
Uncovering Community Smells in Machine Learning-Enabled
Systems: Causes, Effects, and Mitigation Strategies

GIUSY ANNUNZIATA, University of Salerno, Italy
STEFANO LAMBIASE, University of Salerno, Italy
DAMIAN A. TAMBURRI, University of Sannio, Italy
WILLEM-JAN VAN DEN HEUVEL, Jheronimus Academy of Data Science, Netherlands
FABIO PALOMBA, University of Salerno, Italy
GEMMA CATOLINO, University of Salerno, Italy
FILOMENA FERRUCCI, University of Salerno, Italy
ANDREA DE LUCIA, University of Salerno, Italy

Successful software development hinges on effective communication and collaboration, which are significantly
influenced by human and social dynamics. Poor management of these elements can lead to the emergence
of ‘community smells’, i.e., negative patterns in socio-technical interactions that gradually accumulate as
‘social debt’. This issue is particularly pertinent in machine learning-enabled systems, where diverse actors
such as data engineers and software engineers interact at various levels. The unique collaboration context of
these systems presents an ideal setting to investigate community smells and their impact on development
communities. This paper addresses a gap in the literature by identifying the types, causes, effects, and potential
mitigation strategies of community smells in machine learning-enabled systems. Using Partial Least Squares
Structural Equation Modeling (PLS-SEM), we developed hypotheses based on existing literature and interviews,
and conducted a questionnaire-based study to collect data. Our analysis resulted in the construction and
validation of five models that represent the causes, effects, and strategies for five specific community smells.
These models can help practitioners identify and address community smells within their organizations, while
also providing valuable insights for future research on the socio-technical aspects of machine learning-enabled
system communities.

CCS Concepts: • Partial Least Squares Structural Equation Modeling; • Socio-Technical Aspects in
Machine Learning-Enabled Systems; • Community Smells;

Additional Key Words and Phrases: Socio-Techinical Aspects, ML-Enabled Teams, Partial Least Squares
Structural Equation Modeling, PLS-SEM

1 INTRODUCTION
Software development is a collaborative activity, and scholars in the field of software engineering
have been investigating howhuman and social factors can influence this activity. Research highlights
the importance of effectively managing these factors, as they can greatly impact the overall success
of a software project, especially in Machine Learning (ML) projects which typically involve even
more stakeholders and are notoriously failure-prone.1

1https://hbr.org/2023/11/keep-your-ai-projects-on-track

Authors’ addresses: Giusy Annunziata, gannunziata@unisa.it, University of Salerno, Salerno, Italy; Stefano Lambiase,
slambiase@unisa.it, University of Salerno, Salerno, Italy; Damian A. Tamburri, datamburri@unisannio.it, University of
Sannio, Benevento, Italy; Willem-Jan van den Heuvel, W.J.A.M.vdnHeuvel@tilburguniversity.edu, Jheronimus Academy
of Data Science, Hertogenbosch, Netherlands; Fabio Palomba, fpalomba@unisa.it, University of Salerno, Salerno, Italy;
Gemma Catolino, gcatolino@unisa.it, University of Salerno, Salerno, Italy; Filomena Ferrucci, fferrucci@unisa.it, University
of Salerno, Salerno, Italy; Andrea De Lucia, adelucia@unisa.it, University of Salerno, Salerno, Italy.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0009-0002-0742-7261
HTTPS://ORCID.ORG/0000-0002-9933-6203
HTTPS://ORCID.ORG/0000-0003-1230-8961
HTTPS://ORCID.ORG/0000-0001-9337-5116
HTTPS://ORCID.ORG/0000-0002-4689-3401
HTTPS://ORCID.ORG/0000-0002-0975-8972
HTTPS://ORCID.ORG/0000-0002-4238-1425
https://hbr.org/2023/11/keep-your-ai-projects-on-track
https://orcid.org/0009-0002-0742-7261
https://orcid.org/0000-0002-9933-6203
https://orcid.org/0000-0003-1230-8961
https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0002-4689-3401
https://orcid.org/0000-0002-0975-8972
https://orcid.org/0000-0002-4238-1425
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode


1:2 Annunziata et al.

Previous research focused on addressing social issues within the context of software development,
particularly in relation to the concept of social debt [13, 59]. Paraphrasing its original definition,
this concept refers “unforeseen project costs arising from suboptimal interactions within a development
community [59]. From the various aspects influencing social debt, community smells have emerged
as significant factors; they represent socio-technical characteristics (such as high formality) and
patterns (like recurring condescending behavior or abrupt departures) that can contribute to the
accumulation of social debt [58, 59].

Recent studies have shifted their focus towards understanding the spread and impact of commu-
nity smells, as well as identifying the factors associated with their emergence [2, 13, 20, 23, 38].
Some research has investigated how the presence of women and gender diversity within develop-
ment teams may be connected to the occurrence of community smells [16]. Other works focused
on identifying ways for supporting the detection of community smells, thus resulting in tools to
perform future investigation [64]. Some efforts have been devoted to identifying mitigation and
refactoring strategies for dealing with community smells [17].
Looking at the current state of the art, we identified only a few studies aiming at investigating

community smells within software development projects involving ML components [44, 46].
Analyzing the works that investigate on social dynamics in ML-enabled systems has emerged

the one of Busquim et al.[12], reports on semi-structured interviews with professionals in software
engineering and data science providing a reflexive thematic analysis. The results reveal several
challenges that may hinder collaboration between software engineers and data scientists, including
differences in technical expertise, unclear job definitions and a lack of documentation supporting
the specification of ML-enabled systems. Indeed, the software teams involved in the development
of those projects are commonly characterized by the collaboration of individuals which diverse
backgrounds, often working within isolated clusters and adhering to specific communication
protocols. However, this collaborative setting may also give rise to social anti-patterns, manifested
as community smells. Examining these patterns has the potential to uncover crucial insights into
the organizational factors contributing to failures in ML-enabled systems [10, 41, 51].

Our investigation stems from these considerations and aims to study community smells in ML-
enabled systems. Our focus is on identifying which community smells appear in such communities,
their potential causes, their effects, and their mitigation strategies. To conduct our study, we used the
Partial Least Squares Structural Equation Modeling (PLS-SEM) statistical analysis method [31, 54].
Specifically, we formulated our hypotheses (as described in the first step of the application of PLS-
SEM) by (1) starting from the work of Mailach and Siegmund [44] who identified 17 socio-technical
anti-patterns, 16 causes, and 15 organizational strategies and (2) conducting five interviews with
ML-enabled systems developers. To obtain the data to measure each phenomenon and to create
our measurement model (the second step of PLS-SEM), we performed a questionnaire-based study.

Our main contribution consists of five models representing causes, effects, and strategies for five
community smells, i.e., organizational skirmish, organizational silo, lone wolf, prima donna, and
black cloud [58, 59]. Those smells were selected after a preliminary analysis (explained in Section 4)
that shows their inherent direct relationship with the socio-technical anti-patterns of ML software.
Practitioners may use these models to identify smells in their organization, resolve them, and

understand how to mitigate them in the future. Moreover, our investigation sheds light on potential
novel research contributions concerning socio-technical aspects in communities developing AI-
and ML-enabled systems.

Structure of the Paper. Section 2 of the paper delves into the background and related work. Section
3 outlines the study, detailing its objectives and motivation. The following sections explain various
aspects of the research study. Specifically, Section 4 discuss the preliminary analysis conducted.



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:3

Sections 5 and 6, respectively, describe the development of the Structural Models and Measurement
Models. Section 7 details the data collection process. Section 8 explains the statistical analysis
performed on the Structural and Measurement Models to address the research questions. Finally,
Section 9 discusses the implications of the results, the potential threats to the study, and the
measures taken to mitigate them.

2 BACKGROUND AND RELATEDWORK
In this section, we report an overview of the research method used in this study, i.e., PLS-SEM.
Then we provide an overview of the research on community smells, followed by a review of work
that is related to ours in the context of ML-enabled systems.

2.1 Partial Least Squares Structural Equation Modeling (PLS-SEM)
Structural Equation Modeling (SEM) is a robust multivariate analysis technique widely recognized
for its ability to handle complex structures and models effectively [31]. SEM is particularly useful
for analyzing complex models where variables may be both non-latent—classically observable and
directly measurable variables—and latent, meaning they represent underlying traits, qualities, or
phenomena that are not directly measurable but can be estimated through multiple indicators [31,
55]. This method excels in scenarios where classical linear regression falls short, such as when
variables (latent and non-latent) are interconnected through a series of paths (also known as
hypotheses) and the relationships are not limited to a single type. Moreover, SEM allows for multiple
dependent and independent variables to be simultaneously analyzed, providing a comprehensive
view of their interrelationships.

One of the most intriguing aspects of SEM is the concept of latent variables and their measure-
ment. Latent variables are constructs that cannot be directly observed or measured; instead, their
measurement is achieved through a set of observable indicators, often referred to as indexes [31].
For instance, in marketing research, “Customer Satisfaction” is a latent variable that represents
an abstract construct. Although it cannot be directly measured, it can be estimated using multiple
observable indicators such as Overall Satisfaction Rating, Recommendation Likelihood, and Ser-
vice Quality Perception. Typically, researchers use questionnaires with validated items and scales
as indexes to measure these latent constructs, ensuring accurate and reliable estimation of the
underlying variables.

In general, a latent variable can be measured by combining different indexes by the mean of two
types of measurements: formative and reflective [31]. Reflective measures assume that the latent
variable causes the observed indicators. In this approach, the indicators are manifestations of the
underlying latent construct, and any change in the latent variable is expected to cause changes in
all of its indicators. Reflective indicators are assumed to be interchangeable, meaning each indicator
should capture the same underlying construct [31]. Formative measures assume that the indicators
cause the latent variable. Here, the latent construct is viewed as being formed or defined by its
indicators. Each indicator captures a different aspect of the construct, meaning indicators are not
interchangeable and do not necessarily correlate with each other [31]. In general, researchers tend
to prefer reflective measurements because of the interchangeability property.
Among the various SEM techniques, Partial Least Squares Structural Equation Modeling (PLS-

SEM) [31, 54] stands out for its unique applicability in specific research contexts, particularly when
the focus is on predictive accuracy and theory development. PLS-SEM is particularly suited for
predictive analysis and theory development, making it popular in disciplines such as marketing,
information systems, and social sciences [31]. Unlike other SEM techniques, PLS-SEM does not
impose strict assumptions about data distribution and sample size, allowing for greater flexibility
in research design. The method works by maximizing the explained variance of the dependent



1:4 Annunziata et al.

variables, thereby enhancing the predictive accuracy of the model. PLS-SEM’s iterative algorithm
generates latent variable scores, which are used to estimate path coefficients and assess the quality
of the measurement and structural models.
In the context of Partial Least Squares Structural Equation Modeling, the analysis is typically

divided into twomain components: themeasurementmodel and the structural model [31, 54, 55]. Both
components serve distinct purposes and require different validation processes. The measurement
model, also known as the outer model, focuses on the relationships between latent variables and
their observed indicators. It specifies how well the observed variables (indicators) represent the
latent constructs. The structural model, also known as the inner model, focuses on the relationships
between latent variables. It specifies the hypothesized relationships or paths among the latent
constructs in the model.
Despite the potential of adopting PLS-SEM in research, few studies have adopted this ap-

proach [54]. In the context of Software Engineering research, Trinkenreich et al. [61] adopted
PLS-SEM to understand practitioners’ sense of belonging to a community and the causes that may
reinforce it. Results show that a sense of community helps individuals feel valued, satisfied, and
involved. However, how a sense of community is created and what factors influence it needs to
be clarified. Another work, also proposed by Trinkenreich et al. [62], focused on studying the
relationship between the organizational culture of a developer and burnout, demonstrating that
the role of national culture is attractive to large multinational organizations.

2.2 Socio-Technical Anti-Patterns in ML-enabled systems
Machine Learning (ML)-enabled systems are defined as software systems provided with a machine
learning component [46]. Those systems have become all-pervasive in our lives, integrating into
various aspects—from professional to personal—and supporting us in all our activities [11].

Implementing ML-enabled systems is a complex activity, especially concerning the machine
learning components, which may lead to the inadvertent introduction of technical debts [46]. An
example of this is code smells—sub-optimal coding practices that hinder the readability, maintain-
ability, or scalability of a system. In the context of machine learning applications, specific types
of code smells have been identified that uniquely impact these systems, such as issues related to
data handling, model management, and hyperparameter configuration, which can lead to reduced
performance, increased technical debt, and greater difficulty in model updates, as highlighted by
Zhang et al. [66]. Other example are the data smells-Foidl et al. [26] categorize these data smells and
identify their causes, including flawed data collection processes and improper handling, while also
highlighting their severe consequences for AI-based systems, such as skewed model predictions
and degraded performance. Similarly, Recupito et al. [52] extended the catalog of identified data
smells with new data smells and empirically analysis of prevalence and data quality. The complexity
derived from technical debts increases the company’s demand for professional figures with specific
skills in the ML context, e.g., machine learning experts, data scientists, and data engineers. In the
process of hiring such figures other than more classical ones—like software engineers, developers,
and testers—heterogeneity in the professional background arose in development teams. Despite such
heterogeneity could improve the development process, it might also lead to the emergence of
socio-technical challenges, thus impacting the quality of the developed software [46].

One notable study examining social dynamics in ML-enabled systems is by Busquim et al. [12].
They conducted semi-structured interviews with software engineering and data science profession-
als, followed by a reflexive thematic analysis. Their findings highlight several challenges that can
impede collaboration between these groups, such as disparities in technical expertise, ambiguous
job roles, and a lack of documentation for ML system specifications.



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:5

Nahar et al. [46] investigated the main collaboration and communication issues during the devel-
opment of ML-enabled systems. They found that most problems are caused by miscommunication
between participants with different backgrounds. The heterogeneity of developers leads to having
different technical languages, which makes communication with each other and similarly with the
manager compact. Specifically, Mailach and Siegmund [44] investigated socio-technical aspects in
ML-enabled systems. Their work starts with 210 videos on the ML-OPS community.2 Following
the application of relevance filters, they obtain 73 videos relevant. Analyzing these videos they
extracted a list of 17 socio-technical anti-pattern, which describe developers’ bad behavior; they
also list 16 possible causes and 15 organizational strategies to adopt. The study highlights an open
question: Are the socio-technical anti-patterns identified specific to the development of ML-enabled
systems or more general socio-technical challenges in software engineering?

2.3 Community Smells
In the realm of the social dimensions of software development, Tamburri et al. [58, 59] introduced
the concept of “community smells”. These are socio-technical patterns that have the potential to
result in social debt. For example, the Organizational Silo effect is a specific community smell that
signifies a scenario in which a software community becomes fragmented into isolated compartments
where communication primarily occurs through just one or two members in each compartment.

In terms of impact, Palomba et al. [48] unveiled a connection between community-related factors
and code smells, suggesting that the former can exacerbate the latter. Consequently, there has been a
proposal for a predictive model that encompasses both technical and community-related dimensions.
Also, Eken et al. [23] investigate the effect of community smells on bug prediction, comparing their
effect with code smells-related information. Moreover, Tamburri et al. [60] introduced an automated
method for detecting community smells in open-source software development domains. They shed
light on the prevalence of these smells and their perceived impact on the evolution of software
communities. Also, Almarimi et al. [2] introduced a tool to identify community smells, starting from
the repository on GitHub of software projects. Meanwhile, Huang et al. [38] study how to predict
the community smells starting from the sentiments of individual developers, building a developer-
oriented and sentiment-aware community smell prediction model. Additionally, Palomba et al. [50]
emphasized the significance of socio-technical metrics, such as congruence and communicability,
as effective predictors of the emergence of community smell. In a separate study, De Stefano
et al. [19] delved into the relationship between community patterns, organizational or social
structure types, and factors related to the quality of software products and processes in open-source
repositories on GitHub. They employed association rule mining to identify common associations
between community patterns and community smells, which are detrimental patterns within the
organizational structure of software development communities, potentially leading to social debt.

Lambiase et al. [43] explored how cultural and geographical diversity influences the presence of
community smells and their association with social debt in open-source software communities.
Their study unveiled that these factors impact community smells, either exacerbating or alleviating
certain issues. These insights offer valuable guidance for software development managers seeking
to address organizational structures and related phenomena.
Catolino et al. [15] conducted research into how socio-technical factors impact the variability

of community smells, with the aim to study exploring refactoring and mitigation strategies for
community smells. Additionally, they examined themethods developers use to eliminate such smells,
as described in their work [17]. Through a survey involving 76 experts, the authors were able to
extract and consolidate a set of common refactoring techniques typically employed by practitioners

2ML-Ops Community: https://mlops.community/

https://mlops.community/


1:6 Annunziata et al.

to address the four community smell types identifiable through CodeFace4Smells, a software
tool designed to identify and analyze code smells in software source code. Furthermore, Catolino
et al. [16] made an additional contribution by demonstrating how the occurrence of community
smells could potentially be reduced through increased gender diversity. Previous work primarily
focused on understanding community smells, their identification, and their role in software systems.
However, limited attention has been given to how these smells arise in ML-enabled systems or
whether there are differences between the community smells identified in the literature and the
socio-technical issues specific to the ML-enabled systems context. This is the main objective that
our work aims to satisfy.

2.4 Main Contribution with Respect of the State of the Art
Although there are some works on socio-technical anti-patterns in ML-enabled systems [12, 44],
no effort has been devoted to analyze how community smells occur in these systems. We believe
this represents a missed opportunity.
Using “community smells” rather than “socio-technical anti-patterns” in research on human

aspects in ML-enabled systems is crucial for several reasons. First, community smells offer a well-
established framework to measure complex socio-technical phenomena such as communication and
collaboration [15, 59]. This framework helps in understanding social debt, making research findings
more practical for software practitioners [48, 50, 58]. Additionally, common terminology fosters the
growth of knowledge, increasing research interest and consolidation in this area [17, 50]. Therefore,
our work aims to in-deep the assumption provided by Nahar et al. [46] and study the relationship
between the collaboration and communication issues in Teams involved in the development of
ML-enabled systems [44], mapping them with the well-known community smells [13]. By doing
so, we not only extend existing knowledge through interviews and advanced statistical methods
but also provide practical theories for recommendation tools, making the findings accessible for
practitioners and providing a foundation for future research [31, 54].

In summary, the contribution of this work is significant for several reasons. Firstly, community
smells have become an established framework for characterizing socio-technical aspects of software
development, offering a practical way to measure complex phenomena such as communication
and collaboration. Investigating these aspects, also in the context of ML-enabled systems, also
improves the understanding of social debt, making it more workable for practitioners. Our work
builds on existing research, either by extending it through interviews that provide new insights, or
by reinforcing it with statistical methods (e.g., PLS-SEM) to handle complex theoretical models.
Finally, our contribution is practical and applicable while providing a solid basis for future research
on community smells in ML-enabled systems.

3 OVERVIEW OF THE STUDY DESIGN
In the following section, we discuss and motivate the objective of our study as well as the research
questions. Moreover, we introduce the research method adopted to address our questions.

