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Abstract

Context: Machine learning (ML) is nowadays so pervasive and diffused that virtually no appli-
cation can avoid its use. Nonetheless, its enormous potential is often tempered by the need to
manage non-functional requirements (NFRs) and navigate pressing, contrasting trade-offs.
Objective: In this respect, we notice a lack of systematic synthesis of challenges explicitly tied
to achieving and managing NFRs in ML-enabled systems. Such a synthesis may not only provide
a comprehensive summary of the state of the art but also drive further research on the analysis,
management, and optimization of NFRs of ML-enabled systems. Method: In this paper, we pro-
pose a systematic literature review targeting two key aspects such as (1) the classification of the
NFRs investigated so far, and (2) the challenges associated with achieving and managing NFRs
in ML-enabled systems during model development Through the combination of well-established
guidelines for conducting systematic literature reviews and additional search criteria, we survey
a total amount of 130 research articles.
Results: Our findings report that current research identified 31 different NFRs, which can be
grouped into six main classes. We also compiled a catalog of 26 software engineering challenges,
emphasizing the need for further research to systematically address, prioritize, and balance NFRs
in ML-enabled systems.
Conclusion: We conclude our work by distilling implications and a future outlook on the topic.

Keywords: Software Engineering for Artificial Intelligence; Non-Functional Requirements;
Systematic Literature Reviews.

1. Introduction

Machine learning (ML) is now, more than ever, being used in theory, experiment, and simu-
lation [54, 57]. On the one hand, companies and individuals increasingly rely on the outcome of
machine learning models to make informed decisions [79] or automate tasks that would take sub-
stantial human workload [56]. On the other hand, machine learning-intensive systems, i.e., sys-
tems that embed machine learning solutions, have been recently deployed in multiple domains,
with some recent applications showing highly efficient and accurate performance [48, 53]. As
such, the pervasiveness of machine learning-intensive systems is expected to increase further in
the coming years in multiple domains [55, 78].
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Nonetheless, such a pervasiveness is constantly threatened by multiple concerns, which are
often not related to the specific features made available to users, but to non-functional attributes
[26, 51]. In particular, a non-functional requirement (NFR) is defined as a condition that speci-
fies a criterion that may be used to judge the operation of a system rather than specific behaviors
[12]. In the context of ML-enabled systems, non-functional attributes may affect the overall level
of reliability, trustworthiness, and sustainability of these systems [24, 27, 42]. It is therefore not
surprising that the software engineering research community—and specifically the software engi-
neering for artificial intelligence (SE4AI) research branch—has been investing notable efforts in
understanding non-functional requirements of ML-enabled systems, other than proposing meth-
ods and instruments to support practitioners when dealing with them [9, 23, 30]. This effort is
also stimulated by government and funding agencies, which are more and more willing to invest
in the matter, e.g., the European Union has recently approved the Artificial Intelligence Act,1

which aims at promoting research on themes connected to the improvement of non-functional
attributes of artificial intelligence-based software systems.

Recent advances in the field of SE4AI contributed to the development of a consistent body of
knowledge with respect to the management of multiple non-functional requirements, including
fairness [13, 19, 76], security [25, 40], privacy [39, 64], and more [35]. While recognizing the
relevant advances made over the last years, our research identifies a notable key limitation.

 Despite the current, extensive body of knowledge produced by the SE4AI research com-
munity regarding the management of non-functional requirements in ML-enabled systems,
there is still a lack of a comprehensive, systematic synthesis of the current knowledge on
the non-functional requirements impacting ML-enabled systems and the challenges en-
countered in addressing them within the context of these systems.

An improved understanding of these aspects may have critical implications for researchers
and practitioners. First, researchers might learn more about the current state of the art, possi-
bly identifying neglected research angles that would be worth further investigating. At the same
time, practitioners may have a comprehensive overview of the instruments that researchers have
been providing to support the analysis and optimization of non-functional requirements, possi-
bly accelerating the technological transfer of academic prototypes to industry. In this paper, we
conduct a systematic literature review (SLR) on non-functional requirements of ML-enabled sys-
tems. In particular, we focus on traditional ML and DL systems but do not address large language
models (LLM) or generative artificial intelligence systems integration. By focusing on traditional
ML and DL systems, this study aims to provide a comprehensive synthesis of the non-functional
requirements related to these technologies, which remain critical in a wide range of applications.
Our work follows well-established guidelines [33, 72] and additional search criteria based on
seed set identification [49] to comprehensively synthesize existing research. From an initial set
composed of over 3,000 hits, and after applying multiple snowballing rounds and additional data
collection procedures, we ended up analyzing more than 94,000 research results. Through the
application of exclusion/inclusion criteria and quality assessment, we finally selected 130 pa-
pers. Additionally, we provide a new catalog consisting of 26 software engineering challenges
proposed by researchers to assist practitioners in optimizing ML-enabled systems specifically in
relation to non-functional requirements during the software life cycle. These challenges are not

1The European Union Artificial Intelligence Act: https://artificialintelligenceact.eu.
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about the NFRs themselves but instead arise from the complexities faced by ML-enabled sys-
tems when striving to meet specific non-functional requirements. They occur at various stages of
the software life cycle, including design, development, implementation, and operation, and are
shaped by the socio-technical context and the inherent trade-offs between competing NFRs. We
conclude the paper by elaborating on the implications of our results, along with the actionable
items that readers of our work may (re-)use to analyze further the problem of non-functional
requirements in machine learning-intensive software systems.

2. Related Work and Motivation

To the best of our knowledge, no systematic literature review has been conducted to classify
the non-functional requirements specific to ML-enabled systems and to summarize the chal-
lenges encountered in achieving these requirements during their software life cycle. At the same
time, it is important to point out that some secondary studies recently attempted to (1) synthesize
the research on software engineering for artificial intelligence [43], (2) explore, in a preliminary
fashion, the relevance and research interest around non-functional requirements of ML-enabled
systems [23], and (3) summarize some of the key academic and industrial challenges faced by
practitioners in managing functional and non-functional requirements in ML-enabled systems
[2, 24, 27, 67]. These works are closely related to ours, but they either lack the comprehensive
scope or the detailed synthesis of challenges specifically tied to NFRs in ML-enabled systems.

First and foremost, Martinez-Fernandez et al. [43] conducted a systematic mapping study of
the research on software engineering for artificial intelligence. The main goal of the work was to
provide a comprehensive schema representing the elements composing the field of SE4AI, from
requirements engineering to verification and validation. In other terms, the systematic mapping
study had a pretty broad objective and aimed at covering all the research on the matter. As
such, there are multiple differences in our study. While our scope is limited to non-functional
requirements, we aim to address the matter in a more detailed fashion by letting emerge a com-
plete set of non-functional requirements discussed in the literature, other than the challenges of
ML-enabled systems associated with their management. Secondly, ours is a systematic literature
review rather than a mapping study: as such, there are intrinsic, methodical differences in the
search process conducted and in the criteria used to select the relevant pieces of research. Third,
we additionally tuned the search process to produce an extensive set of seed papers, as further
discussed in Section 3—hence attempting to strengthen the completeness of the search process.

Habibullah et al. [23] recently investigated the topic of non-functional requirements of ML-
enabled systems under three perspectives such as (1) the clustering of non-functional attributes
based on shared characteristics; (2) the estimation of the number of relevant studies that in-
vestigated aspects connected to non-functional attributes; and (3) the definition of the scope of
non-functional requirements. Habibullah et al. [23] shared the same overall objective of our
paper, i.e., an improved understanding of non-functional requirements of ML-enabled systems.
Nonetheless, we aimed to conduct a comprehensive, systematic literature review. At the same
time, we broadened our scope to encompass a wider range of research perspectives, including
an in-depth investigation of the challenges for ML-enabled systems specifically relating to non-
functional requirements.

Horkoff [27] discussed the challenges that the requirements engineering research community
would be called to face to address themes connected to non-functional requirements of ML-
enabled systems. In this position paper, the author identified several challenges based on the
extensive experience accumulated in the industry over the years. Our systematic literature review
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aims to collect comprehensive pieces of information coming from the scientific community to
provide insights into how researchers have defined and addressed the problem so far.

Habibullah and Horkoff [24] conducted an interview-based study with ten machine learning
engineers to elicit the practices used to face non-functional requirements. In particular, the au-
thors were interested in collecting information about the identification and measurement mecha-
nisms put in place, the importance of various non-functional requirements from their perspective,
and the challenges associated with the identified non-functional requirements. This work can be,
therefore, seen as complementary to our systematic literature review. We enlarge the knowledge
of non-functional requirements in ML-enabled systems by synthesizing the current literature
from various perspectives. Additionally, our work includes and further extends the findings on
the challenges identified through a different research method.

Villamizar et al. [67] explored multiple aspects of how the Requirements Engineering (RE)
community has contributed to advancing the knowledge on requirements engineering practices
in ML-enabled systems, including the type of RE contributions and topics, the quality character-
istics considered, the empirical evaluations conducted, and the future directions on the interplay
between RE and ML. The article was published in 2021 and covered the research articles pub-
lished by the end of 2020. The authors identified 35 primary studies by executing a search query
that looked for articles containing terms such as “software” (or synonyms like “applications” and
“systems”), “machine learning”, and “requirements engineering”. We identified several differ-
ences when comparing this work to ours. In the first place, the scope and breadth of the analysis.
Villamizar et al. [67] aimed to map the existing body of knowledge on RE research and provide
a broad overview of the contributions in the field. In doing so, the authors focused on any kind of
research activity, looking at both functional and non-functional requirements. On the contrary,
our work is more specific, i.e., targets non-functional requirements only and does not aim at map-
ping the existing knowledge but rather classifies non-functional requirements and synthesizes the
challenges to deal with them. The methodology employed in our work, i.e., a systematic litera-
ture review, as opposed to a mapping study procedure used by Villamizar et al. [67], allows for
a more in-depth and structured analysis of the identified studies, enabling us to provide a more
comprehensive understanding of non-functional requirements in ML-enabled systems. Perhaps
more importantly, Villamizar et al. [67] limited the search to the papers that explicitly used
terms like “machine learning” and “requirements engineering”. On the one hand, our search
string enlarges the breadth of the analysis, as it considers articles focusing on additional tech-
nologies such as artificial intelligence, deep learning, reinforcement learning, and deep neural
networks, hence obtaining a higher coverage of the theme. On the other hand, the hybrid na-
ture of our systematic article collection procedure allowed the extraction of primary studies that
addressed non-functional requirements even without an explicit reference to “requirements engi-
neering”. As further explained in Section 3, this represents a key point to ensure completeness.
Indeed, several primary studies addressed specific non-functional requirements, e.g., fairness,
without any explicit mention of terms like “requirements engineering” and “non-functional re-
quirements”. As a consequence, our hybrid systematic literature review is, by design, larger in
terms of coverage. As proof of that, the amount of primary studies included in our analysis is
significantly larger: while Villamizar et al. [67] extracted 35 primary studies, we reached 130
papers. Considering our focus on non-functional requirements, we regarded the coverage ob-
tained as comprehensive and thorough, reflecting a broader and more detailed examination of the
challenges and considerations related to non-functional requirements in ML systems. In addition
to the considerations above, Villamizar et al. [67] identified three main challenges for the en-
tire RE community related to (1) lack of knowledge regarding non-functional requirements, (2)
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lack of validation techniques, and (3) handling customers’ expectations. Our work addresses one
of these key challenges, i.e., the lack of knowledge regarding non-functional requirements, by
systematically surveying the existing literature on the matter and summarizing the more specific
challenges to dealing with non-functional requirements. For this reason, our work should also be
considered as a complementary valuable source that focuses on a key matter for RE research.

Ahmad et al. [2] reported on an interview-based study aimed at eliciting the existing in-
dustrial guidelines and best practices. The authors involved 29 practitioners and discussed the
integration of human-centered aspects in requirements engineering for AI, emphasizing the gap
between literature and practice through practitioner interviews. Our work is clearly complemen-
tary. First, we focused on the work done by researchers by performing a systematic literature
review, as opposed to survey practitioners. Second, we aimed at classifying non-functional re-
quirements and associated challenges, as opposed to investigating the current practices and best
practices. As such, the paper by Ahmad et al. [2] can be seen as orthogonal to ours.

Ahmad et al. [1] also performed a systematic mapping study on RE4AI systems. Their work
focused on four key objectives: (1) identifying RE frameworks, notations, modeling languages,
and tools; (2) surveying the evaluation methods used to assess the retrieved available methods;
(3) informing the community about the target application domains for which the available meth-
ods are available; and (4) identifying the limitations and challenges of the methods. Also in this
case, our work can be seen as complementary. First, Ahmad et al. [1] focused specifically on au-
tomated methods to handle the whole requirements engineering process, as opposed to our focus
on classifying non-functional requirements and identifying associated challenges. Second, the
challenges identified by Ahmad et al. [1] mainly pertained to the automated methods to handle
functional requirements: in this sense, our work extends the currently available knowledge on
the challenges faced by ML-enabled systems in managing non-functional requirements.

Other recent papers analyzed aspects that are tangentially connected to the themes of our
work. The article by Damirchi and Amineh [15] presented a non-systematic survey focusing on a
specific problem of non-functional requirements engineering, namely the elicitation procedures.
The paper by Cheverda et al. [14] proposed a preliminary work aiming at creating a taxonomy
of properties to design intelligent systems, while the paper by Ali et al. surveyed the literature
on quality models for AI systems [4]. The paper by Ronanki et al. [59] focused on the ethical
requirements of engineering processes. The paper by Krishna et al. [59] focused on software
quality models for AI systems. Our paper is complementary to these articles, both considering
its larger scope and its systematic connotation.

While the papers discussed above are closely connected to the work proposed herein, it is
also worth mentioning the existence of an ever-increasing number of secondary studies targeting
multiple aspects of software engineering for artificial intelligence research.

A consistent amount of systematic literature reviews focused on the synergies between artifi-
cial intelligence and software engineering [69], other than on the software engineering challenges
and solutions for developing artificial intelligence systems [21, 35, 42, 50]. Our work focuses on
non-functional requirements, hence providing finer-grained pieces of information and insights on
the next steps that researchers should consider to better support practitioners. Other researchers
targeted the quality assurance problem, which is deemed one of the most relevant and complex
for the SE4AI research community. In particular, we identified systematic literature review and
empirical investigations into the field of software quality [20, 46], design patterns [60, 71], soft-
ware architecture [61], and testing [10, 11, 58, 77]. Finally, recent systematic literature reviews
have been conducted with the aim of understanding the deployment strategies for artificial intel-
ligence systems [29], and model-based development approaches [41].
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Based on the consistent body of knowledge summarized above, we can draw two main con-
clusions. First, the attention given to requirements engineering practices highlights the relevance
of the problem and the importance of understanding the aspects that characterize ML-enabled
systems and the challenges that need further exploration. Second, previous work, such as that by
Villamizar et al. [67], emphasizes the need to closely investigate non-functional requirements and
expand our knowledge in this area. Our systematic literature review addresses existing knowl-
edge gaps by classifying non-functional requirements of ML-enabled systems and presenting a
superset of the challenges identified in previous research.

3. Research Method

The goal of the study was to survey the current research on non-functional requirements
of machine learning-enabled systems, with the purpose of providing researchers with action-
able items and insights that they can exploit to further improve the support provided to machine
learning engineers in the context of machine learning and deep learning-enabled systems. The
perspective is of the broad community of researchers working on software engineering for ar-
tificial intelligence (SE4AI). At first, fresh Ph.D. students may be particularly interested in our
results since they may be looking for neglected or emerging research areas to investigate in the
context of their doctoral studies. Senior researchers may be looking for research opportunities
to advance the current state of the art or additional opportunities for research proposals and in-
dustrial collaborations. By senior researchers, we mean all academics who may be interested in
contributing to advancing the current knowledge on non-functional requirements of ML-enabled
systems, hence extending to anybody who may help advance the state of the art in the field.
Finally, practitioners - which we identify as professional software engineers, machine learning
engineers, project managers, and tool vendors - may be interested in understanding the chal-
lenges to face to deal with non-functional requirements, as these may possibly raise obstacles to
technological transfer that should be carefully considered in practice.

We designed a systematic literature review (SLR) following the guidelines by Kitchenham et
al. [32]. The initial use of a search string focusing on terms such as “NFR” or “non-functional
requirement” aimed to let the types of NFRs emerge naturally from the data, indeed following
a bottom-up approach. To mitigate threats due to incompleteness of the search, we boosted the
search process by means of two additional steps. These steps incorporated a top-down approach,
which leveraged implicit understanding of NFRs to guide the identification and selection of rel-
evant studies. This approach ensured the use of broader conceptual insights to complement the
systematic search process, addressing potential gaps and improving the overall comprehensive-
ness of the review. First, we systematically screened the research articles published in top-tier
software engineering and artificial intelligence venues to identify seed papers to further process
[74]. Second, we integrated the snowballing procedure [73], i.e., the iterative scanning of the
incoming and outcoming references of the primary studies done to identify additional relevant
sources of information. Our systematic literature review can be considered “hybrid” [49], as it
combines traditional search strategies with additional search steps and snowballing. In terms of
reporting, we followed the ACM/SIGSOFT Empirical Standards2 and, in particular, the “Gen-
eral Standard” and “Systematic Reviews” guidelines.

2The ACM/SIGSOFT Empirical Standards: https://github.com/acmsigsoft/EmpiricalStandards.
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3.1. Research Objectives and Questions

We defined two research questions (RQs): RQ1 aimed at systematically classifying the non-
functional requirements identified by researchers, as well as providing insights into the appli-
cation domains considered by researchers. By ‘application domain’, we referred to the specific
application areas or contexts in which a non-functional requirement has been investigated, such
as healthcare, finance, automotive, and others. Additionally, a domain can also be general, en-
compassing non-functional requirements that are broadly applicable across any kind of domain
without being tied to a specific context. More specifically, we asked:

ü RQ1: What are the non-functional requirements of ML-enabled software considered by
researchers and in which domains were they addressed?

From a scientific perspective, by addressing this research question we aimed to contribute to
classifying the non-functional requirements of ML-enabled systems [23]. While previous efforts
in this respect have been conducted, there is still not a systematic classification - this represents
a key contribution to our work. From a practical perspective, the classification of non-functional
requirements serves three key purposes. In the first place, a clear classification allows to ag-
gregate the current knowledge on the matter, enabling more targeted research and development
efforts. Researchers can indeed use the classification to identify specific areas that need further
investigation, ensuring that their efforts are focused and aligned with industry needs. Second, the
classification provides an instrument to increase the community awareness of the multifaceted
aspects affecting the design of ML-enabled systems: researchers and practitioners may use the
classification to have a comprehensive overview of the non-functional requirements that should
be preserved, potentially identifying areas where trade-offs might be necessary. Finally, as for
practitioners, understanding the various non-functional requirements and their classifications aids
in the design and implementation of ML-enabled systems. It ensures that all relevant aspects are
considered, leading to the development of more robust, reliable, and efficient systems.

RQ2 aimed to aggregate and synthesize the body of knowledge on the challenges faced by
ML-enabled systems when addressing non-functional requirements, informing researchers and
practitioners on the aspects to further consider while developing these systems.

