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Abstract

Context: As machine learning (ML) systems become increasingly prevalent across various industries, concerns re-
garding fairness have intensified. Bias mitigation algorithms—that aim to reduce bias in ML models—serve as solu-
tions to mitigate this issue. However, these techniques can affect more than just social sustainability. They may alter
the computational overhead and energy usage of ML systems, affecting their environmental sustainability. Similarly,
they can influence businesses’ economic sustainability by shaping resource allocation and consumer trust. Goal: This
work aims to provide a benchmark study of the implications of applying bias mitigation algorithms on the sustainabil-
ity of ML solutions. We first corroborate previous findings by examining their effect on social sustainability metrics.
Additionally, we complement existing studies by offering a comprehensive analysis of how bias mitigation affects
environmental and economic sustainability, aiming to highlight trade-offs for practitioners designing ML solutions.
Method: We evaluate six bias mitigation algorithms by conducting 3,360 experiments across multiple configurations
of four ML algorithms and datasets. From these experiments, we compute metrics for social, environmental, and
economic sustainability, evaluating them using statistical analysis. Results: Our quantitative findings show that all
bias mitigation algorithms affect the three sustainability dimensions differently, indicating that applying these algo-
rithms involves complex trade-offs. Furthermore, we expand our discussion with qualitative insights that arise from
our results, also providing implications for both research and practice.
Conclusions: Our study emphasizes the need for a deeper investigation into the trade-offs bias mitigation algorithms
introduce and how they impact various non-functional requirements of ML systems.

Keywords: Software Sustainability, Machine Learning-Enabled Systems, Software Engineering for Artificial
Intelligence.

1. Introduction

The advancements in machine learning (ML) have stimulated transformative changes across various domains,
including science, medicine, finance, and education [84]. However, alongside its widespread adoption, concerns
about fairness and equity have emerged as pivotal issues in the design and development of ML-enabled systems
[62]. Numerous real-world ML deployments have exhibited discriminatory behavior linked to protected attributes
such as gender, race, and age [15, 12, 62, 28]. These challenges have prompted the research community to actively
pursue development practices aimed at reducing bias and promoting fairness in ML-enabled systems, reflecting a
commitment to ethical and responsible software engineering [15, 12, 62, 28]. Within software engineering (SE),
the subfield of SE for Artificial Intelligence (SE4AI) recognizes fairness as a critical non-functional requirement,1

particularly in ML-enabled systems, i.e., software systems that actively include at least one ML component [59, 42,
60]. Prior research has focused extensively on addressing bias and enhancing fairness through the development of bias
mitigation algorithms. These algorithms often target protected attributes—demographic characteristics identified by
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legal, ethical, and societal frameworks to safeguard marginalized groups from systemic discrimination or inequitable
treatment [2, 39]. Examples include pre-processing algorithms like Fair-SMOTE [19], ensemble-based methods such
as MAAT [25], and hybrid approaches like Fairway [20]. These studies have primarily targeted the optimization of the
trade-off between fairness and accuracy, demonstrating that bias mitigation can improve equity in ML systems while
preserving the overall performance of the models.

Despite these advancements, much of the existing literature evaluates fairness as an isolated objective, focusing
predominantly on metrics like demographic parity or equalized odds. However, even if these practices have been suc-
cessful in mitigating discrimination, their broader implications, particularly how fairness techniques might influence
non-functional attributes such as environmental and economic sustainability, remain unexplored. More specifically,
bias mitigation methods may introduce computational overhead during training and deployment, which can increase
energy consumption and carbon emissions, thereby contributing to the environmental footprint of ML models. Simi-
larly, these methods may affect economic factors such as training time and storage requirements, potentially impacting
the financial feasibility of deploying fairness-enhanced systems. These trade-offs, while critical to achieving respon-
sible AI, remain poorly understood in the literature.

Our work addresses these gaps by framing fairness within the broader theoretical construct of sustainability, en-
compassing its social, environmental, and economic dimensions. Building on the conceptualization of sustainability
as a stratified and multi-systemic construct [61], we operationalize fairness metrics as indicators of social sustain-
ability, connecting them to societal goals such as equity, inclusiveness, and well-being. This framing allows us to
evaluate bias mitigation algorithms not merely as tools for addressing fairness concerns but as components of sus-
tainable software systems that balance equity with other non-functional requirements. Beyond fairness, we extend
the evaluation of bias mitigation techniques to include two additional sustainability dimensions. On the one hand, we
evaluate environmental sustainability, quantified through metrics such as energy consumption and carbon emissions.
On the other hand, we expand the discussion on the trade-off between fairness and accuracy by exploring other eco-
nomic sustainability measures such as training time and storage weight. Through the integration of these dimensions,
we provide a more comprehensive understanding of the trade-offs involved in adopting bias mitigation techniques.

To the best of our knowledge, only a few recent studies have begun advocating for a broader view of fairness in ML,
highlighting the importance of considering its trade-offs with other sustainability dimensions [16, 21], for instance by
proposing multi-objective algorithms that attempt to optimize fairness alongside efficiency-related or environmental
objectives. Compared to these earlier works, our study offers a large-scale, systematic benchmark that quantitatively
examines the impact of bias mitigation algorithms on three key dimensions of sustainability—social, environmental,
and economic—hence complementing prior efforts with empirical evidence and providing actionable insights into
the practical trade-offs involved in deploying fairness-aware ML systems. We focus on analyzing multi-protected
attributes, which involves ensuring fairness across multiple overlapping groups [40], as this type of evaluation repre-
sents a more realistic scenario for implementing fairness enhancements in practice [26]. More particularly, our work
is routed around three main research questions that drive our exploration:

• RQ1. How do bias mitigation algorithms impact social sustainability regarding multiple protected attributes?

• RQ2. How do bias mitigation algorithms impact environmental sustainability regarding multiple protected
attributes?

• RQ3. How do bias mitigation algorithms impact economic sustainability regarding multiple protected at-
tributes?

While RQ1 corroborates and builds upon existing studies by contextualizing fairness within the social sustainabil-
ity dimension, RQ2 and RQ3 extend the current body of knowledge by assessing the environmental and economic
implications of bias mitigation techniques. To achieve these objectives, we implemented a quantitative benchmark
study research approach [73]. A benchmark study systematically evaluates and compares the performance of spe-
cific techniques, tools, or algorithms under controlled and reproducible conditions. This approach is particularly
suited to our goals, as it enables an objective analysis of multiple metrics across different dimensions of sustainability.
By applying six bias mitigation algorithms— Reweighing [52], Meta Fair Classifier. [18], Gerry Fair Classifier [54],
Exponentiated Gradient Reduction [3], PrejudiceRemover [53], and Grid Search Reduction [3]—to four datasets—
Adult [4], Statlog [45], Mep15 [43], and Compas [1]—, we conduct a total of 3,360 experimental runs, where we
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systematically measure the impact of these bias mitigation algorithms on fairness, energy consumption, carbon emis-
sions, accuracy, training time, and storage requirements. Our findings reveal multiple insights into the trade-offs across
sustainability dimensions. From a social perspective (RQ1), we corroborate previous findings in the field, showing
that bias mitigation algorithms significantly improve fairness metrics, with Exponentiated Gradient Reduction (EG)
emerging as the most effective technique. However, the results also indicate that certain algorithms, such as Gerry
Fair Classifier (GF) and Grid Search Reduction (GS), may deteriorate fairness when applied to multiple protected
attributes, emphasizing the complexity of achieving equitable outcomes in diverse scenarios. For environmental sus-
tainability (RQ2), the results demonstrate that algorithms like EG and GS consume significantly more energy and
produce higher CO2 emissions, raising concerns about their environmental footprint. In contrast, computationally ef-
ficient methods like GF and Meta Fair Classifier (MF) exhibit lower environmental impacts, highlighting the trade-offs
between fairness improvements and ecological responsibility. From an economic sustainability perspective (RQ3), the
application of bias mitigation techniques generally increases training time and storage weight while reducing accu-
racy compared to baseline models. However, exceptions such as Prejudice Remover (PR) demonstrate competitive
accuracy in specific datasets, offering valuable insights into the cost-effectiveness of bias mitigation strategies.

To sum up, the contributions of this article are the following:

1. We frame fairness within the broader theoretical construct of sustainability, moving beyond the traditional
fairness-accuracy trade-offs to explore its intersections with social, environmental, and economic dimensions.
This research approach not only highlights the multifaceted impacts of bias mitigation algorithms but also
bridges the gap between fairness research and sustainability goals, providing a foundation for the development
of more responsible and holistic ML system design;

2. Our findings reveal complex trade-offs between fairness improvements, energy consumption, carbon emissions,
accuracy, training time, and model scalability. These insights not only confirm the need for multi-dimensional
evaluation frameworks but also provide practitioners with a clearer understanding of the sustainability implica-
tions of their design decisions;

3. We provide a replication package [30] containing all raw data, scripts, datasets, and experimental setups of the
quantitative benchmark study. This resource enables researchers to verify our results, extend our study, and
explore new methodologies for assessing sustainability in bias mitigation.

Structure of the paper. Section 2.2 overviews the related work and emphasizes the novelty of our study, describing
the terminology applied in our study. Section 2.2 describes the research questions and methods employed to address
the objectives of our work, while Section 4 discusses the results achieved. In Section 5, we summarize the major
findings obtained and outline the implications of our work. The limitations of the study are discussed in Section 6.
Finally, Section 7 concludes the paper and discusses our future research agenda.

