
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

LLM-Based Automation of COSMIC Functional
Size Measurement from Use Cases

Gabriele De Vito, Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, Fabio Palomba

Abstract—COmmon Software Measurement International Consortium (COSMIC) Functional Size Measurement is a method widely
used in the software industry to quantify user functionality and measure software size, which is crucial for estimating development effort,
cost, and resource allocation. COSMIC measurement is a manual task that requires qualified professionals and effort. To support
professionals in COSMIC measurement, we propose an automatic approach, CosMet, that leverages Large Language Models to
measure software size starting from use cases specified in natural language. To evaluate the proposed approach, we developed a web
tool that implements CosMet using GPT-4 and conducted two studies to assess the approach quantitatively and qualitatively. Initially,
we experimented with CosMet on seven software systems, encompassing 123 use cases, and compared the generated results with the
ground truth created by two certified professionals. Then, seven professional measurers evaluated the analysis achieved by CosMet
and the extent to which the approach reduces the measurement time. The first study’s results revealed that CosMet is highly effective in
analyzing and measuring use cases. The second study highlighted that CosMet offers a transparent and interpretable analysis, allowing
practitioners to understand how the measurement is derived and make necessary adjustments. Additionally, it reduces the manual
measurement time by 60-80%.

Index Terms—Use Cases; Functional Size Measurement (FSM); COSMIC; Natural Language Processing (NLP); Large Language
Models (LLMs)

✦

1 INTRODUCTION

Measuring the size of a software system is crucial for sup-
porting several software project management activities, in-
cluding estimating development effort/cost, benchmarking,
portfolio management, and assessing software contractor
performance [1]–[6]. Several approaches exist for sizing soft-
ware systems, such as Use Case Points [7], Story Points [8],
object-oriented metrics [9]–[12], and Source Lines of Code
(SLOC) [13]. Functional Size Measurement (FSM) meth-
ods have been introduced to measure software size based
on functional requirements, making them independent of
the technologies used to develop the software application.
Function Point Analysis (FPA) was the first FSM method
proposed [14]–[17]. Over time, several variants of FPA (e.g.,
MarkII and NESMA) have been developed to improve
measurement accuracy or extend applicability to specific
domains [18].

In 1999, COmmon Software Measurement International
Consortium (COSMIC) FSM (hereafter COSMIC) [19] was
introduced as a second-generation FSM, addressing the
limitations of earlier methods like FPA in measuring real-
time and embedded systems and dealing with modern
software architectures. COSMIC has gained significant at-
tention in recent years [20] due to its broader applicability
across various domains and its ability to provide accurate
effort predictions [18], [21]–[25]. COSMIC measures the size

• Gabriele, Fabio, Carmine, and Filomena are with the Software Engineering
(SeSa) Lab of the University of Salerno, Italy.
E-mails: {gadevito, fpalomba, gravino, fferrucci}@unisa.it

• Sergio is with the University of Naples Federico II, Italy. E-mail: ser-
gio.dimartino@unina.it

Manuscript received September XX, 2022; revised XX XX, XXXX.

of Functional User Requirements (FURs), which describe
what the software must do to satisfy users’ needs. These
requirements are mapped to the COSMIC Generic Software
Model, which represents software functionality through
data movements between functional users and persistent
storage. Each data movement represents one COSMIC Func-
tion Point (CFP), providing a standardized measure of the
functionality delivered to users. These data movements
can be identified from various software artifacts such as
requirements specifications, use cases, or user stories. UML
use cases are considered one of the best approaches for
requirements elicitation and specification because they rep-
resent interactions between the system and its environment
as natural language text in a semi-formal way [26]–[28],
making them particularly suitable for automated analysis.
However, measuring COSMIC from textual requirements
remains a manual process, demanding qualified profes-
sionals and considerable time. While significant research
has been conducted to automate FSM methods, includ-
ing COSMIC [29]–[49], there are still few studies specifi-
cally exploring the automation of COSMIC measurement
starting from natural language requirements [28], [50]–
[56]. Previous automation approaches have often relied on
structured requirements or historical data and used text
mining techniques [50], syntactic rule-based systems [52], or
ontological analysis [51]. Recent significant advances in NLP
stem from the introduction of deep neural networks and
Large Language Models (LLMs), complex models consisting
of a neural network trained on large quantities of unla-
belled text via self-supervised learning [57]. By providing
a suitable prompt, LLMs can generate accurate responses
[58], [59]. Specific LLMs, such as Generative Pre-trained
Transformer 4 (GPT-4) [60], Claude 3.5 [61], and LLama [62],



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

have demonstrated remarkable capabilities for in-context
learning, translation, and text generation [63] and several
emergent abilities have been identified [64].

Given the impressive performance of these models, their
potential in the context of COSMIC measurement is worth
exploring. Still, in our experience (as detailed in Section
2.3), the direct application of current LLMs to perform
COSMIC measurement based on use cases description is not
providing useful results. LLMs struggle with tasks requiring
deep logical reasoning, often producing incorrect outputs
even if the input prompt is clear and unambiguous [65].
Additionally, their responses can vary unpredictably with
different prompts [66], which is problematic for the con-
sistency required in FSM. Nonetheless, we conjecture that
it is possible to develop LLM-based solutions to automate
the application of the COSMIC method to use cases, with
the dual purpose of measuring the functional size and pro-
viding a transparent and detailed analysis of the COSMIC
concepts applied to the functional requirements. To this
aim, we introduce CosMet (COSMIC MEasuremenT), an
approach to automate COSMIC measurement based on use
case specifications, based on LLMs. In particular, CosMet
takes as input the textual descriptions of use cases, including
actors, their main scenarios, alternative flows, and excep-
tions, and produces the complete COSMIC analysis report
as output. The approach includes two main components: (1)
the Sentence Splitter Component and (2) the COSMIC Ana-
lyzer Component. The Sentence Splitter is designed to split
complex sentences into use-case scenarios, breaking them
into constituent steps, each representing a single atomic
action. Then, the COSMIC Analyzer Model processes the
resulting use cases to produce a COSMIC measurement,
identifying Functional users, Triggering events, Objects of
interest, Data Groups, and Data movement types, and then
calculating the COSMIC Function Points. Both of these com-
ponents are intended as refined instances of LLMs, using a
few-shot learning. To assess CosMet, we developed a web
tool based on GPT-4 and performed an empirical study on
seven software systems, specified by 123 use cases, from
Management Information Systems, Telemedicine, Real-Time
systems, and ML applications representing real-world soft-
ware projects from both industry and reference case studies.
We evaluated the results from both quantitative and quali-
tative perspectives. Our investigation revealed that CosMet
effectively identified data movements, achieving a 99% F1
score for both Rouge and BLEU metrics. The tool correctly
mapped functional requirements to the COSMIC Generic
Software Model, with Rouge and BERTscore F1 scores rang-
ing from 84.5% to 100%. Compared to manual measurement,
it reduced measurement time by 60-80%.

The main contributions of the paper are fourfold:
1) We introduce a novel LLM-based approach, CosMet,

which aims to measure use cases and map Functional
User Requirements to the COSMIC Generic Software
Model.

2) We develop an automated tool that implements the
CosMet approach using GPT-4.

3) We provide datasets, including use case specifications
and their measurement, as a contribution to the re-
search community.

4) We evaluate CosMet’s effectiveness in measuring swoft-

ware systems starting from use case specifications,
mapping FURs to the COSMIC Generic Software
Model, and reducing the measurement time. Further-
more, we systematically compare CosMet with existing
COSMIC automated approaches to highlight its relative
strengths and weaknesses.

These contributions are significant as they can serve
as a considerable milestone and the foundation for future
refinement of the application of LLMs in the FSM field, such
as extending the approach to FPA and comparing COSMIC
with different FSM methods. This study focuses explicitly
on COSMIC measurement automation, as comparing COS-
MIC with other methods like FPA would introduce variables
related to the inherent differences between FSM methods
that are beyond the scope of this work.

With our study, we hope to contribute to notably im-
prove functional size measurement in the software industry,
making it more accurate, efficient, and cost-effective.

Structure of the paper. Section 2 provides the background
and motivation of our work. Section 3 presents CosMet,
while the research method employed to assess it is described
in Section 4. Section 5 reports the results, while the main
findings and the discussion of threats to validity are pro-
vided in Section 6. Section 7 covers the related work. Section
8 concludes the paper and outlines future work directions.

2 BACKGROUND

In the following, we provide the necessary background to
comprehend our work and its relevant context. First, we
briefly introduce COSMIC. Next, we explore the role of
LLMs, which form the core components of the proposed
approach, and discuss the motivation driving our research.

2.1 COSMIC

The first Functional Size Measurement method was FPA,
introduced in the late 1970s [14]–[17]. It measures software
size by counting functional components such as internal
logical files, external interface files, external inputs, exter-
nal outputs, and external inquiries, with each component
weighted according to its complexity. While FPA proved
valuable for traditional information systems, it revealed lim-
itations when applied to modern software architectures and
real-time systems. To address these challenges and accom-
modate a broader range of application domains, COSMIC
was proposed in 1999 as a second-generation FSM, offering
significant advancements over FPA in the measurement
process. The adoption of COSMIC as an industrial standard
continues to grow1, largely due to the organization’s global
presence, with representatives in 26 countries and numerous
companies and institutions publicly recognizing their use of
the COSMIC method. COSMIC provides a comprehensive
framework of rules, concepts, and processes specifically
tailored for measuring the functional size of software based
on its FURs [19]. FURs capture interactions between a Func-
tional User, who acts as both a sender and receiver of data,
across the Boundary and with Persistent Storage within
this Boundary. The software architecture is structured into

1COSMIC. World-wide usage. https://cosmic-sizing.org/usage/

https://cosmic-sizing.org/usage/


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

Layers, and the software component being measured must
belong to a single layer. The measurement process is guided
by a clearly defined Purpose, which explains the importance
of the measurement, and a well-specified Scope, identifying
the specific FURs to be measured.

To measure software, the FURs must align with COS-
MIC’s Generic Software Model, which provides the nec-
essary concepts and principles for this aim. Within this
model, the measurement of FURs is guided by several key
concepts. A Functional process represents a set of FURs
that form a logical grouping of data movements and can
be executed independently. It is initiated by a Triggering
event from a Functional user and consists of a sequence
of sub-processes. Data movements within these processes
are referred to as Functional sub-processes. A Data group
is defined as a set of data attributes that characterize a
unique aspect of an object of interest, representing the
smallest meaningful unit of information within the data
group. The functional size of software is determined by
identifying and counting the data movements within each
functional process. These movements include: Entries (E),
where data groups are transferred from a Functional user
into the process; Exits (X), where data groups are sent from
the process to the Functional user; Reads (R), where data
groups are moved from persistent storage to the process;
and Writes (W), where data groups are transferred from
the process to persistent storage. Each data movement is
counted as one COSMIC Function Point (CFP). Calculating
the size of a software component within a defined scope
involves summing up the sizes of all identified Functional
processes. Each process must include at least two CFPs,
typically formed by an E plus either a W or an X.

Use Case Example: Insert a New Customer

Description: This function lets the user add a new customer.
Primary actor: Hotel manager
MAIN Scenario

1) The user clicks the “New customer” button.
2) The system shows a form with the following editable

fields: surname, name, date of birth, fiscal code, address,
city, and notes.

3) The user fills in the surname, name, date of birth, address,
city, email address, fiscal code fields, and optionally the
notes field and submits the form.

4) The system checks that: the surname and name fields
contain at least two characters, the fiscal code field is
valid, the date of birth is correct, the email address is
valid and records the new customer in persistent storage.

5) The system shows a confirmation message.
Exceptions
5.a1 The system shows an error message stating that the
provided data are not valid.

Fig. 1: Use Case: Insert a New Customer

To illustrate the COSMIC measurement concepts, con-
sider the use case in Figure 1 taken from a hotel man-
agement system. Tn this scenario, a hotel manager (the
functional user) enters a new customer’s details into the

system. Table 1 demonstrates the application of the COSMIC
method to the specifications outlined in this use case. The
functional size is calculated as 3 CFP, derived from three
distinct data movements:

TABLE 1: COSMIC analysis of the “Insert new customer”
use case

Triggering Event: User clicks ”New customer” button
FU Sub-process DG OOI DM CFP
Hotel
manager

Click new customer button - - -

Display customer form
Hotel
manager

Enter customer data Customer data Customer E 1

Validate and store customer Customer data Customer W 1
Show confirmation / errors Message Message X 1

Total: 3
FU: Functional User, DG: Data Group
OOI: Object of Interest, DM: Data Movement Type

an Entry (E) when the user submits the customer data,
a Write (W) when the system stores the validated data, and
an Exit (X) when the system displays either a confirmation
or error message. when the system displays either a confir-
mation or error message. Each of these movement involves
the “Customer” data group, which is associated with the
”Customer” object of interest.

Despite its effectiveness, applying COSMIC to analyze
such processes is time-consuming and necessitates the in-
volvement of professional experts for accurate measure-
ment. Consequently, a key research objective within the
COSMIC community is to automate the measurement pro-
cess to facilitate broader industrial adoption [51].

2.2 Large Language Models
The NLP field has experienced a significant surge in interest
thanks to LLMs, which are deep neural networks with
numerous parameters trained on extensive text corpora.
LLMs produce human-like writing and excel in various
language-related tasks, such as translation and summa-
rization [67]–[69]. The initial training process, known as
“pre-training”, is computationally demanding and time-
consuming due to the extensive datasets required to train
the models. LLMs can later be specialized through a fine-
tuning process, using smaller datasets tailored for executing
new NLP tasks (e.g., named-entity recognition, sentiment
analysis) or performing the same tasks in different domains.
From an architectural point of view, these models are based
on the Transformer and the self-attention mechanisms in-
troduced by Vaswani et al. [70] for predicting the next-
word in a phrase. The Transformer architecture consists
of encoders and decoders [71]. Encoders transform input
words into vector representations, refined by self-attention
to predict subsequent words. Decoders then use these vec-
tors to determine the probability of potential subsequent
words. Presently, many LLMs exist, ranging from commer-
cial services like GPT-3 [71] and GPT-4 [60] to open-source
alternatives like BERT [72], FLAN-T5 [73], and LLama [62],
each offering distinct capabilities and limitations. GPT-4
is a powerful option surpassing many predecessors 2 and
current systems across various NLP benchmarks [60], [74],
and it was the model we employed in our experiments.