ü RQ2: What are the challenges for ML-enabled systems specifically relating to non-
functional requirements?

From a scientific perspective, addressing this research question advances the body of knowl-
edge by systematically aggregating the challenges for ML-enabled systems specifically relat-
ing to non-functional requirements, hence proposing a super-set of the challenges identified in
previous work. This classification provides a foundational understanding that can guide future
research efforts, ensuring that subsequent studies build upon a well-defined framework. It also
highlights gaps in the existing literature, pointing researchers towards areas that require further
investigation and potentially leading to the development of new theories, models, and methodolo-
gies specific to ML-enabled systems. From a practical perspective, understanding the challenges
for ML-enabled systems specifically relating to non-functional requirements equips practitioners
with crucial insights that can enhance the design, development, and maintenance of these sys-
tems. By identifying common challenges, practitioners can develop strategies and best practices
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to mitigate them, leading to more robust, reliable, and efficient ML-enabled software. Addition-
ally, this knowledge helps in setting realistic expectations and priorities during the software de-
velopment lifecycle, ensuring that critical non-functional requirements are adequately addressed,
thereby improving overall system quality and user satisfaction.

3.2. Research Method to Conduct the Systematic Literature Search
We applied the guidelines by Kitchenham et al. [33] to identify primary studies.

3.2.1. Research Query definition
We first extracted relevant terms from the research questions, identifying the keywords from

the RQs [33]. We then elaborated on the alternative spellings and synonyms for all the terms.
Afterward, we used boolean operators to assemble the search string, i.e., we used the ‘OR’
operator for the concatenation of alternative spellings and synonyms, while the ‘AND’ operator
for the concatenation of relevant terms. We elaborated on the following search string:

Search String.

((“Machine Learning”) OR (“Artificial Intelligence”) OR (“Deep Learning”) OR (“Rein-
forcement Learning”) OR (“Deep Neural Network”) OR (“ml”) OR (“ai”) OR (“dl”)) AND
((“nfr”) OR (“Non-Functional Requirement*”) OR (“Non Functional Requirement*”))

The search string included terms connected to machine, deep, and reinforcement learning,
but also to deep neural networks and artificial intelligence. This was done to deal with the lack
of a standard terminology: it is indeed possible that researchers used more generic terms, like
“Artificial Intelligence”, or more specific terms, like “Deep Neural Networks” to indicate the
analysis of ML-enabled systems.

Secondly, the search string did not include terms related to any specific, known non-functional
requirements, e.g., fairness, but focused on the more generic concept of non-functional require-
ment, including keywords like “Non-Functional Requirement”, “Non Functional Requirement”,
and “NFR”. We are aware that a search string including the specific non-functional requirements
would have ensured the collection of a larger amount of relevant papers. Nonetheless, we would
have faced two issues. First, we would have been bound to include the non-functional require-
ments explicitly classified in previous studies while defining the search string. As such, we could
not have satisfactorily addressed RQ1, unable to classify additional non-functional requirements
emerging from primary studies. Second, the systematic literature review would have become
prohibitive in terms of effort. For instance, Habibullah et al. [24] estimated the number of hits
for a search query that includes all classified non-functional requirements in over 200,000 arti-
cles: such a search query would have had a low precision, identifying a high amount of irrelevant
resources; also, the application of exclusion and inclusion criteria over such a large set of candi-
date articles would have required an excessive effort. Hence, we identified an alternative solution,
opting to implement a hybrid mechanism to search additional relevant resources.

Considering the points discussed, we opted for a broader search string to enhance the search’s
recall, aiming to gather more papers while maintaining the sustainability of our data collec-
tion and analysis. This choice inevitably affected the search’s precision and increased the effort
needed for applying exclusion and inclusion criteria. However, we embraced this trade-off to
ensure the inclusion of all pertinent sources in our study.
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3.2.2. Search Databases
We applied the search on ACM Digital Library,3 Scopus,4 and IEEEXplore.5 These digi-

tal libraries are often used to carry out systematic literature and mapping studies, providing a
comprehensive set of resources to conduct them. It is worth noticing that Scopus indexes all
the papers published by relevant publishers such as Springer and Elsevier - this is the reason
why we did not include the SpringerLink 6 and ScienceDirect7 databases. At the same time, we
still opted for the inclusion of ACM Digital Library and IEEEXplore. This was done because
the proceedings of some relevant ACM and IEEE conferences might not have been indexed by
Scopus and, for this reason, we might have missed relevant resources for our study.

3.2.3. Exclusion and Inclusion criteria
The papers retrieved from the search process were assessed against the following exclusion

and inclusion criteria [32].

Exclusion criteria. The resources that met the constraints reported below were excluded:

• EC1: Papers not written in English;

• EC2: Duplicated papers;

• EC3: Papers whose full-text read was not available;

• EC4: Paper not published or not peer-reviewed;

• EC5: Workshop, vision, systematic, survey papers;

• EC6: Short papers, with a page count of less than five pages;

• EC7: Papers that did not fall into themes of computer science and computer engineering;

• EC8: Papers published before 2012;

• EC9: Conference papers which were later extended as journal submissions;

• EC10: Papers that do not address any non-functional requirement;

• EC11: Papers that do not address non-functional requirements in ML-enabled systems,
e.g., those discussing non-functional requirements in general software systems without a
specific focus on ML components.

The exclusion criteria were designed to filter out papers that would not contribute meaning-
fully to our study. EC1 excluded papers not written in English to ensure language consistency
and comprehensibility. EC2 removed duplicate papers to avoid redundancy. Papers whose
full-text read was not available (EC3) were excluded to ensure we had complete information
for analysis. EC4 excluded papers not published or not peer-reviewed to maintain the quality
and reliability of the sources. EC5 excluded workshop, systematic, or survey papers to focus
on original research contributions. In particular, we excluded the workshops because they of-
ten lack the maturity and validation found in full conference or journal papers. EC6 excluded

3ACM Digital Library: https://dl.acm.org.
4Scopus: www.scopus.com.
5IEEEXplore: http://ieeexplore.ieee.org.
6SpringerLink : https://link.springer.com/.
7ScienceDirect : https://www.sciencedirect.com.
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short and vision papers to ensure sufficient content for thorough analysis. EC7 excluded pa-
pers outside the themes of computer science and computer engineering to maintain relevance
to our study. EC8 excluded papers published before 2012 to ensure the relevance and time-
liness of the data. EC9 excluded conference papers later extended as journal submissions to
avoid duplicated content. EC10 and EC11 ensured that only papers addressing non-functional
requirements in the specific context of ML-enabled systems were included, maintaining the
focus and relevance of the study.

Inclusion criteria. We included the resources that met at least one of the following constraints:

• IC1: Papers must address non-functional requirements in ML-enabled systems. This
includes using specific non-functional requirements terminology (e.g., fairness, perfor-
mance, scalability) within the context of machine learning-enabled systems.

• IC2: Papers must focus on specific types of non-functional requirements relevant to ML-
enabled systems. This means the paper should primarily revolve around one or more
non-functional requirements, rather than just mentioning them.

• IC3: Papers must identify and describe specific challenges associated with non-functional
requirements in ML-enabled systems. This includes outlining the nature of the chal-
lenges, their causes, and potential impacts.

• IC4: Papers must explicitly discuss the non-functional requirements of ML-enabled sys-
tems, either within a general domain (applicable across multiple contexts) or within a
clearly defined specific domain (e.g., healthcare, finance).

The inclusion criteria were structured to exclude papers that defined NFRs or listed challenges
without connecting them to ML-enabled systems. This ensured that only papers directly rele-
vant to the study objectives and providing meaningful insights were considered. In particular,
IC1 ensured that the papers were directly relevant to our study by explicitly addressing non-
functional requirements within the specific context of ML-enabled systems. By requiring the
use of specific non-functional requirements terminology, we filtered out papers that might dis-
cuss non-functional requirements in a more general or unrelated context, thus maintaining a
focused and relevant selection. With IC2, we ensured that the selected papers provided a sub-
stantial and focused discussion on specific non-functional requirements. It prevented the in-
clusion of papers that only briefly mentioned non-functional requirements without delving into
detailed analysis or discussion. This way, we ensured that the papers contributed meaningful
insights and significant knowledge about specific non-functional requirements in ML-enabled
systems. By including IC3, we ensured that the selected papers addressed the challenges as-
sociated with the management of non-functional requirements. This criterion allowed us to
gather comprehensive insights into the difficulties and obstacles faced when dealing with non-
functional requirements in ML-enabled systems, thus enriching our understanding of the prac-
tical implications and complexities involved. Finally, IC4 ensured that the context in which
the non-functional requirements were studied was clearly defined, allowing us to understand
how non-functional requirements were addressed across different domains. Whether the pa-
per addressed non-functional requirements in a general sense or within a specific domain, this
information was crucial for understanding the applicability of non-functional requirements in
various real-world scenarios.
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The application of the exclusion and inclusion criteria ensured that only papers explicitly
addressing NFRs within the context of ML-enabled systems were considered. In this regard, it is
worth clarifying how the criteria concerning the evaluation of whether a paper revolved around
NFRs (e.g., EC10) were practically applied. In the first place, we defined an NFR as a “quality
attribute or property of a system that specifies criteria to evaluate its operation, performance,
or other overarching attributes, rather than its functional behaviors” [12]. In the context of this
study, NFRs were identified based on the following characteristics:

• Explicit Terminology: Papers that explicitly used terms such as “non-functional require-
ment” “quality attribute” or specific known NFRs like fairness, robustness, or security
were included by our search.

• Implicit Identification: In cases where explicit terminology was absent, we relied on
descriptions of system qualities or properties that aligned with widely recognized defini-
tions of NFRs (e.g., qualities defined in ISO/IEC 25010 or by previous NFRs literature
[23, 24, 27]). For instance, mentions of “bias reduction” or “system robustness” were
considered relevant to fairness or robustness, respectively.

• Distinction from Functional Requirements: Attributes describing how a system operates
or performs (e.g., low latency, energy efficiency) were classified as NFRs. In contrast,
functional requirements, which define what the system does (e.g., an ML system’s ability
to classify images), were excluded.

Specifically, the characteristics described in the papers were evaluated based on their alignment
with system qualities or attributes rather than solely focusing on the system’s functional behav-
iors. It was insufficient for a quality to simply be described using general terms or adjectives like
“efficient”, “fast”, or “reliable”. Instead, the quality had to represent a broader, overarching
attribute that contributes to the system’s operation, performance, or non-functional goals. For
instance, terms such as “efficient” were considered relevant only when tied to system-level goals
like “low latency” or “scalability”, namely qualities that fit within the framework of NFRs.

3.3. Research Method to Conduct the Seed Set Search

As further detailed in Section 3.7, the research method implemented through the guidelines
by Kitchenham et al. [33] was required to be integrated with additional steps to ensure complete-
ness. When executing the search string, we realized that a number of relevant primary studies
did not refer to the general concept of non-functional requirements but rather preferred to point
to the specific aspect pertinent to their particular area of study. For example, the article by Chen
et al. [S1] proposed to address fairness and performance attributes of ML-enabled systems: in
the content of the paper, the authors did not refer to the term “non-functional requirements”,
even though they actually dealt with them. This example well explains the limitations observed:
more particularly, it is not a limitation of the Kitchenham et al.’s guidelines per-se, but rather the
challenge lies in the inherent variability in terminology used by different authors. Consequently,
relying strictly on the term “non-functional requirements” in our search strategy would have led
to the omission of significant studies that addressed non-functional aspects under different ter-
minologies. This limitation highlights the need for a flexible and adaptive search strategy that
can accommodate the diverse ways in which non-functional requirements are described in the
literature - this is the reason why we opted for a hybrid search procedure that combines multiple
search approaches.
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Table 1: Conferences and journals considered in the scope of the seed set identification process.

Venue Type Name Ranking

Journal SE-related IEEE Transactions on Software Engineering (TSE). Q1

Journal SE-related ACM Transactions on Software Engineering and Methodology (TOSEM). Q1

Journal SE-related Empirical Software Engineering (EMSE). Q1

Journal SE-related Journal of Systems and Software (JSS). Q1

Journal SE-related Information and Software Technology (IST). Q1

Journal AI-related Journal of Engineering Applications of Artificial Intelligence (EAAI). Q1

Journal AI-related IEEE Transactions on Knowledge and Data Engineering (TKDE). Q1

Journal AI-related IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). Q1

Journal AI-related IEEE Transactions on Neural Networks and Learning Systems (TNNLS). Q1

Conference SE-related IEEE/ACM International Conference on Software Engineering (ICSE). A*

Conference SE-related Joint European Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE).

A*

Conference SE-related IEEE/ACM Automated Software Engineering Conference (ASE). A*

Conference SE-related IEEE International Conference on Software Maintenance and Evolution (ICSME). A

Conference SE-related IEEE International Conference on Software Testing, Verification and Validation (ICST). A

Conference SE-related ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). A

Conference SE-related IEEE International Requirements Engineering Conference (RE). A

Conference SE-related IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER).

A

Conference SE-related IEEE International Conference on Program Comprehension (ICPC). A

Conference SE-related IEEE International Working Conference on Mining Software Repositories (MSR). A

Conference AI-related The Association for the Advancement of Artificial Intelligence (AAAI). A*

Conference AI-related International Joint Conference on Artificial Intelligence (ICAI). A*

Conference AI-related Empirical Methods in Natural Language Processing (EMNLP). A*

To tackle this issue, we employed a method known as seed set identification, where we sys-
tematically examined research papers from top conferences and journals within software engi-
neering and artificial intelligence. This approach, as highlighted by Wohlin et al. [74], com-
plements systematic literature reviews when standard guidelines fall short. We focused on both
software engineering and artificial intelligence venues, considering that primary studies might
be found in either domain. For software engineering venues, we identified relevant conferences
and journals using the CORE Ranking system for conferences (we only considered A* and A
conferences) and the Scimago Journal Ranking for journals in the ‘Software’ category (we only
considered journals falling into the first quartile (Q1)). We finally selected the conferences and
journals marked as ‘SE-related’ presented in Table 1. Subsequently, we reviewed papers pub-
lished in these venues from 2023 back to 2012. As a final step, we analyzed each conference
website, and for journals, we searched for papers via the DBLP,8 the most extensive computer
science bibliography library. We applied the same exclusion and inclusion criteria defined for
the search process conducted using the standard guidelines (see Section 3.2.3).

The decision to limit to A* and A conferences and Q1 journals stems from the consideration

8The DBLP : https://dblp.org/.
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that these venues are widely recognized by the research community as highly relevant and high-
quality. These venues are associated with rigorous review processes and high impact, ensuring
that the primary studies selected meet a recognized standard of excellence and relevance. At the
same time, we acknowledge that our approach may have excluded some relevant studies from
other reputable conferences and journals, e.g., REFSQ.9 This remains a limitation of our system-
atic literature review and is, in fact, a limitation shared by any systematic literature review. As for
the focus of our work, there are three considerations to make. In the first place, our seed search
included the major conference on requirements engineering (RE) in an effort to capture key re-
search contributions from the area of requirements engineering. In the second place, many of the
other conferences, e.g., ICSE, FSE, ASE, and journals considered, e.g., TSE, TOSEM, regularly
publish research on requirements engineering, hence ensuring that our review encompassed a
broad and representative sample of the most influential work on non-functional requirements of
ML-enabled systems. Finally, research on non-functional requirements in ML-enabled systems
often intersects with various domains within software engineering, such as machine learning,
system architecture, and human-computer interaction. Consequently, such research may fre-
quently be published in venues that cover these broader or intersecting areas, where there is a
wider audience that might benefit from these findings. The breakdown of our primary studies
(which is discussed as part of Section 4) seems to prove our considerations. Furthermore, vision
papers and survey studies, such as the ones by Köhl et al. [34], and Habibullah et al. [24], high-
lighted the early stages of this research area and the ongoing efforts to build a comprehensive
understanding of these requirements.

Expanding the search to include all relevant artificial intelligence venues would have been
excessively labor-intensive. Applying the same criteria used for software engineering, we would
have identified around 70 Q1 journals and over 40 A* and A conferences to review from 2023
to 2012. This would have resulted in an estimated 200,000 potential hits for analysis, deemed
impractical for manual assessment. As such, we were required to identify solutions to balance
the thoroughness of the search process with its practical feasibility. To ensure a comprehensive
systematic literature process, we focused the seed search on artificial intelligence venues that are
more likely to publish engineering or empirical approaches relevant to our research questions.

We first identified an online repository, named ‘AI Venues’,10, which lists the whole set of
artificial intelligence conferences and journals along with their ranking and H-index. We then as-
sociated to each journal the corresponding rank provided by Scimago and to each conference the
rank provided by CORE. Besides discarding the venues that did not meet our selection criteria
(rank=A* or A for conferences, rank=Q1 for journals), we filtered out the venues that revolved
around too specific techniques or technologies, e.g., the IEEE Transactions on Image Processing
journal, and favor instead the venues that encompassed a broader spectrum of engineering or
empirical approaches applied for the development of ML-enabled systems, e.g., the IEEE Trans-
actions on Neural Networks and Learning Systems. We selected four Q1 journals and three A*
conferences whose themes were either related to improving AI approaches or using engineering
or empirical approaches to AI. This process led to selecting the venues marked as ‘AI-related’
reported in Table 1. We scanned all the papers published to these venues between 2012 and 2022,
applying the same selection process described in Section 3.2.3.

9The REFSQ conference: https://2024.refsq.org/series/refsq.
10The ‘AI Venues’ repository: https://aivenues.github.io/
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3.4. Research Method to Conduct the Snowballing Process

The third step revolved around the forward and backward snowballing. This is the procedure
through which a researcher systematically scans the ingoing and outgoing references of the pri-
mary studies with the aim of identifying new relevant resources to address the research questions
[72]. By “ingoing references”, we meant references from other papers that cite the primary study,
i.e., other articles and papers that have cited the primary study in their own bibliographies. By
“outgoing references”, we meant references cited by a primary study, i.e., the list of articles and
papers that the primary study has referenced in its bibliography.

In our case, the primary studies identified as a consequence of applying the exclusion and
inclusion criteria on the studies retrieved using the standard guidelines and the seed search were
scanned. In particular, we applied an iterative procedure in which all ingoing and outgoing ref-
erences of the primary studies were first considered. Afterward, we reiterated the procedure for
the newly acquired studies in an effort to identify additional resources. Overall, four rounds of
backward and four rounds of forward were conducted: we stopped at four as we reached satura-
tion, namely, we did not identify any additional papers to include. From a practical perspective,
the snowballing steps were conducted through the use of Google Scholar,11 an academic search
engine which simplifies the analysis of ingoing and outgoing references of research papers. This
was the only step in verifying whether the papers cited or citing the primary resources were
published. Whenever needed, i.e., whenever we identified a new paper that was not previously
identified through the initial or the seed search, we searched the title of the paper on ACM Digital
Library, Scopus, and IEEEXplore to verify its publishing status. If the paper was published, it
was accepted for the subsequent steps of our research method.

