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Abstract

The Internet of Things (IoT) has revolutionized various sectors by enabling devices to communicate and interact seamlessly. How-
ever, developing IoT applications has data management, security, and interoperability challenges. Large Language Models (LLMs)
have shown promise in addressing these challenges due to their advanced language processing capabilities. This Systematic Litera-
ture Review assesses the role of LLMs in addressing IoT challenges, exploring the strategies, hardware, and software configurations
used, and identifying directions for future research. We extensively searched databases like Scopus, IEEE Xplore, and ACM
Digital Library, initially screening 1,419 studies and identifying an additional 1,167 through snowballing, ultimately focusing on
55 relevant papers. The findings reveal LLMs’ potential to address key IoT challenges such as security and scalability. However,
they also highlight significant obstacles, including high computational demands and the complexities of training and tuning
these models. Future research should aim to develop methods to reduce the computational requirements of LLMs, improve train-
ing datasets, simplify implementation processes, and explore the ethical and privacy implications of using LLMs in IoT applications.
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1. Introduction

Internet of Things (IoT) is a rapidly evolving technology that
involves the interconnection of physical devices and objects to
the Internet, enabling them to communicate and interact with
each other [1]. This technology is transforming various sec-
tors, including healthcare, transportation, manufacturing, and
smart homes [1, 2, 3, 4], by embedding sensors, actuators, and
connectivity capabilities into everyday objects. These “smart”
devices can collect and exchange data, monitor their environ-
ment, and perform automated actions based on the data they
receive [5, 6]. However, the use of IoT also presents several
challenges, including ensuring the security and privacy of IoT
devices and the data they generate [7, 8], managing and analyz-
ing the vast amounts of data [9], and ensuring interoperability
among different IoT devices and platforms [10, 11].

Large Language Models (LLMs) represent a type of artifi-
cial intelligence model that has revolutionized the field of Nat-
ural Language Processing (NLP) [12]. Models, such as GPT-
3, GPT-4, and BERT [13, 14, 15] are characterized by their
extensive parameter count [16, 17, 18] and are trained using
vast datasets, enabling them to learn and generate language
with remarkable proficiency [16, 17, 18]. LLMs have demon-
strated exceptional performance in various language-related
tasks, such as translation and summarization, and have been
used across various disciplines [19, 20]. However, adopting
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LLMs can pose challenges due to issues related to data privacy
and security, resource intensity, context size constraints, and
training data required [14].

Given that, we conducted a systematic literature review with
a dual purpose. First, we aim to provide a comprehensive
overview of the current state of research at the intersection of
IoT and LLMs, identifying the critical challenges in the IoT
domain that have been addressed using LLMs. Second, we aim
to identify the strategies used in LLM-based solutions to ad-
dress IoT challenges, such as fine-tuning and data preprocess-
ing, and explore the hardware and software configurations used
in implementing these solutions. For this purpose, four different
full-text and bibliographic databases were used: Scopus, IEEE
Xplore, ScienceDirect, ACM Digital Library, and Springer. We
identified 55 articles for our review, after a systematic analysis
and selection, according to the well-established guidelines by
Kitchenham et al. [21]. By synthesizing the findings from these
studies, we hope to provide valuable insights for researchers
and practitioners in the field and to stimulate further research in
this promising area. Moreover, our review identifies gaps in the
current literature, indicating where further research is needed.

Structure of the paper. Section 2 describes the background
concerning IoT and LLMs and the related works. Section 3
presents the methodology used to conduct the SLR. Section 4
reports the analysis of the results. Section 5 discusses the results
and their implications, and provides the future research lines.
Section 6 reports the threats to the validity and the mitigation
strategies applied. Finally, Section 7 concludes the paper.
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Figure 1: IoT challenges and open issues. Yellow boxes represent challenges, while Blue boxes depict open issues

2. Background and Related Work

This section overviews the two main themes of our work,
namely (i) IoT and its challenges in different domains; and (ii)
LLMs, their capabilities, and adoption problems.

2.1. Internet of Things
IoT connects physical devices to the Internet, enabling com-

munication and interaction [1]. These devices can collect and
exchange data, monitor environments, and perform automated
actions, supporting applications like remote monitoring and
intelligent automation [5, 6]. IoT’s exponential growth has
led to billions of connected devices, enhancing efficiency and
decision-making [22]. It has revolutionized various domains,
including healthcare, transportation, manufacturing, and smart
homes [1, 2, 3, 4]. Lohiya et al. [23] categorize the domains of
IoT applications into Healthcare, Smart Grid, Transportation,
Smart Home and Building, Smart Cities, Agriculture, Indus-
try, Military, and Others (i.e., Social, Education, and Logistics).
However, the use of IoT also presents several challenges and is-
sues that need to be addressed.

A few literature reviews and surveys report IoT challenges
and open issues (see Table 1).

Yang et al. [24] discuss IoT-based healthcare challenges like
high power consumption, limited resources, and security issues,
suggesting machine-learning (ML) algorithms and cloud inte-
gration as potential solutions. Security and privacy issues are
also examined by Conoscenti et al. [25], Asghari et al. [26],
and Giordano et al. [27]. Conoscenti et al. propose Blockchain
for privacy, while Asghari et al. advocate for interoperable sys-
tems and energy-efficient solutions. Giordano et al. suggest
AI-enhanced methods for security. Syed et al. [28] overview
IoT in Smart Cities, recommending secure, interoperable sys-
tems. Goudarzi et al. [29] analyze IoT in Smart Grids, sug-
gesting ML and Blockchain for resilience. Sinha et al. [30]
explore IoT in Smart Agriculture, recommending cost reduc-
tion and improved security technologies. Stoyanova et al. [31]
discuss IoT challenges in digital forensics, emphasizing stan-
dardization. Malekshahi Rad et al. [32] review the Social IoT

ecosystem, highlighting the need for efficient service discovery.
Ullo et al. [33] review smart environment monitoring, recom-
mending robust ML methods. Song et al. [34] highlight IoT
opportunities in logistics, suggesting Blockchain and AI inte-
gration. Oladimeji et al. [35] discuss IoT in smart transporta-
tion, recommending ML for predictive models. Almusaylim
et al. [36] review smart home automation, calling for integra-
tion into smart city designs. Khan et al. [37] discuss Indus-
trial IoT, highlighting data privacy and cloud strategies. Nizetic
et al. [38] address IoT challenges in energy and smart cities,
proposing energy efficiency solutions. Babun et al. [7] survey
IoT evolution, identifying scalability and security challenges.
Compare et al. [5] discuss predictive maintenance in Industry
4.0, calling for research on cost models. Sicari et al. [8] re-
view 5G-enabled IoT networks, highlighting AI’s role. Karale
et al. [39] examine IoT challenges, proposing future research
on ethics and regulatory aspects. From the analyzed work, sev-
eral patterns emerge regarding challenges and open issues in the
field of IoT (see Figure 1).

Table 1: IoT Challenges emerging from the related work.

IoT Challenges Studies

Security and Privacy [28, 29, 24, 30, 31, 35, 36, 37, 32, 33, 34, 38,
7, 5, 8, 39, 27]

Interoperability and Standardization [28, 35, 36, 37, 32, 38, 7, 8, 39]

Integration Difficulties [36, 37, 32, 39]

Data Management and analysis [35, 37, 33, 34, 38, 7, 5, 8]

Limited Resource Management [24, 30, 36, 37, 32, 34, 38, 39]

Scalability, Reliability and Availability [5, 7, 8, 39]

Cost and Access to Technology [30, 37, 38]

Regulatory and Ethical Issues [39]

2.2. Large Language Models

LLMs [12] are language models that, leveraging the Trans-
former architecture with self-attention mechanisms introduced
by Vaswani et al. [40], have revolutionized the NLP field. No-
table examples include paid models like GPT-3 [13] and GPT-
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4 [14], as well as open-source models like BERT [15], FLAN-
T5 [41], LLama [42], BLOOM [43], and GLM [44]. These
models are trained on extensive text datasets and often have
hundreds of billions of parameters [16, 17, 18]. The initial
”pre-training” phase is computationally intensive, but it is re-
quired to allow LLMs to perform NLP tasks like translation
and summarization [16, 17, 18] with high capability. LLMs can
then be specialized through a fine-tuning process, using smaller
datasets and tailoring them to execute specific NLP tasks (i.e.,
question-answering) or the same tasks but in different domains.
Several emergent abilities have been discovered in the context
of LLMs. LLMs’ most common critical abilities are “In-context
learning”, “Instruction following”, and “Step-by-step reason-
ing”. “In-context learning,” introduced by GPT-3, allows mod-
els to perform tasks based on examples without additional train-
ing. “Instruction following” enables task execution from in-
structions alone, and “Step-by-step reasoning” helps solve com-
plex problems through chain-of-thought prompting.