2Trustbit. LLM Leaderboard - July 2024. [Online]. Available: https:
//www.trustbit.tech/en/llm-leaderboard-juli-2024.

https://www.trustbit.tech/en/llm-leaderboard-juli-2024
https://www.trustbit.tech/en/llm-leaderboard-juli-2024


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

However, our approach is not exclusively bound to any
single LLM, allowing for flexibility to choose the most suit-
able model for parsing language in use case specifications
and producing COSMIC measurement. LLMs like GPT-4
incorporate “in-context learning” capabilities, enabling the
model to generalize to new scenarios with minimal to no
examples. These models possess different context window
size, determining the number of tokens that can be ex-
changed in a single interaction between the user and the
LLM. GPT-4 can accommodate 8,192 tokens, enabling the
processing of extensive text demonstrations within a single
interaction. To effectively use LLMs, researchers and prac-
titioners employ prompt engineering techniques to guide
the model’s responses [75], [76]. One common approach
is few-shot learning [77], where the model learns from a
small number of examples. Several studies [78]–[82] have
shown that LLMs can effectively adapt to new tasks across
different domains using just a few examples. These char-
acteristics make LLMs particularly suitable for COSMIC
measurement because (1) they can understand and process
natural language descriptions in use cases, (2) they can learn
to identify COSMIC concepts (like functional users and
data movements) through few-shot examples, and (3) their
context windows allow them to analyze entire use cases
while maintaining consistency in the measurement process.

2.3 Motivation of our work

While LLMs show great potential for processing natural lan-
guage requirements, their effective application to COSMIC
measurement requires a structured approach.

Before developing CosMet, we indeed verified GPT-4’s
baseline knowledge of COSMIC by directly asking it to
explain the COSMIC FSM method and its steps, as shown in
figure 2. The model demonstrated a solid understanding of
the core concepts by correctly describing the fundamental
purpose of COSMIC, the concept of functional processes,
the four types of data movements (Entry, Exit, Read, and
Write), and the six main steps of the method, ranging from
scope identification to final size calculation. However, while
this baseline knowledge was encouraging, GPT-4 cannot
apply the methodology correctly. To demonstrate this, let
us consider examples of direct application of GPT-3.5 and
GPT-4 to COSMIC measurement, as detailed in Figure 3.

Upon reviewing the response from GPT-3.5, reported in
Figure 4, it is evident that the COSMIC analysis requires
adjustments. Indeed, GPT-3.5 missed the Object of Interest
“Message”. In addition, it made the following mistakes:

• Step 2 does not contain any data movement.
• Step 3 is not a “Read” data movement, but it is an

“Entry” data movement.
• Steps 5 and 5.a1: They are “Exit” data movements but

must be counted once.

Similarly, GPT-4’s analysis (shown in Figure 5) also
needs corrections because it missed the Object of Interest
“Message” and made the following mistakes:

• Steps 1,2, and 4 do not contain any data movement.
• The total number of CFPs is not 7, but 3.

GPT-4 COSMIC Knowledge.

Prompt:
Please briefly explain what the COSMIC Functional Size
Measurement method is and what the method steps are.

GPT-4 answer:
The COSMIC method is a standardized approach
for quantifying software functionality, independent
of implementation technology. It aids in estimating
development effort, comparing productivity, and managing
projects. The method revolves around ”functional
processes,” defined as data movements triggered by
meaningful user events, focusing on four types: Entry,
Exit, Read, and Write. Here are the typical steps involved
in the COSMIC FSM method:

1) Define what part of the software will be measured and
why the measurement is being done.

2) Determine the functional user requirements (FURs) that
the software must fulfill.

3) Create a model representing the software’s functionalities.
4) For each functional process, identify data movements.

Classify each data movement as an Entry (E), Exit (X),
Read (R), or Write (W).

5) Count each identified data movement type (E, X, R, W)
as one ”COSMIC Function Point” (CFP).

6) Sum up the CFPs from all data movements to get the total
functional size of the software.

Fig. 2: GPT-4 COSMIC Knowledge.

Fig. 3: Prompt to analyze and measure a use case.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

Fig. 4: GPT-3.5 COSMIC analysis.

Moreover, it used an incorrect vocabulary. In particular,
it reported “External Input”, “External Inquiry”, and “Exter-
nal Output”, which are not “Base Functional Component”
types in the COSMIC method. Therefore, there is a need for
a more accurate and reliable method to analyze and measure
software systems starting from use case specification using
LLMs. This motivates our work.

3 THE COSMET APPROACH

The CosMet approach comprises two components (see Fig-
ure 6), namely (1) the Sentence Splitter and (2) the COSMIC
Analyzer, intended as two refined instances of GPT-4, to
analyze use cases specified in natural language. First, the
Sentence Splitter examines the use case scenarios and di-
vides complex sentences into single steps, each representing
an atomic action performed by the system or the user,
ensuring that each action can be distinctly measured and an-
alyzed for accurate COSMIC functional size measurement.
Then, the COSMIC Analyzer applies the COSMIC method
to these atomic actions, identifying Functional users, Trig-
gering events, Objects of interest, Data groups, and Data
movement types, and calculating the number of CFPs.

For example, given the ’Insert a New Customer’ use
case presented in Section 2.1, CosMet produces an analysis
report as shown in Table 1. To implement the two com-
ponents, we employed GPT-4 as LLM and followed four
main steps (described in detail in the following): (1) prompt
engineering, (2) examples preparation, (3) validation, and

Fig. 5: GPT-4 COSMIC analysis.

(4) hyperparameters tuning. Additionally, we developed a
web application that interacts with the GPT-4 API.

Fig. 6: CosMet components

3.1 Prompt Engineering

We employed the few-shot learning pattern [77] for the
implementation of the Sentence Splitter and COSMIC An-
alyzer components. As described in Section 2.2, this pattern
leverages LLMs’ ability to identify and learn patterns from
a limited set of examples and then apply these patterns
to new, similar cases. By providing well-crafted examples,
LLMs can recognize the underlying structure and relation-
ships in the data, enabling them to perform complex tasks
without extensive training.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

For the Sentence Splitter, few-shot examples were de-
signed to teach the model how to identify complex sentences
containing multiple actions and break them down into
atomic steps. For example, when provided with examples
of how to split sentences such as “The system validates the
data and stores it in the database” into separate actions,
the model learns to recognize similar patterns in new use
cases. Similarly, for COSMIC analysis, few-shot examples
illustrated how to identify key COSMIC concepts within use
case descriptions. By presenting the model with examples
that demonstrate the recognition of data movements, func-
tional users, and objects of interest across various contexts,
it learns the patterns that characterize these elements.

However, obtaining the desired outcomes with few-shot
learning could be challenging. Human users must rely on a
combination of domain expertise and creativity, experiment-
ing with different prompts to achieve the desired results.
To effectively address the challenges related to prompt
engineering, we followed three main guidelines [83], [84]:

1) Show and tell: making intentions clear using examples,
instructions, or both.

2) Provide quality data: ensuring enough samples for the
model to follow a pattern.

3) Check settings: setting the model parameters to make
the model predictable in responding.

Considering these guidelines, we prepared the prompt
templates (as shown in Figures 7 and 8) and the training
set to refine GPT-4 with few-shot examples using OpenAI
Playground (a web-based interface offered by OpenAI), as
described in the next section.

Sentence Splitter: Prompt Templates.

System Prompt:
Split all the following sentences, numbering the new
sentences so that each new sentence is grammatically
correct.

Example 1:
...

User Prompt:
{uc}
Split:

Fig. 7: Prompt templates for the Sentence Splitter.

For the sake of simplicity, Figures 7 and 8 present only
the prompt templates. Specifically, the Sentence Splitter tem-
plate follows a simple structure where the system prompt
instructs the model to split complex sentences while main-
taining grammatical correctness, followed by examples. The
user prompt then presents the use case to be processed. The
COSMIC Analyzer template is more structured, showing
how to format the input use case and the expected mea-
surement output. The system prompt includes examples of
functional processes with their complete COSMIC analysis
(triggering events, functional users, and sub-processes with
data movements). In contrast, the user prompt presents the

new use case to be analyzed following the same structure.
Both templates are designed to guide the model through
few-shot learning while maintaining consistency in the out-
put format.

COSMIC Analyzer: Prompt Templates.

System Prompt:
FP ”{Functional process 1}”:
use case text...

FP ”{Functional process 1}” measurement:
Triggering Event: {Triggering event description}
Functional User: {Functional User}
Sub-Processes:
1. step description...
FU (user) – DG (Data group) – OOI (Object of interest) –
Data movement
2. step description...
...other examples...

User Prompt:
FP ”uc name”:
{uc}

FP: ”{uc name}” measurement:

Do not add any explanation or anything else.

Fig. 8: Prompt templates for the COSMIC Analyzer.

3.2 Examples Preparation
The training set preparation is the crucial step of every Ma-
chine Learning (ML) approach. In this stage, we addressed
three critical issues. First, use cases can be written using
different linguistic styles. Software engineers may group
actions (executed by the system or the user) in use case
scenarios. For instance, consider the following sentence:

“The system locates the reservation header and, if exists,
details regarding the booked rooms and services, and the children’s
ages”.

In the example above, the system executes four actions:
1) Read (reservation header): The system searches for the

reservation header.
2) Read (booked rooms): The system searches for the

booked rooms.
3) Read (requested services): The system searches for the

requested services.
4) Read (children’s ages): The system searches for the

children’s ages.
The COSMIC method must identify the atomic data

movement types to count them accurately. Despite GPT-
4 being capable of few-shot learning on diverse tasks,
it cannot identify all the possible combinations of data
movements present in use case scenarios, as illustrated in
Figures 9 and 10. Indeed, without splitting the sentences
and providing the prompt in Figure 9, GPT-4 wrongly
identifies three Read data movements and an Entry. On the



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

other hand, using the prompt in Figure 10 in which the
sentences are split, it correctly identifies the four Read data
movements but erroneously pinpoints an Entry. Therefore,
making actions atomic in the flow of events is essential.

GPT-4 Data Movements Identification without split-
ting.

Prompt:
You are an expert COSMIC FSM practitioner. Your task is
to identify all the data movement types in the use case I’ll
provide, and the total number of CFP.

Use case:
The system locates the reservation header and, if exists,
details regarding the booked rooms and services, and the
children’s ages.

Data movements:
Total CFP:
Do not add anything else.

GPT-4 answer:
Data movements: Entry (E), Read (R), Read (R), Read (R)
Total CFP: 4

Fig. 9: GPT-4 Data Movements Identification without split-
ting.

GPT-4 Data Movements Identification with splitting.

Prompt:
You are an expert COSMIC FSM practitioner. Your task is
to identify all the data movement types in the use case I’ll
provide, and the total number of CFP.

Use case:
The system locates the reservation header.
If the reservation header exists, the system locates details
regarding the booked rooms.
If the reservation header exists, the system locates details
regarding the booked services.
If the reservation header exists, the system locates the
children’s ages.

Data movements:
Total CFP:
Do not add anything else.

GPT-4 answer:
Data movements: Entry (E), Read (R), Read (R), Read (R),
Read (R)
Total CFP: 5

Fig. 10: GPT-4 Data Movements Identification with splitting.

The second issue concerns mapping the FURs expressed
in the use cases to COSMIC’s Generic Software Model

(GSM) and applying COSMIC’s rules. This is the hardest
part of our prompt engineering because it is not a typical
task for GPT-4 (i.e., classification, summarization, etc.). For
example, according to the COSMIC manual, errors and
confirmation messages must be classified as Exit, but they
must be counted only once per Functional process. So,
these kinds of data movements must be differentiated from
the others to avoid inconsistent measurements. In addition,
when the system exchanges data movements with external
components, these must be classified as Exit (from the
system towards the external components) or Entry (from
the external components to the system).

The last challenge is related to the limited context size
of GPT-4, namely the total length of the input message and
the model response. The maximum context size of GPT-4 is
8,192 tokens. Therefore, it is critical to balance the prompt
and the response size.

To efficiently manage these constraints, we refined GPT-4
using two training sets of few-shot examples (implemented
in the prompt.py script under the folder CosMet/cosmic
in our online repository [85]): T1 for the Sentence Splitter
Component and T2 for the COSMIC Analyzer Component.
The preparation of both training sets was carried out collab-
oratively by the authors, combining the practical industry
knowledge of the first author (with over 30 years of ex-
perience in the IT field and more than 18 years in FSM)
and the expertise of experienced researchers (with research
experience ranging from 15 to 35 years).

These training sets are implemented as system prompts
containing instructions and examples, following the struc-
ture described in Section 3.1. We carefully managed the
token allocation during refinement to balance the few-shot
examples and the space required for the model’s output. We
left over 5,200 tokens to process a use case and produce the
COMSIC analysis. The number of tokens was strategically
determined to be ample enough for verbose use cases,
allowing for a comprehensive analysis without exceeding
GPT-4’s context size.

3.2.1 Sentence Splitter Training Set

The Sentence Splitter’s prompt engineering involved creat-
ing clear instructions to help GPT-4 split complex sentences.
We manually created a set of examples, drawing from
our experience in software requirements engineering and
COSMIC measurement. Additionally, we analyzed other use
case documents and user stories from the companies that
provided us with the evaluation and test datasets, which
helped us understand their typical linguistic patterns.

We refined these prompts iteratively, focusing on pre-
venting over-splitting sentences and preserving the seman-
tic integrity of the use case steps. We used examples of
varying complexity from different software fields, ensuring
linguistic diversity and the ability to handle domain-specific
terminology. This approach exposed the LLM to various
sentence structures and action sequences from real-world
use case documents.

As a result, the training set T1 (publicly available in the
CosMet online repository [85] in the prompt.py script under
the folder CosMet/cosmic) consisted of a context instruction
and 16 example sentences followed by the expected result.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

T1 was designed to split sentences taking into account the
following semantic rules:

• If the sentence elaborates on an action without indi-
cating data exchange between user, system, storage, or
external components, it should remain unsplit (rule 1).

• If the sentence involves multiple actions by the same
subject, each action must be listed as a separate use-
case step, with the subject restated for clarity (rule 2).
This often happens when the action has different verbs
or periods.

• If the sentence regards a transaction and reports a
validation status before (or after) that, then the sentence
must not be split (rule 3).

• If a sentence describes a transaction involving multiple
entities, it must be split (rule 4). This applies when
multiple entity names follow the transaction verb, such
as “The system inserts the reservation and the booked
rooms,” involving both “reservation” and “booked
rooms.”

• If the sentence reports a system message and explains
its meaning, it must not be split (rule 5).

Figure 11 shows the response of the Sentence Splitter
Component for the following use case example:

Example: Use case to split

MAIN Scenario
1) The hotel manager clicks the “Services” Link.
2) The system shows a form to search services by code.
3) The user optionally fills in the service code to filter the results
and executes the search.
4) The system searches for services that meet the search criteria and
displays the list of available services.
Exceptions:
The system shows an error message stating that no results match
the search criteria.

Fig. 11: GPT-4 response for a typical “split sentences” re-
quest

In the response, step no. 4 is split into two distinct steps:
one for the search and the other for displaying the results.
This splitting is necessary as each action corresponds to a
different data movement (Read for searching and Exit for
displaying). In contrast, step 3 is not split because, while it
contains two actions (filling in the form and executing the
search), only the search execution represents a meaningful
data movement (Entry). This selective splitting approach
helps optimize token usage and processing efficiency while
ensuring accurate COSMIC measurement.