3.1 Rationale and Motivation
As mentioned above, our work aims to provide a first step towards understanding community smells
in the context of the ML-enabled systems by studying whether the socio-technical anti-patterns
identified in this context may be causes, effects, or strategies for already known community smells.
To achieve our goal, we chose to start from the already available literature and seek, through
qualitative text-based analysis, to identify potential correspondences between socio-technical
phenomena already documented in the study context, which may be causes, effects, or strategies for
community smells [13, 44]. By positioning socio-technical phenomena identified in an ML-enabled



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:7

context as both the causes and effects of community smells discussed in the literature, we can
effectively map these community smells within the ML-enabled context as well (further elaborated
in Section 4). As a final step, we conducted a qualitative and quantitative study (through PLS-SEM)
to develop evolved theories informed by new findings and assess their accuracy [31, 54].
The contribution proposed in this paper is worthy of attention for several reasons. First, com-

munity smells are increasingly an established way to characterize socio-technical aspects in the
context of software development [15, 59]. From a practical standpoint, they provide a documented
and unified method for trying to measure a complex phenomenon such as communication and
collaboration. Beyond that, the literature on community smells allows for a better characterization
of the concept of social debt, which is particularly important for the purposes of concretizing
research into something usable in the context of practitioners [48, 50, 58]. Beyond that, and partially
related to the above, the use of a common terminology within the research community can facilitate
the growth of the body of knowledge on the topic with a consequent increase in interest (and thus
research and knowledge) on the topic. In this sense, our contribution allows us to use what has
already been done to (1) increase and improve knowledge and (2) consolidate it within a larger
framework [17, 50]. In addition, our work does not simply take up what has already been done but
(1) extends it concretely through a series of interviews (which led to new findings) and (2) reinforces
it by means of a set of statistical methods (PLS-SEM) specifically designed to handle complex models
of theory [54]. Last, our final contribution is concrete and transferable to the practitioner’s field.
By providing theories (in our case 5, one for each community smell, better discussed in the next
sections), we figure out their integration into recommendation tools, making them available for
practitioners in the computer science field [31, 54]. Moreover, other researchers can easily start
from our work by extending our models (or taking inspiration from them) to increase the body of
knowledge on the faceted field of community smells in an ML-enabled context.

3.2 Research Objective
The aim of this study is to delve deeper into understanding the phenomenon of community
smells in the development of ML-enabled software systems. In order to achieve our goal, we
start from the already documented literature on Socio-Technical Anti-Pattern—a bad practice that
causes negative effects or problems that impact social and technical aspects [44]—in ML-enabled
systems communities to identify possible causes, effects, and strategies that may be connected with
community smells, expanding the already known phenomenon of community smells also in the
ML-Enabled context.
The purpose is to offer fresh insights that enable practitioners to heighten their awareness

of potential communication and collaboration issues within such diverse software development
communities. This perspective is of interest to both researchers and practitioners. Researchers aim
to comprehend how the different background within these communities influences the presence
of community smells, while practitioners seek to understand and mitigate them. To address this
objective, we formulated two research questions.

To achieve our goal, as a first step we decided to investigate whether there was an overlap between
smells and socio-technical anti-patterns already documented in the literature. Since community
smells are socio-technical phenomena themselves, our conjecture was that there might be an
overlap between what has already been identified in the specific field of ML-enabled systems and
the definitions of smells. Moreover, previous research [41] suggests that machine learning-enabled
communities encounter communication barriers among their members. When AI developers skilled
in data science collaborate with external stakeholders lacking similar expertise [51], it often leads to



1:8 Annunziata et al.

challenges in communication and teamwork. These issues can pave the way for socio-technical anti-
patterns. In our work, we aim to shed light on these challenges by using a tangible representation
called "community smell" and analyzing how those are related to socio-technical anti-patterns.

RQ1: What Socio-Techincal Anti-Patterns in the context of ML-Enabled Systems are Causes, Effects
and Mitigation Strategies related to Community Smells?

In our next steps, our focus turned to understanding the moderating factors that could influence
the relationship between socio-technical patterns and community smells. Specifically, guided from
previous literature on human factors in software development [1, 14, 16, 21, 45, 57, 59, 63], we hy-
pothesized that there may be some aspects that deserve to be considered in our study as moderating
factors, that is, aspects that could greatly influence our hypotheses. Specifically, we considered
gender, roles within the community, and the adopted development model as moderating factors.
Albusays et al. [1] highlight how gender disparities, role distribution, and the choice of development
model contribute to imbalanced power dynamics, miscommunication, and exclusionary practices;
it becomes clear that these factors are critical to understanding how community smells arise and
persist in socio-technical systems. The study’s results show that underrepresented groups often
face barriers in accessing knowledge or decision-making roles, which can lead to the entrenchment
of community smells like knowledge silos and bottlenecks [1].
Considering the gender, our choice was guided by earlier studies, like Catolino et al. [16], who

highlighted how gender diversity correlate the emergence of community issues. Other studies have
demonstrated that there is growing evidence that gender diversity affects software engineering
teams’ ability to collaborate, communicate, and approach problem-solving. Teams with greater
diversity typically exhibit higher levels of creativity and inventiveness, which is especially important
for machine learning (ML) projects that call for intricate decision-making and interdisciplinary
knowledge [63]. This leads us to consider the potential impact of gender on the connection between
community smells and socio-technical anti-patterns.
In terms of roles, research indicates that some roles, such as architects or team leaders, tend to

centralize information and decision-making, which may result in anti-patterns like knowledge
bottlenecks. Positions requiring greater collaboration, such as cross-functional team members
or scrum masters, may these problems by improving team dynamics and communication [14].
Moreover, we acknowledge that diverse cultural backgrounds and varying skill sets come into
play within different roles [59]. This diversity can significantly shape how communities operate in
socio-technical terms.
Finally, we explore how the chosen Development Model could affect team communication and

collaboration. For instance, methodologies like Scrum emphasize constant interaction and knowl-
edge sharing among team members [45]. However, other studies have shown that in distributed
Agile teams or large-scale projects, certain anti-patterns, such as coordination breakdowns and
bottlenecks, may still arise due to challenges in scaling communication effectively [21]. In ML-
enabled systems, Agile principles may sometimes clash with the experimental and iterative nature of
machine learning workflows, where tasks like model training and data preparation do not fit neatly
into short sprints [57]. This misalignment can further exacerbate socio-technical anti-patterns,
particularly concerning task coordination and dependency management across development roles.
Based on those observation, we aimed to understand how different Development Models might
influence the relationship between community smells and socio-technical anti-patterns. This explo-
ration sought to uncover how these models either facilitate or impede effective communication
and collaboration, thus impacting the overall socio-technical dynamics within communities.



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:9

RQ2: Given that Socio-Technical Anti-Patterns in the context of ML-Enabled Systems can be
Causes, Effects, or Mitigation Strategies related to the already known Community Smells, can
they be influenced by developers’ gender and role and adopted development model?

3.3 Overview of the Research Process
To answer our research questions, we adopted the research approach summarized in Figure 1. The
approach is divided into two macro-steps. In the first one, we conducted a preliminary analysis—by
means of a review of papers in literature—to gain knowledge about the domain under study
and identify the specific factors to include in our investigation. In this phase, started from these
two sources: the SLR on community smells and the literature on socio-technical aspects in ML-
enabled systems. These papers provided us with catalogs of community smells and socio-technical
anti-patterns. To find connections between these two concepts, we conducted a coding phase (as
described in the Preliminary Analysis Section 4), which served as the basis for our hypotheses. In the
second one, we adopted Partial Least Squares Structural Equation Modeling (PLS-SEM) [31, 54] to (1)
develop our hypotheses on the relationships between socio-technical anti-patterns and community
smells (our research questions) and (2) evaluate them. The following sections provide an overview
of each phase of our research approach.

Our preliminary analysis aimed to gain knowledge about the domain under study by analyzing
the pertinent and recent literature. Specifically, we referred to the literature on community smells
and on socio-technical aspects of ML-enabled systems. Moreover, since we hypothesized that only
some of the community smells and anti-patterns emerge in the ML-enabled context, such literature
analysis also aimed to identify the factor on which to focus our research. Such an extraction was
conducted through a qualitative analysis approach.

After identifying the socio-technical anti-patterns and community smells part of our investigation,
we used Partial Least Squares Structural Equation Modeling (PLS-SEM) [31, 54] to (i) develop our
hypotheses on the relationships between socio-technical anti-patterns and community smells (our
research questions) and (ii) evaluate them.

(1) We used literature and an interview study to build a set of hypotheses on how the socio-
technical anti-patterns are related to community smells in ML-enabled context.

(2) We then mapped the identified hypotheses on a directed graph where (i) the nodes rep-
resent socio-technical anti-patterns and community smells (which we will refer to from
now forward by the term “constructs”), and (ii) the arcs represent the hypotheses that a
relationship exist between socio-technical anti-patterns and community smells. For example,
given an arc from node A to node B, it represents the hypotheses that construct A (e.g.,
a particular anti-pattern) might influence construct B (e.g., a community smell) to some
extent. Such a graph is called in the PLS-SEM as a Structural Model. We built five models,
one for each community smell identified in the preliminary phase.

(3) We identified a way to measure the constructs under investigation. PLS-SEM algorithm
needs to measure the constructs to evaluate the relationships between them (i.e., our
hypotheses). Specifically, following similar work in the context of software engineering and
guidelines from the main text used to conduct our study, we decided to collect data through
a questionnaire study with practitioners. We developed a set of Likert scale questions (called
in PLS-SEM theory, indicators) associated with each construct in our model.

(4) We developed a survey based on the questions identified as indicators for our constructs and
administered them bymeans of Prolific. Before it, we identified a good sample of participants
through sampling strategies based on a set of criteria. As an output, we collected data usable
from PLS-SEM to measure the construct and evaluate the hypotheses.



1:10 Annunziata et al.

What Socio-Technical Anti-Patterns in the context of
ML-Enabled Systems are Causes, Effects and
Mitigation Strategies related to Community Smells?

Given that Socio-Technical Anti-Patterns in the context of ML-
Enabled Systems can be Causes, Effects, or Mitigation
Strategy related to the already known Community Smells, 
can they be influenced by developers’ gender and role and
adopted development model?

Phase 1: Preliminary Analysis

Analyzing the literature on
Community Smells

Analyzing the literature on socio-technical
aspects in ML-enabled Systems

Community Smells

Causes

Effects

Organizational Strategy

Divided in...

To obtain ...

List of Phenomena
and Community

Smells

Connected
to obtain ...

Measurement Model

Structural Model

Measurement Model

Structural Model

150
Answers

Administered through
Prolific to obtain...

Main Questionnaire

Selection
Questionnaire

Designing a selection
questionnaire

Designing the main questionnaire
for data gathering

Led to the
development of...

The Structural and Measurement Model guided the process of...

Hypothesis
Led to the
development of... Used to develop...

PLS-SEM Model Creation

The obtained data were used for... 

The results lead to the writing of...
Research

Paper
Allowed us to
answer...

Validating the
Structural Model

Validating the
Measurement Model

PLS-SEM Statistical Analysis

RQ1 and RQ2

Conducting Interviews with
Practitioners

Analyzing the literature on socio-technical
aspects in ML-enabled Systems

Phase 2: PLS-SEM

The obtained phenomena were used for... 

Fig. 1. Research Process

(5) We performed PLS-SEM on (i) our models and (ii) the collected data and, through validation,
we answered our first reseaerch questions.

(6) We also conducted a Multi-group analysis to study whether the hypotheses’ results varied
according to the gender, role, and development model adopted. The data were divided
into groups: For the first analysis, Males and Females; For the second analysis, Software
engineers, Data Scientists, Data Engineers, and all the others roles of developers which



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:11

are merged in ‘Others’; For the third analysis, Agile development model and ‘Others’ that
merged all the other development models.

In the following, for each step conducted, the article first presents the research method and
choices made, and after it followed by an illustration of the obtained results. All the data used in
our study are available in our online appendix [4].

4 PRELIMINARY ANALYSIS
In the following, we introduce the basics of our preliminary analysis and associated findings.

4.1 Overall Approach
Our preliminary analysis aimed to gain a deeper understanding of the domain under study by
reviewing recent and relevant literature on community smells and the socio-technical aspects of
ML-enabled systems. The primary objective of this analysis was to identify the community smells
to focus our research on and to construct our models.
To achieve this, we conducted a coding phase based on the catalog of smells provided in [13]

and the socio-technical anti-patterns outlined in [44]. Using a qualitative analysis approach, we
formulated initial hypotheses about how socio-technical anti-patterns are related to community
smells within an ML-enabled context. The detailed methodology for this extraction and qualitative
analysis is described in the following sections.

4.1.1 Analysis of Socio-technical Anti-Patterns in ML-Enabled Systems. Our initial step consisted
of collecting relevant knowledge on socio-technical anti-patterns in the context of ML-enabled
systems. Our focus was directed to a recent publication of Mailach and Siegmund [44]. Their work
reported on 17 socio-technical anti-patterns (in ML-enabled systems), their potential causes, and
recommendations. We conjectured that we could use such anti-patterns to identify possible causes,
effects, and strategies for already known community smells in order to place them in the context of
ML-enabled systems [13, 44]. Our goal is to understand community smells in ML-enabled systems
by examining whether socio-technical anti-patterns in this context are causes, effects, or strategies
for known community smells[15, 17, 50, 59]. Through qualitative and quantitative studies, we
extend the existing literature, develop new theories, and provide practical recommendations for
practitioners, facilitating the growth and consolidation of knowledge in this field [31, 54].

We decided to conduct a deductive coding [65] analysis step on the socio-technical anti-patterns
description. More precisely, we conducted structural coding [65], i.e., a categorization process of
text according to a specific structure, with a structure of three elements:

(1) the causes of the socio-technical anti-patterns;
(2) the effects of the socio-technical anti-patterns;
(3) the organizational strategy (or strategies) that could mitigate or counter the pattern’s effects.

To identify the socio-technical anti-patterns, we conducted a coding phase. Figure 2 shows an
example of how the coding phase was carried out to derive the causes and effects associated with a
socio-technical anti-pattern. The descriptions of the socio-technical anti-patterns used during this
phase were based on the work of Mailach and Siegmund [44]. Additionally, Figure 3 illustrates the
overall coding process, demonstrating how we established the connections between causes, effects,
organizational strategies, and community smells.

First and second authors of the paper conducted the coding process, starting from the description
of all the Socio-Techinical Anti-Pattern identified by Mailach and Siegmund [44]. The coding
process was conducted collaboratively due to the few number of sources analyzed. Specifically,
both researchers were present during all coding sessions, with the tasks divided between them.



1:12 Annunziata et al.

Pieces of Information
e.g., quotations and descriptions

Key Points Codes Elements

Lack of understanding between model
team and production team

Software Engineers who complain
about the complexity of some data and
Data Scientist who marvel at the fact
that for them it is something simple. 

Tension Between Teams[1]
The collaboration between the model

developing entity (often data scientists) and the
entity that is responsible for putting it into
production (often software engineers) is

characterized by reciprocal complaints that are
usually driven by a lack of understanding. A

speaker gives a brief example of what
communication between the two entities looks

like in practice: “So, you had these multiple
jumps and it was a daily exercise of

complaining about the other person. So the
software engineer would complain to the data

scientist saying ‘I don’t understand what’s
going on here. It’s crazy, it’s too complicated’
and the data scientist is going to the software
engineer ‘It’s not complicated, it’s dead easy,

how can you not understand it?’”

- Behavior 
- Misunderstanding

- Consequence of a behavior
- Conflict

- Misunderstanding about the
work of others role.

Cause 

Effect

[1] — Alina Mailach and Norbert Siegmund. 2023. Socio-Technical Anti-Patterns in Building ML-Enabled Software: Insights from Leaders on the Forefront. 

In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 690–702

Fig. 2. Example of Structural Coding Process to extract Causes, Effects and Organizational Strategies from
Socio-Technical Anti-Pattern in the context of ML-enabled Systems

Upon completing the initial coding, the researchers jointly reviewed and refined each other’s work.
Any discrepancies were resolved through in-person discussions, ensuring consistency and accuracy.
Doing the deductive process, we aimed to obtain a deeper understanding of the phenomenon and
organize the information in a way that makes it more suitable to (1) connect with community
smells and (2) provide readable and understandable findings, both for practitioners and researchers.

4.1.2 Community Smells. We started by collecting a catalog of community smells. To this purpose,
we took advantage of the recent systematic literature review conducted by Caballero-Espinosa
et al. [13], which cataloged and provided a description for all community smells identified until
2023. Starting from the community smells collected by Caballero-Espinosa et al. [13], we used their
description to conduct a deductive coding process aimed at connecting the community smells with
causes and effects identified in the previous step (the analysis of socio-technical anti-patterns) [44].
We aimed to both identify a potential set of smells to analyze in the next phase of the study and
start developing the hypotheses that was the foundation for the PLS-SEM path modeling step.

4.2 Findings
From the (first) deductive coding step done on the socio-technical anti-patterns [44], we obtained 7
causes, 6 effects, and 3 organizational strategies linked between them. The full list of the obtained
causes, effects, organizational strategies, and community smells is reported in the Structural Coding
Process file in our online appendix [4].
In the next phase, we compared the description of the community smells [13] with the items

obtained in the previous step. Such mapping resulted in a successful connection between the causes
and effects obtained by the coding of the ML-enabled system’s socio-technical aspects [44] and their
organizational strategies, with the community smells [13]. Since the connection was still complex
to represent and analyze, we focused our attention on the 5 smells with the most significant number
of connections and with the description that fit best with that of the socio-technical anti patterns
analysedx. These smells are:

• Organizational Skirmish indicates a scenario where teams have differences in their
organizational cultures. It makes the work of project managers difficult. The impact is
notorious on productivity, e.g., project delays [13, 59].



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:13

Lack of understanding between model
team and production team

Software Engineers who complain
about the complexity of some data and
Data Scientist who marvel at the fact
that for them it is something simple. 

The collaboration between the model
developing entity (often data scientists) and
the entity that is responsible for putting it into

production (often software engineers) is
characterized by reciprocal complaints that

are usually driven by a lack of understanding.
A speaker gives a brief example of what
communication between the two entities
looks like in practice: “So, you had these

multiple jumps and it was a daily exercise of
complaining about the other person. So the

software engineer would complain to the data
scientist saying ‘I don’t understand what’s

going on here. It’s crazy, it’s too complicated’
and the data scientist is going to the software
engineer ‘It’s not complicated, it’s dead easy,

how can you not understand it?’”

Organizational Silo[1,2]
A presence of siloed areas of the

community that do not communicate with
each other except through one or two of

their respective members. Tension Between Teams[3]
The collaboration between the model developing entity
(often data scientists) and the entity that is responsible
for putting it into production (often software engineers)

is characterized by reciprocal complaints that are
usually driven by a lack of understanding. A speaker

gives a brief example of what communication between
the two entities looks like in practice: “So, you had
these multiple jumps and it was a daily exercise of

complaining about the other person. So the software
engineer would complain to the data scientist saying ‘I
don’t understand what’s going on here. It’s crazy, it’s
too complicated’ and the data scientist is going to the
software engineer ‘It’s not complicated, it’s dead easy,

how can you not understand it?’”

Community Smell Socio-Technical Anti-Pattern in
ML-enabled systems

We started by reviewing the
literature on Community Smells
and Socio-Technical Anti-Patterns
in the context of ML-enabled
systems and analyzing whether
their definitions were similar.

We conducted a coding phase for
each Socio-technical Anti-Pattern to
derive possible causes and/or effects
from the initial definition.

Cause

Effect

A presence of siloed areas of the
community that do not communicate with
each other except through one or two of

their respective members.

