/after transpilation effect, while original,
ibm_perth, ibm_sherbrokee, rpcx, and simple gates sets were employed to
answer our second research question.



12 De Stefano et al.

Table 2 The different gate sets and the raw one used in the study and their corresponding de-
scriptions. The gate sets include the original gate set used in the literature on quantum-specific
smells, two gate sets employed by IBM quantum machines (ibm_perth and ibm_sherbrooke),
and two known universal gate sets (rpcx and simple).

Name Gates Description

original U1, U2, U3, RZ, SX, X, CX, ID Gate set employed in the original lit-
erature on quantum smells [14].

ibm_perth CX, ID, RZ, SX, X Gate set employed by the IBM quan-
tum machine ibm_perth [2].

ibm_sherbrokee ECR, ID, RZ, SX, X Gate set employed by the IBM quan-
tum machine ibm_sherbrooke [2].

rpcx CX, RX, RY, RZ, P Known universal gate set composed
of the controlled-not gate, all axes
rotation gates, and phase gate [46].

simple CX, U3 Similar to rpcx but relying on the
U3 parametrized rotation gate, which
can perform rotation on all the axes
and in the phase [2, 46].

none - The raw circuit defined in the source
code, without transpilation [14].

Dependent Variables. The dependent variables considered are the metrics
used to detect quantum-specific smells, as described in literature [14]. The
details of these metrics are depicted in Table 3. We selected only these from
the original set of smells since NC and LPQ were computed with static analysis
on the original code and not on the execution matrix generated by QSmell
(see Section 2 for further details about these analyses) [14], so they were not
affected by transpilation. CG and IM were discarded from the study since they
were never detected, both in the original and our study. Hence, we conducted
a dedicated discussion in Section 5.

Hypotheses. After defining the independent and dependent variables for both
research questions, we formulated the following sets of null (H0) and alternative
(H1) hypotheses to be tested. Given

M = {LC, IQ, IdQ, ROC}
the sets of considered metrics (M) (as depicted in Table 3), we formulated the
following set of hypotheses to answer RQ1:

H
(1)
0 (m): Transpilation has no impact on the metric m ∈ M

H
(1)
1 (m): Transpilation impacts on the metric m ∈ M

Similarly, we formulated the following hypotheses to answer RQ2:

H
(2)
0 (m): Transpiling to different gates set has no impact on the metric m ∈ M

H
(2)
1 (m): Transpiling to different gates set impacts on the metric m ∈ M



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 13

Table 3 Dependent variables, metric descriptions, and smelliness thresholds, as depicted by
Chen et al. [14]. It must be noted that the smell and the metric share the same name as
reported in the original publication [14].

Acronym Name Metric Description Smelliness Threshold

LC Long Circuit Likelihood of a circuit not having any
error as (1 − e)l·c, whereas e is the
maximum error of any active gate of
the real device that is used to run the
circuit, and l is the maximum num-
ber of operations in any qubit and c
is the maximum number of parallel
operations in the circuit.

Lower than 0.5

IQ Initialization
of Qubits

Maximum number of operations per-
formed in the circuit between the ini-
tialization of any qubit (usually the
first operation applied to the qubit)
and the second operation applied to
the same qubit.

Median value on origi-
nal distribution: Higher
than 0

IdQ Idle Qubits Maximum number of circuit opera-
tions between one operation using a
qubit and the subsequent operation
where that qubit is used again.

Median value on origi-
nal distribution: Higher
than 0

ROC Repeated Set
of Operations
on Circuits

Number of sequentially repeated sets
of operations.

Higher than 1

Population and Sample. The interested population of this study comprises
all the possible existing quantum circuits. However, for the sake of fair compari-
son in this study, we choose a sample of 17 quantum circuits, written in Qiskit,
that were already objects of investigation in a previous study on quantum-
specific smells [14]. In particular, the selection process involved several steps,
as described in the original publication [14] in which three umbrella projects
were selected (i.e., qiskit-machinelearning, qiskit-terra, and qiskit-nature) con-
taining multiple Quantum Programs (QPs). From these umbrella projects,
17 programs representing the sample were chosen. Two of these circuits were
employed by the original publication to validate the tool and, hence, were
excluded from the empirical study whose results are reported in Table 5 of
the original paper [14]. For the sake of the sample’s significance, we chose to
employ all subjects available, hence conducting our experiment on all 17 sam-
ples. However, we were aware of the limitation of the sample size in our study.
Nevertheless, we faced the same issue as the original publication from which
we took the samples for comparison. Chen et al. [14] had already conducted
extensive research to identify possible subjects from open-source projects that
were part of real-world projects, not toy or learning ones. Despite this, we tried
to find other possible samples to increase the generalizability of our results. To
begin with, we looked for samples from a replication package of our previous
work [16]. This work included a collection of quantum-related repositories



14 De Stefano et al.

classified as Libraries/Frameworks, which could be considered nontrivial and
contain possible samples. However, despite working with quantum libraries
like Qiskit, we could not find an explicit use of quantum circuits that could
be integrated into our sample. We also referred to other published work to
find a dataset of quantum circuits for analysis. Specifically, we examined two
studies: the one conducted by Paltenghi et al. [33] and the one conducted
by Campos et al. [12]. While the former is a collection of bugs minimized on
change records, the latter proposes creating a dataset of reproducible quantum
bugs unavailable at the time of writing. As such, neither study helped provide
us with a dataset to use. Therefore, we used the Qiskit functionality to generate
synthetic circuits (i.e., random circuits) [1] to conduct the same analysis on a
broader set of circuits. Using this functionality, we created a new sample of 100
circuits with a width and depth ranging from the minimum to the maximum
width and depth of the original samples. We applied the same analysis process
that we employed for the original circuits. However, we must emphasize that
these synthetic circuits are made by randomly putting gates one on top of
another without additional criteria, i.e., such circuits could lack semantics to
solve real problems.

3.2 Data Collection and Analysis

We used the original code for the sample circuits from Cheng et al.. [14]: the
selection of these circuits was based on our willingness to replicate the original
study, which led us to rely on their same dataset [14]. We transpiled each
circuit using Qiskit’s transpiler with the selected target gate set. Then, we
measured the smells’ metrics using the QSmell tool [14]. To evaluate our pre-
and post-transpilation results and address RQ1, we ran QSmell on the raw
circuit (the none gate set in Table 2) and on the circuits transpiled to the
original gate set (i.e., in the form that evaluated by Chen et al.).

We then used the Wilcoxon Signed Rank Test [45] to test our first set of
hypotheses. We needed a paired statistical test since we evaluated a pre/post-
treatment scenario where the transpilation corresponds to the treatment that
our subjects (the circuits) underwent. Furthermore, we needed a non-parametric
statistical test because our data did not follow a normal distribution, confirmed
by the Shapiro-Wilk test. Hence, our choice fell on the Wilcoxon Signed Rank
Test, a paired non-parametric statistical test [45]. In particular, we applied
this test to the metrics distributions of the none and original treatments.
To determine the difference between the two groups, we used Hedge’s g, a
method of measuring effect size [22]. This approach is efficient when working
with small sample sizes of less than 20. A g value of one indicates a difference
of one standard deviation between the groups, a g value of two corresponds
to a two standard deviation difference, and so on. We adhere to the following
guidelines to interpret Hedges’ g values: 0.2 for a small effect, 0.5 for a medium
effect, and 0.8 for a large effect [22].



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 15

Being in a similar situation as the previous set of hypotheses, i.e., with
paired non-parametric data, but with more than one distribution to consider, we
choose the Friedman Test [21] alongside posthoc analysis to evaluate our second
set of hypotheses, i.e., to evaluate the metrics among the different transpilation
targets (Table 2. Since the Friedman test, in the case of a significant result,
is able only to tell whether there is any difference between all the tested
distributions [21], we needed a posthoc analysis to understand which were the
distribution actually differing. We used the pairwise Wilcoxon signed-rank test
to perform the posthoc analysis, which implies making multiple comparisons
among all the considered distributions. When multiple comparisons are made,
the Bonferroni correction is applied by adjusting the significance threshold.
This method is essential to maintain the overall reliability of the conclusions
by controlling the cumulative probability of Type I errors [8].