3.2.2 COSMIC Analyzer Training Set

We ensured the quality of the few-shot examples through a
meticulous review process for the COSMIC Analyzer Com-
ponent. The first author prepared each example following
COSMIC measurement principles. The co-authors then re-
viewed these examples to ensure correctness and alignment
with COSMIC standards. Consequently, the training set T2
(publicly available in our online repository [85]) comprised 7
examples of use cases with their relative COSMIC analysis: 3
examples coming from the Course Registration System (C-
REG) case study [86] (“Enquire on a Professor’s details”,
“Add a Professor’s details”, and “Delete a Professor’s de-
tails”), and 4 examples engineered to teach GPT-4 how to
deal with batch processes and typical message exchanges
with external components in different domains (“Search for
ships”, “Reserve cabins”, “Activate sensors”, and “Activate
processes”).

These examples were crafted based on our experience
with COSMIC measurement, following the same approach
used for the Sentence Splitter training set. Figure 12 shows
the measurement response with T2 for the following re-
quest:

Example: Use case measurement

FP: “Search for rooms”:
MAIN SCENARIO:
1) The hotel manager selects the sub-option “Rooms”
2) The system shows a form to search rooms by code
3) The user optionally fills in the room code to filter the results and
executes the search
4) The system searches for rooms that meet the search criteria
5) The system displays the list of rooms that meet the search criteria
6) The Hotel Manager browses the results
Exceptions:
7) The system shows an error message stating that no results match
the search criteria.
FP: “Search for rooms” measurement:

Fig. 12: GPT-4 response for the “Functional process mea-
surement” request



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

Following the same structure introduced in Section 2.1
(see Table 1), the output includes the Triggering Event that
initiates the functional process and the Functional User
involved. For each step in the scenario, the analysis iden-
tifies Data Groups (DG) and their Objects of Interest (OOI),
specifies Data Movement types (Entry, Exit, Read), and
indicates cases where no data movement occurs. The output
also includes special annotations for Exits that should be
counted only once, such as error messages.

3.3 Validation Process
The outputs produced by both components were carefully
validated before being used as references for the approach.
This validation process combined multiple sources of ex-
pertise and real-world examples. Initially, the first author re-
viewed the outputs and certified them in COSMIC measure-
ment to ensure compliance with COSMIC principles and in-
dustry practices. Then, they underwent cross-checking with
the other authors to ensure theoretical correctness. Addi-
tionally, we compared our results with actual use cases and
measurements provided by the companies who supplied
our evaluation datasets. While these additional materials
cannot be publicly shared due to confidentiality agreements,
they helped ensure that our examples and their analysis
reflected real-world practices and measurement standards.

In addition, before conducting the complete empirical
evaluation, we prepared two preliminary validation sets to
verify the effectiveness of our few-shot examples (publicly
available in our online repository [85]). The first set was
used to validate the Sentence Splitter Component (V1), com-
prising 20 sentences extracted from real use cases provided
by our industry partners. These sentences were specifically
selected because they represent complex scenarios com-
monly found in industry use cases, such as multiple actions
with different subjects, nested conditions, and compound
transactions. This complexity helped us verify that our
splitting approach could handle the various writing styles
and structures typically found in real-world requirements.
The second set validated the COSMIC Analyzer Component
(V2). It was derived from the use case specifications of a
Telemedicine microservice application, FIDDIA, developed
by an Italian Small Medium Enterprise (Kiranet). The first
author analyzed and measured these specifications, and
the results were reviewed and validated by the co-authors.
The use case specifications include four use cases and four
Functional processes, providing a realistic test case for our
measurement approach. Both validation sets were distinct
from the training and test sets used in the empirical evalua-
tion (see Section 4).

3.4 Hyperparameters tuning
Hyperparameter tuning is vital to get the best performance
from LLMs and make them more predictable in responding.
GPT-4, on which V1 and V2 components rely, has several
parameters that allow us to adjust it:

• Temperature: The temperature parameter governs the
model’s predictability and originality. Its values range
from 0 to 1. A temperature close to 1 results in more
randomness and diversity, while a temperature near
0 makes the model’s output more deterministic and

predictable. Temperature values between 0.5 and 0.9
are commonly chosen for creative tasks to balance
coherence and originality.

• Top p: top p sampling (nucleus sampling [87]) is used
in text generation with LLMs to control the diversity
of generated content. It sets a threshold to include only
the most probable words that cumulatively exceed a
specified probability “p.’ Tuning top p allows for a bal-
ance between creativity and coherence in the model’s
output. The OpenAI manual documentation3 suggests
utilizing one or the other option and setting the unused
parameter to the default value.

• Best of: It enables the generation of multiple comple-
tions server-side, with the ‘best’ response being the one
with the lowest logarithmic probability per token.

• Frequency penalty: The frequency penalty parameter
controls the model’s proclivity to make repeated predic-
tions. The frequency penalty diminishes the likelihood
of previously created words. The penalty is determined
by how many times a word appears in the prediction.

• Presence penalty: It encourages the model to create
novel predictions by the presence penalty parameter.
The presence penalty reduces the likelihood of a word
if it previously was in the predicted text. Unlike the
frequency penalty, the presence penalty is unaffected
by the frequency with which terms appear in previous
predictions.

To test and tune the Sentence Splitter and COSMIC
Analyzer components, we used the GridSearch algorithm
with Cross-Validation from Scikit learn library [88]. The
algorithm exhaustively searches a subset of hyperparameter
values for the refined components and uses a stratified
cross-validation technique to split the data into subsets
of folds. This ensures that each fold has a proportional
representation of the target variable, making the evaluation
more reliable. For each combination of hyperparameters,
the algorithm splits the validation sets into four folds, then
trains on three folds while testing on the remaining one.
This process is repeated four times, with each fold serving
as the test set once, and the average F1-score is computed
across all folds. This cross-validation approach ensures ro-
bust evaluation of each hyperparameter configuration and
helps prevent overfitting to specific examples.

We provided only a subset of the GPT-4 hyperparame-
ters to the algorithm, to reduce the search space, making the
following assumptions:

• Best of must be set to 1 (the default value) because we
need only the ‘best’ response server-side.

• Top p must be set to 1 (the default value) because we
employed the temperature in the parameter grid. The
OpenAI documentation suggests changing only one of
the two parameters.

• Presence penalty must be set to 0 (default value) to
reduce the “creativity” of GPT-4.

• Frequence penalty must be in [0.0, 0.1, 0.2, 0.3, 0.4,
0.5] to reduce the model’s proclivity to make repeated
predictions.

3OpenAI documentation. https://platform.openai.com/docs/api-
reference

https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/api-reference


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

• Temperature must be in [0.0, 0.1, 0.2, 0.3, 0.4] as far as it
concerns reducing the creativity of GPT-4 and allowing
it to be more deterministic.

Finally, we chose the number of folds for the cross-
validation splitting strategy, namely four folds for the GPT-
4 model (i.e., V1) refined in splitting sentences and for the
model refined in COSMIC analysis (i.e, V2). To validate the
results, we used the F1-score of the Rouge metric [89], [90],
specifically 1-Rouge (see Appendix A2 for details).

The GridSearch process evaluated 25 combinations of
temperature and frequency penalty values (5 frequency
penalty values times five temperature values). For each
combination, we computed the average F1-score across
the four folds. The results showed that lower temperature
values consistently produced better results, with tempera-
ture=0 yielding the highest F1-scores. This result aligns with
our goal of making GPT-4’s responses as deterministic as
possible for COSMIC measurement. Similarly, a frequency
penalty of 0 proved optimal, suggesting that penalizing
word repetition does not improve performance in our con-
text, likely because COSMIC measurement often requires
consistent terminology.

The best settings for V1 and V2 identified by the Grid-
SearchCV algorithm were a temperature of 0, presence
penalty of 0, frequency penalty of 0, best of 1, and top
p of 1. The Python sources to replicate the training and
optimization pipeline are publicly available in the CosMet
online repository [85].

3.5 The CosMet Tool
We developed a tool (see our online repository for sources
[85]) implementing the CosMet approach, which interacts
with the GPT-4 API through HTTP requests using the pro-
vided Python bindings 4. It parses the GPT-4 responses and
displays the output predictions on a web page. We used
the Streamlit framework 5 – a Python web framework - to
develop CosMet as a web application. Figures 13 and 14
show the tool’s input and output.

In particular, CosMet accepts as input the textual repre-
sentation of a use case and returns information about iden-
tified Triggering event, Functional user (FU), Data group
(DG), Object of interest (OOI), and Data movement type
(DM) and corresponding CFP for each sub-process.

3.6 CosMet Setup
Setting up CosMet for a new organization is straightforward
and involves the following steps:

1) Reviewing organizational guidelines for writing use
cases.

2) Identifying a representative set of use cases.
3) Fine-tuning the LLM using the annotated few-shot ex-

amples.
4) Validating the LLM’s performance and making iterative

improvements as needed.
The following effort estimates are based on the experi-

ence of the first author as a practitioner, who is certified

4OpenAI documentation. https://platform.openai.com/docs/api-
reference

5Streamlit framework. https://streamlit.io/

Fig. 13: CosMet user interface: use case

Fig. 14: CosMet user interface: COSMIC measurement anal-
ysis

in UML 2, COSMIC, and IFPUG, with over 30 years of
experience in the IT field and more than 18 years specif-
ically working with FSM across various projects in both
public and private sectors. These estimates reflect real-world
implementation scenarios rather than purely research-based
settings.

The first step, typically 2 to 4 work hours, involves
understanding specific terminologies, sentence structures,
and formatting conventions unique to the organization.
Indeed, it is essential to mention that companies typically
establish guidelines for writing use cases [91]. These guide-
lines can significantly aid in selecting appropriate few-shot

https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/api-reference
https://streamlit.io/


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

examples for COSMIC analysis. The next step is to identify
a representative set of use cases that cover a broad range
of functionalities and complexities. This phase usually takes
about 4 to 8 work hours. Our experience with diverse do-
mains has shown that this analysis ensures that the selected
use cases are diverse and representative. The annotated
few-shot examples are then used to fine-tune CosMet. This
process, including iterative testing and validation, typically
takes 8 to 12 work hours. The last step is validating the Cos-
Met’s performance using real-world use cases and making
necessary adjustments based on feedback from professional
measurers. Initially, this can take an additional 4 to 6 work
hours, with periodic reviews as needed. The total time
investment for the initial setup of CosMet typically ranges
from 18 to 30 work hours, depending on the complexity
of the use cases. While this setup phase requires an initial
investment of time, it is a one-time effort that pays off in
the long run. Once the setup is complete, the same few-shot
examples can be reused across multiple projects, ensuring
consistency and efficiency.

4 EMPIRICAL ASSESSMENT OF COSMET

This section describes the research questions, dataset cre-
ation, and methods for evaluating the proposed approach.

4.1 Research Goals and Questions

The goal of the empirical assessment was to analyze the
effectiveness of our approach (i) to measure use cases and
(ii) to map the FURs in the form required by the COS-
MIC General Software Model, together with (iii) assess the
amount of time required for COSMIC measurement.

The purpose was to provide empirical evidence that
can highlight the benefits and limitations of the proposed
approach to make practitioners aware of the strengths and
weaknesses they would obtain through the use of CosMet.
More specifically, our empirical assessment was driven by
three main research questions, namely:

RQ1 How effective is CosMet in measuring use cases?
This research question focuses on CosMet’s ability to
identify Data Movements (Entries, Exits, Reads, and
Writes), which represent the final output of COSMIC
measurement.

RQ2 How effective is CosMet in mapping FURs to the COS-
MIC Generic Software Model?
This question evaluates CosMet’s ability to correctly
identify the key elements required by the COSMIC
Generic Software Model: Functional Users, Triggering
Events, Data Groups, and Objects of Interest. This de-
tailed evaluation is crucial for ensuring transparency in
our approach, allowing measurers to validate and, if
necessary, intervene in the measurement process.

RQ3 How efficient is CosMet in reducing measurement
time?
This question assesses how CosMet transforms the
measurement process and its impact on the time re-
quired to perform COSMIC measurement compared
with industry benchmarks.

To address the goal of our study, we followed the prompt
engineering guidelines provided by OpenAI [83] and Ekin

[84] and conducted mixed-method research, hence combin-
ing quantitative performance assessment with qualitative
insights from practitioners. As for reporting, we followed
the ACM/SIGSOFT Empirical Standards, particularly the
”General Standard” and ”Mixed Methods” guidelines.

4.2 Dataset Creation and Ground Truth
The datasets we utilized for our empirical assessment con-
sist of 7 software systems from 4 different domains (Man-
agement Information System, Microservices/IoT, Real-Time,
and Machine Learning), totaling 123 use cases and 119
functional processes:

• Albergate: A Management Information System pro-
vided by Kiranet (an SME Italian company), comprising
66 use cases and 62 Functional processes.

• FIDCPM, FID-MTC, and FID-TCT: Microservices of a
Telemedicine application developed by Kiranet, provid-
ing 37 use cases and 37 Functional processes.

• Rise cooker and Automatic Line Switching: Case stud-
ies from the COSMIC Website [92], [93] in the Real-Time
domain, comprising 10 use cases and 10 Functional
processes.

• U-CURE: An ML application developed by Innovaway
(a large Italian company), comprising 10 use cases and
10 Functional processes.

We engaged two professional COSMIC measurers certi-
fied in FSM methods (IFPUG and COSMIC) to create the
ground truth. The first expert has over 25 years of expe-
rience in software engineering and more than 15 years in
software effort/size estimation. The second is a manager of
an IT company and a member of GUFPI - ISMA6, with over
10 years of experience in software effort/size estimation.

The ground truth creation process followed three steps:
1) Independent measurement: Each expert independently

analyzed and measured the use case specifications.
2) Comparison: The experts compared their measure-

ments to identify discrepancies.
3) Fine-tuning: The experts conducted a fine-tuning ses-

sion to resolve disagreements and produce shared COS-
MIC measurement reports.

We calculated the inter-rater agreement between the
experts’ independent measurements, specifically Cohen’s
Kappa score [94], before the fine-tuning session.

The experts agreed on 573 of 593 total movements for
Data Movement identification, with only 20 disagreements
(one in FID-CPM, 16 in FID-MTC, one in FID-TCT, and
two in U-CURE). Cohen’s Kappa showed almost perfect
agreement (k = 0.976) in classifying movements as Entry,
Exit, Read, or Write. The agreement levels for other COSMIC
elements were also high: Triggering Events and Functional
Users showed perfect agreement (k = 1.000). In contrast,
Data Groups (k = 0.838) and Objects of Interest (k = 0.866)
showed slightly lower agreement.

The lower agreement for Data Groups and Objects of
Interest reflects the variations in terminology used by the ex-
perts (e.g., ”Customer Data” vs. ”Customer Information”),
which were standardized during the fine-tuning session to
ensure consistency. The resulting ground truth includes a

6https://www.gufpi-isma.org



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

comprehensive identification of data movements for each
functional process, a complete mapping to the COSMIC
Generic Software Model, encompassing functional users,
triggering events, data groups, and objects of interest, as
well as detailed measurement reports for each software
system. All datasets and measurement reports are publicly
available in our online repository [85].