Lack of understanding between model
team and production team

Software Engineers who complain
about the complexity of some data and
Data Scientist who marvel at the fact
that for them it is something simple. 

Community SmellCause Effect

In accordance with the identified causes and effects and the definition of
community smells, we hypothesised how socio-technical anti-patterns

may be related as causes or effects for the community smells.

[1] — Eduardo Caballero-Espinosa, Jeffrey C Carver, and Kimberly Stowers. 2022. Community smells—The sources of social
debt: A systematic literature review. Information and Software Technology (2022)
[2] — Damian A. Tamburri, Fabio Palomba, and Rick Kazman. 2021. Exploring Community Smells in Open-Source: An
Automated Approach. IEEE Transactions on Software Engineering 47, 3 (March 2021), 630–652
[3] — Alina Mailach and Norbert Siegmund. 2023. Socio-Technical Anti-Patterns in Building ML-Enabled Software: Insights
from Leaders on the Forefront. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 690–702

Recommendations

Restructure teams to be cross-
functional[3]

Many speakers mention that an
organizational restructuring from functional

teams towards cross-functional or
integrated teams have helped them to

bridge the gap between data scientists and
software engineers. When working closely
together, people are likely to share skills
and develop a common understanding of

the product they are developing.

Restructure teams to be cross-
functional[3]

Many speakers mention that an
organizational restructuring from functional

teams towards cross-functional or
integrated teams have helped them to

bridge the gap between data scientists and
software engineers. When working closely
together, people are likely to share skills
and develop a common understanding of

the product they are developing.

Organizational
Strategy

Restructuring the team, making it more
balanced regarding roles, could

increase team communication and
productivity

We conducted a coding phase also
for each recommendation provided
for the Anti-Pattern to derive possible
organizational strategies from their
initial definition.

Restructuring the team, making it more
balanced regarding roles, could

increase team communication and
productivity

Organizational
Strategy

Fig. 3. Example of how we conjecture the correlation between Community Smell and Cause and Effect from
Socio-Technical Anti-Pattern in the context of ML-enabled Systems, after the coding phase



1:14 Annunziata et al.

• Organizational Silo indicates the presence of siloed areas of the community that do not
communicate with each other except through one or two of their respective members [13,
60].

• LoneWolf is used to represent teammates carrying out their work irrespective or regardless
of their peers. Reflects poor communication on the project need [13, 16, 60].

• PrimaDonna indicates the presence of teammatesworking in isolation adopting superiority
behaviour. They are unwilling to welcome the change of legacy products and support from
other teammates. These teammates prevent the organization from innovative solutions or
processes and effective communication and collaboration [2, 13, 59].

• Black Cloud appears when an organization does not provide the conditions for social
interactions and effective communication between teammates. Thus, the conditions do not
support the exchange of knowledge during software development processes, e.g., profes-
sional experience or understanding of projects in progress [13, 49, 59].

A complete list of the final set of phenomena—i.e., causes, effects, and organizational strategies—is
reported in Table 1. Following a deductive approach, based on the definition of community smells and
the causes, effects, and organizational strategies extracted by the coding, we linked the strategies and
effects after connecting the causes to the community smells. In such a way, we treated community
smells like a mediator effect. Moreover, we decided to separate the research data per community
smells. In such a way, we obtained 5 groups of hypotheses (one for each smell) that were the input
for the first phase of the PLS-SEM method described in the next section. In the folder “Hypothesis
graphs” of the online appendix, it is possible to find the cause-and-effect graphs that led us to
develop the first hypotheses, based only on the coding phase [4].

5 PLS-SEM STRUCTURAL MODEL DEFINITION
This section reports the steps performed to obtain the first part of a PLS-SEM path model, i.e.,
the Structural Model, as well as the model itself. The Structural Model represents the constructs
forming the theory model and the relationships between them (in terms of prediction), while the
last one describes how the constructs will be measured and represented through a set of indexes.

5.1 Structural Model Development Approach
The output of the preliminary phase (Section 4) was a set of hypotheses that describe the relations
between community smells and socio-technical phenomena extracted from literature in ML-enabled
systems. Nevertheless, this list of hypotheses needed to be refined and could not be used to create
the structural model of PLS-SEM. For such a reason, following the guidelines used in this study [31],
we conducted a further qualitative analysis. Specifically, we started from the hypotheses obtained in
the previous step (which were elicited by literature), and we conducted a semi-structured interview
study [18, 37] aimed at (1) strengthening and augmenting (by means of practitioners’ confirmation)
our hypotheses on the previously identified 5 community smells.

5.1.1 Interviews Design. We conducted semi-structured interviews [18, 37], an approach that blends
predetermined questions (aimed at exploring the primary subject of the research) with open-ended
inquiries (to uncover unanticipated information types). This qualitative approach is frequently
employed to collect comprehensive insights, views, and personal narratives from participants,
ensuring uniformity and comparability throughout the interviews. Considering the intricate na-
ture of the research topic (namely, collaboration and communication patterns), semi-structured
interviews were chosen as the most effective technique to obtain perspectives from experts with



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:15

Table 1. Last set of phenomena extracted from the work of Mailach and Siegmund [44].

ID Name Description Type

TBT Tension Between Teams Lack of understanding betweenmodel team and production team. Cause
NCI Redundant ML infrastructure

and tools
Team members do not understand the presence of a unified
infrastructure provided by the company for communication.

Cause

SWI Shadow IT The company provides infrastructure, but team members tend
not to use it to communicate little and through informal channels.

Cause

TBMD Tension between management
and data scientists

Lack of understanding between data scientists and management
figures in charge of managing the team, such as the team leader.

Cause

CoCT Clash of cultures and tools Different teams, composed by different roles tend to use different
tools, languages, and terminology.

Cause

MEC Missing engineering
competence

Data scientists and Software Engineers alike lack skills to under-
stand the other side sufficiently.

Cause

MIBT Missing intersections between
teams

All teams work on different use cases, which creates low com-
munication between them, and they don’t know each other’s
developments.

Cause

LRC Long Release Cycle The product team needs to rewrite the whole model, so they
start a long phase to resolve technical challenges

Effect

ETBT Misunderstanding between
different roles

Software Engineers don’t understand the complexity of the work
of Data Scientists and vice versa.

Effect

ENCI Redundant Infrastructure Teams lead to a redundant infrastructure and accompanying
tools in the organization.

Effect

ESWI Ignoring Organizational
Standard

Team members tend to ignore the security and other standards
provided by the organization.

Effect

ETBMD Managerial frustration Data scientists tend to focus more on research rather than on the
needs of the business, causing frustration for those managing
the project

Effect

SIS Staff with insufficient skills People are hired who have a different background than that
required for the specific task to which he is assigned.

Effect

RTCF Restructure team to be
cross-functional

Restructuring the team, making it more balanced regarding roles,
could increase team communication and productivity.

Strategy

PP Pair data scientists and
software engineers

Using pair programming can help developers increase their skills. Strategy

TF Introducing a mediator A figure who can understand the technical language of different
roles would improve communication and collaboration.

Strategy

significant experience in distributed software development. Moreover, such approaches were ap-
plied to constructing the hypotheses for the PLS-SEM methods, and they are (1) recommended by
guidelines [31] and (2) used in similar studies.
To design the semi-structured interview protocol, we relied on the guidelines provided by

Hove and Anda [37]. The structure of the interviews and their results are available in the online
appendix [4]. The protocol was organized in 7 sections described following:

• Start and icebreaker: Both the interviewees and interviewers introduced themselves,
providing an overview of their work, their research topic, and general activities to break
the ice and put the interviewees at ease.

• Question about experience and collaboration: Questions about current and past work
experiences, roles held during them, and current roles held. Interviewers ask about how
many collaborations there are with developers in the same role and with developers in
other roles.

• Question about TeamWorking: Questions concerning the interviewees’ perception of
the collaborations with developers in other roles and in the same role. Interviewers ask



1:16 Annunziata et al.

if there are developers isolating or overpowering others and if there are collaboration or
rivalry.

• Question about Background and Skills: Interviewers ask what perceive differences in
background and skills with developers in other roles.

• Question about Communication: Questions about internal communication within the
team and with other teams. If it is constant, interviewers ask what is the frequency, and if
the organization provides special platforms.

• Question on Strategies: Interviewers ask the interviewees to propose strategies to improve
the issues they told you about, e.g., communicative, collaborative, etc.

• Conclusion: If there were aspects of interest to explore, interviewers ask about them.
Conclusion of the interview and thanks.

The first draft of the interview protocol was created by the first two authors of the papers and
subsequently honed through discussions with the remaining authors. It was then tested for clarity
and comprehension with two practitioners and two researchers from our network. According to
the feedback obtained, a supplementary slide that outlined the questions was introduced to aid
participants in maintaining focus.

5.1.2 Participants Sample Strategy. In selecting participants, we employed a convenience sampling
strategy [7, 29], a non-random technique where participants are chosen based on their accessibility,
readiness, or eagerness to participate in the study. Participation was entirely on a volunteer basis.
Although this method facilitated rapid recruitment of subjects, it poses challenges to the broad
applicability of our results [29]. To mitigate this concern, we intentionally targeted individuals
who satisfied certain predefined conditions, which encompassed the following:

• Role: Software Engineer, Data Scientist, or Data Engineer.
• Experience: More than one year of work experience.
• Collaboration: Who collaborates or has collaborated in the past with a Software Engineer,
Data Scientist, or Data Engineer.

Software Engineers, Data Engineers, and Data Scientists play distinct yet interrelated roles in
ML-enabled systems [47]. Data Engineers manage data pipelines by transforming and optimizing
data for both model training and operational use, ensuring its quality and accessibility [33]. Data
Scientists focus on developing, testing, and refining ML models to meet specific problem require-
ments, leveraging advanced statistical and machine learning techniques. Software Engineers are
responsible for building reliable and scalable software systems, ensuring the seamless integration
of ML models into broader applications while addressing key aspects such as performance and
security [12, 47]. While these roles differ in their focus—system functionality, data readiness, and
model creation—they collaborate closely to align software, data, and ML components into cohesive
and effective solutions [12, 33, 47].

We contacted 10 potential participants using a questionnaire sent by e-mail. In the questionnaire,
we asked for confirmation to participate in the interviews and information to arrange the meet-
ing. Moreover, we asked for registering the interview for data analysis purposes. Ultimately, we
conducted interviews with 5 participants through online meetings of approximately 60 minutes.
Although it may seem a small sample size, it was sufficient due to the challenges of recruiting
participants and the depth of the topics and insights covered. The duration of each session allowed
for rich and detailed data collection, which would not have been feasible with a larger sample. The
online appendix contains interview transcripts and the most significant excerpts [4].

5.1.3 Interview Analysis. As mentioned in the previous sections, the interviews were intended
to go to reinforce our hypotheses and possibly add new ones. For this reason, we opted once



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:17

again for a deductive approach, using the hypotheses already obtained as a basis and looking for
information in the interview transcripts that would strengthen and/or weaken them. Beyond that,
given the flexible nature of the semi-structured interviews on the text fragments not associated
with the hypotheses already identified, an additional coding phase was conducted in order to
identify potential causes, effects, or strategies to be associated with one of the 5 community smells
considered in the study [27].

This process was conducted by the first author of the article and further refined through meetings
with the second and third authors. Finally, the final hypotheses model obtained was jointly evaluated
by all authors of the article. The final outputs were (1) the list of hypotheses (divided by the 5
community smells), (2) some quotations from the interviews supporting the hypotheses, and (3)
the graph of the structural model (based on the hypotheses) input to the next stage.

5.2 Structural Model Development—Results
We conjectured hypotheses to create our Structural Models that collate community smells to cause,
effect, and organizational strategies. Starting from the phenomena identified in the preliminary
analysis, we formulated 25 hypotheses based on the literature and the definitions extrapolated from
it [13, 16, 44, 48, 49, 58–60]; after conjectured the initial connections, we refined and comforted it
with interviews with practitioners in the ML-enabled systems field. The hypotheses obtained are
summarized in Table 2 and following described.

Organizational Skirmish — The literature highlights that software engineers and data scien-
tists tend to have different backgrounds; in particular, according to their backgrounds, they adopt
different tools, languages, and technical terminology in their works. Those differences lead to a lack
of understanding during the collaboration, in which, on one side, software engineers struggle to
understand the complexity of data science models, and on the other side, data scientists believe that
the models are easy to understand [44]. Since then, Organizational Skirmish has been defined as a
scenario in which teams have differences over their organizational cultures. [59], we hypnotize that
the different backgrounds, understanding, and knowledge between data scientists and software
engineering can be related to the occurrence of Organizational Skirmish.

Starting from our hypothesis, we refined it with the interviews. For example, 𝑃4 said, “Software
Engineers come from a pure computer science background, unlike Data Scientists with different back-
grounds, such as a math degree”. Moreover, 𝑃3 believed that “In the teams, everyone has the patience
to explain some concepts if someone doesn’t know something”. In Addition, 𝑃1 said “Usually, Data
Scientists explain to colleagues how the models work and how they are trained; in pair programming,
Software Engineers give feedback on the code and how to improve maintainability”. Starting from
that information, we conjecture the following hypotheses:
Hypothesis 1.1 (H1.1)—The missing engineering competence has a positive association with
Organizational Skirmish.
Hypothesis 1.2 (H1.2)—Different cultures, terms, and tools have a positive association with
Organizational Skirmish.
Hypothesis 1.3 (H1.3)—Lack of understanding between teams has a positive association with
Organizational Skirmish.
Mailach and Siegmund [44], in their study, observe that restructuring the team brings benefits

such as information and knowledge exchange. Among the most adopted practices to foster infor-
mation exchanges between developers with different backgrounds is pair programming or the
introduction of intermediary developers who share different backgrounds. Based on those observa-
tions, we conjecture that those recommendations may be an organizational strategy to mitigate
the occurrence of Organizational Skirmish, which are defined as a scenario where teams have



1:18 Annunziata et al.

differences over their organizational cultures. It makes the work of project managers difficult [13].
We strengthen our conjecture with the interview; 𝑃2 said “Even if the manager does not require
it, team members conduct pair programming to share information and knowledge and increase the
quality of the code”. On the other hand, 𝑃2 affirmed “Pair programming is applied in our company
mainly between data engineers and people in the same role or software engineers, somewhat less often
with data scientists”. Starting from those quotes, we define the hypotheses:

Hypothesis 1.4 (H1.4)—Restructure teams to be cross-functional has a reverse association with
Organizational Skirmish.
Hypothesis 1.5 (H1.5)—Pair data science and software engineers have a reverse association
with Organizational Skirmish.
Hypothesis 1.6 (H1.6)—Translationwork between the different roles and common understanding
of the goal has a reverse association with Organizational Skirmish.

Moreover, Mailach and Siegmund [44] also observed that when developers with different back-
grounds are involved, it happens that someone is assigned to a task but does not have the appropriate
skills to perform it. They accept tasks unaware of how complex they may be. This may result in
a problem with the task’s realization, leading to subsequent refactoring of the product by other
developers and a delay in delivery. Since that Tamburri et al. [59] and Caballero-Espinosa et al. [13]
highlight that the cultural difference identified in the Organizational Skirmish smell, impact the pro-
ductivity and collaboration of the team, leading to project delays, we suppose that the observation
of Mailach and Siegmund [44] may be consequence of the occurrence of Organizational Skirmish
smell. In Addition to those observation, during the interview, 𝑃4 affirmed “Sometimes, the difference
in the background is the cause of problems in communication and collaboration, maybe because of the
technologies or technical language used. This problem requires cross-functional figures to interact with
the two roles in large contexts”. Further, 𝑃1 stated “Data Engineers and Software Engineers have the
same background in that a data engineer is a software engineer who has chosen to devote to engineering
the data and the model.”. 𝑃5 agrees with this quote and adds “Data scientists come from completely
different roots, like mathematicians, so I notice differences in background between them”. Based on
those quotes, we conjecture:

Hypothesis 1.7 (H1.7)—Organizational Skirmish has a positive association with the creation of
a long release cycle.
Hypothesis 1.8 (H1.8)—Organizational Skirmish has a positive association with having a staff
with insufficient skills.
Hypothesis 1.9 (H1.9)—Organizational Skirmish has a positive association with a misunder-
standing about other roles’ work.

Organizational Silo—Tamburri et al. [60] define the Organizational Silo as a presence of siloed
areas of the community that do not communicate with each other except through one or two
of their respective members. Based on that definition provided, we consider the siloed areas of
the community as the different sub-teams that come into being during the development of an
ML-Enabled product, each characterized by programmers of the same role. In particular, Mailach
and Siegmund [44] observed that developer with different role, e.g., Data Scientist and Software
Engineers, tend to work independently on different aspects and tasks. The communication between
the two roles is ineffective and leads to misunderstandings, especially regarding the products
produced. In addition, regarding the experience of communication and collaboration between data
scientist and software engineers, the interviewer 𝑃4 stated “Communication between different roles
occurs only in cases of necessity and due to tasks assigned; usually, each sub-team works on its tasks,
and we check what is done once a week”. From that quote and the literature [13, 44, 60], we define:



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:19

Hypothesis 2.1 (H2.1)—Missing intersection between teams has a positive association with
Organizational Silo.
Hypothesis 2.2 (H2.2)—Lack of understanding between teams has a positive association with
Organizational Silo.
Mailach and Siegmund [44] investigated the best recommendation to improve collaboration

and communication between data scientists and software engineers. They highlight that adopting
pair programming and conducting a turnover in the team can foster the exchange of information
and knowledge, improving collaboration and communication between the different roles. We
assume that such solutions can also be adopted to reduce the effects of the Organisational Silo
smell, which holds that the team tends to split into sub-teams [13, 60]. Moreover, our assumption
is reinforced by interviewer, in fact 𝑃5 said, “ Our company adopts pair programming between
different figures, for example, data scientists and machine learning engineers; this is to foster knowledge
exchange”. Meanwhile, 𝑃4 affirmed “Even if the manager does not require it, team members conduct
pair programming to share information and knowledge and increase the quality of the code”. Starting
from the literature and from the interview, we conjecture the following hypotheses:

Hypothesis 2.3 (H2.3)—Restructure teams to be cross-functional has a reverse association with
Organizational Silo.
Hypothesis 2.4 (H2.3)—Pair data science and software engineers have a reverse association
with Organizational Silo.
In their study Mailach and Siegmund [44] observed that a developer able to cover different roles

could be a connection point for sub-teams composed of data scientists and software engineers,
respectively. We believe that this recommendation may also be adopted to mitigate the occurrence
of the Organizational Silo smell since that it describes a situation in which the team is divided into
sub-team that tend to have a lack of collaboration and communication [13]. Morover, according to
our interviewers, 𝑃1 stated “Usually in the teams there are different roles such as Data Scientists and
Engineers, MLOps Engineers, and Software Engineers. However, they are divided into teams with the
same role to increase the focus on a specific task. They work together only when needed”, also 𝑃2, and
𝑃3 agree with those quote. From this, we define the following hypotheses:

Hypothesis 2.5 (H2.4)—Translationwork between the different roles and common understanding
of the goal has a reverse association with Organizational Silo.
Further, 𝑃1 added “Data Scientists and Software Engineers, who are divided into different teams,

usually tend to work together only when needed”. In particular, working separately also affects the
exchange of information and knowledge. This lack leads to a misunderstanding of others’ work,
where data scientists do not understand the need to apply engineering standards to improve their
code, and software engineers do not understand the models build by data scientists [44]. From this
observations, we define the following hypotheses:

Hypothesis 2.6 (H2.5)—Organizational Silo has a positive association with a misunderstanding
about other roles’ work.

