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ABSTRACT
Software quality is critical, as low quality, or "Code smell," increases technical debt and maintenance
costs. There is a timely need for a collaborative model that detects and manages code smells by learning
from diverse and distributed data sources while respecting privacy and providing a scalable solution for
continuously integrating new patterns and practices in code quality management. However, the current
literature is still missing such capabilities. This paper addresses the previous challenges by proposing a
Federated Learning Code Smell Detection (FedCSD) approach, specifically targeting "God Class," to enable
organizations to train distributed ML models while safeguarding data privacy collaboratively. We conduct
experiments using manually validated datasets to detect and analyze code smell scenarios to validate our
approach. Experiment 1, a centralized training experiment, revealed varying accuracies across datasets,
with dataset two achieving the lowest accuracy (92.30%) and datasets one and three achieving the highest
(98.90% and 99.5%, respectively). Experiment 2, focusing on cross-evaluation, showed a significant drop
in accuracy (lowest: 63.80%) when fewer smells were present in the training dataset, reflecting technical
debt. Experiment 3 involved splitting the dataset across 10 companies, resulting in a global model accuracy
of 98.34%, comparable to the centralized model’s highest accuracy. The application of federated ML
techniques demonstrates promising performance improvements in code-smell detection, benefiting both
software developers and researchers.

INDEX TERMS Software Quality, Technical Debit, Federated Learning, Privacy-preserving, Code Smell
Detection.

I. INTRODUCTION

Software quality assurance is a major aspect that occupies
the minds of software engineers and the software engineering
community at large. Consequently, there is a continuous need
to maintain the quality of the software, given that it is a
determinant in many aspects during and after development.
Specifically, software quality assurance determines and de-
tects the software pieces that suffer from low quality in
design or programming. These pieces are known as "Code
Smells" [1]. The existence of code smells does not produce
errors during compilation or execution [2] , they also nega-

tively influence the software quality factors [3]–[5].

Consequently, the availability of the code smells increases
the time and effort required to maintain the software. This ex-
tra time and effort is known as technical debt [6], which can
be indicated by the presence of code smells. Several terms
and concepts have been used to denote code smells, such
as antipatterns, disharmonies, design flaws, design defects,
code anomalies, design smells, etc [4]. Code smells can be
identified in various software components, from instructions
to subsystems, and can influence different levels of software
granularity, such as methods, classes, and the whole system.
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Code smell detection is an efficient way to decrease mainte-
nance costs and support the efforts of software developers
to improve the quality of software. Due to the increasing
size and complexity of the developed software systems, more
automated approaches are needed to improve the activity of
code smell detection.

At present, several approaches concentrate on code smell
detection, such as metric/rule-based approaches [7]–[12] and
machine learning-based approaches [13]–[19]. Most of these
approaches have been evaluated empirically, and they have
obtained high precision in smell detection. However, there
are a set of challenges that constrain their endorsement in
the industry, such as the ratio of false negatives and false
positives in their findings and the low degree of agreement
between them.

To overcome the existing shortcomings and challenges,
literature studies, [15]–[17], [20]–[22], have shown that ma-
chine learning-based approaches play a central role in code
smell detection and can be more exploited in this direc-
tion. Consequently, it is possible to make a quantum leap
in improving the detection of the right code smells with
high accuracy. ML uses mathematical algorithms to award
systems the ability to learn without explicitly programming
[23].

The use of centralized ML training to detect code smells
has been widely investigated. For instance, in [24]–[26],
the authors compared the performance of multiple ML al-
gorithms for code smell severity detection over different
datasets. The centralized training process demands a con-
siderable amount of collected and aggregated data, typically
in a centralized place such as a data centre, cloud, or server
machine. This centralized data aggregation is imperative for
constructing an accurate model with quality that adapts to dy-
namic data, aiming to provide recommendations, decisions,
and solutions for specific tasks. However, the considerable
expense associated with transferring data to a central hub
presents a significant hurdle. Moreover, this data often con-
tains sensitive and private information belonging to the data
owner, leading to concerns regarding both data privacy and
security. Such matters counter General Data Protection Reg-
ulation (GDPR) policies and pose challenges across various
sectors, including healthcare, industry, politics, etc.

As a concrete example, let’s examine the software in-
dustry within the context of our research. In this industry,
every company holds a significant stake in understanding
the source code and design quality employed by their com-
petitors. Aspects such as performance, maintainability, and
reusability are of utmost importance. These companies are
keen on leveraging this invaluable data to elevate the quality
of their software products. They aim to identify and rectify
anomalies and deficiencies in their codebase while refining
coding practices and policies to produce top-notch enterprise
software. However, it’s crucial to note that no company
within this competitive landscape will release their private
data, including their source code and design details. Instead,
they are in pursuit of techniques that allow them to extract

valuable insights and knowledge from other companies’ data
in a secure and non-invasive manner.

In this regard, Federated Learning (FL) emerges as an
efficient solution that maintains data privacy and security. FL
differs from centralized ML in migrating the ML model to
the data’s source for training, typically on the edge side [27].
Unlike centralized ML, FL enables all edge-node models to
contribute their knowledge without exposing the raw data
(source code or design in our case). By employing FL,
software enterprises that are hesitant to share their data can
internally train their ML models and then transfer the learned
model to a designated entity responsible for maintaining
software quality [28], [29].

The main contribution of this paper is to propose Federated
Learning Code Smell Detection (FedCSD), which, to the best
of our knowledge, is the first approach that exploits FL for
code smell detection. Specifically, the God Class smell. We
show how FedCSD can be applied in settings where multiple
software development companies collaborate to improve the
quality of their software development projects without the
need to share their code. Further, we discuss how Fed-
CSD can improve the traditional code review activity within
software development teams. Finally, we present intensive
experiments that show the advantages of applying FedCSD
to detect code smells in comparison to traditional centralized
ML approaches.

The remainder of this paper is organized as follows. Sec-
tion II introduces background on code smell detection tools,
the role of machine learning in code smell detection, feder-
ated learning, and data privacy and attacks. Additionally, it
discusses related studies. Section III presents the methodol-
ogy we applied to design and validate our approach. Section
IV describes the proposed approach. Next, Section V analy-
ses and discusses the results. while Section VI discusses the
critical evaluation of the study. Finally, Section VII presents
the threats of validity and Section VIII presents conclusions
and recommendations for future work.

II. BACKGROUND AND RELATED WORK
A. CODE SMELL DETECTION TOOLS
Several code smell detection tools have been developed either
as standalone or integrated, commercial or open-source, and
they support different programming languages and detect
various types of code smells. Examples of these tools include
iPlasma, jCosmo, Incode, DECOR, PMD, Borland Together,
and JDeodorant [4], [30]. However, they have limitations
that reduce their effectiveness in industry. Namely, they have
a low degree of agreement, lack the capability to analyze
software systems implemented in more than one program-
ming language, do not detect a wide set of different types of
code smells, lack the interoperability of detection tools with
diverse development environments [31], and how scalable
code smell detection techniques are to large-scale codebases.

One of the code smells that detection tools focus on
the most is Large Class [1], also referred to as God Class
[32], and the Blob [5]. In the literature, several studies have

2 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

focused on detecting the Large Class code smell [33]–[41].
In their systematic mapping study, the authors [4] analyzed
close to 400 articles related to code smells and found that
Large Class negatively affects different software quality
attributes, the most important of which is maintainability.
Based on the above and since Large Class is one of the
code smells most frequently detected in software systems, we
decided to focus on it in this work.