4.3 Research method for RQ1

To address RQ1, we compared the COSMIC Data move-
ments produced by COMET against the ground truth cre-
ated by the expert measurers (described in Section 4.2).

For each software project, we evaluated use cases (in
their original form as documented in the use case doc-
uments) at the functional process level, where each use
case (including any included or extended use cases) was
analyzed as a single unit. We then computed metrics to
establish CosMet effectiveness. In particular, we used the
BLEU [95] and Rouge (specifically 1-Rouge) [89], [90] met-
rics, explained in detail in Appendix A2. It is important to
note that our evaluation task is not a simple classification
problem but a comparison of ordered sequences that rep-
resent the flow of Data Movements within functional pro-
cesses. For example, consider a functional process with four
subprocesses where we identify the following sequence:
[Entry, Read, Write, Exit]. A different sequence containing
the same movements but in a different order, such as
[Read, Entry, Exit, Write], would be completely wrong as
it misrepresents the actual flow of the functional process.
For BLEU, we used weights=(1, 0, 0, 0), which focuses on
matching individual Data Movement labels at each position
in the sequence, giving 100% weight to unigram matching.
This configuration means that we evaluate each subprocess
classification independently, comparing CosMet’s output
with the ground truth one position at a time. The Rouge-1
metric complements this evaluation by providing precision,
recall, and F1-score for each type of Data Movement across
the sequence. We performed 10 iterations of the evaluation
process on the dataset to address the non-deterministic
nature of LLMs. We executed CosMet on all use cases for
each iteration and computed BLEU and Rouge-1 metrics.
This repeated evaluation allows us to assess the stability
and reliability of CosMet’s Data Movement identification
across multiple runs. We report the average scores and their
standard deviations to provide a comprehensive view of
CosMet’s performance and any potential variations in its
output. We used two Python libraries to evaluate BLUE and
1-Rouge metrics: nltk 7 and Rouge 8.

Additionally, to comprehensively assess the effective-
ness of our approach, we systematically searched Scopus
to identify all the articles proposing COSMIC automation
tools and potential approaches to compare with CosMet.
Among these, only the article by Ochodek et al. [96] used
textual use cases, proposing a deep learning model for end-
to-end approximation of COSMIC functional size. As such,
this represented the baseline considered in our study. To
compare CosMet with DEEP-COSMIC-UC, we proceeded
as follows. Ochodek et al. initially assessed the accuracy

7Natural Language Toolkit for Python. https://www.nltk.org/
8Project Rouge. https://pypi.org/project/rouge/

of DEEP-COSMIC-UC by calculating absolute error (MAE)
and median absolute error (MdAE). The values obtained
in their study were 3.479 for MAE and 2.204 for MdAE.
To ensure a fair comparison, we applied both CosMet and
DEEP-COSMIC-UC to our dataset, computing MAE and
MdAE for each of CosMet’s 10 iterations against the ground
truth, and for DEEP-COSMIC-UC’s single output.

4.4 Research method for RQ2

To address RQ2, we designed an evaluation approach con-
sisting of two complementary phases: a broad quantitative
evaluation and a qualitative assessment with practitioners.

4.4.1 Quantitative Evaluation
For the quantitative evaluation, we analyzed CosMet’s per-
formance in identifying Functional users, Triggering events,
Data groups, and Objects of interest across our datasets (de-
scribed in Section 4.2), which includes Albergate, FIDCPM,
FID-MTC, Rice cooker, Automatic Line Switching, U-CURE,
and FID-TCT use case documents. Note that while DEEP-
COSMIC-UC serves as our baseline for Data Movement
identification in RQ1, it was not included in this comparison
as it does not provide capabilities for mapping FURs to the
COSMIC Generic Software Model elements.

The evaluation employs three complementary metrics:
BLEU [95], Rouge [89], [90], and BERTScore [97] (see Ap-
pendix A2 for details). For each COSMIC Generic Software
Model element (Functional users, Triggering events, Data
groups, and Objects of interest), we compared the sequence
of elements identified by CosMet against the ground truth
at the subprocess level, maintaining their sequential order
(e.g., if for a subprocess CosMet identified the Data groups
[”Room,” ”Customer,” ”Reservation”] and the ground truth
contained [”Room,” ”Customer details,” ”Reservation”], we
compared each Data group at its specific position). BLEU
and Rouge capture the quality, precision, and recall of Cos-
Met’s output compared to the reference text from the ground
truth (see Section 4.2), considering the sequential nature
of the analysis where each subprocess contains interrelated
COSMIC elements. BERTScore addresses semantic similari-
ties, which is crucial when comparing CosMet’s output with
the ground truth, as semantically equivalent descriptions
might be expressed using different words or phrasings
(e.g., CosMet might identify a Functional user as ”system
operator” while the ground truth refers to it as ”system
administrator”). As in RQ1, we performed 10 iterations to
account for the non-deterministic nature of LLMs, reporting
both average scores and standard deviations for all metrics.

4.4.2 Qualitative Evaluation
Since metrics cannot fully capture the correctness of COS-
MIC element identification, we performed a further analysis
involving five practitioners with two years of experience
with COSMIC measurement from an Italian software com-
pany and the two certified COSMIC measurers who created
the ground truth to answer RQ1.

In particular, we employed the use case document FID-
TCT (described in Section 4.2) as a representative case study
for this phase, as it encompasses typical characteristics
found across our dataset while being of manageable size

https://www.nltk.org/
https://pypi.org/project/rouge/


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

for detailed manual analysis. The practitioners used CosMet
to analyze FID-TCT’s use cases and evaluated the appro-
priateness of the generated Triggering events, Functional
users, Data groups, and Objects of interest. To this end,
the practitioners filled in questionnaire no. 1 shown in
TABLE 2, where each question admits answers within a
scale proposed by Likert, ranging from 1 to 5, where 1 means
a meager value, and 5 indicates a very high value.

TABLE 2: Questionnaire no. 1 provided to the measurers.

No. Questions
1 How appropriate are the CosMet identified Data groups?

[1. Highly inappropriate, 2. Inappropriate, 3. Neutral, 4. Appropriate, 5. Highly
appropriate]

2 How appropriate are the CosMet identified Objects of interest?
[1. Highly inappropriate, 2. Inappropriate, 3. Neutral, 4. Appropriate, 5. Highly
appropriate]

3 How appropriate are the CosMet-identified Functional users?
[1. Highly inappropriate, 2. Inappropriate, 3. Neutral, 4. Appropriate, 5. Highly
appropriate]

4.5 Research method for RQ3

RQ3 aims to assess how much time is required for COS-
MIC measurement and how much CosMet can reduce this
time in a real-world scenario. This time includes the work
the measurers need to evaluate, correct, and validate the
CosMet measurement analysis, helping fine-tune the mea-
surement and addressing any ambiguities or discrepancies
in the requirements expressed by use cases. To establish
a baseline for comparison, we referred to the industry
benchmark reported by Ungan et al. [51], which indicates
that a COSMIC-certified measurer typically measures 125-
500 CFPs daily. In contrast, an uncertified measurer may
measure less than half of this quantity. To assess this, we
asked the five practitioners and the two certified profes-
sional measurers involved in the analysis to answer RQ2,
and evaluate how CosMet can help reduce measurement
time. The participants recorded the total time to perform
the CosMet analysis on the FID-TCT use case specifications
(described in Section 4.2), fine-tuned it for each Functional
process, and filled in questionnaire no. 2 shown in TABLE 3.
We then collected and compared the participants’ responses
in order to understand the opinions of practitioners about
how CosMet can reduce the time required for COSMIC
measurement.

TABLE 3: Questionnaire no. 2 provided to the measurers.

No. Questions
4 To what extent does CosMet reduce the measurement time compared to manual

measurement?
[1. 0%, 2. < 20%, 3. < 40%, 4. < 60%, 5. <80%]

In addition, to assess the CosMet’s performance compre-
hensively, we calculated the measurement time of DEEP-
COSMIC-UC using the same hardware configuration em-
ployed for CosMet and compared the results obtained.

5 EXPERIMENTAL RESULTS

We present the results for each research question.

5.1 RQ1 - How effective is CosMet in measuring use
cases?
The average 1-Rouge and BLEU metrics across all the use
case documents from the software projects in the four
domains indicate high accuracy and consistency in the
CosMet’s analysis (see Table 4). Over 10 iterations, Rouge-
1 showed 99.0% (SD = 2.7%) for precision, recall, F1-score,
while BLEU reached 99.0% (SD = 3.2%). This means that,
on average, CosMet correctly identified 587 out of 593 Data
movements across all use cases, with minimal variation
between iterations, demonstrating high reliability for auto-
mated COSMIC measurement. For the Albergate use cases,
CosMet consistently identified 357 out of 359 Data move-
ments across all 10 iterations, achieving 99.8% in Precision,
Recall, F1-score (SD = 1.5%), and BLEU (SD = 1%).

For the use case documents of FIDCPM, FID-TCT, and
FID-MTC, CosMet correctly identified an average 131.9 out
of 134 Data movements, reaching 98.4% for precision, recall,
and F1-score (SD=4.1%), and 99.0% for BLEU (SD=3.1%).

For the Rice cooker and Automatic Line Switching use
case documents, CosMet correctly identified all 47 Data
movements across all iterations, reaching 100% in all met-
rics (SD=0.00%). This result indicates that when comparing
sequences of Data Movement types (i.e., Entry, Exit, Read,
Write), both BLEU and 1-Rouge metrics indicate that Cos-
Met identified the same sequence as the human measurers,
without no differences in the type or order of the move-
ments.

For the U-CURE use case document, CosMet correctly
identified an average of 52 out of 53 Data movements out,
reaching 98.3% in precision, recall, and F1-score (SD=5.3%),
and 96.3% for BLEU (SD=11.9%).

The error analysis revealed several recurring patterns
across domains. The first error type concerns distinguish-
ing Data movements from control commands, as seen in
Albergate’s FP26. CosMet erroneously identified a control
command as an Entry Data movement in the subprocess
”The user clicks the ’View order details’ button.” According
to the COSMIC manual, this represents a control command
that enables user interaction without moving data about
an Object of Interest. The error likely occurred due to the
presence of action verbs (”clicks”) and data-related terms
(”details”), which resemble Data movement patterns.

The second error type concerns implicit Data groups
requiring domain knolwledge. In Albergate’s FP29 and U-
CURE’s FP10, CosMet failed to identify Entry and Exit Data
movements related to implicit data (Customer data and SVC
hyperparameters, respectively). For example, in U-CURE’s
subprocess ”The system requests the ML Engine to classify
the patient,” the Exit Data movement for SVC parameters
was missed. This suggests that CosMet struggles to infer
implicit data movements that experienced measurers would
recognize from context.

A third, albeit rare, error type involves sentence splitting
issues. In FID-MTC’s FP6, one iteration failed to split the
compound sentence ”The system searches and displays all
the televisit requests for the given doctor received from
his (her) patients” into separate search and display subpro-
cesses. However, CosMet demonstrated robustness by still
correctly labeling it as ”Read/Exit,” accurately identifying
both Data movements despite the splitting issue.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

TABLE 4: Quantitave Evaluation Results.

MIS IoT / Microservice Real time AI
COSMIC Concept Metric Albergate K01719 K01720 K01726 ALS Rise Cooker U-CURE AVG

TE
1-Rouge F1-Score 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Std.Dev. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BLEU Val. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Std.Dev. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BertScore F1-Score 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Std.Dev. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FU
1-Rouge F1-Score 0.998 0.987 1.000 0.991 1.000 1.000 1.000 0.996

Std.Dev. 0.015 0.034 0.000 0.035 0.000 0.000 0.000 0.012
BLEU Val. 0.996 0.988 1.000 0,987 1,000 1.000 1.000 0.996

Std.Dev. 0.030 0.032 0.000 0.050 0.000 0.000 0.000 0.016
BertScore F1-Score 0.999 0.995 1.000 0,996 1.000 1.000 1.000 0.999

Std.Dev. 0.009 0.012 0.000 0.017 0.000 0.000 0.000 0.005

DG
1-Rouge F1-Score 0.917 0.913 0.958 0.948 0,986 1.000 0.926 0.950

Std.Dev. 0.099 0.120 0.084 0.106 0.031 0.000 0.127 0.081
BLEU Val. 0.847 0.905 0.945 0.930 0.979 1.000 0.895 0.929

Std.Dev. 0.170 0.125 0.107 0.129 0.046 0.000 0.194 0.110
BertScore F1-Score 0.967 0.977 0.987 0.982 0.994 1.000 0.983 0.984

Std.Dev. 0.031 0.029 0.025 0.031 0.013 0.000 0.029 0.023

OOI
1-Rouge F1-Score 0.890 0.837 0.987 0.793 0.949 0.689 0.801 0.849

Std.Dev. 0.163 0.299 0.052 0.236 0.093 0.153 0.316 0.188
BLEU Val. 0.818 0.817 0.987 0.735 0.914 0.624 0.771 0.809

Std.Dev. 0.235 0.318 0.030 0.259 0.155 0.290 0.328 0.231
BertScore F1-Score 0.966 0.972 0.996 0.950 0.983 0.956 0.958 0.969

Std.Dev. 0.040 0.049 0.010 0.047 0.030 0.050 0.051 0.040

DM
1-Rouge Precision 0.998 0.961 1.000 0.992 1.000 1.000 0.983 0.990

Std.Dev. 0.015 0.091 0.000 0.032 0.000 0.000 0.053 0.027
Recall 0.998 0.961 1.000 0.992 1.000 1.000 0.983 0.990

Std.Dev. 0.015 0.091 0.000 0.032 0.000 0.000 0.053 0.027
F1-Score 0.998 0.961 1.000 0.992 1.000 1.000 0.983 0.990
Std.Dev. 0.015 0.091 0.000 0.032 0.000 0.000 0.053 0.027

BLEU Val. 0.998 0.982 1.000 0.989 1.000 1.000 0.963 0.990
Std.Dev. 0.010 0.052 0.000 0.039 0.000 0.000 0.119 0.032

TE=Triggering Event FU=Functiona User, DG=Data Group, OOI=Object Of Interest, DM=Data Movement

The fourth pattern emerges in user interaction scenarios,
particularly in FIDCPM and FID-MTC. In FIDCPM’s FP4,
CosMet consistently swapped Data movements in ”The
Sensor Device sends the raw data to the Mobile” (identified
as Exit instead of Entry) and ”The Mobile App requests
the System to save the measurement data” (identified as
Entry instead of Exit). Similarly, in FIDCPM’s FP5 and FID-
MTC’s FP13, FP14, and FP21, the model struggled with
entry movements in button-click scenarios such as ”The user
selects the ’List all vitals’ button.” These errors suggest that
CosMet may be overly influenced by sentence structure and
specific verbs rather than the underlying data flow logic.

These patterns indicate that while CosMet maintains
high overall effectiveness, it faces challenges with complex
semantic distinctions, implicit domain knowledge, and spe-
cific syntactic patterns. These limitations primarily stem
from the restricted number of examples used during the
refinement phase, constrained by GPT-4’s context size limits.
Additional few-shot examples focusing on these specific
patterns could improve performance in these areas.