3.5. Research Method to Conduct the Quality Assessment

Once we had completed the application of the three complementary search processes de-
scribed in the previous sections, we conducted a quality assessment of the resources that suc-
cessfully passed the inclusion criteria. The implementation of the quality assessment process
started with the definition of qualitative questions aiming at operationalizing the main pieces of
information that a primary study should have had to be useful to address our research questions.
These were defined according to the research objectives initially defined:

• Q1: Does the paper provide a detailed and clear definition or discussion of the non-
functional requirements? This should include an in-depth explanation, context, and signif-
icance of the non-functional requirements within ML-enabled systems.

• Q2: Does the paper offer specific examples, case studies, or empirical data related to
the non-functional requirements and their challenges? The paper should provide concrete
instances, applications, or data supporting the discussion of non-functional requirements
and their associated challenges.

• Q3: Does the paper discuss how the non-functional requirements apply within general-
purpose or specific domains? This may include the relevance of the domain to the non-
functional requirements, specific challenges within the domain, or any domain-specific
considerations or solutions.

11Link to Google Scholar: https://scholar.google.com/
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The quality assessment criteria are designed to ensure that the selected papers provide a
thorough, evidence-based, and context-aware discussion of non-functional requirements in ML-
enabled systems. Q1 ensures clarity and depth in defining and discussing the non-functional
requirements, establishing a solid foundation for the study. Q2 emphasizes the importance of
practical examples and empirical data, which bolster the paper’s arguments and demonstrate
real-world relevance. Q3 focuses on the applicability of non-functional requirements across dif-
ferent domains, ensuring that the discussion is comprehensive and considers domain-specific
challenges and solutions. These criteria collectively ensure that the included papers contribute
significantly to understanding and addressing non-functional requirements in ML-enabled sys-
tems. In particular, Q1 and Q3 were used to address RQ1, while Q2 and Q3 to address RQ2.

When assessing the primary studies against each of the qualitative questions, previous sys-
tematic literature reviews (e.g., [2, 6, 16]) assigned a boolean value to indicate whether a study
had or not the quality required with respect to a property considered. However, assessing the pri-
mary studies through boolean values might be challenging, other than possibly threatening the
validity of the assessment. For instance, there might be cases where the challenges associated
with non-functional requirements may be logically elicited from the text, even though not explic-
itly stated. To deal with this process, we, therefore, opted for the application of a fuzzy linguistic
approach [3], which consists of rating each primary study through a continuous variable ranging
between 0 and 1. In particular, the scores were assigned as follows:

• 0⇒ No • 0.1-0.3 ⇒

Rarely
• 0.4-0.6 ⇒

Partly
• 0.7-0.9 ⇒

Mostly
• 1⇒ Yes

In other terms, for each qualitative question, the primary studies were assigned a value report-
ing how explicit and clear the content was in that respect. At the end of the evaluation conducted
for each question, the total merit of a primary study was computed as follows:

• 0⇒ No • 0.1-1.1 ⇒

Rarely
• 1.2-2 ⇒

Partly
• 2.1-2.7 ⇒

Mostly
• 2.8+⇒ Yes

To be finally accepted as part of our systematic analysis, the primary study should have
obtained a final score of more than 1.6, i.e., it should have partly specified the required pieces of
information to address the research questions of the study.

3.6. Design of the Data Extraction Form
As a final step of the research method applied to address the goals of our study, we designed

the data extraction form, namely the specification of the pieces of information to collect when
addressing our research questions. Table 2 summarizes the data collected, reporting (i) the di-
mension the attribute group referred to, (ii) the scope where the data has been used, (iii) the
description of the dimension considered, and (iv) the specific attributes considered. As shown
in the table, we collected fuor main categories of information. At first, we identified pieces of
information that might help statistically describe our sample in terms of bibliometrics, e.g., pub-
lication year and venues: we used the knowledge acquired to describe the trends in terms of
publication, the most relevant venues accepting research papers on non-functional requirements
of ML-enabled systems. Besides these meta-data, we then collected and stored information that
may be directly connected to the specific research questions posed in our study and that, there-
fore, was used in the context of the data analysis and reporting process.
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As for RQ1, we collected multiple pieces of information about the non-functional require-
ments treated in the primary studies. In particular, we collected the specific ‘name’ of a re-
quirement, its ‘description’, and the ‘domain’ where it has been analyzed. As for the ‘domain’
information, whenever an explicit reference to a certain domain was available, we classified the
domain accordingly. In the cases where the domain was not explicitly mentioned, we catego-
rized the non-functional requirements under “General Environment”. This classification was
used when the primary study discussed the non-functional requirement in a non-specific context.
Therefore, “General Environment” is not a specific environment per se, but a category we used
to denote non-functional requirements that were addressed in a general, non-domain-specific
manner but that can be considered broadly applicable across any kind of domain. As for RQ2,
we collected information about the challenges described in the literature, considering their ‘na-
ture’, ‘causes’, and ‘impact’. The attributes extracted in this stage were used as part of the data
analysis processes employed to address each research question.

Table 2: Data extraction Form.

Dimension Scope Description Attribute Collected

Paper Information Bibliometrics This component includes general information and criteria used to assess
the quality of the selected studies.

Seed set or Systematic Literature Review

Year of publication

Accepted Score

Journal or a conference.

Venue

Terms concerning non-functional require-
ments

RQ1 This component encompasses all the keywords that make it possible to
describe non-functional requirements, both those that already exist in
the literature and new non-functional requirements that emerged from
this study.

Non-Functional Requirements

Domains where non-functional require-
ments were studied

RQ1 and RQ2 This component includes the domains in which non-functional require-
ments have been studied and found to be problematic.

ML Domains

Challenges of SE approaches for ML-
enabled systems

RQ2 This component contains a list of challenges explicitly stated in pri-
mary studies and any future challenges and problems emerging from
these studies. This information will help us identify areas where further
research is needed to improve SE approaches for ML-enabled systems
and improve the existing ones.

Challenges

New Challenges Emerged

3.7. Execution of the Research Methods
Figure 1 presents the outcomes of our research methods. The systematic literature review

commenced on June 26, 2024, yielding a total of 3,054 hits, predominantly from Scopus (2,334),
with fewer from ACM Digital Library and IEEEXplore (662 and 58, respectively).

Upon execution of the search string and the seed search, we imported the resulting articles
in a shared Excel sheet. At first, the duplicated articles (coming as a result of the search string
execution against different databases) were removed, with only one instance retained. Through
the meta-data provided by the databases, we could automatically filter out the papers not written
in English, short papers, papers not published/peer-reviewed, papers that did not fall into themes
of computer science and computer engineering, and papers published before 2012: this process
reduced the number of papers to 1,916. Next, each remaining paper was manually scanned
to apply the additional exclusion criteria. We verified that each paper was actually accessible,
meaning it was available for full-text review. If a paper was not accessible, it was excluded.

For the remaining papers, we analyzed (1) the venue where the paper was published, (2) the
article type, and (3) the topic addressed. Regarding the venue, we excluded workshop papers.
For the article type, we excluded vision papers, systematic literature reviews, and literature sur-
veys by examining the title, keywords, and, when necessary, the abstract. To verify the scope of
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Figure 1: Overview of the process for selecting papers.

the article, we relied on the title and keywords, and read the abstract, introduction, and conclu-
sions when additional clarification was needed. This scanning also allowed us to identify journal
articles that extended conference papers, leading to the exclusion of the conference proceedings.
In addition, we excluded papers based on whether they addressed any non-functional require-
ment (EC10). As explained in Section 3.2.3, papers were analyzed with respect to the extent
to which they discussed quality attributes in relation to the system’s operation, performance, or
non-functional goals. As the reader may expect, attributes such as classification accuracy and
performance were widely discussed in the considered literature; however, not all papers explic-
itly or implicitly contextualized these attributes as non-functional requirements. According to
our analysis, many papers address these attributes solely in the context of functional goals, such
as improving prediction accuracy or optimizing model performance for a specific task, without
considering their role as overarching system-level qualities or linking them to the broader concept
of NFRs. An example is the paper by Suwonchoochit and Senivongse [65]. The primary focus
of the paper is on improving prediction accuracy through algorithmic optimization without ad-
dressing accuracy as a broader system-level quality or linking it to non-functional requirements.
Specifically, the paper employed various ML algorithms, with Extra Trees and TF-IDF emerging
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as top-performing models to classify user-reported database-related issues on Stack Overflow,
but it does not consider accuracy in terms of trade-offs with other system qualities (e.g., fairness
or robustness) or its implications for system deployment and operation. Consequently, while
accuracy was a central theme, it was not treated as a system-level non-functional requirement.
This lack of contextualization within the broader framework of non-functional requirements led
to its exclusion based on EC10. On the contrary, let us consider the paper by Biswas and Rajan
[S2]. This paper was not excluded in this phase - it is actually one of those finally included
in our work. The paper explicitly framed accuracy as a system-level quality and linked it to
broader non-functional requirements. Indeed, the paper explores fairness in ML models sourced
from Kaggle. It aims to evaluate bias in these models, investigate its causes, and analyze the
effectiveness and trade-offs of various bias mitigation techniques. By presenting accuracy as a
non-functional requirement with system-level implications, the paper was not excluded and led
to the following phase, which was concerned with the application of the inclusion criteria.

After completing the exclusion criteria, we proceeded with the inclusion criteria. While the
application of these two sets of criteria may be performed simultaneously, we chose to separate
them to ensure a thorough and systematic review process. This approach allowed us to focus first
on eliminating papers that clearly did not meet our basic requirements before concentrating on
those that potentially fit our study’s scope. The inclusion criteria were first assessed by scanning
the title, keywords, abstract, introduction, and conclusions of the papers. In the case these pieces
of information were not sufficient to establish the suitability of a paper, a full read-through of the
entire paper was conducted. The vast majority of the papers analyzed in this stage were removed
as a consequence of IC1 and IC2, as they lacked focus on ML-enabled systems or they tan-
gentially mentioned non-functional requirements. According to our findings, most of the papers
mentioning terms such as “Non-Functional Requirement”, “Non Functional Requirement”, and
“NFR” focused on non-functional requirements of classical software systems, i.e., systems that
do not present any machine learning component. Furthermore, most papers addressing specific
aspects that could, in principle, be connected to ML-enabled systems, e.g., adversarial sampling,
did not explicitly link these aspects to specific non-functional requirements. These papers of-
ten lacked the detailed terminology or focused analysis necessary to contextualize their findings
within the framework of non-functional requirements in ML-enabled systems. For instance, the
paper by Nguyen et al. [52] represents a valid example that explains the impact of IC1 and IC2
to assess the relevance of the primary studies considered in our work. The article proposed an
adversarial sampling technique to generate training samples for API recommendation systems.
However, the paper did not explicitly refer to any specific non-functional requirements in their
reporting. Instead, they focused primarily on the technical aspects of the proposed technique
without addressing the broader non-functional requirements, such as reliability or security, that
this technique could impact. This omission limits the applicability of their findings in the scope
of our work, as it prevents a clear understanding of how the proposed technique addresses or
impacts specific non-functional requirements critical to ML-enabled systems. As a consequence,
it could not be included in our review.

The remaining papers satisfied IC3. As for IC4, papers that satisfied this criterion either
defined a general framework for addressing NFRs across ML-enabled systems or provided a
detailed analysis of NFRs within a specific domain. These papers offered insights into how
NFRs were handled, making them relevant to the study. As an example, let’s consider the paper
by Aminifar et al. [S3]. This article provided a general-purpose framework to optimize accuracy
and privacy, which would be applicable to any ML-enabled systems, independently from the
specific application domain. Similarly, the paper by Hutiri et al. [S4] explores the emergence
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and propagation of biases in on-device ML workflows, emphasizing the impact of design choices
made during development. On-device ML, commonly deployed on resource-constrained IoT
devices, may impact privacy, energy Consumption, and fairness. Both these papers were included
in the study, as they properly reflected the intent of IC4. On the contrary, papers that did not
satisfy IC4 typically mentioned NFRs superficially without grounding them in any meaningful
context. For instance, a paper that briefly referred to “security” without explaining how it applies
to a general or specific domain was excluded.

Overall, the application of the exclusion and inclusion criteria led to the exclusion of 3,054
papers, hence leading to 25 primary studies that were employed in the context of the snowballing
process. This latter step was conducted by scanning the titles of the papers with ingoing or
outgoing references to the primary studies; the papers that were deemed potentially relevant
were then subject to the inclusion criteria to establish their suitability for the study.

The 25 papers passing the inclusion criteria were then subjected to quality assessment, fol-
lowing the procedure described in Section 3.5. As an outcome, 11 papers were finally considered
for inclusion in the study: these papers provided detailed discussions, comprehensive analyses,
and significant insights into non-functional requirements in ML-enabled systems, thereby con-
tributing meaningfully to our understanding of the topic.

At the same time, the limited amount of relevant papers, due to the inherent variability in
terminology used in relevant studies, convinced us to augment the search process with additional
steps. We, therefore, conducted the (1) seed set search described in Section 3.3, which led to
the identification of 111 additional primary studies; and (2) the snowballing search described in
Section 3.4, which contributed with 136 primary studies more. To be included, the papers coming
from these two additional search steps had to satisfy both the exclusion and inclusion criteria,
with key discriminators being IC1 and IC2. Specifically, 99.8% of the papers were excluded
because they did not explicitly link to non-functional requirements within the title, keywords,
abstract, introduction, and conclusions. This stringent application of the criteria was required to
consider a manageable amount of resources and ensured that only papers with a clear focus on
non-functional requirements in ML-enabled systems were considered, thereby maintaining the
relevance and quality of the primary studies included in our review.

The set of 169 papers was then analyzed with a quality assessment process on the full text.
The majority of these papers were excluded due to not meeting the thresholds for Q1 and Q2.
While many papers scored well on Q3, discussing the domain-specific or general-purpose ap-
plicability of non-functional requirements, they lacked either a clear and detailed definition of
NFRs or robust examples and empirical data to substantiate their claims. The application of
these criteria led to the exclusion of 39 articles from the initial set. Summing up the primary
studies identified by using the three different methods, our hybrid systematic literature review
considered a total of 130 papers, which were finally used to address our research questions.

From an operational perspective, the procedures described above were primarily conducted
by the first author of the paper. However, to ensure robustness and soundness, we implemented
a validation phase in which we verified that the papers scanned throughout the process were
accurately assessed for their suitability for the study. More particularly, from the initial set of
3,054 papers extracted through the original search string, i.e., the set of papers coming from the
methodological steps presented in Section 3.2, we retained a sample of 100 papers to be used as
a validation set. Both authors independently reviewed the papers in the validation set, applying
the exclusion/inclusion criteria and quality assessment. They then compared their evaluations on
the individual criteria, finding agreement in 87% of the cases. For the remaining discrepancies,
they engaged in discussions to clarify the rationale behind their differing opinions and reach a
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consensus. Based on the outcome of the discussion, they decided to retain an additional set of 50
papers for a second round of comparison. Although the initial level of agreement was considered
sufficiently high, this second round was conducted to ensure that the previous discussions led
to common evaluation criteria. This step was crucial to verify that the divergences observed in
the first round had been effectively resolved and that both authors were consistently applying
the exclusion/inclusion criteria and quality assessment. This additional round resulted in a full
agreement between the authors, thereby establishing the foundation for the first author to proceed
with the assessment of the entire set of papers. To make the reader aware of the effort required to
conduct the search/analysis process and contribute to the transparency/replicability of our work,
we also estimated the number of person-hours invested in the work. As for the first author, the
estimation is about 850 person-hours; as for the second, it is about 400 person-hours.

4. Analysis of the Results

In this section, we report quantitative and qualitative insights coming from the data extraction
and analysis phase. We first analyze bibliometric data to describe the sample considered in our
research. Afterward, we address the specific research questions of the study.

4.1. Bibliometrics
From the total of 130 primary studies included, most of them (63, 48%) received an overall

quality score of “Mostly”, i.e., they specified the pieces of information required to address our
research questions mostly explicitly. The other 67 primary studies were more implicit and, in-
deed, reached an overall quality score of “Yes” or “Partly”. The primary studies were mostly
retrieved through the seed set search (91, 70%), while the other 27 resources (21%) were identi-
fied by snowballing the seed primary studies identified. Only 11 papers were retrieved through
the systematic literature search and only one additional resource could be identified through the
snowballing process conducted on the set of papers identified with the systematic search. These
considerations further justified our choice of complementing the traditional systematic literature
search with additional instruments.
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More interesting were the insights coming from the publication venues, which are shown
in Figure 2. We observed that the vast majority of the primary studies (110, 85%) appeared in
conference proceedings, with a limited amount of resources published in journals (20, 15%).
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Figures 4 and 5 report the breakdown of the publications by venue. From these figures, we may
provide additional observations on the state of the research in non-functional requirements of
ML-enabled systems. Surprisingly, only a limited amount of primary studies (2) come from the
major requirements engineering conference (RE). Some considerations may explain this result.
First, the emerging nature of the topic implies that much of the foundational and exploratory work
is still being conducted, often appearing first in venues focused on broader software engineering
conferences. In addition, research on non-functional requirements in ML-enabled systems often
intersects with various domains within software engineering, such as machine learning, system
architecture, and human-computer interaction. Consequently, such research may frequently be
published in venues that cover these broader or intersecting areas, where there is a wider audience
that might benefit from these findings. The breakdown of our primary studies seems to prove our
considerations - the most popular venues are ICSE and ESEC/FSE for conferences and TOSEM
for journals. Furthermore, vision papers and survey studies, such as the ones by Köhl et al. [34],
and Habibullah et al. [23], highlight the early stages of this research area and the ongoing efforts
to build a comprehensive understanding of these requirements.

The distribution of primary studies across conferences and journals also suggest that the
research is still at its early stage, with researchers interested in discussing recent advances in
venues that allow discussion and interaction with the research community, i.e., conferences. The
analysis of the amount of papers published on the matter per year confirmed the early nature of
the research area (Figure 3). According to our findings, until 2015, no articles were published,
and from 2015 to 2018, only a few papers were published, while a notably increasing trend could
be found in the last three years. Performing a systematic synthesis of the knowledge collected
so far could provide a relevant boost to the research activities that will be performed in the
next years: our work indeed identifies multiple implications and challenges that the software
engineering research community will be called to address.

4.2. RQ1 - What are the non-functional requirements of ML-enabled software considered by
researchers?

The first goal of our work was to classify the non-functional requirements of machine learning-
enabled systems. In the following section, we report the data synthesis process and the results
achieved.

Data Analysis and Synthesis. Based on the data collected through the data extraction form,
we addressed RQ1 by applying a three-step systematic classification exercise through which we
(i) elicited the non-functional attributes that they aimed to address, (ii) characterized the non-
functional requirements, and (iii) grouped them according to two main classification criteria. In
particular, the three steps were conducted as follows:

• Extraction of Non-Functional Requirements. We analyzed the primary studies to identify
and extract non-functional requirements explicitly mentioned in the papers. This step
involved thorough reading and annotation of the relevant sections discussing the non-
functional requirements. Whenever possible, i.e., when considering the papers that re-
ceived a quality score of “Yes”, the extraction was relatively straightforward as these re-
sources explicitly referred to the non-functional requirements considered. In the other
cases, relevant terms connected to non-functional aspects were extracted and elaborated
for consistency. For example, the primary study [S5] reported terms like “memory prob-
lems” and “battery drain”, which we used to interpret the context of the study and mapped
them to the non-functional requirement named ‘energy consumption’.
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• Naming and Describing Non-Functional Requirements. Each extracted non-functional re-
quirement was assigned a unique name and a detailed description. In this stage, possible
naming inconsistencies that emerged in the previous step were solved. The description was
intended to capture the essence and scope of the requirement as discussed in the primary
studies.