B. MACHINE LEARNING IN CODE SMELL DETECTION
In one study [16], ML and object-oriented metrics extracted
from analyzing software systems were combined into an
approach to automatically detect design flaws. The proposed
approach was evaluated on three open-source systems. The
findings showed that the decision tree effectively detects
Large Class and Long Method smells. Another study [17]
utilized ML to predict seven types of design smells (Message
Chains, Middle Man, Switch Statement, Long Parameter
List, Long Method, Feature Envy, and Lazy Class). The
dataset was constructed from a group of 27 metrics gathered
from software systems, including design smells.

Furthermore, in [15], the Bayesian Detection Expert (BD-
TEX) approach was proposed to detect well-known antipat-
terns named Functional Decomposition, Spaghetti Code, and
the Blob. The approach was evaluated on two systems, and
the results were compared with the DECOR approach. Fur-
ther, one study [42] presented a novel approach that uses the
support vector machine and object-oriented metrics to detect
Swiss Army Knife, the Blob, Spaghetti Code, and Functional
Decomposition antipatterns by analyzing three software sys-
tems. The results were compared with the DETEX approach.
In another work by [43], five ML techniques were used
based on software metrics to detect different antipatterns.
The presented approach was named NiPAD. The study was
conducted using one application, and the result showed that
the best behavior was obtained by the SVMlinear technique
for identifying the One-lane Bridge antipattern.

A more recent research study by [22] used 16 ML classi-
fiers to detect Data Class, God Class, Long Method, and Fea-
ture Envy code smells. The chosen smells were automatically
detected using five tools. The study evaluated 74 software
systems, and the results of detection were validated manually
by experts in the domain. The findings showed that most of
the techniques have a high degree of accuracy. Moreover, in
[19], the performance of metric-based and machine learning-
based approaches was empirically compared in terms of
code smell detection. The dataset was constructed from 13
software systems and 17 metrics to detect 11 code smells.
The results showed that metric-based approaches achieve
slightly better performance. Nonetheless, there is a need to
conduct more studies on both approaches in order to enhance
the precision and efficiency of code smell detection. Re-
cently, the authors of [37] conducted a large-scale study that
investigated the usefulness of ML techniques for effective
design smell detection. The work focused on determining the
influence of data balancing on the accuracy of ML techniques

during design smell detection. A set of 28 classifiers was used
to detect God Class design smells in a dataset of 24 software
systems that include 12,587 classes, and the detection results
were validated manually by experts. After replicating the
experiments on two more datasets, the findings showed there
is no significant influence of data balancing on the accuracy
of learning classifiers during design smell detection. More-
over, machine learning approaches are efficient in God Class
detection. Detecting SQL code smells using code analysis
seems like interesting future work [44].

All the above studies concluded that standard machine
learning-based approaches have a promising and efficient
role in the code smell detection context. However, it has some
limitations concerning the obtained model. The generated
model has been trained on a dataset stored in a central-
ized place and gathered from different open source software
projects located in well-known repositories. In this case, due
to the data privacy risks concerning data leaks or misuse
and the reluctance of companies to share their complete
project data on these repositories, there might be a lack of
information about the project context that should be taken
into account when training the model, such as architectural
patterns, domain-specific requirements, and coding conven-
tions. Therefore, the model may not completely comprehend
the intricacies of each software project’s coding practises.
Consequentially, the model’s accuracy will be affected. In
this work, to overcome the limitations of previous works,
we exploited the advantages of federated learning for code
smell detection. On the one hand, our approach involves
significant project-specific context information that can be
lacking or cannot be shared between companies when train-
ing the model, resulting in a more accurate and generalizable
code smell detection model. On the other hand, our approach
preserves better the data privacy and security of software
projects, as companies do not need to share their code repos-
itories.

C. FEDERATED LEARNING
Big data systems [45] and traditional ML approaches are
centralized approaches. In general, they require data to be
collected and aggregated offline on one site, where the mod-
els are trained and deployed [46], [47]. These approaches
have some shortcomings for code smell detection because
training and deploying ML models in central nodes requires
companies to disclose the source code of their projects.
Similarly, distributed learning approaches require the code to
be released to the distributed servers. Thus, such approaches
do not address the companies’ privacy concerns [48], [49].

To overcome the aforementioned limitations, Google pro-
posed FL, an emerging paradigm that enables users or orga-
nizations to jointly train an ML model without releasing their
private data [47], [50], [51]. Fl follows the privacy-by-design
philosophy [52]. Specifically, in FL settings, companies can
train a global ML model to detect code smells collaboratively
by aggregating the local trained models’ updated parameters
(gradients, weights) and reporting them to the FL server,
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where the global model will be constructed, then propagating
the global model to all the involved companies or contribu-
tors. Therefore, by exploiting FL, the companies do not need
to share their source code or data, thereby preserving their
privacy, and they just share their models’ learned knowledge
that collaboratively builds a comprehensive global model to
detect code smells.

D. DATA PRIVACY AND SECURITY THREATS
Scenarios surrounding traditional ML allude to the fact that
centralization plays a major role in holding training data
and executing the learning algorithm. In real world situa-
tions,legal restrictions and privacy laws prohibit sharing even
well-trained models across diverse participants [53]. Data be-
ing the driving force behind the running of many companies,
it is worth noting that a majority of ML models are owned by
tech companies; based on how these companies manage the
data and code behind the running of operations, this raises
pertinent questions of centralization [54]. Centralization in
this context provides an avenue for a single point of failure
and increases the threat levels and potential attack surfaces
with the possibility of zero day vulnerabilities. To accommo-
date data owners’ constant need for secure and collaborative
execution of data, an FL environment provides guarantees
and assurances from a privacy and security perspective.
However, the literature pinpoints other diverse scenarios that
emphasizes privacy, for example, during model-training [55]
and also during security-based model training [56].

Privacy concerns in code smell detection are important
in the software development landscape. This importance is
mainly seen when we consider the inherent sensitivity of both
code and data ownership. In the conventional paradigm of
centralized code smell detection, where code repositories are
extensively analyzed, a critical issue emerges where potential
exposure of sensitive or proprietary information is imminent.
These repositories often hold the confidential data that forms
the backbone of an organization’s software projects. When
sharing such code repositories or data with external parties,
traditional methods inadvertently raise significant privacy
concerns. In this study, we assess these capabilities from
the perspective of intentional or unintentional data leakage,
which could compromise the trained model [56].

By harnessing the power of FL, it is envisaged that orga-
nizations could collectively train machine learning models
while keeping their code and data firmly within their own
walls. This collaborative yet privacy-preserving approach
ensures that sensitive information remains confidential and
proprietary algorithms stay safeguarded.

Security-related threats in the code smell could pose sig-
nificant challenges to the integrity and reliability of the code
quality assessment process. The authors from key assump-
tions like code injection on original code and adversarial
attacks are prevalent in many cases when preparing, training,
or deploying learning models. The common form of security
related attacks involves adversarial manipulation, tampering
with code and training data during the testing phases, indis-

criminate attacks where an adversary makes wrong decisions
in order to damage the classifiers, integrity attacks, and
availability attacks focused on degrading the usability of the
FL system and the code deployed by increasing the positive
rate [57]–[59].

These unauthorized infiltrations can lead to false positives
or negatives in code smell detection, rendering the entire pro-
cess unreliable. In traditional centralized approaches, where
code repositories are shared, the risk of such attacks is
heightened, as external access to code repositories becomes
a potential point of entry for adversaries.

The suggestions on possible defense strategies that pre-
serve privacy and allow open and closed code to withstand
these attacks are discussed in the subsequent sections of this
paper.