In all cases, we set the significance level at α = 0.05. To reject the null
hypothesis in favor of the alternative, the p-value obtained from the tests had
to be less than α. This approach was applied to both the original samples
dataset and the synthetic samples dataset separately.

3.3 Threats to Validity

In the following, we discuss the threats to the validity of our study.

Threats to Construct Validity. It is essential to ensure that the methods
used reflect the intended subject to ensure accuracy in conducting a study, also
known as construct validity. For our study, we utilized Qsmell to measure
our circuits’ smelliness, which could affect our findings’ validity. However, it is
worth noting that Qsmell has been previously validated, which may alleviate
this concern.

Threats to Conclusion Validity. Threats to conclusion validity refer to
factors or conditions affecting the researcher’s ability to draw accurate conclu-
sions from data analysis. In our case, this is mainly related to non-parametric
statistical tests, which have a lower statistical power, i.e., less ability to detect
significant effects or differences between groups if they exist. Their usage was
the only option since the conditions for applying parametric tests were unmet.

Threats to Internal Validity. Internal validity is a critical factor in research,
as it determines the degree to which a study can establish a definitive causal
relationship between independent and dependent variables. When working with
human subjects, researchers often use a within-subjects experimental design,
administering multiple treatments in different orders to mitigate the impact of
learning or maturation. However, our study’s subjects are quantum programs,
and the treatment is a deterministic algorithm: learning or maturation effects
cannot occur, as the output is consistently the same whenever a circuit and
specific target gate set are utilized. Additionally, each treatment is applied to the
original circuit code each time without impacting the subsequent transpilations.



16 De Stefano et al.

Threats to External Validity. One possible external validity threat is the
limited sample size of only 17 circuits, which were all created using Qiskit,
the same quantum technology. However, this decision was crucial to ensure a
fair comparison with the previous study [14], which exclusively employed real
circuits rather than synthetic or toy circuits. It must also be noted that the
original publication [14] already conducted large research of real-world (and
not trivial) quantum circuits in open source systems, only finding the reported
17 samples. We conducted another large search of real-world quantum circuits
in a dataset of a previous publication [16] (i.e., the repositories identified
as libraries/frameworks). Still, we found no additional items to be put in
the experimental sample. We tried to overcome such limitation by employing
a set of synthetic circuits generated by the Qiskit random_circuit utility,
which, however, generates circuits by randomly putting gates in sequences,
hence creating circuits that are not necessarily similar to the ones created
by developers. Nevertheless, it could be possible to replicate our proposed
experiments with more real-world circuits when a greater dataset is available.
Although we specifically selected circuits previously identified to have quantum-
specific issues, our findings might not universally apply to all quantum circuits.
Finally, our research only focuses on quantum-specific code smells. Transpiling
quantum circuits could impact other quality issues, and in particular, the
presence of traditional code smells.

4 Analysis of the Results

In this section, we delve into the findings of our study, structured around
the research objectives and hypotheses articulated earlier. As we analyze the
collected data, one particular aspect merits immediate clarification. Identifying
the ROC smell requires identifying repeating patterns within quantum circuits,
which means that its practicality diminishes with increasing circuit depth since
the number of patterns to examine increases exponentially. This limitation
became evident when considering the shor circuit. The circuit possesses sig-
nificant depth in its rpcx and simple transpiled versions, rendering the ROC
smell method impractical for discerning patterns. Consequently, we excluded
the shor circuit from our ROC analysis for our second research question. With
this context in place, let us proceed with a detailed presentation of our results.

4.1 RQ1: Effects of Transpilation on the Smell Presence

Table 4 compares the smelliness metrics before and after transpilation. Most
data points have a zero value when analyzing the IQ metric before transpilation,
with the first, second, and third quartiles all at this value. There is only one
outlier, with a value of one. After transpilation, there is a significant shift
in the distribution of the IQ metric. The median value remains unchanged,
indicating no central tendency or spread change. However, the maximum value



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 17

Table 4 Results of QSmells run on the circuits before and after transpilation

None Original
Subject IQ IdQ LC ROC IQ IdQ LC ROC

adapt_vqe 0.00 0.00 0.87 0.00 5.00 19.00 0.00 7.00
ae 0.00 0.00 0.65 0.00 0.00 821.00 0.00 49.00
fae 0.00 0.00 0.61 4.00 0.00 0.00 0.10 4.00
grover 0.00 0.00 0.81 1.00 1.00 2.00 0.22 1.00
hhl 0.00 0.00 0.93 0.00 1.00 1.00 0.75 0.00
iae 0.00 0.00 0.78 4.00 0.00 0.00 0.22 4.00
ipe 0.00 0.00 0.96 0.00 0.00 0.00 0.96 0.00
mlae 0.00 0.00 0.53 15.00 0.00 0.00 0.01 15.00
phase_estimation 0.00 0.00 0.96 0.00 0.00 0.00 0.96 0.00
qaoa 1.00 1.00 0.81 0.00 0.00 0.00 0.81 0.00
qeom 0.00 0.00 0.87 0.00 0.00 19.00 0.01 0.00
qgan 0.00 0.00 0.87 0.00 0.00 0.00 0.75 0.00
qsvc 0.00 0.00 0.93 0.00 0.00 1.00 0.49 1.00
shor 0.00 0.00 0.08 N/A 15,650.00 15,650.00 0.00 N/A
vqc 0.00 0.00 0.87 0.00 0.00 1.00 0.39 2.00
vqd 0.00 0.00 0.93 0.00 0.00 0.00 0.70 0.00
vqe 0.00 0.00 0.93 0.00 0.00 0.00 0.70 0.00

Mean 0.06 0.06 0.79 1.50 921.00 971.41 0.41 5.18
Std 0.24 0.24 0.22 3.84 3,795.50 3,787.77 0.36 12.33
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25% 0.00 0.00 0.78 0.00 0.00 0.00 0.26 0.00
50% 0.00 0.00 0.87 0.00 0.00 0.00 0.39 0.50
75% 0.00 0.00 0.93 0.25 0.00 2.00 0.75 4.00
Max 1.00 1.00 0.96 49.00 15,650.00 15,650.00 0.96 15.00

has significantly increased to 15,650, representing a substantial change in the
upper range of IQ values after transpilation. The number of outliers has also
increased to three, and the proportion of data falling above the smelliness
threshold has changed.

For the IdQ metric before transpilation, the distribution is very similar to
the IQ metric, with a median and an IQR of zero. There is only one outlier,
which is also above the smelliness threshold. After transpilation, the boxplot
displays a median value of zero, indicating no change in central tendency. The
IQR remains at 2.0, indicating a narrow spread. However, the maximum value
has also increased to 15,650, indicating a significant change in the upper range
of IdQ values compared to the previous distribution. The number of outliers
and the data falling above the smelliness threshold have also increased.

The table reveals a median value of 0.87 when examining the LC metric
before transpilation. Approximately 25% of the data falls below 0.78, and 75%
falls below 0.93. The data has a moderate spread, indicated by the interquartile
range (IQR) of 0.15. There are only two outliers in the data. After transpilation,
the LC metric shows a median value of 0.39, which is slightly lower than the



18 De Stefano et al.

Table 5 Results of the Wilcoxon signed-rank test for the comparison of the pre- and post-
transpilation metrics.

Metric p-value Hedge’s g Interpretation

LC <0.01 1.20 Large
IQ 0.17 -0.34 Small
IdQ 0.02 -0.35 Small
ROC 0.10 -0.39 Small

previous distribution. The interquartile range (IQR) remains similar at 0.74,
indicating a consistent spread. Notably, the maximum value remains unchanged
at 0.96, indicating that the upper bound of LC values has not changed after
transpilation.