2. Theoretical Framework and Related work

In this section, we first report on the theoretical framework underpinning our study, emphasizing the basic con-
structs we rely on, particularly the dimensions of sustainability (social, environmental, and economic) and their rele-
vance to fairness in ML. Secondly, we discuss the most closely related work, positioning our study within the context
of existing research and highlighting the key distinctions and advancements it offers. Specifically, we illustrate how
our work extends prior studies by incorporating sustainability considerations into the evaluation of bias mitigation
algorithms, providing a more comprehensive perspective on their impacts.

2.1. Theoretical Framework

Sustainability, as originally defined by the Brundtland Report, refers to “meeting the needs of the present without
compromising the ability of future generations to meet their own needs” [10]. While this definition emerged in the
context of environmental and economic sustainability, its application has been extended to software engineering to
ensure the long-term viability of software systems [5]. McGuire et al. [61] provide a multi-layered and stratified view
of sustainability, conceptualizing it as a system’s ability to influence and endure at individual, team, organizational,
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and societal levels. Within this framework, sustainability is typically classified into three core dimensions of the
software process: social, environmental, and economic sustainability, each of which forms the foundation of our study.
We argue that sustainability dimensions provide a holistic theoretical construct for understanding the impacts of ML-
enabled systems, particularly when evaluating bias mitigation algorithms. Traditional fairness research has focused
on the fairness-accuracy trade-off, isolating fairness from its broader consequences. By framing fairness within the
sustainability framework, we aim to address previously underexplored interactions among social, environmental, and
economic dimensions, providing a more comprehensive evaluation of bias mitigation techniques. A key element of
this framing is given by the definition of the protected attribute, which we define as follows:

µ Protected Attribute: Protected attributes are specific characteristics of individuals or groups, such as gen-
der, race, age, or other legally or contextually defined attributes, that are recognized as critical to ensuring
fairness in ML models. These attributes are typically defined based on legal statutes, ethical considerations,
and societal norms, as they represent groups that have historically been subjected to systemic discrimination,
unequal treatment, or exclusion [2, 39]. In the context of fairness-aware ML, these attributes serve as a basis for
identifying and mitigating biases to ensure equitable outcomes across demographic groups.

Protected attributes play a pivotal role in defining privileged and unprivileged groups for fairness evaluation. For
instance, in social sustainability, the focus is on ensuring that outcomes for unprivileged groups (e.g., based on gen-
der or race) do not perpetuate inequities. For environmental sustainability, the way protected attributes are handled
can influence resource efficiency, as iterative fairness methods may increase energy consumption. In economic sus-
tainability, understanding how protected attributes impact storage or computational costs offers valuable insights into
trade-offs between fairness and operational efficiency. Furthermore, applying bias mitigation algorithms that operate
on these attributes in datasets may affect models’ predictive performances, hence deteriorating their values. By inte-
grating protected attributes into the sustainability framework, our study has the ultimate goal of understanding their
broader societal, environmental, and economic implications. In the context of our study, we focus on intersectional
fairness, that is, the evaluation of bias in ML models considering more than one protected attribute simultaneously
[40]. We decided to focus on this particular scenario for two reasons: on the one hand, this matter is still underex-
plored in fairness research [24]; on the other hand, it could provide a more realistic view of the trade-off between
sustainability dimensions as it reflects better real-world contexts where more than a protected attribute has to be con-
sidered [26]. The selection of protected attributes in fairness evaluation, however, remains a complex issue. This
is due to the context-dependent nature of ML fairness: for example, an automated hiring system should not make
decisions considering the ‘sex’ attribute, whereas, in some complex medical applications, this information should be
taken into account [36]. To handle this selection in our study, we relied on existing guidelines for each of the datasets
we selected, as the datasets are drivers for the context of application [35]. In the following sections, we discuss each
sustainability dimension, elaborating on their theoretical foundations and how they are operationalized in our study.

Social Sustainability: Social sustainability concerns the impact of systems on individuals, communities, and soci-
ety. This dimension emphasizes equity, inclusiveness, and human well-being as fundamental principles for sustainable
development [61]. In software engineering, socially sustainable systems should promote fairness, accessibility, and
ethical behavior while minimizing harm, marginalization, and discrimination against individuals or groups. Fairness,
as widely discussed in the ML fairness literature, directly aligns with these objectives, making it a natural foundation
for evaluating social sustainability.

McGuire et al. [61] conceptualize social sustainability as influencing multiple levels: psychosocial well-being
at the individual level, team cohesion at the group level, organizational culture at the institutional level, and societal
affordances at the broader societal level. Building on this stratified framework, we argue that fairness in ML sys-
tems serves as a key enabler of social sustainability because it directly influences individual and societal perceptions
of equity and inclusivity. For example, fair ML systems that avoid discrimination promote greater trust, inclusive-
ness, and well-being for individuals, while at a societal level, they foster cohesion by mitigating systemic biases that
harm marginalized or underrepresented groups [23]. This broader framing allows us to go beyond the conventional
understanding of fairness as an isolated metric and instead position it as a measurable proxy for social sustainability.

While fairness metrics—such as demographic parity, equalized odds, and disparate impact—have been extensively
studied in ML fairness research, their evaluation has traditionally focused on isolated trade-offs between fairness and
accuracy. Existing studies have rarely contextualized fairness within a larger sustainability framework, and as such,
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they may overlook the broader implications that fairness improvements have on other aspects. Our study bridges this
gap by explicitly operationalizing social sustainability through fairness metrics. It is important to note that this is not
merely a rephrasing of fairness evaluation but rather an extension that integrates fairness into a holistic sustainability
construct. By aligning fairness metrics with the broader goals of social sustainability, we highlight that fair systems
are not only ethically desirable but also socially sustainable, contributing to equity at multiple levels of impact.

In doing so, our work extends previous fairness studies in two important ways. First, we situate fairness within a
broader theoretical construct, explicitly linking it to social sustainability, which has not been systematically addressed
in fairness research. This allows us to connect fairness improvements to broader societal outcomes, such as psy-
chosocial well-being and societal cohesion, reinforcing the role of fairness as a component of responsible software
engineering. Second, by framing fairness as one dimension of sustainability, we establish a foundation for evaluating
its interaction with environmental and economic dimensions. This multi-dimensional perspective provides practition-
ers and researchers with a more comprehensive understanding of the trade-offs introduced by bias mitigation methods,
enabling more informed and balanced decision-making.

In summary, while fairness has traditionally been studied as a standalone objective, our work attempts to elevate
it as an indicator of social sustainability. Through this framing, we demonstrate that fairness improvements extend
beyond mitigating bias in ML models; they provide an important role in fostering socially sustainable software systems
that promote equity, inclusiveness, and trust within society.

Environmental Sustainability: Environmental sustainability focuses on minimizing the ecological impact of
software systems, particularly in terms of energy consumption and carbon emissions. In ML engineering, this dimen-
sion is becoming increasingly significant due to the exponential growth in the computational resources required to
develop and deploy ML models [71]. Large-scale models, like those used in fairness-sensitive applications, consume
substantial amounts of energy, contributing to global energy usage and carbon footprints [5]. These impacts raise
concerns about the environmental costs associated with the adoption of fairness-enhancing methods, especially as
organizations scale up ML solutions to address real-world ethical concerns. Bias mitigation algorithms, while ad-
dressing fairness and equity, may introduce additional computational complexity. For instance, in the training phase,
pre-processing techniques involve transformations on the dataset, while in-processing methods may require modifi-
cations to the optimization process. These operations inherently increase training time and resource consumption,
which in turn directly affects energy usage and carbon emissions. It becomes crucial, therefore, to examine whether
the benefits of fairness achieved by bias mitigation methods are offset by their environmental footprint.

This evaluation is particularly relevant for practitioners and researchers because fairness in ML systems is of-
ten promoted as a means of advancing ethical and responsible AI practices. However, an unintended consequence
of promoting fairness may be the increased environmental burden, which could compromise sustainability goals. If
practitioners fail to account for these environmental trade-offs, fairness initiatives may conflict with global sustainabil-
ity efforts, ultimately undermining the broader objectives of ethical AI and sustainable software engineering. In our
study, we operationalize environmental sustainability by quantifying the energy consumption and carbon emissions
associated with the execution of bias mitigation algorithms. These metrics serve as indicators of the environmental
costs incurred when implementing fairness techniques. Indeed, evaluating bias mitigation methods through this lens
enables us to uncover potential trade-offs between fairness improvements and environmental impacts, an aspect that
has been underexplored in the literature. It is important to note that assessing environmental sustainability against bias
mitigation methods is not merely a technical exercise; it holds practical implications for developers, organizations, and
policymakers. For developers, understanding the environmental costs allows for more informed algorithm selection
and optimization strategies. For organizations, balancing fairness with ecological efficiency helps align AI initiatives
with corporate sustainability goals, enhancing their reputation and social responsibility. For policymakers, insights
into these trade-offs can inform guidelines and regulations that encourage the development of fairness techniques that
are both ethical and environmentally sustainable.

In conclusion, our study aims at addressing a current knowledge gap, providing a more holistic perspective on the
impacts of fairness-enhancing methods. This broader view may enable practitioners to make informed decisions that
consider equity, resource consumption, and long-term sustainability, ensuring that fairness initiatives do not come at
the cost of environmental responsibility.