E. WHY FL IN CSD?

The integration of FL in CSD represents a significant
paradigm shift, addressing several limitations inherent in
traditional CSD methodologies (See Table 1). FL’s decen-
tralized nature fundamentally enhances data privacy and
security, a critical concern in software development where
codebases often contain sensitive or proprietary information.
By processing data locally at the node level, FL circumvents
the need to centralize sensitive code, thus preserving confi-
dentiality while enabling practical code analysis. Moreover,
FL’s handling of diverse and distributed data sources is
particularly advantageous in CSD. Traditional approaches
typically rely on centralized data aggregation, which needs
to improve with the size and diversity of code repositories.
However, FL excels at learning from heterogeneous data
sources, offering a more robust and inclusive code quality
analysis. This scalability is further beneficial in large-scale
projects or organizations where FL distributes computational
load across multiple nodes, mitigating resource constraints
centralized systems face.

However, the implementation of FL in CSD has its chal-
lenges (See Table 1). Ensuring robust local data processing
while managing data diversity and consistency across various
nodes introduces complexity. Another significant challenge is
addressing data sparsity and imbalance without introducing
biases, especially with non-iid datasets [60]. Moreover, when
detecting rare or subtle code smells. Despite these challenges,
FL’s ability to provide real-time, decentralized, and privacy-
preserving analysis and its scalability and adaptability to
diverse datasets make it an effective and valuable method for
CSD. The approach enhances the integrity and reliability of
code quality assessment and aligns with the evolving needs
of modern, distributed software development practices. Thus,
while the path to seamlessly integrating FL in CSD involves
navigating certain complexities, the overarching advantages
it presents in terms of security, scalability, and comprehen-
sive analysis make it a compelling approach in the realm of
code quality management.
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Challenge in
CSD

Traditional
Solutions

FL Solution FL Contribution
to CSD

FL Challenges

Data Privacy and Security Anonymization
(reduces data utility)

Local data processing
enhances privacy.

Secure CSD without
compromising code.

Ensuring robust local
processing, handling
data diversity.

Diverse and Distributed
Data Sources

Centralized data ag-
gregation (size and di-
versity issues)

Learns effectively
from diverse,
decentralized sources.

Accurate CSD in var-
ied environments.

Managing data con-
sistency across nodes.

Scalability and Resource
Constraints

Powerful centralized
servers (costly, less
scalable)

Scalable, distributed
computational load.

Scalable CSD in large
organizations.

Balancing load, ensur-
ing node processing
power.

Handling Imbalanced and
Sparse Data

Oversampling (intro-
duces biases)

Manages imbalanced
data sets by learning
from various nodes.

Improved CSD for
rare or sparse smells.

Addressing data
sparsity and
imbalance without
biasing.

Integrity and Reliability of
Code Quality Assessment

Manual reviews, sim-
plified tools (potential
biases)

Decentralized valida-
tion for unbiased code
quality assessment.

Reliable, unbiased
code quality
assessment.

Ensuring robustness
and impartiality
in decentralized
validation.

TABLE 1: Challenges in Code Smell Detection and Federated Learning opportunities.

TABLE 2: Goal of this study

Purpose Analyze
Object set of classes
With the purpose of Evaluation
With respect to the efficiency of federated learning

approach to detect God class code
smell in different scenarios

Viewpoint from researchers and practitioners
point of view

In the context of closed-source software companies

III. RESEARCH METHODOLOGY
To address the challenges highlighted in Section II and better
answer of the needs of the software development commu-
nities, we propose the FedCSD approach. For this purpose,
we applied in an iterative way the design science research
method, as we aimed at devising an innovative approach
that solves a practical problem and this is supported by the
selected methodology. Specifically, we followed the well-
defined guidelines for conducting design science research,
which comprises five stages, namely, problem explication,
requirements definition, artifact design and development,
artifact demonstration, and artifact evaluation [61].

In the problem explication stage, we reviewed the literature
for code smell detection approaches. We found that no studies
investigated the use of FL for code smell detection purposes.
Accordingly, we used the Goal-Question-Metric (GQM) ap-
proach, which is commonly used by the software engineering
community [62], [63], to formulate our study goal presented
in Table 2.

In the requirements definition stage, we defined one re-
quirement based on the defined goal, namely, to devise
an approach that exploits FL to detect code smells cross-
organizations. Accordingly, we formulated the following re-
search questions and hypotheses:

RQ1 How can federated learning be effectively lever-
aged for God Class code smell detection?

Objective: by answering this RQ, we aim to under-
stand how FL can be applied within each software
development company and also across different
companies to detect code smells and consequently
improve the software systems’ quality.

RQ2 How does the use of federated learning affect the
quality of the resulting ML model compared to the
individual models generated by centralized training
approaches?
Objective: by answering this RQ, we aim at com-
paring the performances of FL and centralized ML
models in detecting code smells.

The null hypotheses have been formulated as follows:
Hypothesis 1: Federated learning cannot be effectively

leveraged for God Class code smell detection.
Hypothesis 2: Federated learning does not improve the
quality of the resulting ML model compared to the individual
models generated by centralized training approaches.

In the artifact design and development stage, we proposed
the first approach that exploits FL to detect code smells
during the software development phase (see Section IV).
Specifically, our approach shows how multiple organizations
can collaboratively exploit FL to train ML models without
the need to share their code and use the models to improve
the qualities of their code. Further, our approach evolves the
traditional code review life cycle by integrating the models
trained collaboratively.

In the artifact demonstration and evaluation stages, we
simulated how our approach can be applied in cross-
organizational settings and ran experiments that validate its
feasibility, respectively (see Section V).

IV. FEDCSD APPROACH
This section presents our approach for Federated Learning
Code Smell Detection (FedCSD). To the best of our knowl-
edge, FedCSD is the first proposed approach that evolves the
traditional code review life cycle by integrating FL to detect
code smells during development. Consequently, our approach

VOLUME 4, 2016 5



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1: Federated Learning in cross-organization set-
tings

enables addressing code smells proactively, unlike the ma-
jority of existing approaches, which manage technical debt
issues reactively. The approach exploits traditional architec-
tures of FL and is mainly based on the FEDn framework.

First, we introduce how the approach supports multiple or-
ganizations to employ FL to collaboratively train ML models
that can detect code smells with higher accuracy. Then, we
describe how the FedCSD evolves the traditional code review
activity within the software development life cycle.

A. FEDCSD IN ACTION
Figure 1 shows abstractly how FedCSD supports organiza-
tions to exploit FL to train ML models and use them to im-
prove the quality of their code. For this purpose, companies
need to set up FedCSD containers, which can be realized
using Dockers 1.

For this purpose, companies need to link the containers
with both their code repositories and the data pipeline that
will be used to train the ML model locally in FL settings.
The containers run the client endpoint that automatically
starts the local training rounds (i.e., on the edge of the
network [64]), reports the updated weights’ resulting from
the local training to the FL aggregators, and updates the
ML models’ weights according to the results of the global
model parameters constructed by the FL aggregator (reducer
or server). The FL aggregators (reducers and combiners)
run on a shared cloud environment that auto-scales based
on the number of involved clients using the Kubernetes 2

technology. Algorithm 1 shows the FedAvg algorithm used
to derive global weights using the weights generated during
local training rounds. The models provide feedback to the
developers about their code quality, as described in detail
below.

The FL infrastructure of FedCSD adopts the FEDn
federated learning framework [65]. FEDn is an open-
source framework that follows the hierarchical MapReduce
paradigm. Figure 2 illustrates FEDn architecture composed
of three layers: reducers, combiners, and clients.