• Mapping to Reference Class. The non-functional requirements were then mapped to high-
level reference classes based on two classification criteria: (1) the non-functional require-
ments must have a significant impact on the high-level reference class; (2) non-functional
requirements sharing similar purposes or characteristics must be grouped together under a
common reference class. For example, non-functional requirements like privacy and secu-
rity were grouped under the ‘Resiliency’ class because they both contribute to the system’s
ability to handle unexpected events and threats.

The names assigned to the classes, the description of each non-functional requirement, and
the classification exercise as a whole, were informed by different sources of the existing body of
knowledge, i.e., by the primary studies collected in this paper, other resources of the state of the
art not directly related to our research goals, and the Systems & Software Quality Requirements
& Evaluation (ISO/EIC 25010).

The process was initially conducted by the first author of the paper, who (1) analyzed the
primary studies to elicit the non-functional attributes considered and (2) provided a preliminary
version of the taxonomy. This preliminary taxonomy aimed to homogenize definitions and clas-
sifications by leveraging existing knowledge and favoring well-established class names whenever
possible, thus providing a more comprehensive and usable taxonomy. The preliminary taxonomy
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was later subject to evaluation. The second author joined the process at this stage, and a discus-
sion was opened on the produced taxonomy. The two authors discussed the consistency of the
classification, as well as the names and descriptions assigned. Modifications were made where
necessary—this occurred in four cases, where some non-functional requirements were grouped
differently, and the names assigned to the classes were adjusted.

Addressing RQ1. In the first place, as a result of this procedure we could identify a total
amount of 31 non-functional requirements. These are shown in Table 3 along with the refer-
ence to the primary studies identifying or defining them. Interestingly, our systematic exercise
could identify not only non-functional requirements that emerged already in previous studies
[23, 24, 27], but also additional categories that were not previously pointed out, i.e., transfer-
ability, cost, accountability, energy consumption, sustainability, capacity, stability, behavioral,
imperceptibility, efficiency, availability and adaptability.

The classification exercise led to the identification of six main classes of non-functional re-
quirements: Table 4 reports, for each class, the set of non-functional requirements belonging to
the class, along with their definition and meaning. The column ‘Meaning’ reports three symbols
explaining whether each non-functional requirement can be considered (1) new with respect to
traditional non-functional requirements previously investigated (‘New’), (2) not new but with al-
tered meaning (‘Altered’), or (3) not new but with the same meaning (‘Same’). More specifically,
we identified the following classes:

Accuracy. The first class contained only the accuracy requirement, namely the degree to which
a model’s predictions match the actual values. This represents a new category of non-functional
requirement that is specific to ML-enabled systems. We considered accuracy as a non-functional
property for two main reasons. In the first place, multiple papers included in our systematic lit-
erature review, e.g., [23, 24, 27], described accuracy as a non-functional requirement, defining
it as the number of correctly predicted data points out of all the data points. As our work aims
at synthesizing the current knowledge available on the matter, we preferred to be conservative
and considered accuracy as reported in the state of the art. In the second place, the definition is
in line with the concept of non-functional requirement, i.e., “a condition that specifies a crite-
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Table 3: Full list of the classified non-functional requirements in ML-enabled systems, along with the reference to the
corresponding primary studies.

NFRs Resources References

Accuracy 104 [S1–S4, S6–S105]

Robustness 65 [S7, S10, S14, S17, S18, S21, S25–S29, S33, S35, S39–S41, S92, S94, S106–S115]

[S1, S42–S47, S52, S55–S57, S59, S62, S75, S77, S80, S84, S85, S88, S89, S91, S116]

[S63–S65, S68, S71, S73, S75, S77, S93, S95, S98, S99, S101, S103, S104, S117, S118]

Fairness 34 [S13, S19, S20, S22, S30, S36–S38, S48, S50, S107, S109, S114, S119–S123]

[S1, S2, S4, S53, S64, S69, S76, S78, S79, S83, S86, S96, S102–S105]

Security 33 [S3, S14, S17, S23, S25, S27, S30–S33, S35, S39, S106, S110–S113, S115]

[S40, S44–S47, S55, S58, S71, S73, S77, S98, S105, S116, S117, S124]

Performance 30 [S8, S11, S12, S14, S18, S21, S23, S28, S31, S37, S38, S106, S112, S113, S123]

[S4, S5, S41–S43, S46, S49–S51, S57, S70, S81, S101, S117, S125]

Behavioral 21 [S10, S15, S24, S25, S32, S35, S41, S52, S107, S113, S114]

[S61–S64, S70, S71, S84, S96, S103, S126]

Interpretability 20 [S9, S17, S30–S32, S40, S50, S60, S70, S72, S76, S78, S79, S113]

[S82, S87, S105, S124, S127, S128]

Reliability 15 [S10, S30, S40, S41, S52, S93, S95, S97, S98, S100, S105, S113, S115, S118, S126]

Explainability 15 [S9, S31, S33, S53, S60, S70, S72, S87, S105, S114, S120, S124, S127–S129]

Safety 14 [S11, S24, S32, S35, S55, S56, S64, S82, S84, S98, S100, S105, S108, S118]

Cost 12 [S8, S18, S30, S45, S51, S52, S62, S67, S68, S82, S88, S130]

Retrainability 12 [S7, S18, S27, S47, S68, S76, S82, S91, S94, S105, S109, S115]

Energy Consumption 10 [S4, S5, S8, S12, S21, S26, S51, S100, S125, S130]

Capacity 10 [S4, S5, S8, S11, S81, S91, S94, S99, S101, S125]

Transferability 10 [S25, S26, S39, S55, S76, S89, S106, S108, S110, S112]

Privacy 9 [S1, S3, S23, S30, S34, S37, S86, S105, S115]

Transparency 8 [S31, S36, S105, S114, S122, S127–S129]

Reusability 6 [S16, S54, S90, S91, S94, S105]

Accountability 5 [S36, S119, S122, S127, S128]

Replaceability 5 [S16, S54, S90, S91, S94]

Scalability 5 [S40, S54, S84, S108, S111]

Sustainability 3 [S51, S99, S100]

Efficiency 3 [S21, S57, S105]

Stability 3 [S26, S40, S105]

Reproducibility 2 [S49, S105]

Maintainability 2 [S61, S105]

Usability 2 [S105, S129]

Imperceptibility 1 [S56]

Ethics 1 [S36]

Flexibility 1 [S115]

Availability 1 [S21]

Adaptability 1 [S26]

Traceability 1 [S105]
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Table 4: Non-Functional Requirements in ML-enabled systems. The ‘Meaning’ column reports whether the non-
functional requirements are ‘new’ (N), i.e., they are specific to ML-enabled systems, are ‘altered’ (A), i.e., their meaning
is different with respect to the definition of the non-functional requirements in non-ML-enabled systems, or are the
‘same’ (S), i.e., their meaning is the same as the non-functional requirements in non-ML-enabled systems.

Cluster NFRs Meaning Definition

Accuracy Accuracy N The degree to which a model’s predictions match the actual values.

Efficiency Performance S The ability of a system to perform actions within defined time or throughput bounds.

Capacity A The amount of space required to store the model and any associated data.

Stability N Degree to which the output of a model varies as a consequence of perturbations to its input.

Scalability A The capability to handle increased workloads by adding resources while maintaining or enhancing model performance.

Maintainability Replaceability N The degree to which a model can be replaced or substituted with another model without significant changes to the
system.

Retrainability N The degree to which a model can be retrained on new data without significant performance loss.

Reproducibility N The degree to which a model’s results can be reproduced by others using different software or hardware.

Transferability N The degree to which a model trained on one data set can be applied to another with similar characteristics.

Reusability A The degree to which a model can be reused in different applications or contexts.

Adaptability A The ability of the model to adapt to changing requirements or environments.

Traceability S The ability to trace work items across the development lifecycle.

Resiliency Security A The degree to which a model and its associated data are protected against unauthorized access, modification, or theft.

Safety A The degree to which a model and its outcomes are safe for humans and the environment.

Privacy A The degree to which a model and its associated data protect individuals’ privacy rights and comply with data protection
regulations.

Robustness A The ability of a model to maintain its performance when faced with uncertainties or adversarial conditions.

Reliability A Degree to which a model is resilient to errors and to variations of the surrounding environment.

Behavioral A The degree to which a model’s outcomes align with requirements and expectations.

Flexibility A The degree to which a model can adapt to input data or environment changes without significant performance degrada-
tion.

Availability A The degree to which a model is operational and accessible when needed, without significant downtime or interruption.

Sustainability Fairness N The degree to which a model produces unbiased predictions and decision-making outcomes across different groups of
individuals.

Ethics N The degree to which a model mitigates potential societal risk.

Accountability N The degree to which individuals or organizations are held responsible for the actions of the model and its outcomes.

Cost A The overall economic means required to develop and maintain an ML-enabled system.

Energy Consumption A The amount of energy required for training and inference of the model and its impact on the systems.

Usability Interpretability N The degree to which a model’s predictions and decision-making process can be explained in terms of causality or
human-understandable concepts.

Imperceptibility S The system’s ability to produce outputs that are indistinguishable from what a human would produce in the same
scenario.

Explainability A The degree to which a model’s predictions can be explained and understood by humans.

Transparency A The degree to which a model’s inner workings and decision-making process can be understood and evaluated by hu-
mans.

rion that may be used to judge the operation of a system rather than specific behaviors” [12]:
as a matter of fact, accuracy does not define constraints on the specific functionality that a sys-
tem should enable, but rather question how the system performs in terms of correctness of the
predictions made. In other terms, accuracy represents an attribute that can be used to judge the
operation of a system rather than its specific behavior, i.e., it is by definition a non-functional
requirement. The class was made isolated because of two main reasons: (1) accuracy repre-
sents the key feature to optimize by ML-enabled systems; (2) the non-functional requirement
cannot be conceptually compared to any other, being “unique”.

Efficiency. This was concerned with the overall performance and effectiveness of ML-enabled
systems. The ISO/IEC 25010 standard includes performance efficiency as one of its main
characteristics, encompassing attributes such as time behavior, resource utilization, and ca-
pacity. As such, we exploited the same reasoning to cluster non-functional requirements such
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as performance, capacity, stability, and scalability, under the “Efficiency” class. While the
definition of performance is the same as the one available for non-ML-enabled systems, we
classified a novel requirement, stability, and altered the meaning of capacity and scalability.
More specifically, stability is a new non-functional requirement for ML-enabled systems due
to the dynamic nature of machine learning models, which can undergo continuous updates and
changes in response to new data. This dynamic aspect requires systems to maintain consis-
tent performance and reliability over time, even as models evolve. The meanings of capacity
and scalability are different for ML-enabled systems compared to traditional systems. In the
context of ML-enabled systems, capacity not only refers to the system’s ability to handle large
volumes of data and numerous concurrent users but also encompasses the system’s capability
to manage the computational demands of inference tasks in terms of storage and deployment.
This includes the ability to process complex models efficiently and to scale resources dynam-
ically as computational requirements fluctuate. Similarly, scalability for ML-enabled systems
involves more than just the traditional scaling of resources to accommodate increased load. It
also includes the ability to scale machine learning models themselves, such as adjusting model
complexity or deploying multiple models to handle different tasks. Scalability in ML-enabled
systems must account for the need to distribute models across multiple nodes and ensure that
inference can be performed efficiently across distributed environments. These additional lay-
ers of complexity necessitate a redefined understanding of capacity and scalability within the
realm of ML-enabled systems.

Maintainability. Maintainability is chosen as a cluster to represent replaceability, retrainabil-
ity, reproducibility, transferability, reusability, traceability and adaptability: it emphasizes the
ability of a system to adapt and evolve over time. All these non-functional requirements are
critical to ensure that the system can be maintained and updated as needed and that it can be
easily adapted to new use cases or environments. All the non-functional requirements in this
cluster, with the only exception of traceability, assume a different meaning with respect to
non-ML-enabled systems. Reusability in ML-enabled systems involves the reuse of machine
learning models and components in different systems. This includes the ability to transfer
knowledge from one model to another, leveraging pre-trained models to reduce development
time and improve performance in new applications. Adaptability refers to the system’s abil-
ity to dynamically adjust to new data and changing conditions. In ML-enabled systems, this
often means the ability to update models with new data to improve accuracy and relevance
over time, as well as the capacity to integrate with new technologies and frameworks as they
emerge. Replaceability is a new requirement that addresses the need to seamlessly replace or
upgrade machine learning models and components without disrupting the overall system func-
tionality. This is crucial in ML-enabled systems where models may need frequent updates or
replacements to stay effective. Retrainability is another new requirement, emphasizing the sys-
tem’s capability to retrain models efficiently as new data becomes available. This ensures that
the system remains accurate and up-to-date, reflecting the latest information and trends. Re-
producibility is critical in ML-enabled systems to ensure that experiments and model training
processes can be reliably repeated with the same results. This is essential for validating model
performance and for iterative development. Finally, transferability refers to the system’s ability
to apply models and knowledge from one domain or task to another. This involves leveraging
transfer learning techniques to adapt pre-trained models for new tasks, improving develop-
ment efficiency and performance. By prioritizing maintainability, designers and developers
can create reliable, efficient, adaptable, flexible, and sustainable systems over the long term.
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Resiliency. Resilience represents robustness, reliability, behavioral, flexibility, security, safety,
privacy, and availability, as it emphasizes the ability of a system to adapt and recover from
adverse events while maintaining its functionality and performance. Robustness, reliability,
and behavioral flexibility are essential to ensure the system can operate in various conditions
and remain responsive to changing circumstances. Security, reliability, and confidentiality are
also critical to ensure the system protects users and stakeholders from harm, including threats
to their physical safety, personal information, and data confidentiality. In this cluster, the def-
inition of all the non-functional requirements required to be adapted for ML-enabled systems.
Specifically, robustness in ML-enabled systems refers to the system’s ability to handle diverse
and potentially unforeseen data inputs and scenarios without failing. This involves ensuring
that models can generalize well to new, unseen data and are resistant to noise and adversarial
inputs. Reliability is crucial for ML-enabled systems to maintain consistent performance over
time. This includes the dependability of the model predictions and the ability to maintain per-
formance despite variations in data quality or environmental conditions. Behavioral refers to
the degree to which a model’s outcomes align with the predefined requirements and expecta-
tions. This involves rigorous validation and testing to confirm that the model works as intended
by the initial requirements. Flexibility refers to the system’s capacity to adapt its behavior dy-
namically in response to changing environments and data patterns. For ML-enabled systems,
this means models must be capable of adjusting their outputs on new inputs to remain effective.
Security in the context of ML-enabled systems involves protecting the integrity of the model
and data from malicious attacks. This includes safeguarding against attacks designed to ma-
nipulate model results and ensuring that the model or associated data is not stolen by attackers.
Safety is a non-functional requirement that ensures the system does not cause harm to users or
the environment. For ML-enabled systems, this involves ensuring that model decisions do not
result in unsafe conditions, particularly in critical applications such as autonomous driving or
healthcare. Privacy is critical in ML-enabled systems to protect users’ personal information.
This involves implementing techniques like differential privacy to ensure that individual data
points cannot be reverse-engineered from the model outputs. Last but not least, availability en-
sures that the ML-enabled system remains accessible and operational, even under high load or
during adverse conditions. This involves designing models and systems that can handle scal-
ability challenges and remain responsive during peak usage times. By prioritizing resilience,
designers and developers can build reliable and secure ML-enabled systems that can withstand
disruptions and threats while maintaining their core functions and services. This altered under-
standing of the non-functional requirements within the resilience cluster highlights the unique
challenges posed by integrating machine learning into complex systems.

Sustainability. Sustainability is chosen as a cluster to represent economic, social, and environ-
mental aspects. It ensures that resources are used efficiently and effectively, reducing the envi-
ronmental impact, energy consumption and financial costs associated with producing the model
and making inferences. Additionally, sustainability is chosen to represent fairness, ethics, and
accountability, as these aspects are critical for ensuring that the system benefits all stakehold-
ers, including marginalized and vulnerable communities, and operates in a way that aligns with
ethical principles and values. The rationale to classify social and ethical concerns under the
“Sustainability” category comes from the increasing recognition that social sustainability is
currently experiencing. For instance, the United Nations included the reduction of inequalities
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among the 17 objectives for sustainable development.12 Researchers have also been arguing
that fairness and ethical concerns should be considered as a form of sustainability. McGuire
et al. [47] advocated that social sustainability refers to multiple dimensions, including pro-
social vs. anti-social affordances. On a similar note, various other researchers [8, 17, 36]
argued to consider social and ethical aspects as sustainability properties. Overall, sustainabil-
ity can be considered a guiding principle for designing and developing efficient, cost-effective
but also equitable, ethical, and accountable systems. When comparing the definition of these
non-functional requirements to those of non-ML-enabled systems, it is worth pointing out that
some were altered to better fit the context of ML-enabled systems, while others represent new
aspects specific to ML-enabled systems. In particular, energy consumption and costs assume
a slightly different meaning when considered in this context. Indeed, the former refers not
only to the energy used during the operation of the system but also to the significant resources
required during the inference of machine learning models. This includes the computational
power needed to make model predictions, which can have a considerable environmental im-
pact. As for the latter, it includes both the financial costs associated with developing, deploy-
ing, and maintaining ML models, and the long-term operational costs. This encompasses costs
related to data storage, processing power, and the need for specialized hardware. The other
non-functional requirements are instead new. Fairness is a new requirement that addresses the
need to ensure that ML-enabled systems operate without bias, providing equitable outcomes
for all users. This includes implementing strategies to mitigate algorithmic bias and ensuring
diverse and representative training data. Ethics refers to the principles guiding the design and
deployment of ML-enabled systems to ensure they operate in a morally responsible manner.
This includes considerations of the potential societal impacts of deploying these technologies.
Finally, accountability involves ensuring that the actions and decisions made by ML-enabled
systems can be traced and audited. This includes implementing mechanisms for tracking data
provenance, model decisions, and providing transparency in how models operate and make
decisions. By incorporating these redefined and new non-functional requirements under the
sustainability cluster, designers and developers can create ML-enabled systems that are not
only efficient and cost-effective but also socially and ethically responsible. This holistic ap-
proach ensures that the systems developed are sustainable in the broadest sense, benefiting the
environment, economy, and society at large.