Economic Sustainability: Economic sustainability pertains to the financial viability and resource efficiency of
software systems throughout their lifecycle. This dimension is particularly critical for ML-enabled systems, where
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the computational and storage requirements of models can have significant cost implications. Economic sustainability
emphasizes the need to maintain accessibility, cost-effectiveness, and resource efficiency, ensuring that systems remain
operational and maintainable while aligning with broader economic objectives [61].

In the context of our work, we evaluate the impact of bias mitigation algorithms: while essential for improving
fairness, these algorithms may introduce additional computational overhead that can directly impact the economic
sustainability of ML systems. Traditionally, the economic aspects of ML systems have been indirectly evaluated
using accuracy as a primary metric. Accuracy, however, provides only a partial view of economic impacts, as it does
not account for the operational and development costs associated with implementing fairness techniques. For example,
pre-processing techniques require additional steps in data preparation, while in-processing methods often necessitate
changes to optimization processes, potentially increasing training times and computational costs. Without assessing
these hidden costs, the practical feasibility of fairness-enhancing methods in real-world applications remains unclear.

In our study, we operationalize economic sustainability by incorporating metrics that capture the costs of im-
plementing bias mitigation algorithms. Specifically, in addition to predictive performance metrics, we evaluate (1)
training time, which reflects the additional computational overhead introduced during the model training phase when
fairness techniques are applied; and (2) storage weight, which quantifies the size of the resulting ML models after
applying bias mitigation techniques. Evaluating these metrics alongside accuracy provides a more comprehensive
understanding of the economic trade-offs introduced by fairness techniques. For instance, while improving fairness
is often ethically desirable, the financial costs associated with achieving such improvements may limit the feasi-
bility of deploying bias mitigation methods in practice. This highlights the importance of balancing fairness with
cost-efficiency to ensure that fairness-enhancing methods remain accessible and scalable for widespread use. This
evaluation of economic sustainability is critical for several reasons. For practitioners, understanding the trade-offs
associated with bias mitigation algorithms enables better decision-making regarding algorithm selection, optimiza-
tion, and deployment. For organizations, economic sustainability aligns fairness-enhancing initiatives with financial
and operational goals, ensuring that ethical AI practices remain practical and scalable. From a broader societal per-
spective, addressing economic sustainability democratizes access to fairness-enhancing methods, reducing barriers
for organizations with limited resources and enabling their adoption at scale. While prior research has focused heavily
on the fairness-accuracy trade-off, little attention has been paid to the broader economic impacts of implementing
fairness techniques. By extending the evaluation of bias mitigation algorithms to include training time and storage
weight, our study fills this gap, providing actionable insights into the economic sustainability of fairness-enhancing
methods. This holistic perspective ensures that fairness initiatives are not only ethically sound but also financially
viable, supporting their long-term adoption and scalability.

In conclusion, our work emphasizes the importance of evaluating economic sustainability as an integral dimension
of fairness research. By quantifying the hidden costs of implementing bias mitigation algorithms, we provide a
framework for assessing their broader resource and financial implications. This perspective enables practitioners to
make informed decisions that balance fairness, performance, and resource efficiency, ensuring that fairness initiatives
align with both ethical and economic sustainability goals.

� Theoretical Framework: The theoretical framework presented in this section goes beyond traditional fair-
ness research by integrating fairness metrics into a broader sustainability construct. By aligning fairness with
social sustainability, and evaluating its interactions with environmental and economic dimensions, our study ad-
dresses a knowledge gap in the current literature. This framework enables the identification of multi-dimensional
trade-offs introduced by bias mitigation algorithms, offering a more comprehensive perspective on their implica-
tions. By linking these dimensions to actionable metrics, such as energy consumption, training time, and storage
weight, we aim at providing a novel contribution that equips practitioners, organizations, and policymakers with
the tools needed to make balanced and sustainable decisions.

2.2. Related Work

The rapid growth of the usage of AI has stimulated substantial changes across diverse industries, compelling both
practitioners and the research community to confront the challenge of crafting products that mitigate rather than ag-
gravate worldwide issues related to equality, inclusion, and the environment. This highlights the critical importance of
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assessing the impact of AI on broader societal goals, notably the Sustainable Development Goals2 (SDGs) established
by the United Nations. While SDGs encompass a range of goals spanning poverty alleviation, health, inequalities, ed-
ucation, and environmental sustainability, the evaluation of AI’s contribution to these goals is paramount [82, 41, 33].
ML is a subfield of AI that focuses on developing algorithms that can learn from data [68]. However, the terms AI-
enabled or ML-enabled systems are used to refer to a system or component that uses some type of AI or ML [59, 58].
Therefore, in this study, we consider these terms to be synonyms.

While researchers have made significant strides in addressing disparities and promoting equity in ML software,
many have primarily focused on protected individual attributes [19, 25, 27, 66]. Conversely, intersectional fairness,
i.e., ensuring fairness across multiple, overlapping social identities or demographic characteristics [40], is mostly
underexplored [75]. In parallel, researchers have explored bias mitigation algorithms, which can be categorized into
three main types: (i) pre-processing, which optimizes data before training; (ii) in-processing, which focuses on the
learning process; and (iii) post-processing, which improves equity in decision-making outcomes [25, 7, 49]. For
example, Biswas and Rajan [7] conducted a benchmark study using seven bias mitigation algorithms with shallow
learning models from Kaggle, focusing on equity and accuracy metrics. Conversely, researchers have also delved into
the environmental sustainability of ML-enabled systems, highlighting potential environmental risks associated with
these systems [44]. Verdecchia et al. [81] elicited existing practices in the literature, which were further confirmed
and synthesized by Järvenpää et al. [51].

Our study is mainly centered on bias mitigation algorithms and how these impact social, environmental, and
economic sustainability. In terms of fairness and bias mitigation, the research community has been studying these
matters from two main perspectives. A first line of research revolved around the improvement of existing algorithms
or the definition of new fairness-aware techniques. For instance, Chakraborty et al. [19] introduced Fair-SMOTE, an
algorithm designed to correct biased labels and rebalance internal distributions, ensuring fair representation in both
positive and negative classes based on protected attributes. Chen et al. [25] proposed MAAT, an ensemble technique to
optimize the fairness-performance balance in ML software. Fairway [20] combines pre-processing and in-processing
methods to eliminate ethical bias from both training data and the trained model. Finally, Peng et al. [65] proposed
Fairmask, a model-based extrapolation method for bias mitigation and explanation, comparing Fairmask against five
algorithms across multiple protected attributes. These approaches focus on optimizing the trade-off accuracy and
fairness, not considering other non-functional requirements of ML models. Perhaps more importantly, none of these
approaches took into account the time required to improve a model, which directly affects the feasibility and scalability
of implementing fair ML models in real-world scenarios.

A second line of research involved the design of benchmark studies for ML bias mitigation methods. In particular,
Hort et al. [49] developed Fairea, a tool for benchmarking ML bias mitigation methods through model behavior muta-
tion. Their work included five pre-processing and in-processing algorithms, focusing on non-functional requirements.
Later, Chen et al. [26] utilized Fairea for doing a large study considering seven pre-processing and in-processing bias
mitigation algorithms and found the bias mitigation methods significantly decreased the ML accuracy metrics of the
studied scenarios. In addition, they described that the effectiveness of bias mitigation methods depends on the tasks,
the models, the choice of protected attributes, and the set of metrics used to assess ML fairness and performance.
Their evaluations were limited to scenarios involving only one protected attribute at a time. Zhang and Sun [87]
adapted equity improvement methods previously proposed in the ML community to be able to handle more protected
attributes. They compared six pre- and in-mitigation algorithms and the time needed to use their approach. However,
they did not consider the time required to mitigate the bias of other algorithms. Recently, Chen et al. [24] conducted a
benchmark study on improving fairness in relation to multiple protected attributes, looking at eight pre-processing and
in-processing algorithms. Lastly, Hort et al. [50] have presented a new repair method of ML-based decision-making
software that simultaneously improves fairness and accuracy.

More recently, researchers like Chen et al. [21] and Sarro [69] argued the definition of novel techniques that are
able to balance fairness objectives with other sustainability principles, hence pioneering the research efforts in the
area targeted by this work. Additionally, Candelieri et al. [16] proposed a hyper-parameter optimization approach
that balances fairness metrics and environmental indicators. Our study builds on the current body of knowledge on
ML fairness by proposing a broader, more comprehensive quantitative evaluation that integrates together the three
dimensions of social, environmental, and economic sustainability.

2The Sustainable Development Goals: https://sdgs.un.org/goals
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By framing fairness as a measurable proxy for social sustainability, we extend its evaluation beyond isolated
metrics to include its broader societal implications, such as equity, inclusiveness, and trust. Moreover, our study op-
erationalizes environmental sustainability through metrics like energy consumption and carbon emissions, providing
insights into the ecological footprint of fairness-enhancing methods. Similarly, we assess economic sustainability by
examining training time and storage weight, quantifying the resource and financial costs of implementing bias mitiga-
tion techniques. Our framework enables us to uncover complex trade-offs between fairness and other dimensions of
sustainability, offering a multi-dimensional perspective that is absent in prior work. By merging insights from AI, soft-
ware engineering, and sustainability, our work contributes a novel interdisciplinary perspective to fairness research.
Our findings not only highlight the impacts of bias mitigation algorithms on equity but also provide actionable insights
into their environmental and economic consequences. Our ultimate goal is to equip practitioners and researchers with
the tools to make informed decisions about fairness-enhancing techniques, ensuring that they are not only ethically
sound but also sustainable and scalable in real-world scenarios.