3. Research Method

This section illustrates the review protocol we employed for
the SLR. We adopted the well-established approach proposed
by Kitchenham et al. [21]. Moreover, we followed the “Gen-
eral Standard” and “Systematic Reviews” guidelines provided
by the ACM/SIGSOFT Empirical Standards1 when organizing
and reporting the results. The protocol comprises three main
phases: Planning the Review, Conducting the Review, and Re-
porting the Review. The subsequent subsections offer a com-
prehensive explanation of each step in our SLR.

3.1. Review Planning
In the Review Planning phase, we established the objectives

of our research and outlined the methodology for gathering and
assessing scholarly literature from the search databases. The
Review Planning phase comprises three sub-phases: 1) the Ini-
tiation Phase, 2) the Search Phase, and 3) the Eligibility Criteria
Phase.

3.1.1. Initiation Phase
The main objective of our work is to analyze and synthesize

existing literature to understand the role of LLMs in providing
solutions to the prevalent challenges in the IoT domain and how
LLMs have been applied to deliver solutions. This considera-
tion gave rise to the first research question:

RQ1—What specific IoT challenges have been ad-
dressed using LLMs, and how effective are these so-
lutions in improving IoT systems?

The IoT landscape presents numerous challenges, such as data
security, management, integration, and scalability (see Section
2 for details). Innovative solutions are needed to address these

1ACM/SIGSOFT Empirical Standards: https://github.com/

acmsigsoft/EmpiricalStandards

issues. LLMs have shown significant potential in various do-
mains (see Section 2 for details) and could offer new solutions
to IoT challenges. For example, LLMs can analyze extensive,
unstructured textual data from IoT devices to improve access
control and threat detection. In healthcare, LLMs can parse
and classify extensive data to monitor health, predict risks, and
provide timely intervention alerts, enhancing patient outcomes
and reducing costs. So, it is worth identifying the specific chal-
lenges within IoT that LLMs have targeted and evaluating the
effectiveness of these solutions in enhancing IoT systems. Af-
ter identifying the solutions, the second question investigates
the methodologies of their implementation:

RQ2—What methodologies and optimization tech-
niques have been employed to implement LLM-based
solutions for IoT applications, and what are the asso-
ciated technical requirements and constraints?

Understanding the implementation of LLM-based solutions is
crucial. This research question explores the methodologies and
optimization techniques for deploying LLM-based solutions in
IoT applications. It focuses on the technical and methodolog-
ical aspects, including the necessary computational resources,
software frameworks, optimization strategies, and the con-
straints and new challenges introduced by LLMs.

3.1.2. Search Phase
The Search Phase comprises two steps: 1) Data Sources Se-

lection, and 2) Search String Definition.
The Data Sources Selection step aims to identify the most

reliable databases to extract the literature for starting our pro-
cess. This step is crucial for the literature review’s success [21].
To collect the studies to review, we selected the following data
sources: Scopus, IEEE Xplore, ScienceDirect, ACM Digital
Library, Springer. In the Search String Design step, we have
included search terms by employing alternative terms and syn-
onyms of related terms using the Boolean operator OR and
combining the main terms via the Boolean operator AND.

The final search string is shown in the box below.

Search string

( “LLM?” OR “Large Language Model?” OR chatgpt OR
gpt* OR bert ) AND ( ?iot OR “internet of things” )

Notably, we did not incorporate critical terms from our re-
search questions, such as “challenges,” as our objective was to
gather as much studies as possible, even if this phase required
significant effort. We utilized the references of the identified
papers and downloaded additional studies. Consequently, we
initiated a formal search using the defined keywords, followed
by a manual search in the references of the initial pool within
our field of study.

3.1.3. Eligibility Criteria Definition
In this phase, we define criteria to filter and identify relevant

literature based on our research questions. The eligibility crite-
ria are divided into three sets for each paper:
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• Exclusion Criteria: If any are met, the article is eliminated.

• Inclusion Criteria: If all are met, the article is included.

• Quality Criteria: Used to grade articles; those below a cer-
tain threshold are eliminated.

Tables 2 and 3 list the exclusion and inclusion criteria.

Table 2: Inclusion criteria

Code Name Description

IC1 Focus on IoT
Challenges
and LLM’s
Solutions

The paper should specifically focus on identifying the challenges asso-
ciated with IoT, and explicitly discuss how LLMs can be identified as
viable solutions. The criterion ensures relevance to our primary research
objective of studying LLM applications in IoT.

IC2 Practical
Application

The paper provides cases or examples of the practical application of
LLMs to solve IoT issues. The criterion validates that the research is
not purely theoretical.

IC3 Implementation
Details

The paper must provide explicit strategies, methods, or steps on the im-
plementation or integration of LLM solutions to the IoT ecosystem. We
aim to gather actionable insights from the studies.

IC4 Evidence of
Effectiveness

The paper provides empirical evidence (qualitative or quantitative) to
support the effectiveness of the proposed LLM solution. Evidence-
backed research is essential for proving the feasibility of the studied so-
lutions.

Table 3: Exclusion criteria

Code Name Description

EC1 Off-topic Papers Papers not primarily focused on using LLMs in the IoT ecosys-
tem. For example, papers that just mention these terms in pass-
ing or as not central to their study should be excluded.

EC2 Document Type Conference proceedings summary, book chapters, books, and
other forms of documents leaving only peer-reviewed journal
articles and conference papers must beexpluded.

EC3 Access Type Articles that are not freely accessible or do not have a full-text
available online.

EC4 Duplicated articles The same articles that are in more than one digital library must
be considered once.

EC5 Articles written before
2017

Articles that has been written before 2017 must be excluded.

Table 4: Quality criteria

Code Name Question Rationale

QC1 Adequate
Methodology

Is the methodology comprehensively de-
scribed, including the specific LLMs used,
their application to IoT challenges, and how
data was collected and analyzed?

Ensures the study is detailed
enough for reproducibility and
clearly explains the application
of LLMs to IoT challenges

QC2 Clear Objec-
tives and Re-
search Ques-
tions

Are the research objectives and research
questions clearly stated that align with in-
vestigating the role of large language mod-
els in solving IoT challenges?

Ensures the study directly ad-
dresses our research questions
and objectives on LLMs in IoT.

QC3 Relevant Re-
sults

Are the findings of the paper directly rel-
evant to the research topic? The results
should either display the advantages of us-
ing large language models in the IoT field
or show areas that need to be further im-
proved.

Assessing the practical impact
and relevance of the findings
ensures valuable insights into
the efficacy and improvement
areas of LLMs in IoT.

QC4 Limitations
and threats to
validity

Are the limitations of the study analyzed
explicitly?

Analyzing study limitations en-
hances reliability, contextual
applicability, and identifies ar-
eas needing caution or further
research.

We defined criteria based on guidelines [21] and previous
literature reviews in IoT and LLM fields [25, 45, 26, 46]. Each
criterion was binary (True/False). These filters excluded pre-
liminary research (e.g., workshops, posters) and duplicates.
EC1 ensured relevance to our topic. Inclusion criteria were
aligned with our objectives and research questions, similar to

other SLRs [25, 26, 46]. We used EC5—Articles written be-
fore 2017—to account for significant NLP advancements post-
2017 due to transformers and attention mechanisms by Vaswani
et al. [40] (see Section 2). Other exclusion criteria were stan-
dard in SLRs and applied via database filters. For quality, we
evaluated each study’s reliability and relevance, as suggested
by Higgins et al. [47], using questions listed in Table 4.

The questions can be answered as “Yes,” “Partially,” or “No.”
Each answer corresponded to a numerical value, i.e., “1.5”,
“1.0”, and “0.5”. The sum of these values reflects the qual-
ity score of the article. We excluded the score from the review
if it was lower than 3.5.

3.2. Review Conducting

The Review Conducting phase pertains to the compilation of
the literature set, which is designed based on the planning from
the preceding phase, to address the research questions. It com-
prises three sub-phases: 1) Study Selection, 2) Data Extraction,
and 3) Data Synthesis and Analysis.

3.2.1. Study Selection Phase
The Selection Phase aimed to gather relevant literature us-

ing a planned strategy [21]. Initially, we searched the identified
databases, retrieving 1,419 articles. Applying Exclusion and
Inclusion criteria reduced the articles to 55. Quality criteria
further refined it to 50. We reviewed references from identi-
fied studies to address potential missing studies, adding 1,167
more. After applying the same criteria, we included five ad-
ditional studies, resulting in a final set of 55 articles for data
extraction. The resulting dataset includes 29 journal articles
and 26 conference papers (see Figure 2a). Most papers were
published between 2021 and 2024 (see Figure 2b), reflecting
recent growing interest in the subject. The studies span 48 dis-
tinct venues, suggesting that a primary venue dedicated to the
amalgamation of IoT and LLMs is yet to emerge, possibly due
to the novelty of this subject within the scientific community.