The reducer acts as a server in the server-client paradigm,
which has several responsibilities, including the following:
(1) monitoring the model training; (2) controlling the com-

1https://www.docker.com
2https://kubernetes.io/

Algorithm 1: FedAvg algorithm, where k is the
number of clients, r is the number of rounds, Wi is
the local model weights and M is the global model
weights

Input: Wt

Output: M(Wt)

1 Server executes:
2 initialized W0

3 Function FedAVG(k,Wt−1,Wt):
4 foreach t← 1 to r do
5 St ← (sample a random set of clients)
6 foreach client k ∈ St in parallel do
7 W k

t+1 ← ClientUpdate(k,Wt, Nl)

8 Wt+1 ←
∑k

k=1
nk

n W k
t+1

9 end
10 Wt ← (Wt−1 + (Wt −Wt−1)/t)
11 end
12 return M(Wt)

munications flow among all the federation components; (3)
initiating the seed model with a random weight and then
distributing it among the connected combiners; (4) propa-
gating the computing package where the model training and
validation instructions are descried to combiners, then from
combiners to the connected clients; (5) starting the training
(i.e., communication rounds); and (6) aggregating all the
updated parameters of the combiners’ local–global models
and then averaging them using the FedAvg algorithm (see
Algorithm 1) to construct the final global model. Meanwhile,
the combiner represents the intermediate layer responsible
for the following: (1) linking the reducer with different client
nodes to decrease the reducer’s computation load and the net-
work communication workload; (2) distributing the received
model from the reducer across all corresponding clients; and
(3) combining all local models’ updated gradients provided
by the connected clients using the FedAvg algorithm to build
the local–global model.

Finally, the client layer represents the companies’ local
servers (edge nodes), where the data is placed and the local
model training rounds are performed. Each client in the feder-
ation will receive from the combiner both the ML model and
the computing package, which is considered the guideline for
the client to train the model. Algorithm 2 explains the training
process in the client’s local node per communication round.
The algorithm returns the model’s updated parameters, which
will be reported backward to the upper layer. Each client
should be connected to a combiner, but multiple clients can
be connected to the same combiner, as can be seen in Figure
2.

B. EVOLVED CODE-REVIEW ACTIVITY
Code review is one of the main activities that reduces main-
tenance costs and technical debt. Detecting and addressing
code smells early prevents them from becoming more com-
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FIGURE 2: A high level representation of FedCSD’s main components, including 1 reducer, 2 combiners, and 10 companies

Algorithm 2: Local client update, where k is the
number of clients, Dk is client k local dataset, e is
the number of local epochs, and η is the learning rate

Output: Wt

/* Run on client k */
1 Function ClientUpdate(k,Wt):
2 β ← (split Dk into mini batches)
3 for local epoch ei ∈ 1, . . . e do
4 for batch b ∈ β do
5 Wt ←Wt − η∇l(Wt, b)
6 end
7 end
8 return Wt

FIGURE 3: The evolved code review cycle

plex problems in the future, especially when the software
systems are large-scale. Also, developers can improve their
knowledge and learning experience by discussing and deter-
mining refactoring opportunities suggested by ML models.
Also, thanks to FL, our approach enables the generation of
ML models that are trained on a variety of software systems
from multiple companies without the need to share the code
bases of the different projects.

Figure 3 shows the code-review activity, which is part of
the traditional software development life cycle, evolved by
exploiting FL to improve the code quality. The cycle starts
when engineers or developers request to check their individ-
ual code for smells before creating code review requests to
their team leads or other experienced team members (step
1). Then, the ML model detects smells in the developers’
individual code and provides them with feedback (step 2).
Accordingly, the developers update their individual code and
then create code review requests (e.g., using Bitbucket) (step
3). After that, the team members responsible for reviewing
the different code submitted for review receive feedback from
the ML model about smells detected in the entire code being
reviewed (steps 4 and 5). Accordingly, the code reviewers
provide feedback, possibly to multiple developers, to adjust
the code to improve its quality (step 6). This cycle continues
until all the comments on the code are addressed and no
smells are detected. Consequently, the code submitted for
review is approved and merged to the suitable branch (e.g.,
a release branch on GitHub) (step 7).

V. RESULTS AND DISCUSSION
To validate and evaluate the feasibility of the proposed
approach in code smell detection activity, we designed the
following experiments:

1) Experiment 1: Train the code smell detection model
for each dataset centrally and evaluate its performance
in terms of accuracy.

2) Experiment 2: Simulate a new coding behavior sce-
nario for a real company by evaluating the trained ML
model using parts of other datasets (cross-validation).

3) Experiment 3: Evaluate our approach by splitting the
three datasets into different chunks to simulate 10
distinct companies that will participate in training the
global ML model.

The code used to run the experiments is available via
Github 3.

3https://github.com/saadiabadi/codeSmill.git
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A. EXPERIMENTAL SETTINGS

In this section, we describe the datasets used in this study. Af-
ter that, we describe the Long Short-Term Memory (LSTM)
algorithm to automatically detect the god class code smell.

1) Dataset

To examine the proposed approach, we used three datasets
from the literature: [18], [66], [67]. The details of these
datasets concerning the number of classes, the number of
methods, and the total lines of code in each software are
shown in Tables 3, 4, and 5, respectively, while the compar-
isons among them are shown in Table 6. The 1st (Pecorelli
et al.) and 2nd (Fontana et al.) datasets were constructed by
[18] and [67], respectively, whereas the 3rd (Khalid et al.)
was collected by our team. The set of software systems used
in each dataset were open-source, written in Java, came from
different domains and size categories, and were available
in different repositories, such as Github and SourceForge.
Moreover, they are well-known and widely used in the code
smell detection context. Concerning (our) dataset (i.e., the
3rd one), we followed concrete criteria to collect the soft-
ware systems from the repositories, including the number of
downloads, availability in several versions, and the history of
software systems’ maintenance. Due to the huge number of
systems that met the criteria, we randomly selected twenty
four systems. The datasets focused on detecting different
types of code smells, and the God Class was one of them.
According to Fowler [1], a large class is a class that tries
to do too many tasks, making it very large regarding the
total number of lines of code, number of methods, number
of variables, and dependencies with other classes. Therefore,
the possibility of duplicate code will increase. Moreover,
this class has high complexity as well as low cohesion. [5].
Table 6 presents the characteristics of the chosen datasets
in terms of the number of projects, the number of classes,
the number of detection tools, and the number of detected
God Classes (GC) using tools (GC-Tool), the number of
human experts who participated in the manual validation
process, and the number of God Classes detected by experts
(GC-Experts). The total number of software systems was
111 and was formed of more than 80, 000 classes. Each
dataset was analyzed automatically by a set of detection
tools, and the detection results were manually validated by
a group of human experts who have good knowledge of
code smell detection. The results of the manual validation
were formulated as a binary decision (God Class = 1, Not
God Class = 0). As a result, the number of false positives
God Classes was reduced in all datasets from 2, 696 to 721,
which represents a 26% reduction. To meet the objective
of the study, we preprocessed all datasets to have both the
same features and format. Table 7 reports the 16 features
of the dataset, their definitions, and the quality dimensions
of different software levels. The replication package in [68]
includes all the datasets.

TABLE 3: Pecorelli et al. dataset characteristics.