Despite minor discrepancies in a few Functional pro-
cesses, the results demonstrate that CosMet is highly effec-
tive in measuring use cases within the considered domains.
Tables in Appendix B.1 report detailed results in terms of
CFPs obtained with CosMet and by manual measurement
for each considered system and each identified Functional
process.

Regarding the comparison with DEEP-COSMIC-UC [96],
the MAE and MdAE values confirmed the results above. In

particular, across all iterations, CosMet’s MAE scores ranged
from 0.026 to 0.053 (average = 0.038), compared to 2.8421
for DEEP-COSMIC-UC, while MdAE values were 0 for
CosMet and 2 for DEEP-COSMIC-UC. These results indicate
that CosMet’s predictions almost perfectly match the expert
measurers’ ground truth, with an average deviation of only
0.038 Data movements per functional process, while DEEP-
COSMIC-UC shows a larger average deviation of about 3
Data movements. The above discussed results allow us to
answer RQ1 as follows:

CosMet is a good starting point for manually fine-tuning
the measurement because it displays the interpreted data
movements of each FUR; the user has total transparency
into the makeup of the count and may properly change the
requirements (i.e., ambiguity, lack of clarity).

5.2 RQ2— How effective is CosMet in mapping FURs to
the COSMIC Generic Software Model?
In the following, we first compare the CosMet-generated
text (regarding Functional users, Triggering events, Data
groups, and Objects of interest) against the ground truth,
using the 1-Rouge, BLEU, and BERTscore metrics. Then, we
analyze the answers to questionnaire no. 1 filled in by the
five practitioners and the two certified COSMIC measures
involved in the analysis of RQ1, considering the results of
the evaluation they performed on the FID-TCT use case
document.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

5.2.1 CosMet analysis vs manual measurement

The average 1-Rouge and BLEU metrics values for all the
use case documents of the software projects from the four
domains indicate a high level of performance (see Tables 4
and 5 and Appendix C1 for additional details). Specifically,
the BLEU scores range from 80.1% to 100% (SD=9.7%),
the F1-Score values for the 1-Rouge metric vary between
84.5% and 100% (SD=7.4%), and the F1-Score values for
the BERTscore metric range from 96.6% to 100% (SD=1.8%)
across all iterations.

For the Albergate system (comprising 359 Data groups
and 24 Objects of interest), CosMet perfectly identified Trig-
gering events, reaching 100% across all metrics (SD=0.0%).
For Functional Users, the system demonstrated excep-
tional performance with Rouge metrics showing precision,
recall, and F1-score values of 99.8% (SD=1.5%), BLEU
score reaching 99.6% (SD=2.9%), and BERTscore achiev-
ing 99.9% across all measures (SD=0.9%). Regarding Data
Groups, CosMet maintained strong performance, with
Rouge metrics showing precision at 93.9% (SD=8.4%), recall
at 90.4% (SD=11.1%), and F1-score at 91.7% (SD=9.9%).
While the BLEU score was lower at 84.7% (SD=17.0%),
BERTscore demonstrated robust results with all measures
above 96% and lower variability (SD≈3%). For Objects
of Interest, Rouge metrics achieved precision at 91.7%
(SD=16.1%), recall at 87.9% (SD=16.9%), and F1-score at
89.0% (SD=16.3%). While the BLEU score decreased to 81.8%
(SD=23.5%), BERTscore maintained excellent results above
96% (SD≈4%).

As for the use case documents of FIDCPM, FID-TCT,
and FID-MTC (characterized by 134 Data groups and 18 Ob-
jects of interest), CosMet correctly identified the Triggering
events and Functional users for all the use cases, reaching
100% in all metrics. Regarding Data Groups, performance
was consistent across metrics, with Rouge achieving preci-
sion, recall, and F1-score all around 94% (SD≈10%). BLEU
score reached 92.7% (SD=12.1%), while BERTscore showed
the best results with all measures above 98% and lower
variability (SD≈3%). For Objects of Interest, performance
showed more variability, with Rouge metrics achieving pre-
cision at 86.6% (SD=19.8%), recall at 87.9% (SD=19.8%), and
F1-score at 86.9% (SD=19.6%). While BLEU score was lower
at 84.6% (SD=20.2%), BERTscore maintained strong results
above 97% (SD≈4%).

Similarly to previously considered domains, CosMet cor-
rectly identified the Triggering events and Functional users
for all the use cases of Rice cooker and Automatic Line
Switching (characterized by 47 Data groups and 8 Objects
of interest), achieving 100% in all metrics. Regarding Data
Groups, performance was exceptional across all metrics.
Rouge showed outstanding results with precision at 99.2%
(SD=1.3%), recall at 98.9% (SD=1.8%), and F1-score at 99.0%
(SD=1.5%). BLEU score achieved 98.5% (SD=2.3%), while
BERTscore demonstrated near-perfect performance with all
measures at 99.6% and minimal variability (SD=0.6%).
For Objects of Interest, performance remained strong but
showed more fluctuation. Rouge metrics achieved precision
at 87.7% (SD=10.7%), recall at 86.7% (SD=13.2%), and F1-
score at 87.1% (SD=12.3%). While the BLEU score was lower
at 82.7% with higher variability (SD=22.3%), BERTscore

maintained excellent results with consistent 97.5% across all
measures (SD≈4%).

Concerning the fourth domain, CosMet correctly iden-
tified the Triggering events for all use cases of U-CURE
(comprising 52 Data groups and 9 Objects of interest),
reaching 100% in all metrics. It correctly determined the
Functional users in all Functional processes, reaching 100%
in all metrics. Regarding Data Groups, performance re-
mained strong with Rouge metrics showing precision at
94.6% (SD=9.2%), recall at 91.7% (SD=15.3%), and F1-score
at 92.6% (SD=12.7%). While the BLEU score reached 89.5%
(SD=19.4%), BERTscore maintained excellent results with
all measures above 98% and lower variability (SD≈3%).
For Objects of Interest, Rouge metrics reached 80.1% across
precision, recall, and F1-score (SD=31.6%). The BLEU score
achieved 77.1% (SD=32.8%), while BERTscore maintained
higher performance with precision at 95.4% (SD=5.6%),
recall at 96.2% (SD=4.7%), and F1-score at 95.8% (SD=5.1%).

These results indicate that while CosMet provides re-
liable identification of COSMIC elements and a valuable
starting point that significantly reduces the manual effort
required for COSMIC measurement, manual verification
might be beneficial, particularly for Objects of Interest where
average F1-scores range from 80.9% (BLEU) and 84.9%
(Rouge) to 96.9% (BERTscore). A deeper analysis revealed
several identification challenges across all domains that
could explain these variations. Initially, during the very
first iteration, CosMet struggled with Functional User iden-
tification in multiple cases: nine Functional processes in
Albergate (FP 39, 43, 46, 57-62) and twenty-one in FIDCPM
and FID-MTC (FP 1, 2, 5-9 in FIDCPM and FP 1, 2, 4-6, 8,
10-15, 18, and 23 in FID-MTC). The problem was primarily
due to the generic references to users as ”User” or ”Actor”
in use case descriptions, as shown in the following example:

The user clicks the ”View order details” button for the order of
his (or her) interest.

When these use cases were modified to specify the Func-
tional User names explicitly, CosMet correctly identified all
Functional Users, achieving perfect scores across all metrics.
Additional issues in Functional user identification emerged
in two specific cases. In FP26 of Albergate, as reported in
Section 5.1, CosMet erroneously identified a control com-
mand as an Entry Data movement, reporting an additional
Functional User, while in FP29, it failed to identify an Entry
Data movement, resulting in a missing Functional User. Re-
garding Data Groups and Objects of Interest identification,
we observed both splitting and recognition challenges. In
one iteration for FID-MTC’s FP6 (as reported in Section
5.1), the splitter component failed to properly separate a
compound sentence, resulting in missed identification of
a related Object of Interest and its associated Data Group.
Additionally, the Rouge metric values were particularly
low (<60%) in a few cases: six Functional processes in
the MIS domain, four in the IoT/Microservice domain,
one in the Real-time domain, and one in the AI domain.
Interestingly, the BERTscore metric performed significantly
better for these same processes, with F1 scores ranging
from 85% to 93%. This discrepancy can be attributed to
ambiguities in the use case requirements. For instance, we
found cases where synonyms were used for the same Object



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

TABLE 5: Evaluation Results by COSMIC Concept.

Rouge BLEU BERTscore
Precision Recall F1-score Precision Recall F1-score

COSMIC Concept (Std.Dev.) (Std.Dev.) (Std.Dev.) (Std.Dev.) (Std.Dev.) (Std.Dev.) (Std.Dev.)

Triggering event 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 0.000

Functional User 0.998 0.998 0.998 0.997 0.999 0.999 0.999
(0.009) (0.009) (0.009) (0.014) (0.005) (0.005) (0.005)

Data Group 0.955 0.939 0.944 0.915 0.984 0.981 0.982
(0.073) (0.096) (0.086) (0.127) (0.022) (0.026) (0.024)

Object of Interest 0.853 0.843 0.845 0.801 0.967 0.966 0.966
(0.196) (0.204) (0.200) (0.247) (0.042) (0.042) (0.042)

MIN 0.853 0.843 0.845 0.801 0.967 0.966 0.966
MAX 1.000 1.000 1.000 1.000 1.000 1.000 1.000

STD.DEV. 0.070 0.077 0.074 0.097 0.017 0.018 0.018

of Interest (e.g., ”Feature” instead of ”Categorical feature”
in U-CURE). Due to GPT-4’s context size limitations, we
could not include additional few-shot examples to improve
synonym identification.

5.2.2 Appropriacy evaluation
The analysis of responses to questionnaire no. 1 indicated a
strong agreement among the interviewees (see Table 6 and
Apendix C2).

TABLE 6: Participants’s answers to the questionnaire no 1.

Participant Question no. 1 Question no. 2 Question no. 3
1 4 3 4
2 5 4 4
3 4 4 4
4 4 4 5
5 5 4 5
6 5 4 5
7 5 4 5
MEAN 4.6 3.9 4.6
MEDIAN 5 4 5
STD. DEV. 0.53 0.38 0.53

In particular, it revealed that the mean scores for ques-
tions 1 and 3 are both 4.6, with a median of 5, suggesting that
participants generally rated these aspects (i.e., appropriacy
in identifying Data groups and Functional users) of CosMet
highly. Question 2 (about appropriacy in identifying Objects
of interest) has a slightly lower mean score of 3.9 and a
median of 4, indicating a positive reception. The standard
deviation for questions 1 and 3 is 0.53, while for question
2 it is 0.38, which shows a relatively small spread in the
responses, further confirming the consistency of the positive
feedback.

These findings corroborate the earlier sections, highlight-
ing the effectiveness of CosMet in accurately identifying
relevant components for the users, and lead us to answer
RQ2 as follow:

CosMet can successfully map the FURs to the form required
by the COSMIC Generic Software Model because it cor-
rectly identifies Functional users, Triggering events, and
Data Movements in use case specifications. Furthermore,
it performs fine in recognizing Data groups and Objects of
interest and generates excellent qualitative mapping.

5.3 RQ3— How efficient is CosMet in reducing mea-
surement time?

The study conducted on the FID-TCT microservice applica-
tion, which has a total functional size of 17 CFPs, revealed
that the average durations for each Functional process, as
reported by participants, varied. The aggregated data from
the participants’ measurements indicated that the average
time to complete the CosMet approach for a single Func-
tional process ranged from 19.27 to 62.52 seconds. When
considering the entire application, the total average duration
for executing the CosMet approach was 198.21 seconds.
Additionally, the time required for fine-tuning the analysis
was recorded at 258.29 seconds. Therefore, the overall exe-
cution time for the CosMet approach, including fine-tuning,
amounted to 456.49 seconds.

These timing results reflect a significant transformation
of the measurement process. In traditional manual measure-
ment, practitioners need to (1) read and understand each use
case, (2) identify all COSMIC elements (Functional Users,
Data Groups, Objects of Interest), (3) count and classify
Data movements, (4) document the measurement, and (5)
review their work. With CosMet, this process is streamlined
to (1) running CosMet on the use cases, (2) reviewing and
fine-tuning CosMet’s output, and (3) validating the results.
To put these results in perspective, a COSMIC-certified
measurer typically processes 125-500 CFPs daily [51], while
uncertified measurers achieve less than half this rate. Cos-
Met can reduce measurement time by 53.38% to 88.35%,
enabling the analysis of approximately 1,072.53 CFPs within
an eight-hour workday. This efficiency gain was confirmed
by practitioners, with 71% indicating a 60% reduction in
measurement time, and 14% reporting even greater time
savings. Participant feedback through questionnaire no. 2
showed consensus on the 60% time reduction, with an aver-
age response score of 4. Detailed measurement durations
and response distributions are available in Table 7 and
Figure 15 (see Appendix D for additional details).

When compared to DEEP-COSMIC-UC [96], which av-
erages 4.23 seconds per use case and 10.19 seconds for
the entire FID-TCT model, CosMet is slower (≈ 19 times).
However, while DEEP-COSMIC-UC only estimates CFPs,
CosMet provides comprehensive COSMIC analysis and
measurement results, offering greater transparency and al-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

lowing practitioners to refine use-case documents and fine-
tune the analysis.

TABLE 7: Measurement durations recorded by the partici-
pants for FID-TCT.

Functional Process No. Average COMET duration (seconds)
1 62.52
2 51.4
3 23.59
4 41.41
5 19.27

(A) TOTAL COMET Time 198.21
(B) FINE-TUNING Time 258.29

(A+B) TOTAL Time 456.49
CFP per second 0.04

TOTAL Number of CFPs in 8 hours 1,072.53

Fig. 15: Time reduction using CosMet according to the
measurers.

All this leads us to answer RQ3:

CosMet can significantly reduce the measurement time by
executing the analysis in minutes. This time includes the
work the measurer needs to evaluate, correct, and validate
the CosMet measurement analysis.

6 DISCUSSION, IMPLICATIONS, AND LIMITATIONS

In the following, we first discuss the practical implications
of CosMet and outline directions for future work. Then, we
analyze the threats to validity that may have influenced our
findings and how we mitigated them.

6.1 Implications and Future Work
Our primary contribution is establishing a foundational
framework for integrating LLMs into the COSMIC FSM
process. While comparing COSMIC with other FSM meth-
ods like FPA could provide valuable insights, this work
deliberately focused on COSMIC automation to avoid in-
troducing complexities related to the inherent differences
between FSM methods. Such comparative analysis remains
an interesting direction for future research.

A key practical implication of our work is the trans-
formation of the measurement workflow through CosMet.
Traditional manual measurement requires practitioners to
perform five distinct steps: (1) read and understand each
use case, (2) identify all COSMIC elements, (3) count and
classify Data movements, (4) document the measurement,

and (5) review their work. CosMet streamlines this into three
steps: (1) running the automated analysis, (2) reviewing and
fine-tuning the output, and (3) validating the results.