Lastly, the ROC metric shows a median zero value, with 25% of the data
below 0.25 and 75% below 15.0. The data has a substantial spread, with an IQR
of 14.75. There are two outliers with values of 4 and 15 above the smelliness
threshold. After transpilation, the ROC metric shows a median value of 0.5,
which is a decrease compared to the previous distribution. The IQR shows a
value of 4.0, indicating a consistent spread. However, the maximum value has
increased to 49, reflecting a notable change in the upper range of ROC values
after transpilation.

Table 5 presents the results of the Wilcoxon signed-rank tests used to
compare the pre- and post-treatment measures for specific metrics. We con-
ducted the tests under a two-sided alternative hypothesis and reported the
p-values and effect size for each metric. Significant p-values are reported in
bold. Based on the findings, the LC metric revealed a considerable gap between
the measurements taken before and after the treatment (p − value = 0.001),
with a remarkably positive effect size (g = 1.196), which suggests that the LC
values for the first group (pre-treatment) were distinctly higher than those for
the second group (post-treatment). The IdQ metric also showed a significant
difference (p−value = 0.020) but with a small negative difference (g = −0.354),
indicating that the IdQ values before treatment are lower than the ones af-
ter treatment. However, the IQ metric did not show any significant difference
(p−value = 0.170) despite the small negative effect size (g = −0.335). Likewise,
the ROC metric did not reveal any significant difference (p − value = 0.100),
with a slightly lower effect size (g = 0.393).

Having discussed the above data, we can reject H
(1)
0 (LC) and H

(1)
0 (IdQ) in

favor of their respective alternative ones. However, we failed to reject H
(1)
0 (IQ)

and H
(1)
0 (ROC).

Concerning the synthetic sample, Figure 5 shows the distribution of the
smelliness metrics computed on the synthetic samples. What is immediately
noticeable is that the values of the two distributions are almost the same, except
for some variations in LC and IdQ metrics. Indeed, this is also confirmed by
the descriptive statistics.



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 19

0.0 0.2 0.4 0.6 0.8 1.0
LC

Before

After

0 1 2 3 4 5
IQ

Before

After

0 5 10 15 20
IdQ

Before

After

0.0 2.5 5.0 7.5 10.0 12.5 15.0
ROC

Before

After

Fig. 5 Boxplot displaying the distribution of smelliness metrics before and after transpilation
for the synthetic samples.

Before transpilation, the LC metric mean was 0.8793, with a modest spread
around the mean. The majority of circuits had a consistent LC metric value.
After transpilation, the mean increased slightly to 0.8812 but with greater
variability. Some circuits had a significant decrease in the LC metric, with
a wider range of LC values post-transpilation. This scenario differs from the
original sample, where the variability of the LC metric was much more marked.

For the IQ metric, all the samples in both treatments are flattened on a
value of zero.

The value of IdQ before transpilation is consistently zero, indicating no
variation. In contrast, the after-transportation group has some variability, with
a low mean of 0.05 and a standard deviation of 0.22. Although most values are
zeros, the maximum value reaches 1.00, indicating a significant outlier. The
before group aligns closely with the after group, except for the outlier.

The mean ROC metric before transpilation was 0.03, indicating a low
average ROC value with some variability. However, most circuits had ROC
metrics close to zero. After transpilation, the mean ROC metric was slightly
lower at 0.01, and most circuits still had ROC metrics close to zero. This
scenario resembles what was observed with the original sample.

Focusing on Table 6 it is possible to observe that, differently from the
original sample, only the IdQ metric showed a statistically significant difference,
with a p-value of 0.035 and a slightly small negative effect size (g = −0.322).



20 De Stefano et al.

Table 6 Results of the Wilcoxon signed-rank test for comparing the pre- and post-
transpilation metrics of the synthetic samples.

Metric p-value Hedge’s g Interpretation

LC 0.12 -0.03 Negligible
IQ N/A N/A N/A
IdQ 0.04 -0.32 Small
ROC 0.35 0.14 Small

This was expected since descriptive statistics showed very similar values for all
the metrics. Hence, this data allows us to reject only H

(1)
0 (IdQ)

Main findings for RQ1

In the original sample, transpilation significantly impacts identifying
quantum-specific code smells, particularly in the Long Circuit (LC) and Idle
Qubits (IdQ) metrics. The difference in smelliness values before and after
transpilation is noteworthy. The LC metric decreases after transpilation,
while the IdQ metric increases. However, the IQ and ROC metrics show no
significant changes. In the synthetic and much bigger sample, transpilation
significantly affects only the IdQ metric.

4.2 RQ2: Impact of Different Gate Sets on the Smell Presence

Table 7, Table 8, Table 9, Table 10 show the values of the IQ, IdQ, LC, and
ROC metrics for each gate set, respectively, alongside descriptive statistics,
which provide valuable insights into the patterns observed for each metric.

The IQ metric distributions are mostly minimal for all treatments, con-
centrated around zero, suggesting that most data falls below the smelliness
threshold, except for outliers representing rare cases of IQ smell. The highest
IQ values are observed in the ibm_perth treatment (593.0), ibm_sherbrokee
(24,764.0), original (15,650.0), rpcx (583.0), and simple (12,008.0).

The IdQ metric distributions vary across treatments. Outliers in all treat-
ments indicate significant deviations in the IdQ values. The ibm_perth treat-
ment shows a consistent distribution of IdQ, while ibm_sherbrokee exhibits
greater variability. original primarily concentrates its IdQ values around zero,
while both rpcx and simple have stable distributions.

The LC metric highlights distinct differences among the treatments. The
median LC values for original, ibm_perth, and ibm_sherbrokee fall below
the smelliness threshold, with original at 0.39 and both ibm_perth and
ibm_sherbrokee at 0.46.

The ROC metric provides insights into the presence of repeated sets of oper-
ations. The ibm_perth treatment has an average ROC value of approximately
1.7, indicating a moderate count of repeated sets of operations. In contrast,



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 21

Table 7 IQ metric across different treatments with summary statistics

Subject original ibm_perth ibm_sherbrokee rpcx simple

adapt_vqe 5.00 5.00 0.00 5.00 5.00
ae 0.00 0.00 2.00 0.00 8.00
fae 0.00 0.00 0.00 0.00 0.00
grover 1.00 1.00 1.00 0.00 0.00
hhl 1.00 0.00 0.00 1.00 0.00
iae 0.00 0.00 0.00 0.00 0.00
ipe 0.00 0.00 0.00 0.00 0.00
mlae 0.00 0.00 0.00 0.00 0.00
phase_estimation 0.00 0.00 0.00 0.00 0.00
qaoa 0.00 0.00 0.00 0.00 0.00
qeom 0.00 0.00 0.00 17.00 14.00
qgan 0.00 0.00 0.00 0.00 0.00
qsvc 0.00 0.00 0.00 0.00 0.00
shor 15,650.00 593.00 24,764.00 583.00 12,008.00
vqc 0.00 0.00 0.00 0.00 0.00
vqd 0.00 0.00 4.00 0.00 0.00
vqe 0.00 0.00 4.00 0.00 0.00

Mean 921.00 35.23 1,457.35 35.64 707.94
Std 3,795.50 143.73 6,005.98 141.11 2,911.96
Min 0.00 0.00 0.00 0.00 0.00
25% 0.00 0.00 0.00 0.00 0.00
50% 0.00 0.00 0.00 0.00 0.00
75% 0.00 0.00 1.00 0.00 0.00
Max 15,650.00 593.00 24,764.00 583.00 12,008.00

ibm_sherbrokee has a lower average ROC value of around 1.1, suggesting
fewer repeated sets.

Table 11 showcases the results of the Friedman test, which aimed to compare
different target gate sets based on the four metrics.

