
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2024.0429000

A Large-Scale Empirical Investigation into
Cross-Project Flaky Test Prediction
ANGELO AFELTRA1,
ALFONSO CANNAVALE1,
FABIANO PECORELLI2,
VALERIA PONTILLO3, and
FABIO PALOMBA1
1Software Engineering (SeSa) Lab — University of Salerno, Fisciano, Italy (e-mail: angelo.afeltra99@gmail.com, a.cannavale7@studenti.unisa.it,
fpalomba@unisa.it)
2Pegaso Telematic University, Naples, Italy (e-mail: fabiano.pecorelli@unipegaso.it)
3Software Languages (Soft) Lab — Vrije Universiteit Brussel, Belgium (e-mail: valeria.pontillo@vub.be)

Corresponding author: Valeria Pontillo (e-mail: valeria.pontillo@vub.be).

ABSTRACT Test flakiness arises when a test case exhibits inconsistent behavior by alternating between
passing and failing states when executed against the same code. Previous research showed the significance of
the problem in practice, proposing empirical studies into the nature of flakiness and automated techniques for
its detection. Machine learning models emerged as a promising approach for flaky test prediction. However,
existing research has predominantly focused onwithin-project scenarios, wheremodels are trained and tested
using data from a single project. On the contrary, little is known about how flaky test prediction models may
be adapted to software projects lacking sufficient historical data for effective prediction. In this paper, we
address this gap by proposing a large-scale assessment of flaky test prediction in cross-project scenarios,
i.e., in situations where predictive models are trained using data coming from external projects. Leveraging
a dataset of 1,385 flaky tests from 29 open-source projects, we examine static test flakiness prediction
models and evaluate feature- and instance-based filtering methods for cross-project predictions. Our study
underscores the difficulties in utilizing cross-project flaky test data and underscores the significance of
filtering methods in enhancing prediction accuracy. Notably, we find that the TrAdaBoost filtering method
significantly reduces data heterogeneity, leading to an F-Measure of 70%.

INDEX TERMS Flaky Tests, Software Testing, Machine Learning, Empirical Software Engineering.

I. INTRODUCTION
Regression testing is a commonly used practice that consists
in re-running existing test cases to ensure that newly commit-
ted code changes have not adversely affected previously func-
tioning features or introduced new defects [41]. This practice
is vital for developers’ decisions [16] and productivity [7],
[35], as it promptly identifies real faults [41].

Regrettably, tests themselves are not immune to defects and
may occasionally experience flakiness [32]: this occurs when
a test shows both passing and failing behaviors when executed
against identical code, rendering it unreliable and generating
non-deterministic results due to asynchronous calls, network
capabilities, or environmental dependencies [13], [32].

Flaky tests hide real bugs and are hard to reproduce due to
their non-deterministic nature [32]. They inflate testing costs,

as developers spend time debugging false failures [27] and un-
dermine developer confidence in testing activities, potentially
leading developers to ignore defects [13]. Moreover, flaky
tests can disrupt various collateral testing tools, e.g., mutation
testing [41], where variability in mutation scores may arise
from flakiness, biasing the test quality assessment [10].

For these reasons, researchers have expanded knowledge
through empirical studies uncovering causes of flakiness [13],
[29], [30], [32], [34], and by developing automated tech-
niques to detect and mitigate its impact [4], [12], [50], [53].
Among the automated detection techniques, machine learning
models have shown promising results in flaky test prediction,
with researchers exploring various features like textual fea-
tures [42], dynamic indicators [2], and static metrics [44],
achieving high accuracy.

VOLUME 11, 2023 1



Afeltra et al.: A Large-Scale Empirical Investigation into Cross-Project Flaky Test Prediction

Such existing research has primarily focused on a within-
project scenario, that is, training and testing machine learning
models with data coming from a single project or dataset. As
such, the findings from these studies may hold for software
projects that maintain historical data on flaky tests and can
utilize this data to develop predictive models tailored to their
specific test code. However, this is not always the case: new
software projects may lack sufficient historical data for ef-
fective flaky test prediction, or the systematic collection of
flaky test data may prove prohibitively costly. In these cases,
a cross-project approach may be more appropriate: in this
scenario, prediction models are trained using external data,
i.e., flaky tests from other projects. Nonetheless, cross-project
approaches pose challenges due to the inherent heterogeneity
of training data from external sources. Indeed, each software
project has unique development practices, testing methods,
and environmental factors, resulting in varying characteristics
of flaky tests. This diversity may hinder the generalization of
predictive models to new projects and introduce biases based
on training data characteristics. The current state of the art
lacks investigations into this matter and, for this reason, it
is still unclear how the intrinsic challenges presented by the
cross-project scenario affect flaky test prediction.

Hence, this paper proposes a large-scale assessment of this
matter. First, we investigate the performance of a static test
flakiness prediction model built in our previous study [44] in
a cross-project setting, to verify how challenging this setting
actually is. Second, we assess the effectiveness of feature- and
instance-based filtering methods for improving the quality
of cross-project predictions. We leverage the IDoFT dataset,
encompassing 1,385 flaky tests from 29 open-source projects.
Our results confirm the hardness of exploiting cross-project
flaky test data, with many models struggling due to data
heterogeneity. Yet, promising outcomes emerge with filtering
methods, notably the TrAdaBoost approach, achieving an F-
Measure of approximately 70%.

Structure of the paper. Section II overviews the most
closely related work, positioning our work within the current
body of knowledge. Section III elaborated on the research
questions and context of the study, while Section IV reports
on the research methods employed to address our research
questions. In Section V, we analyze and discuss the results
achieved from ourwork. The potential limitations of our study
are discussed in SectionVI. Finally, SectionVII concludes the
paper and outlines our future research agenda.

II. RELATED WORK
Test flakiness is widely recognized and discussed by both
practitioners and researchers [14], [35]. Barboni et al. [3],
Parry et al. [39], and Zheng et al. [54] have provided sys-
tematic analyses of the state of the art. At the same time,
additional studies have explored the grey literature on the
subject [13], [20], [45].