This efficiency gain is substantial - our empirical assess-
ment shows that CosMet enables the analysis of approx-
imately 1,072 CFPs within an eight-hour workday, repre-
senting a time reduction of 53-88% compared to traditional
manual measurement.

The practical benefits of CosMet extend beyond time
savings. Organizations can leverage CosMet to standardize
their measurement process, reducing the variability typi-
cally introduced by different measurers’ interpretations. The
tool’s structured output provides transparency in the mea-
surement process, allowing practitioners to trace how each
measurement was derived and make informed adjustments
where necessary. This aspect is particularly valuable for
training new measurers, as they can learn from examining
CosMet’s detailed analysis and reasoning.

CosMet’s ability to process natural language require-
ments also has significant practical implications for mod-
ern development practices. In Agile environments, where
requirements frequently evolve and are often expressed as
user stories, CosMet can provide rapid measurement feed-
back, enabling more accurate and timely effort estimation.
The tool’s quick processing time allows organizations to
measure requirements as they are written, supporting more
dynamic planning and estimation processes.

Several promising directions for future research emerge
from our practical experience with CosMet. First, investigat-
ing the integration of CosMet with existing project manage-
ment and estimation tools could enhance its practical utility
in development workflows. Additionally, exploring how
CosMet could be adapted to handle different requirement
formats (beyond use cases) would increase its applicability
across different development methodologies. Furthermore,
studying how practitioners interact with and learn from
CosMet’s detailed analysis could improve organizational
measurement training and knowledge transfer. Finally, in-
vestigating how CosMet could be combined with other
estimation approaches in an ensemble strategy could lead
to more robust prediction models. This ensemble approach
could improve accuracy, adaptability, and robustness in soft-
ware development effort estimation, enhancing prediction
reliability and scalability in different project contexts.

6.2 Threats to validity

This section discusses possible limitations that could have
biased our findings and how we tried to mitigate them.

6.2.1 Threats to construct validity
In our study, we identified potential construct validity
threats. The first one concerns the metrics for assessing
CosMet’s performance. We combined BLEU, Rouge, and
BERTScore metrics with the evaluation of certified COS-
MIC experts, ensuring technical and practical assessment. A
second threat concerns mistakes and subjectivity in manual
measurement, potentially impacting the ground truth used
as a reference for evaluating CosMet. We involved two
certified COSMIC professionals to mitigate this threat. They
independently analyzed and measured the use cases and



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

then performed a fine-tuning session to arrive at shared
COSMIC measurement reports for each use case document.

6.2.2 Threats to internal validity

The main threats to internal validity relate to our experimen-
tal setup and controls. First, regarding CosMet’s efficiency
measurement, we mitigated potential bias by collecting tim-
ing data from all seven participants working on the same
FID-TCT use cases, ensuring a controlled assessment. The
selection of hyperparameters for GPT-4 could also affect
our results. As detailed in Section 3.4, we controlled this
threat by employing the GridSearch algorithm with Cross-
Validation to identify optimal parameter settings. Preparing
few-shot examples represents another potential threat to in-
ternal validity. We mitigated this by selecting examples from
the COSMIC C-REG case study and engineering additional
examples to cover batch processes and typical message
exchanges with external components, as described in Sec-
tion 3.2. The effectiveness of these examples was validated
through the preliminary validation sets V1 and V2, ensuring
their appropriateness for COSMIC measurement.

6.2.3 Threats to external validity

External validity concerns the generalizability of our find-
ings to different contexts and situations. The primary threat
relates to the representativeness of our dataset. While we
included use cases from multiple domains, CosMet’s per-
formance might vary when applied to use cases from other
domains or with different characteristics. This aspect was
evident in our results, where domain-specific terminology
impacted performance. For example, in the AI domain,
where terms like ”Feature” versus ”Categorical feature” led
to lower Rouge metric values (<60%) compared to other
domains. Similarly, technical terms related to sensor data
and measurements occasionally resulted in identification
challenges in the IoT domain. We partially mitigated this
threat by including diverse use cases from four domains
and by providing a systematic approach for domain adap-
tation through a few-shot examples selection (as detailed in
Section 3.6) . We also made our datasets publicly available
in our online repository to enable further validation across
different contexts. The non-deterministic behavior of LLMs
challenges generalizability, as GPT-4’s responses may vary
between runs. We mitigated this threat by performing 10
iterations per experiment and reporting average and stan-
dard deviations (Sections 4.3, 4.4, 5.1, 5.2.1) while controlling
GPT-4’s behavior through hyperparameter tuning (Section
3.4). The comparison with DEEP-COSMIC-UC as the sole
baseline may seem limited. However, as noted in Section
4.3, it was the only available tool for COSMIC measurement
from textual use cases. We mitigated this issue by providing
detailed metrics and sharing our experimental materials.
Finally, domain-specific terminology may affect CosMet’s
performance across different domains. However, as detailed
in Section 3.6, we mitigated this threat by selecting domain-
representative few-shot examples during setup. We also
provided a clear workflow to set up CosMet for a new
organization, ensuring robust cross-domain adaptation.

6.2.4 Threats to conclusion validity
Conclusion validity concerns the reliability of our conclu-
sions and the statistical relationship between treatment and
outcome. A primary threat relates to GPT-4’s token limit of
8,192 tokens, which could affect the reliability of our results
when processing large or complex use cases. As described in
Section 3.2, we mitigated this by carefully managing token
allocation during refinement, leaving over 5,200 tokens to
process a use case and produce the COSMIC analysis. The
statistical reliability of our results might be affected by
the sample size of use cases and the number of practi-
tioners involved in the evaluation. Our dataset included
123 use cases across domains and seven practitioners. To
provide transparency about the variability in our findings,
we reported standard deviations for all our measurements
across the 10 iterations performed for each experiment. The
reliability of our results might be affected by both the prac-
titioners’ characteristics and their familiarity with CosMet.
We involved seven measurers (five COSMIC-experienced
professionals and two certified measurers) and controlled
learning effects by using the simpler FID-TCT model for
timing data collection. As shown in Section 5.3, time savings
were consistent across all participants.

7 RELATED WORK

In this section, we first examine previous research on mea-
suring COSMIC using NLP. Then, we review the studies on
automated COSMIC measurement. While our work focuses
on automating COSMIC measurement, it is essential to
note that other size measurement approaches exist, such
as use case points, story points, object-oriented measures,
requirements complexity, interface complexity, and SLOC.
These different approaches highlight the diverse needs of
software projects and represent potential areas for future
research using similar methods.

7.1 COSMIC measurement using NLP

Simplifying and automating the application of the COSMIC
method is crucial for both academia and industry, especially
when measuring textual requirements. However, there is
limited academic research on this topic.

Hussain et al. [50] present a workbench, based on a
text miner, for automatically extracting all the necessary
information from a software’s requirement specifications
document to calculate its COSMIC size measure. Hussain
et al. [56] describe a supervised text mining strategy for
estimating COSMIC functional size (based on [50]) from
informally expressed textual requirements, with applica-
tions in Scrum and similar agile software development
processes. The experiments’ average F1-score value was
66.9%. Hussain et al. [55] use the frequency of language
characteristics to infer the COSMIC size. However, the pro-
posed method performs better when requirements are not
represented as use cases or scenarios. The results show that
it correctly classifies requirements with an F1-score value
between 60.9% and 73.3%. Ochodek [53] uses NLP to parse
linguistic elements from requirements and applies the C4.5
decision tree classifier [99] to categorize based on a historical
database of requirements measurements. Requirements are



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

TABLE 8: Comparison with Related Work on COSMIC Measurement using NLP

Reference Use Cases Approach Completeness Limitations Accuracy Measurement time reduction
CosMet ✔ NLP with generative AI Measure all scenarios within a use case Layer and measurement scope cannot

be identified
F1-score is 99.4% 60-80%

Hussain et al. [50] ✖ Text Mining Only Data Groups and Data movements
are identified

No experimental results N/A Not declared

Hussain et al. [56] ✖ Supervised text mining strategy for esti-
mating COSMIC functional size (based
on [6] and [7]).

Only CFPs are estimated (1) Use historical data to estimate the
COSMIC size; (2) Requirements are ex-
pressed as user stories.

66.9%. Not declared

Hussain et al. [55] ✖ It uses the frequency of language char-
acteristics to infer COSMIC size.

Only CFPs are estimated (1) Use historical data to estimate the
COSMIC size; (2) Do not perform well
with use case scenarios.

F1-Score within 60.9% and 73.3%. Not declared

Ochodek [53] ✔ It extracts syntactic linguistic informa-
tion using NLP and classifies require-
ments using the C4.5 decision tree-
based classifier.

Only CFPs are estimated Sensitive to the language used in de-
scriptions of requirements.

38.7%-78.5% of manual count. Not declared

Ochodek [54] ✔ Two-step approach for predicting the
functional size of applications based on
use-case requirements.

Only CFPs are estimated Use historical data to estimate the COS-
MIC size.

79%. Not declared

Ecar et al. [98] ✖ Based on a User Story Grammar Valida-
tor and a Parser, and defines a dictio-
nary to map it to the COSMIC method.

Only CFPs are estimated (1) Only valid for User stories; (2) Use
historical data to estimate the COSMIC
size.

95.3%. Not declared

Ungan et al. [51] ✖ Commercial tool for measuring textual
requirements

Measure only the main function within
a requirement

Syntactic and ontologic analysis of re-
quirements; analyze only the main func-
tion of the requirements.

20%-30% of manual count. 75-80%

Wang et al. [52] ✖ Technique based on fixed language
characteristics and syntactic rules.

Triggering events, Data movement
types, and Data groups are not identi-
fied

Focused only on grammar and syntax
rules and structured text

93%-99% of manual count. 90%

sorted into size classes defined by quantiles of the CFP
distribution. Classification accuracy is influenced by the
specification language, with the HKO predictor achieving
38.7% to 78.5% accuracy. Ochodek [54] proposes a two-
step method for estimating the functional size of software
from use case requirements. The process involves classifying
use case names into thirteen categories and constructing
prediction models using historical data to determine the
number of CFPs. Ochodek’s approach, compared with the
COSMIC AUC and another technique [53], achieves a 79%
accuracy rate. Ecar et al. [98] introduce AUTOCOSMIC, an
automated tool for estimating user stories using a User
Story Grammar Validator and Parser linked to the COSMIC
method. Informal validation against a certified expert’s esti-
mates shows AUTOCOSMIC achieves a 95.3% accuracy rate,
similar to an expert professional. SCOPEMASTER [51] is a
COSMIC Functional Size Measurement tool that accepts tex-
tual requirements as input. It is based on the syntactic and
ontologic analysis of the textual requirements. It analyzes
only the primary function provided in the requirements.
Its accuracy is within 20-30% of manual count equivalents,
and it reduces the manual measurement time by 75%-80%.
Wang et al. [52] offer an enhanced COSMIC software as-
sessment technique based on fixed language characteristics,
NLP concepts, and a local rule basis to eliminate human
intervention and increase accuracy. To perform automated
text processing, it focuses on grammar and syntax rules. The
results show an accuracy within 93%-99% of manual count
equivalents.

CosMet differs from the mentioned related work in
several significant ways (see TABLE 8). Firstly, CosMet
employs use case documents as input, while many re-
lated works focus on semi-structured textual requirements
or user stories. Secondly, CosMet employs advanced NLP
techniques, specifically LLMs, to automate the COSMIC
measurement, allowing it to adapt to different contexts
and styles of writing, potentially making it more flexible
and accurate in different scenarios. The related work, on
the other hand, often relies on predefined pattern rules or
syntax-based classifiers, which may not be as adaptable to
different contexts or styles of writing. Thirdly, CosMet de-
livers a comprehensive analysis of COSMIC concepts within
functional requirements, offering greater transparency and
detail than similar works. Finally, CosMet’s performance

has been validated across seven use case documents from
diverse domains and by seven practitioners, showing high
accuracy and notable productivity improvements. Such an
extensive empirical evaluation and evidence of efficiency
gains are often absent in related studies. Therefore, CosMet
introduces a more sophisticated, automated, and detailed
COSMIC measurement approach with proven effectiveness,
customization potential, and substantial productivity bene-
fits.

7.2 Automatic COSMIC measurement

Several researchers have suggested methods for automati-
cally evaluating COSMIC measurements using various arti-
facts such as UML diagrams, conceptual models, structured
requirements, source code, and more.

Jenner [46] provides a mapping between the COS-
MIC and Rational Unified Process concepts and designs a
method to measure models automatically. Jenner [44] details
an automated approach for determining functional size by
utilizing Rational Rose software. On the same page, Azzouz
and Abran [45] propose utilizing the Rational Unified Pro-
cess and Rational Rose to automate the COSMIC functional
size measurement. In [47], Diab et al. present µCROSE,
a system that determines the functional size of real-time
systems starting from statechart diagrams. The approach
relies on programmed rules that map the several objects of
interest onto the COSMIC ones. Lind et al. [48] introduce a
technique for measuring embedded software using the COS-
MIC method. They propose a new UML profile containing
all the information required to use COSMIC and estimate
the functional size.

Soubra et al. [39], [40] design and implement an auto-
mated measuring procedure utilizing the most commonly
used Simulink model in the automobile sector. Oriou et
al. [41] describe how to use the approach and the tool
by Soubra et al. within Renault. An automated approach
for ensuring consistency between component and activity
diagrams is designed by Sellami et al. [42], utilizing COS-
MIC. At first, the authors outline the methods used to
establish the functional size of the diagrams. Then, rules are
introduced to ensure the COSMIC FSM remains consistent.
Lastly, a tool is offered to calculate the functional size and
ensure the consistency of the diagrams.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

Akca and Tarhan [43] develop a library to tag data move-
ments in functional processes. The measuring approach is
semi-automatic, requiring source code modification to use
the library. According to the authors, using the library in
a student registration system resulted in 92% accurate out-
comes in automatically and manually measured functional
size. Ungan et al. [49] establish a link between the abstrac-
tion levels of the measured artifacts and functional size.
They provide a software size measuring approach based
on software design model sizes for the solution domain.
The suggested method, in particular, makes use of sequence
diagrams. They also suggest an automated measurement
tool. A novel tool, named PL FSM, has been introduced
by Eren et al. [37] for facilitating functional software size
measurement in a structured component-based software
product line environment (CBPL) that utilizes the interface-
based design (IbD) method. PL FSM establishes a mapping
between UML and COSMIC elements and offers automated
information extraction capabilities from UML diagrams. Im-
plementing PL FSM streamlines the software development
process in a CBPL framework. Gonultas and Tarhan [36]
introduce a method for measuring the COSMIC functional
size that automatically installs measurement library code
into an application. This technique estimates the size while
the user scenarios are executed at run-time.