Among the metrics analyzed, the LC, IdQ, and ROC metrics exhibit
significant differences among the target gate sets. The LC metric shows a
highly significant difference (p-value = 0.000), suggesting notable variations
in the performance of long circuits across different gate sets. Similarly, the
IdQ and ROC metrics display significant differences (textitp-value = 0.001
and 0.002, respectively), indicating variations in the behavior of idle qubits
and repeated sets of operations on the circuit based on the gate sets used. In
contrast, the IQ metric does not reveal a significant difference (textitp-value
= 0.690), implying that the choice of gate set does not strongly influence this
metric.



22 De Stefano et al.

Table 8 IdQ metric across different treatments with summary statistics

Subject original ibm_perth ibm_sherbrokee rpcx simple

adapt_vqe 19.00 15.00 23.00 10.00 22.00
ae 821.00 8.00 18.00 11.00 10.00
fae 0.00 0.00 0.00 0.00 0.00
grover 2.00 2.00 1.00 1.00 0.00
hhl 1.00 0.00 1.00 1.00 0.00
iae 0.00 0.00 0.00 0.00 0.00
ipe 0.00 0.00 0.00 0.00 0.00
mlae 0.00 0.00 0.00 0.00 0.00
phase_estimation 0.00 0.00 0.00 0.00 0.00
qaoa 0.00 0.00 0.00 0.00 0.00
qeom 19.00 25.00 35.00 17.00 14.00
qgan 0.00 0.00 2.00 0.00 0.00
qsvc 1.00 1.00 1.00 1.00 1.00
shor 15,650.00 11,664.00 24,764.00 11,503.00 12,008.00
vqc 1.00 1.00 2.00 1.00 1.00
vqd 0.00 0.00 4.00 0.00 0.00
vqe 0.00 0.00 4.00 0.00 0.00

Mean 971.41 689.17 1,462.05 679.11 709.17
Std 3,787.70 2,828.15 6,004.78 2,789.25 2,911.64
Min 0.00 0.00 0.00 0.00 0.00
25% 0.00 0.00 0.00 0.00 0.00
50% 0.00 0.00 1.00 0.00 0.00
75% 2.00 2.00 4.00 1.00 1.00
Max 15,650.00 11,664.00 24,764.00 11,503.00 12,008.00

The following presents the post-hoc analysis results for LC, IdQ, and ROC.
Since the Friedman test gave no statistically significant result for IQ, we did
not conduct a post-hoc analysis, and we failed to reject H

(2)
0 (IQ).

Table 12 shows the pairwise Wilcoxon signed-rank test results for comparing
different target gate sets regarding the LC metric. Among the comparisons
made for the LC metric, the pairs ibm_perth and rpcx and ibm_perth and
simple exhibited significant p-values of 0.038 and 0.021, respectively. These
significant textitp-values indicate notable differences in the LC metric between
these pairs of gate sets. When analyzing the effect sizes measured by Hedge’s
g, we observed values of -0.307 for the ibm_perth vs. rpcx comparison and
-0.379 for the ibm_perth vs. simple comparison, both indicating a tendency
of ibm_perth to have lower values (more smelly) than the other two. These
effect sizes suggest moderate to large differences in the LC metric between the
compared gate sets. On the other hand, the remaining comparisons did not yield
significant p-values, implying that we did not observe significant differences
in the LC metric between those specific pairs of gate sets. Nonetheless, it is
important to note that although the p-values were not significant, Hedge’s g



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 23

Table 9 LC metric across different treatments with summary statistics

Subject original ibm_perth ibm_sherbrokee rpcx simple

adapt_vqe 0.00 0.00 0.00 0.00 0.00
ae 0.00 0.03 0.00 0.03 0.02
fae 0.10 0.70 0.70 0.87 0.87
grover 0.22 0.53 0.49 0.53 0.70
hhl 0.75 0.53 0.49 0.75 0.81
iae 0.22 0.87 0.87 0.93 0.93
ipe 0.96 0.96 0.96 0.96 0.96
mlae 0.01 0.87 0.87 0.93 0.93
phase_estimation 0.96 0.96 0.96 0.96 0.96
qaoa 0.81 0.81 0.81 0.87 0.93
qeom 0.01 0.00 0.00 0.01 0.02
qgan 0.75 0.46 0.42 0.70 0.75
qsvc 0.49 0.37 0.24 0.42 0.49
shor 0.00 0.00 0.00 0.00 0.00
vqc 0.39 0.19 0.12 0.34 0.39
vqd 0.70 0.46 0.46 0.93 0.93
vqe 0.70 0.46 0.46 0.93 0.93

Mean 0.41 0.48 0.46 0.59 0.62
Std 0.36 0.34 0.35 0.38 0.38
Min 0.00 0.00 0.00 0.00 0.00
25% 0.01 0.19 0.12 0.34 0.39
50% 0.39 0.46 0.46 0.75 0.81
75% 0.75 0.81 0.81 0.93 0.93
Max 0.96 0.96 0.96 0.96 0.96

can still provide valuable information about the effect sizes. In this context,
effect sizes ranged from -0.471 to 0.182, indicating moderate differences in
the LC metric for those non-significant comparisons. In this scenario, we can
confidently reject H

(2)
0 (LC) in favor of the alternative hypothesis.

Table 13 presents the results of the pairwise Wilcoxon signed-rank test,
which serves as a post-hoc analysis for the IdQ (Idle Qubits) metric, comparing
different target gate sets. The p-values obtained after applying the Bonferroni
correction are examined to determine significant differences between the pairs,
and the effect size, measured by Hedge’s g, provides insights into the magnitude
of these differences. None of the pairwise comparisons for the IdQ metric reached
statistical significance, as all p-values are above the threshold of 0.05. The
Bonferroni correction, which adjusts for multiple comparisons, likely contributed
to this outcome. The relatively small differences between the gate sets may
not have surpassed the stringent significance threshold. Furthermore, when



24 De Stefano et al.

Table 10 ROC metric across different treatments with summary statistics

Subject original ibm_perth ibm_sherbrokee rpcx simple

adapt_vqe 7.00 3.00 1.00 3.00 0.00
ae 49.00 0.00 1.00 0.00 0.00
fae 4.00 1.00 1.00 0.00 0.00
grover 1.00 0.00 0.00 0.00 1.00
hhl 0.00 2.00 1.00 0.00 0.00
iae 4.00 0.00 0.00 0.00 0.00
ipe 0.00 0.00 0.00 0.00 0.00
mlae 15.00 0.00 0.00 0.00 0.00
phase_estimation 0.00 0.00 0.00 0.00 0.00
qaoa 0.00 0.00 0.00 0.00 0.00
qeom 0.00 10.00 3.00 0.00 0.00
qgan 0.00 1.00 1.00 0.00 0.00
qsvc 1.00 2.00 2.00 1.00 1.00
shor N/A N/A N/A N/A N/A
vqc 2.00 4.00 3.00 2.00 2.00
vqd 0.00 2.00 2.00 0.00 0.00
vqe 0.00 2.00 2.00 0.00 0.00

Mean 5.18 1.68 1.06 0.37 0.25
Std 12.33 2.54 1.06 0.88 0.57
Min 0.00 0.00 0.00 0.00 0.00
25% 0.00 0.00 0.00 0.00 0.00
50% 0.50 1.00 1.00 0.00 0.00
75% 4.00 2.00 2.00 0.00 0.00
Max 49.00 10.00 3.00 3.00 2.00

Table 11 Results of the Friedman test for the comparison among the different target gate
sets. Significant p-values are highlighted in bold.