Project NOC NOM TLOC
ant-rel-1.8.3 1, 473 13, 213 119, 256
argouml-VERSION_0_14 1, 373 9, 045 199, 075
cassandra-cassandra-1.1.0 699 11, 360 110, 712
apache-wicket-1.4.11 1, 568 12, 429 174, 033
derby-10.3.3.0 1, 746 5, 987 535, 187
hadoop-release-0.2.0 327 2, 460 34, 662
hsqldb-2.2.0 590 5, 004 254, 014
incubator-livy-0.6.0-incubating 1, 016 450 130, 696
nutch-release-0.7 532 3, 220 50, 578
qpid-0.18 2, 172 21, 448 189, 271
xerces-Xerces-J_1_4_2 489 6, 088 150, 445
eclipse-R3_4 5, 061 924 423, 423
elasticsearch-v0.19.0 1, 395 21, 739 315, 619

2) Long Short-Term Memory (LSTM) Algorithm
We used the Long Short-Term Memory (LSTM) model to
detect the God Class code smell over the datasets mentioned
earlier. The structure of LSTM [69] depends on three gates,
an input gate, a memory and forgetting gate, and an output
gate. The input gate regulates the flow of information, the
forget gate ensures that unimportant information is forgotten,
Ft is used to refer to the following mechanism.

Ft = σ(Wf · [ht−1, xt] + bf ) (1)

The it represents the input gate that is used to retain the
neural network’s state and to determine which data will be
incorporated into the cell’s state

it = σ(Wi · [ht−1, xt] + bi) (2)

The output gate Ot presents what extent and how informa-
tion is filtered out of the neural network.

Ot = σ(Wo · [ht−1, xt] + bo) (3)

Where σ is the activation function, Wf , Wi , and Wo are
the weights value, ht−1, is output value before ‘t’, xt, is input
value at ‘t’, and bt, bi , and bo are the bias value for the 3
gates.

The model was implemented using the public TensorFlow
framework implementation from Keras 4. The model archi-
tecture is composed of one LSTM input layer with 16 dimen-
sions, four dense layers with 72, 50, 36, and 28 units, and
a ReLU activation function. The output layer distinguishes
between God Class and Not God Class. For instance, we
fixed the model hyper-parameters per communication round
to have a 0.001 initial learning rate with the Adam optimizer.
Then, we fixed the batch size to 32. Finally, we set the
maximum number of epochs to 1. This model has been used
in both centralized and collaborative training experiments
(FedCSD).

Further, we simulated 10 different companies using the
datasets mentioned earlier by using the Pecorelli et al. [18]
dataset, partitioned to five chunks; the Fontana et al. [67]
dataset, not partitioned; and the Khalid et al. [37] dataset,
partitioned to 4 chunks. In total, all of the previous data

4https://github.com/tensorflow/tensorflow
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TABLE 4: Fontana et al. dataset characteristics.

Project NOC NOM TLOC
aoi-2.8.1 799 688 136,533
argouml-0.34 2,361 18,015 284,934
axion-1.0.M2 223 2,989 28,583
castor-1.3.1 1,542 11,967 213,479
cobertura-1.9.4.1 107 3309 58,364
colt-1.2.0 525 4,143 75,688
columba-1.0 1,188 6818 109,035
displaytag-1.2 128 1,064 20,892
drawswf-1.2.9 297 2,742 38,451
drjava-20100913-r5387 225 10,364 130,132
emma-2.0.5312 262 1,805 34,404
exoportal-1.0.2 1,855 11,709 102,803
findbugs-1.3.9 1,631 10,153 146,551
fitjava-1.0.1 60 254 2,453
fitlibraryforfitnesse-20100806 795 4,165 25,691
freecol-0.10.3 1,244 8,322 163,595
freecs-1.3.20100406 131 1,404 25,747
freemind-0.9.0 849 5,788 65,687
galleon-2.3.0 764 4,305 12,072
ganttproject-2.0.9 959 5,518 58,718
heritrix-1.14.4 649 5,366 9,424
hsqldb-2.0.0 465 7,652 171,667
itext-5.0.3 497 5,768 117,757
jag-6.1 255 145 24,112
jasml-0.10 48 524 6,694
jasperreports-3.7.3 1,571 17,113 260,912
javacc-5.0 102 808 19,045
jedit4.3.2 1,037 656 138,536
jena-2.6.3 1,196 99 117,117
jext-5.0 485 2,169 34,855
jFin_DateMath-1.0.1 58 541 7,842
jfreechart-1.0.13 960 1,181 247,421
jgraph-5.13.0 399 2,996 53,577
jgraphpad-5.10.0.2 426 1,879 33,431
jgrapht-0.8.1 299 1,475 28,493
jgroups-2.10.0 1,093 8,798 126,255
jhotdraw-7.5.1 968 7,232 104,357
jmeter-2.5.1 909 8,059 113,375
jmoney-0.4.4 190 713 9,457
jparse-0.96 65 780 16,524
jpf-1.0.2 121 1,271 18,172
jruby-1.5.2 2,023 17,693 199,533
jspwiki-2.8.4 405 2,714 69,144
jsXe-04_beta 100 703 1,448
jung-2.0.1 786 3,884 53,617
junit-4.1 204 1,031 9,065
log4j-1.2.16 296 2,118 34,617
lucene-3.5.0 1,908 12,486 214,819
marauroa-3.8.1 208 1,593 26,472
megamek-0.35.18 2,096 13,676 315,953
mvnforum-1.2.2-ga 338 5,983 92,696
nekohtml-1.9.14 56 502 10,835
openjms-0.7.7-beta-1 515 379 68,929
oscache-2.4.1 66 629 11,929
picocontainer-2.10.2 208 1,302 12,103
pmd-4.2.5 862 5,959 71,486
poi-3.6 233 19,618 299,402
pooka-3.0-080505 813 68,127 68,127
proguard-4.5.1 604 5,154 82,661
quartz-1.8.3 280 2,923 52,319
quickserver-1.4.7 132 1,278 18,243
quilt-0.6-a-5 66 641 8,425
roller-4.0.1 567 5,715 78,591
squirrel_sql-3.1.2 153 689 8,378
sunflow-0.07.2 191 1,447 24,319
tomcat-7.0.2 1,538 15,627 283,829
trove-2.1.0 91 585 8,432
velocity-1.6.4 388 2,957 5,559
wct-1.5.2 606 5,527 69,698
webmail-0.7.10 118 1,092 14,175
Weka-3.7.5 2,045 17,321 390,008
xalan-2.7.1 1,171 10,384 312,068
xerces-2.10.0 789 9,246 188,289
xmojo-5.0.0 110 1,199 31,037

TABLE 5: Khalid et al. dataset characteristics.

Project NOC NOM TLOC
JCLEC-4-base 311 1,647 37,575
FullSync-0.10.2 169 1,467 24,323
AngryIPScanner-3.0 270 1,228 19,965
SQuirreL-1.2 1,138 19,031 71,626
Javagraphplan-1.0 50 537 1,049
DigiExtractor-2.5.2 80 523 15,668
JFreechart-1.0.X 499 8,024 206,559
Plugfy-0.6 28 103 2,337
sMeta-1.0.3 222 1,912 30,843
Ganttproject-2.0.10 621 5,047 66,540
xena-6.1.0 1,975 1,272 61,526
pmd-4.3.x 800 6,021 82,885
JDistlib-0.3.8 78 1,027 32,081
Matte-1.7 603 4,170 52,067
JasperReports-4.7.1 1,797 18,781 350,690
Mpxj-4.7 553 11,634 261,971
Apeiron-2.92 62 702 8,908
OmegaT-3.1.8 716 5,115 121,909
Lucene-3.0.0 606 12,459 81,611
KeyStoreExplorer-5.1 384 2,535 83,144
Freemind-1.0.1 782 6,824 106,396
heckstyle-6.2.0 277 606 41,104
jAudio-1.0.4 416 4,799 117,615
JHotDraw-5.2 151 1,497 17,807

TABLE 6: Characteristics of the datasets used in this study
Dataset #Project #Class #Tool #GC-Tools #Experts GC-Experts
1st (Pecorelli et al. [18]) 13 18, 441 1 318 2 96
2nd (Fontana et al. [67]) 74 55, 000 2 420 3 140
3rd (Khalid et al. [66]) 24 12, 587 5 1, 958 3 485

TABLE 7: Dataset features.