Usability. This cluster has non-functional requirements with unique definitions because of the
black-box nature of ML-enabled systems - it is similar to the one defined by Habibullah et
al. [23]. More particularly, this class was chosen as the cluster to represent interpretability,
imperceptibility, explainability, and transparency: it is concerned with ensuring that a system
is easy to use and understand for end users, reducing the cognitive load required to interpret
the model’s behavior, and making it more transparent and explainable. In this cluster, some
non-functional requirements are redefined to better fit the context of ML-enabled systems,
while others retain their original meaning, and new requirements are introduced. More partic-
ularly, imperceptibility retained its original meaning, referring to the system’s ability to inte-
grate seamlessly into the user’s workflow without causing disruptions or requiring significant
changes to existing processes. Interpretability is a new requirement that refers to the degree to
which a human can understand the cause of a decision made by a model. This involves making

12The United Nations Goals for Sustainable Development: https://sdgs.un.org/goals.
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the model’s workings understandable to users, which is crucial given the complex and often
opaque nature of machine learning algorithms. Transparency is a non-functional requirement
that, while traditionally associated with characteristics of systems and processes in non-ML
contexts, in ML-enabled systems focuses on providing clear insights into how the model func-
tions, what data it uses, and the logic behind its decision-making process. This includes doc-
umenting the model’s design, training data, and any preprocessing steps, ensuring users can
trace and understand the model’s operations. As for explainability, its meaning is altered to
involve providing users with understandable and actionable explanations of the model’s out-
puts. This goes beyond mere transparency by ensuring that users can comprehend and trust
the decisions made by the system and understand the reasoning behind those decisions. By
incorporating these specific non-functional requirements under the usability class, we address
the unique challenges posed by the black-box nature of ML-enabled systems. This ensures
that such systems are not only effective in their operations but also user-friendly, transparent,
and trustworthy, ultimately enhancing their overall usability and acceptance among end users.

Researchers can use the taxonomy built in the context of our work to have a comprehensive
mapping of the relevant non-functional requirements to optimize when developing ML-enabled
systems, other than understanding the quality and efficiency aspects practitioners should focus
on when releasing machine learning models.
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Figure 6: Distribution of NFRs across ML tasks in ML-enabled systems.

4.2.1. On the non-functional requirement domains
Figure 6 overviews the number of primary studies targeting each ML task extracted. ML tasks

were defined following the conventions used by sources such as Hugging Face.13 As shown, the
most frequent are ‘Computer Vision’ (77), ‘Decision Making’ (31), and ‘Natural Language Pro-
cessing’ (20), while other, less targeted ML tasks pertain to emerging technologies, e.g., ‘Control
Systems Modeling and Prediction’ or ‘Audio’. These insights raise some key ML tasks that re-
searchers have been analyzing in the recent past but also raise contexts where further research

13https://huggingface.co/models
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might be worth focusing on. The much larger amount of primary studies targeting ‘Computer
Vision’ may indicate the critical nature of such ML tasks with respect to the management of non-
functional requirements. This may be due to the nature of the inputs that the ML-enable systems
should consider, i.e., images or videos, which may be the subject of multiple concerns such as ac-
curacy, security, ethics, and privacy—this may potentially emphasize the need for novel methods
to process images and/or deal with non-functional attributes in the field.
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Figure 7: Heatmap of Non-Functional Requirements across domains in ML-enabled systems.

Providing an additional perspective, Figure 7 illustrates a heatmap that shows the relation
between the specific non-functional requirements presented in Table 4 and the corresponding
domains. Each cell in the heatmap contains a numerical value representing the frequency of a
non-functional requirement (indexed by row i) considered within a particular domain (indexed
by column j). Through this visualization, we could first observe that there exist several domains
where the current knowledge seems to be limited: for example, the domains concerned with
‘Finance’, ‘IoT’, and ‘Cloud’, and ‘Edge Devices’ were the least targeted ones, which possibly
suggests that further research might consider the impact of non-functional requirements in these
contexts. As expected, accuracy represents the property more frequently addressed in all the
domains. Nonetheless, some non-functional requirements like robustness, performance, fairness,
and security have been targeted much more than others, possibly indicating that researchers
perceived these as essential properties to investigate. At the same time, Figure 7 could further
highlight the non-functional requirements that were somehow neglected so far: for instance, all
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the properties concerned with maintainability were found to be mostly unexplored independently
from the domains considered.

In addition, Figure 7 helps highlight potential trade-offs among multiple non-functional re-
quirements. In particular, the figure shows that in certain domains, multiple non-functional re-
quirements are considered together more frequently. This suggests that addressing one non-
functional requirement often necessitates compromises with others due to competing priorities
and resource limitations. For instance, considering the ‘Healthcare’ domain, we observed that
accuracy coincides with fairness, privacy, and security, suggesting that these aspects are all criti-
cal in this domain. Consequently, prioritizing high accuracy may impact the resources and focus
available to ensure fairness, privacy, and security, or vice versa. We believe that such a visualiza-
tion provides readers with a deeper understanding of the non-functional requirements to consider
when addressing specific domains and, more importantly, of the potential trade-offs to investigate
in order to balance multiple non-functional requirements effectively.

 Answer to RQ1. As a result of RQ1, we could identify a total of 31 relevant non-functional
attributes, classified according to six main categories. We also identified the most frequent
ML tasks and ML domains where these non-functional attributes have been investigated. The
resulting taxonomy maps the current knowledge on the matter and provides insights into the
research areas that may be worth exploring in the future.

4.3. RQ2 - What are the challenges for ML-enabled systems specifically relating to non-functional
requirements?

The second research question focuses on identifying the challenges faced by ML-enabled
systems specifically relating to non-functional requirements. In the following, we summarize the
data analysis process and results that address RQ2.

Data Analysis and Synthesis. Similarly to the previous research question, we addressed
RQ2 by means of a three-step systematic classification exercise that aimed at (i) extracting the
challenges for ML-enabled systems specifically relating to non-functional requirements, as re-
ported in the primary studies, (ii) synthesizing them by grouping similar challenges, and (iii)
refining the groups initially produced. In this respect, it is worth remarking that we deliberately
did not include all challenges faced by ML-enabled systems but focused solely on those that di-
rectly impact the achievement, management, or optimization of specific NFRs. These challenges
were derived exclusively from the primary studies selected as part of the systematic literature
review, ensuring that all included challenges are traceable to evidence provided in the reviewed
studies. Consequently, challenges that are not discussed in these papers, even if potentially rele-
vant to NFRs, could not be included. The three steps were conducted as follows:

• Data Extraction. For each primary study, we extracted information about the nature of the
challenges for ML-enabled systems specifically relating to NFRs, their underlying causes,
potential impacts, and any specific examples or case studies provided. In this respect, it is
worth remarking that only challenges explicitly linked to NFRs were included in our anal-
ysis. While the primary studies may discuss a broader range of issues, our focus remained
on extracting and analyzing challenges directly associated with NFRs. For example, in
studies addressing algorithmic discrimination, we analyzed challenges such as mitigating
disparate impacts or ensuring equitable model performance—both of which are closely
tied to the NFRs of fairness and accuracy. Conversely, challenges mentioned in the papers
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Table 5: Challenges Related to Non-Functional Requirements in ML-Enabled Systems.

Cluster Challenge References

Efficiency E.1 - Dealing with High Latency [S8, S12, S21, S57, S94, S101]

E.2 - Dealing with Space [S4, S5, S8, S11, S81, S99, S101, S125]

E.3 - Managing Simulation for Inference [S4, S5, S81, S125]

Maintainability M.1 - Increasing Model Reproducibility [S49]

M.2 - Increasing Model Decomposition and Reuse [S16, S49, S54, S90, S91, S94]

Resiliency R.1 - Resilience to Adversarial Attacks [S28, S29, S56, S73, S98, S108]

R.2 - Exploiting the Sensitivity of Adversarial Attacks [S17, S28, S29, S85, S110, S111, S116]

R.3 - Security Verification of Pre-Trained Models [S25, S46, S89, S106, S112]

R.4 - Resilience to Intellectual Property Theft [S23, S106]

R.5 - Optimal Post-Deployment Simulation [S41, S42, S68, S82, S84, S92, S93]

R.6 - Preserving Privacy in Machine Learning-Enabled Systems [S3, S34]

Sustainability S.1 - Dealing with Algorithmic Discrimination [S2, S20, S22, S37, S38, S102, S103]

S.2 - Model Accountability [S96, S119, S122]

S.3 - Fairness Analytics [S1, S34, S48, S64, S69, S76, S78, S83, S86, S104, S119]

S.4 - Improving Sustainability Benchmarks [S97, S122]

S.5 - Reducing Energy Cost [S5, S8, S12, S26, S30, S51, S52, S81, S99, S100, S130]

S.6 - Increasing the Practitioner’s Awareness of Sustainability [S5, S51, S125]

Usability Usability [S8, S9, S31, S32, S60, S70, S72, S87, S113, S120, S124]

Cross-cutting challenges C.1 - Dealing with Internal Errors [S5, S8, S27, S62, S63, S88]

C.2 - Diagnosing the Internal Behavior of Models [S6, S10, S24, S33, S40, S59, S66, S67, S74, S75, S75, S114]

C.3 - Context-based Trade-off Identification [S34, S37, S49, S49, S50, S126]

C.4 - Prioritizing and Balancing Non-Functional Requirements [S1, S4, S5, S11, S32, S37, S38, S51, S64, S86, S100, S104]

C.5 - Integration and Interaction of ML Models [S61, S65, S70, S95, S118]

C.6 - Improving Practitioners’ Knowledge [S69, S105, S129, S130]

C.7 - Software Analytics for Non-Functional Requirement Assessment [S12, S13, S26, S120, S121, S121]

C.8 - Improving the Generalizability of Existing Automated Approaches [S19, S36, S50, S53]

but unrelated to NFRs, such as purely technical optimizations without a clear NFR con-
nection, were excluded. Similarly, we excluded generic ML system challenges that do not
intersect with NFRs. For instance, issues like hyperparameter tuning or general conver-
gence optimization were excluded unless the primary studies explicitly linked these issues
to their impact on a specific NFR.

• Synthesis of Challenges. We synthesized the extracted data by grouping similar challenges
together and identifying common themes. This process involved analyzing the context in
which each challenge was presented and understanding the broader implications of the
challenges described for ML-enabled systems.

• Validation and Refinement. The synthesized challenges were initially extracted by the first
author of the paper. Subsequently, these challenges underwent a review and validation
process through discussions with the second author. These discussions aimed to ensure
consistency and accuracy in the categorization and description of the challenges. During
this stage, only minor modifications were made to the names and descriptions to enhance
clarity and coherence.

Addressing RQ2. Our work identified 26 software engineering challenges for our research
community summarized in Table 5. First and foremost, it is worth pointing out that most of the
challenges identified pertained to the use/integration of neural networks within more complex
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software systems. This was somehow expected, as deep learning has become the most widely
employed form of machine learning to empower the capabilities of traditional software systems
[21]. In the second place, accuracy represents a cross-cutting concern, i.e., all the challenges
identified have implications for the accuracy of ML-enabled systems. For this reason, we pre-
ferred to discuss accuracy while presenting the challenges connected to the other classes of NFRs
identified in RQ1. The list of challenges is presented below.

ü Efficiency (E): In terms of the overall performance and effectiveness of ML-enabled systems,
we could elicit three major challenges, which are connected to internal errors, high latency,
and memory issues. Specifically:

• Challenge E.1 - Dealing with High Latency [S8, S12, S21, S57, S94, S101]. This
challenge is connected to performance requirements, hence affecting the efficiency of
ML-enabled systems.

Nature of the Challenge. Dealing with high latency in ML-enabled systems, particularly
in neural networks, is a significant challenge. This latency can arise from various design
choices and optimization strategies that aim to improve accuracy but may inadvertently
increase processing time.

Possible Underlying Causes. Multiple design choices related to hyper-parameter tuning,
model optimization, and model architecture can affect the overall efficiency of neural
networks. These decisions, while sometimes leading to increased accuracy, can result in
higher latency. Additionally, the computational efficiency of DNN systems is very sen-
sitive to even slightly different inputs. Changes to the inputs may result in significantly
higher computational demand, deteriorating the overall models’ efficiency.

Potential Impacts: High latency can severely impact the usability and performance of
ML-enabled systems, leading to slower response times and decreased user satisfaction.
It can also affect the real-time processing capabilities of the system, making it unsuitable
for applications requiring quick decision-making.

Target Research: Researchers in the fields of software analytics, software architecture,
and software quality and optimization can help address this challenge by developing an-
alytical and code quality tools aimed at finding the right compromise between accuracy
and efficiency. This includes conducting preliminary studies to identify the best con-
figurations for specific use cases and optimizing the computational efficiency of neural
networks to handle varying input conditions effectively.

• Challenge E.2 - Dealing with Space [S4, S5, S8, S11, S81, S99, S101, S125]. This
challenge affects both performance and capacity of ML-enabled systems.

Nature of the Challenge. A critical challenge identified is the space required by machine
learning models, particularly neural network-based solutions. These models can be very
large, leading to significant memory issues.

Possible Underlying Causes. The large size of neural network models is particularly
relevant in contexts like edge computing and IoT. Deploying these large models on such
devices often results in memory constraints that can affect overall system performance.

Potential Impacts: Memory constraints caused by large models can lead to degraded
performance, reduced responsiveness, and the inability to deploy models on resource-
limited devices such as those used in edge computing and IoT domains.
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Target Research: Designers should apply policies and strategies to build reduced mod-
els before deploying them on devices to mitigate memory issues and improve overall
performance. This involves leveraging techniques in the emerging field of tiny machine
learning [38], which combines hardware, algorithms, and software to support on-device
sensor data analytics at low power. While some initial efforts have been made in the ar-
tificial intelligence research community (e.g., [18, 63]), there is a notable lack of knowl-
edge and research from the software engineering perspective. Further research is needed
to develop efficient and scalable solutions to this challenge, ensuring that ML-enabled
systems can operate effectively in resource-constrained domains.

• Challenge E.3 - Managing Simulation for Inference [S4, S5, S81, S125]. This chal-
lenge impacts performance requirements of ML-enabled systems.

Nature of the Challenge. The selection of devices for deploying an ML model can sig-
nificantly impact its performance, particularly for edge models used in ML inference,
where latency and power consumption are critical factors. Traditional methods and ex-
isting benchmarks often fail to provide a comprehensive and reproducible evaluation of
these non-functional requirements across various edge platforms and ML models.

Possible Underlying Causes. This challenge is further complicated by the diversity of
edge hardware and associated software toolkits, which necessitate benchmarks that can
handle different configurations and optimizations. The lack of standardized benchmarks
that accommodate the wide range of model and platform combinations makes it difficult
to evaluate performance consistently.

Potential Impacts: These challenges affect ML-enabled systems by making it difficult
to evaluate a wide range of model and platform combinations. This complicates devel-
opers’ ability to make informed decisions for specific deployment scenarios, potentially
leading to suboptimal performance, increased latency, or excessive power consumption,
especially on edge or IoT devices with hardware limitations.

Target Research: Researchers in the fields of software analysis and software quality
should develop tools that simulate model efficiency before deployment in physical do-
mains. This is especially crucial for edge or IoT devices, where balancing competing
objectives, such as detection accuracy, frame processing rate, and energy consumption,
is particularly challenging. By focusing on creating robust simulation tools, researchers
can help developers better evaluate and optimize ML models for specific hardware con-
figurations, ultimately improving the deployment and performance of ML-enabled sys-
tems in resource-constrained domains.

ü Maintainability (M): When it turns to the ability of ML-enabled systems to be adapted and
evolved over time, we could elicit two main challenges connected to model reproducibility
and model decomposition and reuse.

• Challenge M.1 - Increasing Model Reproducibility [S49]. It revolves around the clus-
ters of “Accuracy” and “Maintainability”, with accuracy and reproducibility impacting
ML-enabled systems:

Nature of the Challenge. ML-enabled systems based on deep learning models are known
to be complex and difficult to reproduce accurately. Ensuring that these models can be
reliably reproduced is a significant challenge in the field.
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Possible Underlying Causes. Reproducing deep learning models can be challenging
because of randomness, which can affect the behavior of the algorithms used. Addi-
tionally, hardware non-determinism, such as that present in graphics processing units
(GPUs), can further complicate the reproducibility of deep learning models.

Potential Impacts: The inability to accurately reproduce deep learning models can lead
to inconsistent results, making it difficult to validate and verify model performance. This
inconsistency undermines the trust in model outputs and hinders the ability to build upon
previous research or deploy models in production environments with confidence.

Target Research: Researchers in the filed of software quality and software testing should
focus on designing mechanisms that support the verification of deep learning mod-
els. This can be achieved, for instance, by injecting elements of randomness and non-
determinism to observe how the system behaves under those conditions. By understand-
ing and controlling for these variables, researchers can improve the reproducibility of
deep learning models, ensuring that they produce consistent and reliable results across
different runs and hardware configurations. This will enhance the reliability and trust-
worthiness of ML-enabled systems in practical applications.

• Challenge M.2 - Increasing Model Decomposition and Reuse [S16, S49, S54, S90,
S91, S94]. This challenge affects non-functional requirements such as replaceability,
adaptability, and reproducibility of ML-enabled systems:

Nature of the Challenge. When building and improving ML-enabled systems based on
deep learning models, there is the need to reuse parts of previously constructed models,
which is essential for maintaining and evolving models efficiently.

Possible Underlying Causes. This challenge arises when attempting to replace poten-
tially defective parts with others or when selectively reusing components of a model.
Identifying the parts responsible for each output class or module in the models can be
difficult due to the intricate and often opaque nature of deep learning architectures. Ad-
ditionally, the properties of randomness and non-determinism in both software and hard-
ware components further complicate this process.

Potential Impacts: The inability to effectively decompose and reuse model components
can lead to inefficiencies in model development and maintenance. It can also result in
increased costs and longer development times, as engineers may need to rebuild mod-
els from scratch rather than reusing existing components. Furthermore, it hampers the
flexibility to quickly adapt models to new tasks or improve specific functionalities.

Target Research: Researchers should focus on developing methods for component ver-
ification and identifying reusable components through program slicing and refactoring.
These approaches can help ML engineers accurately extract parts of models for reuse
and replace defective or outdated components efficiently. By improving the understand-
ing of the sources of variability and non-determinism, and enhancing reproducibility,
it becomes easier to decompose models into reusable units. This not only increases
the efficiency of model development and maintenance but also ensures that ML-enabled
systems can be more easily and reliably updated and adapted to meet new requirements.

ü Resiliency (R): Improving machine learning models’ universal robustness and security presents
key issues [S44]. This was the class of non-functional requirements where we identified more
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challenges (7); these were connected to various aspects such as adversarial attacks, theft of
model and intellectual property, attack and defense of models, repairing internal models, post-
deploy issues, preserving privacy, and vulnerability transferability.

• Challenge R.1 - Resilience to Adversarial Attacks [S28, S29, S56, S73, S98, S108].
This challenge impacts “Accuracy” and “Resiliency”, particularly concerning accuracy,
robustness, and security for ML-enabled systems:

Nature of the Challenge. Machine learning models, particularly deep neural networks,
are vulnerable to adversarial attacks. These attacks manipulate input data to cause the
neural network to produce incorrect outputs, significantly impacting the model’s accu-
racy and overall robustness.

Possible Underlying Causes. Different types of adversarial attacks can be targeted or
untargeted and can be carried out through various techniques such as adversarial exam-
ples [66], adversarial perturbation [7], poisoned data [28], and backdoor samples [22].
These attacks exploit vulnerabilities in the model, leading to incorrect predictions and
reducing the model’s reliability.

