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Abstract

Context: Artificial Intelligence (AI) is pervasive in several application domains and promises to be even more diffused
in the next decades. Developing high-quality AI-enabled systems — software systems embedding one or multiple AI
components, algorithms, and models — could introduce critical challenges for mitigating specific risks related to the
systems’ quality. Such development alone is insufficient to fully address socio-technical consequences and the need
for rapid adaptation to evolutionary changes. Recent work proposed the concept of AI technical debt, a potential
liability concerned with developing AI-enabled systems whose impact can affect the overall systems’ quality. While
the problem of AI technical debt is rapidly gaining the attention of the software engineering research community,
scientific knowledge that contributes to understanding and managing the matter is still limited.
Objective: In this paper, we leverage the expertise of practitioners to offer useful insights to the research community,
aiming to enhance researchers’ awareness about the detection and mitigation of AI technical debt. Our ultimate goal
is to empower practitioners by providing them with tools and methods. Additionally, our study sheds light on novel
aspects that practitioners might not be fully acquainted with, contributing to a deeper understanding of the subject.
Method: We develop a survey study featuring 53 AI practitioners, in which we collect information on the practical
prevalence, severity, and impact of AI technical debt issues affecting the code and the architecture other than the
strategies applied by practitioners to identify and mitigate them.
Results: The key findings of the study reveal the multiple impacts that AI technical debt issues may have on the
quality of AI-enabled systems (e.g., the high negative impact that Undeclared consumers has on security, whereas
Jumbled Model Architecture can induce the code to be hard to maintain) and the little support practitioners have to
deal with them, limited to apply manual effort for identification and refactoring.
Conclusion: We conclude the article by distilling lessons learned and actionable insights for researchers.

Keywords: AI Technical Debt, Software Quality, Survey Studies, Software Engineering for Artificial Intelligence,
Empirical Software Engineering.

1. Introduction

Contemporary software systems are more and more empowered by Artificial Intelligence (AI) modules, which
companies and individuals use to make informed decisions [1] or automate demanding tasks requiring human work-
load [2]. The impact of AI on industry and society is pervasive, with a further increase expected in the coming years
in multiple domains [3, 4]. In such a context, researchers, high-tech companies, and government agencies are actively
engaging with the definition of novel quality assurance practices that may cope with the continuous evolution of AI
algorithms and models [5]. For instance, the International Organization for Standardization (ISO) has recently in-
troduced a new quality standard, i.e., the ISO/IEC 25059:2023 [6], that incorporates AI-specific characteristics, e.g.,
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functional correctness of the model. These recent advances are designed to provide practitioners with mechanisms
to control for the evolution of AI-specific quality properties [7]. However, they do not cover the integration of AI
modules within more complex software systems, representing a key limitation. Indeed, as recently pointed out by
Sculley et al. [8], machine learning modules only represent a small fraction of the code contained within machine
learning-enabled systems, and their integration is often challenging and a source of quality concerns that may affect
multiple maintenance and evolution properties, other than the overall effectiveness of these systems.

AI technical debt 1(AITD) represents a metaphor to indicate the typical quality concerns of suboptimal solutions
integrated into the building process of AI-enabled systems. An example of AITD is the so-called Pipeline Jungle,
which arises when an AI pipeline becomes overly complex and challenging to maintain over the evolution of the AI-
enabled system because of the presence of many interconnected data processing and machine learning components.

In their seminal paper, Sculley et al. [8] argued that issues due to technical debt are highly diffused in practice
and proposed an initial catalog of more than 20 types of technical debt affecting ML-enabled systems under different
angles, e.g., issues causing code and architectural concerns. Later, Bogner et al. [9] extended such the initial catalog
by conducting a systematic mapping study, through which 72 additional anti-patterns affecting multiple stages of an
AI pipeline were identified. Most research efforts have been conducted to elicit and characterize the properties of
AITD [10, 11, 12, 13, 14], while only a few attempts have been made to identify it [15, 16, 17]. As such, we argue
that the scientific knowledge of AITD is still limited. More specifically, our research points out that key aspects like
the prevalence of the problem in practice, the severity and impact of AITD, and the mitigation strategies to deal with
it are still unexplored.

◎ Objective of the Study

In this paper, we aim to enlarge the knowledge of AI technical debt issues that affect the code and architecture,
investigating their criticality and how practitioners mitigate those concerns in practice.

On the one hand, our focus on these AITD issues is driven by our willingness to investigate quality concerns that
may lead to ripple effects on the quality of an entire AI-enabled system [18, 19]: by investigating the debt items defined
in the literature, we could therefore provide further insights on actually harmful concerns, assessing how critical they
are in practice and what strategies to put in place to limit their adverse effects. On the other hand, no previous work
targeted the analysis of those types of AITD [18]: as we intend to extend the current body of knowledge, we deemed
these quality concerns as an ideal starting point for our research.

We address the main objective of the study by designing and executing a survey study based on an online ques-
tionnaire involving real-world practitioners experienced in developing and maintaining AI-enabled systems. We focus
our analysis on 9 AITD issues defined by Sculley et al. [8], Gesi et al. [20], and Bogner et al. [9]. We opt for such a
research method in light of analyzing the current state of the art. While the software engineering research community
is actively engaging with the problem of AITD, scientific knowledge on the matter is still limited. On the contrary,
we notice that practitioners seem to perceive the problem of AITD as critical —as proof of that, practitioners released
the preliminary catalog of these types of quality issues in ML-enabled systems [8], and other prominent related re-
sources(e.g., [14, 17]) have been released by practitioners. As such, our work aims to survey the state of the practice
to inform about the next research avenues to pursue to support practitioners better when dealing with AITD issues.
Our survey study involves 53 participants who were consulted about the frequency, severity, impact, and mitigation
strategies for nine distinct AITD concerns. The key findings of our study revealed that practitioners are relatively
unaware of the prevalence of these AITD concerns, yet they consider them severe and harmful.

The key findings of our study revealed that practitioners, while recognizing the low prevalence of AITD issues,
consistently recognize the severity and potential harm these issues can inflict on the systems’ quality. Furthermore,
the study highlights that the primary response to these concerns involves manual inspections and ad-hoc refactoring
strategies. The perception of participants on the prevalence and severity of issues suggests a potential gap in the prac-
titioners’ ability to identify these issues automatically. This gap likely contributes to underestimating their prevalence,
underscoring the need for automatic approaches in detecting and addressing AITD issues. Based on our findings, we

1In this context, we refer to all technical debt issues occurring in AI-enabled systems as AITD.
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eventually come up with a set of challenges that the research community is called to address, other than additional
implications that may impact future research actions on AITD.
Structure of the paper. Section 2 discusses the literature on AITD. In Section 3, we describe the research questions
driving our investigation and the methodical choices to address them. The analysis of the results is reported in
Section 4, while further discussions and implications are discussed in Section 5. Section 6 reports on the limitations
of our work and the actions conducted to mitigate them. Finally, Section 7 concludes the paper and defines the steps
of our future research agenda.

2. Background and Related Work

This section first defines the main terms employed throughout the article. Afterward, it provides an overview
of technical debt and the software quality concerns affecting AI-enabled systems. In addition, we discuss the most
closely related work, pointing out the main differences that let our work advance the state of the art.

2.1. Terminology
Before reporting on the background and the related literature, we provide the basic definitions used throughout the

empirical study:

Technical Debt. Technical debt is a metaphorical concept introduced by Ward Cunningham in 1992 [21]. It refers
to the compromises made during the design, implementation, or maintenance of software systems to meet immediate
goals, often at the expense of the overall system’s quality. Technical debt encompasses various factors, including
suboptimal coding practices, hurried decision-making, lack of documentation, and architectural shortcuts [22]. While
sometimes incurred unavoidably due to factors like tight deadlines or evolving requirements, accumulating technical
debt can hinder future development efforts, increase maintenance costs, and impede the evolution of the software.

AI-enabled systems. An AI-enabled system represents “a software system with functionalities enabled by at least
one AI component, e.g., for image-, speech-recognition, and autonomous driving”[5]. In the context of this study, the
term refers to systems integrating AI technologies to meet diverse business and technological requirements.

AI components. An AI component is a module or a unit within an AI-enabled system “whose behavior relies on
AI code or an AI library that provides an implementation of AI algorithms”[5]. Within this study, recognizing the
definition of AI components is crucial for understanding the interactions of participants engaged in developing, im-
plementing, or maintaining these integral modules.

AI practitioners. As AI practitioners, we intend all practitioners involved in building AI-enabled systems, from
data management activities to deploying and serving the system into production. The activities involved in building
AI-enabled systems include additional roles that oversee the development and management of the software system,
including Data Scientists and Software Engineers [23]. This definition allows us to collect different perspectives and
priorities on the quality of process and the product of AI-enabled systems.

2.2. Software Quality for AI
Bosch et al. [24] argued that AI engineering expands upon software engineering, incorporating novel technologies

and processes essential for developing such systems. Foidl and Felderer [15] defined an ML-based software system as
one that employs algorithms to process data, utilizing ML models to autonomously make intelligent decisions based
on extracted relationships, patterns, and data-derived knowledge. Based on the terminology defined by Martínez-
Fernández et al. [5], an AI architecture can have traditional and AI software components. Sculley et al. [8] defined
the typical structure of a ML-enabled system, where a tiny fraction of components aimed at the learning and inference
process is surrounded by a series of traditional software components aimed at supporting the functionalities of the
ML component. Siebert et al. [25] specified AI software components, particularly those involving ML, as data-driven
software entities. A data-driven software component pertains to a software module that addresses a defined task (e.g.,
image segmentation, sentiment analysis, classification) through data science methodologies, encompassing ML, data
mining, natural language processing, signal processing, and statistics. AI components, especially based on supervised
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ML or DL, differ fundamentally from traditional components because they are data-driven, i.e., their behavior is
non-deterministic, statistics-orientated, and evolves in response to the frequent provision of new data [26].

However, due to the complexity of AI components, the effect of applying bad practices on these components
is critical and not manageable like for traditional components. One of the main complications of operating with
AI components is related to the maintainability of the AI-enabled system. This type of component provides non-
deterministic results in which the testability is not assessable with traditional testing approaches [7]. Moreover, the
lack of requirements concerning the specification and robustness of AI models significantly impacts the quality of
models designed for conventional systems [27]. Gezici et al. [28] conducted a systematic literature review on the
software quality attributes used for AI systems. The main findings highlight the adaptation of practitioners of the
quality model ISO/IEC 25010 to AI. Since this type of system has a different nature and applying established quality
standards could not be a solution for the specific case in which AI is used, the findings highlight the lack of well-
defined guidelines, frameworks, roadmaps, and models for measuring the quality of AI-enabled software.

Inadequate process definitions to be followed, quality metrics, attributes, and assurance techniques cause new
challenges for academia and industry. A systematic literature review by Martínez-Fernández et al. [5] concerning the
main challenges in the field of SE4AI discovered that besides established quality standards, there are specific quality
attributes for machine learning and artificial intelligence-related to safety and ethics. The specificity of these quality
aspects highlights the need to define a new quality model that inherits the quality terms from software quality standards
and adapts it to AI. The European High-Level Expert Group on AI presented the Assessment List for Trustworthy AI
(ALTAI) [29]. It addresses ethical considerations and data privacy issues while highlighting the significance of relia-
bility and quality. By introducing a series of self-assessment queries, the report facilitates practitioners in identifying
prevalent quality issues often encountered in AI-enabled systems. Additionally, starting from the quality standard
ISO/IEC 25010 [30] for software systems, the International Organization for Standardization (ISO) developed a new
quality standard specific for AI systems: ISO/IEC 25059 [6]. The updated quality standard for AI systems emphasizes
comprehensive product quality evaluation, including functional adaptability and correctness. These quality aspects are
particularly relevant because models may not always guarantee correctness in all situations, and the ability to utilize
past data or outcomes for future predictions is a critical point that can lead to the quality degradation of the model.