Lone Wolf—Catolino et al. [16] and Tamburri et al. [60] define the Lone Wolf as a social anti-
pattern where Teammates carry out their work irrespective or regardless of their peers. Reflects
poor communication on the project needs. Starting from those definition, we conjecture that those
behaviors may depend on the role and skills of the developer, in which software engineers or
data scientists don’t want to adopt a collaborative behavior with others, causing problems in the
communication between developers and technical debts on the project development Mailach and
Siegmund. Managerial figures, such as project managers, may have difficulty understanding the
rationale behind such behavior and may not be prepared to deal with it, communicate with such



1:20 Annunziata et al.

teammembers, or resolve technical problems that may occur [48]. However, the adoption of strategy
such as refactoring the team, may reduce the creation of sub-teams and its consequences [44]. We
investigated to our conjecture further in the interviews. In particular, 𝑃1 believes “Communication
and collaboration have been very fluid, and it’s worked nicely. It may depend on the people in the
team and by how the manager involves us in activities”. Drawing information from these quotes and
taking into account the existing literature that underscores the complexities of managing a team
afflicted by these particular social anti-patterns, we formulate the following hypotheses:
Hypothesis 3.1 (H3.1)—Unclear communication between managers and data scientists has a
positive association with Lone Wolf.
Hypothesis 3.2 (H3.2)—Restructure teams to be cross-functional has a reverse association with
Lone Wolf.
According to Mailach and Siegmund [44] data scientists tend to work independently. This

behavior can affect team collaboration, and it may be a problem for the manager who has to manage
the team and interface with them. Moreover, 𝑃3 explains “We are few in the team and mostly data
scientists, and we tend to each work on our tasks”, reinforcing our conjecture that:

Hypothesis 3.3 (H3.3)—LoneWolf has a positive association with Tension between management
and data scientists.

Prima Donna—Tamburri et al. [59] define the Prima Donna as a social anti-pattern where
Presence of teammates working in isolation. They are unwilling to welcome the change of legacy
products and support from other teammates. These teammates prevent the organization from innovative
solutions or processes and effective communication and collaboration. Starting from the definition of
Prima Donna Effects, we assume that such superiority and uncooperative behavior depend on the
role and skills of the developers. More precisely, software engineers or data scientists tend to adopt
superiority behavior over the other roles, focusing only on their own goals without considering
business and team ones. Such behavior is also extended toward managerial roles, who find it difficult
to interact, manage, and collaborate with such developers [44]. Morover, we conducted interviews
to delve deeper into manifestations and implications of Prima Donna Effects, obtaining that 𝑃2 said
“Sometimes it happens that when there are some problems, a single data scientist decides to take charge
of it and solve it themself. Problems such as to tackle stability issues and performance issues in the
environment”. According to the quote and literature we conjecture:
Hypothesis 4.1 (H4.1)—Unclear communication between managers and data scientists has a
positive association with Prima Donna.
Hypothesis 4.3 (H4.3)—Prima Donna has a positive association with Tension between manage-
ment and data scientists.
In Addition, 𝑃4 express that “Data Scientists tend to see the system in their breadth and completeness

and move away from classic software development”. So, we suppose that a possible mitigation to
the occurrence of such type of behavior by a team member is to conduct a turnover among team
members so that they can collaborate with different people, assimilate, and share knowledge and
skills [13, 44, 59]. Based on insight we conjecture:

Hypothesis 4.2 (H4.2)—Restructure teams to be cross-functional has a reverse association with
Prima Donna.

Black Cloud—Palomba et al. [49] and Tamburri et al. [59] define the Black Cloud as an anti-
pattern where Organizations do not provide the conditions for social interactions and effective commu-
nication between teammates. Thus, the conditions do not support the exchange of knowledge during
software development processes, e.g., professional experience or understanding of projects in progress.



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:21

Based on this definition, we conjecture our hypotheses that possible reasons behind the occurrence
of the Black Cloud smell might be the fact that industries don’t provide a communication infras-
tructure and developers prefer to use informal communications, which they believe are faster and
more efficient. [44].
Furthermore, in support and augmentation of them, our interviewee 𝑃1 stated “The company

has not officially provided us with tools for communication; mostly, we use email, classic messaging
tools, or video calls”, also 𝑃3 and 𝑃5 agree to that quote. We based the following hypotheses on the
literature and the interview:
Hypothesis 5.1 (H5.1)—No clear and unified infrastructure in the organization has a positive
association with Black Cloud.
Hypothesis 5.2 (H5.2)—Low formal communication or information transfer has a positive
association with Black Cloud.
In addition, in the case in which the industries provide formal, unified infrastructures, developers

sometimes ignore them because they prefer to use informal communications, which they believe
are faster and more efficient. The adoption of informal communication channels can lead to the
redundancy of communication channels and the dispersion of relevant data and information [44].
Moreover, to confirm this observation, 𝑃3 stated, “Although a formal communication tool is used in
the company, we tend to deal with exchanging information informally sometimes to communicate more
quickly”. This quote was supported also by 𝑃5, and makes us conjecture the following hypotheses:

Hypothesis 5.3 (H5.3)—Black Cloud has a positive association with leads to a redundant infras-
tructure and accompanying tools in the organization.
Hypothesis 5.4 (H5.4)—Black Cloud has a positive association with ignoring organizational
standards of communication and collaboration.
Figure 4 show the structural models of the Organizational Skirmish, Organizational Silo, Lone

Wolf, Prima Donna and Black Cloud.

6 MEASUREMENT MODEL DEFINITION
In the following section we are going to expose the the measurement model that characterizes how
our constructs (identified in the structural model) are measured by PLS-SEM. Specifically, PLS-SEM
distinguishes between two types of constructs. The first are latent variables, i.e., constructs that
cannot be measured directly, which need to identify different indicators (in PLS-SEM they are called
“indexes”) to make the measurement. The second are the non-latent variables that can be measured
directly through a single measurement index.

6.1 Measurement Model Development—How we carried it out
To delineate the indices integral to our model, we adopted an inductive methodology complemented
by reflective measurement. For the data collection, we decided to use a questionnaire, a method
prevalent in similar research, particularly within the software engineering domain [40]. This
strategy needed formulating questions (the indices) designed to elicit responses that reflectively
indicate the associated construct’s influence; in other words, each construct is represented (and
measured) by a series of questions acting as indices.

We relied on the literature and data collected through the previously cited interviews to identify
the indexes. We represented community smells as latent variables and identified more than two
questions as indexes for each of the five. The novelty of community compelled this decision smells as
research constructs for which established measurement frameworks are yet to be devised. Regarding
the other phenomena (i.e., causes, effects, and organizational strategies), their high level of specificity
allowed for direct measurement through single-item queries. Despite the general consensus in



1:22 Annunziata et al.

Tension
between teams

Introducing
a mediator

Organizational
Skirmish

Long Relase
Cycle

Staff with
insufficient skills

Misunderstanding
between different

roles

Clash of
cultures and

tool

Missing
engineering
competence

Pair data
scientist and

software
engineers

Restructure
Team to be

Cross-
Functional

(a) Structural Model of Organizational Skirmish

Tension
between teams

Introducing
a mediator

Organizational
Silo

Misunderstanding
between different

roles

Missing
intersections

between
teams

Restructure
Team to be

Cross-
Functional

Pair Data
Scientist &
Software

Engineers

(b) Structural Model of Organizational Silo

Tension
between

management
and data
scientists

Restructure
Team to be

Cross-
Functional

Lone
Wolf

Managerial
Frustration

(c) Structural Model of Lone Wolf

Tension
between

management
and data
scientists

Restructure
Team to be

Cross-
Functional

Prima
Donna

Managerial
Frustration

(d) Structural Model of Prima Donna

Shadow
IT

Redundant ML
Infrastructure

Black
Cloud

Ignoring
Organizational

Standers

Redundant
Infrastructure

(e) Structural Model of Black Cloud

Fig. 4. Structural Models of the five community smells.

academic literature against this approach, it is crucial to acknowledge that the simplistic nature of
these phenomena justifies this method.

The definition of the indexes was initially conducted by the first authors. Then, the second and
third authors jointly discussed to improve them. Based on the initial set of identified indices, the
final determination of the variable types (latent and non-latent) and the selection of items used to
measure each variable were made through a thorough and collaborative discussion among all the
authors. The authors, who are experts in the study of community smells and the associated metrics
of these social patterns, carefully evaluated each index. The expertise of the authors ensured that
the variables accurately reflected the theoretical underpinnings of community smells.



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:23

Table 2. Hypothesis Overview.

Hypothesis

Organizational Skirmish

H1.1 Missing engineering competence ⇀ Organizational Skirmish
H1.2 Clash of cultures and tools ⇀ Organizational Skirmish
H1.3 Tension Between Teams⇀ Organizational Skirmish
H1.4 Restructure team to be cross-functional ⇁ Organizational Skirmish
H1.5 Pair data scientist and software engineers ⇁ Organizational Skirmish
H1.6 Introducing a mediator ⇁ Organizational Skirmish
H1.7 Organizational Skirmish ⇀ Long Release Cycle
H1.8 Organizational Skirmish ⇀ Staff with insufficient skills
H1.9 Organizational Skirmish ⇀Misunderstanding between different roles

Organizational Silo

H2.1 Missing intersections between teams ⇀ Organizational Silo
H2.2 Tension Between Teams⇀ Organizational Silo
H2.3 Restructure team to be cross-functional ⇁ Organizational Silo
H2.4 Pair data scientist and software engineers ⇁ Organizational Silo
H2.5 Introducing a mediator ⇁ Organizational Silo
H2.6 Organizational Silo ⇀ Misunderstanding between different roles

Lone Wolf

H3.1 Tension between management and data scientists ⇀ Lone Wolf
H3.2 Restructure team to be cross-functional ⇁ Lone Wolf
H3.3 Lone Wolf ⇀ Managerial frustration

Prima Donna

H4.1 Tension between management and data scientists ⇀ Prima Donna
H4.2 Restructure team to be cross-functional ⇁ Prima Donna
H4.3 Prima Donna ⇀ Managerial frustration

Black Cloud

H5.1 Redundant ML infrastructure and tools ⇀ Black Cloud
H5.2 Shadow IT ⇀ Black Cloud
H5.3 Black Cloud ⇀ Redundant Infrastructure
H5.4 Black Cloud ⇀ Ignoring Organizational Standards
⇀ : positive association ⇁ : reverse association

6.2 Measurament Model Definition—Indexes
In the following, we report the choices for each construct of our five models and the rationale. At
the end of the section, we report the list of indexes (i.e., the Likert Scale questions) associated with
each construct and the path model complete of both the measurement and structural model.

All variables in our model were measured directly or through a set of measurable items; Figure 5
reports the complete Measurement models of the Organizational Skirmish, Organizational Silo,
Lone Wolf, Prima Donna and Black Cloud. Each one is mapped with a question of our questionnaire,
which will are evaluated using a Likert Scale. The Likert Scale question often consists of 5 points
question and is used to measure attitudes, opinions, or perceptions in a quantitative way. This
type of question is the most commonly used in this type of study and is widely recommended by
important general guidelines [31, 61]. Our question are ranging from 1 (“Strongly Disagree”) to 5



1:24 Annunziata et al.

Table 3. Questions about the Community Smells.

Construct Question ID

Community Smells

Organizational Skirmish Different teams, each one with a different role, actively collaborate and work together on shared
project ideas

OS1

Organizational Skirmish Different teams, each one with a different role, often face difficulties in effectively communicating
and exchanging information

OS2

Organizational Skirmish Often conflicts and disagreements between different teams are always smoothly resolved OS3
Organizational Skirmish Often, the resources for the different teams, each with a different role, are allocated fairly and

based on objective criteria
OS4

Organizational Skirmish Power struggles or conflicts related to authority or decision-making influence among different
teams are often created

OS5

Organizational Skirmish Different teams work on different use cases and tend to communicate only with the member of
their team

OS6

Organizational Silo Team members from different teams communicate and collaborate with each other OSE1
Organizational Silo Different teams proactively share relevant information and updates with others OSE2
Organizational Silo Different teams work together on projects or tasks OSE3
Organizational Silo Team members from different teams come together for meetings or discussions OSE4
Organizational Silo Different teams give priority to the goals in different ways OSE5

Lone Wolf There were some team members who tended to work in isolation LW1
Lone Wolf There were some team members who tended to work disrespectfully toward their peers LW2
Lone Wolf There were some team members who tended to not communicate about their tasks. LW3

Prima Donna There were some team members who tended to work in isolation PD1
Prima Donna There were some team members who were unwilling to welcome the change of legacy products

and support from other teammates
PD2

Prima Donna There were some team members who prevented the organization from innovative solutions or
processes and effective communication and collaboration

PD3

Black Cloud I experienced a situationwhere the teammembers engaged in informal communication to exchange
knowledge during software development

BC1

Black Cloud I experienced a situation in which team members had the opportunity to collaborate and exchange
knowledge during software development

BC2

Black Cloud I experienced a situation where there is a moment of “knowledge sharing” between people of
different cultures during software development

BC3

Black Cloud I experienced a situation in which team members had access to communication technologies that
support knowledge exchange during software development

BC4

(“Strongly Agree”). The complete list of questions (i.e., indexes) is reported in Tables 3, 4, 5, and 6.
In the next section, we provide details on the questionnaire and its administering.

6.2.1 Community Smells. The community smells are the starting point of our study and the core of
our analysis. As variables, we have identified only the community smells that are most evident and
most involved in the relationships identified in the preliminary analysis, Section 4. Those variables
are described in Section 5.2 and are identified as latent variables measured by different measurable
items. The Community Smells are shown in Table 3, with their relevant items represented by the
ID, and the question from the questionnaire that provided us with their measurement.

6.2.2 Phenomena—Causes. Starting from the preliminary analysis phase conducted, socio-technical
anti-patterns were decomposed into causes and effects, according to their definition. In Table 4 we
report the variables identified as causes, starting from socio-technical anti-pattern definition and
the causes identified by Mailach and Siegmund [44], the relevant items represented by the ID, and
the question from the questionnaire that provided us with this measurement.

6.2.3 Phenomena—Effects. Starting from the preliminary analysis phase conducted, socio-technical
anti-patterns were decomposed, according to their definition, into cause and effect. In Table 5 we
report the variables identified as effect, starting from the socio-technical anti-pattern definition
identified by Mailach and Siegmund [44], the relevant items represented by the ID, and the question
from the questionnaire that provided us with this measurement.



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:25

Table 4. Questions about the Causes.

Construct Question ID

Causes

Tension Between Teams I experienced a situation in which team members misunderstood each other’s instructions or
messages about what to do

TBT1

Tension Between Teams I experienced a situation in the definitions of the functional requirement of the system to realize,
provided by the product team, were unclear for the others teams

TBT2

Tension Between Teams I experienced a situation in which team members received contradictory information or instruc-
tions about the task to do

TBT3

Tension Between Teams I experienced a situation in which Data Scientists and Software Engineers have different interpre-
tations of the same information or instructions about the task to do

TBT4

Redundant ML infrastructure and tools I experienced a situation where is unclear if the company provides specific tools to communicate
and collaborate with colleagues

NCI

Shadow IT I experienced a situation in which the team member used communication channels different from
the ones provided by the company

SWI1

Shadow IT I experienced a situation where the teams engaged in formal communication channels (e.g.,
meetings, emails) to exchange information

SWI2

Shadow IT I often experienced a situation where the company applies established protocols to facilitate
information sharing among teams

SWI3

Shadow IT I experienced a situation where the model team’s functional requirements were clear and complete
for the other teams

SWI4

Tension between management and data
science

I experienced a situation where the model team’s functional requirements were clear and complete
for the other teams

TBMD

Clash of cultures and tools I experienced a situation in which different groups involved in the same project, each with different
roles, use different tools, languages, and terminology

CoCT

Missing engineering competence I experienced a situation in which people from different teams communicated with each other to
ask for clarification about their tasks and work from a colleague who was more experienced or
had different competencies

MEC1

Missing engineering competence I experienced a situation in which team members with a specific role (for example, Software
Engineers) easily understood the technical terms and language used by other teams with different
roles (for example, Data Scientists and Data Engineers)

MEC2

Missing engineering competence I experienced a situation where team members knew the processes followed and the status of task
of other teams

MEC3

Missing engineering competence I experienced a situation in which the team members of different teams collaborated closely with
each other

MEC4

Missing intersections between teams,
documentation, and trust

I experience a situation in which different teams work on different use cases and tend to commu-
nicate only with the member of their team

MIBT

Table 5. Questions about the Effects.

Construct Question ID

Effects

Long Release Cycle The teams in charge of the model have to rewrite it, creating long intermittent transitions between
versions and technical challenges (e.g., ensuring the same properties as the original model)

LRC

Misunderstanding between different
roles

I experienced a situation where some simple concepts for Data Scientists can be complex for
Software Engineers, and vice versa, and they may complain about the complexity

ETBT

Redundant Infrastructure I experienced a situation where the organization provided different communication and collabora-
tion tools without a unified one

ENCI

Ignoring Organizational Standard I experienced a situation where organizational standards, e.g., communication and collaboration,
are ignored

ESWI

Managerial frustration I experienced a situation where Data Scientists/Engineers did not want to be managed by whoever
manages the project (Project manager/ Scrum Master /Product Owner)

ETBMD1

Managerial frustration I experienced a situation where Data Scientists/Engineers did not want to be managed by whoever
manages the project (Project manager/ Scrum Master /Product Owner)

ETBMD2

Staff with insufficient skills I experienced a situation where people with skills for a specific task (for example, a Data Scientist
specializing in machine learning) have been assigned to a different task, out of their skills (for
example, building and maintaining pipelines where engineering skills are required, a task usually
given to a Software Engineer)

SIS



1:26 Annunziata et al.

Table 6. Questions about the Organizational Strategies.

Construct Question ID

Organizational Strategies

Restructure teams to be cross-functional An organizational restructuring having different roles working closely together would improve
collaboration and communication between Data Scientists/Engineers and Software Engineers

RTCF

Pair data scientist and software engineers The use of pairing and code review helps Data Scientists/Engineers to write quality code that
adheres to Software Engineers standards

PP

Introducing a mediator Having a common language among the different roles often allows the products to be understood
as a shared responsibility and fosters empathy for the individual challenges of each field

TF

Tension
between teams

Introducing
a mediator

Organizational
Skirmish

Long Relase
Cycle

TBT1

RTCF

OS1 OS3 OS4

LRC

Staff with
insufficient skills

Misunderstanding
between different

roles

SIS

ETBT

TBT2

TBT3

TBT4

Clash of
cultures and

tool
CoCT

Missing
engineering
competence

MEC2

MEC3

MEC4
Pair data

scientist and
software

engineers

PP

Restructure
Team to be

Cross-
Functional

RTCF

(a) Measurement Model of Organizational Skir-
mish

Tension
between teams

Introducing
a mediator

Organizational
Silo

TBT1

TF

OSE2 OSE3 OSE4

Misunderstanding
between different

roles
ETBT

TBT2

TBT3

TBT4

Missing
intersections

between
teams

MIBT

Restructure
Team to be

Cross-
Functional

RTCF

OSE1 OSE5

Pair Data
Scientist &
Software

Engineers

PP

(b) Measurement Model of Organizational Silo

Tension
between

management
and data
scientists

Restructure
Team to be

Cross-
Functional

Lone
Wolf

Managerial
FrustrationTBMD

RTCF

ETBMD2

LW1 LW2 LW3

ETBMD1

(c) Measurement Model of Lone Wolf

Tension
between

management
and data
scientists

Restructure
Team to be

Cross-
Functional

Prima
Donna

Managerial
FrustrationTBMD

RTCF

ETBMD2

PD1 PD2 PD3

ETBMD1

(d) Measurement Model of Prima Donna

Shadow
IT

Redundant ML
Infrastructure

Black
Cloud

Ignoring
Organizational

Standers

Redundant
Infrastructure

SWI2

SWI3

SWI4

NCI ENCI

ESWI

BC2 BC3 BC4

(e) Measurement Model of Black Cloud

Fig. 5. Measurement Model of the five community smells.