� Novelty of the study: Our work introduces a new perspective by framing mitigation bias in the context of
sustainability, moving beyond traditional equity metrics to assess their social, environmental, and economic
dimensions. By systematically assessing these dimensions, we offer new insights into the complex interplay
between fairness practices and sustainability goals, adding depth to the existing literature on responsible AI.

Dependent Variable

RQ1 RQ2 RQ3

Social Metrics Environmental Metrics Economic Metrics

Independent Variables

Fairness Algorithms

6 mitigation algorithms 

Mitigation Phases

Pre-processing

In-processing

AIF360 Toolkit4 Shallow ML models

x

Protected Attributes

Subjects of the Study

Objects of the Study

4 Dataset

select protected attribute
select (un)privileged class
select favorable label(s)

Fariness Groups

Figure 1: Overview of the research process.

3. Empirical Study Design

To define our research goal, we follow the Goal-Question-Metric (GQM) [14]. The goal of the empirical study
is to assess the impact of bias mitigation algorithms on the sustainability of ML-enabled systems, with the purpose
of providing insights into the trade-offs between addressing fairness-related concerns and their corresponding social,
environmental, and economic impacts in the context of ML-enabled systems. The perspective is twofold: practition-
ers may leverage the outcomes of this study to better evaluate their activities, gaining knowledge on how mitigating
risks due to unfairness might influence other critical system properties, potentially enhancing quality assurance pro-
cesses. Meanwhile, researchers may benefit by exploring the interplay between multiple non-functional requirements
of ML-enabled systems, gaining insights into current challenges and informing the design of next-generation quality
assurance mechanisms. To achieve our objectives, we formulated three research questions. The first, RQ1, sought
to understand how bias mitigation algorithms impact social sustainability through fairness, particularly in scenarios
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involving multiple protected attributes. Social sustainability, as defined in [61], encompasses properties that influ-
ence the individual’s physical and psychosocial well-being, making fairness a critical component of this dimension.
Our analysis serves as both a preliminary and confirmatory step, designed to corroborate existing findings in fairness
literature while framing fairness within the broader theoretical construct of social sustainability. This framing estab-
lishes a foundational understanding of fairness that enables the exploration of its interplay with environmental and
economic dimensions in subsequent research questions. More particularly, bias mitigation algorithms are explicitly
designed to deal with social sustainability properties and, therefore, we expected to observe a positive effect of all the
algorithms [19]. Yet, a preliminary investigation may quantify the impact of existing bias mitigation algorithms on
social sustainability properties, other than serve as an evidence-based assessment [56] of their performance and po-
tential combinations thereof. At the same time, our preliminary analysis can support the findings observed by Chen et
al. [24, 26] in recent investigations into the capabilities of bias mitigation algorithms, possibly discovering additional
insights that may advance the current body of knowledge. While the fairness literature has focused on a single at-
tribute at a time [19, 25, 66], the analysis of multiple protected attributes simultaneously needs more exploration [24].
Therefore, we focus all research questions on analyzing multiple protected attributes. Based on the argumentation
above, we formulated our RQ1:

RQ1 – Social Sustainability

How do bias mitigation algorithms impact social sustainability regarding multiple protected attributes?

Building on the results of RQ1, we turned our attention to environmental sustainability in RQ2 by investigating the
impact of bias mitigation algorithms on metrics such as carbon emissions and energy consumption. These metrics are
particularly relevant in the broad context of sustainability, as they quantify the trade-offs between addressing fairness
and the ecological footprint of ML-enabled systems. By assessing the environmental impact of these algorithms, we
aimed to enhance practitioners’ awareness of the energy and resource costs associated with bias mitigation and inspire
the development of novel tools to balance fairness and environmental sustainability. Hence, we asked:

RQ2 – Environmental Sustainability

How do bias mitigation algorithms impact environmental sustainability regarding multiple protected attributes?

Finally, RQ3 examined the economic sustainability of bias mitigation algorithms, extending the analysis beyond
accuracy—a primary focus in traditional studies on fairness. While accuracy remains an important metric, our study
incorporates additional dimensions, such as training time and model storage requirements, to provide a more com-
prehensive perspective. These metrics directly influence operational costs, resource efficiency, and the long-term
feasibility of deploying fairness-enhancing algorithms in real-world scenarios. This more comprehensive view may
offer insights into the trade-offs between fairness improvements and economic considerations, enabling researchers
and practitioners to better evaluate the broader cost-effectiveness of bias mitigation techniques. By moving beyond
accuracy, our study highlights the hidden costs associated with fairness-enhancing methods, thereby contributing to
the understanding of how these techniques align with economic sustainability objectives. Therefore, we asked:

RQ3 – Economic Sustainability

How do bias mitigation algorithms impact economic sustainability regarding multiple protected attributes?

Figure 1 shows an overview of our study design. As shown, we first determined the common ground for the quan-
titative benchmark study, i.e., the most appropriate datasets, the ML models to experiment with, and the metrics to
estimate social, environmental, and economic sustainability. Afterward, we selected the bias mitigation algorithms to
assess, picking those available within the well-known AIF360 toolkit [6]. Finally, we ran the selected bias mitigation
algorithms against the benchmark and analyzed the corresponding results to address our research questions. In par-
ticular, a benchmark study is a standard tool for the evaluation and comparison of competing systems or components
according to specific characteristics, such as performance, dependability, or security [55]. Benchmark studies can be
tested repeatedly and quickly without requiring human subjects [77]. Consequently, the results section will present
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findings that are based solely on quantitative analysis without any subjective interpretations or personal biases, as this
type of research approach exploits numerical analysis and statistical techniques rather than descriptive or interpretive
methods. However, we complement our findings with extensive discussions in a dedicated section (5). In terms of
reporting, we employed the guidelines (i) by Wohlin et al. [83] and (ii) by the ACM/SIGSOFT Empirical Standards3.

Table 1: Datasets used in the experimentation.

Name #Sample #Feature Protected Attributes Favorable label Description

Adult 32,560 104 sex,race 7508 (18,80%) The goal is to classify in-
dividuals into specific an-
nual income classes and
determine whether their
income is above or below
$50,000.

Mep15 15,830 42 sex,race 2718 (17.17%) The goal is to predict indi-
viduals’ health care needs
based on how Americans
pay for medical care,
health insurance, and
out-of-pocket expenses.

Statlog (German Credit Card) 1,000 61 sex,age 700 (70%) The purpose is to predict a
bank customer’s ability to
repay, or not, a loan.

COMPAS 7214 8 sex,race 3963 (54,93%) the goal is to predict,
through demographic
information and criminal
history, whether a defen-
dant will reoffend within
two years.

3.1. Objects of the study

The objects of our study were the datasets to be used for our experimentation. To address our research questions,
we required the selection of fairness-relevant datasets—otherwise, we could not observe significant outcomes from
the application of bias mitigation algorithms. Table 1 describes the main characteristics of the datasets selected for
our study. As shown, we identified four popular datasets such as Adult [4], Statlog [45], Mep15 [43], and Compas
[1]. The reason behind this selection is manifold.

First, these datasets have been widely employed in previous literature on software engineering for artificial in-
telligence [59, 50] and ML fairness [7, 49, 24, 19]: as such, their adoption allowed us to have a common ground to
compare our findings with previous achievements in the field, e.g., the four datasets are among those used by Chen et
al. [24, 26]. In the second place, the selected datasets cover activities that pertain to individuals’ personal information
in various fairness-sensitive domains, including finance, social, and medical sectors: as a consequence, we could as-
sess the impact of bias mitigation algorithms in various contexts, possibly uncovering patterns that better describe the
characteristics of these algorithms. Lastly, this fixed amount of datasets selected allowed us to relax the constraints
on the number of investigations to be performed on different objects, hence increasing the number of experiments for
each, improving our confidence in driving conclusions on these four datasets. Consistently with prior investigations
[24, 26, 66], we chose ‘Sex’, ‘Age’ and ‘Race’ as protected attributes. As a consequence of this choice, our investi-
gation could be performed on multiple protected attributes, which has been noted as a challenging and more realistic
condition for the evaluation of any bias mitigation algorithm [24].