However, while quality aspects related to AI-enabled systems have been developed in the last few years, there
is still the need to focus the research on several issues that could damage the overall quality of AI-enabled systems.
In this regard, a few studies have delved into the potential effects of introducing quality problems. Thung et al. [31]
performed an empirical study to assess the effect of bugs on machine learning systems. Analyzing three open-source
machine learning systems, they found that most bugs affect the algorithm used by the system. Sun et al. [32] discovered
seven highly diffused bug types by analyzing three machine learning projects. Golendukhina et al. [33] interviewed
ten companies to extract quality issues in AI-enabled systems. They extracted 12 issues frequently in the development
process, identifying how practitioners detect them. These pioneering studies call for intensified research into quality
concerns within the AI domain. By highlighting the real-world consequences of quality issues, they emphasize the
need for robust quality assurance measures to ensure the effectiveness and dependability of AI-enabled systems.

2.3. Technical Debt
Technical debt is the metaphor introduced by Cunningham [21] to describe suboptimal solutions to gain benefits

in the short term that should be repaid with more costs over the medium or long term. As for the metaphor of
financial debt, technical debt can cause severe problems to the system’s maintainability, increasing maintenance costs
and decreasing the quality [34, 35]. From the general definition, several studies have been conducted to explore the
occurrence of technical debt in depth. Tom et al. [36] explored the several types of granularity that highlight the
level of the effect of each technical debt. In detail, the effect is related to the code (code debt), the design, and the
architecture (architectural debt), in the environment of the application (environmental debt), from the relation of the
community to the infrastructure (knowledge distribution debt) and the activities related to the testing of the system
(testing debt). Subsequently, Li et al. [37] extended the classification, including other technical debt types (e.g.,
requirements debt and infrastructure debt).

Finally, Alves et al. [38] conducted a systematic mapping study to overlay a broader overview of technical debt.
Among all the outcomes of exploring technical debt management activities found in the study, they identified 15 types
of technical debt, encompassing other aspects such as versioning and usability. As an additional contribution, they
highlighted the differences between the taxonomies in this field, giving complementary and overlapping definitions.
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Nonetheless, boundaries among these definitions are difficult to draw. Among the quality issues that can cause
technical debt, the concept of code smells is prominent, as defined by Martin Fowler [39]. Code smells refer to
specific issues within the code that significantly impact the maintainability of a software system. These issues are
considered “symptoms of poor design and implementation choices”, and if left unaddressed, they can deteriorate
the overall quality of the system. Consequently, it is crucial to protect the quality of software systems by actively
detecting and resolving code smells. To this end, researchers have conducted numerous studies to identify techniques
for detecting code smells. Initially, structural metrics and historical metrics were explored, resulting in the proposal
of various tools and methodologies [40, 41, 42, 43, 44]. However, with AI’s advancement and general adoption,
machine-learning techniques are proposed to identify code smells [45, 46]. The impact of code smells extends beyond
just maintainability. Studies have shown that code smells can directly affect other key aspects of software quality,
such as performance [47], change-proneness [48, 49], and reliability [50]. Moreover, the occurrence of code smells
can affect the development process and the productivity of the development team [51], making it imperative to address
these issues proactively.

Technical debt has been a significant area of research in software engineering. With the rise of AI systems,
researchers have also started exploring technical debt in the context of these systems. One notable study in this
direction is the work by Sculley et al. [8]. This study analyzes technical debt in ML systems and highlights the
challenges posed by such debt. ML systems have a remarkable capacity for incurring technical debt because they
have all the maintenance problems of traditional code plus an additional set of ML-specific issues. They extracted a
series of issues that cause technical debt in the several components included in an ML pipeline from the model (e.g.,
Epsilon Features) to the system’s architecture (e.g., Pipeline Jungle). However, while these issues have been identified
as challenges for research to find possible solutions to manage this type of technical debt, there is currently limited
practical advancement that supports practitioners in effectively identifying, evaluating, and managing these specific
issues in real-world AI projects. As AI grows, addressing technical debt in these systems becomes increasingly
crucial for maintaining the system’s overall quality. Further research and tooling advancements are needed to enable
practitioners to proactively handle technical debt in ML systems and ensure their long-term success.

2.4. Related Work

Several works analyzed the presence of technical debt in AI-enabled systems. Liu et al. [16] analyzed comments
in the code of seven popular deep-learning projects to investigate the presence of self-admitted technical debt. Their
study revealed many technical debt issues reported by practitioners, particularly in design debt, requirement debt,
and algorithm debt. Since this work emphasizes the significance of acknowledging and addressing self-admitted
technical debt to enhance the maintainability of ML projects, our work extends the investigation to include AITD
issues, analyzing their prevalence and collecting data from the perspective of practitioners.

Jebnoun et al. [11] conducted a comparative analysis of code smell prevalence of deep learning projects. Sur-
prisingly, they found that the prevalence of code smells in projects containing deep learning components was not
significantly different from systems not containing them. Furthermore, they observed an increasing trend of code
smells during the evolution of deep learning applications, emphasizing the importance of addressing technical debt
proactively. The trend discovered in this study is an important finding that highlights that deep learning projects are
also affected by technical debt. Our study’s goal is to extend the findings to understand whether practitioners also
perceive AITD issues in these types of projects.

Additionally, several studies have been conducted to evaluate the data quality inside AI-enabled systems. Foidl
et al. [52] contributed to the literature with a catalog of 36 data smells related to the data format used in AI-enabled
systems. From the definition of the smells proposed, Foidl et al. [15] proposed a risk-based data validation approach
to assess data quality within an AI pipeline. This approach helps identify and mitigate data-related technical debt
by considering data smells, source quality, and pipeline quality. Shome et al. [53] introduced a novel catalog of data
smells by analyzing 25 datasets from Kaggle2. Their work identified and analyzed 14 new data smells, further enhanc-
ing the understanding of data quality issues in ML projects. All these findings can aid researchers and practitioners in
improving data handling and preprocessing procedures.

2Kaggle platform: https://www.kaggle.com/
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From the actual contribution that Sculley et al. [8] give to the definition of technical debt in AI-enabled systems,
several studies are conducted to detail the state of knowledge of these issues. Tang et al. [54] performed an empirical
study analyzing 26 ML projects, where they introduced seven new ML-specific technical debt types, primarily con-
centrating on aspects related to the model code. Their findings shed light on unique challenges and debt types specific
to ML projects, helping researchers and practitioners mitigate technical debt effectively. Bogner et al. [9] conducted
a systematic mapping study to identify and analyze technical debt in AI-enabled systems. They identified 72 an-
tipatterns, most related to data and model deficiencies. Their work provides valuable insights into the specific areas
requiring attention to effectively manage technical debt in AI projects. While these studies perform empirical analysis
of literature and projects, there is still a missing link with the state of the practice, understanding how practitioners
perceive the presence of AITD issues and how they manage them. Moreover, the outcome from these studies (from
Foidl et al. [15, 52], Shome et al. [53], Bogner et al. et al. [9] and Tang et al. [54]) focus on the technical debt issues
and antipatterns that are related to data and model. Our work wants to give the same contribution to the practitioners
in the context of technical debt management for the code and the architecture of AI-enabled systems.

Gesi et al. [20] conducted an empirical study on deep learning projects, focusing on the frequency of code smells.
In addition to analyzing the existing code smells, they identified five new codes specific to deep learning projects. This
study enriches the understanding of code quality issues in the context of deep learning and highlights the importance
of tailored approaches to tackle technical debt in ML projects. While the study focused on identifying code smells
specific to deep learning projects, it did not thoroughly explore the spread and impact of AITD issues in those projects.
Identifying five new code smells is necessary to enrich the understanding of code quality issues. Alahdab et al. [10]
conducted a case study addressing AITD issues in ML models. Their study extensively examined technical debt in
Glue Code, Pipeline Jungle, and Multiple Language Smell. By identifying and addressing these issues, their work
enhances ML projects’ overall reliability and maintainability. The study conducted by Gesi et al. [20] and Alahdab et
al. [10] also focuses on technical debt issues affecting the code and the architecture of those systems. However, there
is still a lack of comprehensive assessment of the practitioners’ perception of these issues in real projects. A clear
and complete analysis that collects information on the relevance, severity, impact on quality aspects, and mitigation
strategies from the practitioners’ perspective is necessary to understand how practitioners face these issues in the
industry to guarantee high quality and prioritize them.

Finally, solutions are proposed to face and prevent the presence of technical debt in AI-enabled systems. Breck
et al. [17] presented 28 monitoring tests to improve readiness and pay down technical debt in ML systems. These
monitoring tests serve as practical guidelines for practitioners to assess the quality of the ML development process,
enabling them to detect and prevent potential issues during the design of AI-enabled systems. Malakuti et al. [55]
proposed an information meta-model to manage and integrate digital twin models, aiming to prevent Pipeline Jun-
gle, Undeclared Consumers, and Data Dependency issues. This contribution highlights the importance of managing
technical debt in the context of integrating multiple models in ML-enabled systems.

In light of the existing research presented, there is a notable gap in AI-enabled systems regarding the practical
approaches practitioners adopt to address technical debt. While previous studies have delved into the characteristics of
AITD and provided insights into their consequences, there needs to be more research that analyzes the practitioners’
perceptions regarding the implications of AITD issues. To bridge this gap, exploring practitioners’ perspectives
working on AI-enabled projects offers a valuable solution. By gaining insights into how AI practitioners perceive
and interact with AITD issues in their work, we can link the theoretical knowledge defined in the literature and the
practical realities development teams face. This empirical perspective helps validate the relevance and applicability
of AITD issues already defined and provides a nuanced understanding of the challenges practitioners encounter and
their strategies. ”

3. Research Method

This section defines research objectives, outlines the rationale, and explains each step we performed.

3.1. Research Objective and Questions

Our empirical investigation analyzed practitioners’ prevalence, effects, and mitigation strategies when dealing
with AI Technical Debt (AITD) issues, i.e., suboptimal or compromised design and implementation choices made
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during the development and deployment of AI-enabled systems. The focus on the set of AITD issues that strictly
affect the code and the architecture was motivated by the low research effort conducted on these two aspects and the
high negative impact of gaining low quality on the architecture and the code stated by Shivashankar et al. [18] and
Lenarduzzi et al. [19].

To pursue our investigation, we first applied the Goal-Question-Metrics approach [56] to extract relevant research
questions that could address our objective. More specifically, the goal of our study was the following:

Analyze AITD issues
for the purpose of identifying
their frequency, severity, impact, identification, and mitigation strategies
from the point of view of AI practitioners
in the context of building AI-enabled systems.
From the definition of the main goal, we defined the following research questions:

ü RQ1. How frequent are AITD issues affecting the code and architecture from the practitioner’s perspective?

The motivation behind studying the frequency of AITD issues from the practitioner’s perspective is to gain insights
into the prevalence of these issues in software development. While these issues are defined and discussed in the
literature, it is still challenging to understand the actual presence in the state of the practice. By understanding how
frequently practitioners encounter AITD issues, we can prioritize and address the most significant challenges. RQ1
helps devise strategies to mitigate risks, allocate resources effectively, and develop proactive measures. Investigating
the frequency of the nine aforementioned AITD issues could provide valuable insights into real-world challenges and
aid decision-making processes in software development.

ü RQ2. How severe are AITD issues affecting the code and architecture from the practitioner’s perspective?

Understanding the severity of AITD issues from the practitioner’s perspective is crucial for effectively prioritizing
efforts and addressing challenges. RQ2 helps allocate resources toward resolving the most critical AITD issues and
improving the overall quality of the development process. Additionally, assessing the severity of these nine AITD
issues fosters a culture of continuous improvement by creating awareness and promoting collaborative efforts to
address these challenges proactively.

ü RQ3. What is the impact of AITD issues affecting the code and architecture from the practitioner’s perspective?