Ceke and Milasinovic [35] describe a technique to ap-
proximate the web applications’ functional size. This ap-
proach relies on a methodological mapping between the
UML-based Web Engineering (UWE) models of web ap-
plications and the COSMIC functional size. Automated
measurement outcomes are comparable. Karim et al. [32]
suggest a tool for analyzing the XML structure of sequence
diagrams to automate the measuring procedure. Tarhan et
al. [38] delve into the automation of FSM through soft-
ware code and introduces the development of a new tool
called COSMIC SOLVER. This tool is specifically designed
to measure the performance of Java Business Applications
(JBAs). COSMIC SOLVER automates the entire process,
from extracting textual representations of UML sequence
diagrams from the functional execution traces of a JBA to
tagging these representations with AspectJ to determine the
COSMIC functional size. Furthermore, the tool calculates
the functional size of user scenarios that run in the JBA,
using the tags information following the COSMIC rules.
Chamkha et al. [33] design a JAVACFP plugin tool for
calculating the COSMIC functional size of Java source code.
With JAVACFP, it is possible to verify the adequacy of im-
plemented functions concerning the specified requirements,
detect any inconsistencies, and generate updates on the
progress of newly implemented functions. This plugin was
validated using the C-Reg case study [86]. Zaw et al. [31]
provide a model and an automated method for measuring
it based on three alternative diagram notations, including
UML, SysML, Petri net, and generic mapping. De Vito et
al. [30] present a tool, J-UML COSMIC, for calculating the
COSMIC functional size using UML software artifacts. The
tool can deal with various UML artifacts based on the
observation that different development processes can use
different UML models. De Vito and Ferrucci [100] introduce
Quick/Early, a streamlined process for measuring use case
documents to balance accuracy with time constraints. They

also suggest a template to easily identify functional compo-
nents in use cases. Soubra et al. [29] present an approach
for creating a COSMIC ’universal’ tool for automatically
measuring software developed in various programming
languages. This study proposes a prototype tool based on
COSMIC and MIPS with a small-scale validation as a proof
of concept.

Furthermore, many practitioners and researchers use
alternative and supplemental UML or SysML model types
to be translated into software cost model parameters. For
instance, Kotronis et al. [101] extend SysML to integrate cost
analysis into model-based systems engineering, enabling
the evaluation of design alternatives under specific cost
and performance restrictions. This integration showcases
the potential for future work in automating COSMIC mea-
surement using various UML or SysML artifacts.

While the related work has made significant strides in
automating COSMIC measurement, several key differences
exist between these approaches and CosMet. Firstly, unlike
existing approaches that rely heavily on specific artifacts
such as UML diagrams, structured requirements, source
code, and more, CosMet is designed to process natural
language requirements, offering flexibility and early-stage
software development applicability when such artifacts are
often absent. Secondly, many existing approaches require
manual intervention or source code modification to function
effectively. Conversely, CosMet is designed to be fully au-
tomated, significantly reducing the manual effort required
for COSMIC measurement. Thirdly, while some existing
approaches utilize traditional rule-based systems or ma-
chine learning models, CosMet leverages advanced LLMs
for its operation, allowing CosMet to handle the ambiguity
and complexity of natural language requirements more ef-
fectively. Lastly, CosMet measures the functional size and
provides a transparent and detailed analysis of the COS-
MIC concepts applied to the functional requirements. This
feature is not commonly found in the existing approaches,
making CosMet a valuable approach for interpreting the
COSMIC measurement process.

8 CONCLUSION

We have presented an LLM-based approach, named Cos-
Met, to measure use cases specified in natural language. We
instantiated CosMet using GPT-4. However, our approach
allows flexibility in choosing the most suitable LLM for
parsing language in use case specifications and produc-
ing COSMIC measurement analysis. We evaluated CosMet
with an empirical study comprising 123 use cases and 119
functional processes. Seven professional measurers assessed
the results and evaluated the tool from a quantitative and
a qualitative point of view. The results of our study have
revealed that CosMet is effective, transparent, and efficient
in automating COSMIC measurement of use case models.
CosMet provides a transparent and interpretable analysis
of use cases, allowing practitioners to understand how
the measurement is derived and to make any necessary
adjustments. This transparency enables practitioners to fine-
tune the measurement and address any ambiguities or dis-
crepancies in the use case requirements. It also improves
the accuracy and reliability of the measurement process



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

and ensures that the measurement aligns with the specific
context and requirements of the software project. In addi-
tion, CosMet surpasses current NLP approaches in COSMIC
measurement for effectiveness and completeness.

Thus, our solution has the potential to bring signifi-
cant advancements in the way FSM is performed in the
software industry, making it more accurate, efficient, and
cost-effective. Professionals may use the CosMet-generated
output to estimate the functional size measurement or refine
it further. However, we identified a few limitations of our
approach, precisely the limited LLM’s context size (i.e., GPT-
4 has a context size of 8,192 tokens). Nevertheless, given
the premises, we believe that companies can adopt our ap-
proach in their measurement practices. Indeed, by refining
GPT-4 with their datasets and linguistic style, companies
can use CosMet to automate the COSMIC measurement.
Furthermore, fine-tuning GPT-4 with more use cases may
allow us get more out of the model. Therefore, our future
work will include the identification of several multilingual
datasets to fine-tune GPT-4. Moreover, future work could
explore the integration of alternative and supplementary
UML or SysML model types or other artifacts into auto-
mated COSMIC measurement approaches to enhance the
evaluation of design alternatives under specific cost and per-
formance restrictions. It is also important to note that many
other size measurement frameworks exist, such as standard
function points, use case points, and story points, which
could be explored in future research using similar methods.
Finally, we also plan to explore domain-specific training
to address the sensitivity of LLMs to different discourse
domains, ensuring CosMet’s robustness and adaptability
across various industries.

ACKNOWLEDGMENT

The authors thank Kiranet s.r.l and Innovaway S.p.a. for
providing the use case documents. The authors also thank
Kiranet for providing the professional measurers and the
GUFPI-ISMA and Tommaso Galiano for supporting the
measurement of the use case documents. Finally, the authors
would like to thank the associated handling editor and the
anonymous reviewers for their insightful suggestions and
feedback, which were instrumental in improving the quality
of our manuscript. This work has been partially supported
by the Italian PNRR MUR project PE0000013-FAIR.

REFERENCES

[1] A. Abran and P. N. Robillard, “Function points analysis: an
empirical study of its measurement processes,” IEEE Transactions
on Software Engineering, vol. 22, no. 12, pp. 895–910, 1996.

[2] Y. Cheung, R. Willis, and B. Milne, “Software benchmarks using
function point analysis,” Benchmarking: An International Journal,
vol. 6, no. 3, pp. 269–276, 1999.

[3] B. Ozkan, O. Turetken, and O. Demirors, “Software functional
size: For cost estimation and more,” in European Conference,
EuroSPI 2008. Springer, 2008, pp. 59–69.

[4] D. Rodrı́guez, M. Sicilia, E. Garcı́a, and R. Harrison, “Empirical
findings on team size and productivity in software develop-
ment,” J. of Systems and Software, vol. 85, no. 3, pp. 562–570, 2012.

[5] H. Huijgens, A. Van Deursen, and R. Van Solingen, “The effects of
perceived value and stakeholder satisfaction on software project
impact,” Inf. and Soft. Technology, vol. 89, pp. 19–36, 2017.

[6] K. R. Jayakumar and A. Abran, “Estimation models for software
functional test effort,” Journal of Software Engineering and Applica-
tions, vol. 10, no. 4, pp. 338–353, 2017.

[7] G. Schneider and J. Winters, “Applied use cases,” A Practical
Guide, 2001.

[8] M. Cohn, Agile estimating and planning. Pearson Education, 2005.
[9] W. Li and S. Henry, “Object-oriented metrics that predict main-

tainability,” Journal of systems and software, vol. 23, no. 2, pp. 111–
122, 1993.

[10] B. Henderson-Sellers, “Identifying internal and external charac-
teristics of classes likely to be useful as structural complexity
metrics,” in OOIS’94: 1994 International Conference on Object Ori-
ented Information Systems 19–21 December 1994, London. Springer,
1995, pp. 227–230.

[11] L. A. Laranjeira, “Software size estimation of object-oriented
systems,” IEEE Transactions on software engineering, vol. 16, no. 5,
pp. 510–522, 1990.

[12] M. Lorenz and J. Kidd, Object-oriented software metrics: a practical
guide. Prentice-Hall, Inc., 1994.

[13] R. E. Park et al., Software size measurement: A framework for counting
source statements. Citeseer, 1992.

[14] A. J. Albrecht, “Measuring application development productiv-
ity,” in Proc. joint share, guide, and ibm application development
symposium, 1979, pp. 83–92.

[15] ISO/IEC, “Iso/iec 14143-1: 2007. information technology-
software measurement-functional size measurement—part 1:
Definition of concepts,” 2007.

[16] IFPUG, “International function point users group (ifpug) func-
tion point counting practices manual,” 2000.

[17] C. R. Symons, Software sizing and estimating: Mk II FPA (function
point analysis). John Wiley & Sons, Inc., 1991.

[18] C. Gencel and O. Demirors, “Functional size measurement revis-
ited,” ACM Transactions on Software Engineering and Methodology,
vol. 17, no. 3, pp. 1–36, 2008.

[19] COSMIC, “The cosmic funcional size measurement method,
version 5. measurement manual.” [Online]. Available: https:
//cosmic-sizing.org/measurement-manual/

[20] K. Lind and R. Heldal, “A practical approach to size estimation of
embedded software components,” IEEE Transactions on Software
Engineering, vol. 38, no. 5, pp. 993–1007, 2012.

[21] C. Gencel, “How to use cosmic functional size in effort estimation
models?” in Int. Conf. on Software Process and Product Measurement.
Springer, 2008, pp. 196–207.

[22] S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “Web effort
estimation: function point analysis vs. cosmic,” Information and
Software Technology, vol. 72, pp. 90–109, 2016.

[23] C. Commeyne, A. Abran, and R. Djouab, “Effort estimation with
story points and cosmic function points-an industry case study,”
Software Measurement News, vol. 21, no. 1, pp. 25–36, 2016.

[24] S. Abrahão, L. De Marco, F. Ferrucci, J. Gomez, C. Gravino, and
F. Sarro, “Definition and evaluation of a cosmic measurement
procedure for sizing web applications in a model-driven devel-
opment environment,” Inf. and Soft. Technology, vol. 104, pp. 144–
161, 2018.

[25] S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “Assessing
the effectiveness of approximate functional sizing approaches for
effort estimation,” Inf. and Soft. Technology, vol. 123, p. 106308,
2020.

[26] C. Rolland and C. B. Achour, “Guiding the construction of textual
use case specifications,” Data & Knowledge Engineering, vol. 25, no.
1-2, pp. 125–160, 1998.

[27] A. Cockburn, Writing effective use cases. Pearson Education, 2001.
[28] L. Li, “Translating use cases to sequence diagrams,” in Fifteenth

IEEE Int. Conf. on Automated Software Engineering, 2000, pp. 293–
296.

[29] H. Soubra, Y. Abufrikha, A. Abran et al., “Towards universal
cosmic size measurement automation.” in IWSM-Mensura, 2020.

[30] G. De Vito, F. Ferrucci, and C. Gravino, “Design and automation
of a cosmic measurement procedure based on uml models,”
Software and Systems Modeling, vol. 19, pp. 171–198, 2020.

[31] T. Zaw, S. Z. Hlaing, M. M. Lwin et al., “An automated software
size measurement tool based on generation model using cosmic
function size measurement,” in Int. Conf. on Advanced Information
Technologies. IEEE, 2019, pp. 268–273.

[32] S. Karim, S. Liawatimena et al., “Automating functional and
structural software size measurement based on xml structure

https://cosmic-sizing.org/measurement-manual/
https://cosmic-sizing.org/measurement-manual/


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

of uml sequence diagram,” in IEEE Int. Conf. on Cybernetics and
Computational Intelligence, 2017, pp. 24–28.

[33] N. Chamkha, A. Sellami, and A. Abran, “Automated cosmic
measurement of java swing applications throughout their devel-
opment life cycle.” in IWSM-Mensura, 2018, pp. 20–33.

[34] S. Bagriyanik and A. Karahoca, “Automated cosmic function
point measurement using a requirements engineering ontology,”
Information and Software Technology, vol. 72, pp. 189–203, 2016.

[35] D. Čeke and B. Milašinović, “Automated web application func-
tional size estimation based on a conceptual model,” in 23rd
Int. Conf. on Software, Telecommunications and Computer Networks.
IEEE, 2015, pp. 234–241.

[36] R. Gonultas and A. Tarhan, “Run-time calculation of cosmic func-
tional size via automatic installment of measurement code into
java business applications,” in Euromicro Conference on Software
Engineering and Advanced Applications. IEEE, 2015, pp. 112–118.

[37] Ö. Eren, B. Özkan, and O. Demirörs, “Pl fsm: An approach and
a tool for the application of fsm in spl environments,” in Euromi-
cro Conference on Software Engineering and Advanced Applications.
IEEE, 2015, pp. 119–126.

[38] A. Tarhan and M. A. SAĞ, “Cosmic solver: A tool for functional
sizing of java business applications,” Balkan Journal of Electrical
and Computer Engineering, vol. 6, no. 1, pp. 1–8, 2018.

[39] H. Soubra, A. Abran, and A. Ramdane-Cherif, “A refined func-
tional size measurement procedure for real-time embedded soft-
ware requirements expressed using the simulink model,” in
IWSM-Mensura. IEEE, 2012, pp. 70–77.

[40] H. Soubra, A. Abran, S. Stern, and A. Ramdan-Cherif, “Design of
a functional size measurement procedure for real-time embedded
software requirements expressed using the simulink model,” in
IWSM-Mensura. IEEE, 2011, pp. 76–85.

[41] A. Oriou, E. Bronca, B. Bouzid et al., “Manage the automotive
embedded software development cost & productivity with the
automation of a functional size measurement method (cosmic),”
in IWSM-Mensura. IEEE, 2014, pp. 1–4.

[42] A. Sellami, M. Haoues, and H. Ben-Abdallah, “Automated
cosmic-based analysis and consistency verification of uml activity
and component diagrams,” in 8th Int. Conf., Revised Selected Papers
8. Springer, 2013, pp. 48–63.

[43] A. A. Akca and A. Tarhan, “Run-time measurement of cosmic
functional size for java business applications: Is it worth the
cost?” in IWSM-Mensura. IEEE, 2013, pp. 54–59.

[44] M. S. Jenner, “5.1 automation of counting of functional size using
cosmic ffp in uml,” COSMIC Function Points: Theory and Advanced
Practices, vol. 276, 2016.

[45] S. Azzouz and A. Abran, “A proposed measurement role in the
rational unified process and its implementation with iso 19761:
Cosmic-ffp,” in Software Measurement European Forum, Italy, 2004.

[46] M. Jenner, “Cosmic-ffp and uml: Estimation of the size of a sys-
tem specified in uml–problems of granularity,” in Fourth European
Conference Soft. Measurement and ICT Control, 2001, pp. 173–184.

[47] H. Diab, F. Koukane, M. Frappier, and R. St-Denis, “µcrose:
automated measurement of cosmic-ffp for rational rose realtime,”
Inf. and Soft. Technology, vol. 47, no. 3, pp. 151–166, 2005.