3Available at: https://github.com/acmsigsoft/EmpiricalStandards. Given the nature of our study and the currently available stan-
dards, we followed the “General Standard”, and“Benchmarking” guidelines.
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3.2. Subjects of the Study

The subjects of the study were the machine learning models to experiment with to assess their sustainability
properties. In this respect, we relied on previous literature in the field [8, 79, 19, 86, 78]. Particularly, the selection was
informed by the work by Hort et al. [48], who provided a comprehensive survey of ML models frequently employed in
fairness research. We selected and trained four different algorithms: Logistic Regression (LR), Linear Support Vector
Classification. (SVC), Random Forest (RF), and XGBoostClassifier (XGB). According to Hort et al. [48], these are
among the most frequently used in the evaluation of bias mitigation methods. In particular,LR serves as a reference
point for evaluating the relative effectiveness of bias mitigation techniques, being frequently employed as a baseline
model due to its simplicity and interoperability; SVC is known for its strong classification capabilities and its ability
to handle complex decision boundaries; RF is recognized for its robustness and resistance to overfitting, making it
widely adopted for fairness evaluations across diverse datasets; lastly, XGB combines computational efficiency with
strong predictive performance, making it a robust method for evaluating fairness and sustainability trade-offs. These
models were trained using as features the attributes included in the four datasets described in Section 3.1. All of
them pertained to binary classification tasks. For each ML algorithm, we defined seven variants, one for each of the
independent variables of the study plus one baseline where we did not apply any treatment. In this way, we could
experiment with one ML model for each bias mitigation algorithm considered in the study, i.e., each of them applied a
different bias mitigation algorithm, against which we compared a baseline model that did not apply any bias mitigation
algorithm. Following this design, we defined a total of 28 experimental models. In terms of data preprocessing, we
removed missing or invalid values and converted continuous features to categorical ones. In addition, we adapted the
preprocessing for equity analysis by identifying protected attributes, defining privileged and non-privileged groups,
and clarifying the outcome or favorable label for predictions. We set sex, race, and age as privileged groups according
to their availability in the selected datasets. As for hyper-parameters configuration, we used the default configurations
coming from relevant studies [49, 24, 25, 26].

Table 2: Variables of the study

Name Scale Operationalization

Independent variables:

Baseline Model Nominal Models without any bias mitigation algorithms.

Bias Mitigation Algorithms Nominal Reweighing, Meta Fair Classifier, Gerry Fair Classi-
fier, Exponentiated Gradient Reduction, PrejudiceRe-
mover, Grid Search Reduction.

Dependent variables:

RQ1 Mean Difference Ratio P(Y = 1|D = 0) − P(Y = 1|D = 1)

RQ1 Equal Opportunity Difference Ratio T PRD=unprivileged − T PRD=privileged

RQ1 Average Odds Difference Ratio 1
2

((
FPRD=unprivileged − FPRD=privileged

)
+
(
T PRD=unprivileged − T PRD=privileged

))
RQ2 Energy consumption Ratio Power usage × Training time

RQ2 Carbon Emission Ratio Carbon Intensity factor × Energy consumption

RQ3 Training Time Ratio Timeend − Timestart

RQ3 Accuracy Ratio (T P + T N)/(T P + T N + FP + FN)

RQ3 F1 score Ratio (2 × T P)/(2 × T P + FP + FN)

RQ3 Storage Weight Ratio The size of the trained model

3.3. Empirical Study Variables

Once we had defined the context of our study, we proceeded with the definition of the independent and dependent
variables of the empirical study. Table 2 summarizes the design choices taken in this respect.
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Independent Variables. The independent variables of the study were represented by the bias mitigation algo-
rithms that we aimed to assess with respect to their impact on sustainability. We selected techniques that have a
potential impact on all evaluation measures relevant to our research questions. In particular, we focused on algorithms
that operate before or during model training, as they directly influence the training phase and can affect key metrics
such as energy consumption, storage weight, and other metrics considered. In contrast, post-processing algorithms,
which operate exclusively during the inference phase, were excluded as they do not impact the metrics studied in this
work. In fact, including post-processing methods would have introduced inconsistencies in our analysis and com-
promised its comprehensiveness. Therefore, our study is based on state-of-the-art pre-processing and in-processing
algorithms [7, 26]. The former (referred to as ‘PRE’ in the remainder of the section) are methods that attempt to miti-
gate bias in training data to promote a more equitable model. The latter (referred to as ‘IN’) are methods to optimize
training algorithms to improve fairness. In addition, our study also includes a baseline as an independent variable.
More specifically, our study featured the following pre-processing and in-processing algorithms:

• Baseline. A baseline where no bias mitigation algorithms were applied.

• PRE#1 - Reweighing [52]. This allows the weight attributed to individual instances of the dataset to be changed,
identifying instances belonging to protected and unprotected groups looking for ideal weights aimed at mitigat-
ing any type of discrimination present within the dataset.

• IN#1 - Meta Fair Classifier. [18]. It represents a classifier exploited in the in-processing phase to modify
the standard training set into a training set which considers fairness metrics. Once the training set is modified,
additional standard models are trained on the new modified training set to provide a training phase that primarily
uses fairer training sets.

• IN#2 - Gerry Fair Classifier [54]. This is an algorithm for learning classifiers that are fair with respect to rich
subgroups. The rich subgroups are defined by linear functions on the protected attributes, and the notions of
fairness are statistical in nature.

• IN#3 - Exponentiated Gradient Reduction [3]. The algorithm is able to reduce fair classification to a sequence of
cost-sensitive classification problems, returning a randomized classifier with the lowest empirical error subject
to fair classification constraints.

• IN#4 - PrejudiceRemover [53]. The algorithm adds a term of discrimination-aware regularization to the learning
objective.

• IN#5 - Grid Search Reduction [3]. It reduces fair classification to a sequence of cost-sensitive classification
problems, returning the deterministic classifier with the lowest empirical error subject to fair classification
constraints among the candidates sought.

The selection of this specific set of algorithms was motivated by two main factors. First, we prioritized algorithms
with robust, standardized, and optimized implementations: we therefore selected the algorithms available in the AI
Fairness 360 (AIF360) toolkit [6]. This choice ensured methodological rigor: while we are aware of the existence of
other bias mitigation algorithms, relying on unstandardized or non-optimized fairness libraries might have introduced
inconsistencies and inaccuracies in the analysis, particularly for environmental metrics that are highly sensitive to
implementation efficiency. For example, less efficient implementations might lead to inflated resource consumption,
longer execution times, and higher energy usage, thereby skewing the results and compromising the validity of our
conclusions. By leveraging AIF360, which has been validated in both academic research and industry practice [57,
32], we minimized such risks and ensured the reliability and reproducibility of our findings.

Second, the selected algorithms were required to handle multiple protected attributes. In this respect, the selected
algorithms, as for their implementation, allowed for the specification of more than one protected attribute in the form
of “a subset of features for which fairness is desired” as specified in the AIF360 documentation.4 More specifi-
cally, the chosen algorithms operate on AIF360 objects called StandardDataset, which include a parameter titled

4AIF360 documentation: https://aif360.readthedocs.io/en/stable/.
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protected attribute names(list), implying that more than an attribute can be indicated as protected. In cases
where an algorithm requires a single attribute, this is explicitly stated—for example, the DisparateImpactRemover al-
gorithm does not operate on a StandardDataset but instead includes the specific parameter sensitive attribute

(str), which is the reason why we did not include it in our experiments. This selection ensures the flexibility and
applicability of the chosen methods for scenarios involving multiple protected attributes, as argued in other studies on
the matter, e.g., the recent study by Chen et al. [24].

Dependent Variables. The dependent variables of the study were defined based on the specific perspectives
targeted, i.e., social, environmental, and economic sustainability, and based on the currently available metrics to
measure each of them.

RQ1. Social Sustainability Metrics. Table 2 overviews the social sustainability metrics employed when addressing
RQ1, which are known as ‘mean difference’ (alias of statistical parity difference), ‘average odds difference’, and
‘equal opportunity difference’. These metrics are recognized as standard instruments to measure the extent to which
a ML model produces fair outcomes [37, 36, 64], providing insights into potential discriminatory patterns within the
data that significantly influence the model’s knowledge and functionality. Let D be the protected attribute, where
1 indicates the privileged group and 0 indicates the unprivileged group. Let Y be the actual label, with 1 denoting
the favorable class and 0 being the unfavorable class. Based on these definitions, the considered metrics operate as
follows:

• ‘mean difference’ [13] calculates the disparity in favorable rates (Y = 1) between the privileged (D = 1) and
unprivileged (D = 0) groups.

• ‘equal opportunity difference’ measures the maximum difference between privileged (D = 1) and unprivileged
(D = 0) subgroups in true positive rates (TPR).

• ‘average odds difference’ is a measure that averages the differences between false positive rates (FPR) and TPR
between privileged (D = 1) and non-privileged (D = 0) groups. It combines FPR and TPR to assess the overall
performance of a model across different groups.

The metrics used in this context measure fairness between privileged and unprivileged groups. A metric value of
zero signifies equal distribution and fairness, so the groups are fair. A value other than zero indicates a disparity in
the benefit received by the non-privileged group or the privileged group. A value of 1 indicates a strong bias in favor
of the privileged group. Otherwise, a value of -1 indicates a strong bias in favor of the non-privileged group. These
metrics were computed through AI Fairness 360 [6].

RQ2. Environmental Sustainability Metrics. When addressing RQ2, we estimated the environmental sustainability
of ML models by quantifying the ‘energy consumption’ (measured in Joules) and ‘CO2 emissions’ (measured in
g/CO2) of the model at training time. These metrics are inherently hardware-dependent and quantitatively repre-
sent the resources required to build a model. To quantify energy consumption and carbon emissions, we exploited
CodeCarbon,5 a library that leverages two widely used energy measurement tools: RAPL and Nvidia pynvml
[38, 22, 67, 85]. RAPL is employed to calculate the resources utilized by the CPU and RAM, while pynvml is
employed for GPU computations. CodeCarbon provides implementations and patterns, with its central entity, i.e.,
TrackerEmission, capturing critical data on energy consumption and resources. These pieces of information are
then employed by CodeCarbon to generate a conclusive report on environmental sustainability in an emissions.csv
file. While ‘CO2 emissions’ is indeed positively correlated with ‘energy consumption’, we argue that both metrics
are necessary because they provide different insights. Energy consumption captures the amount of energy required.
At the same time, carbon emissions offer a more complete picture by considering the environmental impact, which
depends on the carbon intensity of the energy source. By including both, we preserve critical information regard-
ing emissions, which is vital for practitioners aiming to reduce not just energy use but also the associated carbon
footprint. Moreover, since the tool we utilized computes both metrics, we opted to retain them for transparency and
practical relevance to potential users, who may value the distinct insights provided by each. Table 2 describes how
CodeCarbon evaluates these metrics.