RQ3 focuses on assessing the impact of introducing AITD issues from the practitioner’s perspective. After as-
sessing the severity of each AITD issue, RQ3 aims to increase the awareness of the practitioners encountering AITD
issues, highlighting the specific quality aspects that are influenced or affected when introducing these issues. This
analysis is crucial for gaining insights into the potential risks, challenges, and trade-offs associated with AITD.

ü RQ4. What strategies do practitioners use to identify and mitigate AITD issues affecting the code and architec-
ture?

The last research question aims at finding possible strategies to manage the proposed nine AITD issues. The set
of discovered strategies could inspire automated techniques for AITD management, creating an ideal set of guidelines
that helps practitioners face AITD issues while building AI-enabled systems.

Altogether, the findings from the four RQs would inform the software engineering research community about
the AITD types that are more relevant in practice, their impact on multiple properties of AI-enabled systems, and
how practitioners currently deal with them. These pieces of information may be exploited by researchers to increase
awareness on the matter and to prioritize their research efforts, e.g., by investigating the AITD having the highest
impact on practice, other than to devise novel, practitioner-informed techniques and methods that would support the
identification and mitigation of AITD.

3.2. Research Method

As Easterbrook et al. [57] suggests, several research methods can be used to gain insights into AITD issues. We
opted for a survey study to collect data from a larger sample of participants and understand the behavior of AITD
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issues in practice. We aimed to collect comprehensive information from a large sample of participants, particularly
practitioners with experience in artificial intelligence systems, to improve our understanding of AITD issues and their
impact on the development process. Our survey study explored the practitioner’s perspective on each AITD issue,
analyzing its frequency, severity, impact, and management strategies. We adopted Kitchenham and Pfleeger’s survey
design principles [58] to structure our survey process, comprising multiple steps. We initiated the survey process
by extracting the study context (Section 3.3) to identify and select a set of AITD issues for analysis. Subsequently,
we designed the survey structure and conducted a pre-screening (Section 3.4). To ensure its reliability, the survey
underwent validation using empirical standards and a pilot test (Section 3.5). Finally, we executed and administered
the survey (Section 3.6), collected the data, and performed data cleaning and analysis to address our research questions
(Section 3.7). Detailed information about the conducted survey is provided in the following sections.

3.3. Context of the Study

The context of the study was represented by objects, i.e., the AI-related issues in the scope of the study, and
subjects, i.e., the participants of the survey. As for the objects, our research focused on identifying potential AITD
issues affecting the code and the system’s architecture. We thoroughly analyzed the existing literature on the topic of
explicit issues that can introduce technical debt specific to AI-enabled systems, including studies by Sculley et al. [8],
Gesi et al. [20], and Bogner et al. [9]. From the initial set of 77 AITD issues collected from the three sources, we
selected all the issues related to the architecture and the code, identifying 13 issues. We chose issues with the most
straightforward definitions, as many of the AITD problems we encountered were quite broad and difficult to pinpoint
to a specific scenario. For example, we included Pipeline Jungle as it clearly indicates the affected object (e.g., the
pipeline), the event (e.g., continuous growth), and the effect on the system (e.g., decreased maintainability of the
pipeline). However, we excluded any AITD issues identified in the literature that lacked these specific elements (e.g.,
"Monolithic Pipeline"). The motivation behind this selection is twofold. On the one hand, the amount of data possible
to collect from each participant can be limited by the participant’s availability time. It is crucial to strike a balance and
avoid making the survey too overwhelming, as this can lead to participants losing interest or abandoning the survey.
On the other hand, it is imperative to ensure that any AITD issues in the survey are clearly defined so participants can
accurately recognize and respond to them. This is especially critical during the vignette representation step, as unclear
issues can result in biased answers based on a misrepresented situation of the vignette. As a result of this analysis, we
collected nine AITD issues affecting the code and the architecture, as stated in Table 1.

As for the subjects, our research focuses on gathering perceptions about issues that appear in AI-enabled systems,
specifically in the code and the architecture. To obtain a comprehensive overview of the perception of AITD, we tried
to gather insights from diverse perspectives in our participant selection process. We aimed to gain practical insights
into the AI landscape, engaging with professionals actively involved in building AI-enabled systems. Within this
process, distinct roles are assigned with unique priorities and goals, and individuals approach the AI component with
varying levels of expertise — from model architecture experts to data scientists with limited experience in this field.
Consequently, this study’s subjects are AI practitioners with experience interacting with AI components. The eligible
participants for this study can be involved in different AI components, such as data preparation, model training,
model deployment, and application maintenance. Therefore, we defined the subject of this study as practitioners
with a baseline understanding of AI, but that includes different roles and perspectives among the several facets an
AI-enabled system includes.

3.4. Survey Design

The survey was structured following the principles defined by Kitchenham and Pfleeger [59]. We also followed
the recommendations provided by Reid et al. [60], which allowed us to increase the quality of the applied method and
manage threats related to the participants’ knowledge. In particular, we applied the following recommendations:

• We introduced a pre-screening survey to check the skill level of the participants.

• We added a skill and attention check question to check whether participants who self-report the requested skill
meet our criteria (labeled in the pre-screening survey as PD12).

• We included examples with vignettes to increase participants’ confidence in conducting our study.
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Table 1: Definitions of the collected AITD issues

AITD Literature Selection
AITD Issue Issue Definition
Jumbled Model Architecture (JMA) Model architecture components are cobbled together and difficult to understand and maintain indi-

vidually [20].
Pipeline Jungle (PJ) These pipelines organically evolve as new signals are identified and new information sources are

incrementally added. Without care, the resulting system for preparing data in an ML-friendly format
may become a jungle of scrapes, joins, and sampling steps, often with intermediate file output.
Managing these pipelines, detecting errors, and recovering from failures are all difficult and costly [8,
9].

Multiple Language Smells (MLS) It is often tempting to write a particular piece of a system in a given language, especially when that
language has a convenient library or syntax for the task at hand. However, using multiple languages
often increases the cost of effective testing and can increase the difficulty of transferring ownership
to other individuals [8, 9].

Undeclared Consumers (UC) Often, a machine learning model ma prediction is made widely accessible at runtime or by writing to
files or logs that other systems may consume later. Without access controls, some of these consumers
may be undeclared, silently using the output of a given model as an input to another system [8, 9].

Correction Cascades (CC) There are situations in which a model ma for a problem A exists, but a solution for a slightly different
problem A′ is required. In this case, learning a model m′a that takes ma as input and learns a small
correction as a fast way to solve the problem can be tempting. However, this correction model
has created a new system dependency on ma, making it significantly more expensive to analyze
improvements to that model in the future. The cost increases when correction models are cascaded,
with a model for problem A′′ learned on top of m′a, and so on, for several slightly different test
distributions [8, 9].

Glue Code (GC) ML researchers tend to develop general-purpose solutions as self-contained packages. Generic pack-
ages often lead to a glue code system, in which a massive amount of supporting code is written to
get data into and out of general-purpose packages [8, 9].

Deep God File (DG) A file containing multiple components of an AI system, e.g., model training, validation, and test-
ing [20].

Scattered Use of ML Libraries (SML) Scattered use of ML API in multiple files. Once ML API needs to be modified, the practitioners must
modify places across several files [20].

Unwanted Debugging Code (UDC) A debugging code fragment, method, or class is no longer used, but it is still part of the source
code [20].

9



Survey

Survey Introduction

Pre-screening

General Skills InformationParticipant’s Background

AI-Specific Skills Information Attention and Skills Check

Additional Background Information 

RQ3: Impact on Quality RQ4: Identification and 
Refactoring Techniques

RQ2: SeverityRQ1: Frequency

AITD Issue Vignette Introduction 

AITD Issue Analysis

Filtering on 

eligibility criteria

Figure 1: Structure of the pre-screening and the survey

• We included a pilot test to check the comprehensibility and clarity of the survey.

The participants’ information collection was divided into two parts, as shown in Figure 1. The first part of the
research focused on selecting participants with experience developing AI-enabled systems by pre-screening.

Pre-screening. In this part, we provided each participant with the survey introduction information that describes the
role of the participants eligible for the study’s context. In detail, we explicitly required that the participants’ roles be
related to artificial intelligence. Given the diverse interpretations of AI, practitioners may develop their understanding
from various contexts, such as different tasks (e.g., classification or regression) and techniques (e.g., Machine Learning
or Deep Learning). Therefore, we built a pre-screening survey that involves participants who work in all the AI-
related fields, ensuring a baseline understanding. The pre-screening consisted of two essential sections of questions.
In the first section, we asked participants about their role in their company and their level of experience in general
skills related to building AI-enabled systems: Programming, Artificial Intelligence, and Software Engineering. The
questions about the experience are presented on a Likert Scale, where the participant can explain his knowledge level
on a 5-point scale (i.e., Novice, Basic, Intermediate, Advanced, Expert) [61]. The second section included questions
to understand which part of an AI-enabled system the participant is responsible for. We proposed a sample of the
AI pipeline to let the participants recognize the phases in which they are involved. Using the five-point scale, each
participant reported their experience with the practices included in an AI application, starting from the data preparation
phase to the model deployment phase. Additionally, we asked which activities explain their work. Finally, we included
a competence and attention check question related to the practice used to build an AI-enabled system; In particular,
we asked the participant which data balancing techniques should be applied in a specific context. Table 2 gives an
overview of the questions delivered to the participants. Afterward, we defined a set of constraints in the pre-screening
process to focus on the answers from participants who considered having experience in the domain. The participant,
to be considered appropriate for the survey, must respect the following constraints:

1. The participant must correctly answer the competence and attention check question (PD12).

2. The participant must know Programming at least equal to two out of five.

3. The participant must know about artificial intelligence (PD4) or software engineering (PD5) at least equal to
three out of five.

4. If the participant respects the previous constraint, the participant must know the other field at least equal to two
out of five.

5. The participant must know about monitoring, maintenance, and deployment of AI models (PD9) or knowledge
in using machine learning libraries (PD10) at least equal to three out of five.
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Table 2: Prescreening questions

First Section
Questions Question Types
PD1 What is your role in the company? Multiple Choice
PD2 How many years of experience do you have in your role? Multiple Choice
PD3 Define your knowledge level in: Programming Likert Scale
PD4 Define your knowledge level in: Artificial Intelligence Likert Scale
PD5 Define your knowledge level in: Software Engineering Likert Scale
Second Section
Questions Question Types

Considering the section figure, I have experience in [...]
PD6 [...] Data ingestion, data aggregation or other types of data preparation Likert Scale
PD7 [...] Model selection and model training Likert Scale
PD8 [...] Model validation, review process and improving model Likert Scale
PD9 [...] Monitoring, maintenance and deployment plan Likert Scale
PD10 [...] Using Machine Learning libraries and execution of the model Likert Scale
PD11 Taking a look at the section figure represented above, Which of these activities explains better

your work in AI systems? (One or more of it)
Multiple Choice

PD12 In which part of the dataset do you apply the data balancing techniques (e.g., Oversampling,
Undersampling)?

Multiple Choice

These criteria prioritize participants with expertise in systems, including software engineering, programming, and ar-
tificial intelligence. Moreover, a focus on participants’ proficiency in managing various phases of AI-enabled systems
has been incorporated. These phases include monitoring, development, and deployment. Proficiency in these areas
signifies participants’ practical experience in handling the complete lifecycle of AI-enabled systems. By utilizing
these criteria, we have identified a group of participants who can effectively analyze issues and technical debt. Their
practical experience and knowledge in AI-enabled systems could let the participants understand the situations repre-
sented through the vignette and relate experiences to the AITD issues proposed. After selecting the participants, we
conducted the main survey, which was structured in two sections.

Main survey. First, we asked two questions related to the dimension of the team and the organization in which
practitioners work to have a complete vision of their activities while developing AI-enabled systems. Then, we asked
a set of questions to answer the research questions for each instance analyzed by the participants. In detail, the second
section started with the representation of the vignette to let the participant recognize the issue of the situation and
analyze it with a practical example. We followed the methodology of Experimental Vignette Study introduced by
Atzmüller and Steiner [62] to create the vignette in a standardized, concise and precise format and increase the level
of understandability of the survey from the practitioner’s perspective. This method transforms the formal definition of
an AITD issue into a more detailed and intelligible form through a vignette. We created a vignette for each instance to
ensure that participants understand the context, activity, and problems associated with AITD entirely. These vignettes,
as demonstrated in Figure 2, depict situations where AITD issues may arise, considering the timing of the situation,
the event, and the actions of the practitioners.