This paper centers on automating the detection of flaky
tests. In recent years, various approaches have been proposed,
varying in technique (such as data-flow analysis or machine

learning) and objective (like analyzing specific root causes
versus prediction).
For instance, Lampel et al. [31] devised an approach to

classify failing jobs as software bugs or flaky tests. Rehman
et al. [49] investigated test failures without production code
defects at Ericsson. Bell et al. [4] introduced DeFlaker, ana-
lyzing code coverage differences to identify emerging flaki-
ness. Lam et al. [28] created iDFlakies to detect flaky tests by
rerunning them in different orders. Rahman et al. [47], [48]
proposed FlakeSync and FlakeRake for automatic detection
of async and timing-dependent flaky tests. With respect to
these papers, ours is complementary: we indeed aim at ad-
vancing the current knowledge onmachine learning solutions.
These solutions, when combined with the approaches dis-
cussed above, may enhance the defense against test flakiness,
providing developers with a mechanism to locate potentially
flaky tests that can then be further diagnosed with additional
instruments provided by researchers.
As for the predictive methods to preemptively alert devel-

opers about potential test flakiness, major efforts have been
devoted to the analysis of the best features to use to predict
flaky tests. In particular, Bertolino et al. [5] and Pinto et al.
[42] demonstrated the usefulness of textual features, i.e., the
vocabulary used in a test may be an indication of its flakiness.
Alshammari et al. [2] proposed FlakeFlagger, a technique that
integrates static and dynamic features for flakiness prediction.
Among their findings, the authors reported that code coverage
indicators may provide insights into the flakiness of test code.
Pontillo et al. [43], [44] proposed a technique solely based
on static metrics, in an effort of making flaky test prediction
more scalable. They showed that a fully static approach may
obtain comparable performance to more complex models. In
the context of this study, we leverage the insights coming from
Pontillo et al. [43], [44] and exploits their model as a baseline
for our experimentation. Finally, Camara et al. [6] observed a
correlation between design issues in test cases, known as test
smells, and test flakiness.
All these papers assessed flaky test prediction in a within-

project setting. On the contrary, our work aims at exploring
the performance in a cross-project scenario, hence extending
the current body of knowledge on flaky test prediction.

III. RESEARCH QUESTIONS AND CONTEXT SELECTION
The goal of the study was to evaluate the performance of a
static machine learning-based approach for flaky test predic-
tion trained in a cross-project scenario, with the purpose of
assessing the feasibility of cross-project test flakiness pre-
diction. The perspective is of both researchers and practi-
tioners. The former are interested in understanding how a
cross-project setting affects the performance of test flakiness
prediction, possibly identifying further areas of improvement.
The latter are interested in assessing the feasibility of using
cross-project training in practice, possibly identifying strate-
gies to adopt test flakiness prediction in real-world scenarios.

2 VOLUME 11, 2023



Afeltra et al.: A Large-Scale Empirical Investigation into Cross-Project Flaky Test Prediction

TABLE 1: List of metrics used as independent variables.

Name Description Computed on ...

Production and Test Code Metrics
CBO Coupling Between Object, i.e., the number of dependencies a class has with other classes [9]. Production Class
Halstead Length The number of operator occurrences and the number of operand occurrences. Production Class
Halstead Vocabulary The total number of distinct operators and operands in a function. Production Class
Halstead Volume Proportional to program size, represents the space necessary for storing the program. Production Class
LOC Lines of Code, considering both source and comment lines. Production Class
LCOM2 Lack of Cohesion ofMethods version 2, i.e., the percentage of methods that do not access a specific attribute averaged

over all attributes in the class.
Production Class

LCOM5 Lack of Cohesion of Methods version 5, i.e., the density of accesses to attributes by methods. Production Class
McCabe It indicates the number of linearly independent paths through a program’s source code [33]. Test Class
MPC Message Passing Coupling, measures the number of messages passing among class objects. Production Class
RFC Response For a Class, i.e., the number of methods (including inherited ones) that can potentially be called by other

classes [9].
Production Class

TLOC Number of lines of code of the Test Suite. Test Class
WMC Weighted Methods per Class, i.e., the sum of the complexities (i.e., McCabe’s Cyclomatic Complexity) of all the

methods in a class [9]. Note that Chidamber and Kemerer [9] did not define a predefined complexity metric to
consider for the computation of WMC. In our case, we opted for the McCabe metric to account for the individual
complexity of methods.

Production Class

Code Smells

Class Data Should Be
Private

A class that exposes its attributes, violating the information hiding principle. Production Class

Complex Class When a class has a high cyclomatic complexity. Production Class
Functional Decompo-
sition

When in a class inheritance and polymorphism are poorly used. Production Class

God Class When a class has a huge dimension and implements different responsibilities. Production Class
Spaghetti Code When a class has no structure and declares a long method without parameters. Production Class

Test Smells

Assertion Density Percentage of assertion statements in the test code. Test Class
Assertion Roulette When a test method has multiple non-documented assertions. Test Class
Conditional Test
Logic

Conditional code within a test method negatively impacts the ease of comprehension by developers. Test Class

Eager Test When a test method invokes several methods of the production object. Test Class
Fire and Forget A test that is at risk of exiting prematurely because it does not properly wait for the results of external calls. Test Class
Mystery Guest When a test method utilizes external resources (e.g., files, database, etc.). Test Class
Resource Optimism When a test method makes an optimistic assumption that the external resource (e.g., File) exists. Test Class
Sensitive Equal. When the toString method is used within a test method. Test Class

A. RESEARCH QUESTIONS
Our study was structured around two main research ques-
tions. Stemming from the peculiar challenges posed by train-
ing a flaky test prediction model in a cross-project setting,
specifically concerned with the need to take heterogeneous
data into account, we start our investigation by assessing the
performance of a state-of-the-art flaky test prediction model
trained in such a cross-project scenario. This preliminary
investigation provided us with a baseline for understanding
the current capabilities and limitations of cross-project flaky
test prediction. Particularly, we asked:

RQ1. What is the performance of a static flaky test
prediction model trained in a cross-project setting?

Upon setting a baseline, we furthered our analysis by
addressing the role of feature- and instance-based filter-
ing methods in effectively training cross-project models. In
closely-related research fields, like defect prediction [23],
[55], thesemethods proved to improve prediction capabilities.
More specifically, feature-based filtering methods involve
selecting or extracting relevant features from the data to
improve model performance by reducing noise and irrelevant
information. Conversely, instance-based filtering methods fo-
cus on selecting or filtering specific instances or samples
from the dataset to enhance the quality of the training data,
thus improving the model’s ability to generalize to new, un-
seen instances. In this respect, our goal was to transfer the

knowledge accumulated in the literature to the problem of
test flakiness prediction, assessing how these methods may
actually contribute to empowering its predictive capabilities.
Hence, we asked:

RQ2. How do feature- and instance-based filtering
methods improve test flakiness prediction capabilities?

The ultimate outcome of our research aimed at enlarging
the current body of knowledge on flaky test prediction, pro-
viding insights into its feasibility in a cross-project scenario.
In terms of reporting, we followed the ACM/SIGSOFT Em-
pirical Standards1, in particular, the ‘‘General Standard’’ and
‘‘Data Science’’ guidelines.

B. CONTEXT OF THE STUDY
The context of our study encompasses part of the Java open-
source projects featured in the IDoFT (Illinois Dataset of
Flaky Tests) dataset.2 This dataset comprises data on 6,446
flaky tests across 423 open-source projects. In our study, we
analyzed 29 open-source projects with a total of 29,839 test
classes —more details about the demographics of our dataset
are reported in Table 2. The motivation behind selecting
this dataset stems from its availability, extensive coverage of
projects with different characteristics, and popularity within

1Available at: https://github.com/acmsigsoft/EmpiricalStandards.
2Available at: http://mir.cs.illinois.edu/flakytests.