6.2.4 Phenomena—Organizational Strategies. Mailach and Siegmund [44] identified a set of organi-
zational strategies for the socio-technical anti-pattern in ML-enabled systems. We select a subset of
them that could be in a cause-and-effect relationship with the community smells examined. The



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:27

organizational strategy are reported in Table 6, with the relevant items represented by the ID, and
the question from the questionnaire that provided us with this measurement.

7 DATA COLLECTION—SURVEY
In the preceding sections, we outlined the process of identifying the hypotheses for constructing
the structural model. Subsequently, we delineated the corresponding measurement model for each
variable. In this section, we describe the data collection stage for model measurement on how we
analyze those data to test the hypotheses.

7.1 Survey Design and Procedure
We designed a survey, similar to most studies involving PLS-SEM, to collect the data for our study.
Specifically, each question in the survey aimed at collecting data (from a Likert scale) to characterize
each index identified in the measurement model definition step. By combining the various data for
each index, the PLS-SEM algorithm is able to compute statistics that can allow us to answer our
research question. Concretely, we:

(1) used G*Power [24] to identify the ideal size of our population of respondents;
(2) developed a screening survey to identify the target population for our study;
(3) developed a survey in which each question corresponds to one of the indexes described in

the previous section;
(4) administered the questionnaires and collected data;
(5) conducted preliminary data analysis for reliability reasons.
In the development and dissemination of our survey, we adhered to a variety of guidelines

to enhance our methodology and subsequently, our results. Initially, for the survey’s design, we
utilized the guidelines set forth by Kitchenham and Pfleeger [42], along with Andrews et al. [3],
which are widely recognized in software engineering research. Furthermore, we employed the
scale and guidelines suggested by Kitchenham and Pfleeger to enhance our survey’s clarity and
according to similar studies using PLS-SEM. Moreover, in line with Flanigan et al. [25] advice, we
ensured the survey remained anonymous to avoid influencing participants’ responses. The survey
was created using a Google form and was designed to be completed within 10 to 15 minutes.

Concerning the distribution, we relied on Prolific3 to recruit experts. Prolific is a web-based
platform to support researchers in finding participants for survey studies. The platform allows
tuning the preference of surveyed, putting constraints, i.e., people must be practitioners and
experienced in distributed work. Prolific use an opt-in strategy [39]: this implies that participants
get voluntarily involved, possibly leading to self-selection or voluntary response bias [34]. In
terms of guidelines, we were guided by existing literature [22, 53]. We particularly followed the
recommendations by Reid et al. [53], which outlined strategies for executing surveys in the software
engineering domain using this platform.

7.1.1 Participant Selection and Selection Survey. As mentioned before, we first aimed to identify
our target population. Despite the fact that Prolific offers a well-designed set of criteria and filters
for participants screening, we decided to conduct a preliminary selection survey on the platform.
First of all, we used the statistic tool G*Power [24]. The tool allowed us to obtain the ideal

sample size for our statistical investigation by specifying the desired effect size, statistical power,
and number of hypotheses. Since our investigation regards 5 path models, we selected as a number
of hypotheses to insert in the tool to obtain the minimum value of sample to satisfy, the number
of hypotheses of the structural model with the most hypotheses, i.e., the Organizational Skirmish

3Prolific website: https://www.prolific.co/.

https://www.prolific.co/


1:28 Annunziata et al.

model with 9 hypotheses. To obtain our sample size, we set G*Power using an F-test with multiple
linear regression, using an a priori test to calculate the required sample size with an effect size (0.15),
a significance level (𝛼) of 0.05, and a default value for power (1 - 𝛽) of 0.95. We adopted those settings
based on the value indicated by Hair Jr et al. and adopted in other studies [31, 61]. Considering that
we relied on the model with the largest number of phenomena to observe (Organizational skirmish),
the number of predictors was set equal to 6. We thus obtained a total sample size of 146 items. In
the end, we obtained an ideal sample size of 146 participants. For this reason, we administered the
selection survey to a large population (391 participants) and selected the 150 participants that we
identified as more adherent to our ideal selection criteria.
Before conducting the questionnaire, we conducted a selection survey to be shared on Prolific

basis to obtain a representative sample of the population. This selective survey consisted of 18
questions and a focus question. The questions were divided into four sections: (1) personal infor-
mation (e.g., role and background), (2) information about the team and company, (3) information
about collaboration and communication, and (4) information about team culture and deployment.
We administered the questionnaire to developers on Prolific, obtaining 391 responses. Among

them, we focused on selecting possible candidates who represented our sample of the ideal popula-
tion. The selection criteria adopted were:

• Participants who work in the roles of software/data engineer, data scientist and similar
roles;

• Participants who has an experience of more than one year;
• Participants who collaborated with a software engineer, data engineer, or data scientist.

We selected developers with at least one year of experience because we specifically wanted to
include newcomers to the field, while also recognizing the value of their academic background
as experience. Moreover, research has shown that new developers can significantly contribute
to team dynamics and encounter key socio-technical challenges, including communication and
coordination issues, within their first year of professional or academic work [9].

Applying these selection criteria, we obtained about 160 possible participants in our study.

7.1.2 Main Survey Structure. After figuring out the target population for the study, we moved
on to design the main survey. The ultimate goal of this survey was to get the data we needed to
work out latent variables and run the PLS-SEM algorithm. So, keeping in line with what other
similar studies did, our survey mostly had questions that matched up with the indicators we found
when we were building our measurement model. As mentioned before, we opted for Likert Scale
questions using scales from 1 (strongly disagree) to 5 (strongly agree). Moreover, to ascertain the
answers’ correctness, we included some “attention checks” in the survey; we removed all incorrect
answers and obtained 150 valid responses. The survey comprises 50 questions, incorporating 3
attention-check queries, designed to ensure participants’ sustained engagement. The questions are
categorized into four sections: (1) Communication and infrastructure; (2) Skills and background; (3)
Collaboration and behaviors; and (4) Organizational strategies.

The first three sections provide a scenario in which the participant is asked to imagine themselves
within a heterogeneous team with two main teams. The first works on the data (i.e., the team
members are mainly Data Scientists or Data Engineers), while the second works on the product (i.e.,
the teammembers are mainly Software Engineers). Based on their experience, participants are asked
to rate their level of agreement with phrases related to communication and collaboration activities
within their work team and among different sub-teams. The fourth section provides a scenario
describing a problem of communication, misunderstanding, and collaboration between the product
team (i.e., the team members are mainly Software Engineers) and the data team (i.e., the team
members are mainly Data Scientists or Data Engineers). Based on their experience, participants are



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:29

asked to rate their level of agreement with phrases related to solutions to be implemented in such
cases, to apply to solve that problem in the team.
An example of answers are: In the following, rate the level of agreement about some team

members’ collaboration and communication behaviors. Give a value from "Strongly Disagree"
to "Strongly Agree" of each situation you experienced where (1) Some team members who were
unwilling to welcome the change of legacy products and support from other teammates, (2) Some team
members who tended to work in isolation .

7.2 Survey Preliminary Analysis
The survey described in the previous paragraph was administered to 160 participants, represent-
ing our sample. Once the survey results were collected, we filtered the responses in accordance
with the attention questions, removing the responses of participants who answered incorrectly,
resulting in 150 responses. We conducted a demographic analysis of the participants to extract
the information needed to answer our second research question, which aims to understand if the
relationship between community smells and socio-technical anti-pattern may change according to
the gender, role and development model adopted. In particular, we can observe that the distribution
of participants reflects a gender imbalance. However, this distribution is aligned with the broader
trends observed in the computer science field, where males tend to be over-represented. The gender
gap in this field has been well-documented, with men being a larger proportion. Therefore, the
sample’s gender distribution can be considered representative of the typical workforce in this
sector, ensuring the validity of the survey results despite the gender imbalance [16]. Focusing
on the role of the developers, the distribution between Software Engineers and Data Scientist is
balanced. Slightly lower but still frequent is the role of Data Engineers. A very small part is covered
by developers, who take different roles such as data analyst, project manager, technical consultant,
etc. [59]. Since that we focused on Data Scientists, Software Engineers and Data Engineers, as they
cover most of the sample, and we merged all the other roles in the category Others. Finally, we
focused on the type of development model adopted. The majority of participants stated that they
use Agile, while a fraction stated that they use hybrid models or different types. Since all other
development models represented a very small percentage compared to Agile, they were all grouped
into the Others category [45] (summary in Table 7).

Table 7. Demographics of Participants

Attribute Size Percetangle

Gender

Male 106 70.6%
Female 44 29.4%

Role

Software Engineer 48 32%
Data Scientist 41 27.4%
Data Engineer 36 24%
Others 25 16.6%

Development Model

Agile Model 93 62%
Others 57 38%



1:30 Annunziata et al.

8 PLS-SEM STATISTICAL ANALYSIS—MEASUREMENT AND STRUCTURAL MODELS
EVALUATION

In the previous sections, we collected data by distributing a survey on Prolific. Each survey question
was associated with a measurable item of the measurement models. In this section, we describe the
analysis of the structural and measurement models and explain the results.

8.1 Survey Data Analysis
After collecting the data by using a questionnaire on Prolific, we aimed to analyze the correctness
of the measurement and structural models. The measurement models evaluation aims to assess
the quality of the measurement framework developed and identify problems in the indexes used
to measure the constructs. The structural models evaluations is the evaluation of the identified
hypotheses. To perform the evaluation, we used SmartPLS 4,4 a software tool used for partial least
squares structural equation modeling (PLS-SEM). It assesses measurement and structural models
and evaluates complex relationships among latent variables. We used SmartPLS 4 to conduct the
Statistical Analysis of the PLS-SEM method.
To evaluate the significance of our models and answer the research questions of the study, we

followed the evaluation protocol by Hair Jr et al. [31]. The analysis consisted of three steps:
(1) First, to ensure that the data set is adequate—sufficient correlations among variables, indi-

cating that the dataset is structured in a way that allows for latent factors or constructs to
emerge from the data—, we conducted Bartlett’s test on all constructs, where the p-value
threshold is less than 0.05, to indicate that factor analysis is valid [8]. We obtained a p-value
less than 0.01112, respecting the recommended threshold. Afterward, we conducted the
Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy, to evaluate how well-suited
the data is for factor analysis, where the recommendation threshold is 0.60 [28]. Our results
for each model are higher than 0.7, better than the recommended threshold. Bartlett’s test
and KMO test are valuable for assessing the adequacy of the dataset before moving into the
modeling phase of PLS-SEM. Different studies adopted these combination of tests [5, 61].
We can say that the data set and the selected population sample are adequate for our
analysis; the results are shown in Table 8.

(2) We evaluated the Measurement Model to ensure the variables’ correctness and the reliability
and validity of the measurement instruments used in a study (Section 8.2). To assess the mea-
surement model’s robustness, reliability, and validity, we calculated the index Reliability,
which ensures each index’s precision as a reliable measure of its latent variable. Internal
Consistency Reliability assessment guarantees that a set of indexes within the same
latent construct demonstrates consistency, enhancing overall reliability. Convergent Valid-
ity evaluation verifies that diverse indexes measuring the same latent construct converge
appropriately, reinforcing the accuracy of the measured concept. Discriminant Validity
assessment ensures independence among distinct latent constructs, adding credibility to
the model’s ability to differentiate between unrelated concepts.

(3) In the next step, we evaluated the hypotheses composing our structural model to under-
stand the relations between the different variables (Section 8.3.1). This process allowed
us to answer the first research question of the study. Structural model evaluation allows
empirically testing the hypotheses derived from theory or literature. To achieve a more
robust and trustworthy understanding of the underlying relationships among latent vari-
ables, we calculated the Collinearity, and assessing the significance of relationships in
structural model evaluation is essential for ensuring the reliability and interpretability of

4SmartPLS 4 https://www.smartpls.com

https://www.smartpls.com


Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:31

the model. Simultaneously, we analyzed the Significance of Relationships for confirming
hypothesized associations, providing statistical evidence supporting the structural model’s
validity.

(4) As the final step, we conducted a multi-group analysis to observe the heterogeneity of the
developed structural model (Section 8.3.2). Such a multi-group analysis consisted of the
comparison of the same model evaluated on different datasets differing for a moderator
variable. To answer our second research question, we considered moderator variables such
as the biological sex of the participants, the role currently held, and the development model
currently adopted. Specifically, we diveded the answers from the participants of the study
in two groups for the gender,5 four groups for the role, and two groups for the development
model adopted. For each set of groups, we conducted the evaluation of the model with the
different portions of the dataset and compared the results to identify insight regarding the
heterogeneity of our model.

All material about the analysis of the results is available in the online appendix [4].

Table 8. Bartlett and Kaiser-Meyer-Olkin (KMO) Tests

Model Bartlett KMO

Organizational Skirmish 3.281e-07 0.75
Organizational Silo 3.807e-13 0.71
Lone Wolf 0.004233 0.7
Prima Donnas 0.01112 0.73
Black Cloud 2.582e-09 0.74

8.2 Evaluation of the Measurement Model—Results
The first step is to examine the 5 models by evaluating each model’s variables and the associated
indexes; we wanted to understand their reliability, whether they fully represent the phenomenon,
and whether multiple variables represent the same phenomenon [31].

Index Reliability. Our goal was to examine the relevance of each index associated with a latent
variable, therefore, calculating it by the size of the outer loading, also called index Reliability [31].
This value thus indicates the relationship between the index and the construct it represents. A high
outer loading suggests a strong association between the index and the construct. To ensure we had
relevant indexes in all models, they must be not lower than the threshold of 0.7. However, in cases
where the index value was between 0.4 and 0.7, Internal Consistency Reliability and Validity were
analyzed, with and without that index. If the model without a specific index is more statistically
significant than the model with it, that index would be permanently removed from the measurement
model; otherwise, the index could remain within the model [30].
This procedure was performed for all latent variables in the 5 models. We removed from them

all the items with an outer loading of less than 0.4. All items between 0.4 and 0.7 were taken into
the analysis. They did not vary the Internal Consistency Reliability and Validity values, so it was
chosen not to remove these items from the model. According to the results obtained in Model 1
(Organizational Skirmisk), we removed the items OS2 and OS5 from the respective latent variables.
5In our study, the classification of gender was intended to reflect biological sex and was constrained by the capabilities of
the data collection tool (PROLIFIC) we used, which only permitted the specification of two sexes: male and female. The
choice to use only two variables for representing gender was not intended to overlook or diminish the complexity of gender
identity but was a practical decision based on the specific objectives of our study and the technological constraints we
encountered. Our approach aimed to ensure consistency and clarity in data collection, allowing us to focus on the biological
aspects relevant to our research questions within the boundaries set by the available tools.



1:32 Annunziata et al.

Moreover, in Model 5 (Black Cloud), we removed the items SWI1 and BC1 by the respective latent
variables. All outer loading results are shown in Figures 6, 7, 8, 9, and 10, represented as values
between items (squares) and latent variables (circles).

Internal Consistency Reliability. We aimed to see how well the indexes are consistent with each
other and how they can reliably and consistently measure constructs, in other words, the Internal
Consistency Reliability of the variables. To calculate it, we used the Cronbach’s alpha measure,
which estimates the reliability based on the inter-correlation of the observed index variables. How-
ever, Cronbach’s alpha is sensitive to the number of items in the scale and tends to underestimate the
internal Consistency Reliability. A more appropriate measure to apply is Composite Reliability,
which is based on the different outer loadings of the index variables [30]. Both Cronbach’s alpha
and Composite Reliability vary between 0 and 1. with higher values indicating higher reliability.
The results show that all models have an acceptable value of Cronbach’s alpha, around 0.55 and
above, and a value of Composite Reliability, around 0.7 and above [6]. For more details, see Table 9.

Convergent Validity. We aimed to obtain the Convergent validity, in other words, the measure’s
degree of positive correlation with alternative measures of the same constructs. A common measure
to establish this convergent validity is with the Average Variance Extracted (AVE), which uses
the sum of the squared loadings and divides it by the numbers of the indexes [30]. A recommended
threshold of 0.50 indicates that the construct expresses more than half of the variance of its indexes.
The results show that for all 5 models, we had a value of AVE up to 0.5 [6]. More details in Table 9.

Table 9. Internal Consistency Reliability with Cronbach’s alpha andComposite reliabilimty (CR) &Convergent
Validity with Average Variance Extracted (AVE) Results.

Cronbach’s
alpha

CR AVE

Organizational Skirmish

OS 0.599 0.784 0.549
TBT 0.733 0.833 0.558

Organizational Silo

OSE 0.774 0.844 0.523
TBT 0.742 0.834 0.558

Lone Wolf

LW 0.734 0.844 0.643
ETBMD 0.631 0.842 0.728

Prima Donna

PD 0.714 0.839 0.636
ETBDM 0.631 0.841 0.727

Black Cloud

BC 0.647 0.806 0.588
SWI 0.595 0.784 0.550

Discriminant Validity. We aimed to calculate the extent to which each construct is distinct from
others, to be sure that each construct captures a phenomenon not represented by others. One of
the most used methods to calculate it is the Heterotrait-monotrait ratio (HTMT), which is
the ratio between-trait correlations to the within-trait correlation. A higher value means that the
constructs are similar or observe similar phenomena; otherwise, with a lower value, we have that
the constructs are independent of each other [35].

The results show that for all variables in the 5 models, there is a Discriminant Validity of less than
0.45. Therefore, all variables represent unique phenomena. The only exception is for the variables



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:33

Shadow IT (SWI) and Black Cloud (BC), which have a Discriminant Validity of 0.827; which is very
close to 1. This indicates that the two variables represent concepts that, although different, turn
out to be similar to each other. The results are shown in Tables 10, 11, 12, 13, and 14.

Table 10. Discriminant Validity - Organizational Skirmish.

CoCT ETBT LRC MEC OS PP RTCF SIS TBT

ETBT 0.292
LRC 0.299 0.122
MEC 0.153 0.146 0.011
OS 0.090 0.185 0.063 0.657
PP 0.050 0.056 0.113 0.183 0.271

RTCF 0.225 0.163 0.160 0.157 0.168 0.423
SIS 0.029 0.068 0.241 0.028 0.210 0.075 0.011
TBT 0.334 0.174 0.440 0.246 0.575 0.129 0.114 0.329
TF 0.010 0.154 0.170 0.180 0.346 0.255 0.301 0.064 0.195

Table 11. Discriminant Validity - Organizational Silo.