By presenting issues related to AITD in the form of situations, participants can reason about the circumstances
surrounding AITD issues rather than just its definition. This approach allows participants to provide information on
the characteristics of AITD issues in a relatable and easy-to-understand way, based on common ground and mitigating
the risk of diverse interpretations of an issue.

After understanding the issue through the vignette, each participant answered questions on the characteristics that
address our RQs. We designed several questions to analyze the frequency and the severity of AITD issues (RQ1
and RQ2). In particular, we asked the participant (i) how often they had encountered an instance of such AITD in
their experience, (ii) to what extent and (iii) why this situation is problematic, and (iv) the effort needed to identify
and refactor the AITD issue. To understand the impact of AITD issues (RQ3), we asked several questions based on
six AI quality-related aspects: (i) understandability, (ii) performance, (iii) maintainability, (iv) evolution, (v) defect-
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Pipeline Jungle: Definition Pipeline Jungle: Vignette

These can evolve organically, as new signals are identified 
and new information sources are added incrementally. 
Without care, the resulting system for preparing data in an 
ML-friendly format may become a jungle of scrapes, joins, 
and sampling steps, often with intermediate file output. 
Managing these pipelines, detecting errors, and recovering 
from failures are all difficult and costly.

Suppose that you are working on a machine learning 
pipeline application. During the pipeline definition of the 
model, you see that each part of the team adds several 
steps for each phase of the pipeline, and you notice 
that the entire pipeline starts growing more.

Figure 2: Application of vignettes to define the Pipeline Jungle issue

proneness on other components, and (vi) coupling. The participants provided the agreement level on the statement
proposed as a Likert Scale (Strongly Disagree to Strongly Agree). Finally, after analyzing each assigned AITD issue
through the vignette proposed, the participant could provide further information on AITDs through the open question
and release his email for future investigations. Table 3 illustrates the list of questions delivered to each participant.

3.5. Survey Validation

Before starting with the survey study, we conducted a pilot test recruiting five researchers experienced in perform-
ing online surveys, as proposed by Reid et al. [60], to assess the survey’s quality in various areas, such as the clarity
of the questions and the accuracy of the answers.

We considered the knowledge gap between the researchers in the pilot test and the AI practitioners involved in
the survey; therefore, we included an industry participant with experience in AI-enabled systems. Specifically, we
included a Backend Software Engineer in AI-enabled systems who works as a practitioner for feedback. The addition
of an industry-related participant for the pilot test helped us to understand if the terms used in the survey could be
understandable by the participants subject to the investigation since the focus of our study is to collect the perspective
of practitioners. Several suggestions helped to increase the quality of the survey study. Regarding the pre-screening
questions, participants suggested increasing the detail of scale values of the questions related to the general skills (PD3,
PD4, PD5) and AI-specific skills (PD6-PD10). From this feedback, we defined values for general skills to range from
Novice level to Expert and experience level in AI-specific skills from Very Poor to Excellent. Regarding the main
survey, participants highlighted a lack of clarity for the vignette representing AITD issues, particularly for Jumbled
Model Architecture and Glue Code. To address this issue, we rewrote the vignette, adding examples that help the
practitioners to recognize the situation. Finally, participants suggested removing questions related to gender. Although
gender is an important and relevant factor in various research contexts, our study of AI Technical Debt focuses
specifically on technical aspects of AI and its implications. Furthermore, avoiding questions on gender ensures that
participant privacy is respected and that the study remains focused on its core research objectives without inadvertently
collecting sensitive or unnecessary personal information. For these reasons, we agreed with the participants to exclude
gender-related questions that could hinder their privacy.

3.6. Survey Administration

One of the key choices was selecting the platform to recruit the survey participants. Social media or a specialized
recruitment platform could have been a reliable option. However, it is necessary to be cautious about potential biases in
the sample, as social media users may not represent the target population accurately. Opting for a specific recruitment
platform like Prolific can be beneficial due to its focus on academic research and access to pre-screened, willing
participants who have expressed interest in participating in studies. Furthermore, these platforms often offer features
to control demographics and manage participant compensation, simplifying the research process.

We recruited the participants through the Prolific platform3, which allowed us to select experts in AI-enabled sys-
tem development. We could control the recruitment process by defining filters that explicitly address the participants’

3https://www.prolific.co
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Table 3: Survey questions

Preliminary Questions Question Types
S1D1 How many members are in your team? Multiple Choice
S1D2 How many employers are in your company? Multiple Choice
RQ1 Question Types
S2D6 How often do you encounter this situation? Likert Scale
RQ2 Question Types
S2D1 How much do you find this situation problematic? Likert Scale
RQ3 Question Types
S2D2 Why it is (or not) problematic? Open Question

Please vote on the following sentences: I think that this situation ...
S3D1 ...may make other components of the application more defect-prone. Likert Scale
S3D2 ...makes the level of interpretability/explainability of the model more complex. Likert Scale
S3D3 ...makes it difficult to evolve the application. Likert Scale
S3D4 ...may impact and decrease the performance of the model. Likert Scale
S3D5 ...could contribute to create dependencies, increasing the coupling of the application. Likert Scale
S3D6 ...is hard to maintain, increasing the cost and the effort to maintain the application. Likert Scale
RQ4 Question Types
S2D3 What are your practices of identification for this situation? Likert Scale
S2D4 Could you tell us something more about identification? (Specify the name of the tool or some

info about the activity of the answer you selected in the previous question)
Open Question

S2D5 How much effort do you think is necessary to identify this situation? Likert Scale
S2D7 How much effort do you think is necessary for refactoring, mitigating, or improving this situ-

ation?
Likert Scale

S2D8 How do you refactor this situation? Open Question
Additional Questions Question Types
S4D1 Could you give us any additional feedback on your activity or any bad practices you’ve ob-

served in your experience? ∗
Open Question

S4D2 If you’d like to be considered for future surveys or interviews, please enter your email address.∗ Open Question
∗= The proposed question is optional.

research on specific domains. Given the absence of specific filters precisely aligned with the role we sought, we used
filters focused on participants with expertise in software development techniques and computer programming.

The process of pre-screening analysis began on June 28, 2022, and lasted for nearly four hours to obtain answers
from all participants. With these filters, we recruited 500 participants with experience in programming and knowl-
edge of software development techniques. From the initial set, 188 participants correctly answered the pre-screening
question, i.e., competence and attention check question, representing 37,8% of the selected population. We excluded
those participants who did not meet the previously defined eligibility criteria and appointed 112 participants as eligi-
ble for the experiment. Afterward, some participants declared their unavailability to continue the experiment, leading
to a group of 54 participants. This drop in participants could lead to insufficient information extractable from each
participant. We had to consider the maximum time and effort a participant could spend on the survey and the amount
of information that could be extracted. The between-subject approach, i.e., querying each participant about only a
single AITD issue, could result in limited information for each AITD issue. The within-subject approach, i.e., asking
participants questions about nine AITD issues, could expose the threat of survey fatigue, leading to careless answers
or abandoning the survey. Because of this constraint, the survey is built upon the mixed-subject design approach [62],
asking each group of participants questions about two different subsets of vignettes established beforehand.

In particular, we defined three subsets of vignettes describing AITD and three participant groups. The representa-
tion of the subset of the vignette was the following:

• Subset A: Glue Code, Multiple Language Smell, Undeclared Consumers.

• Subset B: Pipeline Jungle, Scattered Use of ML Libraries, Correction Cascades.
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• Subset C: Jumbled Model Architecture, Unwanted Debugging Code, Deep God File.

Table 4: Task assignment

Participant AITD Vignette
Group P1 Subsets A+B
Group P2 Subsets B+C
Group P3 Subsets A+C

Table 4 illustrates the definition of the subsets and their combination for the survey. Each group participant
answered questions about six issues that can cause AITD. Using the mixed-subject design approach, each participant
provided answers for six AITD issues, allowing us to obtain more answers for each AITD.

The main survey was conducted on August 3, 2022, and we needed two days to collect answers from all partici-
pants. Starting from 54 participants’ answers, we collected 38 answers related to the issues of Group A, 36 answers
related to Group B, and 33 answers related to Group C.

3.7. Data Analysis

Once the data were entirely collected from the participants, we manually filtered the answers from those who did
not take the survey seriously; this step excluded one answer. As a result, we collected 53 answers, decreasing the
number of answers for Group A to 37. The first type of question included multiple choice questions or in Likert Scale
format. Such data in an ordinal scale was analyzed using non-parametric statistics, as proposed by Briand et al. [63];
specifically, we analyzed the distribution and the frequency of each value. The second type of question included
open answers, which helped identify other quality-related aspects affected by the introduction of AITD issues and
highlighted the solutions practitioners apply to refactor the issues. Such open questions were analyzed following the
iterative content analysis method [64]. This qualitative analysis process, served to extend the set of quality-related
aspects that we initially proposed to participants. By embracing the diverse perspectives of AI practitioners, we aimed
to uncover a comprehensive spectrum of quality-related facets impacted by AITD issues including factors that analyze
the system on a broader perspective, including all the factors related to quality that can be affected (RQ3). In addition,
we use this process to examine useful refactoring techniques (RQ4). By adopting this approach, we ensure that our
analysis includes all innovative and context-specific solutions that practitioners use, enhancing the practicality of our
findings. In particular, we performed the following steps:

1. Micro-Analysis: The first manually analyzed the answers related to the open questions. The keywords of
each answer are extracted and processed to obtain a label that identifies the concept. To avoid the subjectivity
introduced by the first author, the second and third authors assessed the quality of the label assignment. They
manually analyzed the label of each open answer and provided feedback and suggestions to improve their
suitability (e.g., merging two semantically similar labels). This phase ended by defining an agreement status
between the label proposed by the first author and the reviewers’ feedback.

2. Categorization: The analysis continued by categorizing the labels that describe similar concepts and splitting
those explaining more than one concept into several categories. This step allowed for isolating information
extracted from a single response and was conducted through an iterative process that allowed for a gradual and
more precise grouping of labels.

3. Saturation: The categorization was performed until reaching saturation, observable when an iteration does not
perform any changes in the set of categories.

Finally, we manually analyzed the answers to the question that asks the participants additional feedback, repre-
sented in question S4D1 of Table 3.
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4. Analysis of the Results

This section reports the results of our survey, including the preliminary study and the analyses concerning the
prevalence, severity, and impact of AITD, as well as the management strategies to mitigate its effects.

4.1. Preliminary Analysis
The study participants were evaluated based on specific criteria to gain insight into their work environment. The

selection process of participants was based on their role, which was then analyzed. The results, as shown in Figure 3,
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Figure 3: Distribution of the roles of the participants

reveal that the majority of the participants were software engineers (59.3%) and data scientists (31.5%). However, the
participants also included professionals in related fields, such as AI-enabled system management and development,
including researchers, system support engineers, and software programmers. These findings suggest that the study
captured perspectives from professionals involved in multiple aspects of AI-enabled systems.

As shown in Figure 4a, a significant number of the surveyed participants, 24 out of 53, are employed in small
companies with fewer than ten employees. The remaining participants are from medium- or large-scale organizations
with more than ten employees. Most participants work in small teams, i.e., 41 in units of less than ten members, as
depicted in Figure 4b. Despite most participants being from small companies and teams, the collected data includes
practitioners’ perspectives from large companies and teams, with 13 participants working in a company with more
than 100 employers and six working in teams with more than 20 members.
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Figure 4: Distribution of participants’ company and team sizes of the participants selected for the questionnaire
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Figure 5: Distribution of the skills of the participants selected for the questionnaire

The participants’ skill levels were evaluated based on their knowledge of AI-related fields, as shown in Figure 5a.
78% of the participants reported having a good understanding of AI, rated with three or higher out of five. The
remaining 22% rated their AI knowledge as two out of five had strong Programming and Software Engineering skills.
As for Software Engineering skills, 92% of the participants rated them with three or higher out of five. Lastly, 65% of
the participants indicated advanced programming skills, with 30 rating them with four or higher out of five.