VOLUME 11, 2023 3



Afeltra et al.: A Large-Scale Empirical Investigation into Cross-Project Flaky Test Prediction

the flaky test research community. Regarding testing proce-
dures, all projects employ a continuous integration pipeline
to validate code changes against a comprehensive test suite.

C. VARIABLES OF THE STUDY
To address our research questions, we required the selection
of a response variable and a set of independent variables.
The former was concerned with the actual indication of the
flakiness of test cases. In this respect, we exploited the in-
formation available within the IDoFT dataset: particularly,
we label each test case as ‘‘flaky’’ or ‘‘non-flaky’’. As such,
our study focuses on a binary classification task, similar to
previous studies in the field [2], [42], [44]. The latter were
concerned with the source code metrics to use as features of
a flaky test prediction model, i.e., the properties of test cases
that suggest the presence of a flaky test.We relied on the set of
metrics described in Table 1. More specifically, these are the
25 features employed by Pontillo et al. [44] to devise a static
flaky test prediction model. The rationale behind the use of
the work by Pontillo et al. [44] as reference is threefold.

In the first place, the set of features comprises multiple
dimensions of test code quality that have been previously
linked to test flakiness. These dimensions include production
and test code metrics, which offer insights into the structural
complexity and stability of the codebase [15]: on the one
hand, production code quality may affect its testability and,
consequently, the likelihood of a test to be poorly designed;
on the other hand, test code quality is intrinsically related
to flakiness, e.g., poorly constructed tests can inadvertently
introduce instability and unpredictability into the testing pro-
cess. Additionally, the feature set includes code smells, i.e.,
poor design or implementation choices in the code, and test
smells, i.e., suboptimal development practices applied while
designing test suites: code and test smells further assess the
testability and quality of test cases, potentially providing
further insights into the emergence of test flakiness [6].

In the second place, Pontillo et al. [44] reported that a flaky
test prediction model relying on these static metrics achieves
similar performance than those of more computationally-
expensive models, like the models relying on dynamic and
textual features. Hence, we opted for a cost-effective yet
performing approach, optimizing our data collection process.

Finally, our choice to build upon the work of Pontillo et al.
[44] mitigated potential threats to validity associated with re-
implementing third-party research methods. Indeed, two of
the authors of our paper were also involved in the original
study (with the fourth author being the primary contributor to
[44]). This ensured a faithful replication of the work, as we
were familiar with the design choices made and could avoid
errors or misinterpretations in the data collection procedures.
This latter aspect allowed a fair comparison of our findings
with respect to related literature.

To compute the independent variables of the study, we
used the scripts made publicly available by Pontillo et al.
[44]. In doing so, one technical matter is worth discussing.
To associate production code metrics with test code, we

had to establish explicit links between test cases and their
corresponding production classes—otherwise, we could not
compute the value of the production code metrics. For this
purpose, we employed a pattern-matching strategy based on
naming conventions, as proposed and utilized in prior studies
[17], [21], [40], [44]. This method simply involves using the
name of a production class (e.g., ‘ClassName’) to locate the
corresponding test class, identified by the same name as the
production class but with the prefix or postfix ‘Test’ (e.g.,
‘TestClassName’ or ‘ClassNameTest’). If this pattern match-
ing failed, indicating that the production class associated with
the test class could not be identified, we had to exclude the
test from our analysis. As a result of this linking process,
we had to exclude 18,213 test classes from the dataset. In
these instances, developers did not adhere to the aforemen-
tioned naming conventions, making it impossible for us to
establish proper links between production and test classes.
For the remaining test classes, the outcome of the linking
process required the removal of certain test cases, notably
those containing methods named ‘setUp’ and ‘tearDown’.
These methods serve as fixtures responsible for managing
resource allocation and deallocation for tests but are not
linked to any production class. Consequently, following these
filtering actions, the final dataset comprised 87,875 test cases
(including 1,385 flaky tests) from 29 projects.
Table 2 shows the amount of flaky and non-flaky tests

in the projects. We can observe a significant disparity,
with the number of non-flaky tests overwhelmingly sur-
passing the number of flaky tests. The only exceptions are
the Typescript-generator and Visualee projects,
in which flaky tests represent 25% and 32% of the to-
tal test cases. In addition, for two other projects, i.e.,
Http-request and Adyen-java-api-library, we
note a percentage of flaky tests between 15% and 18%, while
for all other projects, the number of flaky tests accounts for
less than 8% of the total number of test cases analyzed.

IV. RESEARCH METHOD
Upon selection of the variables of the study, we proceeded
with the definition of the research methods required to ad-
dress our research questions. Figure 1 reports a methodical
overview, which we further discuss in this section.

A. RQ1 - RESEARCH METHOD
To comprehensively assess the capabilities of cross-project
flaky test prediction and address RQ1, we (1) experimented
with multiple machine learning pipelines and (2) conducted
an ablation study to verify the contribution and importance
of individual model components, features, and parameters to
themodel’s overall performance. These two steps did not only
allow us to measure the performance of a cross-project model
under different configurations, but also the impact of each
component on the model’s predictive ability.
Specifically, we beganwith the dataset consisting of 87,875

test cases previously labeled with information on features and
flakiness. We structured our analysis into four primary train-

4 VOLUME 11, 2023



Afeltra et al.: A Large-Scale Empirical Investigation into Cross-Project Flaky Test Prediction

TABLE 2: Overview of the projects in analysis.

Project #Test Classes in the Project #Test Classes linked to the Production Class #Test Cases #Flaky Tests
Achilles 185 43 401 24
Activiti 618 92 964 22
Admiral 796 262 2,390 55
Adyen-java-api-library 42 31 253 45
Aem-core-wcm-components 248 117 1,092 24
Chronicle-Wire 221 55 460 35
Commons-lang 175 111 2,711 25
Data Flow Template 156 123 694 39
Druid 3,655 1,420 10,729 30
Dubbo 673 248 1,639 139
Fastjson 2,496 834 1,860 25
Flink 3,173 1,261 9,254 23
Graylog2-server 474 374 2,477 21
Hadoop 3,928 1,322 13,662 177
Http-request 3 1 184 28
Ignite-3 558 268 2,173 118
Jackrabbit-oak 2,072 919 10,101 20
Java WebSocket 37 15 419 28
Mockserver 407 218 2,104 27
Nacos 429 365 1,850 26
Nifi 1,734 1,183 11,145 138
Ormlite-core 132 95 1,042 90
Ozone 837 364 2,480 24
Servicecomb-java-chassis 875 470 2,423 41
Typescript-generator 80 26 132 34
Visualee 26 22 134 43
Vpc-java-sdk 1,047 1,039 2,551 22
Wildfly 4,546 159 910 37
Wro4j 216 189 1,641 25