3.2.2. Data Extraction Phase
We aligned our objectives and research questions to create

data extraction forms during data extraction. These forms,
developed collaboratively, were implemented by the first au-
thor. We used a pre-defined form to extract relevant data
from each source, including general information like authors’
names, publication years, and keywords, as per literature re-
view guidelines [21]. Table 5 shows the extracted informa-
tion. We conducted a preliminary extraction on 15 randomly
selected sources to ensure validity and reliability. All ex-
tracted data were compiled into a spreadsheet for analysis,
available in our online appendix [48]. We ensured traceabil-
ity between forms and research questions, as recommended
by SLR guidelines [21]. All papers address RQ1, while [SLR
6, 28, 37, 47, 52] do not address RQ2.

3.2.3. Data Synthesis and Analysis Phase
During the data synthesis phase, we combined the collected

data to make it comprehensible and applicable to the intended
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(a) Number of papers for source type. (b) Number of papers per year.

Figure 2: Statistics on the final dataset composed of 55 papers.

Table 5: The information extracted from articles.

Code Information Description

M1 Authors Authors of the article

M2 Title Title of the article

M3 Year Year of publication of the article

M4 Source Source of the article

M5 Source type Source type of the article (i.e., Journal)

M6 Publisher Publisher of the article

M7 Citations Number of citations of the article

M8 Abstract Abstract of the article

M9 Keywords Keywords used by the authors to describe the topics of the article

audience. The first two authors analyzed and segregated the
data into various form groups designed to extract specific in-
formation for each research question. This collaborative ap-
proach ensured that no crucial information was overlooked or
misinterpreted [21]. We used two qualitative analysis meth-
ods to ensure accurate data synthesis: narrative synthesis and
thematic analysis. Narrative synthesis involves describing and
interpreting primary evidence, while thematic analysis summa-
rizes studies based on recurring themes. Initially, we used nar-
rative synthesis for preliminary analysis, followed by thematic
analysis to classify the data. The first two authors jointly ex-
ecuted these steps to identify potential discussion points for a
subset of items. Upon completion, we derived new insights un-
der ten major categories, five for each research question. All
findings are documented in the online appendix [48].

3.3. Result Reporting
In the final phase, we compiled and presented findings to en-

sure clear insight and comprehension. We classified results by
research question for coherence, with each finding substanti-
ated by references from our SLR. Visual aids, such as tables,
charts, and diagrams, were employed to summarize results and
highlight significant points. In Section 5, we elaborated on
the results, discussing their implications and highlighting fu-
ture research opportunities to make our review valuable for re-
searchers and practitioners in the IoT and LLM fields and foster
academic progress.

4. Analysis of the Results

This section presents the findings from our review. For read-
ability, we provide only few examples. For detailed informa-
tion and data, the reader can refer to the online appendix [48].

Specifically, the Data Extraction file includes information from
Table 6 for each article, and the Additional result details file of-
fers extra results and tables for each category and subcategory.

Table 6: Data extracted from the analyzed studies.

Information Description

IoT field IoT field or domain of the article

IoT Challenges IoT challenges addressed by the LLM-solution

Methodology Research methodology used

Assessment Evaluation approach and achieved results

LLM used LLM used for the proposed solution

SW configuration Software Configurations used to develop the LLM solution

HW Configuration Hardware Configurations (Type, CPU, RAM, GPU, etc.)

Pre-training and fine-
tuning

Pre-training and Fine-tuning approaches for LLMs

Other ML techniques Machine learning techniques integrated with LLMs

Optimization techniques Optimization techniques used to enhance LLMs performance

Extraction techniques Extraction techniques used in the LLM-based solution to pro-
cess and analyze the IoT data

Evaluation techniques Evaluation metrics for assessing LLM-based solutions

Continuous monitor Strategies used to continuously monitor and adjust the perfor-
mance of LLM-based solutions to improve their effectiveness

Data Collection and pre-
processing

Data Collection and Pre-processing approaches used for the
LLM-based solution

LLM issues Limitations and issues introduced by LLMs

Future direction Recommendations or future direction suggested

4.1. RQ1—What specific IoT challenges have been addressed
using LLMs, and how effective are these solutions in im-
proving IoT systems?

The first research question aims to identify the solutions pro-
posed to address existing challenges in IoT by using LLMs.
It explores how LLMs have been applied in various IoT do-
mains and their effectiveness. We have organized the solutions
into primary categories, each with sub-categories for readabil-
ity (see Section 3 for category breakdown details). Figure 3
illustrates the distribution of the studies among the categories.

4.1.1. Security and Privacy
The “Security and Privacy” category, representing 36.4% of

the dataset, involves studies using LLMs to improve IoT secu-
rity and privacy. These papers focus on applying LLMs to de-
tect and mitigate cyber threats like intrusion and malware detec-
tion, and identifying privacy-violating rules in IoT platforms.

Cyber Threat Detection and Access Control. In the Security
context, 27.3% of studies have exploited LLMs to enhance cy-
ber threat detection and access control in IoT environments. A
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Figure 3: RQ1: Categories distribution of the studies.

practical application is the dynamic access control model for
IoT-based smart grids in [SLR 2]. Using BERT for feature ex-
traction from log access records, it achieved 87.73% accuracy
and 92.27% recall on a provincial power grid system, demon-
strating its effectiveness in monitoring user access, dynamically
adjusting rights, and managing policies in real-time. Another
application is reported in [SLR 8], where BERT was employed
to detect Advanced Persistent Threats (APTs) in Industrial IoT
(IIoT). By fine-tuning the pre-trained BERT model for identi-
fying sequences indicative of APT attacks, the study achieved
over 99% accuracy across various sequence lengths, underscor-
ing the model’s precision and adaptability.

Data Privacy. Despite the limited number of studies (only
12.7% of the research), LLMs have shown promising results
in improving data privacy in IoT applications, particularly in
the healthcare, industrial, and smart home sectors. The Secu-
rityBERT model [SLR 38] exemplifies LLMs’ role in this con-
text by efficiently and accurately identifying real-time network-
based attacks on IoT devices. It uses a Privacy-Preserving
Fixed-Length Encoding technique and a Byte-level Byte-Pair
Encoder tokenizer to handle network traffic data. With 98.2%
accuracy in detecting 14 attack types, SecurityBERT outper-
forms traditional methods. Its inference time is under 0.15 sec-
onds on an average CPU, and its size is 16.7MB, making it ideal
for real-time traffic analysis on resource-limited IoT devices.

Security in Communication. Only 10.9% of the analyzed
studies used LLMs in communication security. Nevertheless,
LLM applications spanning diverse IoT sectors, including IIoT,
transportation and smart home systems, have tackled a plethora
of security concerns. For instance, [55, SLR] introduces ”CAN-
BERT,” a BERT-based intrusion detection system for securing
the Controller Area Network (CAN) in modern vehicles. CAN-
BERT uses a self-supervised ”masked language model” train-
ing approach to predict masked CAN IDs, effectively identi-
fying unauthorized message injections. Experimental results
show superior performance, surpassing models like Isolation
Forest, with an F1-score of 0.81 to 0.99. Its high accuracy and
real-time detection (0.8 to 3 ms inference times) underscore its
potential to enhance automotive IoT security.

Security and Privacy: Summing Up

LLMs enhance IoT security and privacy by addressing
challenges like cyber threat detection, data privacy, and
communication security and enhancing IoT systems’ accu-
racy, recall, robustness, precision, and real-time response.

4.1.2. Data Management and Analysis
LLMs have been extensively used to improve the manage-

ment, processing, and analysis of IoT-generated data, repre-
senting 83.6% of the dataset. These studies address large-scale,
heterogeneous, and real-time data stream challenges, demon-
strating LLMs’ effectiveness in this context.

Efficient Data Processing and Analysis. Much of the ana-
lyzed literature (87.3% of the dataset) focuses on using LLMs
to improve real-time data processing from IoT devices while
reducing computational overhead. Practical applications of
LLMs in this context are [SLR 17, 54]. In [SLR 17], fine-
tuned LLMs like BERT and DistilRoBERTa performed senti-
ment analysis on log data for anomaly detection in drone foren-
sic timelines. By identifying negative sentiments in log mes-
sages, the system accurately distinguished between normal and
anomalous events in real time. DistilRoBERTa achieved the
best performance with an accuracy of 92.527% and F1-score
of 90.556%. In [SLR 54], the LIMU-BERT model was used
to extract features from unlabeled IMU sensor data for hu-
man activity recognition (HAR) and device placement classi-
fication (DPC). Designed for mobile deployment, it achieved
up to 98.4% accuracy in HAR and DPC tasks.