No. Feature Definition Granularity Dimension
1 TLOC Total Lines of Code Project Size
2 NCLOC Non-Comment Lines of Code Project Size
3 CLOC Comment Lines of Code Project Size
4 EXEC Executable Statements Project Complexity
5 DC Density of Comments Project Complexity
6 NOT Number of Types Package Complexity
7 NOTa Number of Abstract Types Package Complexity
8 NOTc Number of Concrete Types Package Complexity
9 NOTe Number of Exported Types Package Complexity
10 RFC Response for Class Class Coupling
11 WMC Weighted Methods per Class Class Complexity
12 DIT Depth in Tree Class Inheritance
13 NOC Number of Children in Tree Class Inheritance
14 DIP Dependency Inversion Principle Class Coupling
15 LCOM Lack of Cohesion of Methods Class Cohesion
16 NOA Number of Attributes Class Size

chunks represent 10 different heterogeneous companies, as
shown in Figure 2 in the client layer. Moreover, we relayed
our experiment over Swedish National Infrastructure for
Computing (SNIC) Science Cloud [70] resources, and all
instances used in the experiment have 8 Virtual Centralized
Processing Units (VCPU), and 16GB RAM.

B. EVALUATION METRICS
To evaluate the FedCSD approach, we used the evaluation
metrics Accuracy, Loss Function, Kappa, and ROC Area,
which are well-known in the literature for evaluating ML in
code smell detection. Each metric evaluates the performance
of the proposed approach from a different aspect.
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• Accuracy represents the ratio of correctly classified
samples (true positive and true negative). In this study, it
is the percentage of classes that are predicted correctly
as God Class/Not God Class. However, the accuracy
value falls between 0 and 100 and can be computed us-
ing Equation 4. Higher values indicate a more accurate
prediction.

Accuracy =
TP + TN

TP + TN + FN + FP
∗ 100% (4)

• Loss Function is a method to evaluate ML algorithms
concerning how well the obtained model is qualified
to predict the expected classification results. If the pre-
dicted results are distant from the actual results, the
value of the loss function will be high. This value
denotes the errors in the prediction process and can be
reduced through learning the loss function. We used the
categorical cross-entropy as a loss function, as shown in
Equation 5.

Loss = −
N∑
i=1

yi. log ŷi (5)

where ŷi is the model prediction for i-th pattern, yi
represent the corresponding real value, and N is the total
number of samples.

• Cohen Kappa is a test that assesses the concordance
between the samples that ML algorithms classified and
the actually labelled data. The values of the Kappa
measure range from -1 to 1, where the higher value
denotes a strong degree of concordance. The Cohen
Kappa can be computed using Equation 6.

κ =
Po − Pe

1− Pe
. (6)

Where Po represents the samples ratio agreement, and
Pe shows the expected agreement percentage between
samples. Moreover, the interpretation of the kappa val-
ues is shown in Table 8.

TABLE 8: Kappa Values Interpretation.

Kappa Agreement
kappa < 0.20 Poor
0.21 ≤ kappa < 0.40 Fair
0.41 ≤ kappa < 0.60 Moderate
0.61 ≤ kappa < 0.80 Substantial
0.81 ≤ kappa ≤ 1.00 Almost perfect

• The ROC-Area, the area under the Response Operating
Characteristic (ROC) curve, is a well-known test that is
used to evaluate, organize, and visualize the effective-
ness of ML algorithms. It focuses on identifying the
relationships between the specificity and sensitivity of
learning algorithms. The ROC values range from 0 to 1.
The higher ROC value indicates a better learning model.
Table 9 presents the interpretation of the test.

TABLE 9: ROC area Interpretation.

Value Interpretation
0.5 < ROC ≤ 0.6 Fail
0.6 < ROC ≤ 0.7 Poor
0.7 < ROC ≤ 0.8 Fair
0.8 < ROC ≤ 0.9 Good
0.9 < ROC ≤ 1 Excellent

C. EXPERIMENT 1: CENTRALIZED TRAINING
In this experiment, a centralized ML model was trained
over each mentioned dataset to evaluate the performance
of the code smell detection model in a traditional company
scenario. Table 10 reports the model’s accuracy per dataset.
We noticed that the model has achieved high accuracy over
all datasets. For instance, training the ML model over both
Khalid et al. and Pecorelli et al. datasets has obtained
higher performance, with a slight difference related to the
number of smells covered by each dataset. Meanwhile, with
the Fontana et al.dataset, the model obtained the lowest
accuracy (92.30%), detecting fewer smells than what actually
exists. The nature of the dataset, such as software quality,
size, and diversity, plays a main role in the model’s accuracy.
The number of projects used in each dataset as well as the
number of classes were different and belonged to different
size categories (large, medium, etc.). Therefore, there are
differences in the size of the training dataset used to train
the model, which directly influence the model’s accuracy, as
shown in the cases of Pecorelli et al. and Khalid et al., which
were larger than the Fontana et al. dataset. In addition, the
set of software projects came from various software domains
(application, development, etc.) and statuses (stable, mature,
etc.) and were randomly included in the datasets. All these
factors influence the model’s accuracy and should be taken
into account when producing robust and accurate detection
models. Therefore, we hypothesized that any change in the
company’s coding culture or new workers joining the com-
pany with different coding behaviour would affect the ML
model’s performance and cause technical debt.

TABLE 10: The accuracy achieved by the centralized ML
model per dataset

Dataset Model Accuracy
First dataset (Pecorelli et al.) 98.90%
Second Dataset (Fontana et al.) 92.30%
Third dataset (Khalid et al.) 99.15%

D. EXPERIMENT 2: ML MODEL CROSS-EVALUATION
Changing the company’s coding culture will likely introduce
divergences in model performance, leading to concept drift
that can adversely influence the model’s outputs. To evaluate
the resilience and robustness of the centrally trained model
against such shifts, we have simulated new changes in com-
panies’ coding behaviour that could appear from a new team
member or updates in company policies that significantly im-
pact both their internal culture and their products. Therefore,
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we trained the ML model over one dataset and validated
it over the other two datasets (cross-evaluation). Table 11
reports the accuracy achieved by the model trained based
on earlier settings. Notably, when the model was trained on
either Pecorelli et al. or Khalid et al. and tested on the other,
we noticed a small gap in model accuracy compared with the
results obtained in experiment 1 (see V-C) for both datasets,
and the model has achieved the highest accuracy (96.30%
and 97.00%, respectively) using both datasets in this context,
which refers to the fact that both companies shared the same
coding behaviour and culture.

In contrast, when training or testing the ML model on
the Fontana et al. dataset, a notable and significant drop in
model accuracy was observed across all cases between 15%
and 30%. The model obtained the lowest accuracy (63.80%)
compared to the highest accuracy (97.00%) achieved using
other datasets. It is essential to highlight that the Fontana
et al. dataset covers different types of smells with further
distribution as other datasets. Furthermore, the drift concept,
whether in terms of data or model drift, introduces an addi-
tional dimension to the context, highlighting the critical steps
needed to improve model performance and adaptability in
such scenarios.