RQ1

RQ2

Dataset

Feature SelectionFeature Scaling

ML Algorithms

No Feature Scaling

Z-score Standardization

Min-Max Scaling

No Feature Selection

PCA

Multicollinearity & Info Gain

Statistical analysis

Best Model RQ1

Feature- and Instance-based Methods

TrAdaBoost

Burak Filter

IG_SM_FS_TCA

TCA

Statistical analysis

Data Balancing
No Data Balancing

Random Undersampling

SMOTERandom Forest

FIGURE 1: Overview of the research method employed.

ing stages: feature scaling, feature selection, data balancing,
and machine learning algorithm selection. Within each stage,
we explored various techniques, e.g., multiple algorithms for
feature scaling. We systematically disabled individual stages

to assess their impact on predictive performance. Further-
more, we examined the application of each technique within a
specific stage, alongwith any combination of techniques from
other stages. This approach resulted in the creation of a total

VOLUME 11, 2023 5



Afeltra et al.: A Large-Scale Empirical Investigation into Cross-Project Flaky Test Prediction

of 27 different pipelines, representing the cartesian product of
all possible configurations. Finally, we statistically analyzed
the performance of each experimented pipeline to identify the
best one and provide a final answer toRQ1. As for individual
training stages:

Feature Scaling. This stage could be required because the
domains of the features under consideration varied widely
from one another. When features have different scales,
it can lead to issues during the training process, such as
one feature dominating the others or the model converging
slowly. Hence, we scaled the features experimenting with
min-max and z-score scaling algorithms.

Feature Selection. We filtered out features with low pre-
dictive power or high correlation with other features to
mitigate the risks of model overfitting. We experimented
with three approaches. First, the vif (Variance Inflation
Factors) function to discard highly correlated variables,
putting a threshold value equal to 5 [37]. Second, we mea-
sured the information gain [46] of each feature, discarding
those that did not provide any expected beneficial effect on
the performance (info gain equals to 0), as done in previous
work [2], [7]. Third, we applied Principal Component Anal-
ysis (PCA) [18] to identify the most informative features
based on their variance in the data, consequently filtering
out those with low information content.

Data Balancing. As flaky tests were underrepresented in
the dataset (1.6%), we assessed the role played by data
balancing. In this respect, we experimented with Synthetic
Minority Oversampling Technique, a.k.a. SMOTE [8], an
oversampling algorithm that generates synthetic instances
of flaky tests based on the information available in the
dataset. We also experimented with a Random Undersam-
pling approach that explored the distribution of majority
instances in a random fashion and under-samples them.

Machine Learning Algorithm. We assessed the capabili-
ties of Random Forest [22] as algorithm. We relied on this
algorithm since previous studies on flaky test prediction
consistently identified Random Forest as the best algorithm
in both dynamic and static contexts [2], [42], [44]. To
implement it, we employed the Scikit-Learn library [26] in
Python, which provides public APIs that let us configure,
execute, and validate the above-mentioned classifier.
As for the validation technique, we adopted the leave-one-

out cross-validation [52]. This approach iteratively desig-
nates one project as the test set, with the rest serving as the
training set. Notably, preprocessing steps were exclusively
applied to the training sets to prevent any bias in the evalu-
ation of model performance and to ensure the integrity of the
testing process.

We finally evaluate the performance metrics of each ex-
perimented pipeline, computing precision, recall,F-Measure,
and AUC-PR. To determine the most effective pipeline in
addressing RQ1, we employed the Nemenyi test [36] for
statistical significance and present the results through mean
on MCM (Multiple Comparison with the best) plots [25].

B. RQ2 - RESEARCH METHOD
To address RQ2, we assess the impact of transfer learning
techniques on the performance of the best pipeline result-
ing from RQ1. We evaluated two prominent approaches:
the feature-based and the instance-based methods [19], [51].
The former aims to identify commonalities in features across
different projects to create a unified representation, thereby
mitigating distribution differences between the source and
target domains. The latter addresses distribution disparities
by recalibrating the weights of training instances, assigning
greater significance to source domain data to adapt the model
to the target domain. More specifically, we applied two differ-
ent feature-based methods and two instance-based methods:

Burak Filter. Initially proposed by Turhan et al. [51], this
instance-based method uses a filtering technique that se-
lects training data based on its proximity to the test data,
measured through Euclidean distance. We employed the
Burak filter with k = 10, as this configuration showcased a
potential decrease in the false alarm rate within the closely-
related field of defect prediction.

Transfer Component Analysis (TCA). Originally designed
to learn a shared feature subspace between the source and
target domains, TCA [38] operates within a Reproducing
Kernel Hilbert Space (RKHS). Its objective is to align data
distributions across distinct domains while safeguarding
critical feature information.

IG_SM_FS_TCA. Inspired by Khatri et al.’s research [24],
this adaptation technique initiates byminimizing disparities
in the feature sets across domains, before implementing
TCA. Employing a multi-phase approach, it systematically
identifies crucial features for optimal domain adaptation,
ultimately striving to enhance the performance of machine
learning models in cross-domain scenarios.

TrAdaBoost. Extending AdaBoost, this instance-based
method [11] fine-tunes the weights of source domain in-
stances during training, diminishing the impact of those
least resembling the target domain data. Through iterative
refinement, it prioritizes error reduction in instances from
the target domain, thereby aligning the model more closely
with the characteristics of the target domain. We applied
TrAdaBoost techniques by splitting the dataset into 25%,
50%, and 75% segments to evaluate its effectiveness across
different data proportions. This approach allows us to sys-
tematically analyze the performance in varying conditions,
from minimal data availability to substantial data, provid-
ing insights into its robustness, efficiency, and maximum
potential in aligning the source and target domains.

Similarly to RQ1, we evaluated the performance in terms
of precision, recall, F-Measure, and AUC-PR. We also statis-
tically compared the models trained using different transfer
learning approaches using the Nemenyi test [36].

V. ANALYSIS OF THE RESULTS
This section illustrates the results achieved by our study.

6 VOLUME 11, 2023



Afeltra et al.: A Large-Scale Empirical Investigation into Cross-Project Flaky Test Prediction

A. RESULTS FOR RQ1

In the context of RQ1, we evaluated 27 different pipelines
using Random Forest as machine learning algorithm.

Once we had collected the performance, we statistically
evaluated our findings — Figure 2 reports the results of the
Nemenyi Test. First, we can observe that we were able to
collect data only for 25 of the 27 analyzed pipelines. Specif-
ically, using SMOTE and PCA combined with SMOTE did
not produce any result.

The best-performing pipeline (i.e., the one with the largest
difference) is the one with the PCA as feature scaling and
Random Undersampling as a balancing technique. However,
this pipeline has statistically comparable performance with
more than half of the other experimented configurations.