ETBT MIBT OSE PP RTCF TBT

MIBT 0.146
OSE 0.191 0.414
PP 0.056 0.183 0.300

RTCF 0.163 0.157 0.164 0.423
TBT 0.174 0.246 0.310 0.129 0.114
TF 0.154 0.180 0.392 0.255 0.301 0.195

Table 12. Discriminant Validity - Lone Wolf.

ETBMD LW RTCF

LW 0.440
RTCF 0.187 0.094
TBMD 0.428 0.418 0.021

Table 13. Discriminant Validity - Prima Donna.

ETBMD PD RTCF

PD 0.499
RTCF 0.187 0.128
TBMD 0.428 0.434 0.021

∠ Summary of the Measurement Model Evaluation

The results of the measurement models tell us that (1) the reliability of the indexes is confirmed,
so the items we chose represent the Latent Variables. (2) The Latent Variables are consistent;
the items can reliably and consistently measure the constructs. (3) The variables in the models
represent different phenomena and do not overlap with each other.



1:34 Annunziata et al.

Table 14. Discriminant Validity - Black Cloud.

BC ENCI ESWI NCI

ENCI 0.296
ESWI 0.180 0.429
NCI 0.226 0.444 0.437
SWI 0.827 0.421 0.251 0.258

Tension
between teams

Introducing
a mediator

H1.7

-0.045
(0.650)

Organizational
Skirmish

Long Relase
Cycle

-0.297
(0.000)

H1.3

H1.6

0.123
(0.068)

0.719

TBT1

1.00

RTCF

OS1 OS3 OS4

0.752
0.743

0.739
LRC1.00

Staff with
insufficient skills

Misunderstanding
between different

roles

SIS1.00

ETBT1.00

H1.8
-0.175
(0.042)

H1.9
0.033

(0.758)

TBT2

TBT3

TBT4

Clash of
cultures and

tool
1.00CoCT

Missing
engineering
competence

MEC2

0.807MEC3

0.605

MEC4
Pair data

scientist and
software

engineers

1.00

PP

Restructure
Team to be

Cross-
Functional

1.00

RTCF

H1.5

0.088
(0.258)

H1.4

-0.007
(0.917)

H1.1

0.436
(0.000)

H1.2
0.074

(0.268))

0.817

0.807

0.629

0.747

Fig. 6. Model 1 - Organizational Skirmish

8.3 Evaluation of the Structural Model—Results
In this section, we report the results of the structure model, which answers RQ1, analyzing the
reactions among the variables and studying the hypotheses, in section 8.3.1. Then, we examined
the same hypotheses using a Multi-Groups Analysis to RQ2—section 8.3.2.

All the results are shown in the figures 6, 7, 8, 9, and 10. In the spheres, there are all the variables
of the models; in the rectangles, there are the measurable items through which each latent variable
will be measured. The value of the outer loadings is written in the arcs between item and variable,
representing the relevance of each index associated with a latent variable. The arrows represent
the hypotheses and show the path coefficient (it is the above number, if it is congruent with our
hypothesis, e.g., positive or negative, it is represented in Italic and by a bold arrow) and, the below
number in parentheses, the p-value (if it is significant it is represented in bold and by a blue arrow).
Figure 6 represents the Organizational Skirmish, Figure 7 represents the Organizational Silo; the
Figure 8 represents the Lone Wolf; the Figure 9 represents the Prima Donna, and the Figure 10
represents the Black Cloud.

8.3.1 RQ1—Analysis and Results.

Collinearity. To assess the Collinearity of the structural model, we examined each group of pre-
dictor constructs separately for each subpart of the structural model. Thus, calculating Collinearity
with the Variance Inflation Factor (VIF) has a recommended threshold value that should be



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:35

Tension
between teams

Introducing
a mediator

Organizational
Silo

-0.125
(0.097)

H2.2

H2.5

0.242
(0.006)

0.703

TBT1

1.00

TF

OSE2 OSE3 OSE4

0.679 0.773 0.784

Misunderstanding
between different

roles
ETBT1.00H2.6

0.165
(0.116)

TBT2

TBT3

TBT4

Missing
intersections

between
teams

1.00MIBT

Restructure
Team to be

Cross-
Functional

1.00

RTCF

H2.3

-0.028
(0.774)

H2.1

0.275
(0.000)

0.808

0.809

0.659

OSE1 OSE5

0.780 0.554

Pair Data
Scientist &
Software

Engineers

H2.4

0.150
(0.147)

1.00

PP

Fig. 7. Model 2 - Organizational Silo

Tension
between

management
and data
scientists

Restructure
Team to be

Cross-
Functional

H3.3
0.304

(0.000)

Lone
Wolf

0.814

Managerial
Frustration

0.385
(0.000)

H3.1

H3.2

-0.016
(0.851)

1.00TBMD

1.00RTCF

ETBMD2

LW1 LW2 LW3

0.770
0.842

0.793

ETBMD1
0.891

Fig. 8. Model 3 - Lone Wolf

Tension
between

management
and data
scientists

Restructure
Team to be

Cross-
Functional

H4.3
0.345

(0.000)

Prima
Donna

0.814

Managerial
Frustration

0.371
(0.000)

H4.1

H4.2

0.098
(0.254)

1.00TBMD

1.00RTCF

ETBMD2

PD1 PD2 PD3

0.696
0.842

0.846

ETBMD1
0.891

Fig. 9. Model 4 - Prima Donna



1:36 Annunziata et al.

Shadow
IT

Redundant ML
Infrastructure

H5.4

-0.086
(0.326)

H5.3 -0.251
(0.005)

Black
Cloud

1.00

Ignoring
Organizational

Standers

Redundant
Infrastructure

0.510
(0.000)

H5.2

H5.1
-0.101
(0.227)

SWI2

0.745SWI3

SWI4

1.00NCI 1.00 ENCI

ESWI

BC2 BC3 BC4

0.833
0.577

0.858

0.812

0.659

Fig. 10. Model 5 - Black Cloud

below 3 [30]. All variables in our model report have a VIF value of less than 1.5, meeting the
recommended threshold. More details can be found in the online appendix [4].

Table 15. Collinearity assessment with VIF value.

Organizational Skirmish Organizational Silo Lone Wolf Prima Donna Black Cloud

VIF VIF VIF VIF VIF
CoCT 1.000 ETBT 1.000 ETBMD1 1.270 ETBMD1 1.270 BC2 1.525
ETBT 1.000 MEC 1.000 ETBMD2 1.270 ETBMD2 1.270 BC3 1.139
LRC 1.000 OSE1 1.669 LW1 1.556 PD1 1.268 BC4 1.435
MEC 1.000 OSE2 1.439 LW2 1.312 PD2 1.630 ENCI 1.000
OS1 1.218 OSE3 1.600 LW3 1.637 PD3 1.502 ESWI 1.000
OS3 1.192 OSE4 1.678 RTCF 1.000 RTCF 1.000 NCI 1.000
OS4 1.189 OSE5 1.149 TBMD 1.000 TBMD 1.000 SWI2 1.207
PP 1.000 RTCF 1.000 SWI3 1.250

RTCF 1.000 TBT1 1.343 SWI4 1.155
TF 1.000 TBT2 1.554
SIS 1.000 TBT3 1.628
TBT1 1.343 TBT4 1.265
TBT2 1.554 TF 1.000
TBT3 1.628 PP 1.000
TBT4 1.265

Significant Relationships. PLS does not make strong assumptions about the data distribution (e.g.,
a normal distribution), so parametric significance tests should not be used. However, a package
in PLS uses a bootstrapping procedure to assess whether the path coefficients are statistically
significant. It involves extracting a large number of random subsamples with replacement, usually
around five thousand. Substitution is necessary to ensure that all subsamples have the same number
of observations as the original data set. The PLS path model is estimated for each subsample. A
standard error can be determined from the resulting bootstrap distribution, which can later be used
to make statistical inferences.
The Path Coefficient represents the hypothesized relationship among constructs and has a stan-

dardized value approximately between -1 and +1; a value close to 1 represents a strong positive
correlation, and vice versa, close to -1, a strong negative correlation. A coefficient closer to 0 means
a weak correlation [31, 32]. Table 16 shows the results of the analysis. The table shows the Path
Coefficient (PC), the standard deviation (SD), the p-value, and the Confidence Intervals (CI), which
represent the range into which the population parameter will fall, assuming a certain level of
confidence (e.g., 95%).

We explain how to interpret the results by detailing their reading for Hypothesis H1.1, which sees
Missing Engineering Competence (MEC) and Organizational Skirmish (OS) as related. The path
coefficient of 0.436 indicates a positive and moderately strong relationship between MEC and
OS. Missing Engineering Competence increases, there is a corresponding increase in the likelihood
or intensity of Organizational Skirmish. In practical terms, the coefficient suggests that for every



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:37

unit increase in MEC, OS increases by approximately 43.6%. The standard deviation (SD) of 0.069
reflects the variability of the path coefficient estimate. A low standard deviation suggests that the
estimate is precise, and the relationship between MEC and OS is measured with consistency across
the data. The 95% confidence interval (CI) indicates that we can be 95% confident that the true
value of the path coefficient lies between 0.288 and 0.559. Since the entire interval is above zero,
this further supports the conclusion that the relationship between MEC and OS is positive and
statistically significant. Finally, the p-value of 0.000 means that the relationship between MEC
and OS is statistically significant at any conventional significance level (e.g., 0.01, 0.05).

Looking at the results obtained, we can see that not all hypotheses turn out to be significant.
• For the community smell of Organisational Skirmish, we note a significance for hypothe-
ses H1.1, H1.3, and H1.7. This indicates that background disparity and misunderstanding of
others’ work may be causes of Organisational Skirmish smells, which can lead to a team that
is not skilled enough for the tasks at hand. Very close to the significance value is hypothesis
H1.6, which indicates that the introduction of a team member with a common background
mitigates the effects of the organizational skirmish smell.

• For the community smell Organisational Silo, we see that the significant hypotheses are
H2.1 and H2.5, which show us that when software engineers or data scientists focus only
on their tasks without engaging with the rest of the team, they tend to create sub-groups
that are not very communicative and collaborative with each other. This situation could be
mitigated by introducing developers into the teamwho are able to communicate, collaborate,
and work in both roles.

• For the community smells Lone Wolf and Prima Donna Effects we can note that hy-
pothesis H3.1 and H3.3 and assumptions H4.1 and H4.3 are significant. These hypotheses
show us that Data Scientists tend not to communicate with the manager, work alore and
independently from other roles, and/or adopt an attitude of superiority. This behavior causes
problems and frustration for the manager.

• For the community smellBlackCloud, we note that the significant assumptions are H5.2 and
H5.3. These hypotheses suggest that sometimes team members ignore the communication
infrastructure provided by companies, creating their own private communication channels.
This leads to redundancies in channels and communication and a loss of information.

Additional details regarding the discussion on the supported and unsupported hypotheses are
provided in Section 9.1.

∠ Summary of the Results of Structural Model - RQ1

The results of the structural models tell us:
• Some hypotheses are unsupported, revealing a potential mismatch between findings in the

literature and practitioners’ perceptions. For instance, communication breakdowns—widely
recognized in the literature as critical factors—may not be directly linked to background or
team composition, as hypothesized. Instead, they could be influenced by individual traits,
informal resolution practices, or the inherent dynamics within a team.

• Poor or misunderstood communication between managers and developers who manage the
product tends to isolate the latter, who focus more on their interests than the company’s,
creating frustration with managers.

• The company’s infrastructure and communicative standards tend to be ignored. Developers
employ their informal communication, making it redundant.



1:38 Annunziata et al.

Table 16. Significant Relationships.

PC SD 95% CI p-value

Organizational Skirmish

H1.1 Missing engineering competence ⇀ Organizational Skirmish 0.436 0.069 (0.288, 0.559) 0.000
H1.2 Clash of cultures and tools ⇀ Organizational Skirmish 0.074 0.067 (-0.059, 0.205) 0.268
H1.3 Tension Between Teams ⇀ Organizational Skirmish -0.297 0.073 (-0.452, -0.162) 0.000
H1.4 Restructure team to be cross-functional ⇁ Organizational Skirmish -0.007 0.071 (-0.144, 0.137) 0.917
H1.5 Pair data scientist and software engineers⇁ Organizational Skirmish 0.088 0.077 (-0.065, 0.242) 0.258
H1.6 Introducing a mediator ⇁ Organizational Skirmish 0.123 0.068 (-0.007, 0.256) 0.068
H1.7 Organizational Skirmish ⇀ Long Release Cycle -0.045 0.098 (-0.240. 0.143) 0.650
H1.8 Organizational Skirmish ⇀ Staff with insufficient skills -0.175 0.086 (-0.342, -0.007) 0.042
H1.9 Organizational Skirmish⇀Misunderstanding between different roles 0.033 0.108 (-0.194, 0.232) 0.758

Organizational Silo

H2.1 Missing intersections between teams ⇀ Organizational Silo 0.275 0.075 (0.124, 0.423) 0.000
H2.2 Tension Between Teams ⇀ Organizational Silo -0.125 0.075 (-0.295, -0.004) 0.097
H2.3 Restructure team to be cross-functional ⇁ Organizational Silo -0.028 0.098 (-0.226, 0.156) 0.774
H2.4 Pair data scientist and software engineers ⇁ Organizational Silo 0.150 0.103 (-0.051. 0.355) 0.147
H2.5 Introducing a mediator ⇁ Organizational Silo 0.242 0.087 (0.059, 0.403) 0.006
H2.6 Organizational Silo ⇀ Misunderstanding between different roles 0.165 0.105 (-0.050. 0.362) 0.116

Lone Wolf

H3.1 Tension between management and data scientists ⇀ Lone Wolf 0.385 0.071 (0.245, 0.526) 0.000
H3.2 Restructure team to be cross-functional ⇁ Lone Wolf -0.016 0.084 (-0.182, 0.148) 0.851
H3.3 Lone Wolf ⇀ Managerial frustration 0.304 0.081 (0.153, 0.469) 0.000

Prima Donna

H4.1 Tension between management and data scientists ⇀ Prima Donna 0.371 0.072 (0.227, 0.508) 0.000
H4.2 Restructure team to be cross-functional ⇁ Prima Donna 0.098 0.086 (-0.071. 0.262) 0.254
H4.3 Prima Donna ⇀ Managerial frustration 0.345 0.077 (0.205, 0.501) 0.000

Black Cloud

H5.1 Redundant ML infrastructure and tools ⇀ Black Cloud -0.101 0.083 (-0.266, 0.061) 0.227
H5.2 Shadow IT ⇀ Black Cloud 0.510 0.070 (0.377, 0.653) 0.000
H5.3 Black Cloud ⇀ Redundant Infrastructure -0.251 0.089 (-0.426, -0.080) 0.005
H5.4 Black Cloud ⇀ Ignoring Organizational Standards -0.086 0.088 (-0.266, 0.076) 0.326
⇀ : positive association ⇁ : reverse association
Supported Hypothesis - Significant Hypothesis

8.3.2 RQ2—Analysis and Results. RQ2 aims to determine whether the theorized relationship be-
tween community smells and socio-technical aspects in the ML-enabled context (as in RQ1) varies
when we considering the gender, the role of the developer, and the development model being used.

To answer this question, we used Multi-Group analysis, broken down our sample by gender,
role, and type of developmental model to explore differences traced to observable characteristics.
Multi-group analysis involves running the PLS path model multiple times for different groups, once
for each group; groups are captured through categorical variables [32].

Groups Creation. We grouped participants to observe heterogeneity based on gender, roles, and
development models. We used data from the Prolific profile of each participant to obtain the
gender; We obtained the role and type of development model used in the selection survey. We
converted the value in the dataset as follows: gender(males = 1 and females = 2), the role currently
held (Data Scientist = 1. Software Engineer = 2, Data Engineer = 3, Others = 4), and development
model currently used (Agile Models = 1. Other Models = 2).

Evaluation of Multi-Group Analysis (MGA). We want to assess whether the differences can be
attributed to the theoretical constructs and not to how we measured those constructs. To do this,
we compare the model reports specific to each group to detect significant differences using a
Multi-Group Analysis (MGA) [56]. We use the MGA procedure on SmartPLS 4, which examines
the correlation between the composite scores of all groups [36].



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:39

Groups Comparison and Analysis. We examined the variations in the coefficient paths for the
groups and reported all the path coefficients in Table 17. Among the most significant results, we
notice mixed opinions about the hypotheses that team restructuring may impact collaboration
and communication among people with different backgrounds; moreover, it could involve more
developers who tend to work alone.
Another result is that developers with role of Software Engineer have different opinions from

developers in other roles. For example Hypothesis H1.4, we note that Software Engineer believe
that using Pair programs does not close gaps and differences in knowledge, as developers in other
roles believe. Moreover, some results show similar opinions among the participants of different
genders and also among participants who work with different developmental models. Between the
few exceptions, we find perceptions of different backgrounds affecting mutual understanding of
the work, causing similar roles to be isolated in independent teams.

Table 17. Multi-Group Analysis.