Potential Impacts: Adversarial attacks can severely degrade the performance and reli-
ability of ML-enabled systems. They can cause models to make erroneous decisions,
which in critical applications such as autonomous driving, healthcare, or security sys-
tems, could lead to catastrophic consequences. This challenge emphasizes the need for
robust defenses and improved resilience to maintain system integrity under attack.

Target Research: Researchers in the field of software testing and software security
should focus on developing instruments that can design perturbations to generate ad-
versarial examples for different machine learning models, especially in computer vision
problems. These tools would help practitioners understand how models can be affected
by vulnerabilities and enhance methods to defend against adversarial attacks. Addi-
tionally, the focus should be on the verification and validation of ML-enabled systems.
While the artificial intelligence community has targeted the security perspective by de-
veloping new algorithms and techniques [37, 70], complementary software engineering
research could propose novel verification and validation approaches. These approaches
would improve the strategies and policies used by practitioners to test for security, ulti-
mately enhancing system robustness and reliability against adversarial attacks.

• Challenge R.2 - Exploiting the Sensitivity of Adversarial Attacks [S17, S28, S29,
S85, S110, S111, S116]. This challenge focuses on non-functional aspects related to
security, robustness, and availability of ML-enabled systems:

Nature of the Challenge. A complementary perspective to dealing with adversarial at-
tacks is understanding the sensitivity of certain adversarial attacks to input distortions
and how this sensitivity can be exploited to enhance the security, robustness, and avail-
ability of machine learning models.

Possible Underlying Causes. In computer vision applications, attacks made through
non-additive noise or geometric morphing can cause significant security concerns. These
attacks are sensitive to input distortions, which means that automatic correction instru-
ments could potentially distort the malicious inputs, thereby mitigating their effects on
the machine learning model.
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Potential Impacts: The ability to exploit the sensitivity of adversarial attacks to distor-
tions can enhance the security and robustness of ML models, making them more resistant
to adversarial manipulation. This can reduce the risk of incorrect model outputs due to
malicious attacks and improve the reliability and availability of ML-enabled systems.

Target Research: Researchers in the broad areas of software testing and software security
should focus on developing techniques that can handle perturbations not only occurring
naturally in the physical environment but also those generated maliciously by adversar-
ial attacks. These perturbations are typically stealthy and undetectable, reducing the
flexibility and behavioral robustness of deep neural networks. Characterizing these per-
turbations is a crucial first step for researchers in empirical software engineering and
automatic program repair. By understanding the nature of these adversarial perturba-
tions, researchers can develop methods to automatically correct or distort the malicious
inputs, thereby enhancing the overall security and robustness of machine learning mod-
els against adversarial attacks.

• Challenge R.3 - Security Verification of Pre-Trained Models [S25, S46, S89, S106,
S112]. This challenge revolves around the non-functional related to security and privacy
of ML-enabled systems:

Nature of the Challenge. Pre-trained models can be highly beneficial as they reduce the
computational burden of training complex deep learning models through transferability.
However, they are susceptible to security vulnerabilities due to dataset displacement and
the potential for malicious code or exploitation.

Possible Underlying Causes. The displacement of the dataset used for pre-training and
the potential inclusion of malicious code during pre-training can introduce security risks
in pre-trained models. These vulnerabilities can compromise the overall security of the
ML-enabled system.

Potential Impacts: Using pre-trained models without proper security verification can
lead to the deployment of models that are vulnerable to attacks, potentially resulting in
compromised system integrity and performance. This can have severe consequences,
especially in critical applications where security is paramount.

Target Research: Research in the area mainly targets software analytics, software qual-
ity, and verification and validation researchers. At first, research should focus on devel-
oping software analytics instruments that can provide practitioners with security insights
and best practices for selecting the most appropriate pre-trained models to avoid security
concerns. Additionally, the definition of design practices for developing and retraining
security-aware fine-tuned models is crucial. Existing research highlights the need for
tools and methodologies that can assess the security risks of pre-trained models and en-
sure their reliability. Software engineering researchers may contribute significantly to
addressing these challenges by developing and implementing security verification pro-
cesses for pre-trained models, thus enhancing their safety and robustness in practical
applications.

• Challenge R.4 - Resilience to Intellectual Property Theft [S23, S106]. This challenge
mostly affects privacy, robustness and safety of ML-enabled systems:

Nature of the Challenge. ML-enabled systems based on neural networks are vulnera-
ble to data breaches and unauthorized access to sensitive data due to training attacks.
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These attacks can involve malicious manipulation of training data [68], undermining the
robustness, safety, and privacy of the system.

Possible Underlying Causes. Training attacks, which target the data used to train ma-
chine learning models, can lead to unauthorized access and intellectual property theft.
These attacks exploit weaknesses in the security protocols of ML-enabled systems, par-
ticularly during the training phase.

Potential Impacts: Such vulnerabilities can result in the theft of proprietary algorithms
and sensitive data, causing significant financial and reputational damage. It can also
lead to the unauthorized use or modification of models, compromising their integrity
and effectiveness.

Target Research: According to existing research, there is limited knowledge on securing
machine learning models against these types of attacks. Greater attention should be paid
to strengthening security protocols. While this issue primarily concerns researchers in
the field of networks and security, the software engineering research community can
also contribute by defining security best practices that protect models from intellectual
property theft. This is particularly crucial for edge devices and IoT systems, where
the risk of unauthorized access is higher [75]. By developing robust security measures
and protocols, software engineers can help ensure that machine learning models are
safeguarded against intellectual property theft, thereby enhancing the overall resilience
and trustworthiness of ML-enabled systems.

• Challenge R.5 - Optimal Post-Deployment Simulation [S41, S42, S68, S82, S84, S92,
S93]. This challenge impacts both robustness and safety of ML-enabled systems:

Nature of the Challenge. While some threats to resiliency might be managed during de-
velopment, additional challenges arise at the deployment stage. Machine learning mod-
els might not work as expected when deployed, which can deteriorate the robustness,
safety, and reliability of the system.

Possible Underlying Causes. The primary issue is the difficulty in understanding how the
model will perform in real-world scenarios. Factors such as diverse environmental con-
ditions, varied input data, and unforeseen operational challenges can impact the model’s
performance post-deployment. This challenge has been noted in specific contexts, such
as audio applications, but it can affect any kind of ML solution.

Potential Impacts: Unexpected performance issues post-deployment can lead to failures
in critical applications, potentially causing significant harm or financial loss. It can also
reduce user trust and system reliability, making it crucial to address these challenges to
ensure the system functions correctly in real-world conditions.

Target Research: Research has identified post-deployment simulations as a complemen-
tary instrument to traditional software testing [58]. These simulations involve the defini-
tion of agent-based models that can (i) simulate the environment where the ML-enabled
system would operate and (ii) verify the system against a wide range of simulated in-
puts. Such simulations can help in understanding and predicting the model’s behavior in
real-case scenarios, thus enhancing its robustness, safety, and reliability. Researchers in
the fields of verification and validation and machine learning for software engineering
should focus on developing and refining these simulation techniques to address post-
deployment challenges effectively. By doing so, they can contribute to creating more
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resilient and reliable ML-enabled systems that perform consistently in real-world appli-
cations.

• Challenge R.6 - Preserving Privacy in Machine Learning-Enabled Systems [S3,
S34]. Non-functional requirements related to security and privacy for ML-enabled sys-
tems are impacted by this challenge:

Nature of the Challenge. The challenge concerns the development of privacy-preserving
deep neural networks and machine learning systems. This involves creating algorithms
that can operate securely on distributed data without compromising sensitive information
about the data subjects, while allowing users to delete their data at any time.

Possible Underlying Causes. Ensuring privacy in ML-enabled systems requires strate-
gies that protect private data during training and inference processes. The challenge lies
in developing methods that allow models to learn from data without directly accessing or
storing sensitive information, which includes data encryption, anonymization, federated
learning, and differential privacy techniques.

Potential Impacts: Failing to preserve privacy can lead to data breaches and unauthorized
access to sensitive information, undermining user trust and violating data protection reg-
ulations. Privacy-preserving methods are crucial for maintaining the privacy, security,
and protection of personal data while ensuring the accuracy of the models.

Target Research: This challenge targets multiple software engineering fields, from soft-
ware quality to software architecture. Researchers need to focus on deepening the cur-
rent knowledge of data encryption, anonymization techniques, federated learning, and
differential privacy. These strategies are essential for training models without sacrificing
accuracy while ensuring the privacy, security, and protection of private data. By advanc-
ing these techniques, the software engineering community can contribute to developing
robust privacy-preserving ML-enabled systems that maintain user trust and comply with
data protection standards.

ü Sustainability (S): As for the challenges in this category, we could observe that most of the
available literature focused on ethics and fairness, somehow neglecting other perspectives of
sustainability. More particularly, we identified six main challenges connected to algorithmic
discrimination, model accountability, fairness metrics, low-quality datasets, energy cost, en-
ergy and performance aware trade-offs, and generalizability of existing solutions.

• Challenge S.1 - Dealing with Algorithmic Discrimination [S2, S20, S22, S37, S38,
S102, S103]. This challenge affects “Accuracy” and “Sustainability” and in particular
accuracy and fairness of ML-enabled systems:

Nature of the Challenge. Improving performance, accuracy, and fairness simultane-
ously remains a significant challenge for researchers. Existing methods for generating
discriminatory instances often fail to produce realistic samples. The primary concern is
studying and mitigating the impact of disparate results, offensive labeling, and uneven
algorithmic error rates in data-driven applications.

Possible Underlying Causes. The root causes of algorithmic discrimination include bi-
ases present in training data, model design, and deployment contexts. Discrimination
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can occur during the pre-processing phase, where data is prepared for model training,
leading to biased outcomes that favor certain groups over others.

Potential Impacts: Algorithmic discrimination can lead to unfair and biased outcomes,
reducing the trustworthiness and ethical integrity of ML systems. This can have severe
societal impacts, particularly in applications like hiring, lending, and law enforcement,
where biased algorithms can perpetuate and amplify existing inequalities.

Target Research: The primary studies highlighted the importance of addressing algorith-
mic discrimination, especially during the pre-processing phase, to improve the trade-off
between fairness and performance in ML software. The software engineering research
community has made some strides in this area (e.g., [S114, S119]), but further research
is necessary. Focus areas include software analytics and verification and validation,
which can provide tools and methodologies to detect and mitigate biases, ensuring more
equitable and fair ML-enabled systems. By advancing these research areas, the com-
munity can develop robust methods to address algorithmic discrimination effectively,
contributing to the ethical deployment of ML technologies.

• Challenge S.2 - Model Accountability [S96, S119, S122]. This challenge mostly
affects “Accuracy” and “Sustainability”, particularly touching non-functional require-
ments concerning accuracy, fairness, accountability, and ethics of ML-enabled systems:

Nature of the Challenge. The term ‘accountability’ refers to the model’s ability to pro-
vide clear explanations of its decisions, its transparency in how it has been trained and
makes decisions, and its ability to allow users to provide feedback or challenge its de-
cisions. Ensuring model accountability involves making the decision-making process
understandable and transparent, which is key for ethics and fairness.

Possible Underlying Causes. The underlying causes of the lack of model accountability
include complex and opaque model architectures, insufficient documentation of training
processes, and the absence of mechanisms for users to query or challenge decisions.
These issues are compounded by the rapid development and deployment cycles of ML
systems, which often prioritize performance over transparency.

Potential Impacts: Without accountability, ML-enabled systems can make decisions that
are difficult to understand or explain, leading to mistrust and potential misuse. This
can have significant ethical implications, especially in critical areas such as healthcare,
criminal justice, and finance, where decisions can significantly impact individuals’ lives.

Target Research: The primary studies considered in our work emphasized the impor-
tance of focusing more effort on model accountability to ensure the ethical and fair de-
ployment of ML systems. The research should prioritize the development of verification
and validation instruments that allow practitioners to verify how accountable their sys-
tems actually are. For instance, decision-making frameworks can serve as ideal tools to
assess the level of accountability of machine learning models. By focusing on these ver-
ification and validation processes, researchers and practitioners can ensure that models
are not only accurate but also transparent and responsive to user feedback, thus fostering
trust and ethical integrity in ML-enabled systems.

• Challenge S.3 - Fairness Analytics [S1, S34, S48, S64, S69, S76, S78, S83, S86, S104,
S119]. This challenge impacts on both “Accuracy” and “Sustainability”, and in partic-
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ular non-functional requirements concerning accuracy, fairness, and accountability of
ML-enabled systems:

Nature of the Challenge. Fairness analytics involves defining metric toolkits that support
practitioners in diagnosing fairness during the development of ML-enabled systems. The
challenge lies in creating tools that help identify and measure fairness-related issues
early in the development process. However, fairness should not be considered a non-
functional requirement in isolation but rather as an integral part of trade-off analyses.

Possible Underlying Causes. The primary cause of this challenge is the inherent com-
plexity of balancing fairness with other competing requirements such as accuracy, pri-
vacy, and accountability. Existing tools and metrics often lack the capability to provide
a comprehensive analysis that considers these trade-offs simultaneously. The dynamic
and context-dependent nature of fairness further complicates the development of univer-
sal metrics and toolkits.

Potential Impacts: If fairness is not adequately addressed, ML-enabled systems can
perpetuate biases and inequalities, leading to unfair and discriminatory outcomes. This
can erode trust in the system, reduce its acceptance and reliability, and cause harm to
individuals and communities.

Target Research: The literature calls for novel metrics that provide insights into the
trade-offs between fairness and other critical non-functional requirements such as ac-
curacy, privacy, and accountability, as well as combinations of these factors. The re-
search highlights the need for diagnosis and multi-objective optimization of data-driven
applications across various stages of development, from requirements engineering to
verification and validation. To address these challenges, researchers should focus on
developing comprehensive metric toolkits that can diagnose fairness issues and provide
multi-objective optimization solutions. These toolkits should be integrated into the de-
velopment workflow to ensure that fairness is considered alongside other non-functional
requirements from the outset. By doing so, practitioners can make informed decisions
that balance fairness with other critical system attributes, leading to more equitable and
trustworthy ML-enabled systems.

• Challenge S.4 - Improving Sustainability Benchmarks [S97, S122]. Such a challenge
may impact various aspects, including accuracy, fairness, and accountability of ML-
enabled systems:

Nature of the Challenge. Improving sustainability benchmarks involves creating high-
quality datasets that assist in developing sustainable ML applications. The challenge is
to develop datasets that enable comprehensive cross-domain and cross-sectional analysis
while maintaining high standards of fairness and accountability.

Possible Underlying Causes. The primary cause of this challenge is the prevalence of
low-quality datasets that can exacerbate issues related to discrimination, fairness, and ac-
countability. Low-quality datasets often fail to represent diverse populations adequately,
leading to biased training and evaluation of machine learning models. Additionally, the
need for specialized datasets in certain application domains, such as image processing,
further complicates the creation of comprehensive benchmarks.

Potential Impacts: Low-quality benchmark datasets can lead to the development of ML
systems that are biased and unreliable. This can negatively impact the fairness and
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accountability of these systems, leading to discriminatory outcomes and reducing trust
in the technology. Furthermore, high-quality benchmark datasets may be essential to
ensure that ML models are trained and evaluated in a way that is fair, accurate, and
representative of diverse populations.

Target Research: Current research has highlighted the need for improved benchmark
datasets to create sustainable ML applications. Low-quality datasets are more likely to
discriminate against individuals in the dataset and worsen fairness and accountability
attributes. Therefore, there is a pressing need for high-quality datasets that enable au-
tomated pose, illumination, and expression (PIE) analysis in image processing applica-
tions. Additionally, datasets that present large and diverse information on minorities are
crucial for more effective training of ML systems. Researchers should focus on devel-
oping these high-quality datasets by ensuring they cover diverse populations and various
domains comprehensively. This involves collaborative efforts across different fields and
leveraging advanced data collection and annotation techniques to create benchmarks that
truly reflect the complexities and nuances of real-world data. By improving the quality
and diversity of benchmark datasets, the research community can enhance the sustain-
ability, fairness, and accountability of ML-enabled systems, ultimately leading to more
robust and trustworthy applications.

• Challenge S.5 - Reducing Energy Cost [S5, S8, S12, S26, S30, S51, S52, S81, S99,
S100, S130]. As the name of the challenge suggests, it impacts both energy consumption
and cost of ML-enabled systems:

Nature of the Challenge. Reducing the energy and computational costs of deep neural
networks is a critical challenge. These systems often require substantial energy and fi-
nancial resources, leading to increased CO2 emissions and memory consumption during
both the training and post-release phases.

Possible Underlying Causes. Deep neural networks are inherently resource-intensive
due to their complex architectures and large training datasets. The significant compu-
tational power needed for training these models results in high energy consumption.
Additionally, post-deployment phases, especially on edge and IoT devices, exacerbate
energy consumption issues due to the need for continuous processing and inference.

Potential Impacts: High energy and computational costs can limit the scalability and
deployment of ML-enabled systems, particularly in edge and IoT environments where
resources are constrained. This not only increases operational costs but also has a sig-
nificant environmental impact due to higher CO2 emissions. Moreover, it can lead to
increased memory consumption, affecting their efficiency and sustainability.

Target Research: This challenge may involve researchers in the board fields of empirical
software engineering, software quality and architecture, and machine learning engineer-
ing. The former may be involved in assessing the impact of different AI containerization
strategies on energy consumption and memory utilization. By empirically evaluating
these strategies, it is possible to identify methods that minimize energy usage while
maintaining performance. Researchers in software quality and architecture may focus
on balancing the trade-offs between training accuracy and post-deployment energy con-
sumption. This includes optimizing model architectures and developing energy-efficient
training techniques. Finally, machine learning engineering researchers may be specif-
ically looking at the rising field of tiny machine learning, which combines hardware,
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algorithms, and software to support on-device sensor data analytics at low power. This
field aims to create efficient ML models that can operate on resource-constrained devices
without compromising performance.

• Challenge S.6 - Increasing the Practitioner’s Awareness of Sustainability [S5, S51,
S125]. This challenge affects non-functional requirements concerning energy consump-
tion and cost of ML-enabled systems:

Nature of the Challenge. Increasing practitioners’ awareness regarding sustainability
concerns is a critical challenge identified in our literature review. This issue is especially
relevant to energy consumption, which is a significant concern in today’s environmen-
tally conscious world. The challenge lies in making developers aware of the trade-offs
between performance and sustainability.

Possible Underlying Causes. Many practitioners may prioritize performance and accu-
racy over sustainability due to a lack of awareness or tools that highlight the environ-
mental impact of their decisions. Additionally, existing development practices and tools
may not emphasize the importance of sustainability, leading to its neglect during the
software development lifecycle.

Potential Impacts: If practitioners remain unaware of sustainability concerns, ML-enabled
systems may continue to be developed with high energy consumption and resource us-
age, negatively impacting the environment. This can lead to inefficiencies and higher
operational costs, reducing the overall sustainability of ML projects.