Finally, we analyzed the ML-Specific related skills for each stage of an ML pipeline by using ML libraries to
build an ML application. The results depicted in Figure 5b highlight the notable proficiency of a significant propor-
tion of survey participants in various machine learning-specific competencies. Remarkably, the findings demonstrate
that most respondents (87%) exhibited sufficient proficiency in Model Deployment, with a similar trend observed for
using ML Libraries. Participants who reported expertise in these two areas of the ML pipeline also demonstrated com-
petencies in Data Preparation, Model Training, and Model Evaluation, with a considerable proportion (91%, 87%, and
89%, respectively) exhibiting adequate proficiency. Notably, most participants exhibited at least intermediate-level
skills in these competencies. The competence and attention check question results complemented these outcomes,
enabling accurate evaluation of participant eligibility for the survey.

4.2. RQ1. How Frequent Are AITD Issues from the practitioner’s Perspective?
We collected the practitioners’ answers regarding the prevalence of AITD issues. Figure 6a displays the distribu-

tion of answers on a Likert scale, measuring the frequency of AITD issues found by practitioners. The results indicate
that the majority of practitioners involved reported “never” encountering specific situations attributable to the AITD
issues presented, mainly for Undeclared Consumers (14 answers), Correction Cascades (14 answers), and Multiple
Language Smell (14 answers). In addition, most participants reported “rarely” encountering issues of most AITDs,
including Undeclared Consumers (15 answers) and Scattered Use of ML Libraries (17 answers). However, some
participants reported encountering AITD issues “sometimes” in their experiences, such as in Glue Code (14 answers),
Jumbled Model Architecture (10 answers), Pipeline Jungle (nine answers), and Scattered Use of ML Libraries (nine
answers). Finally, less than 10 participants frequently encountered AITD issues (denoted as “often” or “always”). In
detail, the unmanageable growth of the AI pipeline that provokes Pipeline Jungle is frequently encountered by nine
participants (in which six denoted it as “often” encountered and three as “always” encountered). Other AITD issues
are reported to be frequently encountered by seven participants or less. These findings highlight that while most par-
ticipants reported rarely or never encountering AITD issues, a small portion of respondents have already experienced
these challenges in their AI development experiences. Therefore, this study catches information on the properties of
AITD issues from two types of AI practitioners, classified as follows:

• AITD unfamiliar practitioners: practitioners that never or rarely encountered the specific AITD issue.

• AITD familiar practitioners: practitioners that sometimes, often, or always encounter the specific AITD issue.

The analysis described in the following sections describes the results first from a general perspective of the perception
of AITD issues. Subsequently, the results are discussed based on the familiarity level of the participants. It is essential
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to note that the number of participants in the two groups varies based on the answers that participants gave on the
prevalence of each AITD issue. In the article, we reported the global results highlighting the aspects of the AITD
issues. Tables and plots grouped by familiarity level are available in our online appendix4.
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Figure 6: Prevalence and severity of AITD issues in AI-enabled systems from the practitioner’s perspective

4.3. RQ2. How Severe Are AITD Issues from the practitioner’s Perspective?

Considering the severity levels provided by the participants, six AITD issues out of 9 analyzed are reported to be
“very problematic” or “extremely problematic” by participants. Almost all participants (30 out of 37) declared the
issue of Undeclared Consumers to be of high severity. The leading cause that emphasizes the severity of Undeclared
Consumers is free access to the model. The data collected from unknown customers is essential information used to
understand the system’s architecture and try to exploit it to perform malicious actions. Therefore, this AITD issue
inside the system needs to be considered when analyzing possible unknown accesses. Scattered Use of ML libraries
and Deep God File are reported to be highly severe by 27 participants. The uncontrolled increase of the size of the
component and the scattered injection of libraries lead to an increase in the complexity of the class, which makes it
challenging to maintain and understand the intended responsibility of the module. In detail, analyzing Scattered Use
of ML libraries, participant (P53) stated: “Libraries need to be correctly understood. As the team is small and very
specific, only particular and few libraries are involved. All team members must be aware and at least have some
knowledge of the libraries and dependencies.”. Therefore, the increased complexity of the modules can also reflect
damaging socio-technical factors.

Moreover, Jumbled Model Architecture and Pipeline Jungle are both reported as highly severe by most part of
the participants, in which 23 participants denoted as “very problematic” for Jumbled Model Architecture and 19 for
Pipeline Jungle. The continuous addition of steps and modules is a critical aspect that needs to be managed to avoid a
critical explosion of complexity that can affect the whole system. In this context, a participant warned (P51): “Once
multiple steps or processes are added to each pipeline phase, it will require more time and developers to maintain its
lifecycle. This increases the chances of a disorganized program and might delay the release date”.

Finally, Multiple Language Smell has been reported to be highly severe by 25 participants. The main problem
caused by this AITD issue is mainly related to the human resources involved in the lifecycle of the AI-enabled system.
When multiple languages are introduced and used inside the system, only some practitioners have the skill to use a
determined language. As the participants identified, operating could be challenging if some components are written
in different languages.

On the other hand, most participants reported not all of the AITD issues analyzed were severe. Analyzing the
answers that participants delivered on the severity related to Correction Cascades and Glue Code, answers are equally

4Online Appendix: https://doi.org/10.6084/m9.figshare.24030456
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distributed towards the different levels of severity proposed, leading to a not clearly stated high severity of these AITD
issues. However, some of the participants still noted the criticality of introducing these AITD issues. Introducing
Correction Cascades issue could lead to having uncontrolled dependencies with external applications. This situation is
critical if a change in the system could lead to undesired effects on the consumers’ applications without the possibility
of analyzing the consequences, as stated by Participant P16. Finally, Unwanted Debugging Code was reported to be
low severe by 23 participants. While a few participants highlighted the problem of showing sensitive data through
logging, most noted that this AITD would not significantly affect the system.

Subsequently, we analyzed practitioners’ perceptions of the severity, considering their familiarity levels. The
answers between the two groups do not present remarkably different severity levels for seven out of nine AITD issues,
delineating that the severity perception denoted in the results is agreed upon by AITD familiar practitioners and
AITD unfamiliar practitioners. However, some differences are engaging in two of the nine AITD issues analyzed.
Pipeline Jungle has been denoted by both groups to be highly severe but with a particular remark analyzing AITD
familiar practitioners. In detail, 11 participants out of 18 denoted this AITD issue as “very problematic” and one as
“extremely problematic”. Therefore, the severity of this AITD issue is strongly remarked on by practitioners who have
experienced situations in which they encountered this problem. The situation is similar when analyzing the answers
for Undeclared Consumers, in which no AITD familiar practitioners reported low or medium severity of this AITD
issue. Moreover, also AITD unfamiliar practitioners reported an extremely high severity for this AITD issue.
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QM

QM
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QA

Figure 7: Effect of AITD issues on the selected quality aspects from the practitioner’s perspective. Quality-related aspects are organized into three
main categories: Quality Attributes (QA), Quality Metrics (QM), and Socio-Technical Factors (ST).
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4.4. RQ3. What Is the Impact of Introducing AITD Issues from the practitioners’ Perspective?

To answer RQ3, we analyzed the quality related-aspects impacted by AITD, which could damage AI-enabled sys-
tems. First, we collected answers to the quality-related aspects and the distribution of the impact levels, as illustrated
in Figure 7. Second, we performed a content analysis to explore other quality-related aspects practitioners believe
AITD could impact.

The content analysis process involved four iterations, each building upon the previous one to extract and categorize
quality-related aspects affected by AITD issues. The fourth iteration identified the saturation state and the completion
of the content analysis. In the first iteration, we organized 196 labels into 85 categories, providing an initial structure
to the analysis. The second iteration narrowed the focus, isolating 31 categories directly related to quality-related
aspects. Subsequently, in the third iteration, we identified 18 specific quality-related aspects that participants had
highlighted. To illustrate this process, let us consider an example from the analysis of a participant’s input (P42) in the
context of the impact analysis of Pipeline Jungle. The participant mentioned “increased complexity leading to higher
running costs and potentially harder debugging”, and we extracted the label “Increased complexity and debugging
difficulty” from this text. After extracting labels, we proceeded to categorize them. For instance, labels such as
“Difficult to maintain” and “Difficulty of future maintenance operations” were grouped under a single category called
“Maintainability issues” during this phase. Following these categorizations, we conducted an additional iteration to
associate similar quality-related aspects into single categories. For instance, categories related to security, such as
“Vulnerabilities”, “Privacy Issues”, and “Security”, were grouped under the category “Security Issues”. In summary,
the four iterations of the content analysis process allowed us to progressively refine our understanding of quality-
related aspects impacted by AITD issues, ultimately resulting in a structured and categorized set of insights.

Successively, we analyzed the relationship between each AITD issue and the quality-related aspects impacted.
Figure 8 summarize all the categorization labels applied to quality-related aspects for each AITD issue. Understand-
ability is the most impacted aspect, having a total of 53 answers, and seven out of nine of the AITD issues analyzed
impact this aspect. Subsequently, the system’s maintainability and security are strongly discussed with 38 and 35 an-
swers, respectively, where security is mainly impacted by Undeclared Consumers. Finally, from the extracted aspects,
eight of these are impacted by at least four AITD issues.

Additionally, Figure 8 specifies the number of answers of all the quality-related aspects impacted by each AITD
issue. The number of answers highlighting the impact of the specified AITD issue is reported for each quality-related
aspect collected. In the following, we analyzed deeper the relationship between AITD issues and quality attributes,
quality metrics and socio-technical factors.

Impact of AITD issues on quality attributes. Participants noted a significant impact of defect-proneness associated
with almost all AITD issues, especially notable in the case of Undeclared Consumers, where 13 participants reported
a “high impact”, and 12 reported a “very high impact.” Similarly, Pipeline Jungle was identified by 17 participants
as having a high impact, with an additional four noting a very high impact. Therefore, introducing AITD issues will
likely increase the probability of defects. Specifically, participants emphasized this impact on AITD issues closely
associated with the system’s architecture, which they noted could increase architectural complexity. Modifiability is
reported to be affected by nearly all AITD issues, particularly by Deep God File and Jumbled Model Architecture.

Consequently, participants indicated that these issues significantly complicate performing changes and mainte-
nance operations, with 28 participants highlighting challenges with Jumbled Model Architecture when handling the
maintainability. Performance is notably impacted by Pipeline Jungle, where 27 participants reported a high impact.
This suggests that continually adding steps to an AI pipeline in an uncontrolled manner could substantially reduce
system performance. Performance is also adversely affected by Scattered Use of ML Libraries. Understandability is
impacted by more than half of the proposed AITD issues, indicating that various factors related to these issues limit
practitioners’ ability to analyze and comprehend the components of the AI-enabled system. Additionally, among the
quality attributes reported as significantly impacted by AITD, three of the six proposed quality attributes were con-
firmed as impacted, along with nine additional attributes. Understandability emerged as the most affected attribute,
with 53 mentions, and was impacted by seven of the nine AITD issues analyzed. System maintainability was also
notably affected, identified in seven of the nine AITD issues with 38 mentions, including nine related explicitly to
Deep God File. System security was another primary concern, denoted in total by 35 participants and particularly
impacted by Undeclared Consumers, as indicated by 28 participants.
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Figure 8: Frequencies of practitioners’ answers on mainly-impacted quality-related aspects by AITD issues, categorized in quality attributes (QA),
quality metrics (QM) and socio-technical factors (ST).