5The CodeCarbon toolkit: https://codecarbon.io/.
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RQ3. Economic Sustainability Metrics. In RQ3, we first estimated economic sustainability by assessing the predic-
tion quality of the model, considering well-known metrics such as ‘Accuracy’ and ‘F1 score’. The rationale behind
the selection of these metrics as a proxy for economic sustainability lies in the observation that higher values in these
metrics indicate better efficiency and reliability, contributing to economic sustainability by reducing costs, saving
time, enhancing customer satisfaction, providing a competitive edge, and aligning with business goals [11, 59]. In
addition, we also computed ‘training time’ (measured in seconds) and ‘storage weight’ (measured in KB). These two
metrics have a direct impact on resource consumption, operational costs, and overall efficiency, hence influencing the
economic impact of ML models. Following the methodology used in prior studies, we computed the macro-averaged
values for F1 score to facilitate a balanced performance comparison across favorable and unfavorable classes. This
involves averaging both classes’ F1 score results. A higher score in this metric implies improved ML accuracy
[24, 26].

3.4. Experimental Hypotheses, Execution, and Analysis

After defining the experimental subjects and objects, we designed our working hypotheses, which enabled the
execution of the experiments and the subsequent data analysis. This section reports on these aspects, detailing the
rationale and research methods employed to address the objectives of the study.

Experimental Hypotheses. We aimed at analyzing how the independent variables, namely the bias mitigation
algorithms, affect the dependent variables, including social, environmental, and economic sustainability metrics. As
such, we defined the following experimental elements.

Let µBi and µB j be the ML models built using a independent variables Bi and B j, respectively, where Bi, B j ∈

{Baseline, Reweighing, Meta Fair Classifier,...}; let S be the set of sustainability metrics considered in the study. As
for RQ1, let S so be a social sustainability metric in the set of sustainability metrics considered in the study. Our null
hypothesis was the following:

HBi,B j,S so

0 : µS so
Bi
= µS so

B j
∀i , j

S so ∈ {mean difference, average odds difference, equal opportunity difference}

The null hypothesis HBi,B j,S so

0 determines the effect of the chosen algorithms on the dependent variable S so. Fur-
thermore, µBi and µB j represents the average measurement result of variable S so. This leads to the following alternative
hypothesis, stating that for each dependent variable S so, a statistically relevant difference can be observed between
independent variables:

HBi,B j,S so
a : µS so

Bi
, µS so

B j
∀i , j

S so ∈ {mean difference, average odds difference, equal opportunity difference}

As for RQ2, we defined a null and alternative hypothesis for each dependent variable related to environmental
sustainability metrics S en:

HBi,B j,S en

0 : µS en
Bi
= µS en

B j
∀i , j

S en ∈ {energy consumption, carbon emission}

The corresponding alternative hypothesis was formulated as follows:

HBi,B j,S en
a : µS en

Bi
, µS en

B j
∀i , j

S en ∈ {energy consumption, carbon emission}
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As for RQ3, we described the null and alternative hypotheses for each dependent variable related to economic
sustainability metrics S ec:

HBi,B j,S ec

0 : µS ec
Bi
= µS ec

B j
∀i , j

S ec ∈ {accuracy, f1 score, training time, storage weight}

The corresponding alternative hypothesis was formulated as follows:

HBi,B j,S ec
a : µS ec

Bi
, µS ec

B j
∀i , j

S ec ∈ {accuracy, f1 score, training time, storage weight}

It is important to note that the experiment was balanced with respect to its factor, as each treatment contains unique
mitigation algorithms, each of which belonged to the same performance level represented by the treatment.

Experiment Execution. We designed the procedure depicted in Figure 2. Specifically, we conducted a benchmark
study, which is defined as “a standard tool for the competitive evaluation and comparison of systems or components
based on specific characteristics such as performance, dependability, or security” [55]. One of the primary advantages
of benchmark studies is their capacity for repeated and rapid testing without relying on human subjects [74]. This
characteristic aligns with the quantitative nature of our research, where results are derived entirely through objective,
numerical analysis and statistical techniques, eliminating subjective interpretations or personal biases. By grounding
our methodology in objectivity, the findings presented in the results section stem directly from the adopted approach,
adhering to established standards for benchmark studies. We conducted experiments involving ML models: the four
classifiers were trained using each of the independent variables of the study, i.e., a baseline model that did not include
any bias mitigation algorithm plus the models trained using the six bias mitigation algorithms employed. A 70%-
30% training-test ratio was applied to assess the sustainability implications of each model. The experiments were
performed on a machine running Ubuntu Linux, equipped with an AMD Ryzen 7 5800H CPU, an RTX 3060 GPU,
and 16 GB of RAM. We configured the environment to support Python 3.6, AIF 0.5.0, scikit-learn 1.2.2,
scikit-posthocs 0.9.0, and xgboost 2.0.2 libraries.

Further clarifications on the execution are worth discussing to understand all the aspects included in this exper-
imentation. First, we included 4 ML models and 7 bias mitigation techniques in the study. Evaluating each bias
mitigation technique for the 4 ML models, we collected a total of 28 experimental models. Therefore, these ex-
perimental models are then evaluated considering 4 datasets, resulting in 112 experimentation objects. Finally, every
single experimentation object is repeated 30 times to account for problems related to potential non-determinism caused
by the hardware configuration. Therefore, we obtained a total of 3,360 experiments. This amount of re-executions
was required to account for the potential non-determinism of the measurements caused by the hardware/software
configuration of the experimental machine.

In addition, as energy consumption is strongly influenced by hardware temperature, we followed existing guide-
lines [29] and executed a five-minute Fibonacci sequence before each measurement with the aim of warming the CPU
up. Before running our experiments, we stopped all the unnecessary background processes to let our machine reach
a stable condition [38]. Then, we ran the models to get their energy consumption and other metrics written in a .csv
file with CodeCarbon. We introduced a one-minute pause after each benchmark execution to minimize the impact of
CPU/GPU warm-up and overall system acceleration.

We first trained ML models without bias algorithms to create a first benchmark baseline and then applied each
treatment described in Section 3.3. After training the models, we collected measures on the test set to address our
research questions. Finally, we stored ML models in .pickle files for further analysis.

Data Analysis. As a final step of our research method, we statistically analyzed the data coming from the 3,360
experiments. In this respect, we first independently considered the experiments executed on each of the datasets in
our study. As such, we had 840 distributions to consider at the time: these provided information on the sustainability
metrics computed during the 30 executions of the 28 ML models on a given dataset. The raw data produced are in our
online appendix (see “Measurements” folder) [30].
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Figure 2: Execution process.

We statistically compared each pair of models against all the sustainability metrics in the study by employing (1)
quantile-quantile (Q-Q) plots; and (2) the Shapiro-Wilk normality test, with a significance level of α = 0.05 [72].
These methods allowed us to determine whether our metric data adhered to a normal distribution. Upon inspecting
the Q-Q plots and the Shapiro-Wilk test results, it became evident that not all models exhibited normal distributions.

After identifying the non-normal distribution, we applied the Friedman test [76], a non-parametric statistical test
used to detect treatment differences across multiple algorithms for each metric and dataset. However, Friedman’s test
does not indicate which groups are significantly different from each other; for this reason, if the Friedman test result
was significant, with α below = 0.05, indicating that there are differences among the solutions, we proceeded to con-
duct the Nemenyi post-hoc test [63, 46]. Nemenyi’s post-hoc test is a multiple comparison test that is used to identify
which pairs of groups are significantly different from each other. From the Nemenyi results, the Holm-Bonferroni
correction [47], a general method for controlling the family-wise error rate (FWER) in multiple comparisons, was
applied. This correction can be applied regardless of whether the statistical tests are parametric or non-parametric.
It adjusts the significance level α to account for the number of comparisons made, reducing the risk of Type I errors
(false positives) in multiple comparisons, even in non-parametric settings like those involving the Nemenyi test.

To evaluate which specific solutions differed and interpret the post-hoc results, we used a representation based on
Critical Difference (CD) diagrams [31]. These diagrams rank multiple groups along the x-axis, connecting statisti-
cally indistinguishable groups with horizontal crossbars. The designed plots retain the statistical rigor of the original
CD diagrams while improving clarity. They highlight groups of methods that do not show statistically significant
differences for each metric and emphasize the average performance of each algorithm. To make the results more
accessible, we introduced visual cues, such as distinct colors, to indicate whether methods performed better, worse,
or were statistically equivalent to the baseline. Additionally, algorithms that did not exhibit significant differences are
presented in separate rows, further enhancing clarity.