An interesting point to consider relates to the signifi-
cance of data balancing techniques. All the best-performing
pipelines use Random Undersampling as data balancer,
clearly indicating that undersampling is the best choice for
such kind of analysis.

Conversely, it seems that the choice of different feature
scaling techniques does not significantly impact the per-
formance (e.g., PCA appears both in the best- and worst-
performing configurations).

Once we identified the best configuration, we experi-
mented with it on our dataset to measure the performance
achieved. Table 3 reports the results in terms of precision,
recall, AUC-PR, and F1 score.

As we can observe, performance are overall poor, with an
average F1 score of 0.03 and a max F1 score of 0.18 for
Wildfly. Themain reason for the low performance seems to
be related to the high rate of false positives. Indeed, in almost
all cases, the results for Precision are below 0.1.
The overall poor performance highlights the inherent chal-

lenges in cross-project flaky test prediction. Differences in
development practices, codebases, and testing environments
across projects contribute to the difficulty in generalizing a
model trained on one project to another.

B. RESULTS FOR RQ2

The goal of RQ2 was to evaluate the impact of feature-
and instance-based filtering methods on the performance of
flaky test predictors in a cross-project scenario. To this aim,
we compared the performance of six different strategies, as
described in Section IV. Figures 3 and 4 report the results of
the statistical test and the boxplots comparing the techniques’
performance respectively.

As we can observe from Figure 3, the best performance is
provided by the approaches based on AdaBoost, which sig-
nificantly outperforms all the other alternatives. Differently,
the other feature- and instance-based filtering techniques do
not provide any significant improvement to the traditional
algorithm performance.

The boxplots in Figure 4 reinforce these observations,
illustrating the high improvement in all performance metrics
when TrAdaBoost is applied. The reason behind such an im-
provement is likely due to the intrinsic nature of TrAdaBoost.

F
1 

S
co

re

P
C

A
_n

ob
al

an
ci

ng
 −

 1
.5

0

no
_p

re
pr

oc
es

si
ng

 −
 1

.5
0

IG
_n

ob
al

an
ci

ng
 −

 3
.0

0

IG
_s

m
ot

e 
−

 4
.0

0

zs
co

re
_I

G
_s

m
ot

e 
−

 5
.0

0

zs
co

re
_s

m
ot

e 
−

 6
.5

0

zs
co

re
_P

C
A

_s
m

ot
e 

−
 6

.5
0

zs
co

re
_n

ob
al

an
ci

ng
 −

 8
.5

0

zs
co

re
_P

C
A

_n
ob

al
an

ci
ng

 −
 8

.5
0

zs
co

re
_I

G
_n

ob
al

an
ci

ng
 −

 1
0.

00

m
in

m
ax

_I
G

_n
ob

al
an

ci
ng

 −
 1

1.
00

m
in

m
ax

_I
G

_s
m

ot
e 

−
 1

2.
00

m
in

m
ax

_P
C

A
_s

m
ot

e 
−

 1
3.

50

m
in

m
ax

_s
m

ot
e 

−
 1

3.
50

m
in

m
ax

_n
ob

al
an

ci
ng

 −
 1

5.
50

m
in

m
ax

_P
C

A
_n

ob
al

an
ci

ng
 −

 1
5.

50

zs
co

re
_I

G
_r

an
do

m
un

de
r 

−
 1

7.
03

zs
co

re
_P

C
A

_r
an

do
m

un
de

r 
−

 1
8.

57

zs
co

re
_r

an
do

m
un

de
r 

−
 1

8.
57

m
in

m
ax

_I
G

_r
an

do
m

un
de

r 
−

 2
0.

07

m
in

m
ax

_P
C

A
_r

an
do

m
un

de
r 

−
 2

1.
57

m
in

m
ax

_r
an

do
m

un
de

r 
−

 2
1.

57

IG
_r

an
do

m
un

de
r 

−
 2

2.
70

ra
nd

om
un

de
r 

−
 2

4.
33

P
C

A
_r

an
do

m
un

de
r 

−
 2

4.
60

0
5

10
20

30

FIGURE 2: Overview of the Nemenyi Test employed on
the pipeline evaluated in terms of F1 score. Circle dots are
the median likelihood, while the error bars indicate the 95%
confidence interval. 60% of likelihood means that a pipeline
appears at the top-rank for 60% of the experiments.

TABLE 3: Performance of the best algorithm for RQ1.

Project Precision Recall AUC-PR F1
Achilles 0.04 0.04 0.19 0.04
Activiti 0.05 0.54 0.13 0.1
Admiral 0.05 0.2 0.12 0.08
Adyen-java-api-library 0.07 0.02 0.21 0.03
Aem-core-wcm-components 0.0 0.0 0.07 NaN
Chronicle-Wire 0.09 0.06 0.10 0.07
Commons-lang 0.0 0.0 0.01 NaN
Data Flow Template 0.03 0.02 0.05 0.02
Druid 0.01 0.16 0.02 0.01
Dubbo 0.13 0.12 0.12 0.13
Fastjson 0.0 0.0 0.01 NaN
Flink 0.01 0.3 0.01 0.02
Graylog2-server 0.01 0.1 0.17 0.02
Hadoop 0.005 0.04 0.01 0.01
Http-request 0.0 0.0 0.17 NaN
Ignite-3 0.11 0.13 0.11 0.12
Jackrabbit-oak 0.0 0.0 0.10 NaN
Java WebSocket 0.0 0.0 0.16 NaN
Mockserver 0.08 0.04 0.02 0.01
Nacos 0.05 0.19 0.12 0.07
Nifi 0.02 0.16 0.02 0.04
Ormlite-core 0.0 0.0 0.07 NaN
Ozone 0.04 0.3 0.1 0.08
Servicecomb-java-chassis 0.0 0.0 0.01 NaN
Typescript-generator 0.0 0.0 0.41 NaN
Visualee 1.0 0.1 0.54 0.17
Vpc-java-sdk 0.004 0.04 0.06 0.01
Wildfly 0.11 0.46 0.1 0.18
Wro4j 0.03 0.08 0.1 0.04

Aggregate Results 0.02 0.1 0.1 0.03

Indeed, the technique effectively manages the heterogeneity
of cross-project data by iteratively adjusting theweights of the
training instances, decreasing the influence of less relevant
source domain instances and increasing the influence of more
relevant target domain instances. This emphasis on target-
relevant data allows TrAdaBoost to better align the model
with the specific characteristics of the target project, thus
improving prediction accuracy and reducing false positives.