Considering the quality attributes leveraged exclusively by participants, eight of the extracted aspects were affected
by at least four AITD issues. Regarding the additional quality attributes reported by participants, Multiple Language
Smell was noted to impact adaptability and compatibility by seven participants. Moreover, other quality attributes
are included and denoted to be affected by the presence of AITD issues, especially concerning the testability of the
system and Resource Utilization.

Impact of AITD issues on quality metrics. Considering the impact of the first analysis represented in Figure 7, the
coupling is significantly remarked as highly impacted in the presence of Scattered Use of ML Libraries issue, where
34 participants out of 36 denoted a high impact. Since this issue strictly creates dependencies between the system
component and external libraries, it consequently increases the system’s coupling. Considering the qualitative analysis
of the quality-related aspects extracted by the participants, three participants confirmed this outcome as the main factor
this AITD issue can cause. Moreover, participants noted an affection for AITD issues regarding the complexity and
size of the system. In detail, the presence of Glue Code and Pipeline Jungle implies the increase in the system’s
size, as stated by ten participants and seven participants. Finally, a strong connection between the cohesion of the
components inside the system is strictly affected by the presence of Scattered Use of ML libraries.

Impact of AITD issues on socio-technical factors. Other than the quality attributes and metrics representing technical
aspects of the AI-enabled system, participants leveraged the fact that the presence of these AITD issues can also affect
socio-technical factors. Firstly, the presence of Jumbled Model Architecture, Multiple Language Smell and Pipeline
Jungle are denoted to limit communication between team members. Interestingly, as stated by eight participants,
the presence of Multiple Language Smell strongly affects the practitioners’ familiarity with the system. Participants
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denoted that when a new component in a different language is added to the system’s architecture, each future update
and change will be more complicated if the practitioner faces more languages. Every practitioner working on a
specific part of the system should have the knowledge to perform operations in two different languages. Specifically, a
participant (P4) answered “Because the two languages, or rather their input and output, may or may not be compatible
and/or someone hired to maintain the code may or may not be able to code in both languages.” The familiarity of
practitioners in the system could be also affected by Scattered Use of ML libraries, as stated by a participant.

Additional Analysis on AITD issues impact. Analyses have been extended to consider the level of experience that
participants have with AITD issues, collecting perspectives from both AITD unfamiliar practitioners and AITD fa-
miliar practitioners. The main outcome highlights that for three of the proposed AITD issues (Scattered Use of ML
libraries, Deep God File, and Unwanted Debugging Code), there are no evident differences in the impact levels on
the quality-related aspects as reported by both groups of practitioners. However, with the exception of Unwanted
Debugging Code, practitioners from both groups recognize a critical impact on the six quality-related aspects we
proposed. Interestingly, key differences were identified between these two groups. The high impacts observed in all
the proposed quality-related aspects when considering the presence of Pipeline Jungle are mainly reported by AITD
familiar practitioners. Specifically, none of the participants in this group reported a low impact for this AITD issue.
Thus, the critical nature of this AITD issue is primarily recognized by practitioners who are aware of its presence
and potential effects on the system. Similar patterns were observed when analyzing the impacts of Deep God File on
the system’s understandability and Undeclared Consumers on defect-proneness. However, among the nine proposed
AITD issues, AITD familiar practitioners tended to report a higher impact compared to AITD unfamiliar practition-
ers, suggesting that the significant impact of these AITD issues is particularly acknowledged by practitioners aware
of the consequences of these debts in the systems.

Analysis based on the familiarity level is also conducted for the quality-related aspects leveraged by the partici-
pants. In a broader context, AITD unfamiliar practitioners denoted 17 quality-related aspects impacted. In contrast,
AITD familiar practitioners reported all the quality-related aspects extracted (18), adding quality assurance from the
previous set. The main differences between the two groups are notable regarding the number of responses for specific
AITD issues. Regarding the quality-related aspects impacted by Pipeline Jungle, size and performance are almost
denoted by AITD familiar practitioners. In contrast, maintainability is reported to be impacted by the same number
of participants in the two groups (three participants for each group). The impact of Glue Code on the performance
of the system is exclusively denoted by AITD familiar practitioners. AITD unfamiliar practitioners mainly denoted
that this AITD issue impacts the size of the system (6 participants), also confirmed by AITD familiar practitioners (4
participants). AITD unfamiliar practitioners exclusively reported the impact of Scattered Use of ML Libraries to the
understandability. AITD unfamiliar practitioners almost exclusively denoted the impact of Correction Cascades on
the dependencies of the system, while only one participant in the AITD familiar practitioners reported it. The situation
is analogous for Deep God File on maintainability and for Multiple Language Smell on the familiarity. All the other
relationships in analyzing the impact of AITD issues on these quality-related aspects are reported in both groups but
stated particularly from AITD unfamiliar practitioners, given a higher number of participants.

4.5. Management Strategies
We analyzed the identification strategies leveraging the question that asks the participants to define the set of prac-

tices used to identify the specified situations, as stated in question S2D3 of Table 3. Table 5 collects all the strategies
for each issue. From the collected results, it is possible to see how manual inspection is the most used strategy for
most issues. At the same time, for Multiple Language Smell, Glue Code, Correction Cascades, and Unwanted De-
bugging Code, more than 10 participants do not have an identification strategy for these issues. Some participants
highlighted the need for a dedicated professional team to detect these problems inside the system, especially for Un-
declared Consumers and Pipeline Jungle. Additionally, analyses based on the familiarity level of the participants are
conducted to understand the identification strategies identified by each group. For AITD familiar practitioners, the
adoption of manual inspection is selected from most of the participants of this group for all AITD issues, especially
for Pipeline Jungle and Scattered Use of ML Libraries that are selected from 11 participants. AITD unfamiliar group
instead is mainly divided into participants who identify manual inspection as the main technique and participants
who do not identify any identification technique. Particularly, Scattered Use of ML Libraries is identified through
manual inspection by 16 AITD unfamiliar practitioners, while Deep God File from 12 AITD unfamiliar practitioners.
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Table 5: Identification strategies proposed by AI practitioners for the AITD issues

AI TechnicalDebt Issue M.R. A.I. P.T. N/A

Correction Cascades 17 1 5 13
Deep God File 20 4 2 7
Glue Code 16 4 3 14
Jumbled Model Architecture 19 4 4 6
Multiple Language Smell 16 2 4 15
Pipeline Jungle 18 5 7 6
Scattered Use of ML Libraries 27 2 2 5
Undeclared Consumers 13 6 9 9
Unwanted Debugging Code 14 5 2 12

M.R. =Manual Review
A.I. = Automated Inspection
P.T. = Professional Team
N/A = Don’t Identify

The engagement of professional teams to identify AITD issues is almost reported by AITD unfamiliar practitioners,
especially for Undeclared Consumers, where seven AITD unfamiliar practitioners and two AITD familiar practition-
ers report it. Additionally, the adoption of automated inspection is distributed similarly in the two groups. Finally,
considering each issue, only a small number of the participants are supported using automatic tools to identify AITD.
Participants use static analysis tools to identify Pipeline Jungle, Scattered Use of ML Libraries, and Jumbled Model
Architecture (e.g., SonarQube). Concerning Pipeline Jungle, two participants (P39, P40) identify and monitor the
continuous growth of the pipeline through the orchestration of MLOps tools (e.g., Kale). In conclusion, while AITD
is considered a possible threat to AI-enabled systems’ quality, manually checking and reviewing the artifacts is the
most used technique.

The content analysis for the extraction of refactoring techniques was conducted over three iterations, with the
third iteration indicating that a saturation point had been reached. First, 150 labels were identified to represent various
refactoring techniques during the labeling process. Subsequently, the first categorization phase resulted in the identi-
fication of 47 distinct categories. Finally, the second categorization phase led to the identification of 15 strategies that
practitioners employ to address AITD issues through refactoring. In the first iteration of this process, we extracted the
main keywords that highlighted potential solutions to address the problem. For instance, a participant (P37) proposed
a solution for Undeclared Consumers, stating: “Well, this is quite difficult because when there are unexpected users,
it is very difficult to cut their access, and you need to talk with different departments. If it was OK, you would need a
strong access system to avoid having this situation in the future, and only users with appropriate access can consume
the info.” From the participant’s comment, we extracted the solution and labeled it as “Build an Access Control Sys-
tem.” In the first categorization step, we simplified labels and grouped those denoting the same solution. For example,
labels like “Build an Access Control system”, “Restrict access of consumers”, and “Close Connection to consumers”
were grouped under the label “Close access of consumers”. Finally, the second categorization iteration allowed the
clustering of all the similar refactoring techniques. For example, techniques related to the splitting of a big component
into smaller ones (e.g., “Extract stage”, “Extract class”, “Extract method”) were grouped into a single category named
“Extract components”. In summary, the three iterations of the content analysis allowed us to systematically extract
and categorize refactoring strategies practitioners use to address AITD issues, resulting in a structured set of insights.

Figure 9 collects all the labels used to represent a specific refactoring technique for each AITD issue. Each partic-
ipant reported the technique used to face the AITD encountered, classified as Ad Hoc Refactoring, if the refactoring
techniques involve manual code analysis to find an ad hoc solution to solve the issue. Otherwise, if the participant
reported not using any technique to refactor the specified issue, the answer is classified as Not Refactored. For almost
all AITD issues, most answers report the uses of Ad Hoc Refactoring (107 labels) and Not Refactored (87 labels).
These results highlight the practitioners’ criticality when facing these kinds of issues and the need to find an auto-
matic technique to support developers during the refactoring activities. Additionally, a good part of the participants
highlighted the use of Extract Components to face three AITD issues (Deep God File, Jumbled Model Architecture,
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Figure 9: Frequencies of practitioners’ answers of refactoring techniques useful for facing each AITD issue

and Pipeline Jungle). Therefore, extracting a component could help define the modules used to build an AI model
and increase the understandability of the whole pipeline. In this context, a participant (P34) highlights the need to
isolate the components of each stage of the AI, specifying that: “[...] Ensuring the five pipeline stages are written
in adequately segregated code for troubleshooting purposes.” Regarding Glue Code and Scattered Use of ML Li-
braries issues, most of the participants denoted to perform an optimization of dependencies and libraries. In detail,
a participant (P6) claimed: “I would try to eliminate as many libraries as I could and gain a deeper understanding
of the crucial ones that had to stay.”. Moreover, the set of answers for the refactoring techniques of Undeclared
Consumers includes using a component that allows closing the access of consumers, reported by nine participants.
To improve the reliability of the consumers that access the system, participants proposed implementing an access
system that tracks the information about the application that accesses the model and restricts access only to registered
users. Finally, the most reported technique for Unwanted Debugging Code is Remove Debugging Code. The ease
of applying this refactoring technique is an additive hint that highlights the low severity of this AITD issue. Going
deeper, analyzing the familiarity level of the participants that reported the stated refactoring techniques, almost all the
two groups reported the same techniques. The most reported specific techniques for addressing AITD issues, such as
Dependency Optimization for Glue Code and Extract Components for Deep God File are reported by participants of
both groups similarly. A key difference between the groups is related to Correction Cascades issue. While most of the
participants of AITD familiar practitioners proposed to perform ad hoc refactoring to address the issue or apply the
use of the inheritance, the technique related to restructuring the dependencies is almost reported by AITD unfamiliar
practitioners. Finally, automatic tools for addressing Jumbled Model Architecture and Pipeline Jungle are exclusively
denoted by AITD familiar practitioners.

Figures 10a and 10b show the effort participants consider required to identify and refactor AITDs. In general, the
participants’ assessments align with the reported severity, with the majority of AITDs demanding substantial effort
for both identification and refactoring, excluding Unwanted Debugging Code, Glue Code, and Correction Cascades.

Taking a closer look, the identification of Undeclared Consumers, which involves interaction with other applica-
tions, proved to be exceptionally challenging (14 participants classified the effort as “very high” and 11 as “high”).
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(a) Effort depicted by the participant to identify AITD.
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(b) Effort depicted by the participant to refactor AITD.