Metric Q p-value

LC 31.88 <0.01
IQ 2.25 0.69
IdQ 19.66 <0.01
ROC 17.08 <0.01

considering the effect sizes measured by Hedge’s g, the values range from
-0.161 to 0.163, indicating small effect sizes. These values suggest that the
observed differences in the IdQ metric between the compared gate sets are
modest. Despite this, since the Friedman test gave a significant result, we can



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 25

Table 12 Results of the pairwise Wilcoxon signed-rank test for comparing the different
target gate sets for the LC metric. Significant p-values are highlighted in bold.

Gate Set A Gate Set B p-value Hedge’s g Interpretation

ibm_perth ibm_sherbrokee 0.34 0.06 Small
ibm_perth original 1.00 0.18 Small
ibm_perth rpcx 0.04 -0.31 Small
ibm_perth simple 0.02 -0.38 Small
ibm_sherbrokee original 1.00 0.12 Small
ibm_sherbrokee rpcx 0.02 -0.36 Small
ibm_sherbrokee simple 0.02 -0.43 Small
original rpcx 0.45 -0.47 Medium
original simple 0.06 -0.54 Medium
rpcx simple 0.21 -0.07 Small

Table 13 Results of the pairwise Wilcoxon signed-rank test for the comparison among the
different target gate sets for the IdQ metric. Significant p-values are highlighted in bold.

Gate Set A Gate Set B p-value Hedge’s g Interpretation

ibm_perth ibm_sherbrokee 0.11 -0.16 Small
ibm_perth original 1.00 -0.08 Negligible
ibm_perth rpcx 1.00 0.00 Negligible
ibm_perth simple 1.00 -0.01 Negligible
ibm_sherbrokee original 1.00 0.10 Negligible
ibm_sherbrokee rpcx 0.14 0.16 Small
ibm_sherbrokee simple 0.06 0.16 Small
original rpcx 0.59 0.09 Negligible
original simple 1.00 0.08 Negligible
rpcx simple 1.00 -0.01 Negligible

reject H
(2)
0 (IdQ) in favor of the alternative hypothesis, although some deeper

analyses and considerations should be carried out.
The pairwise Wilcoxon signed-rank test results comparing different target

gate sets for the ROC metric are shown in Table 14. None of the comparisons
resulted in p-values below the significance threshold of 0.05, indicating no
statistically significant differences between the gate sets. It is important to
note that the Bonferroni correction was applied, which adjusts the significance
threshold to account for multiple comparisons. The differences between the
distributions may also have contributed to the lack of statistical significance.
Despite the absence of significant findings, the effect sizes measured by Hedge’s
g for the non-significant comparisons are worth noting. These effect sizes ranged
from -0.459 to 0.926, suggesting small to moderate differences in the ROC
metric between the gate sets. Although these differences were not statistically
significant, they may still be practically relevant. Nevertheless, the Friedman
test produced a significant result, allowing us to reject H

(2)
0 (ROC) in favor



26 De Stefano et al.

Table 14 Results of the pairwise Wilcoxon signed-rank test for the comparison among the
different target gate sets for the ROC metric. Significant p-values are highlighted in bold.

Gate Set A Gate Set B p-value Hedge’s g Interpretation

ibm_perth ibm_sherbrokee 1.00 0.31 Small
ibm_perth original 1.00 -0.38 Small
ibm_perth rpcx 0.13 0.67 Medium
ibm_perth simple 0.11 0.76 Medium
ibm_sherbrokee original 1.00 -0.46 Medium
ibm_sherbrokee rpcx 0.47 0.69 Medium
ibm_sherbrokee simple 0.09 0.93 Large
original rpcx 0.34 0.54 Medium
original simple 0.58 0.55 Medium
rpcx simple 1.00 0.16 Small

of the alternative hypothesis. However, further analysis and consideration are
necessary.

Concerning the synthetic data, Figure 6 depicts the distribution of the met-
rics among the different target gate sets. The IQ metric varies across different
gate sets. The ibm_perth and ibm_sherbrokee sets have moderate variability,
with most circuits having low IQ values. The original and simple sets have
no variability, with all circuits having minimal or no IQ values. The rpcx set
has lower variability than ibm_perth and ibm_sherbrokee, with most circuits
having low IQ values. Comparing these results with the original sample, it is
possible to note that the distributions in the synthetic data are generally con-
centrated around lower values, with most circuits across all treatments having
minimal IQ values. This is particularly evident in the original and simple
sets, which show no variability. In contrast, the ibm_perth, ibm_sherbrokee,
and rpcx sets display some degree of variability, although most of their circuits
still have low IQ values. The presence of maximum values at 4.0 and 2.0 in the
ibm_perth and rpcx sets, respectively, suggests the existence of a few outliers
with slightly higher IQ metrics.

IdQ metric analysis shows variability across different sets. ibm_perth has
a mean IdQ of 0.35, ibm_sherbrokee has a slightly higher average IdQ of
0.47, original has a lower average IdQ of 0.05, and rpcx has a mean IdQ
of 0.2. Both original and simple have an average IdQ of 0.05, indicating
minimal variability. Comparing these results with the original sample, the
IdQ metric distributions show variability across treatments. While outliers
are present in all treatments, indicating significant deviations, the ibm_perth
treatment demonstrates a relatively consistent distribution of IdQ. In contrast,
ibm_sherbrokee exhibits more considerable variability. original primarily
concentrates its IdQ values around zero, similar to simple. Both rpcx and
simple maintain stable distributions with minimal extremes.

Figure 6 shows that the mean and median values of LC were higher in all
treatments as compared to the original dataset. The original treatment had



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 27

original ibm_perth ibm_sherbrooke rpcx simple

0.00

0.25

0.50

0.75

1.00

LC

original ibm_perth ibm_sherbrooke rpcx simple
0

2

4

IQ

original ibm_perth ibm_sherbrooke rpcx simple
0

5

10

15

20

Id
Q

original ibm_perth ibm_sherbrooke rpcx simple
0

5

10

15

R
O

C

Fig. 6 Boxplot displaying the distribution of smelliness metrics among the different gate
sets for the synthetic samples.

the highest mean LC value and the smallest standard deviation. The ibm_perth
and rpcx treatments had a moderate variability, while ibm_sherbrokee is the
most variable.

ROC over the various gate sets reveals differences in the presence of repeated
sets of operations across groups. The ibm_perth has a mean ROC of 0.19 with
a standard deviation of 0.39, while ibm_sherbrokee has a higher average ROC
of 0.26. In contrast, original has a much lower average ROC of 0.01, while the
rpcx treatment shows a uniform ROC distribution with an average and standard
deviation of zero. simple treatment mirrors the pattern of the original group.
Comparing this result with the original sample, it is possible to note some
contrasts in the ROC metric. The ibm_perth treatment, with an average
ROC value of approximately 1.70 in the original data, indicates a moderate
count of repeated sets of operations. In contrast, ibm_sherbrokee, with a
lower average ROC value of around 1.10, suggests fewer repeated sets. This



28 De Stefano et al.

Table 15 Results of the Friedman test for comparing the different target gate sets of the
synthetic samples. Significant p-values are highlighted in bold.

Metric Q p-value

LC 207.27 <0.01
IQ 12.03 0.02
IdQ 45.86 <0.01
ROC 70.35 <0.01

Table 16 Results of the pairwise Wilcoxon signed-rank test for comparing the different
target gate sets for the IQ metric on the synthetic data. Significant adjusted p-values are
highlighted in bold.

Gate Set A Gate Set B p-adjust Hedge’s g Interpretation

ibm_perth ibm_sherbrokee 6.75 -0.06 Negligible
ibm_perth original 1.02 0.24 Small
ibm_perth rpcx 5.81 0.04 Negligible
ibm_perth simple 1.02 0.24 Small
ibm_sherbrokee original <0.01 0.30 Small
ibm_sherbrokee rpcx 5.66 0.11 Small
ibm_sherbrokee simple <0.01 0.30 Small
original rpcx <0.01 -0.31 Small
original simple N/A N/A N/A
rpcx simple <0.01 0.31 Small

comparison highlights differences in the complexity and structure of quantum
circuits across different treatments, with some treatments like ibm_perth and
ibm_sherbrokee showing more complexity in terms of repeated operations
than others like original and simple.