VOLUME 11, 2023 7



Afeltra et al.: A Large-Scale Empirical Investigation into Cross-Project Flaky Test Prediction
F

1 
S

co
re

P
C

A
_r

an
do

m
un

de
r 

−
 2

.4
0

C
P

C
T

C
A

_E
xp

er
im

en
t −

 2
.5

0

C
P

T
C

A
_E

xp
er

im
en

t −
 2

.7
8

C
P

B
F

_E
xp

er
im

en
t −

 3
.1

0

C
P

Tr
A

da
_E

xp
er

im
en

t_
25

 −
 4

.9
8

C
P

Tr
A

da
_E

xp
er

im
en

t_
50

 −
 5

.9
1

C
P

Tr
A

da
_E

xp
er

im
en

t_
75

 −
 6

.3
3

2
3

4
5

6
7

FIGURE 3: Overview of the Nemenyi Test employed forRQ2

in terms of F1 score. Circle dots are the median likelihood,
while the error bars indicate the 95% confidence interval.
60% of likelihood means that a pipeline appears at the top-
rank for 60% of the experiments.

FIGURE 4: Overview of the performance metrics employed
for RQ2 and compared with the best pipeline for RQ1.

Consequently, this iterative refinement process ensures that
the model is robust and better generalized to the target do-
main, making it particularly suitable for the cross-project
prediction of flaky tests. In other terms, instance-based fine-
tuning represents the real advantage that allows to improve
the classification of flaky tests significantly.

Table 4 reports the detailed performance of the best con-
figuration (i.e., TrAdaBoost_75) on all systems in our dataset
—the detailed performance of all techniques are in the online
appendix [1]. Overall, the usage of such an instance-based
filtering approach led to a huge performance enhancement,
with the aggregate F1 score increasing from 0.03 to 0.7,
registering a boost of +2300%.

An interesting consideration to make concerns the way the

instance-based technique mitigates the main limitation of the
standard approach (i.e., the high number of false positives).
Indeed, in more than 70% of the analyzed systems (21 out of
29) we can observe aPrecision higher than 0.80. Additionally,
in 11 of these cases the experimented approach achieves a
perfect precision (i.e., 1.0).

TABLE 4: Performance of the best algorithm for RQ2.

Project Precision Recall AUC-PR F1
Achilles 1.0 0.83 0.92 0.91
Activiti 1.0 1.0 1.0 1.0
Admiral 0.86 0.43 0.71 0.57
Adyen-java-api-library 1.0 0.73 0.86 0.84
Aem-core-wcm-components 1.0 0.83 0.92 0.91
Chronicle-Wire 0.0 0.0 0.5 0.0
Commons-lang 1.0 0.5 0.75 0.67
Data Flow Template 0.89 0.8 0.9 0.84
Druid 0.33 0.13 0.56 0.18
Dubbo 0.9 0.54 0.77 0.68
Fastjson 0.5 0.33 0.66 0.4
Flink 0.6 0.5 0.75 0.55
Graylog2-server 1.0 0.6 0.8 0.75
Hadoop 0.93 0.57 0.78 0.7
Http-request 1.0 0.71 0.86 0.83
Ignite-3 0.87 0.87 0.93 0.87
Jackrabbit-oak 0.67 0.8 0.9 0.73
Java WebSocket 0.88 1.0 0.99 0.93
Mockserver 1.0 0.71 0.86 0.83
Nacos 0.8 0.57 0.78 0.67
Nifi 0.95 0.57 0.79 0.71
Ormlite-core 1.0 0.83 0.91 0.9
Ozone 0.5 0.17 0.58 0.25
Servicecomb-java-chassis 1.0 0.9 0.95 0.95
Typescript-generator 0.89 1.0 0.98 0.94
Visualee 0.92 1.0 0.98 0.96
Vpc-java-sdk 1.0 0.5 0.75 0.67
Wildfly 0.75 0.67 0.83 0.71
Wro4j 0.4 0.33 0.66 0.36

Aggregate Results 0.81 0.63 0.81 0.70

VI. THREATS TO VALIDITY
This section discusses the potential limitations of our work
and how we mitigated them.

A. CONSTRUCT VALIDITY
Our study is primarily threatened by potential imprecision
in the data, derived from public datasets used in previous
research [2], [28]. Although these datasets have been vali-
dated, some flaky tests might not have exposed their unre-
liability during the data collection procedures conducted by
the authors of the dataset. As such, replications using dif-
ferent datasets could strengthen our findings. The automated
tools used to compute independent variables might introduce
noise, e.g., false positive test and code smells. However,
manual detection was unfeasible in our case, so we used
well-established tools known for their accuracy. Additionally,
we linked test classes to production classes using pattern
matching based on naming conventions. Although this ap-
proach balances accuracy and scalability, it may produce false
positives, particularly in systems with identical class names
but different paths. No such cases were present in our study,
but future replications should consider this potential issue.

8 VOLUME 11, 2023



Afeltra et al.: A Large-Scale Empirical Investigation into Cross-Project Flaky Test Prediction

B. CONCLUSION VALIDITY
In terms of conclusion validity, we assessed the suitability of
cross-project flakiness prediction by performing a large-scale
ablation study, hence experimenting with multiple techniques
and training stages. Afterwards, we engaged with a number
of instance- and feature-based transfer learning methods with
the aim of broadening the scope of our study. In both re-
search questions, our analyses were supported by statistical
tests. The process conducted makes us confident about the
reliability of the conclusions drawn. However, more extensive
analyses might still be beneficial to corroborate our findings.

C. EXTERNAL VALIDITY
Our study’s external validity may be limited to the Java open-
source projects belonging to the IDoFT dataset. Despite the
variety of projects, additional datasets may reveal different
patterns and, therefore, different results. While our approach
is likely applicable to other object-oriented languages, its
effectiveness with procedural languages requires further in-
vestigation. In addition, the practical adoption of our findings
may be limited by the need for naming conventions in the
linking process. However, our methodology can be adapted
to project-specific standards, potentially improving model
performance with larger, more tailored datasets.

VII. CONCLUSIONS
In this paper, we explored the challenges and potential of
cross-project flaky test prediction. By leveraging the IDoFT
dataset, we evaluated a static flaky test prediction model and
investigated various filtering methods to improve its efficacy.

Our study confirms that while cross-project flaky test pre-
diction is challenging due to the heterogeneity of the data,
we demonstrated that feature- and instance-based filtering
methods, especially the TrAdaBoost approach, significantly
enhance prediction performance, achieving an average F1
score of 70%. This highlights the potential for these meth-
ods to be applied in practical scenarios, providing a robust
framework for identifying flaky tests across diverse projects.

To sum up, our paper provided the following contributions:
1) A large-scale empirical investigation on cross-project

flaky test prediction using static metrics;
2) Evidence and analysis of the improvement provided by

feature- and instance-based filtering methods, especially
TrAdaBoost;

3) An online appendix [1] in which we provide all material
and scripts employed to address the goals of the study.

Further research is needed to refine these methods and
explore their applicability to other programming languages
and development environments. We also plan to further in-
vestigate machine learning models for flaky test prediction
based on their root causes, aiming to improve the predictions.
Nonetheless, our findings contribute valuable insights into
the feasibility and effectiveness of cross-project flaky test
prediction, paving the way for more reliable and maintainable
software testing practices.