Semantic Data Handling. LLMs (used in 61.8% of cases) ex-
cel in semantic service clustering, similarity models, and rule-
based analysis, enhancing data interoperability and understand-
ing. The ability of LLMs in semantic data handling is pre-
sented in [SLR 22]. The study employs a BERT-based model
to assess the semantic similarity between different data points,
such as sensor readings and device-generated messages, lead-
ing to improved accuracy in data categorization with an F1-
score of 0.89. Another example is detailed in [SLR 27],
which introduces a model optimized to be deployed in resource-
constrained edge environments. This model, based on BERT
and RoBERTa, leverages LLMs to handle semantic data dy-
namically to optimize resource allocation and improve real-
time decision-making. The study shows a 30% latency reduc-
tion and a 25% throughput improvement in a simulated 5G en-
vironment over conventional edge computing models.

Data Classification and Categorization. LLMs have also
played a crucial role in enhancing the classification process’s
accuracy and efficiency (in 58.2% of the analyzed studies),
addressing the IoT data classification issue. [SLR32 32]
exemplifies the application of LLMs in detecting security and
privacy violation rules within trigger-action IoT platforms,
such as IFTTT. The researchers used BERT-based models to
classify applets by potential risks, achieving 88-93% precision
and recall on a dataset of 76,741 rules. Another application is
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illustrated by [SLR36 36], where LLMs were used to detect
Distributed Denial of Service attacks in IoT device logs. The
study used OpenAI’s GPT-3.5 and GPT-4 models for few-shot
learning and fine-tuning on security datasets, achieving 95%
and 96% accuracy and demonstrating LLMs’ effectiveness in
identifying network security threats.

Data Integration and Fusion. Data integration and fusion
pose significant challenges in IoT domains like healthcare and
industry due to raw sensor data’s non-interoperability nature.
Despite LLMs’ innate capability to convert data into struc-
tured formats, ensuring consistent analysis and actionable in-
sights, only a modest percentage of the analyzed works (14.5%
of the dataset) have investigated their application in data fu-
sion and integration. An elucidative study in this context is
[SLR 40], which addresses the challenge of converting raw sen-
sor data from non-interoperable formats into structured formats
like JSON or XML. This study utilizes GPT-4 to enhance the
reusability of sensor data in IIoT, making it more accessible
and valuable for third-party applications. Specifically, GPT-4
demonstrated a precision of 93.51% and a recall of 85.33% in
transforming HTML sensor data into structured formats.

Data Management And Analysis: Summing Up

LLMs efficiently manage and analyze large-scale IoT data,
boosting semantic analysis, classification, and anomaly
detection. They enhance processing speed, semantic un-
derstanding, and data integration, aiding decision-making
and operational efficiency in IoT systems.

4.1.3. Scalability, Reliability, and Availability
Most of the research, representing 85.5% of the dataset, in-

vestigates how LLMs improve IoT performance, handle grow-
ing loads, and ensure continuous functionality. It covers key
areas such as network optimization and service enhancement,
as described below.

Enhanced Scalability. LLMs have been leveraged to support
the seamless expansion and efficient performance of IoT net-
works across domains like healthcare, military, smart homes,
industry, and transportation. In the military IoT domain, LLMs
address scalability challenges by optimizing computational de-
mands and robust performance even in adversarial conditions
in mission-critical scenarios [SLR 46]. By leveraging GPT-
3 for natural language understanding and context interpreta-
tion, as well as specialized foundation models for specific
tasks, complex tasks are decomposed into manageable sub-
tasks. This approach achieved 90.82% accuracy in out-of-
context object detection. In smart environments, [SLR 26] in-
troduced PipeBERT, based on BERT, to optimize ARM CPU
clusters in edge devices by splitting BERT models and mapping
them onto ARM architecture. PipeBERT showed a 48.6% in-
crease in average throughput and a 61% reduction in the energy-
delay product compared to homogeneous inference, showcas-
ing its scalability and efficiency for various IoT applications on
resource-constrained devices.

Improved Reliability. A key application of LLMs, comprising
56.4% of the dataset, is enhancing systems’ reliability in envi-
ronmental monitoring and smart cities by improving data accu-
racy, anomaly detection, and decision-making consistency. For
instance, [SLR33 33] investigates how LLMs can interact with
the physical world via IoT sensors and actuators. The study
demonstrates ChatGPT’s ability to reliably interpret sensor data
and handle tasks like activity sensing and heartbeat detection.
ChatGPT-4 achieved up to 100% accuracy in motion detection
and a mean absolute error of 1.92 beats per minute in heart-
beat detection. Another study, [SLR53 53], examines the use of
LLMs for automated building operations monitoring, focusing
on the semantic mapping of operational data to create digital
twins. The system standardizes heterogeneous data points by
employing BERT-based models, which enhances reliability and
reduces errors. The study reports an impressive F1 score of over
95% in data classification, showcasing the model’s robustness
with diverse datasets.

Increased Availability. Only a few studies (7.3% of the
dataset) focused on healthcare, industry, and edge comput-
ing explore how IoT services can be more widely accessible.
[SLR11 11] highlights the role of LLMs in addressing the IoT
availability challenge through a lightweight BERT-based ser-
vice embedding for dynamic service recommendations in edge
computing. The system uses content-based filtering and se-
mantic clustering to ensure that services are recommended ef-
ficiently and remain available even as the service environment
evolves. The model reduced time complexity by 19% to 56%
and achieved 80-100% precision in service recommendations,
demonstrating its efficacy.

Scalability, Reliability, And Availability: Summing Up

LLMs have improved IoT scalability, reliability, and avail-
ability by optimizing computational demands, data pro-
cessing accuracy, and service recommendations, signifi-
cantly enhancing performance across IoT applications.

4.1.4. Integration Difficulties
The “Integration Difficulties” category (58.2% of the dataset)

investigates how LLMs address the complexities of connecting
diverse IoT systems and technologies using different protocols
and standards. The studies show that LLMs enhance integration
via advanced natural language processing, improving commu-
nication and heterogeneous data interpretation.

Ease of System Integration and Configuration. Integrating
IoT devices and automating system configurations is complex.
However, LLMs can simplify these tasks, as reflected in 56.4%
of the dataset. One notable application of LLMs in this context
is shown in [SLR9 9], where a BERT-based model efficiently
disaggregates energy in smart grids by classifying household
appliances using energy data, eliminating the need for extra
sensors. The model attained a mean accuracy of 89% for
fridge classification and a mean precision of 71%, significantly
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simplifying the setup and maintenance of energy monitoring
systems. LLMs have also been effective in complex device
interaction configurations without extensive labeled data.
Indeed, [SLR20 20] introduces DeviceGPT is an LLM pre-
trained on large datasets that automatically learns interactions
among IoT devices without requiring extensive labeled data,
simplifying the configuration process. Tested on a real-world
dataset, it achieved 82.45% device identification accuracy and
geolocation accuracies of 32.44% for distances under 10km.

Semantic Integration. LLMs have improved semantic under-
standing and data integration in IoT systems (23.6% of the
dataset). Enhancements include more intuitive trigger-action
programming in smart homes, as show in [SLR 41]. The study
introduces ChatIoT, a system that employs ChatGPT for the
zero-code generation of Trigger-Action Programs in IoT envi-
ronments. This system allows users to create IoT rules through
natural language interactions, significantly simplifying the inte-
gration of IoT devices and services. ChatIoT utilizes a Prompts
Manager to optimize input processing and rule specificity and
a Cross-modal Model Zoo to handle multimodal sensor data.
Evaluated with a dataset and integrated with Home Assistant, it
achieved a rule generation accuracy of 94.1% to 98.5%, high-
lighting the potential of LLMs to enhance semantic integration
and simplify IoT device programming.

Technological Compatibility. In IoT fields like Industry,
Smart Homes, and Smart Grids, LLMs have enhanced tech-
nological compatibility by facilitating seamless communication
and data exchange across devices with different protocols and
formats (12.7% of the dataset). An example is the zero-sample
face retrieval method that integrates GPT-3 with visual base
models [SLR 39]. This approach eliminates the need for ex-
tensive data collection and model training, which is tradition-
ally required in IoT text retrieval methods. The method con-
verts discrete facial features into natural language descriptions
using cue words as prompts and employs the CLIP model to
align vector representations of text and images. It attained a
top-1 accuracy of 72% and a top-3 accuracy of 93%, reducing
data and computational costs and enhancing the compatibility
of face recognition systems across various IoT devices.

Integration Difficulties: Summing Up

LLMs have effectively tackled IoT integration challenges,
simplifying system configuration, enhancing semantic
integration, and improving technological compatibility,
leading to better device interaction, rule generation, and
data exchange across protocols and formats.