Table 15 depicts the results of the Friedman test for all the metrics computed
on the synthetic dataset, among all the gate sets. It is immediately possible to
note that differently from the original sample, for all the metrics a statistically
significant result was achieved, with very low p-values, while with the original
data, the IQ metric was not significant.

Table 16 shows the post-hoc analysis results for the IQ metric. The metric
was not subject to post-hoc analysis in the original data because the Friedman
test did not produce a statistically significant result. The table shows that only
four comparisons produced a statistically significant result: ibm_sherbrokee
vs. original, ibm_sherbrokee vs. simple, original vs. rpcx, and rpcx vs.
simple. In all cases, the effect size was between 0.20 and 0.40, indicating a
moderate positive difference. Hence, this data allows us to reject H

(2)
0 (IQ)

Table 17 depicts the post-hoc analysis results for the IdQ metrics on the
synthetic dataset. These results differed from the original data presented in
Table 13. In this case, all treatments except original and simple had an
identical distribution, which resulted in no significant findings. However, all



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 29

Table 17 Results of the pairwise Wilcoxon signed-rank test for comparing the different
target gate sets for the IdQ metric on the synthetic data. Significant adjusted p-values are
highlighted in bold.

Gate Set A Gate Set B p-adjust Hedge’s g Interpretation

ibm_perth ibm_sherbrokee 0.28 -0.09988 Negligible
ibm_perth original <0.01 0.38470 Small
ibm_perth rpcx <0.01 0.17240 Small
ibm_perth simple <0.01 0.38470 Small
ibm_sherbrokee original <0.01 0.44677 Medium
ibm_sherbrokee rpcx <0.01 0.26570 Small
ibm_sherbrokee simple <0.01 0.44677 Medium
original rpcx <0.01 -0.33778 Small
original simple N/A N/A N/A
rpcx simple <0.01 0.33778 Small

Table 18 Results of the pairwise Wilcoxon signed-rank test for comparing the different
target gate sets for the LC metric on the synthetic data. Significant adjusted p-values are
highlighted in bold.

Gate Set A Gate Set B p-adjust Hedge’s g Interpretation

ibm_perth ibm_sherbrokee <0.01 0.134524 Small
ibm_perth original <0.01 -0.558788 Medium
ibm_perth rpcx <0.01 -0.278662 Small
ibm_perth simple <0.01 -0.558788 Medium
ibm_sherbrokee original <0.01 -0.624340 Medium
ibm_sherbrokee rpcx <0.01 -0.385460 Small
ibm_sherbrokee simple <0.01 -0.624340 Medium
original rpcx <0.01 0.296363 Small
original simple N/A N/A N/A
rpcx simple <0.01 -0.296363 Small

treatments except ibm_perth vs. ibm_sherbrokee and original vs. rpcx
showed a moderate positive effect size, with Hedges’ g values ranging between
0.20 and 0.50 (in absolute value). This indicates that there was a noticeable
difference between the treatments. Hence, this data allows us to reject H

(2)
0 (Idq)

Table 18 presents the outcomes of the post-hoc analysis for the LC metric. It
is noticeable that in comparison to the results reported in Table 12, where only
ibm_perth vs. rpcx, ibm_perth vs. simple, ibm_sherbrokee vs. rpcx and
ibm_sherbrokee vs. simple showed a statistically significant result with mod-
erate negative effect size, in this scenario, ibm_perth vs. original, ibm_perth
vs. ibm_sherbrokee, and ibm_sherbrokee vs. original were also statistically
significant. Not only were the p-values remarkably low, but also the effect sizes
were moderate to high, ranging between 0.30 and 0.60 (in absolute values). All
effect sizes were negative except for ibm_perth vs. ibm_sherbrokee. Hence,
this data allows us to reject H

(2)
0 (LC)



30 De Stefano et al.

Table 19 Results of the pairwise Wilcoxon signed-rank test for comparing the different
target gate sets for the ROC metric on the synthetic data. Significant adjusted p-values are
highlighted in bold.

Gate Set A Gate Set B p-adjust Hedge’s g Interpretation

ibm_perth ibm_sherbrokee 0.83 -0.14 Small
ibm_perth original <0.01 0.62 Medium
ibm_perth rpcx <0.01 0.68 Medium
ibm_perth simple <0.01 0.62 Medium
ibm_sherbrokee original <0.01 0.58 Medium
ibm_sherbrokee rpcx <0.01 0.61 Medium
ibm_sherbrokee simple <0.01 0.58 Medium
original rpcx 3.17 0.14 Small
original simple N/A N/A N/A
rpcx simple 3.17 -0.14 Small

Table 19 presents the outcomes of the post-hoc analysis for the ROC metric.
It is noticeable that in comparison to the results reported in Table 14, where
no statistically significant result was found, here we have all but ibm_perth
vs. ibm_sherbrokee, original vs. rpcx, original vs. simple, and rpcx vs.
simple showing a statistically significant result. Like in the case previously
discussed, all the p-values are remarkably low, and effect size values are fairly
large, with values ranging between 0.50 and 0.60 (in absolute values) and
always positive. Hence, this data allows us to reject H

(2)
0 (ROC)

Main findings for RQ2

When converting quantum circuits to different gate sets, there are significant
variations in quantum-specific code issues. LC, IdQ, and ROC metrics
demonstrate notable differences among gate sets, indicating that smelliness
can relate to the executing environment. These differences are even more
significant in the synthetic sample, where LC, IdQ, ROC, and IQ metrics
have notable differences when converting to different gate sets.

5 Discussion and Lessons Learnt

5.1 On the Effects of Transpilation on the Smell Presence

The study unveils significant findings regarding the impact of transpilation
on circuit smells, shedding light on the intricate relationship between the two.
The results demonstrate a notable distinction in the presence of smells before
and after transpilation, at least for some specific smells. Remarkably, the
study reveals that circuits initially unaffected by any smells can acquire them
post-transpilation, with the effect particularly pronounced for the LC smell.



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 31

Table 20 Results of the comparison of the number of pre- and post-transpilation smells by
applying the thresholds [14].

Smell Before After

LC 1 10
IQ 1 4
IdQ 1 8
ROC 3 6

There seems to be a noticeable rise in smells following transpilation, which
can be attributed to the circuit’s changes during the process. In particular, the
LC smell appears very sensitive to transpilation because it considers aspects
that undergo significant alterations during the process. These changes can
potentially upset the circuit’s delicate equilibrium, resulting in new smells not
present beforehand.

q

1c1

/2
RY Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

0

Fig. 7 MLAE circuit representation before transpilation

To explain this phenomenon, we consider a circuit named “mlae”. The circuit
initially had specific metrics (i.e., Width 2, Depth 18, 1 Qubit, 1 Classical
bit, and 18 Gates), which can be easily inferred by Figure 7. However, after
transpilation, significant metric changes resulted in a Width of 2, a Depth of
130, 1 Qubit, 1 Classical bit, and 130 Gates, which can be observed in Figure 8.
The non-transpiled version had an LC value of 0.53; hence, the LC smell did not
affect it. In contrast, the transpiled version had an LC value of 0.01, indicating
a substantial increase in the intensity of the LC smell.

Furthermore, while other smells experience changes after transpilation, they
are comparatively less affected. Intriguingly, the IQ smell, which pertains to
the initialization of the circuit, remains unaffected by transpilation since the
initialization is preserved throughout the process. This observation suggests that
certain smells are more resilient to the transformations induced by transpilation,
allowing them to persist or remain absent even after the circuit undergoes
significant modifications.

As Table 20 depicts, by applying on the metrics the thresholds that allow
the detection of the smells [14], it is possible to note how the number of smelly
circuits changes before and after transpilation. Despite the variation can be
statistically significant or not, it is possible to appreciate such change. The case
of LC smell is the most evident, with a variation of nine more smelly circuits
after the transpilation.