4. Analysis of the Results

This section reports the quantitative insights from the data extraction and analysis phase. In particular, we address
the study-specific research questions by visualizing and discussing the results of our experiments and statistical analy-
ses. For each RQ and metric analyzed, we display a set of diagrams reporting a comparison of the application of each
bias mitigation algorithm on each dataset through critical distance-like plots in the cases where the significance of the
Friedman test is less than 0.05. The plots that depict our results organize algorithms into rows, with each row rep-
resenting a group of methods that do not show statistically significant differences in performance for a given metric.
To highlight the performance of each bias mitigation algorithm relative to the baseline, the algorithms are depicted
in distinct colors. These colors indicate whether the algorithms performed better (•), worse (•), or were statistically
equivalent (•) to the baseline. The dotted line represents the best possible value for each metric. Additionally, the plot
includes a caption summarizing the average metric values for each algorithm, ranking them from best to worst.

4.1. RQ1 - How do bias mitigation algorithms impact social sustainability regarding multiple protected attributes?
The goal of our research question was to understand the impact of bias mitigation algorithms considering multiple

protected attributes. To evaluate this aspect, we use mean difference, equal opportunity, and average odds difference.
These metrics, used to assess fairness between privileged and unprivileged groups, are detailed in Section 3.3,
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4.1.1. Mean Difference Evaluation
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Figure 3: Impact of Fairness Algorithms on Mean Difference with different datasets. The algorithms are Reweighing (RW), Meta Fair Classifier
(MF), Gerry Fair Classifier (GF), Exponentiated Gradient Reduction (EG), PrejudiceRemover (PR), Grid Search Reduction (GS). A green dot •
indicates a statistically significant improvement against the baseline, a red dot • indicates a deterioration instead. Finally, a gray dot • indicates that
there is no statistically significant difference with the baseline.

Figure 3 shows a series of plots of the mean difference for the datasets described in section 3.1. Adult, Mep,
and Statlog datasets exhibit negative values, indicating a predisposition favoring the privileged group across all inde-
pendent variables. Conversely, the Compas dataset’s independent variables span negative and positive values, delin-
eating a spectrum from privileged to unprivileged groups for all the algorithms.

Within the Adult dataset, the analysis reveals a pronounced bias with the Baseline (-0.22) compared to other
algorithms, with the most favorable algorithm identified as MF (-0.0055). The groups {GF, GS, RW} and {EG, MF}
demonstrate no significant variance. However, a notable deviation exists between all algorithms in this dataset and
both the Baseline and the PR algorithm, underscoring a substantial differential impact.

Regarding the Mep dataset, the GS algorithm is the least effective (-0.25), underperforming relative to the Base-
line, while EG stands out as the most efficacious algorithm (-0.0006). Statistical analysis batches the algorithms into
groups {GS, PR}, {GS, RW}, {RW, GF}, and {GF, MF}, within which no significant differences are observed. Ex-
ceptionally, EG distinguishes itself by showing statistically significant variation from its counterparts. The baseline
shows significant variation from other algorithms. In the Statlog dataset, algorithm values within the groups {MF,
Baseline}, {MF, GS}, and {RW, GS} appear homogenous, with no significant disparities. In contrast, GF, PR, and EG
algorithms are statistically different, with GF presenting as the least preferable option (-0.21) and EG approximating
the most equity (-0.0095).

Finally, the Compas dataset presents a broad range of values (-0.32 to 0.27), with the EG algorithm nearing 0
(-0.015). The algorithm groups {EG, GS} and {PR, GF} exhibit internal consistency, showing no significant variance.
Yet, the Baseline, RW, and MF algorithms stand apart, demonstrating statistically significant differences from their
counterparts, highlighting the nuanced performance across different evaluation metrics.
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Figure 4: Impact of Fairness Algorithms on Equal Opportunity Difference with different datasets. The algorithms are Reweighing (RW), Meta
Fair Classifier (MF), Gerry Fair Classifier (GF), Exponentiated Gradient Reduction (EG), PrejudiceRemover (PR), Grid Search Reduction (GS). A
green dot • indicates a statistically significant improvement against the baseline, a red dot • indicates a deterioration instead. Finally, a gray dot •
indicates that there is no statistically significant difference with the baseline.

4.1.2. Equal Opportunity Difference Evaluation
For the equal opportunity difference metric, Figure 4 shows a series of critical distance diagrams high-

lighting how the algorithms differ. The datasets Adult, Mep, and Compas display a range of values indicative of biases
toward both privileged and unprivileged groups across independent variables, while the Statlog dataset exhibits a bias
favoring only the privileged group.

In the Adult dataset, the GS algorithm is the worst, decreasing the Baseline value from -0.17 to -0.32. The RW
algorithm shows a slight advantage (0.0018), though this advantage is not significant when compared to EG (-0.072).
The groups {Baseline, GF, MF}, {GS, PR}, {GS, GF, MF}, {PR, RW}, and {RW, EG}, do not show significant statistical
variations. Each algorithm shares a statistical equivalence with at least one other in this scenario.

Regarding the Mep dataset, the GS algorithm is the least effective (-0.29), underperforming relative to the Baseline
(-0.12), while EG stands out as the most efficacious algorithm (0.049). The algorithm groups {GS, Baseline, PR}
and {GF, RW, MF} exhibit no discernible statistical differentiation. However, EG deviates, showing a statistically
significant difference from other algorithms.

In Statlog, the algorithm values within the groups {MF, Baseline}, {RW, GS}, and {GS, PR} are statistically analo-
gous, presenting no significant variance. In stark contrast, the GF and EG algorithms demonstrate significant statistical
departures from the rest, with GF presenting as the least advantageous option (-0.22) and EG approximating the most
equity (-0.0053).

Finally, for the Compas dataset, the algorithms GS (-0.22) and MF (-0.21) change the Baseline (0.27) from un-
privileged to privileged values. For this dataset, EG is the best algorithm (0.053). The groups {MF, GF}, {EG, GS},
and {Baseline, GS} show no significant variance. However, PR and RW showed statistically significant differences
from the others.
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Figure 5: Impact of Fairness Algorithms on Average Odds Difference with different datasets. The algorithms are Reweighing (RW), Meta Fair
Classifier (MF), Gerry Fair Classifier (GF), Exponentiated Gradient Reduction (EG), PrejudiceRemover (PR), Grid Search Reduction (GS). A
green dot • indicates a statistically significant improvement against the baseline, a red dot • indicates a deterioration instead. Finally, a gray dot •
indicates that there is no statistically significant difference with the baseline.

4.1.3. Average Odds Difference Evaluation
Figure 5 shows the last social metric analyzed, the average odds difference. The independent variables in all

the datasets exhibit different values of biases toward both privileged and unprivileged groups. Concerning the Adult
dataset, the groups {GS, GF, MF}, {Baseline, GF}, {GS, PR}, and {PR, RW} show no significant variance. However,
EG is significantly different from other algorithms. The worst algorithm is GS (-0.19), and the best is RW (-0.022),
even if not significantly different from PR (-0.043). Even in the Mep dataset, GS (-0.26) is the worst algorithm,
deteriorating the Baseline (-0.081). The best algorithm in this case is EG (0.034), which is also significantly different
from the other algorithms. The algorithm groups {GS, Baseline, PR} and {GF, RW, MF} are not significantly different.

In Statlog, the GF (-0.12) is the worst algorithm, deteriorating the Baseline value (-0.093). Additionally, the
groups {GF, MF, Baseline}, {MF, Baseline, GS}, and {GS, RW} are not significantly different. PR (-0.0046), who
contributes to the group {PR, EG}, is the best algorithm in this case, and no algorithms are statistically significant
compared to all others. For the Compas dataset, MF and RW have a statistically significant difference with respect to
all algorithms. The baseline (0.23) has values trending toward the unprivileged group, and all algorithms reduce this
value, even worsening as MF (-0.28) turns out to be the worst. The best algorithm is EG (0.022), suggesting that there
is no statistically significant difference with GS (0.19). The groups {EG, GS} and {GS, Baseline} are not significantly
different. Also, {PR, GF} show no statistically significant differences.

The analysis of the fairness metrics mean difference, equal opportunity, and average odds difference showed that
the algorithms used have an impact and are not statistically significant to each other. Therefore, the null hypothesis is
rejected HBi,B j,S so

0 .
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¬ Answer to RQ1. The findings from our RQ1 indicate that models not utilizing bias mitigation algorithms are
more susceptible to bias. Conversely, applying algorithms designed to mitigate bias across various protected at-
tributes generally enhances social metrics, particularly with the Exponentiated Gradient Reduction algorithm show-
ing notable improvements. However, the Gerry Fair Classifier and Grid Search Reduction algorithms exhibit a
deterioration in the metrics across datasets when we consider multiple protected attributes. Therefore, the results
show that there is a significant difference with at least one of the bias mitigation algorithms for each dataset.

4.2. RQ2 - How do bias mitigation algorithms impact environmental sustainability regarding multiple protected at-
tributes?

To answer our second research question (RQ2), we analyzed the impact of bias mitigation algorithms on two
environmental sustainability metrics, that are energy consumption and carbon emission, both described in Section
3.3. Through this detailed analysis, we provide an incisive perspective on the often overlooked environmental aspect
of bias mitigation algorithms. To enhance readability, we have incorporated diagrams illustrating all the algorithms
for energy consumption and carbon emission metrics. For additional diagrams and raw materials, please refer to the
online appendix [30].