In conclusion, this experiment clearly shows the signifi-
cant impact of coding behaviour or culture changes on the
smell detection model. By comparing the results obtained
from experiments 1 and 2, we observed examples of the
model drift concept affecting performance significantly. At
the same time, in other cases, the impact was relatively in-
significant. To tackle this problem, we propose our FedCSD
approach, where the global model is collaboratively trained
and built, leveraging contributions from various companies.
This approach effectively captures and adapts to changes in a
company’s culture and its team’s coding behaviour.

TABLE 11: Trained LSTM model evaluated over the other
two datasets in a centralized fashion.

Testing dataset
First dataset

(Pecorelli et al.)
Second Dataset
(Fontana et al.)

Third dataset
(Khalid et al.)

Training
dataset

First dataset
(Pecorelli et al.) 63.80% 96.30%

Second Dataset
(Fontana et al.) 79.00% 80.00%

Third dataset
(Khalid et al.) 97.00% 71.00%

E. EXPERIMENT 3: FEDCSD EVALUATION
We conducted this experiment to answer the research ques-
tions presented in Section ?? as well as to validate our pro-
posed approach (FedCSD) in terms of global model perfor-
mance (Accuracy and Loss), prediction agreement (Kappa),
sensitivity and specificity (ROC value). In this experiment,
we simulated 10 companies to participate in the federation
by splitting both the Pecorelli et al. and Khalid et al.
datasets into chunks that represent five and four companies,
respectively, and keeping the Fontana et al. dataset to rep-

resent one company. This allowed us to maintain all clients’
heterogeneity and replicate a real scenario. Consequently, the
experiment showed the power of federated learning and mit-
igated the challenges we faced in the previous experiments.
Further, we found that this will reduce the computation cost
by leveraging the edge nodes (companies) resources to train
the model, preserve each company’s data privacy, construct
a global model that has a comprehensive knowledge of code
smells accumulated from all clients, and reduce the opportu-
nity of having technical debt if new smells appear.

Figure 4 shows the model’s loss function behavior over the
testing set for 100 rounds, which is generally employed over
the training and validation sets to optimize the ML algorithm.
This metric was calculated using the model prediction for ev-
ery sample and its corresponding actual output individually,
indicating how bad or good the model is. Figure 4 shows
the improvement of the model’s learning process after each
training round. The testing showed that the model behaved
perfectly after round 40, which indicates that the model had
reached optimal behavior based on the loss value.

FIGURE 4: Global federated learning model loss function
of 10 different clients (companies) for 100 communication
rounds

After obtaining the optimal optimization of the model
using the loss function, the model’s performance was also
evaluated in terms of accuracy. Figure 5 illustrates the global
model’s performance for 100 training rounds. We noticed that
the initial model accuracy was high (97.7%) and very close
to the centralized results. Moreover, the global model’s per-
formance converged in a considerable direction and reached
98.34%. We noticed that around round 63, the model started
to stabilize with only a slight oscillation (0.04%) until round
95.

Comparing our FedCSD accuracy with experiments 1 and
2, we argue that our model outperforms both the centralized
and cross-evaluation experiments, despite the FedCSD ac-
curacy being a bit lower than the results obtained from the
model trained over the Khalid et al. dataset (see Table 10) by
almost 0.1%. This difference can be ignored in favor of both
the model global knowledge and the model stability provided
by the FedCSD.

Evaluating our FedCSD approach in terms of the agree-
ment ratio between the global model prediction and the
corresponding actual value demonstrates the robustness of
our approach. Figure 6 depicts the Cohen Kappa measured

VOLUME 4, 2016 11



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 5: Global federated learning model accuracy of 10
different clients (companies) for 100 communication rounds

while testing the global model for 100 training rounds. There
is a significant improvement in the Kappa value per training
round, where the initial agreement was low (around 55%)
then linearly converged in the right direction. Further, the
Kappa value started to stabilize after round 60 and obtained
79%, which falls in the substantial range as indicated in Table
8. Therefore, the acquired agreement ratio shows the strong
learning ability of the FedCSD, which can be generalized for
code smell detection problems.

FIGURE 6: Global federated learning model kappa value (%)
of 10 clients (companies) for 100 communication rounds

In addition to the previous metrics, we calculated the
ROC value for the global model constructed by our approach
during 100 rounds. The ROC value is an essential and accu-
rate metric used to evaluate classification problems that do
not rely on class distributions. As shown in Figure 7, the
ROC value curve depicts the trade-off between sensitivity (Y-
axis) and specificity (X-axis). However, the global model im-
proved linearly per training round, similarly to the previous
metrics. Moreover, Figure 7 highlights how after round 60,
the model stabilized without any anomalous behavior, which
guides us to the conclusion that our approach can capture or
learn any new change in the coding culture.

Based on the above, in general, we find that the ML
model trained based on the proposed approach (FedCSD)
has achieved high performance values according to the loss
function, accuracy, kappa, and ROC measurements when
detecting code smell. As a result, we conclude that the
federated learning approach can effectively be leveraged for
God Class code smell detection. Both null hypotheses are
therefore rejected.

FIGURE 7: Global federated learning model ROC value of
10 clients (companies) for 100 communication rounds

VI. DISCUSSION: CRITICAL EVALUATION OF THE
STUDY
The experiments that have been conducted in this study have
shown the importance of applying FL to preserve privacy
during the training of an ML model, owing to the complexity
that is involved during software design. While code smells
are seen as perennial issues that affect the quality of software,
machine learning, specifically the federated aspect, is touted
as a game changer in code smell detection, not only with a
higher degree of accuracy but also with precision in preserv-
ing essential attributes of the code and data. Accordingly,
this study offers an optimal approach aimed at addressing
the endemic and perennial privacy issues prevalent during
the ML training phase. We are aware of the fact that the
knowledge extracted during data training plays a significant
role; hence, securely distributing and showing the extracted
knowledge from the FL approach emerges as an effective
solution to the challenges posed by traditional centralized
machine learning methods. Furthermore, leveraging data
from open-source software in FedCSD offers considerable
advantages, particularly in code smell detection.

Notably, this approach can be applied in a multitude
organizations that will collaboratively be able to not only
train ML models but also detect code smells, preserve the
privacy of their data, and at the same time expose the relevant
security-related risks during the training of ML models.
The significant findings of this study can be summarized as
follows:

The implications of our findings extend beyond the con-
fines of this research and are addressed as follows:

• Collaborative Software Quality Enhancement: Our
study demonstrates that organisations can effectively
harness FL to train and enhance machine learning mod-
els collaboratively. This approach holds profound sig-
nificance for improving the quality of software code
while preserving the essential privacy of data and code.
Practitioners in software development can leverage this
approach to detect and rectify code smells proactively,
thus minimizing technical debt and enhancing software
maintainability. Therefore, the FedCSD approach in-
troduces a valuable user-feedback component, allow-
ing developers to assess their code quality and detect
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code smells collaboratively for continuous improve-
ment. This interactive aspect fosters a culture of code
quality awareness within development teams, leading to
better code practices and enhanced software quality.

• Privacy-Preserving Software Development: The
study addresses the critical challenge of privacy in code
smell detection, a concern that has often been/not been
extensively explored based on existing literature. Our
findings emphasize the importance of privacy preser-
vation in machine learning applications and provide
a blueprint for other domains where sensitive data is
involved.