Figure 10: Identification and refactoring effort of the AITD issues

Additionally, AITDs closely tied to the architecture and AI pipeline, such as Jumbled Model Architecture and Pipeline
Jungle, exhibited higher levels of effort required for their identification. This finding is especially confirmed by AITD
familiar practitioners, in which all participants of this group confirmed at least a medium identification effort for Jum-
bled Model Architecture and Undeclared Consumers and only two participants from the group of 20 AITD familiar
practitioners confirmed a low effort for identifying Pipeline Jungle.

Regarding the refactoring effort, nearly all AITDs were considered to demand a high level of effort by the majority
of participants, particularly the Deep God File (with nine participants denoting “very high” effort and 14 participants
denoting “high” effort). From the two familiarity level groups, this AITD issue is reported to require high effort,
particularly by AITD familiar practitioners, where 10 participants denoted at least high effort, and only one denoted
“low effort” to refactor it. The Jumbled Model Architecture requires high effort to be refactored, as stated by partici-
pants (with 11 participants characterizing “very high” effort and nine participants denoting “high” effort). In this case,
the refactoring of this AITD issue is reported to require high effort by participants in both familiarity-based groups.
Lastly, while the distribution of answers concerning the identification effort generally aligns with the refactoring one,
for Deep God File, many participants deemed the refactoring process to require more effort than its identification.

4.6. Causes of Technical Debt from the Practitioners’ Perception
In the final stage of our study, we asked participants for any additional feedback or concerns they had regarding

potential issues that were not explored (as stated in S4D1 of Table 3). We received answers from 12 participants who
provided valuable insights into common challenges that AI-enabled systems face, including technical debt resulting
from failing to adhere to best practices and maintaining tools/libraries (P4, P32), as well as traditional software
systems issues like a lack of standardization, privacy concerns, and time constraints (P5, P26, P41, P43). Interestingly,
participants also noted that socio-technical factors can contribute to AITD. Specifically, communication issues or
conflicts within teams (P18, P33, P34) were identified as potential causes of suboptimal solutions introduced by
practitioners. In addition, incorporating new team members into developing AI-powered systems presents a distinct
challenge. It requires specialized skills, which may not be easily accessible among less familiar team members (P47).
This skill gap can lead to increased maintenance effort (P52) or the creation of convoluted and unorganized code,
commonly called “spaghetti code.” This complexity of code can obscure accountability for suboptimal solutions
(P53).

5. Discussion and Implications

5.1. Prevalence vs Severity
Figures 6a and 6b provide insights into the prevalence and severity levels of AITDs as AI practitioners perceive.

The findings indicate a low prevalence of AITDs while highlighting a high severity. Focusing on the prevalence of
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AITD issues, there are factors to consider strictly correlated to the actual state of the progress of detection methods
used to assess the quality of AI-enabled systems.

Intricately linked to the continuous evolution and increase of complexity of AI-enabled systems, AI practitioners
need help assessing system quality. However, AI-enabled systems are often characterized by their complexity and
non-linear behavior. Sculley et al. [8] define in this context the Changing Anything, Changes Everything principle
(CACE), which emphasizes that even minor alterations or adjustments to an AI-enabled system can have substantial
and unpredictable consequences, making it challenging to detect AITDs. Successful identification requires a deep un-
derstanding of AI algorithms and models, the specific application domain, the associated data, and all the components
of the AI-enabled system. Consequently, the low prevalence observed in this experiment may be partly attributed to
the inherent difficulty in detecting AITDs, given the required skills.

While our experiment provides valuable insights into the perceived prevalence levels of AITDs, it is essential to
acknowledge the limitations of the detection mechanism employed by the developers. The actual prevalence of AITDs
may be higher than reported, but the challenges in identification and awareness could mask their visibility. Therefore,
investing in how to develop robust tools, methodologies, and practices is imperative to enhance AITD detection and
management and understand the prevalence of AITD issues in AI-enabled systems.

Advanced detection techniques, leveraging automated analysis and AI-driven approaches, can aid in uncover-
ing hidden technical debt in AI-enabled systems. Additionally, fostering a culture of awareness and accountability
within the AI development community is crucial. Developers can enhance their ability to identify and address AITDs
effectively by promoting knowledge sharing, collaboration, and continuous learning.

In addition to the low prevalence, the experiment revealed a high severity associated with the identified AITDs.
The participants consistently rated the severity of AITDs as significantly elevated, indicating the potential detrimental
impact of these debt-related issues on AI-enabled systems. The high severity levels highlight the critical need for
proactive identification and effective management of AITDs to mitigate their adverse consequences and ensure the
delivery of robust and dependable AI solutions.

In summary, although the participants reported a low prevalence of AITD issues in AI-enabled systems, other
factors, such as unclear management practices and the high severity, suggest a lack of awareness among developers.
This outcome highlights possible hidden threats that developers cannot recognize but are dangerous and impactful for
AI-enabled systems.

 Take-Away Message
Participants highlighted a low prevalence of the AITD issues proposed but a high severity. The actual state
of practice of TD management for AI-enabled systems is at a preliminary state, leading to the inability of the
participants to recognize AITD issues in their systems. This result stresses the need for extensive research to raise
awareness among practitioners about the issues posed by AITDs and increase the quality of AI-enabled systems.

5.2. Impact on Quality-related Aspects

Figures 7 and 8 illustrate the set of quality-related aspects that participants affirm to be negatively impacted by the
presence of AITD issues. Since the analysis started with a focus on the effect of six quality-related aspects, analyzing
the open answers of participants through content analysis, we extracted 18 affected aspects related to system quality.
In detail, before the experiment, we considered as possible impacted aspects the understandability, performance,
maintainability, evolution, defect-proneness, and coupling. By examining the answers provided by each participant,
we identified certain underlying factors that contribute to the impact of Multiple Language Smell. These factors
include the level of expertise required to handle the technology employed ( i.e., familiarity) and the capacity of the
system to adjust to changing requirements and environments ( i.e., adaptability). From a broader viewpoint, excluding
Unwanted Debugging Code, all AITDs have a significant effect, at least on a quality-related aspect. This outcome
implies educating practitioners towards AITD understanding to ensure high system quality.

Specifically, participants identified interesting issues leveraged by some AITDs, like the impact on the under-
standability of Deep God File and Jumbled Model Architecture. Designing and mixing the related AI components in a
cobbled way can lead to one of the two AITD issues, and, as stated by the participants, recognizing and understanding
each component and its respective goal can be challenging. To handle this issue, practitioners should guarantee a
modular design and split the different parts of the architecture into more cohesive components.
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Undeclared Consumers is strictly related to system security, and 28 participants confirmed the high impact, high-
lighting the probability of creating security breaches. When consumers or components interacting with an AI-enabled
system utilize its outputs or services without proper authentication or authorization mechanisms, unauthorized access
and misuse of sensitive information become potential risks. In this way, consumers can use private information that
can be exploited to understand the internal state of a model and perform malicious attacks. Mitigating the impact
of Undeclared Consumers is crucial to ensuring the security and integrity of AI-enabled systems. These AITDs un-
derscore the importance of solid quality assessment processes in developing and deploying AI-enabled systems. AI
practitioners must solve these issues, increase quality, and implement robust security measures.

 Take-Away Message
The management of AITDs is a critical aspect to ensure a high quality of AI-enabled systems. AITDs are char-
acterized by their complexity and non-linear behavior and pose challenges to detect and address potential issues.
By managing the presented issues, AI practitioners can enhance the quality aspects of AI-enabled systems related
to understandability, security, and performance.

5.3. Towards the Discovery of New TD Management Techniques

Table 5 and Figure 9 provide an overview of the techniques to address the AITDs under analysis. The partici-
pants predominantly rely on manual techniques involving in-depth examinations of code and system architecture to
identify these issues. Additionally, ad hoc refactoring approaches are suggested by participants. These findings, when
considered alongside the reported high effort in Figures 10a and 10b, shed light on the nascent stage of addressing
technical debt in AI-enabled systems. The reliance on manual techniques implies a lack of well-defined and automated
approaches tailored explicitly to identifying and refactoring AITD issues.

Nevertheless, the participants offer valuable insights for managing AITDs. For instance, in the case of Unde-
clared Consumers, the participants recognize the challenge of tracking applications that interact with the AI-enabled
system and propose restricting consumer access to mitigate potential malicious use of the AI model. This outcome
underscores the importance of implementing access control mechanisms to regulate system usage and continuously
monitor applications that collect information. Regarding other AITD issues such as Deep God File, Jumbled Model
Architecture, and Pipeline Jungle, the participants suggest leveraging refactoring techniques inspired by those used in
traditional software, as introduced by Martin Fowler [39]. Specifically, employing established methods like Extract
Method and Extract Class to reduce coupling and enhance component cohesion could prove beneficial in mitigating
complexity within the pipeline and architecture of the system.

Finally, from the answers collected for the refactoring of Pipeline Jungle, two participants (P39, P40) identified
the possibility of using MLOps tools to visualize, monitor, and continuously manage the AI pipeline. This answer
highlights the potential of MLOps applied to AI software quality assurance.

The challenge of establishing a flexible, customizable, reusable, and fault-tolerant pipeline is a key focus area
in the field of MLOps, as confirmed by Steidl et al. [65]. Given the intricate nature of AI pipelines, which often
involve multiple stages and components, it becomes imperative to design pipelines that adapt to evolving requirements,
accommodate diverse use cases, and seamlessly handle various data formats and sources. Developing a flexible
and customizable pipeline facilitates the smooth integration of new components or modifications to existing ones
without disrupting the workflow. However, complex and convoluted Pipeline Jungle is a severe obstacle to achieving
the ultimate goal of a high-quality pipeline. In this context, the set of available MLOps tools in the state-of-the-
practice allows obtaining complete monitoring and management of the AI pipeline (e.g., KubeFlow Pipelines), in
which stakeholders can comprehend the whole structure, components, and interactions of the pipeline. Therefore, it
is possible to prevent Pipeline Jungle by leveraging MLOps practices.

These findings imply the need for further research and development efforts to establish standardized techniques
and automated tools specifically designed to address AITDs. Such advancements would help reduce dependency on
manual inspections and ad hoc refactoring, enabling practitioners to detect, manage, and mitigate AITDs, ultimately
enhancing the overall quality and maintainability of AI-enabled systems.
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 Take-Away Message
Although the current state of the art in identifying and refactoring AITD issues is still in its early stages, the
participants have put forth suggestions that contribute to shaping the direction of future research on the automatic
refactoring and management of AITD.

5.4. Relationship with socio-technical aspects
The additional analysis results highlighted that issues affecting socio-technical aspects are a possible cause that

could lead developers to introduce AITD. During the study, participants identified several key socio-technical factors
that can contribute to introducing AITD in AI projects. One such factor highlighted was poor communication within
AI development teams, which can result in conflicts during development. Team members must convey their ideas,
expectations, and concerns effectively to avoid misunderstandings and misalignment in AI model design and imple-
mentation decisions. Failure to do so can result in suboptimal AI models and algorithms, ultimately contributing to
AITD. Another crucial factor identified was the expertise level of AI practitioners involved in the project. Participants
emphasized how the experience and knowledge of team members could significantly impact the likelihood of intro-
ducing AITD. They noted that introducing a new specific-purpose language or a new particular library that requires
high expertise from AI practitioners could increase the risk of introducing suboptimal solutions. Lastly, the study
found that AITD issues can impact socio-technical aspects, as highlighted by the participants. The presence of the
Multiple Language Smell could affect the familiarity level of the developers with the system.

Although these findings were only confirmed by some survey participants, they were supported by another study
conducted by Mailach et al. [66]. They identified 17 socio-technical anti-patterns in ML-enabled software develop-
ment, focusing on organizational and management issues. The authors provided recommendations to overcome these
problems, ranging from technical solutions to organizational restructuring. We can denote common factors in our
study from the set of anti-patterns that the authors discovered. Specifically, Mailach et al.[66] classified the situation
that can arise between team members with different skill sets as anti-pattern, which is consistent with the conflicts and
communication challenges reported by participants. Additionally, our study identified a lack of standardization as a
socio-technical anti-pattern, which their study referred to as a “Lack of data science process.”