ACKNOWLEDGEMENT
Valeria is partially supported by the FWO SBO BaseCamp
Zero project (Code: S000323N).

REFERENCES
[1] Afeltra, A., Cannavale, A., Pecorelli, F., Pontillo, V., Palomba, F.: A large-

scale empirical investigation into cross-project flaky test prediction (2024),
https://github.com/alfcan/crossproject-flaky-test-prediction.git

[2] Alshammari, A., Morris, C., Hilton, M., Bell, J.: Flakeflagger: Predicting
flakiness without rerunning tests. In: ICSE 2021. pp. 1572–1584. IEEE
(2021)

[3] Barboni, M., Bertolino, A., De Angelis, G.: What we talk about when
we talk about software test flakiness. In: International Conference on
the Quality of Information and Communications Technology. pp. 29–39.
Springer (2021)

[4] Bell, J., Legunsen, O., Hilton, M., Eloussi, L., Yung, T., Marinov, D.:
Deflaker: Automatically detecting flaky tests. In: ICSE 2018. pp. 433–444.
IEEE (2018)

[5] Bertolino, A., Cruciani, E., Miranda, B., Verdecchia, R.: Know your neigh-
bor: Fast static prediction of test flakiness

[6] Camara, B., Silva, M., Endo, A., Vergilio, S.: On the use of test smells
for prediction of flaky tests. In: Brazilian Symposium on Systematic and
Automated Software Testing. pp. 46–54 (2021)

[7] Catolino, G., Palomba, F., Zaidman, A., Ferrucci, F.: How the experience of
development teams relates to assertion density of test classes. In: ICSME
2019. pp. 223–234. IEEE (2019)

[8] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: syn-
thetic minority over-sampling technique. Journal of artificial intelligence
research 16, 321–357 (2002)

[9] Chidamber, S., Kemerer, C.: A metrics suite for object oriented design.
IEEE TSE 20(6), 476–493 (1994).

[10] Cordy, M., Rwemalika, R., Franci, A., Papadakis, M., Harman, M.:
Flakime: laboratory-controlled test flakiness impact assessment. In: Pro-
ceedings of the 44th International Conference on Software Engineering.
pp. 982–994 (2022)

[11] Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In:
Proceedings of the 24th international conference on Machine learning. pp.
193–200 (2007)

[12] Daniel, B., Jagannath, V., Dig, D., Marinov, D.: Reassert: Suggesting
repairs for broken unit tests. In: ASE 2009. pp. 433–444. IEEE (2009)

[13] Eck, M., Palomba, F., Castelluccio, M., Bacchelli, A.: Understanding
flaky tests: The developer’s perspective. In: ESEC/FSE 2019. pp. 830–840
(2019)

[14] Fowler, M.: Eradicating non-determinism in tests. Martin Fowler Personal
Blog (2011), https://martinfowler.com/articles/nonDeterminism.html

[15] Garousi, V., Felderer, M., Kılıçaslan, F.N.: A survey on software testability.
Information and Software Technology 108, 35–64 (2019)

[16] Grano, G., De Iaco, C., Palomba, F., Gall, H.: Pizza versus pinsa: On the
perception and measurability of unit test code quality. In: ICSME 2020. pp.
336–347. IEEE (2020)

[17] Grano, G., Palomba, F., Gall, H.: Lightweight assessment of test-case
effectiveness using source-code-quality indicators. IEEE TSE (2019)

[18] Greenacre, M., Groenen, P.J., Hastie, T., d’Enza, A.I., Markos, A.,
Tuzhilina, E.: Principal component analysis. Nature Reviews Methods
Primers 2(1), 100 (2022)

[19] Guyon, I., Elisseeff, A.: An introduction to variable and feature selection.
Journal of machine learning research 3(Mar), 1157–1182 (2003)

[20] Habchi, S., Haben, G., Papadakis, M., Cordy,M., Traon, Y.L.: A qualitative
study on the sources, impacts, and mitigation strategies of flaky tests. arXiv
preprint arXiv:2112.04919 (2021)

[21] Haben, G., Habchi, S., Papadakis, M., Cordy, M., Le Traon, Y.: A replica-
tion study on the usability of code vocabulary in predicting flaky tests. In:
MSR 2021 (2021)

[22] Ho, T.K.: Random decision forests. In: Proceedings of 3rd international
conference on document analysis and recognition. vol. 1, pp. 278–282.
IEEE (1995)

[23] Hosseini, S., Turhan, B.: A comparison of similarity based instance selec-
tion methods for cross project defect prediction. In: Proceedings of the 36th
annual ACM symposium on applied computing. pp. 1455–1464 (2021)

VOLUME 11, 2023 9



Afeltra et al.: A Large-Scale Empirical Investigation into Cross-Project Flaky Test Prediction

[24] Khatri, Y., Singh, S.K.: An effective feature selection based cross-project
defect prediction model for software quality improvement. International
Journal of System Assurance Engineering and Management pp. 1–19
(2023)

[25] Koning, A.J., Franses, P.H., Hibon, M., Stekler, H.O.: The m3 competition:
Statistical tests of the results. International Journal of Forecasting 21(3),
397–409 (2005)

[26] Kramer, O.: Scikit-learn. In: Machine learning for evolution strategies, pp.
45–53. Springer (2016)

[27] Lacoste, F.: Killing the gatekeeper: Introducing a continuous integration
system. In: 2009 agile conference. pp. 387–392. IEEE (2009)

[28] Lam, W., Oei, R., Shi, A., Marinov, D., Xie, T.: idflakies: A framework for
detecting and partially classifying flaky tests. In: ICST 2019. pp. 312–322.
IEEE (2019)

[29] Lam, W., Winter, S., Wei, A., Xie, T., Marinov, D., Bell, J.: A large-scale
longitudinal study of flaky tests. Proceedings of the ACM on Programming
Languages 4(OOPSLA), 1–29 (2020)

[30] Lam, W., Winter, S., Astorga, A., Stodden, V., Marinov, D.: Understanding
reproducibility and characteristics of flaky tests through test reruns in
java projects. In: 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE). pp. 403–413. IEEE (2020)

[31] Lampel, J., Just, S., Apel, S., Zeller, A.: When life gives you oranges:
detecting and diagnosing intermittent job failures at mozilla. In: 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. pp. 1381–1392
(2021)

[32] Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky
tests. In: ESEC/FSE 2014. pp. 643–653 (2014)

[33] McCabe, T.: A complexity measure. IEEE TSE SE-2(4), 308–320 (1976).
[34] Memon, A., Cohen, M.: Automated testing of gui applications: models,

tools, and controlling flakiness. In: ICSE 2013. pp. 1479–1480. IEEE
(2013)

[35] Micco, J.: The state of continuous integration testing@ google. In: ICST
(2017)