Gender Role Development Model

Male Female Software
Engineer

Data
Scientist

Data
Engineer

Other Agile
Model

Others All

Size 106 44 48 41 36 25 93 57 150
Organizational Skirmish

H1.1 Missing engineering competence ⇀ Organizational Skirmish 0.402 0.519 0.316 0.431 0.352 0.322 0.381 0.499 0.436
H1.2 Clash of cultures and tools ⇀ Organizational Skirmish 0.010 0.197 0.160 0.069 0.222 -0.284 0.056 0.126 0.074
H1.3 Tension Between Teams ⇀ Organizational Skirmish -0.290 -0.364 -0.261 -0.304 -0.364 -0.341 -0.356 -0.173 -0.297
H1.4 Restructure team to be cross-functional ⇁ Organizational Skirmish -0.020 0.119 -0.00 0.189 -0.080 -0.124 0.018 -0.104 -0.007
H1.5 Pair data scientist and software engineers ⇁ Organizational Skirmish 0.084 0.074 -0.044 0.077 0.178 0.098 0.142 0.047 0.088
H1.6 Introducing a mediator ⇁ Organizational Skirmish 0.174 -0.011 0.228 0.039 0.121 0.322 0.056 0.276 0.123
H1.7 Organizational Skirmish ⇀ Long Release Cycle -0.095 0.069 0.030 -0.061 0.067 -0.564 -0.154 0.179 -0.045
H1.8 Organizational Skirmish ⇀ Staff with insufficient skills -0.152 -0.230 -0.203 -0.140 -0.248 -0.475 -0.298 0.035 -0.175
H1.9 Organizational Skirmish ⇀Misunderstanding between different roles 0.193 -0.295 -0.097 0.074 0.236 -0.317 0.181 -0.136 0.033

Organizational Silo

H2.1 Missing intersections between teams ⇀ Organizational Silo 0.246 0.272 0.208 0.317 0.300 -0.000 0.251 0.369 0.004
H2.2 Tension Between Teams ⇀ Organizational Silo -0.119 -0.184 -0.316 -0.204 -0.451 -0.484 -0.100 -0.102 -0.187
H2.3 Restructure team to be cross-functional ⇁ Organizational Silo 0.070 -0.256 -0.045 0.256 -0.025 -0.001 -0.120 0.065 0.075
H2.4 Pair data scientist and software engineers ⇁ Organizational Silo 0.085 0.349 -0.042 0.148 0.411 -0.266 0.281 0.031 0.300
H2.5 Introducing a mediator ⇁ Organizational Silo 0.232 0.278 0.461 0.204 0.068 -0.320 0.270 0.219 0.300
H2.6 Organizational Silo ⇀ Misunderstanding between different roles 0.145 0.145 0.070 0.172 0.281 0.405 0.186 0.138 0.171

Lone Wolf

H3.1 Tension between management and data scientists ⇀ Lone Wolf 0.334 0.437 0.530 0.262 0.341 0.345 0.346 0.441 0.385
H3.2 Restructure team to be cross-functional ⇁ Lone Wolf 0.223 -0.439 0.197 -0.116 -0.200 -0.160 -0.138 0.126 -0.016
H3.3 Lone Wolf ⇀ Managerial frustration 0.451 0.086 0.272 0.452 0.433 0.240 0.211 0.504 0.304

Prima Donna

H4.1 Tension between management and data scientists ⇀ Prima Donna 0.372 0.344 0.525 0.251 0.289 0.291 0.368 0.362 0.371
H4.2 Restructure team to be cross-functional ⇁ Prima Donna 0.314 -0.270 0.194 0.114 -0.153 0.117 0.025 0.189 0.098
H4.3 Prima Donna ⇀ Managerial frustration 0.350 0.365 0.301 0.517 0.332 0.444 0.337 0.366 0.345

Black Cloud

H5.1 Redundant ML infrastructure and tools ⇀ Black Cloud -0.118 -0.170 -0.045 -0.138 -0.016 -0.259 -0.010 -0.200 -0.101
H5.2 Shadow IT ⇀ Black Cloud 0.497 0.562 0.698 0.601 0.415 0.596 0.584 0.486 0.510
H5.3 Black Cloud ⇀ Redundant Infrastructure -0.265 -0.252 -0.124 -0.453 -0.231 -0.412 -0.224 -0.301 -0.251
H5.4 Black Cloud ⇀ Ignoring Organizational Standards -0.070 -0.170 0.049 -0.254 -0.143 -0.211 -0.189 0.072 -0.086
⇀ : positive association ⇁ : reverse association
Difference between Male and Female - Different between the different roles - Difference between Agile and Others Development Model

∠ Summary of the Results of Structural Model - RQ2

The multi-group analysis tells us:
• There exist considerably different opinions related to the benefits that team restructuring
can bring.

• Focusing on the role, software engineers show more sensibly different opinions than others.
• Perceptions of how different roles impact understanding of work and subgroup creation
differ among people of different genders and also among those working with different
developmental models.



1:40 Annunziata et al.

9 DISCUSSION AND LIMITATIONS
Section discusses implications for future research and the threats to the validity of the study.

9.1 Discussion on the Hypotheses
In this section, we discuss the results of our study, describing the observations that warrant further
discussion. In the following paragraphs, we report the observations and implications from our
study organized by the research question investigated.

To identify relationships between community smells and socio-technical anti-patterns, we used
PLS-SEM to create cause-and-effect graphs, where each relation is a hypothesis. The hypotheses,
listed in Section 5.1, have been conjectured on the definitions of the various constructs in literature
and the insights gained from the interviews conducted. However, some of our hypotheses were
not supported by our analysis; this shows us a mismatch between the state of the art related to
socio-technical aspects and practitioners’ perceptions of them. Following, we discuss the various
hypotheses for each community smell.

Organizational Skirmish [59]. The results show that significant hypotheses, with a p-value < 0.05,
are H1.1, H1.3, and H1.8. However, looking the coefficient path, we can observe that the supported
hypotheses are H1.1, H1.2, H1.4, and H1.9. These hypotheses state that different backgrounds and roles
lead to problems and difficulties in collaboration and communication, impacting team productivity,
even because they tend to adopt different tools, therms, or languages (H1.1 and H1.2). In addition, the
unsupported hypotheses (H1.3) show that a misunderstanding in the communication between data
scientists and software engineers may not depend on their background as we conjectured, but could
depend about others inherent team dynamics. Looking at the assumptions H1.4 and H1.5 related to
mitigation strategy, on one side, the results highlight that to facilitate knowledge and skill sharing
to reduce the difference in developers’ background a possible strategy may be restructuring teams;
on the other side the results highlight that the adoption of pair programming does not mitigate that
behavior. A different discussion can be made for H1.6, although unsupported, the p-value is close to
0.05, and the path coefficient deviates from 0, suggesting minimal significance for the hypothesis
that we conjecture. So, we should consider in future work the hypotheses that introducing a
mediator able to understand responsibility and task of both the roles between different roles may
impact the performance of developers with diverse backgrounds, to foster knowledge exchange.
Moreover, it also reflects how developers are often assigned, in a reverse way, the fact that they
are often assigned to tasks for which they do not have the proper knowledge. Other unsupported
hypotheses suggest us that cultural differences do not affect developers’ mutual understanding and
developmental iterations, going to iterate release and continuous structure changes (H1.7 and H1.8).
Meanwhile, the results of H1.9 show that, for example, differences may affect the comprehension
between the roles of the developers within teams, e.g., Data scientists may not fully understand the
importance of software engineers’ roles and the good practices to apply during the development
phase, and vice versa. In addition to our results, 𝑃4 said, "I do not perceive major differences in skills
and competencies between data engineers and software engineers, maybe because both come from an
engineering root. However, I notice more pronounced differences between these roles and data scientists,
which focus their studies on different aspects". Furthermore, our results shown a mismatch of idea
for the Hypotheses H1.4, H1.5, H1.7, and H1.9. In particular, according to the results obtained in the
multi-group analysis, the women believe that restructuring the team decreases the probability to
perceive a difference in background and knowledge between different roles, thinking that such
behavior can lead to a delay in releases. On the other hand, men do not find benefits in restructuring
the team and believe that those knowledge difference lead to misunderstandings between roles,
contrary to what women claim. Developers using an Agile development approach are more likely to



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:41

use pair programming and team restructuring to avoid to perceive a difference in background and
knowledge between different roles, believing that this behaviour leads to skill gaps in teams and to
delays in deliveries. Data scientists believe employing pair programming and team restructuring is
advantageous to avoid to perceive a difference in background and knowledge between different
roles. However, they do not think that this perceptions causes delivery delays, but they believe that
it can cause misunderstandings between different roles; however, these thoughts are not shared by
Software Engineers who believe that the difference of knowledge between the different roles does
not create misunderstandings between them, but leads to delivery delays.

Organizational Silo [60]. The results of our study, specifically H2.1 and H2.6, show that software
engineers and data scientists tend to work on different tasks based on their skills. Working on
various tasks inherently leads the team to split into subgroups, where each is focused on a specific
task without communicating or considering the other teams despite the need for integration with
their own. A consequence of such behavior may be the misunderstanding of each other’s work and
problems during the integration phase. A possible solution to challenge could be to include a team
member who has the knowledge and skills to perform the tasks assigned to software engineers and
the assigned to data scientists. This individual could act as a mediator who can act as a mediator to
improve communication between the different teams (H2.3). H2.2 and H2.4 affirm that the lack of
understanding among developers of different roles and the adoption of pair programming between
data scientists and software engineers don’t tends to reduce the creation of sub-teams among
developers on the same development team. A further discussion can be made about H2.5 since,
although it is not supported, the p-value is close to 0.5. This situation suggests that it might be
interesting to investigate this hypothesis, which states that the division of teams into subgroups
causes a misunderstanding related to the expertise of other developers and the complexity of
their work. Moreover, many interviewers support that they work in an environment where the
manager themselves used to create subgroups, each composed of the same role, to make teams
more productive and focused, e.g., a team of Data Scientists/Engineers focused on building the
model and a team of Software Engineers focused on building the product. In addition, our results
of the multigroup analysis show a mismatch of idea for the Hypotheses H2.3, and H2.4. According
to the results obtained in the multi-group analysis, both women and developers who use Agile
development methods believe that team restructuring does not reduce the probability that the team
will be divided into independent, non-collaborative sub-teams, which men and developers using
other development models support. Among developers, on the one hand, data scientists believe
that adopting pair programming and team restructuring provide benefits by preventing splitting
the team into independent and non-collaborative teams. On the other hand, software engineers do
not claim that the adoption of pair programming avoids the occurrence of team splitting.

LoneWolf [16, 60]. The results of H3.1 and H3.3 support that communication between the manager
and the model’s team is usually unclear, which pushes these figures to isolate themselves and work
independently; the outcome is that these roles focus on their own goals, thus causing frustration
on the part of the manager. Even if Hypothesis H3.2 is supported, because the path coefficient
is negative, it is not significant since the p-value is higher than 0.05. This hypothesis highlights
that team restructuring could mitigate the isolation of the data scientists from the others. In
addition, 𝑃4 say that "this behavior is not strictly related to the developer of the model team; but
instead to the fact that the manager needs to fully understand the difficulties involved in developing the
model and sometimes struggles to manage these issues". In addition, 𝑃2 said “Very often, the isolation
factor depends more on a person’s character than on their specific role. ”, making it clear that the
manifestation of such community smells does not always depend on the role a programmer finds
themself in, but also on personal and character factors. However, 𝑃4 believes that a developer’s role



1:42 Annunziata et al.

greatly impacts their background and way of looking at things, specifically stated “ Data scientists
usually go a little bit deeper into the logic of the problems. Otherwise, Software Engineering has a
prediction background, and they were excellent, of course, in solving problems”. In conclusion, role
and background may influence it to some extent, but they do not turn out to be the main cause.
Concerning the multigroup analysis, our results shown a mismatch of idea for the Hypothesis
H3.2. In particular, male but more in general software engineers believe that restructuring the team
reduces the possibility of some team members isolating themselves and not feeling part of the
team; such thinking is not supported by women or developers in other roles (i.e., data scientist,
data engineers).

Prima Donna [59]. Similar to the Lone Wolf, we also note that the H4.1 and H4.3 assumptions
are supported for the Prima Donna. They state that misunderstanding between managers and
developers in the model team causes the latter to isolate themselves and work independently. They
are also counterproductive to others, trying to prevail over them or oppose the changes that the
manager intends to make. Such behavior tends to create frustration and management difficulties
toward managers. Again, H4.2 is not supported, indicating that team restructuring is ineffective in
addressing the tendency of model teams to work independently. Furthermore, as observed with
the Lone Wolf smell, P2 remarked, "Very often, the isolation factor depends more on a person’s
character than on their specific role," emphasizing that behaviors such as uncooperativeness and
superiority are influenced not only by a programmer’s role but also by individual personality
and character traits. This suggests that structural changes alone may be insufficient to address
these issues, as deeper interpersonal and behavioral factors play a significant role. Considering
the multigroup analysis, our results shown a mismatch for the Hypothesis H4.2. In particular, in
the multi-group analysis, women and data engineers believe that restructuring the team does not
reduce the possibility that some team members isolate themselves or override team decisions,
taking credit for work that is not their own. Such thinking is not supported by men or developers
in other roles (i.e., data scientist, software engineers), which believe that by restructuring the team,
it is possible to mitigate such behaviors in some of the team members.

Black Cloud [49, 59]. Our results support the H5.2. This affirms that although organizations
provide an infrastructure, sometimes developers ignore or do not understand it, thus impacting
the ability to communicate or share personal information. Some of our interviewers say that their
team prefers to use relatively informal communication channels, such as Microsoft Teams or even
WhatsApp, avoiding somewhat more formal ones like Skype or Slack. In addition, according to
our unsupported Hypotheses H5.1, H5.3, and H5.3, the fact that team member do not understand the
presence of a unified infrastructure provided by the company does not induce the occurrence of a
black cloud smell. Moreover, the issue of a black cloud smell is not caused by redundancy in the
infrastructure. If the organization fails to provide a well-defined communication infrastructure,
there naturally will not be any redundancy to address the problem. The multigroup analysis showed
a mismatch of idea for the Hypothesis H5.4. In particular, according to the results obtained in
the multi-group analysis, software engineers believe that organizations do not provide helpful
infrastructure for communication and collaboration, leading developers to ignore standards, such
as security standards, used by the organization. However, this belief is not shared by other roles
(i.e., data scientists, data engineers), who do not perceive the absence of infrastructure as the cause
of the adoption of organizational standards.

9.2 Implications for the Practitioners
The goal of our work aims to provide a first step towards understanding community smells in the
context of ML-enabled systems by studying whether the socio-technical anti-patterns identified in



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:43

this context may be causes, effects, or strategies for already known community smells. The results
indicate that not all of the hypothesized conjectures are significant or supported. However, they
provide valuable insights, allowing us to deduce different implications.

9.2.1 Implication for Project Managers. Identifying the causes, effects, and organizational strategies
for addressing social antipatterns in the context of ML-enabled systems can serve as valuable
guidelines for managers. These insights help mitigate team-related risks that may otherwise lead
to technical issues within the product. Key insights identified include:

Facilitating collaboration and knowledge exchange- Data scientists and software engi-
neers often come from different educational and professional backgrounds, and these differ-
ences can create barriers to collaboration, as Organizational Skirmish and Organizational
Silo smells highlights. To overcome this, managers should actively promote collaboration
by fostering regular communication, knowledge sharing, and cross-functional teamwork,
thereby team alignment and enhancing the quality and efficiency of ML-enabled systems.

Team restructuring- Data scientists often work more independently than other develop-
ers, leading to uncooperative or dismissive behavior, such as Prima Donna. This attitude
creates division within the team and poses challenges for managers. The findings suggest
pairing data scientists with developers on joint tasks to encourage collaboration on projects.
Additionally, fostering clear communication and promoting a culture of inclusivity and
respect can help break down barriers and improve team cooperation.

Facilitating communication- The lack of structured communication infrastructure in
software development leads team members to rely on informal communication, which
often results in fragmented information, inconsistent documentation, and the loss of crucial
project details, how the Black Cloud smells highlight. Managers should establish a formal
communication system that all team members can access to ensure clear and consistent
communication throughout the development process.

By following these suggestions, project managers can enhance collaboration and communication
among developers, leading to better management of socio-technical challenges in ML-enabled
software development. This fosters stronger team dynamics, reduces misalignment, and improves
project outcomes.

9.2.2 Implications for Researchers. The results of our study indicate that several assumptions are
not supported, exposing a mismatch between existing literature and developers’ perceptions of
socio-technical issues within teams. These findings highlight implications that may establish a
basis for further research and investigation.

Investigate mitigation strategies- The findings suggest that strategies such as team
restructuring and pair programming may not be sufficient or fully effective. This high-
lights the need for further exploration of alternative strategies to manage Data Scientists’
behavior. Identifying new solutions could foster collaboration and reduce divisive behaviors.

Mismatch between Software Engineers and Data Scientists- Results revealed differ-
ences in how data scientists and software engineers perceive social issues, particularly
regarding the effectiveness of management strategies. Researchers should investigate these
differing perspectives more deeply to tailor strategies for Project Managers that better align
with the needs of diverse team members.



1:44 Annunziata et al.

Addressing these implications can enhance the management of heterogeneous teams in ML-
enabled systems by improving collaboration, communication, and the integration of developers with
different skill sets. It also equips managers with more effective strategies to handle socio-technical
challenges, leading to better project outcomes and reduced risks.

9.3 Threats to Validity
Construct Validity. We used and customized pre-existing measurement instruments and created

instruments based on earlier research for specific constructs. The measurement model analysis
demonstrated that our constructs met the convergent and discriminant validity requirements
and were internally consistent. Our qualitative analysis and the results of our work are based on
the work and definitions collected by Caballero-Espinosa et al. [13]. Another potential problem
is not knowing how long interviewers have been in that specific role and how long they have
been using that development model. For this reason, we report the metrics as "currently used"
development roles and models. Measuring the cultural background related to the role one plays
and the methodologies one uses more precisely could be an interesting topic for future work. A
potential threat to the validity of the study arises from the use of reflective measurement models
based on the assumption that indicators reflect the latent constructs. However, respondents did not
explicitly validate this assumption, which could misalign the model with the true nature of the
constructs. Nonetheless, the decision was supported by existing literature and agreed upon by all
authors, ensuring alignment with both theoretical foundations and practical realities of the field.

Internal Validity. Among the various limitations, one is related to the reliability of the answers.
The questionnaire proposed to measure the constructs was very long, thus bringing a possible
bias in the responses caused by boredom. To overcome such biases, interviews were conducted
to validate the results. Another limitation is the size of our theoretical model, which, represents
only 5 of the various community smells. This choice was made to avoid creating a model and a
questionnaire too large to analyze and have more accurate results on specific community smells.
However, this is separate from the fact that other community smells can play an equally interesting
role, and our results represent a starting point for future studies. The main threat is the way we
recruited participants. We relied on voluntary participation through an online tool such as Prolific
for the survey. Specifically, this platform provides access to a sample of participants based on
specific characteristics,e.g., computer science work as a developer. In our case, we looked for people
with (1) a background in computer science, (2) working as Software/Data Engineer or Data Scientist,
or (3) working in a team or collaborating with a team of Software/Data Engineer or Data Scientist.
In addition, as much as possible, we have tried to balance the number of participants by gender.
Prolific allows us to distribute the survey to specific participants, so we conducted a selective
survey to understand which possible participants to include in our study; we sent the survey to
those who met our acceptance criteria. To ascertain the adequacy of the data set and the chosen
sample, the Bartlett and KMO tests were conducted before performing the analysis by PLS-SEM.

External Validity. The questionnaires were conducted on Prolific, going to select people working
in collaboration with figures such as Data Scientists, Data Engineers, and Software Engineers. The
response rate numbers are aligned with the overall sample distribution calculated through G*Power,
so we can consider our results generalized. The responses obtained were sufficiently consistent to
find full or partial empirical support for the hypotheses.

Conclusion Validity. Potential challenges in interpreting the results could emerge due to the
complexity of the findings. In order to ensure the credibility and validity of the results, the models
were meticulously crafted by drawing insights from existing literature and information gathered



Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:45

through interviews with seasoned developers in the ML-enabled context. This approach aimed
to comprehensively understand the subject matter and create an adequate set of hypotheses. The
results were obtained using the PLS-SEM approach, following the guidelines detailed in the book A
primer on partial least squares structural equation modeling (PLS-SEM) [31]. This methodological
choice was made to enhance the robustness and reliability of the analysis. The combination of
theoretical underpinnings, empirical insights from interviews, and a well-established modeling
approach strengthens the confidence in the results and their interpretation.

10 CONCLUSION
The scientific community is moving on to analyze socio-technical phenomena. This concept is
also increasingly present in the software engineering world. Our work aims to extend knowledge
related to socio-technical aspects, widely analyzed in software engineering [13], by understanding
other causes, effects, and possible organizational strategy correlations arising from socio-technical
aspects in the context of ML-enabled systems [44]. The results found report interesting statements.
In particular, analyzing the relationships involving community smells Prima Donna and Lone Wolf
and how they are accentuated when it comes to manager-developer interactions of the model team.
Also very interesting is the perception given by the analysis of the Black Cloud, which makes
us understand how often practitioners tend to ignore the communication standards provided by
the company, creating their communication infrastructure, which then turns out to be redundant.
Among the most noteworthy aspects is the discourse related to the differences in background
given by different roles, which participants perceive as one of the reasons associated with the lack
of understanding among them and a possible cause of subdivision of developers into subgroups
according to their roles. For our study, we analyzed 5 of the most well-known community smells.
However, this does not mean that the others may also provide as much interesting information
to analyze. In future work, we aim to: (a) Investigate causes related to unsupported hypotheses;
(b) Expand the work by analyzing additional community smells and socio-technical aspects in the
ML-enabled systems context; (c) Investigate the link between Black Cloud and Shadow IT, as the
observed phenomena appear to be very similar to each other; (d) Conduct further investigation
into moderating factors that may influence survey results, considering aspects such as team size
and experience of developers.