4.1.5. Interoperability and Standardization
Interoperability and standardization remain significant chal-

lenges in IoT systems due to the diversity of devices and
communication protocols, which can lead to complexities in
data exchange and system functionality without standardiza-
tion. While only a few studies (12.7% of the entire dataset) have

investigated the application of LLMs in this area, the results
have been encouraging in enhancing seamless interaction and
communication standards. Studies show that applying LLMs
reduces integration complexities, facilitating smoother interop-
erability and generating interoperable interfaces.

Protocol and Data Format Harmonization. Although only
5.5% of the dataset explores this area, initial findings suggest
that LLMs can significantly enhance interoperability and
standardization within IoT ecosystems. These models har-
monize communication protocols and data formats as shown
in [SLR 1]. The study introduces a Neural RFC Knowledge
Graph using LLMs to detect contradictions in IoT protocol
documents. It automatically parses these documents, builds
knowledge graphs, and detects contradictions using BERT and
GPT-2-xl models. This approach ensures clear and consistent
protocol specifications, reducing security risks and enhancing
interoperability across IoT devices. The model showed high
accuracy in entity recognition (up to 99%) and effective
contradiction detection in IoT messaging protocols.

Service Discovery and Composition. Research shows that
LLMs can effectively tackle service discovery and composition
challenges in IoT applications, enhancing system efficiency and
robustness by addressing interoperability and standardization
issues. Despite limited studies (7.3% of the dataset), LLMs
demonstrate the potential to reduce complexities in managing
IoT service interactions across devices and platforms, as shown
in [SLR 13]. The study explores semantic service clustering us-
ing a lightweight BERT-based model to capture semantic infor-
mation from service invocation sequences and generate service
embeddings with neural language models. It employs convolu-
tional attention within a transformer architecture for efficiency
and uses K-means clustering to form semantic clusters. Eval-
uation metrics like purity and entropy showed the model’s ef-
fectiveness, achieving purity values between 50% and 77% and
optimal performance at K=400 clusters. The model also re-
duced time complexity by 19% to 56% and cut training time
from 10 hours to about 6 hours.

Interoperability and Standardization: Summing Up

LLMs boost IoT interoperability by harmonizing protocols
and data formats, improving service discovery, achieving
high accuracy in entity recognition, and cutting time com-
plexity and training time.

4.2. RQ2—What methodologies and optimization techniques
have been employed to implement LLM-based solutions
for IoT applications, and what are the associated technical
requirements and constraints?

In addressing the second research question, we explore
methodologies and optimization techniques used to implement
LLM-based solutions for IoT applications, along with the as-
sociated technical requirements and constraints and new chal-
lenges introduced by LLMs. We have organized these aspects
in the following categories.
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4.2.1. Pre-training and Fine-tuning Large Language Models
Pre-training and fine-tuning LLMs are standard techniques

(76.4%) for boosting performance. Pre-training uses large text
corpora like Wikipedia for general language understanding, fol-
lowed by fine-tuning on smaller, task-specific datasets, such as
feature extraction or text generation. Some studies (9.1%) [SLR
1, 15, 18, 24, 54] employed iterative training for gradual im-
provements. For instance, [SLR 18] iteratively trained BERT
to detect APT attack sequences in IIoT better. Pre-training or
fine-tuning LLMs on specific IoT datasets is challenging due to
the diverse, noisy nature of IoT data and resource-intensive de-
mands, which complicates preprocessing and adaptability and
leads to generalization issues in new or varied IoT environ-
ments. As a result, only 22% of studies have used pre-training,
and only 20% have used both techniques. Fine-tuning is more
common, as reported by 75% of the reviewed studies. In par-
ticular, the combined use of both techniques has been primar-
ily employed to address the IoT challenges of scalability, re-
liability, availability, security, and privacy (see Figure 4). On
the other hand, prompt engineering and in-context learning
(guiding model responses using input design) are less resource-
intensive. These methods, combined with techniques like Re-
trieval Augmented Generation (RAG) [49], incorporate exter-
nal information into the model’s context, allowing it to adapt to
new tasks and elaborate new knowledge. Some studies [SLR
33, 36, 37, 39, 40, 41, 42, 44, 45, 46, 52] used prompt engineer-
ing for desired responses without LLM weight modification,
and a few [SLR 41, 46] utilized RAG for external knowledge
integration.

Figure 4: RQ2: IoT challenges addressed by pre-training and fine-tuning.

Pre-Training And Fine-Tuning: Summing Up

Pre-training and fine-tuning LLMs on domain-specific
datasets enhance IoT performance despite data diversity
and resource constraints. These techniques also pose
challenges like high computational demands and storage
needs, affecting adaptability. Generalization issues are
also significant, as models may struggle with new, unseen
data or different domains common in IoT environments.

4.2.2. Software and Hardware Configurations
The category focuses on setting up software tools, libraries,

and hardware, including programming languages, development

environments, and hardware like servers and processors for im-
plementing LLMs in IoT applications. For Software Configura-
tion, BERT and its variants are the most commonly used LLMs
(67.3%). Python is the leading programming language (70.9%),
while popular frameworks include TensorFlow (18.2%), Hug-
ging Face Transformers (18.2%), scikit-learn (16.4%), and Py-
torch (15.63%). Key Python libraries are OpenAI API (18.2%),
Keras (9.1%), and spaCy (9.1%).

Figure 5: RQ2: LLMs used to develop LLM-based solutions

BERT’s appeal is due to its open-source nature, robust tool
support, and ability to handle complex NLP tasks. Python is fa-
vored for its simplicity, versatility, and solid library ecosystem.
Combining TensorFlow, Hugging Face Transformers, scikit-
learn, and Pytorch with Python underlines their compatibility
and preference for ML model development and training. Fi-
nally, spaCy and Keras are critical for NLP and deep-learning
tasks, while the growing adoption of the OpenAI API indicates
a trend toward leveraging GPT-3 and GPT-4 models.

Various hardware configurations, including high-end GPUs,
cloud environments, and embedded systems like Raspberry Pi,
were used, reflecting different computational needs for LLMs
in IoT applications. Operating environments mentioned in-
clude Windows 10 (5.5%), Ubuntu (7.3%), cloud environments
(9.1%), and embedded systems (16.2%). Most studies used
GPUs (40%) and multi-core CPUs (23.6%). Some studies spec-
ified RAM requirements (18.2%) ranging from 8 GB to 1 TB.
It is worth noting that high computing resources, such as GPU
and multicore CPU, are used in 71% of the studies addressing
interoperability issues in IoT and in 38%- 45% of the studies
addressing the other IoT challenges.

Software and Hardware Configurations: Summing Up

In IoT research, BERT and its variants are the most com-
monly used large language models. Python is the preferred
programming language, paired with frameworks like Ten-
sorFlow, Hugging Face Transformers, scikit-learn, and Py-
Torch. Frequently used Python libraries include OpenAI
API, Keras, and spaCy. The primary operating systems
are Windows 10 and Ubuntu, with some use of cloud envi-
ronments and embedded systems. Hardware setups often
feature high-end GPUs and multi-core CPUs, with 8GB to
1TB RAM to accommodate various computational needs.
However, LLMs also introduce new challenges, such as in-
creased computational demands and the necessity for scal-
able, efficient resource management.
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4.2.3. Use of Specific Techniques
LLM-based solutions often require integration with other

techniques to address IoT issues, mainly to enhance LLM per-
formance or process and analyze IoT data. Figure 6 shows how
combining LLM with other techniques contributed to address-
ing IoT issues.

Figure 6: RQ2: IoT Issues - LLM integration with other techniques

Integration with Other Machine Learning Techniques.
The integration of LLMs with other ML techniques has been
widely observed in various studies (63.6% of the entire dataset),
both in Deep Learning (DL) architectures (34.38%) and tra-
ditional ML techniques (40%). Specifically, 66% of studies
addressing Scalability, Reliability, and Availability, 62%
addressing Data Management and Analysis, 60% addressing
Security and Privacy, 59.4% addressing Integration Difficulties,
and 28.6% addressing Interoperability and Standardization
have integrated LLM solutions with other machine-learning
techniques. Integrating DL techniques enhances feature
extraction, classification accuracy, and complex data handling.
For instance, [SLR 3] combined BERT with CNN and BiGRU,
improving classification accuracy on short-text datasets and a
5G-enabled IoT social dataset. Similarly, [SLR 10] used BERT
with CNN and LSTM for malware detection in IoT devices,
achieving higher detection rates and lower false positives. In
[SLR 16], LLMs combined with DL-based computer vision
techniques enhanced remote sensing and image processing in
IoT, enabling tasks like object detection, image segmentation,
and NLP. Traditional ML techniques aid information retrieval,
category identification, and pattern recognition. In the context
of LLMs, clustering techniques, such as K-means, are used
to group similar data points based on semantic similarity.
For example, [SLR 13] used K-means for service clustering,
while [SLR 47] utilized Random Forest for feature selection
from datasets providing URL features without the URL strings
before passing the URLs to the LLM for further analysis. How-
ever, integrating LLMs with other ML techniques introduces
challenges like increased computational overhead, complex
data management, heightened security concerns and system
complexity.