The intricate interplay between AITD issues and socio-technical factors suggests a multifaceted relationship,
underscoring the need for comprehensive investigations and holistic solutions to manage AI projects effectively.

 Take-Away Message
Socio-technical factors play a significant role in the AI-enabled system’s quality and are connected with AITD
issues. Critical considerations include poor communication within AI development teams, the expertise level of
AI practitioners, and the impact of AITD on socio-technical aspects. The relationship between socio-technical
factors and the introduction of AITD underscores the need for more research in this area.

5.5. The Road Ahead for AITD and Software Quality for AI
Given our results and the state of software quality for AI, it is necessary to discuss the implications of state-of-the-

art techniques on quality assessment, focusing on managing AITD issues. Our results suggest the need for techniques
and tools to identify and refactor such issues. Identifying different techniques should reduce the developers’ need
to apply manual analysis, which requires a high effort and whose success depends on the practitioner’s expertise
concerning the quality assessment of AI-enabled systems.

While literature, starting from the definition of Sculley et al. [8] of the several problems that can occur when
building an AI-enabled system, further work is needed to improve AITD Management.

Firstly, finding the properties and characteristics of AITD issues can improve the investigation of their presence.
A recent study conducted by Costal et al. [67] identifies a preliminary set of metrics to identify some technical debt
issues occurring in AI-enabled systems, also considering Glue Code and Scattered Use of ML Libraries. Further
investigation into the tangible properties and qualitative factors of AITD is necessary to understand and effectively
address these issues within AI-enabled systems fully. The combination of the metrics proposed and other aspects
related to the quality assessment process and architecture analysis can be used to detect AITD issues more accurately.
Therefore, these key elements linked with the characteristics of AITD issues will be aimed to define detection tech-

niques. For instance, to identify Pipeline Jungle, practitioners could analyze the pipeline configurations of AI-enabled
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systems and examine the complexity of data flows. They could investigate factors such as the number of stages, the
interdependencies between stages, and the presence of redundant or unnecessary processing steps. Following this
identification strategy, practitioners could systematically identify instances of Pipeline Jungle and assess the associ-
ated technical debt. Finally, researchers should provide datasets encompassing various AITD issues to advance the
existing body of knowledge. Such datasets would be valuable for developing and evaluating AITD management tech-
niques. They should include real-world examples of AITD issues encountered in different AI-enabled systems and
relevant contextual information.

By addressing these steps, we could eventually obtain more reliable, maintainable, and robust AI applications.

5.6. Implications

From a practitioner’s perspective, the research implications and the state of software quality for AI significantly
impact how AI-enabled systems are developed and maintained. With the identification and refactoring of AITD issues
relying heavily on manual analysis by practitioners, it is crucial to invest in training and skill development programs.
Organizations should provide resources and opportunities for AI practitioners to enhance their expertise in quality
assessment techniques and AI-enabled system management. Given the complex and interdisciplinary nature of AI-
enabled systems and collaborative development practices, code reviews become even more critical. Potential AITD
issues could be identified and addressed early in development by involving multiple experts from different domains.

Industry bodies, research organizations, and practitioners should collaborate to define and promote guidelines and
standards for identifying, measuring, and addressing AITD in AI-enabled systems. These best practices should be
regularly updated to keep pace with the evolving technology landscape, allowing for the continuous evolution of the
maturity of the AI quality assurance process. Continuous monitoring and maintenance are necessary to ensure new
AITD issues do not arise during the system evolution. Regular audits, reviews, and assessments should be conducted
to keep the system quality in check and minimize the accumulation of technical debt.

6. Threats to Validity

Several design decisions might have threatened the validity of our work. This section discusses our choices and
how we attempted to mitigate the corresponding threats to validity.

External Validity. One of the primary issues that could potentially threaten external validity is selection bias in the
recruitment process. Recruiting participants through social media or specific recruitment platforms may inadvertently
result in gathering data from individuals who lack expertise in the domain of interest. To address this concern,
we implemented a prescreening process to evaluate the eligibility of each participant before conducting the survey.
This prescreening involved applying filters based on the practitioners’ experience to ensure that only relevant and
knowledgeable participants were included.

However, this design choice introduced another potential threat to the external validity of the study: the small
sample size of 53 participants. This limited number of participants might not provide a comprehensive representation
of the population of interest, impacting the generalizability of the findings. Nevertheless, opting for a smaller sample
size was driven by the inherent difficulty in finding AI practitioners with expertise in the specific domain. Despite
starting with a pool of 500 potential participants, eligibility criteria were carefully set to ensure that only individuals
with relevant experience in software engineering, artificial intelligence, model development, and model deployment
were included. By choosing a smaller sample size, the focus was placed on obtaining higher-quality answers that are
more applicable and valuable within the specific context of the survey. Despite the potential limitations in generaliz-
ability, this approach aimed to prioritize the quality and relevance of the collected data. It was essential to balance the
sample size and the depth of knowledge possessed by participants in the domain of interest.

In conclusion, while the representation of the population might not be fully reached to generalize the findings based
on the practitioners’ perspective, these findings serve as valuable hints that suggest the need for further investigation
into these quality issues. The study outcomes provide insights that hold significance within the specific context of the
survey and lay the foundation for future research in this domain.
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Internal Validity. Another significant concern is the participants’ familiarity with AITD issues. Despite deliberately
selecting participants with backgrounds in both Software Engineering and Artificial Intelligence, there remains the
possibility that they may need more explicit knowledge of AITD issue definitions. To address this potential limita-
tion, we employed the vignette experiment design method, which simplifies the presentation of AITD issues within
scenarios commonly encountered during the design and development of AI pipelines. Participants were provided
with contextualized situations that helped them recognize and evaluate AITD problems based on their experiential
knowledge, even without detailed familiarity with AITD terms. This approach enabled participants to effectively
identify and assess AITD issues, drawing upon their experience. Therefore, participants can provide answers based
on a common understanding of the issues presented through the vignette.

As for AITD issues, another significant threat could be related to the definition of AI that participants assumed.
Recognizing that participants could have a different definition of AI based on their experience, the survey could involve
different points of view, including participants unrelated to AI. To mitigate this potential concern, we conducted a
prescreening phase to ensure all participants had a common baseline understanding of AI, comprehensive general
skills, and AI-specific skills. Filtering the participants based on their answers, combined with a competence and
attention check question, ensured that all the participants had a sufficient understanding of AI and were eligible for
the survey. While a baseline is ensured among all the participants, it is important to acknowledge that the perceptions
collected by the participants can vary depending on their experience in AI and their definitions.

Another potential threat to the internal validity of this study relates to the strategy used for assigning AITD sce-
narios to each participant. Traditional strategies, such as within-subject or between-subject approaches, can introduce
certain limitations and threats. On the one hand, the within-subject approach can significantly increase the time
required to complete the survey, leading to participant fatigue and impacting the quality of their answers. On the
other hand, the between-subject approach may result in a limited number of questions answered by each participant,
potentially reducing the overall depth and amount of the data collected. To address these concerns, we opted for a
mixed-design approach, which allows for a balanced trade-off between the survey execution time and the number of
questions each participant answers. By adopting the mixed-subject design, we aimed to ensure that participants had a
manageable survey completion time while still obtaining sufficient data from each participant. This solution enables
us to capture broader insights while mitigating potential threats related to survey duration and participant burden.

In utilizing Prolific as a participant recruitment platform, an internal validity concern is the potential for incentive
bias. Incentive bias may arise when participants on Prolific are motivated to complete surveys solely to receive
compensation rather than genuinely engaging with the study. The financial incentive offered by Prolific could lead
some individuals to rush through the survey or provide answers without thoughtful consideration, jeopardizing the
quality and reliability of the data collected. To mitigate incentive bias, we introduced attention check questions during
the prescreening phase, limiting the number of careless answers.

Another significant concern often arising when conducting questionnaire surveys is the potential use of external
sources, which becomes more critical with the widespread availability of AI language models like ChatGPT5. Par-
ticipants may collect and replicate the suggestions provided by ChatGPT when responding to our survey questions.
Despite having conducted participant recruitment and data collection before the availability of ChatGPT, we must
acknowledge the possibility that participants could have used other similar models that were accessible at the time
of the study or turned to internet sources for information. We have taken several measures to address this threat of
external source influence. We provided clear instructions to participants, explicitly stating that using external sources,
including AI language models and internet browsing, is prohibited. We aimed to encourage genuine, independent
answers that accurately reflect participants’ knowledge and opinions. Furthermore, we have implemented validation
and attention checks within the survey to assess the authenticity of participants’ answers. These checks allow us to
identify any potential AI-generated or internet-sourced answers that might affect the integrity of the data.

Construct Validity. A possible threat to the construct validity is related to the experience bias. This bias arises due to
differences in experience and knowledge levels between researchers conducting the pilot test and industry practitioners
who will participate in the main survey. The researchers’ expertise and familiarity with AI systems may inadvertently
influence the framing of survey questions, leading to potential mismatches with the real-world experiences of industry

5ChatGPT: https://openai.com/chatgpt
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practitioners. To address this threat, a software engineer with experience in AI system development participated in
the pilot test, providing valuable feedback from an industry perspective. This feedback informed refinements to the
survey instrument, ensuring its relevance and clarity for industry practitioners.

Another potential threat we encountered was related to hypothesis guessing of research questions due to the
comprehensive definition of AITD issues. Participants might have assumed that every issue presented should be
regarded as problematic and directly responded in the affirmative. To mitigate this threat, we took proactive steps by
broadening the definition of AITD issues to be more encompassing, representing them as vignettes and referring to
them as “situations”. Additionally, we incorporated open-ended questions, enabling participants to provide detailed
answers that allowed us to filter answers based on thoughtful consideration and genuine concerns. This approach
ensured that we obtained more nuanced and reliable data, minimizing the impact of hypothesis guessing on the study’s
internal validity. By adopting these strategies, we aimed to foster a deeper understanding among participants while
preserving the integrity of the research findings.

Conclusion Validity. A potential threat to the conclusion validity is related to the reliability of measures used to
analyze participants’ answers to address our research questions. We have implemented a strategy to enhance data
collection to address this threat. In addition to the multiple-choice questions, we have incorporated open-ended
questions that complement and support the answers provided in the multiple-choice format. By including open-
ended questions, we encouraged participants to provide more in-depth and nuanced answers, allowing us to capture
additional insights and perspectives that may not be fully represented in the closed-ended options. This approach
helped ensure a richer and more comprehensive data set, contributing to a more reliable analysis of participants’
attitudes, opinions, and experiences regarding AITD issues.

7. Conclusion

In this paper, we conducted a survey study with 53 practitioners to investigate the prevalence, severity, impact,
and mitigation strategies applied to deal with nine distinct AITD issues. The study revealed multiple insights into how
practitioners cope with the emergence of AI technical debt. Practitioners perceive those issues as highly severe and
impactful despite being unaware of how prevalent these debt issues are in practice; yet, the automated support available
to mitigate them is limited and, indeed, they often rely on manual inspections and ad-hoc refactoring approaches. The
results of our work let us draw several considerations and implications for future research on AI technical debt, other
than presenting a call for novel, automated methods that may support practitioners in identifying and refactoring AI
technical debt.

The output of this work represents the input of our future research agenda, which will be focused on addressing the
practitioners’ needs that emerged from our analysis. On the one hand, we aim to design further empirical investigations
into how AI technical debt is perceived and managed in practice. On the other hand, we aim to develop novel
instruments to automatically detect and possibly refactor the technical debt affecting the source code and architectures.
Additionally, this study initiated an exploration into a preliminary set of AITD issues. Our findings, while focused,
open avenues for broader investigation into diverse types of AITD issues, particularly those related to socio-technical
factors affecting practitioners’ familiarity and communication issues.
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