[36] Nemenyi, P.B.: Distribution-free multiple comparisons. Princeton Univer-
sity (1963)

[37] O’brien, R.: A caution regarding rules of thumb for variance inflation
factors. Quality & quantity 41(5), 673–690 (2007)

[38] Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer
component analysis. IEEE transactions on neural networks 22(2), 199–210
(2010)

[39] Parry, O., Kapfhammer, G.M., Hilton, M., McMinn, P.: A survey of
flaky tests. ACM Transactions on Software Engineering and Methodology
(TOSEM) 31(1), 1–74 (2021)

[40] Pecorelli, F., Palomba, F., De Lucia, A.: The relation of test-related factors
to software quality: A case study on apache systems. Empirical Software
Engineering 26(2) (2021)

[41] Pezzè, M., Young, M.: Software testing and analysis: process, principles,
and techniques. John Wiley & Sons (2008)

[42] Pinto, G., Miranda, B., Dissanayake, S., D’Amorim, M., Treude, C.,
Bertolino, A.: What is the vocabulary of flaky tests? In: MSR 2020. pp.
492–502 (2020)

[43] Pontillo, V., Palomba, F., Ferrucci, F.: Toward static test flakiness predic-
tion: a feasibility study. In: Proceedings of the 5th International Workshop
on Machine Learning Techniques for Software Quality Evolution. pp. 19–
24 (2021)

[44] Pontillo, V., Palomba, F., Ferrucci, F.: Static test flakiness prediction: How
far can we go? Empirical Software Engineering 27(7), 187 (2022)

[45] Pontillo, V., Palomba, F., Ferrucci, F.: Test code flakiness in mobile apps:
The developer’s perspective. Information and Software Technology 168,
107394 (2024)

[46] Quinlan, J.R.: Induction of decision trees. Machine learning 1(1), 81–106
(1986)

[47] Rahman, S., Massey, A., Lam, W., Shi, A., Bell, J.: Automatically repro-
ducing timing-dependent flaky-test failures. In: International Conference
on Software Testing, Verification, and Validation (2024)

[48] Rahman, S., Shi, A.: Flakesync: Automatically repairing async flaky tests.
In: Proceedings of the IEEE/ACM 46th International Conference on Soft-
ware Engineering. pp. 1–12 (2024)

[49] Rehman, M.H.U., Rigby, P.C.: Quantifying no-fault-found test failures to
prioritize inspection of flaky tests at ericsson. In: 29th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. pp. 1371–1380 (2021)

[50] Terragni, V., Salza, P., Ferrucci, F.: A container-based infrastructure for
fuzzy-driven root causing of flaky tests. In: 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER). pp. 69–72. IEEE (2020)

[51] Turhan, B.,Menzies, T., Bener, A.B., Di Stefano, J.: On the relative value of
cross-company and within-company data for defect prediction. Empirical
Software Engineering 14, 540–578 (2009)

[52] Vehtari, A., Gelman, A., Gabry, J.: Practical bayesian model evaluation
using leave-one-out cross-validation and waic. Statistics and computing
27(5), 1413–1432 (2017)

[53] Zhang, S., Jalali, D., Wuttke, J., Muşlu, K., Lam,W., Ernst, M., Notkin, D.:
Empirically revisiting the test independence assumption. In: ISSTA 2014.
pp. 385–396 (2014)

[54] Zheng, W., Liu, G., Zhang, M., Chen, X., Zhao, W.: Research progress of
flaky tests. In: 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). pp. 639–646. IEEE (2021)

[55] Zhu, X., Qiu, T., Wang, J., Lai, X.: A novel instance-based method for
cross-project just-in-time defect prediction. Software: Practice and Expe-
rience 54(6), 1087–1117 (2024)

ANGELO AFELTRA received the M.Sc. degree at
the University of Salerno, Italy, in 2023. His inter-
ests include software maintenance and evolution,
AI & ML engineering, and robotics. He currently
works as a consultant at Cluster Reply.

ALFONSO CANNAVALE received the M.Sc. de-
gree at the University of Salerno, Italy, in 2024.
His interests include software maintenance and
evolution, empirical software engineering, and AI
& ML engineering.

FABIANO PECORELLI is an Associate Professor
at the Pegaso Telematic University. Formerly, he
was a postdoctoral researcher at the University
of Salerno (Italy), Eindhoven University of Tech-
nology (the Netherlands), and Tampere University
(Finland). He received his Ph.D. in Computer Sci-
ence in 2022 from the University of Salerno, Italy.
He has more than 30 publications in international
journals and conferences. His research interests
include software maintenance and evolution, em-

pirical software engineering, AI & ML engineering, and quantum software
engineering. He serves, and has served, as a referee for various international
journals in the field of software engineering (e.g., IEEE Transactions on
Software Engineering, ACM Transactions on Software Engineering and
Methodology, Empirical Software Engineering).

10 VOLUME 11, 2023



Afeltra et al.: A Large-Scale Empirical Investigation into Cross-Project Flaky Test Prediction

VALERIA PONTILLO is a post-doctoral researcher
at the Software Languages Lab of the Vrije Univer-
siteit Brussel. She received her Ph.D in Computer
Science in 2024 from the University of Salerno,
Italy. Her research activities are in Software En-
gineering, particularly Software Testing, Software
Quality, and Software Maintenance and Evolution.
Her research interests also include the develop-
ment of novel software engineering for artificial
intelligence tools and techniques. She served as a

reviewer for international conferences (e.g., ICSE 2024 Artifact Evaluation,
SANER 2024/2025, CHASE 2025, SCAM NIER, ICSME NIER, and ASE
NIER) and journals in the software engineering field (e.g., IEEETransactions
on Software Engineering, ACM Transactions on Software Engineering and
Methodology, Empirical Software Engineering).

FABIO PALOMBA is an Assistant Professor at the
Software Engineering Lab, University of Salerno.
He earned his European Ph.D. in Management &
Information Technology in 2017 and received the
2017 IEEE Computer Society Best Ph.D. Thesis
Award. In 2023, he was honored with the IEEE
Computer Society Technical Council of Software
Engineering Rising Star Award for his contribu-
tions to code refactoring and code smells.

His research focuses on software maintenance
and evolution, empirical software engineering, source code quality, and
mining software repositories. He has won several prestigious paper awards,
including two ACM/SIGSOFT and one IEEE/TCSE Distinguished Paper
Awards and Best Paper Awards at CSCW’18 and SANER’18. In 2019, he
received the SNSF Ambizione grant.

He served on the ICPC steering Committee and has held various chair
positions, including program co-chair of SANER 2024 and ICPC 2021. He is
an Editorial BoardMember of several journals, including IST, EMSE, EISEJ,
IEEE Transactions on Software Engineering, TOSEM, JSS, and SCICO. He
has received multiple awards for his reviewing activities.

VOLUME 11, 2023 11