• On-the-fly Code Smell Detection : The validity of the
experiments that were conducted in this study shows
that code detection models aid in not only detecting
software design flaws but also improving accuracy dur-
ing this discourse. The experiments conducted in this
study validate the efficacy of code detection models in
not only identifying software design flaws but also im-
proving overall accuracy. This holds great promise for
practitioners seeking robust tools to assess and enhance
their code quality.

In addition, we have explored the need for exploring poten-
tial security vulnerabilities and adversarial learning threats,
which, as a result of implementing FedCSD, may affect
integrity and privacy. Firstly, it is pertinent to explore the
existence of attack vectors [71], which have far-reaching
implications for the deployment of FedCSD. For example,
aspects like model poisoning [72], where malicious partici-
pants may inject erroneous data during training holds. Others
include data poisoning [73], model and gradient inversion
attacks [74], and membership inference attacks [75]. The
aforementioned are key adversarial techniques that may de-
feat the FedCSD implementation. While the scope of this
research does not go into an exploration of key mitigation
strategies, from a privacy perspective, we identify leveraging
differential privacy [76], secure aggregation, model encryp-
tion, and the use of robust federated optimization algorithms
that are essential for ensuring the effectiveness and privacy
of federated learning-based approaches such as FedCSD.

We argue that leveraging FL to address privacy related
aspects in code smell detection is innovative given that, at
the time of writing this paper, there was a gap in research on
code smell detection using closed datasets, improving accu-
racy, and involving multiple organizations while also simul-
taneously preventing code exposure. Importantly, this study
outlines the shortcomings of traditional ML, which, from
a privacy and security perspective, increases the threat and
attack levels of the learning models. While we acknowledge
that the study does not go into detail in identifying specific
security attacks, it is worth mentioning that we have taken a
step in highlighting the generic security-related aspects that
could be of interest when deploying FedCSD. Given that the
scope of the study is not majorly inclined towards security,
we were not concerned with the significance of this aspect

during ML phases (as pointed out by [57]–[59]). However,
we consider this an avenue for future work.

While this study primarily focuses on code smell detection
and privacy preservation, it opens up several avenues for
future research. Specifically, there is potential for further ex-
ploration of security aspects, such as specific security attacks
during machine learning phases, as well as the development
of more sophisticated privacy-preserving techniques within
the Federated Learning framework.

Ultimately, our study bridges the gap in research related
to code smell detection using closed datasets, accuracy
improvement, and multi-organizational collaboration while
maintaining code confidentiality, as was seen in the scenario
that was leveraged in this study. We acknowledge the limi-
tations of not delving into specific security attacks, and we
recognize this as an area ripe for future investigation. The
implications of this research extend to practitioners who seek
to elevate software quality while safeguarding data privacy
and security, making it not only a significant contribution to
academia but also a valuable resource for industry profes-
sionals.

Further, we have taken a positive step in acknowledging
the previous related studies that have not only laid a firm
foundation for this work but have also provided key insights
that have significantly consolidated the arguments put forth
in this paper.

VII. THREATS TO VALIDITY
This section presents the various threats to the validity of our
proposed approach.

A. CONSTRUCT VALIDITY
Construct validity concerns the tools and algorithms ex-
ploited for code smell detection purposes. Accordingly, one
threat concerns the use of the Fedn framework. In [65],
the authors conducted multiple experiments that validated
the Fedn framework’s scalability, resource utilization, and
training accuracy. Another threat to validity concerns the
use of the LSTM algorithm. When we performed the exper-
iments, the Fedn framework supported only deep learning
algorithms. We chose the LSTM algorithm because it is
known for its ability to store information from previous steps
and use that information to influence the output of the current
step. Additionally, the LSTM achieved almost the same score
as the best code smell detection algorithm reported in [37].

B. INTERNAL VALIDITY
An internal threat to the validity of our approach concerns
the distribution of the used datasets with respect to the class
instances (i.e., god class/not god class). Unbalanced datasets
can affect the quality of the trained ML model. To miti-
gate this threat, we applied oversampling and undersampling
techniques in order to balance the three datasets used in the
experiments.
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C. EXTERNAL VALIDITY
An external threat to the validity of our approach concerns
the generalization of our experiments’ results. Specifically,
application of our approach for detecting code smells, e.g.,
in commercial and/or non open-source software systems. To
mitigate this threat, we considered three datasets of open
source systems with different application domains and size
categories. Indeed, our experiments show that the perfor-
mance of the ML trained using the datasets outperforms
the performance of a centralized ML model trained on an
individual dataset.

VIII. CONCLUSIONS AND FUTURE WORKS
Great strides have been made in developing federated learn-
ing as a distributed AI-based technique as far as the enhance-
ment of privacy of data is concerned. However, at the time
of writing this paper, there existed limited or no research
that leveraged federated learning in not only detecting code
smells but also preserving privacy at the same time. As a
result, the research that has been reported in this paper has
explored a privacy-aware approach by proposing a Federated
Learning Code Smell Detection (FedCSD) that is significant
for organizations. The relevance of this proposition is that it
enables organizations to ensure software quality and preserve
the privacy of their data at the same time by mainly sharing
only knowledge as opposed to data. Specifically, in this pa-
per, we demonstrated the application of FL in training ML to
detect code smells in different companies’ code bases with-
out the need to share those bases. Further, we presented an
evolved code review life cycle that integrates our approach.
Furthermore, we introduced a variety of datasets that targeted
different organizations with code smells, and the outcome
showed a higher accuracy not only in the evaluation metrics
but also in the global model across all organisations.

The FedCSD global model outperforms the cross-
evaluation models, where the FedCSD model was able to
detect more smells on a global level which is not detectable
individually by the centralized model. Moreover, The Fed-
CSD model shows stability and robustness compared to the
results of experiments 1 and 2; even the centralized model
of the first and third datasets obtained the highest accuracy,
where more resources are required, and there is no data
privacy preservation has been considered.

The novelty that backs this study shows a higher relevance
when exploring code smells using FL, with dataset two
achieving the lowest accuracy of 92.30% with fewer smells in
Experiment 1, while datasets one and three achieved the high-
est accuracy with a slight difference of 98.90% and 99.5%,
respectively. Consequently, in Experiment 2, a significant
drop in the model accuracy, lowest accuracy 63.80% is seen
where fewer smells exist in the training dataset. Ultimately,
in Experiment 3, where the dataset is split into 10 companies,
an accuracy of 98.34% was achieved by the global model
that has been trained using 10 companies for 100 training
rounds. In addition, we presented relevant studies that have
utilized federated learning in a closely matching context in

order to consolidate the key problem and the propositions in
this paper. As a result, given that varying datasets have been
used, it is the authors opinion that this study outperforms
the state-of-the art FL methods. Based on above-mentioned
premise, the key objective of this paper, which was identified
in the earlier sections, has been reported correctly to best of
our knowledge.

In view of the fore-goings, the authors reiterates that pri-
vacy being a perennial challenge among organizations, these
propositions gives a guarantee of not only maintaining and
preserving privacy but also an assurance of software quality
through a FL code smell detection approach. However, owing
to the emerging diversification in this area, there are avenues
for future work.

In future work, we plan to apply our proposed approach in
practice by involving multiple software development compa-
nies that develop software systems in different domains. In
addition, we plan to extend the approach to detect more types
of code smells in software projects implemented in various
programming languages. Also, it would be imperative to ex-
plore security vulnerabilities, adversarial learning in FedCSD
and mitigation strategies.
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