Optimization Techniques. Several studies (43.6% of the
dataset) employed optimization algorithms to enhance LLM
performance in specific IoT tasks. These mathematical meth-
ods fine-tune LLM parameters, guiding the iterative learning

process by minimizing a loss function. For example, [SLR 9]
used the AdaX algorithm to optimize a BERT model for en-
ergy disaggregation in smart grids. In contrast, [SLR 1] applied
hyperparameter optimization to BERT and DistilBERT for de-
tecting contradictions in CoAP and MQTT specification docu-
ments. Optimization algorithms are vital for LLM performance
in IoT, particularly in areas like Security, Privacy, Scalability,
Reliability, Availability, Data Management, and Integration, be-
ing used in nearly 50% of studies addressing these challenges.
They are even more prevalent (over 85%) in studies addressing
Interoperability and Standardization. Despite their importance,
these algorithms are computationally intensive and complex,
requiring specialized knowledge for effective implementation.
Additionally, the non-deterministic nature of LLMs introduces
further challenges in optimization. Non-determinism can lead
to variability in the optimization results, making it difficult to
consistently achieve the best performance.

Extraction Techniques. Extraction techniques are vital in pro-
cessing and analyzing data in IoT solutions, particularly those
based on LLM. Various methods facilitate interpretability, oper-
ational efficiency, and decision-making within IoT ecosystems.

“Relation Extraction” (10.9% of the dataset) identifies and clas-
sifies semantic relationships between entities in text, facilitating
the understanding of connections, such as inferring relation-
ships from sensor data to determine steps counted and activ-
ity levels (e.g., [SLR 33]). “Rule Extraction” (14.5%) derives
explicit rules from complex datasets or models, automating pro-
cesses and improving decision-making, as seen in formulating
”if-then” logic for IoT TAPs from natural language inputs (e.g.,
[SLR 41]). “Named Entity Recognition (NER)” (20%) classi-
fies named entities like persons, organizations, and monetary
values within the text, enhancing data handling by mapping
user intents to network policies for practical network config-
urations (e.g., [SLR 19], [SLR 51]). “Feature Extraction for
Sequential Data Analysis” (50.9%) isolates relevant features
from time-series data (such as continuous sensor readings) to
facilitate effective modeling and prediction by learning algo-
rithms, aiding in anticipating future states, such as extracting
place names for crisis response in Social IoT ([SLR 6]). “Fea-
ture Extraction for Textual Data Analysis” (36.4%) transforms
raw textual data into actionable insights, aiding monitoring and
management in applications like Smart Cities, where textual
descriptions generate decision-making logic (e.g., [SLR 44]).
“Cross-modal Feature Extraction and Alignment for Data Re-
trieval” (7.3%) correlates features from different data sources,
enhancing tasks like image captioning and visual question an-
swering by aligning visual information with natural language
(e.g., [SLR 46]). Each technique contributes to IoT systems’
seamless integration and functionality, but requires advanced
methods to handle context-rich data for accurate semantic re-
lationship identification, rule derivation, and feature extraction.
Figure 7 shows in which percentage the extraction techniques
have been used to address the different types of IoT challenges.

Evaluation Techniques. Assessing the performance and ef-
fectiveness of LLM-based solutions in IoT applications relies
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Figure 7: RQ2: IoT Issues - Extraction Techniques used in LLM-based solu-
tions in addressing IoT challenges.

on a variety of metrics. Metrics like accuracy, efficiency, and
reliability offer insights into various performance aspects. The
primary metrics used include Accuracy, Precision, Recall, F1-
score, BLEU, ROUGE, Mean Average Precision (MAP), Mean
Reciprocal Rank (MRR), Mean Absolute Error (MAE), and
Area Under the ROC Curve (AUC).

Accuracy, Precision, Recall, and F1-score are commonly used,
particularly for addressing Security and Privacy issues in IoT,
appearing in 55% to 60% of studies and 70% to 75% of
security-focused research. BLEU and ROUGE, although used
in only 2% to 5% of the studies, are crucial for evaluating the
linguistic quality of machine-generated text. MAP and MRR
are important for precise data retrieval and are prominent in
IoT Integration, Interoperability, and Standardization studies.
MAE, relevant in applications like smart grid energy forecast-
ing, is prevalent in research on Scalability, Reliability, and
Availability. AUC, which has been used extensively in 85.7%
of Interoperability and Standardization studies, measures clas-
sification performance effectively across different thresholds.
These metrics help determine the robustness, accuracy, and util-
ity of LLM-based solutions. However, given the intrinsic nature
of LLM, assessing them for IoT applications should include
metrics like token generation time, latency, throughput, com-
pute efficiency, memory bandwidth, power consumption, and
other hardware capabilities.

Use of Specific Techniques: Summing Up

Integrating LLMs with other ML techniques enhances
feature extraction, classification accuracy, and complex
data handling but introduces challenges like increased
computational overhead, system complexity, and non-
determinism. Optimization and extraction techniques are
crucial for improving LLM performance in IoT tasks. In
contrast, evaluation techniques must consider traditional
and new metrics specific to LLMs, such as latency and
compute efficiency.

4.2.4. Continuous Monitoring and Adjustment
Continuous monitoring and adjustment of LLM-based solu-

tions enhance effectiveness in dynamic IoT contexts by adapt-

ing to new data patterns and user behaviors. It is also benefi-
cial because LLMs struggle with complex queries and long data
sequences, posing challenges such as high computational de-
mands, real-time adaptation difficulties, data privacy concerns,
and scalability issues. Figure 8 shows the contribution of the
approaches to address IoT challenges.

Figure 8: RQ2: Iot Issues - Continuous Monitoring and Adjustment usage.

Real-time Monitoring and Adjustment. This strategy in-
volves continuously monitoring LLM-based IoT solutions and
adjusting real-time operations based on current conditions or
incoming data, constituting 16.4% of the dataset. For example,
[SLR 2] implemented real-time monitoring to adjust access
policies, while [SLR 5] used the Weights and Biases tool to
track model performance during training. Additionally, [SLR
24] monitored a semantic similarity model’s performance, al-
lowing for adjustments to improve speed and disk space usage.
Despite its complexity and high computational demands, this
strategy promises to enhance real-time IoT performance.

Adaptive Learning and Feedback Incorporation.
Refinement of LLM-based solutions based on past per-
formance and user feedback is crucial for adjusting to dynamic
IoT environments. Employed in 14.5% of the dataset, this
approach enhances model accuracy and responsiveness. For
example, [SLR 3] refined sentence embeddings with human
annotator feedback, while [SLR 33] improved activity recog-
nition and health monitoring. However, challenges remain in
real-time adaptation, data privacy, and scalability.

Continuous Monitoring & Adjustment: Summing Up

Continuous monitoring and adjustment are vital in dy-
namic IoT environments to enhance performance by
adapting to new data and user behaviors. These techniques
can also address LLMs’ lack of human-like understand-
ing and difficulty with complex queries and long data se-
quences. However, real-time adaptation and data privacy
concerns limit their broader use.

4.2.5. Data Collection and Preprocessing
“Data Collection and Preprocessing” entails gathering and

preparing data for analysis using LLMs, crucial steps that di-
rectly influence model performance and accuracy in data-driven
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studies. Figures 9 and 10 illustrate the approaches distribution
in addressing IoT challenges.

Figure 9: RQ2: IoT issues - Data Collection approaches.

Figure 10: RQ2: IoT issues - Data Labeling approaches.

Data Collection. This step concerns gathering relevant data
from various sources for processing and feeding into LLMs,
with the approach depending on the specific IoT field or chal-
lenge. Most studies (87.3%) reported their data collection
methods, with 40% emphasizing the need for qualitative data,
highlighting the importance of careful planning. Public datasets
or documents were used in 50.9% of the studies; 36.4% au-
tomatically acquired data from Information Systems or sensor
platforms, and only 1.8% manually created datasets. This di-
versity in methods underscores the dynamic nature of the field.

Data Preprocessing. This step converts raw data into a for-
mat efficiently processed by LLMs, enhancing performance.
Most studies (83.6%) highlight its importance, involving clean-
ing (25.5%) to remove irrelevant data, reduce noise, and im-
prove reliability. It includes tokenization, stop word removal,
and lemmatization for dimensionality reduction and standard-
ization. Although balancing data (e.g., SMOTE) to prevent bias
is important [SLR 47], it is often overlooked. While most stud-
ies (81.8%) focus on transforming or standardizing data, data
augmentation is reported in only 1.8% of studies [SLR 7].