ACKNOWLEDGMENTS
This work has been partially supported by the EMELIOT national research project, which has been
funded by the MUR under the PRIN 2020 program (Contract 2020W3A5FY), and QUAL-AI national
research projects funded by the EU - NGEU and the MUR under the PRIN 2022 program (Contracts
2022B3BP5S). We sincerely thank the reviewers and the editor for their valuable comments and
suggestions, which have significantly contributed to enhancing the quality of our paper.

REFERENCES
[1] Khaled Albusays, Pernille Bjorn, Laura Dabbish, Denae Ford, Emerson Murphy-Hill, Alexander Serebrenik, and

Margaret-Anne Storey. 2021. The Diversity Crisis in Software Development. IEEE Software 38, 2 (2021), 19–25.
https://doi.org/10.1109/MS.2020.3045817

[2] Nuri Almarimi, Ali Ouni, Moataz Chouchen, and Mohamed Wiem Mkaouer. 2021. csDetector: an open source tool for
community smells detection. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 1560–1564.

[3] Dorine Andrews, Blair Nonnecke, and Jennifer Preece. 2007. Conducting research on the internet:: Online survey
design, development and implementation guidelines. (2007).

[4] Giusy Annunziata, Stefano Lambiase, Gemma Catolino, Damian A. Tamburri, Willem-Jan Van Den Heuvel, Fabio
Palomba, Filomena Ferrucci, and Andrea De Lucia. 2024. Online Appendix - Uncovering Community Smells in Machine

https://doi.org/10.1109/MS.2020.3045817


1:46 Annunziata et al.

Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies. https://figshare.com/s/1449581f3fe126da76fb
[5] Claudia Binz Astrachan, Vijay K. Patel, and Gabrielle Wanzenried. 2014. A comparative study of CB-SEM and

PLS-SEM for theory development in family firm research. Journal of Family Business Strategy 5, 1 (2014), 116–128.
https://doi.org/10.1016/j.jfbs.2013.12.002 Innovative and Established Research Methods in Family Business.

[6] Richard P Bagozzi and Youjae Yi. 1988. On the evaluation of structural equation models. Journal of the academy of
marketing science 16 (1988), 74–94.

[7] Sebastian Baltes and Paul Ralph. 2022. Sampling in software engineering research: A critical review and guidelines.
Empirical Software Engineering 27, 4 (2022), 94.

[8] Maurice S Bartlett. 1950. Tests of significance in factor analysis. British journal of psychology (1950).
[9] AndrewBegel and Beth Simon. 2008. Novice software developers, all over again. In Proceedings of the fourth international

workshop on computing education research. 3–14.
[10] Andrew Begel and Thomas Zimmermann. 2014. Analyze this! 145 questions for data scientists in software engineering.

In Proceedings of the 36th International Conference on Software Engineering. 12–23.
[11] Thomas M Brill, Laura Munoz, and Richard J Miller. 2022. Siri, Alexa, and other digital assistants: a study of customer

satisfaction with artificial intelligence applications. In The Role of Smart Technologies in Decision Making. Routledge,
35–70.

[12] Gabriel Busquim, Hugo Villamizar, Maria Julia Lima, and Marcos Kalinowski. 2024. On the Interaction Between
Software Engineers and Data Scientists When Building Machine Learning-Enabled Systems. In Software Quality as
a Foundation for Security, Peter Bludau, Rudolf Ramler, Dietmar Winkler, and Johannes Bergsmann (Eds.). Springer
Nature Switzerland, Cham, 55–75.

[13] Eduardo Caballero-Espinosa, Jeffrey C Carver, and Kimberly Stowers. 2023. Community smells—The sources of social
debt: A systematic literature review. Information and Software Technology (2023), 107078.

[14] Marcelo Cataldo, Patrick A Wagstrom, James D Herbsleb, and Kathleen M Carley. 2006. Identification of coordination
requirements: Implications for the design of collaboration and awareness tools. In Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative work. 353–362.

[15] Gemma Catolino, Fabio Palomba, Damian Andrew Tamburri, and Alexander Serebrenik. 2021. Understanding
community smells variability: A statistical approach. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Society (ICSE-SEIS). IEEE, 77–86.

[16] Gemma Catolino, Fabio Palomba, Damian A. Tamburri, Alexander Serebrenik, and Filomena Ferrucci. 2019. Gender
Diversity andWomen in Software Teams: HowDo They Affect Community Smells?. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS). 11–20. https://doi.org/10.1109/ICSE-
SEIS.2019.00010

[17] Gemma Catolino, Fabio Palomba, Damian Andrew Tamburri, Alexander Serebrenik, and Filomena Ferrucci. 2020.
Refactoring community smells in the wild: the practitioner’s field manual. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering in Society. 25–34.

[18] Peter M Chisnall. 1996. Qualitative Interviewing: The Art of Hearing Data. Journal of the Market Research Society 38, 4
(1996), 553–555.

[19] Manuel De Stefano, Emanuele Iannone, Fabiano Pecorelli, and Damian Andrew Tamburri. 2022. Impacts of Software
Community Patterns on Process and Product: An Empirical Study. Science of Computer Programming 214 (Feb. 2022),
102731. https://doi.org/10.1016/j.scico.2021.102731

[20] Tim Dreesen, Phil Hennel, Christoph Rosenkranz, and Thomas Kude. 2021. “The Second Vice is Lying, the First
is Running into Debt.” Antecedents and Mitigating Practices of Social Debt: An Exploratory Study in Distributed
Software Development Teams. (2021).

[21] Tore Dybå and Torgeir Dingsøyr. 2008. Empirical studies of agile software development: A systematic review.
Information and software technology 50, 9-10 (2008), 833–859.

[22] Felipe Ebert, Alexander Serebrenik, Christoph Treude, Nicole Novielli, and Fernando Castor. 2022. On Recruiting
Experienced GitHub Contributors for Interviews and Surveys on Prolific. In International Workshop on Recruiting
Participants for Empirical Software Engineering.

[23] Beyza Eken, Francis Palma, Başar Ayşe, and Tosun Ayşe. 2021. An empirical study on the effect of community smells
on bug prediction. Software Quality Journal 29 (2021), 159–194.

[24] Franz Faul, Edgar Erdfelder, Axel Buchner, and Albert-Georg Lang. 2009. Statistical power analyses using G* Power
3.1: Tests for correlation and regression analyses. Behavior research methods 41, 4 (2009), 1149–1160.

[25] Timothy S Flanigan, Emily McFarlane, and Sarah Cook. 2008. Conducting survey research among physicians and other
medical professionals: a review of current literature. In Proceedings of the Survey Research Methods Section, American
Statistical Association, Vol. 1. 4136–47.

[26] Harald Foidl, Michael Felderer, and Rudolf Ramler. 2022. Data smells: Categories, causes and consequences, and
detection of suspicious data in ai-based systems. In Proceedings of the 1st International Conference on AI Engineering:

https://figshare.com/s/1449581f3fe126da76fb
https://doi.org/10.1016/j.jfbs.2013.12.002
https://doi.org/10.1109/ICSE-SEIS.2019.00010
https://doi.org/10.1109/ICSE-SEIS.2019.00010
https://doi.org/10.1016/j.scico.2021.102731


Uncovering Community Smells in Machine Learning-Enabled Systems: Causes, Effects, and Mitigation Strategies 1:47

Software Engineering for AI. 229–239.
[27] Jill J Francis, Marie Johnston, Clare Robertson, Liz Glidewell, Vikki Entwistle, Martin P Eccles, and Jeremy M Grimshaw.

2010. What is an adequate sample size? Operationalising data saturation for theory-based interview studies. Psychology
and health 25, 10 (2010), 1229–1245.

[28] Joseph F Hair. 1995. Multivariate data analysis with readings. (1995).
[29] Joseph F Hair, Arthur H Money, Philip Samouel, and Mike Page. 2007. Research methods for business. Education+

Training 49, 4 (2007), 336–337.
[30] Joseph F Hair, Jeffrey J Risher, Marko Sarstedt, and Christian M Ringle. 2019. When to use and how to report the

results of PLS-SEM. European business review 31, 1 (2019), 2–24.
[31] Joe Hair Jr, Joseph F Hair Jr, G Tomas M Hult, Christian M Ringle, and Marko Sarstedt. 2021. A primer on partial least

squares structural equation modeling (PLS-SEM). Sage publications.
[32] Joseph F Hair Jr, Marko Sarstedt, Christian M Ringle, and Siegfried P Gudergan. 2023. Advanced issues in partial least

squares structural equation modeling. saGe publications.
[33] Petra Heck. 2024. What About the Data? A Mapping Study on Data Engineering for AI Systems. In Proceedings of the

IEEE/ACM 3rd International Conference on AI Engineering-Software Engineering for AI. 43–52.
[34] James Heckman. 1990. Varieties of selection bias. The American Economic Review 80, 2 (1990), 313–318.
[35] Jörg Henseler, Christian M Ringle, and Marko Sarstedt. 2015. A new criterion for assessing discriminant validity in

variance-based structural equation modeling. Journal of the academy of marketing science 43 (2015), 115–135.
[36] Jörg Henseler, Christian M Ringle, and Marko Sarstedt. 2016. Testing measurement invariance of composites using

partial least squares. International marketing review 33, 3 (2016), 405–431.
[37] Siw Elisabeth Hove and Bente Anda. 2005. Experiences from conducting semi-structured interviews in empirical

software engineering research. In 11th IEEE International Software Metrics Symposium (METRICS’05). IEEE, 10–pp.
[38] Zijie Huang, Zhiqing Shao, Guisheng Fan, Jianhua Gao, Ziyi Zhou, Kang Yang, and Xingguang Yang. 2021. Predicting

community smells’ occurrence on individual developers by sentiments. In 2021 IEEE/ACM 29th International Conference
on Program Comprehension (ICPC). IEEE, 230–241.

[39] Katherine J Hunt, Natalie Shlomo, and Julia Addington-Hall. 2013. Participant recruitment in sensitive surveys: a
comparative trial of ‘opt in’versus ‘opt out’approaches. BMC medical research methodology 13 (2013), 1–8.

[40] Ankur Joshi, Saket Kale, Satish Chandel, and D Kumar Pal. 2015. Likert scale: Explored and explained. British journal
of applied science & technology 7, 4 (2015), 396–403.

[41] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2017. Data scientists in software teams: State
of the art and challenges. IEEE Transactions on Software Engineering 44, 11 (2017), 1024–1038.

[42] Barbara A Kitchenham and Shari L Pfleeger. 2008. Personal Opinion Surveys. In Guide to advanced empirical software
engineering. Springer, 63–92.

[43] Stefano Lambiase, Gemma Catolino, Damian A. Tamburri, Alexander Serebrenik, Fabio Palomba, and Filomena
Ferrucci. 2022. Good Fences Make Good Neighbours? On the Impact of Cultural and Geographical Dispersion
on Community Smells. In Proceedings of the 2022 ACM/IEEE 44th International Conference on Software Engineering:
Software Engineering in Society (ICSE-SEIS ’22). Association for Computing Machinery, New York, NY, USA, 67–78.
https://doi.org/10.1145/3510458.3513015

[44] Alina Mailach and Norbert Siegmund. 2023. Socio-Technical Anti-Patterns in Building ML-Enabled Software: Insights
from Leaders on the Forefront. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 690–702.
https://doi.org/10.1109/ICSE48619.2023.00067

[45] Marcelo Morandini, Thiago Adriano Coleti, Edson Oliveira, and Pedro Luiz Pizzigatti Corrêa. 2021. Considerations
about the efficiency and sufficiency of the utilization of the Scrum methodology: A survey for analyzing results for
development teams. Computer Science Review 39 (2021), 100314. https://doi.org/10.1016/j.cosrev.2020.100314

[46] Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner. 2022. Collaboration Challenges in Building ML-Enabled
Systems: Communication, Documentation, Engineering, and Process (ICSE ’22). Association for Computing Machinery,
New York, NY, USA, 413–425. https://doi.org/10.1145/3510003.3510209

[47] Ipek Ozkaya. 2020. What is really different in engineering AI-enabled systems? IEEE software 37, 4 (2020), 3–6.
[48] Fabio Palomba, Damian Andrew Tamburri, Francesca Arcelli Fontana, Rocco Oliveto, Andy Zaidman, and Alexander

Serebrenik. 2021. Beyond Technical Aspects: How Do Community Smells Influence the Intensity of Code Smells?
IEEE Transactions on Software Engineering 47, 1 (Jan. 2021), 108–129. https://doi.org/10.1109/TSE.2018.2883603

[49] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco Oliveto, and Andrea De Lucia. 2018. A
large-scale empirical study on the lifecycle of code smell co-occurrences. Information and Software Technology 99
(2018), 1–10. https://doi.org/10.1016/j.infsof.2018.02.004

[50] Fabio Palomba and Damian Andrew Tamburri. 2021. Predicting the Emergence of Community Smells Using Socio-
Technical Metrics: A Machine-Learning Approach. Journal of Systems and Software 171 (Jan. 2021), 110847. https:
//doi.org/10.1016/j.jss.2020.110847

https://doi.org/10.1145/3510458.3513015
https://doi.org/10.1109/ICSE48619.2023.00067
https://doi.org/10.1016/j.cosrev.2020.100314
https://doi.org/10.1145/3510003.3510209
https://doi.org/10.1109/TSE.2018.2883603
https://doi.org/10.1016/j.infsof.2018.02.004
https://doi.org/10.1016/j.jss.2020.110847
https://doi.org/10.1016/j.jss.2020.110847


1:48 Annunziata et al.

[51] David Piorkowski, Soya Park, April Yi Wang, DakuoWang, Michael Muller, and Felix Portnoy. 2021. How ai developers
overcome communication challenges in a multidisciplinary team: A case study. Proceedings of the ACM on Human-
Computer Interaction 5, CSCW1 (2021), 1–25.

[52] Gilberto Recupito, Raimondo Rapacciuolo, Dario Di Nucci, and Fabio Palomba. 2024. Unmasking Data Secrets: An
Empirical Investigation into Data Smells and Their Impact on Data Quality. In Proceedings of the IEEE/ACM 3rd
International Conference on AI Engineering-Software Engineering for AI. 53–63.

[53] Brittany Reid, Markus Wagner, Marcelo d’Amorim, and Christoph Treude. 2022. Software Engineering User Study
Recruitment on Prolific: An Experience Report. arXiv preprint arXiv:2201.05348 (2022).

[54] Daniel Russo and Klaas-Jan Stol. 2021. PLS-SEM for software engineering research: An introduction and survey. ACM
Computing Surveys (CSUR) 54, 4 (2021), 1–38.

[55] Marko Sarstedt, Christian M Ringle, and Joseph F Hair. 2017. Treating unobserved heterogeneity in PLS-SEM: A
multi-method approach. Partial least squares path modeling: Basic concepts, methodological issues and applications
(2017), 197–217.

[56] Marko Sarstedt, Christian M Ringle, and Joseph F Hair. 2021. Partial least squares structural equation modeling. In
Handbook of market research. Springer, 587–632.

[57] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael
Young, Jean-Francois Crespo, and Dan Dennison. 2015. Hidden technical debt in machine learning systems. Advances
in neural information processing systems 28 (2015).

[58] Damian Andrew Tamburri, Rick Kazman, and Hamed Fahimi. 2016. The architect’s role in community shepherding.
IEEE Software 33, 6 (2016), 70–79.

[59] Damian A Tamburri, Philippe Kruchten, Patricia Lago, and Hans van Vliet. 2015. Social debt in software engineering:
insights from industry. Journal of Internet Services and Applications 6 (2015), 1–17.

[60] Damian A. Tamburri, Fabio Palomba, and Rick Kazman. 2021. Exploring Community Smells in Open-Source: An
Automated Approach. IEEE Transactions on Software Engineering 47, 3 (March 2021), 630–652. https://doi.org/10.
1109/TSE.2019.2901490

[61] Bianca Trinkenreich, Klaas-Jan Stol, Anita Sarma, Daniel M German, Marco A Gerosa, and Igor Steinmacher. 2023.
Do i belong? modeling sense of virtual community among linux kernel contributors. arXiv preprint arXiv:2301.06437
(2023).

[62] Bianca Trinkenreich, Klaas-Jan Stol, Igor Steinmacher, Marco A. Gerosa, Anita Sarma, Marcelo Lara, Michael Feathers,
Nicholas Ross, and Kevin Bishop. 2023. A Model for Understanding and Reducing Developer Burnout. In 2023
IEEE/ACM 45th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 48–60.
https://doi.org/10.1109/ICSE-SEIP58684.2023.00010

[63] Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark GJ van den Brand, Alexander Serebrenik, Premkumar Devanbu,
and Vladimir Filkov. 2015. Gender and tenure diversity in GitHub teams. In Proceedings of the 33rd annual ACM
conference on human factors in computing systems. 3789–3798.

[64] Gianmario Voria, Viviana Pentangelo, Antonio Della Porta, Stefano Lambiase, Gemma Catolino, Fabio Palomba, and
Filomena Ferrucci. 2022. Community Smell Detection and Refactoring in SLACK: The CADOCS Project. In 2022 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE, 469–473.

[65] David Wicks. 2017. The coding manual for qualitative researchers. Qualitative research in organizations and manage-
ment: an international journal 12, 2 (2017), 169–170.

[66] Haiyin Zhang, Luís Cruz, and Arie Van Deursen. 2022. Code smells for machine learning applications. In Proceedings
of the 1st international conference on AI engineering: software engineering for AI. 217–228.

https://doi.org/10.1109/TSE.2019.2901490
https://doi.org/10.1109/TSE.2019.2901490
https://doi.org/10.1109/ICSE-SEIP58684.2023.00010

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Partial Least Squares Structural Equation Modeling (PLS-SEM)
	2.2 Socio-Technical Anti-Patterns in ML-enabled systems
	2.3 Community Smells
	2.4 Main Contribution with Respect of the State of the Art

	3 Overview of the Study Design
	3.1 Rationale and Motivation
	3.2 Research Objective
	3.3 Overview of the Research Process

	4 Preliminary Analysis
	4.1 Overall Approach
	4.2 Findings

	5 PLS-SEM Structural Model Definition
	5.1 Structural Model Development Approach
	5.2 Structural Model Development—Results

	6 Measurement Model Definition
	6.1 Measurement Model Development—How we carried it out
	6.2 Measurament Model Definition—Indexes

	7 Data Collection—Survey
	7.1 Survey Design and Procedure
	7.2 Survey Preliminary Analysis

	8 PLS-SEM Statistical Analysis—Measurement and Structural Models Evaluation
	8.1 Survey Data Analysis
	8.2 Evaluation of the Measurement Model—Results
	8.3 Evaluation of the Structural Model—Results

	9 Discussion and Limitations
	9.1 Discussion on the Hypotheses
	9.2 Implications for the Practitioners
	9.3 Threats to Validity

	10 Conclusion
	Acknowledgments
	References