[48] K. Lind and R. Heldal, “A model-based and automated ap-
proach to size estimation of embedded software components,”
in ACM/IEEE The 14th Int. Conf. on Model Driven Engineering
Languages and Systems. Springer, 2011, pp. 334–348.

[49] E. Ungan and O. Demirörs, “A functional software measurement
approach to bridge the gap between problem and solution do-
mains,” in Software Measurement, A. Kobyliński, B. Czarnacka-
Chrobot, and J. Świerczek, Eds. Springer, 2015, pp. 176–191.

[50] I. Hussain, O. Ormandjieva, and L. Kosseim, “Mining and clus-
tering textual requirements to measure functional size of software
with cosmic.” in Soft. Eng. Research and Practice, 2009, pp. 599–605.

[51] E. Ungan, C. Hammond, and A. Abran, “Automated cosmic
measurement and requirement quality improvement through
scopemaster® tool.” in IWSM-Mensura, 2018, pp. 1–13.

[52] F. Wang, F. Ma, G. Song, and J. Zhang, “An improved cosmic
software evaluation method,” in IEEE Conference on Telecommuni-
cations, Optics and Computer Science, 2022, pp. 222–226.

[53] M. Ochodek, “Approximation of cosmic functional size of
scenario-based requirements in agile based on syntactic linguistic
features—a replication study,” in IWSM-Mensura. IEEE, 2016,
pp. 201–211.

[54] ——, “Functional size approximation based on use-case names,”
Information and Software Technology, vol. 80, pp. 73–88, 2016.

[55] I. Hussain, L. Kosseim, and O. Ormandjieva, “Approximation of
cosmic functional size to support early effort estimation in agile,”
Data & Knowledge Engineering, vol. 85, pp. 2–14, 2013.

[56] ——, “Towards approximating cosmic functional size from user
requirements in agile development processes using text mining,”
in Int. Conf. on Applications of Natural Language to Information
Systems. Springer, 2010, pp. 80–91.

[57] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, “Automatic genera-
tion of programming exercises and code explanations using large
language models,” in ACM Conference on International Computing
Education Research-Volume 1, 2022, pp. 27–43.

[58] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An anal-
ysis of the automatic bug fixing performance of chatgpt.”
arXiv:2301.08653., 2023.

[59] A. Ahmad, M. Waseem, P. Liang et al., “Towards human-bot col-
laborative software architecting with chatgpt.” arXiv:2302.14600.,
2023.

[60] OpenAI, “Gpt-4 technical report,” arXiv:2303.08774, 2023.
[61] Anthropic. (2024) Claude 3.5 sonnet (version 3.5). [Online;

accessed 15 November 2024]. [Online]. Available: https:
//claude.ai/

[62] H. Touvron, T. Lavril, G. Izacard, X. Martinet et al., “Llama: Open
and efficient foundation language models,” arXiv:2302.13971,
2023.

[63] J. Wei, X. Wang, D. Schuurmans et al., “Chain of thought prompt-
ing elicits reasoning in large language models.” arXiv:2201.11903,
2022.

[64] J. Wei, Y. Tay, R. Bommasani et al., “Emergent abilities of large
language models.” arXiv:2206.07682, 2022.

[65] E. M. Bender, T. Gebru et al., “On the dangers of stochastic
parrots: Can language models be too big?” in ACM Conference
on Fairness, Accountability, and Transparency, 2021, p. 610–623.

[66] Y. Lu, M. Bartolo, A. Moore et al., “Fantastically ordered prompts
and where to find them: Overcoming few-shot prompt order
sensitivity,” arXiv:2104.08786, 2021.

[67] M. Chen, J. Tworek, H. Jun, and et al., “Evaluating large language
models trained on code,” arXiv:2107.03374, 2021.

[68] E. Kasneci, K. Sessler et al., “Chatgpt for good? on opportunities
and challenges of large language models for education,” Learning
and Individual Differences, vol. 103, p. 102274, 2023.

[69] W. X. Zhao, K. Zhou, J. Li, T. Tang, and et al., “A survey of large
language models,” arXiv:2303.18223, 2023.

[70] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need.” in Advances in neural inf. processing systems, vol. 30, 2017.

[71] T. Brown, B. Mann, N. Ryder, M. Subbiah et al., “Language
models are few-shot learners,” in Advances in Neural Information
Processing Systems, H. L. et al., Ed., vol. 33. Curran Associates,
Inc., 2020, pp. 1877–1901.

[72] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing.” in naacL-HLT, vol. 1, 2019, p. 2.

[73] H. W. Chung, L. Hou, S. Longpre, B. Zoph et al., “Scaling
instruction-finetuned language models,” arXiv:2210.11416, 2022.

[74] I. A. Zahid, S. S. Joudar, A. Albahri, O. Albahri, A. Alam-
oodi, J. Santamarı́a, and L. Alzubaidi, “Unmasking large lan-
guage models by means of openai gpt-4 and google ai: A deep
instruction-based analysis,” Intelligent Systems with Applications,
vol. 23, p. 200431, 2024.

[75] J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt,
“Chatgpt prompt patterns for improving code quality, refactor-
ing, requirements elicitation, and software design,” in Generative
AI for Effective Software Development. Springer, 2024, pp. 71–108.

[76] A. Nguyen-Duc, “Generative ai for effective software develop-
ment.”

[77] L. Reynolds and K. McDonell, “Prompt programming for large
language models: Beyond the few-shot paradigm.” in Conference
on Human Factors in Computing Systems, 2021, pp. 1–7.

[78] D. Yogatama, C. D. M. d’Autume et al., “Learning and evaluating
general linguistic intelligence.” arXiv:1901.11373, 2019.

[79] T. Linzen, “How can we accelerate progress towards human-like
linguistic generalization?” arXiv:2005.00955, 2020.

[80] T. Schick and H. Schütze, “Exploiting cloze questions for
few shot text classification and natural language inference.”
arXiv:2001.07676, 2020.

[81] T. Gao, A. Fisch, and D. Chen, “Making pre-trained language
models better few-shot learners.” arXiv:2012.15723, 2020.

https://claude.ai/
https://claude.ai/


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

[82] T. Bansal, R. Jha, and A. McCallum, “Learning to few-shot
learn across diverse natural language classification tasks.”
arXiv:1911.03863, 2019.

[83] OpenAI, “Prompt engineering guide,” https://
platform.openai.com/docs/guides/prompt-engineering, 2023,
accessed: 2023-10-17.

[84] S. Ekin, “Prompt Engineering For ChatGPT: A Quick
Guide To Techniques, Tips, And Best Practices,” 2023.
[Online]. Available: https://www.techrxiv.org/articles/
preprint/Prompt Engineering For ChatGPT A Quick Guide
To Techniques Tips And Best Practices/22683919

[85] G. De Vito, S. Di Martino, F. Ferrucci, C. Gravino, and
F. Palomba, “Comet github repository.” [Online]. Available:
https://github.com/gadevito/COSMET

[86] COSMIC, “Course registration (‘c-reg’) system case study.”
[Online]. Available: https://cosmic-sizing.org/wp-content/
uploads/2020/04/C-Reg-Case-Study

[87] A. Holtzman, J. Buys, L. Du et al., “The curious case of neural text
degeneration,” arXiv:1904.09751, 2019.

[88] F. Pedregosa, G. Varoquaux et al., “Scikit-learn: Machine learning
in python.” the Journal of machine Learning research, 2011.

[89] C.-Y. Lin and F. Och, “Looking for a few good metrics: Rouge
and its evaluation,” in Ntcir workshop, 2004.

[90] C.-Y. Lin, “Rouge: A package for automatic evaluation of sum-
maries,” in ACL, 2004.

[91] X. Franch, C. Palomares, C. Quer, P. Chatzipetrou, and
T. Gorschek, “The state-of-practice in requirements specification:
an extended interview study at 12 companies,” Requirements
Engineering, vol. 28, no. 3, pp. 377–409, 2023.

[92] COSMIC, “Rise cooker v.2.0.1 case study.” [Online]. Avail-
able: https://cosmic-sizing.org/wp-content/uploads/2018/08/
Rice-Cooker-2.0.1-GoogleDocs.pdf

[93] ——, “Automatic line switching v.1.1.” [Online]. Avail-
able: https://cosmic-sizing.org/publications/automatic-line-
switching-v1-1/

[94] J. Cohen, “A coefficient of agreement for nominal scales,” Edu-
cational and psychological measurement, vol. 20, no. 1, pp. 37–46,
1960.

[95] K. Papineni, S. Roukos et al., “Bleu: a method for automatic evalu-
ation of machine translation,” in Annual meeting of the Association
for Computational Linguistics, 2002, pp. 311–318.

[96] M. Ochodek, S. Kopczyńska, and M. Staron, “Deep learning
model for end-to-end approximation of cosmic functional size
based on use-case names,” Information and Software Technology,
vol. 123, p. 106310, 2020.

[97] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi,
“Bertscore: Evaluating text generation with bert,” arXiv preprint
arXiv:1904.09675, 2019.

[98] M. Ecar, F. N. Kepler, and J. P. S. da Silva, “Autocosmic: Cosmic
automated estimation and management tool,” in Brazilian Sym-
posium on Information Systems, 2018, pp. 1–8.

[99] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.
[100] G. De Vito and F. Ferrucci, “Approximate COSMIC size: The

quick/early method,” in EUROMICRO Conference on Software
Engineering and Advanced Applications, Verona, Italy, August 27-29,
2014. IEEE, 2014, pp. 69–76.

[101] C. Kotronis, M. Nikolaidou, A. Tsadimas, C. Michalakelis, and
D. Anagnostopoulos, “Extending sysml to integrate cost analysis
into model-based systems engineering,” IEEE Transactions on
Engineering Management, vol. 71, pp. 2865–2880, 2022.

Gabriele De Vito received a master’s degree in
computer science from the University of Salerno,
where is currently attending the Ph.D. program
in computer science. He worked as CTO at
various Italian IT firms, and now serves as a
High School Teacher and professional consul-
tant since 2021. His certifications include COS-
MIC, Function Point Specialist, and PRINCE2.
He served on program committees for interna-
tional conferences (e.g., EASE) and reviews for
journals in software engineering (eg., IEEE TSE,

Springer ESE). He has co-chaired Mensura 2022/2023. His research
interests lie primarily in software engineering, machine learning, and
large language models.

Sergio Di Martino is a Full Professor of Com-
puter Science at the Department of Electrical
Engineering and Information Technology of the
University of Naples Federico II, Italy, where he
is also the co-chair of the Knowledge Manage-
ment and Engineering (Knome) Lab. He has
published more than 150 papers in journals, con-
ference proceedings and books. His research
interests focus on management and analytics of
complex and massive datasets, software engi-
neering and software architectures.

Filomena Ferrucci is a Full Professor of Com-
puter Science at the University of Salerno, Italy.
She is co-director of the SQM/Web Engineer-
ing Lab and a member of the SeSa Lab. Her
research focuses on Empirical Software Engi-
neering, Software Metrics, Machine Learning,
and Search-Based Software Engineering. She
has co-authored over 200 peer-reviewed publi-
cations, co-edited three books, and guest-edited
two special issues. She coordinates the Ph.D.
program in Computer Science, serves as pro-

gram co-chair of the International School on Software Engineering, and
is a member of the Editorial Board of IEEE Transactions on Software
Engineering.

Carmine Gravino is a Full Professor of Com-
puter Science at University of Salerno, co-
director of SQM/Web Engineering Lab and
member of SeSa Lab. Software Engineering ex-
pert specializing in visual language modeling,
ML-based defect prediction, software mainte-
nance, and AI applications. Current research
focuses on methodologies for managing non-
functional requirements including privacy, secu-
rity, and fairness. Published 100+ papers in jour-
nals and conferences. He reviews for IEEE TSE,

Springer ESEJ, and serves on program committees for conferences like
ESEM and IEEE ICSME. He serves on the SEAA Steering Commit-
tee, co-chaired several conferences (SEAA 2016, Mensura 2022/2023,
Wails 2024), and is on editorial boards for Journal of Software: Evolution
and Process and Springer’s Software Quality Journal.

https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://www.techrxiv.org/articles/preprint/Prompt_Engineering_For_ChatGPT_A_Quick_Guide_To_Techniques_Tips_And_Best_Practices/22683919
https://www.techrxiv.org/articles/preprint/Prompt_Engineering_For_ChatGPT_A_Quick_Guide_To_Techniques_Tips_And_Best_Practices/22683919
https://www.techrxiv.org/articles/preprint/Prompt_Engineering_For_ChatGPT_A_Quick_Guide_To_Techniques_Tips_And_Best_Practices/22683919
https://github.com/gadevito/COSMET
https://cosmic-sizing.org/wp-content/uploads/2020/04/C-Reg-Case-Study
https://cosmic-sizing.org/wp-content/uploads/2020/04/C-Reg-Case-Study
https://cosmic-sizing.org/wp-content/uploads/2018/08/Rice-Cooker-2.0.1-GoogleDocs.pdf
https://cosmic-sizing.org/wp-content/uploads/2018/08/Rice-Cooker-2.0.1-GoogleDocs.pdf
https://cosmic-sizing.org/publications/automatic-line-switching-v1-1/
https://cosmic-sizing.org/publications/automatic-line-switching-v1-1/


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

Fabio Palomba is an Associate Professor of
Computer Science at the University of Salerno
and member of the Software Engineering (SeSa)
Lab. His research focuses on software mainte-
nance and evaluation, empirical software engi-
neering, and source code quality. He has been
recipient of various Distinguished Paper and
Best Paper Awards. He serves on program com-
mittees for major conferences and as a referee
for key journals in software engineering. He
has been program co-chair for ICPC 2021 and

SANER 2024, and has chaired various tracks and workshops. He serves
on editorial boards for several software engineering journals, earning 14
Distinguished/Outstanding Reviewer Awards.


	Introduction
	Background
	COSMIC
	Large Language Models
	Motivation of our work

	The CosMet Approach
	Prompt Engineering
	Examples Preparation
	Sentence Splitter Training Set
	COSMIC Analyzer Training Set

	Validation Process
	Hyperparameters tuning
	The CosMet Tool
	CosMet Setup

	Empirical Assessment of CosMet
	Research Goals and Questions
	Dataset Creation and Ground Truth
	Research method for RQ1
	Research method for RQ2
	Quantitative Evaluation
	Qualitative Evaluation

	Research method for RQ3

	Experimental Results
	RQ1 - How effective is CosMet in measuring use cases?
	RQ2— How effective is CosMet in mapping FURs to the COSMIC Generic Software Model?
	CosMet analysis vs manual measurement
	Appropriacy evaluation

	RQ3— How efficient is CosMet in reducing measurement time?

	Discussion, Implications, and Limitations
	Implications and Future Work
	Threats to validity 
	Threats to construct validity
	Threats to internal validity
	Threats to external validity
	Threats to conclusion validity


	Related Work
	COSMIC measurement using NLP
	Automatic COSMIC measurement

	Conclusion
	References
	Biographies
	Gabriele De Vito
	Sergio Di Martino
	Filomena Ferrucci
	Carmine Gravino
	Fabio Palomba