Data Labeling. Labeling quality significantly impacts model
performance. About 47.3% of studies use domain experts’
manual labeling, ensuring high accuracy, which is crucial for
context-sensitive scenarios. However, this method is time-
consuming and less scalable. Around 12.7% of studies use au-
tomated or semi-automated labeling to speed up the process,
though it may compromise accuracy. Pre-labeled datasets, used
in 30.9% of studies, expedite preparation but often yield lower
performance than manually labeled data.

Data Collection and Preprocessing: Summing Up

Effective LLM-based IoT solutions require high-quality
data, proper cleaning and transformation, and accurate la-
beling for supervised learning. Automated techniques can
speed up labeling, but LLMs still need extensive, diverse
datasets and pose privacy, ethical, and bias challenges.

5. Discussion, Implications, and Future work

The SLR highlighted several observations that warrant fur-
ther exploration, serving as a starting point for future research.

5.1. Addressing Research Questions
LLMs contribute to developing more effective IoT applica-

tions and services. They enhance various aspects of IoT, in-
cluding security, data management, scalability, reliability, and
interoperability. They improve access control, threat detection,
and security violation identification in IoT security and pri-
vacy. LLMs also strengthen IoT data processing and analysis,
leading to improved processing speeds, semantic data handling,
and classification. They enhance IoT systems’ scalability, reli-
ability, and availability and simplify IoT ecosystem integration.
Moreover, the multimodality of LLMs enriches their applica-
bility in IoT through comprehensive data analysis and interpre-
tation. [SLR 16, 39, 46, 50].

Therefore, given the results provided in Section 4, we can
report the summary of the answer to RQ1:

Answer to RQ1: Summing up

LLMs effectively enhance IoT applications by improving se-
curity through advanced threat detection, managing data by
parsing and classifying unstructured information, and facil-
itating scalability and interoperability.

Another important aspect that emerges from our analysis
is that LLM-based solutions must be implemented through
a meticulous workflow to address IoT challenges effectively.
This workflow involves data collection and preprocessing, pre-
training, and fine-tuning on domain-specific datasets, tailored
software and hardware configurations, integration of advanced
machine-learning techniques and optimization algorithms, con-
tinuous monitoring and adaptive adjustments, and thorough
evaluation of results. Implementing LLMs in IoT aims to de-
velop robust solutions that are efficient, secure, adaptable, and
user-friendly. However, implementing LLMs in IoT introduces
several challenges. First, LLMs are computationally inten-
sive and require substantial resources for training and inference
[50, 51]. Secondly, acquiring large amounts of labeled data for
effective training and achieving dynamic adaptation of LLMs
without extensive retraining remains challenging. Addition-
ally, LLMs lack human-like understanding and have limitations
in handling complex queries and longer data sequences. The
opaque internal workings of LLMs create a ”black box” effect,
and their non-deterministic nature complicates consistency and
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Figure 11: Relationships between key findings (green), challenges (orange), and problems addressed (blue) in reviewed studies (grey).

reliability in IoT applications. Furthermore, the cost and depen-
dence on external providers for state-of-the-art LLMs introduce
latency, privacy concerns, and the risk of service disruptions.
Bias and generalization issues also pose significant challenges,
as LLMs can propagate societal biases present in the training
data and may struggle to generalize effectively in varied IoT
contexts. Finally, ethical and privacy concerns are significant,
as LLMs can inadvertently expose sensitive information.

Thus, we can provide the summary of the answer toRQ2:

Answer to RQ2: Summing up

LLM-based solutions for IoT challenges are implemented
through pre-training on large datasets and fine-tuning for
specific applications. These implementations often require
hardware like GPUs or TPUs and software frameworks like
TensorFlow or PyTorch. Real-time monitoring, feedback
loops, and thorough data handling processes are crucial,
but they require significant expertise. Nonetheless, LLMs in-
troduce challenges such as high computational costs, data
labeling difficulties, lack of human-like understanding, and
their ”black box” nature. Additionally, reliance on external
providers raises latency and privacy concerns, while biases
and ethical issues complicate deployment.

Figure 11 illustrates the relationships between key findings
and challenges emerged from the analyzed papers.

5.2. Future Directions
The potential of LLMs in addressing IoT challenges is vast

and largely untapped. Future research could focus on several
promising directions, including exploring new applications of

LLMs in IoT, adopting privacy-preserving techniques, reducing
the LLMs’ computational requirements, and investigating the
use of LLMs in emerging IoT fields. We report some research
directions, prioritized based on their potential impact.

5.2.1. Exploring New Applications
LLMs have shown promise in various IoT domains, but their

potential must be explored. In smart agriculture, LLMs could
analyze data from weather stations, soil sensors, and satellite
images to improve crop yield and reduce resource wastage, e.g.,
they could interpret weather forecasts and historical crop data
to predict future yields, supporting planning and resource man-
agement. In smart transportation, LLMs could analyze traffic
data to provide real-time updates and route recommendations.
By interpreting data from traffic cameras, GPS, and social me-
dia, LLMs could predict traffic conditions and suggest optimal
routes, reducing congestion and enhancing system efficiency.
In smart cities, LLMs could analyze data from social media,
sensors, and IoT devices to improve city planning and manage-
ment. Future research could also explore using LLMs in real-
time healthcare applications to monitor health, predict risks, in-
terpret clinical reports, and provide timely intervention alerts.

5.2.2. Investigating the Use of LLMs in Emerging IoT Fields
As the IoT landscape evolves, new fields and applications

constantly emerge, presenting unique challenges and opportu-
nities. With their text understanding and generation capabil-
ities, LLMs could address these challenges and capitalize on
these opportunities. In the Internet of Bio-Nano Things, in-
volving nanotechnology and biotechnology, LLMs could ana-
lyze and interpret data from bio-nano devices, enhancing their
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communication and interaction. For instance, LLMs could in-
terpret signals from bio-nano sensors, improving their environ-
mental detection and response. In Quantum IoT, which in-
tegrates quantum technologies, LLMs could analyze quantum
data, enhancing quantum communication and computation. For
example, LLMs could interpret quantum computation results,
making them more effective for IoT applications. In Space IoT,
involving space exploration and research, LLMs could analyze
space data, improving space communication and research. For
instance, LLMs could interpret signals from space probes, en-
hancing their environmental detection and response. Future re-
search could explore the use of LLMs in these and other emerg-
ing IoT fields, leveraging their unique capabilities to address
these areas’ specific challenges and opportunities.

5.2.3. Privacy-preserving Techniques
Privacy-preserving techniques are required for implementing

LLMs in IoT applications. Differential privacy adds noise to
data to protect individual privacy while allowing for pattern
analysis [52]. Federated learning enhances privacy by training
a centralized model using distributed data from multiple IoT
devices, thus keeping raw data local [53]. Despite these ad-
vantages, each technique faces specific issues. Federated learn-
ing’s challenges include handling non-IID data, communication
overhead, and robustness against malicious clients [54]. Se-
curity risks involve poisoning attacks, backdoor attacks, and
membership inference attacks, which can compromise model
integrity and privacy. Additionally, attacks based on Genera-
tive Adversarial Networks (GANs) generate synthetic data that
mimics real data, potentially leading to data leakage or manip-
ulation. Differential privacy also has vulnerabilities. While it
protects data by adding noise, it is still susceptible to reverse-
engineering attacks, allowing adversaries to expose sensitive in-
formation [54]. Several defense mechanisms are needed to mit-
igate these risks. Anomaly detection, secure aggregation pro-
tocols, and adversarial training form the first line of defense.
Secure Multiparty Computation and Homomorphic Encryption
allow computations on encrypted data without exposing it [55],
ensuring only aggregated updates are accessible to the central
server. Blockchain technology can provide a tamper-proof log
of transactions, and Trusted Execution Environments can of-
fer secure areas for sensitive computations, enhancing data in-
tegrity and confidentiality in federated learning systems [55].

Future research should improve the efficiency and scalabil-
ity of these privacy-preserving techniques for LLM-based IoT
applications. Additionally, enhancing the interpretability and
transparency of LLMs within federated environments is crucial
to comply with ethical guidelines and standards.