Target Research: Addressing this challenge would require the effort of multiple com-
munities. Empirical software engineering researchers may work toward understanding
practitioners’ needs and practices. By tailoring automated approaches to fit these needs,
researchers may develop tools and methods that highlight the sustainability impacts of
various development decisions. This could include developing frameworks that provide
feedback on energy consumption and resource usage during the development process. At
the same time, software quality, software analytics, and machine learning engineering
researchers may target the design of automated approaches able to improve the scalabil-
ity of models without compromising their overall accuracy. In this respect, approaches
such as quantization [31] and knowledge distillation [62] can help reduce the energy
footprint of ML models, making them more sustainable. Also, researchers in software
engineering education may play a role in helping to create a common understanding of
sustainability practices in software engineering.

ü Usability (U): Usability is the non-functional requirement with fewer challenges for ML-
enabled systems. Only a few works targeted this matter, suggesting that further research
might be worthwhile. In this context, non-functional requirements such as explainability and
imperceptibility, along with the need for visualizing the outcomes of both shallow and deep
learning models, pose significant challenges when it comes to assessing quality assurance
throughout the software lifecycle. For instance, the lack of interpretability increases the effort
required to estimate the soundness of ML-enabled systems. Current research neglected this
research angle, especially when considering models operating in critical and evolving scenar-
ios. As such, our findings suggest the urgent need for further research on usability concerns
[S8, S9, S31, S32, S60, S70, S72, S87, S113, S120, S124]. Ensuring usability of AI algorithms
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and their decisions can be a challenge for users and regulators, bringing distrust of users and
stakeholders [S87, S127–S129]. This further suggests the investigation of domain-specific
approaches and methods.

ü Cross-cutting challenges (C): Besides the challenges for ML-enabled systems specifically
relating to individual classes of non-functional requirements, we also identified a set of cross-
cutting challenges associated with the management and assessment of these requirements. It is
worth remarking that the list of associated NFRs for each cross-cutting challenge reflects the
specific NFRs that were most frequently and explicitly linked to the challenge in the primary
studies included in our systematic literature review. This means that the associations presented
are not exhaustive and do not exclude the possibility that a given challenge may also apply to
other NFRs. Instead, the associations highlight the NFRs that were directly discussed in the
context of each challenge within the reviewed papers.

• Challenge C.1 - Dealing with Internal Errors [S5, S8, S27, S62, S63, S88]. This
challenge mostly affects “Efficiency”, “Sustainability”, and “Resiliency”, and in partic-
ular non-functional requirements concerning robustness, accuracy, performance, energy
consumption and cost of ML-enabled systems:

Nature of the Challenge. Machine learning models and, in particular, neural networks
can produce erroneous outputs due to internal errors caused by incorrect parameters,
incorrect weight values, uncovered root causes, and incorrect manual labeling.

Possible Underlying Causes. Internal errors can stem from several factors, such as mis-
configured parameters, incorrect weight values assigned during the training process,
overlooked root causes in the data or model structure, and errors introduced during man-
ual labeling of training data.

Potential Impacts: These internal errors may significantly impact the performance of
ML-enabled systems, leading to reduced accuracy, slower inference times, and increased
energy consumption. For example, incorrect weight values or parameters can cause
the network to converge slowly or get stuck in suboptimal solutions, resulting in poor
performance.

Target Research: Dealing with internal errors has two main aspects: tracking errors in
deep neural network models and addressing them. As a consequence, researchers in
the fields of bug localization, software analytics, and program repair may help address
the elicited challenges. For instance, bug localization researchers may work toward
the development and refinement of novel techniques to effectively identify and localize
bugs within neural network models by leveraging techniques such as fault injection,
automated debugging, or static analysis. Research in software analytics may revolve
around the definition of advanced monitoring frameworks that track a wide range of
performance metrics, including accuracy, latency, throughput, and resource utilization.
Finally, program repair researchers may provide automated instruments that suggest and
implement fixes by leveraging AI algorithms.

• Challenge C.2 - Diagnosing the Internal Behavior of Models [S6, S10, S24, S33, S40,
S59, S66, S67, S74, S75, S75, S114]. This challenge affects multiple clusters, including
“Accuracy”, “Resiliency”, and “Usability”. It particularly impacts accuracy, robustness,
safety, and transparency of ML-enabled systems:
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Nature of the Challenge. Understanding the root cause of anomalous behaviors of deep
neural networks and how to fix them represents a critical aspect to further elaborate.

Possible Underlying Causes. Evaluating the reliability implications of small sets of
weights assigned to the network can support practitioners in better understanding how
they work. Inconsistent weight assignments, faulty training data, or model architecture
flaws can lead to unpredictable or erroneous model behaviors.

Potential Impacts. Failure to diagnose and address these issues can lead to significant
misclassifications, security concerns, and overall reduced model robustness and accu-
racy. Anomalous behaviors can undermine the trustworthiness and reliability of the
ML-enabled system, leading to potential failures in real-world applications.

Target Research. Addressing this challenge involves the development of methods for
exploration, interpretability, and explainability to diagnose failures and misclassifica-
tions. Researchers in fault localization can contribute by identifying precise locations of
faults within the model. Explainable AI researchers can focus on creating methods that
make the decision-making process of models transparent, aiding in the identification of
the root causes of failures. Software metrics researchers can develop novel metrics that
go beyond accuracy to provide actionable insights into the model’s robustness and reli-
ability. Finally, automatic program repair researchers can design tools to automatically
fix identified issues within the models, ensuring their proper functioning and enhancing
overall system reliability.

• Challenge C.3 - Context-based Trade-off Identification [S34, S37, S49, S49, S50,
S126]. According to our analysis, this challenge affects “Accuracy”, “Resiliency”, “Sus-
tainability”, “Maintainability”, and “Efficiency”, and in particular accuracy, replaceabil-
ity, security, fairness, and performance of ML-enabled systems; however, it is important
to note that the challenge may also extend to other NFRs beyond those for which we
observed explicit evidence in the reviewed studies:

Nature of the Challenge. Identifying a trade-off between multiple non-functional re-
quirements, particularly those influenced by specific contextual factors (e.g., regula-
tory requirements, ethical considerations, and operational constraints), represents a key
socio-technical challenge. This step involves exploring and diagnosing which NFRs are
most relevant for the deployment environment.

Possible Underlying Causes. ML-enabled systems must always preserve accuracy, but
other non-functional requirements such as robustness, security, or fairness may be more
or less relevant based on the specific context where the system is deployed. The un-
derlying causes include the socio-technical influences of the deployment environment,
such as domain-specific regulations, user expectations, and ethical considerations, which
dictate the importance of different NFRs and their trade-offs.

Potential Impacts. The failure to appropriately identify non-functional requirements
based on contextual needs can lead to suboptimal system performance and may even
result in critical failures. For instance, a driving system that does not identify and un-
derstand specific non-functional requirements such as robustness and security might be
prone to failures or attacks, while a healthcare system that does not emphasize fairness
might result in biased treatment outcomes. This challenge is particularly relevant for
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system analysts, domain experts, and requirements engineers who need to explore and
document these trade-offs as an early step in system design.

Target Research. This challenge emphasizes the need for novel approaches to identify
non-functional requirements in specific contexts. Researchers in software analytics can
develop methods to (semi-)automatically mine contextual information, providing prac-
titioners with insights into the non-functional requirements that should be identified and
highlighted. Additionally, research in software project management can focus on novel
methods to assess the significance of non-functional requirements, supporting manage-
rial decisions in the design and deployment of ML-enabled systems. By integrating
socio-technical analyses and advanced project management techniques, researchers can
contribute to more effective trade-off identification and decision-making processes.

• Challenge C.4 - Prioritizing and Balancing Non-Functional Requirements [S1, S4,
S5, S11, S32, S37, S38, S51, S64, S86, S100, S104]. This challenge affects “Accu-
racy”, “Resiliency”, “Sustainability”, “Maintainability”, and “Efficiency”, and in partic-
ular non-functional requirements concerning accuracy, robustness, replaceability, cost,
and performance of ML-enabled systems. Similarly to C.3, it is likely that this challenge
also impacts other NFRs beyond those explicitly discussed in the reviewed studies. The
NFRs listed here reflect those most frequently and explicitly linked to this challenge in
the primary studies, and they represent areas where balancing priorities has been particu-
larly emphasized. However, given the broad and interconnected nature of this challenge,
it is plausible that its relevance extends to additional NFRs that were not directly ob-
served in our analysis:

Nature of the Challenge. Balancing multiple non-functional requirements represents a
key challenge in developing ML-enabled systems. While C.3 focuses on identifying
relevant trade-offs based on context, C.4 addresses the prioritization and resolution of
conflicts between competing NFRs to achieve a balanced system design. This step in-
volves strategic decision-making and technical resolution.

Possible Underlying Causes. The complexity of balancing non-functional requirements
arises from the need to address multiple, often conflicting, objectives simultaneously.
Different requirements may have varying levels of importance depending on the specific
use case and context, and prioritizing them effectively requires a deep understanding of
their interdependencies and impacts. Unlike the exploratory nature of C.3, C.4 involves
decision-makers such as software architects and project managers, who must consider
trade-offs identified earlier and resolve them to achieve a cohesive system design.

Potential Impacts. Inadequate prioritization and balancing of non-functional require-
ments can lead to suboptimal system performance, increased costs, and potential fail-
ures. For example, overemphasizing performance at the expense of security may result
in vulnerabilities while focusing too much on fairness might reduce efficiency. These
imbalances can compromise the overall quality and reliability of ML-enabled systems.

Target Research. The requirements engineering research community can address this
challenge by proposing guidelines or automated tools to prioritize and balance non-
functional requirements. Researchers can develop methods to analyze contextual fac-
tors and practitioners’ preferences, enabling them to find an optimal balance among
correlated and contrasting objectives. This may involve leveraging multi-objective opti-
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mization techniques, decision-making frameworks, and tools that assist stakeholders in
navigating complex trade-offs and prioritization challenges.

• Challenge C.5 - Integration and Interaction of ML Models [S61, S65, S70, S95,
S118]. This challenge affects “Accuracy”, “Resiliency”, “Sustainability”, “Maintain-
ability”, and “Efficiency”. Specifically, accuracy, security, adaptability, cost, and per-
formance of ML-enabled systems:

Nature of the Challenge. Integrating ML models within complex systems involves syn-
chronizing multiple components, such as traffic light recognition, lane detection, and
obstacle perception. Each of these components may utilize several ML models that must
function cohesively, hence further complicating the integration.

Possible Underlying Causes. The dynamic interactions among these ML models create
dependencies that are difficult to predict and manage. While individual ML models can
undergo rigorous testing, comprehensive testing for the integrated system as a whole is
often inadequate. In addition, designing complex architectures requires knowledge of
the characteristics of ML models and, perhaps more importantly, of the whole set of
non-functional requirements expected to be implemented by the ML-enabled system.

Potential Impacts. Inadequate integration can lead to unreliability, where the system
might fail to perform as expected under certain conditions. This is particularly critical in
safety-critical systems, such as autonomous driving, where integration failures can result
in dangerous situations and potentially fatal accidents.

Target Research. Researchers in the fields of software architecture and software testing
can address this challenge by developing methods to ensure seamless integration and
interaction of multiple ML models within complex systems. This may involve creat-
ing comprehensive testing frameworks that simulate real-world interactions and depen-
dencies among ML models, ensuring that integrated systems are robust and reliable.
Additionally, developing synchronization protocols and automated tools for managing
dependencies among ML models can help improve the overall reliability of integrated
systems. Finally, software architecture techniques should be made model-aware and
non-functional-requirements-aware, meaning that they should incorporate pieces of in-
formation that may support software architects in the design of complex infrastructures.

• Challenge C.6 - Improving Practitioners’ Knowledge [S69, S105, S129, S130]. This
challenge affects the whole set of non-functional requirements of ML-enabled systems:

Nature of the Challenge. Understanding how to handle non-functional requirements for
ML systems compared to traditional software systems can be problematic. ML systems
introduce new non-functional requirements and alter the importance and interpretation
of existing ones, as pointed out in RQ1. Practitioners often struggle to adapt existing
knowledge and processes to effectively manage these evolving requirements.

Possible Underlying Causes. Non-functional requirements for ML systems are highly
dependent on the application domain and require specific skills for accurate definition
and measurement. Additionally, there is a significant lack of awareness and understand-
ing of non-functional requirements among both customers and engineers, leading to in-
sufficient consideration and implementation. Measuring non-functional requirements is
also complex, leading to their omission in analyses.
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Potential Impacts. These challenges can negatively impact ML-enabled systems, com-
promising quality and customer satisfaction, and can lead to regulatory non-compliance.
For instance, in autonomous vehicles, non-functional requirements related to safety and
robustness are critical to preventing accidents. In health diagnostics, accuracy and inter-
pretability are essential for proper diagnosis and treatment, while in financial systems,
fairness, transparency, and security are vital to avoid biased decisions and legal issues.

Target Research. Researchers in the fields of software engineering education, require-
ments engineering, and empirical software engineering can address this challenge by
developing training programs and educational materials that enhance practitioners’ un-
derstanding of NFRs specific to ML systems. Creating guidelines and best practices for
the accurate definition, measurement, and management of non-functional requirements
in various application domains can also help. Additionally, tools and frameworks that
assist in the identification and evaluation of non-functional requirements during the soft-
ware development lifecycle can support practitioners in ensuring comprehensive consid-
eration of these requirements.

• Challenge C.7 - Software Analytics for Non-Functional Requirement Assessment
[S12, S13, S26, S120, S121, S121]. This challenge affects the whole set of non-functional
requirements of ML-enabled systems:

Nature of the Challenge. Multiple primary studies advocate the need to empower re-
quirements engineering processes with software analytics instruments able to assess the
implications that trade-off choices may have on the development of ML-enabled sys-
tems.

Possible Underlying Causes. Current literature highlights a gap in software metrics that
can inform practitioners about how their requirements engineering decisions may impact
both the complexity of the development process and the overall quality of the system.
There is a lack of strategies to recommend quality assurance mechanisms based on spe-
cific trade-offs and predictive analytics tools that can enhance practitioners’ capabilities
in assessing the impact of trade-off analysis.

Potential Impacts. Without effective software analytics, practitioners may struggle to
make informed decisions regarding non-functional requirements, leading to suboptimal
trade-offs that could compromise system quality and development efficiency. For exam-
ple, lacking tools to predict how certain trade-offs will affect the system may result in
overlooked quality assurance mechanisms, increasing the risk of defects and reducing
system reliability and performance.

Target Research. Researchers in requirements engineering and software analytics can
address this challenge by developing novel software metrics and analytics tools that
help practitioners assess the impact of their decisions regarding non-functional require-
ments. Collaborative efforts could focus on creating predictive analytics instruments that
enhance the ability to foresee the consequences of trade-offs throughout the software
lifecycle. By doing so, the research community can improve the support available to
requirements engineers, enabling them to make more informed and effective decisions.

• Challenge C.8 - Improving the Generalizability of Existing Automated Approaches
[S19, S36, S50, S53]. This challenge impacts all the non-functional requirements of
ML-enabled systems:
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Nature of the Challenge. The challenge concerns the generalizability of existing ap-
proaches that support the sustainability analysis of ML-enabled systems. Current meth-
ods often have limitations that hinder their broader application. Limited generalizability
often leads to the development of narrowly applicable tools, which increases effort, re-
duces the ability to reuse components, and hinders the adoption of certain practices in
both the short and long term.

Possible Underlying Causes. Multiple primary studies identified limitations in terms of
learning tasks and models support. For instance, recommendation systems like Plum
are restricted to deep learning models, while other approaches can only handle a limited
set of deep neural networks, are built using limited datasets [S36], or are not integrated
within MLOps pipelines [S19].

Potential Impacts. These limitations restrict the usefulness of current tools in practical
scenarios, making it difficult for practitioners to generalize their findings across different
types of ML models and learning tasks. Consequently, this can lead to inefficiencies and
increased effort in model repair, development, and maintenance, ultimately compromis-
ing the sustainability and performance of ML-enabled systems.

Target Research. Researchers in the fields software analytics, machine learning en-
gineering, and MLOps are called to the development of more generalizable, accurate,
and integrated tools that support practitioners throughout the software lifecycle. This
includes creating instruments that can handle a wide range of neural network architec-
tures, utilize diverse and comprehensive datasets, and seamlessly integrate with MLOps
pipelines. Such advancements will enhance the applicability and effectiveness of sus-
tainability analysis tools in real-world settings, thereby improving the overall quality
and efficiency of ML-enabled systems.

As a final note, it is worth remarking that we observed that some challenges were discussed
by more papers, while others have a lower frequency of mention across the literature. In this
respect, we cannot speculate on whether this is because some challenges are inherently more
important than others. The number of referenced publications discussing a particular challenge
may reflect several factors, such as current research trends, the ease of identifying and addressing
certain challenges, or even the availability of data and case studies related to specific issues. In
other terms, while a higher number of references might suggest that a challenge is widely recog-
nized or frequently encountered, it does not necessarily indicate its overall importance relative
to other challenges. More comprehensive evaluations, considering both quantitative and quali-
tative aspects, may be necessary to understand the full scope and significance of the challenges
associated with non-functional requirements in ML-enabled systems.

 Answer to RQ2. We elicited 26 software engineering challenges targeting the individ-
ual categories of non-functional requirements identified in our systematic synthesis work and
the cross-cutting aspects affecting non-functional requirements engineering. We methodically
untangled the challenges faced by ML-enabled systems, providing insights into the specific re-
search fields interested in those issues. According to our results, we call for comprehensive
analyses and approaches that may assess the impact and implications of managing individual
and multiple non-functional requirements.
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5. Discussion and Implications

The results of our study provide a number of additional discussion points and implications,
which we discuss further in the following.

Impact of our findings on research and practice. Our results allowed us to synthesize the cur-
rently available knowledge on non-functional requirements of ML-enabled systems, hence
contributing to a unified framework that consolidates the state of the art in the field [1, 23,
24, 67]. By leveraging the set of primary studies collected through our hybrid systematic lit-
erature review, we could aggregate the findings obtained in the broad field of requirements
engineering, hence reporting a comprehensive overview of the multifaceted aspects impacting
the trustworthiness of ML-enabled systems. We could specifically classify 31 distinct non-
functional requirements, categorized into six main classes. More importantly, with RQ1, we
could provide insights into the meaning of the collected non-functional requirements, find-
ing commonalities and peculiarities with respect to non-functional requirements considered
in non-ML-enabled systems. For instance, we observed that certain requirements like perfor-
mance efficiency and traceability have similar interpretations in both ML and non-ML contexts.
At the same time, unique non-functional requirements, e.g., retrainability, replaceability, or
stability, emerged as aspects that characterize ML-enabled systems and that, therefore, require
focused investigations by the research community. Additionally, our classification revealed
that a number of non-functional requirements, e.g., scalability and security, present specific
nuances within ML-enabled environments, highlighting the need for tailored approaches and
methodologies to effectively address these requirements. Through this detailed classification
and analysis, our work not only enhances the understanding of non-functional requirements in
ML-enabled systems but also provides a reference framework for research and practice. For
instance, we envision studies that delve deeper into the unique non-functional requirements
of ML-enabled systems in an attempt to characterize their impact and criticality in various
application domains. In this respect, the results of RQ1 inform the research community on
the application domains targeted by researchers so far, possibly indicating areas that might
be worth investigating. Furthermore, we may also envision studies aiming at refining cur-
rent requirements elicitation and analysis practices to take the peculiarities of ML-enabled
systems into account, e.g., by developing guidelines for eliciting sustainability requirements.
Last but not least, our classification may serve as a starting point for researchers to devise
novel methodologies for assessing, validating, and monitoring non-functional requirements of
ML-enabled systems, e.g., by proposing methods to assess retrainability, replaceability, and
stability throughout the lifecycle of ML-enabled systems. From the practitioners’ perspective,
our classification provides a unified body of knowledge to gather information about the quali-
ties to meet when developing trustworthy ML-enabled systems, raising their awareness on the
complex set of non-functional requirements that may impact the development.