32 De Stefano et al.

q

1c1

q

1c1

q

1c1

q

1c1

q

1c1

q

1c1

q

1c1

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0, 
U2 X

0, 
U2

/2, 0.0, 0.0
U3 X U1 X

/2, 0.0, 0.0
U3

0

Fig. 8 MLAE circuit representation after transpilation to original gate set.

The implications of these findings are significant, as they suggest that a
circuit that initially exhibits favorable characteristics and is deemed good by
various metrics can unexpectedly acquire smells following transpilation. This
predicament places developers in a powerless position, unable to control or
prevent the emergence of these smells despite their best efforts in circuit design
and optimization. This result acquires even more importance if we reflect on the
possible impacts of such smells. For example, the LC and ROC smells, which
imply a deeper circuit, can seriously impact the correctness of the execution of
the circuit. Deeper circuits are more prone to errors during their execution in a
real quantum machine [5, 14, 23]. Therefore, further investigation is imperative
to comprehend the impact and potential harm these smells can inflict.

¤ Take Away Message. Transpilation can cause circuit smells, especially
LC smell. Some previously smell-free circuits may develop smells after tran-
spilation. IQ smell is largely unaffected. Further exploration is needed to
understand the impact and consequences of these smells. Developers may
have limited ability to prevent their appearance.



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 33

Table 21 Results of the comparison among the different target gate sets for the different
metrics.

smell original ibm_perth ibm_sherbrokee rpcx simple

LC 10 9 11 6 6
IQ 4 3 5 4 4
IdQ 8 7 11 8 6
ROC 6 7 5 2 1

5.2 On the Impact of Different Gate Sets on the Smell Presence

The investigation demonstrates that selecting gate sets when transpiling quan-
tum circuits can significantly impact the level of smelliness and the number
and type of smells in the circuits. The presence and severity of smells vary
depending on the type of gate set used. Developers must pay particular atten-
tion to LC smells as they are susceptible to gate set selection. This result is
evident if we consider Table 21, where similarly to Table 20, we applied the
smells thresholds [14] on each metric to detect the smelly circuits. Indeed, LC
is the smell showing more variation in affected circuits given the target gate
set. The situation for IdQ and ROC is similar. Different gate sets use different
fundamental gates, which can significantly affect the structure of the transpiled
circuits and disrupt the interactions between qubits and gates. Conversely,
a gate set choice does not significantly affect IQ smells, demonstrating that
the transpiler’s optimization strategies can handle idle qubits regardless of
the selected gate set. However, developers have limited control over gate set
selection, usually determined by the underlying hardware and software stack.
Therefore, it is crucial to understand the impact of the gate set choice on
circuit smelliness to anticipate potential issues and make informed decisions
during development.

Future studies should comprehensively evaluate the impact of the gate set
selection on circuit smelliness, including a broader range of gate sets, additional
metrics, and a more extensive collection of quantum circuits. Researchers
should also consider hardware characteristics, such as machine architecture,
noise levels, and error rates, to fully understand the interplay between gate sets,
hardware characteristics, and circuit smells. Researchers can develop practical
tools and techniques for optimizing quantum circuits by understanding these
factors more deeply. It is crucial to exercise caution when evaluating the concept
of quantum-specific smells due to significant variations in smelliness metrics and
the number of smells observed across different gate sets. Although identified
smells offer valuable insights, the variability introduced by different gate sets
suggests that the concept of smells may have little universal applicability or
standardization. Therefore, future research should refine and contextualize the
concept of quantum-specific smells, considering the specific characteristics and
constraints associated with different gate sets and hardware platforms.



34 De Stefano et al.

¤ Take Away Message. The choice of gate set can affect the level and
types of smells in quantum circuits, particularly LC smells. Developers should
consider this impact, and further research is needed to refine the concept of
quantum-specific smells for different gate sets and hardware.

6 Conclusion and Future Work

This study aimed to investigate the effect of transpilation on quantum-specific
smells and how different gate sets impact them. We aimed to answer two
research questions employing the original dataset of Chen et al. [14] comprising
17 circuits and one created by generating 100 synthetic circuits.

On the one hand, we examined the effect of transpilation on the presence
of quantum-specific code smells. In particular, we investigated how transpiling
can impact the metrics used by QSmell to detect the smells. The results
showed these metrics could be impacted, particularly LC and IdQ. However,
IdQ showed this significance over the two analyzed data samples, while LC
was only on the original one.

On the other hand, we investigated the effect of transpiling to different gate
sets on the presence of quantum-specific code smells. The results showed that
the choice of gate set significantly impacts the presence and severity of smells
in transpiled circuits. Different gate sets introduce distinct fundamental gates
and optimization strategies, leading to circuit structural changes. The results
obtained on the synthetic data highlighted this phenomenon even more.

These findings have significant implications for developers, as they highlight
the limited control over the emergence of smells in transpiled circuits. Developers
must be aware of the potential for circuit smells to arise after transpilation and
carefully consider the choice of the gate set to mitigate their impact whenever
possible. Indeed, further research is needed to assess the presence of the smell
by creating a more solid and validated set of rules and thresholds, which sparks
from the initial definition provided by Chen et al. [14]. Further research is needed
to fully understand the consequences of these smells and their potential harm to
quantum computations. Furthermore, the variability observed across different
gate sets shows the need for careful evaluation and contextualization when
applying the concept of quantum-specific smells, considering the characteristics
and constraints associated with each gate set and hardware platform.

Data Availability

The datasets generated during and/or analysed during the current study are
available in the figshare repository:
https://doi.org/10.6084/m9.figshare.23799210



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 35

Acknowledgements

This work has been partially supported by project "QUASAR: QUAntum
software engineering for Secure, Affordable, and Reliable systems", grant
2022T2E39C, under the PRIN 2022 MUR program funded by by the EU
- NGEU.

References

1. Api reference for qiskit.circuit.random.random_circuit. https:
//docs.quantum.ibm.com/api/qiskit/0.19/qiskit.circuit.random.
random_circuit

2. Qiskit 0.43.0 documentation. https://qiskit.org/documentation/
3. Transpiler (qiskit.transpiler) — Qiskit 0.43.1 documentation. https://

qiskit.org/documentation/apidoc/transpiler.html
4. Ahmad, A., Khan, A.A., Waseem, M., Fahmideh, M., Mikkonen, T.: To-

wards process centered architecting for quantum software systems. In: 2022
IEEE International Conference on Quantum Software (QSW), pp. 26–31.
IEEE (2022)

5. Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim,
Y., Bucher, D., Cabrera-Hernández, F.J., Carballo-Franquis, J., Chen,
A., Chen, C.F., et al.: Qiskit: An open-source framework for quantum
computing. Accessed on: Mar 16 (2019)

6. Arcelli Fontana, F., Mäntylä, M.V., Zanoni, M., Marino, A.: Comparing
and experimenting machine learning techniques for code smell detection.
Empirical Softw. Engg. 21(3), 1143–1191 (2016)

7. Arcoverde, R., Garcia, A., Figueiredo, E.: Understanding the longevity of
code smells: preliminary results of an explanatory survey. In: Workshop
on Refactoring Tools, pp. 33–36 (2011)

8. Armstrong, R.A.: When to use the Bonferroni correction. Ophthalmic and
Physiological Optics 34(5), 502–508 (2014). DOI 10.1111/opo.12131

9. Awan, U., Hannola, L., Tandon, A., Goyal, R.K., Dhir, A.: Quantum
computing challenges in the software industry. a fuzzy ahp-based approach.
Information and Software Technology 147, 106896 (2022)

10. García de la Barrera, A., García-Rodríguez de Guzmán, I., Polo, M.,
Piattini, M.: Quantum software testing: State of the art. Journal of
Software: Evolution and Process p. e2419 (2021)

11. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric ap-
proach. Encyclopedia of Software Engineering (1994)

12. Campos, J., Souto, A.: Qbugs: A collection of reproducible bugs in quan-
tum algorithms and a supporting infrastructure to enable controlled
quantum software testing and debugging experiments. arXiv preprint
arXiv:2103.16968 (2021)



36 De Stefano et al.

13. Chatzigeorgiou, A., Manakos, A.: Investigating the evolution of bad smells
in object-oriented code. In: International Conference on the Quality of
Information and Communications Technology, pp. 106–115. IEEE (2010)

14. Chen, Q., Câmara, R., Campos, J., Souto, A., Ahmed, I.: The smelly
eight: An empirical study on the prevalence of code smells in quantum
computing. In: 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE) (2023)

15. Cunningham, W.: The wycash portfolio management system. OOPSLA-92
(1992)

16. De Stefano, M., Pecorelli, F., Di Nucci, D., Palomba, F., De Lucia, A.:
Software engineering for quantum programming: How far are we? Journal of
Systems and Software 190, 111326 (2022). DOI 10.1016/j.jss.2022.111326

17. De Stefano, M., Pecorelli, F., Di Nucci, D., Palomba, F., De Lucia, A.: The
Quantum Frontier of Software Engineering: A Systematic Mapping Study
(2023). DOI 10.48550/arXiv.2305.19683

18. Di Nucci, D., Palomba, F., Tamburri, D., Serebrenik, A., De Lucia, A.:
Detecting code smells using machine learning techniques: Are we there yet?
In: Int. Conf. on Software Analysis, Evolution, and Reengineering (2018)

19. El aoun, M.R., Li, H., Khomh, F., Openja, M.: Understanding quantum
software engineering challenges: An empirical study on stack exchange
forums and github issues. In: 37th International Conference on Software
Maintenance and Evolution (ICSME) (2021)

20. Fowler, M., Beck, K.: Refactoring: Improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc. (1999)

21. Friedman, M.: The Use of Ranks to Avoid the Assumption of Normality
Implicit in the Analysis of Variance. Journal of the American Statistical
Association 32(200), 675–701 (1937). DOI 10.1080/01621459.1937.10503522

22. Hedges, L.V.: Distribution Theory for Glass’s Estimator of Effect size and
Related Estimators. Journal of Educational Statistics 6(2), 107–128 (1981).
DOI 10.3102/10769986006002107

23. Hoare, T., Milner, R.: Grand challenges for computing research. The
Computer Journal 48(1), 49–52 (2005)

24. Knight, W.: Serious quantum computers are finally here. what are we going
to do with them. MIT Technology Review. Retrieved on October 30, 2018
(2018)

25. Lin, T., Fu, X., Chen, F., Li, L.: A novel approach for code smells de-
tection based on deep leaning. In: International Conference on Applied
Cryptography in Computer and Communications, pp. 171–174. Springer
(2021)

26. Liu, H., Jin, J., Xu, Z., Bu, Y., Zou, Y., Zhang, L.: Deep learning based
code smell detection. Transactions on Software Engineering (2019)

27. Moguel, E., Berrocal, J., García-Alonso, J., Murillo, J.M.: A roadmap
for quantum software engineering: Applying the lessons learned from the
classics. In: Q-SET@ QCE, pp. 5–13 (2020)

28. Moha, N., Gueheneuc, Y.G., Duchien, L., Le Meur, A.F.: Decor: A method
for the specification and detection of code and design smells. Transactions



An Empirical Study Into the Effects of Transpilation on Quantum Circuit Smells 37

on Software Engineering 36(1), 20–36 (2009)
29. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Infor-

mation, 10th anniversary ed edn. Cambridge University Press, Cambridge
; New York (2010)

30. Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., De Lucia, A.:
A large-scale empirical study on the lifecycle of code smell co-occurrences.
Information and Software Technology 99 (2018)

31. Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D., De Lu-
cia, A.: Mining version histories for detecting code smells. Transactions on
Software Engineering 41(5), 462–489 (2014)

32. Palomba, F., Panichella, A., De Lucia, A., Oliveto, R., Zaidman, A.: A
textual-based technique for smell detection. In: International conference
on program comprehension (ICPC), pp. 1–10. IEEE (2016)

33. Paltenghi, M., Pradel, M.: Bugs in quantum computing platforms: an
empirical study. Proceedings of the ACM on Programming Languages
6(OOPSLA1), 1–27 (2022)

34. Pecorelli, F., Di Nucci, D., De Roover, C., De Lucia, A.: A large empirical
assessment of the role of data balancing in machine-learning-based code
smell detection. Journal of Systems and Software p. 110693 (2020)

35. Pecorelli, F., Lujan, S., Lenarduzzi, V., Palomba, F., De Lucia, A.: On the
adequacy of static analysis warnings with respect to code smell prediction.
Empirical Software Engineering 27(3), 1–44 (2022)

36. Pecorelli, F., Palomba, F., Di Nucci, D., De Lucia, A.: Comparing heuristic
and machine learning approaches for metric-based code smell detection. In:
International Conference on Program Comprehension (ICPC), pp. 93–104.
IEEE (2019)

37. Pecorelli, F., Palomba, F., Khomh, F., De Lucia, A.: Developer-driven
code smell prioritization. In: International Conference on Mining Software
Repositories (2020)

38. Piattini, M., Peterssen, G., Pérez-Castillo, R.: Quantum computing: A new
software engineering golden age. ACM SIGSOFT Software Engineering
Notes 45(3), 12–14 (2020)

39. Piattini, M., Peterssen, G., Pérez-Castillo, R., Hevia, J.L., Serrano, M.A.,
Hernández, G., de Guzmán, I.G.R., Paradela, C.A., Polo, M., Murina,
E., et al.: The talavera manifesto for quantum software engineering and
programming. In: QANSWER, pp. 1–5 (2020)

40. Piattini, M., Serrano, M., Perez-Castillo, R., Petersen, G., Hevia, J.L.:
Toward a quantum software engineering. IT Professional 23(1), 62–66
(2021)

41. Shi, Y., Gokhale, P., Murali, P., Baker, J.M., Duckering, C., Ding, Y.,
Brown, N.C., Chamberland, C., Javadi-Abhari, A., Cross, A.W., et al.:
Resource-efficient quantum computing by breaking abstractions. Proceed-
ings of the IEEE 108(8), 1353–1370 (2020)

42. Tsantalis, N., Chatzigeorgiou, A.: Identification of move method refactoring
opportunities. Transactions on Software Engineering 35(3), 347–367 (2009)



38 De Stefano et al.

43. Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia,
A., Poshyvanyk, D.: An empirical investigation into the nature of test
smells. In: International conference on automated software engineering, pp.
4–15 (2016)

44. Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia,
A., Poshyvanyk, D.: When and why your code starts to smell bad. In:
International Conference on Software Engineering, vol. 1, pp. 403–414.
IEEE (2015)

45. Wilcoxon, F.: Individual Comparisons by Ranking Methods. In: S. Kotz,
N.L. Johnson (eds.) Breakthroughs in Statistics: Methodology and Distri-
bution, Springer Series in Statistics, pp. 196–202. Springer, New York, NY
(1992). DOI 10.1007/978-1-4612-4380-9_16

46. Williams, C.P.: Quantum Gates. In: C.P. Williams (ed.) Explorations in
Quantum Computing, Texts in Computer Science, pp. 51–122. Springer,
London (2011). DOI 10.1007/978-1-84628-887-6_2

47. Yarkoni, S., Raponi, E., Bäck, T., Schmitt, S.: Quantum annealing for
industry applications: Introduction and review. Reports on Progress in
Physics (2022)

48. Zhao, J.: Quantum software engineering: Landscapes and horizons. arXiv
preprint arXiv:2007.07047 (2020)