5.2.4. Reducing Computational Requirements
The computational demands of LLMs present a challenge for

IoT applications. Future research should reduce these require-
ments, making LLMs more suitable for IoT. One approach is
compression techniques, which reduce model size and com-
plexity without significant performance loss. Knowledge dis-
tillation, for example, trains a smaller model (student) to mimic
a larger, pre-trained model (teacher), learning its generalization

ability. Pruning removes unnecessary parameters or layers, and
quantization reduces parameter precision, minimizing size and
computational needs with minimal performance impact. Recent
advancements in 1-bit LLMs, like BitNet b1.58, show promise
in reducing memory and computational demands while main-
taining performance [56]. BitNet b1.58, using ternary weights
-1, 0, 1, matches full-precision LLMs but with lower latency,
memory, and energy use. This approach could lead to the de-
velopment of hardware optimized for 1-bit LLMs, enhancing
efficiency and suitability for IoT applications. Another critical
aspect is evaluating LLM solutions based on key performance
metrics such as time to generate a token, latency, throughput,
and hardware utilization. It is essential to assess how efficiently
the model uses computational resources, memory bandwidth,
power consumption, and other hardware capabilities in IoT en-
vironments to identify the most suitable LLM solution. Edge
computing is another promising direction, moving computa-
tion closer to IoT devices to reduce latency and bandwidth.
Research could focus on strategies for implementing LLMs
in edge environments, using compression techniques, develop-
ing efficient architectures for streaming data, or exploring dis-
tributed learning like federated learning. Developing energy-
efficient GPU architectures or other suitable hardware acceler-
ators for IoT applications could also be beneficial.

5.2.5. Ethical Implications and Biases
Using LLMs in IoT applications raises significant ethical and

bias concerns. A primary issue is the tendency of LLMs to
hallucinate or generate false or misleading information based
on their internal patterns and biases [50]. This issue can be
particularly problematic in sensitive areas such as healthcare,
where misinformation can lead to a loss of trust and potentially
harm patients. Additionally, biased data can lead to skewed
outcomes, especially in sensitive areas like healthcare, exacer-
bating issues of fairness and equity [57].

To address the ethical concerns, future research should incor-
porate domain-specific knowledge (i.e., medical knowledge in
healthcare) into LLMs to enhance their accuracy and reliability.
Developing improved evaluation metrics, benchmark datasets,
and mitigation methods could reduce the risk of hallucination
and improve the faithfulness of AI in medical and other criti-
cal applications. Concrete frameworks and solutions should be
established to address these ethical concerns holistically. Im-
plementing XAI techniques can provide transparency in LLM
decision-making processes. Adopting Federated Learning com-
bined with Differential Privacy ensures data privacy and secu-
rity while maintaining model performance (Section 5.2.3). Eth-
ical guidelines and standards, such as those proposed by the EU
Artificial Intelligence Act, can provide a comprehensive frame-
work for the responsible use of LLMs. These guidelines should
address accountability, transparency, fairness, and privacy, en-
suring that LLMs respect user rights and promote trust.

To address the issues of bias, techniques such as data aug-
mentation, synthetic data generation, and oversampling of un-
derrepresented groups can improve fairness [58]. Bias detec-
tion and correction algorithms, along with XAI solutions, can
further mitigate biases. Additionally, developing robust bias de-
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tection and mitigation frameworks is essential for fairness and
equity in LLM applications [59].

5.2.6. Pre-training, Fine-tuning, and Implementing LLMs
Future research could focus on developing new pre-training

and fine-tuning methodologies tailored to specific IoT domains.
Researchers could explore domain-specific corpora for pre-
training LLMs, enhancing their performance in specific IoT ap-
plications. New fine-tuning methodologies could also consider
IoT data’s unique characteristics, such as its temporal nature,
high dimensionality, and privacy concerns. Transfer learning
techniques could leverage pre-trained LLMs for new IoT tasks,
reducing the required training data and speeding up the train-
ing process. Future research could also develop new strate-
gies and tools to simplify the LLM’s implementation process.
Researchers could develop automated machine learning (Au-
toML) tools, automating LLM selection, hyperparameter tun-
ing, and evaluation. Explainable AI techniques (XAI) could
be explored to improve the interpretability and transparency
of LLMs, aiding IoT practitioners in understanding and fine-
tuning their models. Advanced optimization algorithms could
be developed to fine-tune LLM parameters more effectively, im-
proving performance and reducing training time.

5.2.7. Machine Learning Techniques
Integrating LLMs with other machine-learning techniques

shows promise for future research, potentially enhancing LLM
performance and addressing complex IoT challenges more ef-
fectively. As reported in Section 4, several studies have demon-
strated the benefits of such integration. Future research could
explore integrating LLMs with reinforcement learning or en-
semble learning. Reinforcement learning could train LLMs for
optimal decision-making in IoT applications, while ensemble
learning could enhance robustness and accuracy by combining
multiple LLM predictions.

5.2.8. Generating or Collecting Large and Diverse Training
Datasets

The successful implementation of LLMs in IoT applica-
tions relies on large and diverse training datasets, which are
challenging to generate due to IoT data’s dynamic nature and
volume. Future research could focus on new data collection
and generation techniques, such as synthetic data generation
through data augmentation and generative adversarial networks
(GANs). Data augmentation creates new data by transforming
existing data, while GANs generate new data instances using
two neural networks. These methods could enhance the size
and diversity of training datasets, improving LLM performance
in IoT. Additionally, few-shot learning could be explored to en-
able LLMs to learn from small datasets, which is beneficial in
IoT applications where large labeled datasets are complex to
obtain. Moreover, introducing 1-bit LLMs like BitNet b1.58
(see 5.2.4 could facilitate using more extensive and diverse
datasets, new experimentations, and deployment in resource-
constrained IoT environments by reducing the overall training
and inference costs.

5.2.9. Addressing Generalization in LLMs
Future research should enhance LLMs’ reliability in IoT ap-

plications by improving model generalization across diverse en-
vironments [57]. Generalizing LLMs across IoT domains is
challenging due to unique data characteristics. For this rea-
son, it is vital to use different strategies. For instance, strate-
gies like domain adaptation, transfer learning, and fine-tuning
pre-trained models on domain-specific data can enhance per-
formance [18]. In addition, few-shot and zero-shot learning al-
low LLMs to adapt to new tasks with minimal labeled data,
while RAG techniques allow LLMs to incorporate external in-
formation into the model’s context and elaborate new knowl-
edge. Moreover, ensemble methods combine multiple LLMs
trained on different domains for better robustness and gener-
alization. Lastly, real-time monitoring and adaptive feedback
mechanisms can address generalization issues as they arise.
Adaptive learning techniques enable continuous LLM refine-
ment based on new data and user feedback. Engaging end-users
in evaluation provides valuable insights into LLM performance
across various IoT contexts, guiding improvements.

6. Threats to Validity

In this section, we discuss the potential threats to the validity
of our SLR and the strategies we took to mitigate them. We
have categorized these threats into four main types, following
the guidelines proposed by Wohlin et al. [60]: construct valid-
ity, internal validity, external validity, and conclusion validity.

The main threat to construct validity is the definition of the
search string. To mitigate this threat, we used many keywords
and their synonyms related to IoT and LLMs. We also used
wildcard characters to capture variations of the keywords. Fur-
thermore, we manually searched the references of the initially
identified studies to find additional relevant studies that the
search string might have missed. The internal validity threat
pertains the selection and evaluation of the studies. We de-
fined clear and objective inclusion, exclusion, and quality cri-
teria to mitigate this threat. Two authors selected and eval-
uated the studies independently, and disagreements were re-
solved through discussion. Regarding external validity, the cov-
erage of the literature is a potential issue. The literature we
reviewed might only represent some of the studies on the role
of LLMs in solving IoT challenges. To mitigate this threat, we
used multiple databases to search for studies. We also manually
searched the references of the initially identified studies to find
additional relevant studies. Finally, The synthesis and interpre-
tation of study findings pose a threat to conclusion validity. To
mitigate this threat, we used a systematic and transparent ap-
proach to synthesize and interpret the study findings. We also
detailed our methodology and made our data extraction forms
and dataset available for scrutiny.

7. Conclusion

The SLR has examined the role of LLMs in addressing var-
ious challenges within the IoT domain. Our findings highlight
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the benefits of LLMs in enhancing data management, interop-
erability, security, privacy, and a wide range of IoT applica-
tions. For instance, LLMs have proven effective in detecting
security threats in IIoT, identifying malware in IoT devices, and
parsing and classifying healthcare data to improve patient care.
However, the review also identified several challenges in imple-
menting LLMs in IoT applications, such as high computational
requirements and the need for extensive and diverse training
datasets. These challenges must be addressed to realize LLMs’
potential in IoT fully. To overcome these hurdles, we propose
several future research directions. Future studies could focus
on developing techniques to reduce the computational demands
of LLMs, making them more suitable for IoT applications. Ad-
ditionally, new data collection and generation methods could
be explored to meet the need for diverse training datasets. Fur-
ther research could also investigate new applications of LLMs
in IoT, adopt privacy-preserving techniques, and explore their
use in emerging IoT fields. We hope that our review will in-
spire innovative efforts for more effective IoT applications and
services by exploiting LLMs.
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