∠ Take Away Message. Our classification of non-functional requirements provides a refer-
ence framework that comprehensively integrates the current knowledge on non-functional
requirements of ML-enabled systems, presenting commonalities with research on non-
functional requirements of non-ML-enabled systems and peculiarities that make ML-enabled
systems different. We argue that the results to RQ1 may inspire further research, other than
making practitioners aware of the multiple, multi-faceted concerns arising when developing
ML-enabled software systems.
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When it turns to RQ2, our work aggregates a set of 26 software engineering challenges pro-
posed in the literature (e.g., [24, 27]), hence presenting a super-set of the challenges docu-
mented in earlier research. Through the analysis of the primary studies collected in the hybrid
systematic literature review, we could classify the unique challenges specific to the individual
classes of non-functional requirements identified in RQ1, but also the cross-cutting challenges
that affect the whole set of non-functional requirements of ML-enabled systems. From a sci-
entific perspective, our work addresses one of the major challenges identified by Villamizar et
al. [67], which was actually related to the lack of systematic knowledge of non-functional re-
quirements of ML-enabled systems. In addition, our work classifies the documented relations
between multiple non-functional requirements, which may be seen as an additional contribu-
tion that may stimulate further research on the matter. From a tangible perspective, our work
has critical implications for multiple research fields. In response to RQ2, we could identify the
target audience of each software engineering challenge, providing insights that are not only
relevant for requirements engineering research but that extend to other sub-communities like
software analytics, software testing, and empirical software engineering. Our synthesis effort
may pave the way for interactions and joint collaborations toward addressing the many specific
challenges of non-functional requirements of ML-enabled systems that encompass analysis,
measurement, and monitoring from requirements elicitation till testing and post-deployment
operations. Furthermore, the challenges reported by our work may be of interest to profes-
sional ML engineers and project managers, who may have an improved understanding of how
these challenges may impact the development of real-world systems, other than of the possible
obstacles to technological transfer they should preliminary address.

∠ Take Away Message. Our work could identify several software engineering challenges that
affect the management of non-functional requirements of ML-enabled systems. We argue
that the challenges discussed in RQ2 inform future research efforts and possibly stimulate
interactions and collaborations among software engineering researchers studying solutions
to support practitioners throughout the development lifecycle. In addition, the challenges
reported in our work may inform practitioners of the obstacles to the development of trust-
worthy ML-enabled systems, leading them to more careful considerations of non-functional
requirements in real-world contexts.

In addition to the points discussed above, our findings from RQ1 have the potential to sig-
nificantly influence practical applications by helping to refine standards and guidelines for
handling non-functional requirements of machine learning systems. For instance, our detailed
definitions could enhance emerging standards such as the ISO/IEC 25059,14 which already
outlines a taxonomy of non-functional properties. This could lead to more comprehensive
guidelines that better support researchers and practitioners in the field. On the one hand, these
standards cover various system and software quality attributes, including performance effi-
ciency, reliability, usability, security, maintainability, and portability. Our taxonomy builds on
these aspects by introducing ML-specific non-functional requirements such as scalability, re-
trainability, interpretability, and explainability, which are critical because of the ML-enabled
systems’ dynamic and data-intensive nature. On the other hand, Habibullah et al. [23] focused
mainly on ethics and biases within non-functional requirements for ML systems. Our study
expands this perspective to include other attributes such as energy consumption, sustainability,

14The ISO/IEC 25059 standard: https://iso25000.com/index.php/en/iso-25000-standards/iso-25059
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accountability, and robustness. This comprehensive approach ensures coverage of all criti-
cal quality aspects of ML systems, providing a more complete framework for assessing and
managing non-functional requirements in these systems. In other terms, our consolidated clas-
sification was therefore needed to synthesize the currently emerging knowledge on the specific
characteristics and requirements of ML-enabled systems - aspects that are not fully covered by
existing standards and classifications. Furthermore, our results complement the insights from
Amershi et al.[5], which identified best practices for the actionable development of machine
learning systems, including aspects like model debugging and interpretability. Our work pro-
vides concrete factors that directly relate to these practices, such as the retrainability attribute
within the ‘Maintainability’ category, offering a foundation for developing measurable and
monitorable systems through the various stages of machine learning system development. In
addition, the findings of RQ2 provide insights into the research gaps, making the best practices
identified by Amershi et al. [5] difficult to actually implement. Also in this case, our system-
atic synthesis may provide researchers with an improved understanding of the next steps to
pursue better support for the development and evolution of ML-enabled systems. Ali et al.
[4] emphasized that quality standards should follow the ‘ility’ procedure based on traditional
quality models and require comprehensive quality models for artificial intelligence software
components. In this respect, our work could greatly contribute to the creation of new quality
standards that would be more robust and tailored to the complexities of AI software, improving
its reliability and effectiveness.

∠ Take Away Message. Our findings complement the current state of the practice in different
manners. First, the outcome of RQ1 may be useful to extend and/or complement emerging
standards describing relevant non-functional requirements of machine learning-enabled sys-
tems. Second, the results of RQ1 and RQ2 can be combined with the pieces of information
that emerged from the state of the practice, highlighting the current research gaps that should
be filled and the potential opportunities of technological transfer.

On the Inter-Relation among Non-Functional Requirements. Based on the cross-cutting chal-
lenges discussed in the context of RQ2, we could identify the presence of some inter-relations
among non-functional requirements, i.e., how the satisfaction or optimization of one non-
functional requirement can influence or be influenced by another. These are not only concerned
with the relation that accuracy has with other requirements but also with the innate intercon-
nections between multiple non-functional aspects playing a role in developing ML-enabled
systems [S54, S64, S99]. Our results demonstrated that groups within the same cluster are
closely related, making it easier to improve others within the same cluster when one is en-
hanced [S72, S110, S122]. Conversely, improving one cluster can lead to the deterioration of
non-functional requirements in different clusters [S11, S86, S95]. In this respect, researchers
in requirements engineering and empirical software engineering might cooperate toward de-
veloping novel taxonomies that may map the relations among the non-functional requirements
of ML-enabled systems and how they impact each other. Our results also called for further
research on identifying, managing, and assessing the trade-offs among multiple non-functional
requirements.
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∠ Take Away Message. Our findings suggest novel interconnections and research on the
multi-objective optimization of non-functional requirements of ML-enabled systems. We
call for a new research field focusing on empirically investigating the relations between non-
functional requirements and how those relations may inform the development of automated
approaches to optimize ML-enabled systems.

A Managerial Viewpoint. As a follow-up discussion, our research questions raise multiple trade-
offs to consider when developing ML-enabled systems. Our work has implications on the man-
agerial side: the constant and continuous need to measure non-functional requirements and
search for trade-offs represent high-level challenges for project managers, who are required to
monitor and handle multiple non-functional attributes throughout the evolution of ML-enabled
systems. In the first place, the results produced by RQ1 may allow the reader to understand
what the set of non-functional attributes actually takes into account. Secondly, the challenges
identified in the context of RQ2 should not only be considered from a technical perspective
but also from a socio-technical and managerial one. Our work calls for further research on the
managerial strategies that would indicate the most appropriate management policies to apply
when handling non-functional requirements.

∠ Take Away Message. We call for research on managerial and socio-technical strategies to
handle non-functional requirements throughout the evolution of ML-enabled systems. At the
same time, our findings point out the need for optimization approaches specifically tailored
to software evolution, hence being contextual, dependent, and adaptable.

6. Threats to Validity

Our systematic literature review encountered potential limitations, which we mitigated through
careful design. These limitations mainly pertain to the methodology employed to collect and an-
alyze the primary studies object of the study, as elaborated in the following sections.

Literature selection. The article selection steps posed significant challenges due to the in-
herent variability in the terminology used by primary studies to refer to non-functional require-
ments of ML-enabled systems. In fact, when analyzing the results coming from the initial search
string we realized that a significant number of relevant articles may have referred to specific
non-functional requirements, e.g., fairness, rather than to the general concept of non-functional
requirements. This aspect may have negatively impacted the comprehensiveness of our system-
atic literature review. We mitigated such a potential limitation by enlarging the scope of our work,
designing a hybrid literature review that combined standard guidelines [32] with additional steps
such as screening top-tier venues [74] and snowballing [72]. In our seed search methodology, we
focused on scanning articles published in A* and A conferences and Q1 journals. The decision
to limit our search to these high-impact venues stems from their recognition in the research com-
munity for rigorous review processes and high relevance. Nonetheless, we acknowledge that this
approach may have excluded relevant studies from other reputable conferences and journals in
the area of requirements engineering. While this remains a limitation of the study, we mitigated
the risk of excluding relevant articles by including (1) the major requirements engineering con-
ference (RE) and (2) top-tier software engineering conferences and journals, e.g., ICSE, TSE,
TOSEM, that regularly publish requirements engineering research.
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Still discussing the limitations of the seed search methodology, we considered expanding the
scope of the analysis to include a subset of AI venues. This decision was based on the recog-
nition that AI researchers might have addressed non-functional requirements within the context
of ML-enabled systems, providing valuable insights relevant to our study. However, achieving
comprehensive coverage of the most pertinent AI venues would have been nearly impossible,
as it would have required surveying research articles published between 2012 and 2023 across
approximately 70 Q1 journals and over 40 A* and A conferences. To make the seed search
process more sustainable, we analyzed a subset of top-tier venues in the field, focusing on those
with a higher likelihood of including relevant engineering work. Among the papers published
in the selected venues between 2012 and 2023, we found only six potentially relevant articles,
which were further reduced to two after the quality assessment stage. We acknowledge that an
exhaustive analysis of AI venues might have identified additional primary studies, and this re-
mains a limitation of our work that the reader should be aware of. However, our analysis revealed
that the number of papers in AI venues describing non-functional requirements is quite limited
(only 0.04% of the papers scanned were finally included), possibly not justifying the significant
effort that would have been required. Alternative research methods, such as qualitative surveys
or interviews, might be more effective in complementing our findings.

In the second place, it is worth remarking that we performed the search on multiple databases
such as ACM Digital Library, Scopus, and IEEEXplore. This was done to ensure wider coverage
of the primary studies published in the literature.

The reliance on a hybrid systematic literature review, other than the multiple actions con-
ducted to extend the search process, makes us confident of the completeness of the literature se-
lection. However, for the sake of verifiability and replicability, our online appendix [45] contains
all the data and material used to produce each intermediate search of our study. The interested
reader might use the material to either assess the soundness/completeness of the process and
further build on top of our results [74].

Literature analysis and synthesis. We applied exclusion and inclusion criteria and per-
formed quality assessments manually, which might have introduced subjectivity and human er-
ror. We mitigated this risk through two main actions. First, we crafted the criteria for determining
the suitability of the collected articles to be as objective as possible, clearly defining the specific
pieces of information that articles must contain to be considered for analysis. More specifically,
we filtered papers based on their relevance to the topic, ensuring that only papers explicitly ad-
dressing non-functional requirements in ML-enabled systems were considered. These papers
need to focus on specific types of non-functional requirements, describe associated challenges,
and specify relevant domains. These stringent criteria enabled us to significantly reduce the num-
ber of candidate papers to a manageable amount. We excluded articles that did not contextualize
their findings within the framework of non-functional requirements in ML-enabled systems. For
example, papers that focused on the technical aspects of a proposed methodology without ex-
plaining how the methodology addressed specific non-functional requirements of ML-enabled
systems were not considered for inclusion. On the one hand, this minimized the risk of subjec-
tive interpretation. On the other hand, we also defined quality assessment criteria to evaluate
the quality, depth, and contribution of each paper that successfully passed the inclusion criteria.
This additional step ensured that only high-quality studies were included in our analysis, further
reducing the risk of bias and enhancing the reliability of our findings. Of course, we are aware
that some relevant primary studies might have been missed. This represents an inherent limita-
tion of our review process. However, we believe that the rigorous application of our criteria has
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enabled us to provide a comprehensive and reliable synthesis of the current state of research on
non-functional requirements in ML-enabled systems.

Perhaps more importantly, we also conducted a two-step validation of the selection process.
We specifically retained a sample of 100 articles to be used as a validation set. Both authors
of the paper independently reviewed these papers, applying the exclusion/inclusion criteria and
quality assessment criteria. The resulting set of papers included by the two authors was then
compared to identify differences in terms of the application of the criteria. Upon discussion, they
refined the evaluation process by clarifying the criteria and resolving any ambiguities, i.e., this
initial comparison and subsequent discussion helped align their understanding and application
of the criteria. Subsequently, they conducted a second round of reviews on an additional set of
50 papers to verify the consistency of their refined criteria. This additional round resulted in a
full agreement between the authors, thus confirming the effectiveness of the refined criteria. This
established a solid foundation for the first author to proceed confidently with the assessment of
the entire set of papers and further reduced the risk of the subjectiveness of the analysis process.

In terms of synthesis of the primary studies, we basically employed a qualitative content
analysis process through which we could (1) extract pieces of information useful to address our
research questions by filling the data extraction form for each article; (2) synthesize the data
coming from the primary studies; and (3) report the synthesized information.

In the context of RQ1, we focused on the extraction and classification of non-functional
requirements. We began by analyzing the primary studies to identify and extract explicitly men-
tioned non-functional requirements. To mitigate potential threats to validity, we ensured a thor-
ough reading and annotation of relevant sections. This process minimized the risk of overlooking
critical information and enhanced the reliability of our findings. Each requirement was assigned
a unique name and detailed description, with inconsistencies resolved to ensure clarity. Mapping
the non-functional requirements to high-level reference classes further structured our findings,
providing a coherent framework for understanding the requirements. As for RQ2, we focused on
identifying and synthesizing the challenges associated with non-functional requirements in ML-
enabled systems. In this respect, two clarifications would be worth remarking. In the first place,
we intentionally focused on challenges that directly influence the achievement, management, or
optimization of specific NFRs in ML-enabled systems. Rather than attempting to include all
challenges faced by ML systems, we concentrated solely on those explicitly connected to NFRs.
These challenges were identified exclusively from the primary studies included in our systematic
literature review, ensuring that every challenge discussed is traceable to the evidence presented
in the reviewed papers. As a result, challenges that were not explicitly discussed in these studies,
even if potentially relevant to NFRs, were excluded to preserve the methodological rigor and
defined scope of our analysis. Secondly, we included only those challenges that were explicitly
linked to NFRs in the reviewed studies. Although the primary studies sometimes addressed a
broader range of issues, our focus was on extracting and synthesizing challenges that directly
pertain to NFRs. For instance, in studies exploring algorithmic discrimination, we included chal-
lenges such as mitigating disparate impacts or ensuring equitable model performance, as these
are intrinsically tied to the NFRs of fairness and accuracy. Conversely, challenges unrelated to
NFRs, such as purely technical optimizations without a clear connection to NFRs, were excluded.
Similarly, we excluded general ML system challenges, such as hyperparameter tuning or conver-
gence improvements, unless the primary studies explicitly linked these to their impact on specific
NFRs. This deliberate focus ensured that the challenges discussed remained within the scope of
NFR-related considerations in ML-enabled systems. More in general, we extracted information
about the nature of the challenges, their underlying causes, and their potential impacts. To mit-
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igate threats to validity, we grouped similar challenges together and identified common themes,
ensuring a comprehensive synthesis of the data. The synthesized challenges were reviewed and
validated through discussions between the authors, which helped ensure consistency and accu-
racy in categorization.

In other terms, we established data analysis procedures in a way that reduced the risk of
inconsistencies, minimized subjective bias, and altogether enhanced the reliability of our find-
ings. To make our process as transparent as possible, we documented the processes in detail and
released all the material used in systematic literature as part of our online appendix [45].

The entire analysis and synthesis process was grounded in the authors’ expertise in non-
functional requirements and ML-enabled systems. The two authors have a research experience
of two and eleven years, respectively. Both conduct or have already conducted quantitative and
qualitative studies in the past, other than systematic literature/mapping studies on themes con-
nected to software engineering for artificial intelligence, artificial intelligence for software engi-
neering, software quality, and software maintenance and evolution. The authors have been ac-
tively engaged in the analysis of non-functional requirements of ML-enabled systems. The first
author’s Ph.D. dissertation focuses on optimizing non-functional requirements of ML-enabled
systems. The second author has published articles on this topic and currently coordinates the
research activities of six Ph.D. students who are working on the analysis and optimization of
non-functional requirements for ML-enabled systems. Furthermore, he serves as the Local Co-
ordinator and Principal Investigator of two national projects centered around the themes explored
in this article, which have partially supported this research. Furthermore, they are both involved
in the academic courses of Software Engineering, Fundamentals of Artificial Intelligence, and
Software Engineering for Artificial Intelligence at the University of Salerno (Italy) with the sec-
ond author serving as the lecturer for these courses, while the first author acts as a teaching
assistant. The expertise accumulated through these research and educational activities reduced
the risk of subjectivity and/or wrong application of data analysis and synthesis protocols.

7. Conclusion and Future Work

This paper presents a hybrid systematic literature review on non-functional requirements of
machine learning-enabled systems. We focused on two key areas: classifying non-functional
requirements and identifying associated challenges. Our review not only summarizes existing
knowledge but also highlights new horizons and challenges for the research community to ex-
plore. We hope this work inspires further contributions from researchers and Ph.D. students.

To sum up, our study provides three major contributions:

1. A systematic review categorizing non-functional attributes of machine learning systems
and outlining current challenges, aiding researchers in defining future research directions.

2. Implications and key messages for researchers to address future research avenues on man-
aging and optimizing non-functional requirements.

3. An online appendix with data and scripts used in the study, which facilitates reproducibil-
ity, replicability, and further extension of our work.

The findings of the study, as well as the challenges identified in our work, guide our future re-
search, where we aim to delve deeper into how the research community addresses non-functional

56



requirements and explore novel approaches to optimize them while maintaining accuracy. Fu-
ture research can build on top of our work to identify non-functional metrics to gain a deeper
understanding of these aspects, thereby improving the manageability of ML-enabled systems
for researchers and practitioners. Additionally, we plan to conduct software analytics studies,
surveys, and interviews to understand the significance of the challenges associated with non-
functional requirements and their impact on practitioners’ daily activities. Future research may
also focus on understanding the different non-functional requirements of Large Language Mod-
els and Generative AI, which present unique challenges such as hallucination, sustainability, and
ethical concerns [44]. In this sense, our work might be expanded by developing a new taxonomy
based on the specific non-functional requirements of these emerging new technologies.
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