4.2.1. Energy Consumption Evaluation
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Figure 6: Impact of Fairness Algorithms on Energy Consumption (Joule) with different datasets. The algorithms are Reweighing (RW), Meta
Fair Classifier (MF), Gerry Fair Classifier (GF), Exponentiated Gradient Reduction (EG), PrejudiceRemover (PR), Grid Search Reduction (GS). A
green dot • indicates a statistically significant improvement against the baseline, a red dot • indicates a deterioration instead. Finally, a gray dot •
indicates that there is no statistically significant difference with the baseline.

We first analyze the energy consumption of the independent variables in each dataset. Figure 6 shows the
critical difference plot for our results, which compares the energy consumption of seven independent variables with
four datasets. The EG and GS algorithms are the worst for all datasets, consuming much more energy to remove bias
from the models than the Baseline. Additionally, the EG and GS algorithms are statistically different.

In the Adult dataset, the algorithm group {GF, MF} and {PR, RW, Baseline} suggest no statistically significant
difference. On the one hand, the algorithms GF (88 Joule) and MF (93 Joule) required less energy to train the models
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compared with the Baseline (280 Joule). On the other hand, GS and EG required, respectively, over 1000 and 5000
Joule to mitigate the bias. In the same way, for the Mep dataset, the same algorithm groups {GF, MF} and {PR,
Baseline} suggest that there is no statistically significant difference with GF (47 Joule) and MF (49 Joule), requiring
less energy than the Baseline (95 Joule). Even in this case, GS and EG required more energy than the Baseline,
respectively, over 640 and 4400 Joule. For the Statlog dataset, the algorithm groups {PR, GF, MF}, {MF, Baseline,
RW} and {GF, MF, Baseline} are not significantly different, with PR (23 Joule) and GF (24 Joule) having the lowest
values and EG and GS the highest.

In the same way, for the Compas dataset, the algorithm groups {GF, PR, MF} and {MF, Baseline, RW} are not
significantly different; the algorithms GF (25 Joule) and PR (26 Joule) required less energy than the Baseline (34
Joule). Even in this case, the GS and EG algorithms use more energy than the Baseline, respectively, over 200 and
530 Joule.

4.2.2. Carbon Emission Evaluation
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Figure 7: Impact of Fairness Algorithms on Carbon Emission (g/CO2) with different datasets. The algorithms are Reweighing (RW), Meta Fair
Classifier (MF), Gerry Fair Classifier (GF), Exponentiated Gradient Reduction (EG), PrejudiceRemover (PR), Grid Search Reduction (GS). A
green dot • indicates a statistically significant improvement against the baseline, a red dot • indicates a deterioration instead. Finally, a gray dot •
indicates that there is no statistically significant difference with the baseline.

Figure 7 shows a visual comparison of the environmental impact of several fairness algorithms, as measured by
carbon emission in grams of CO2, across four datasets. The EG algorithm appears to produce the most carbon
emissions for all datasets, reaching 0.5 grams of CO2 for the Adult dataset and 0.41 grams for the MEP dataset,
highlighting its substantial environmental footprint.

Among the algorithms, EG and GS demonstrate statistically significant differences in carbon emissions across the
datasets. For the Adult dataset, algorithms in the group {GF, MF} showed no statistical difference from each other, and
the GF (0.0083 grams) and MF (0.0088 grams) algorithms emit significantly lower carbon dioxide than the Baseline
(0.026 grams). Conversely, the PR algorithm (0.014 grams) cuts emissions compared to both the Baseline (0.026
grams) and RW (0.026 grams), hence leading to algorithms in the group {PR, RW, Baseline} having no statistical
distinction between them. Similarly, two algorithm groups in the MEP dataset showed no statistical difference between
their components: {GF, MF} and {Baseline PR}. Particularly, GF (0.0044 grams) and MF (0.0046 grams) reduce

21



emissions compared to the baseline. RW’s emissions (0.0078 grams) are also lower than those of the Baseline (0.009
grams) and PR (0.01 grams), and these last two are statistically indistinguishable.

In the Statlog dataset, both PR (0.0022 grams), GF (0.0023 grams), and MF (0.0024 grams) show significantly
lower emissions, resulting in no statistical difference within the group {PR, GF, MF}. The MF algorithm also undercuts
the Baseline (0.0028 grams) and RW (0.0031 grams) in emissions without marked statistical separation. In addition,
the algorithms GF, MF, and Baseline resulted as non-statistically different, hence resulting in two other groups: {GF,
MF, Baseline} and {MF, Baseline, RW}. Finally, in the Compas dataset, we only have two groups of algorithms within
which there is no statistical difference: {GF, PR, MF} and {MF, RW, Baseline}. GF and PR each emit (0.0024 grams)
of CO2, lower than the Baseline (0.0032 grams), alongside MF with (0.0027 grams) of emissions. Also, the second
group, comprising MF (0.0027 grams) and RW (0.0033 grams), exhibits no significant differences in carbon emissions
from the baseline. The analysis of the environmental metrics carbon emission and energy consumption showed that
the algorithms used have an impact and are not statistically significant to each other. Therefore, the null hypothesis is
rejected HBi,B j,S en

0 .

¬ Answer to RQ2. Our analysis of RQ2 reveals the profound impact of the chosen algorithms on both CO2
emissions and energy consumption during the model production phase. Interestingly, the GF algorithm is the most
energy-efficient, boasting the lowest emission rates. On the other hand, the EG and GS algorithms present a sharp
contrast, increasing energy consumption and, as a result, significantly exceeding the emission levels of the baseline
model. In comparison, the EG and GS algorithms increase energy use, leading to higher emissions than the Baseline
models. In contrast, the MF and PR algorithms were particularly efficient, requiring less energy for model training.
In this case, the results show a significant difference with at least two bias mitigation algorithms for each dataset.

4.3. RQ3 - How do bias mitigation algorithms impact economic sustainability regarding multiple protected attributes?
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Figure 8: Impact of Fairness Algorithms on Accuracy with different datasets. The algorithms are Reweighing (RW), Meta Fair Classifier (MF),
Gerry Fair Classifier (GF), Exponentiated Gradient Reduction (EG), PrejudiceRemover (PR), Grid Search Reduction (GS). A green dot • indicates
a statistically significant improvement against the baseline, a red dot • indicates a deterioration instead. Finally, a gray dot • indicates that there is
no statistically significant difference with the baseline.
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In our third research question (RQ3), we aim to explore the effects of bias mitigation algorithms on economic
sustainability. We consider the models’ accuracy, F1 score, training time, and storage weight to assess such aspects.
These metrics are described in Section 3.3. Due to readability issues, we have incorporated diagrams illustrating all
the algorithms for training time and storage weight metrics; additional diagrams and raw materials are in the online
appendix [30]

4.3.1. Accuracy Evaluation
Our analysis begins with examining Accuracy as depicted in Figure 8. Starting with the Adult dataset, we observe

a decline in accuracy metrics across all algorithms when compared to the Baseline. Notably, RW’s accuracy dips
slightly to (85%) from the Baseline’s (86%), a difference that is not statistically significant. However, MF’s accuracy
significantly drops to (39%), indicating a substantial deviation. The algorithms in the group {EG, PR, GS} maintain
an accuracy of 80% without significant statistical divergence. In Mep, the Baseline (86%) has the same accuracy as
the others in the group {GF, RW, Baseline} and is not statistically different between them. Additionally, the group
{MF, PR, GF, RW} is not statistically different. In this case, GS is the worst algorithm (69%) followed by EG (84%),
with GS and EG statistically different. For the Statlog dataset, the PR algorithm shows an accuracy of (78%) from the
Baseline’s (75%), standing out as statistically significant. The groups {GS, MF, RW, Baseline} and {EG, GS} reveal no
significant accuracy differences since they all hover around (75%) accuracy. Conversely, GF shows (57%) accuracy,
underperforming significantly with respect to the others. In the Compas dataset, both PR and MF algorithms match
in accuracy at (68%), outperforming the Baseline’s (67%). The groups {RW, Baseline}, {Baseline, MF} and {GS, GF}
are not statistically different. Here, GS and GF are the least effective, with accuracy of (57%) and (59%), respectively.
EG is statistically different to the others.
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Figure 9: Impact of Fairness Algorithms on F1 score with different datasets. The algorithms are Reweighing (RW), Meta Fair Classifier (MF),
Gerry Fair Classifier (GF), Exponentiated Gradient Reduction (EG), PrejudiceRemover (PR), Grid Search Reduction (GS). A green dot • indicates
a statistically significant improvement against the baseline, a red dot • indicates a deterioration instead. Finally, a gray dot • indicates that there is
no statistically significant difference with the baseline.

4.3.2. F1 score Evaluation
Examining the F1 score, we found similar results with accuracy evaluation. Figure 9 shows the result of the

F1 score across the datasets. In Adult, the Baseline (79%) shows a higher F1 score than the algorithms but is not
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statistically different from RW (78%). Also, the group {PR, EG, GS} is not statistically different. Conversely, MF
(36%) is the worst algorithm, decreasing the percentage considerably. The MF and GF are statistically different from
the others.

For the Mep data set, the baseline (70%) also shows higher values, but in this case, it is statistically different.
No statistical differences are found between the pairs {EG, MF} and {GF, PR}, indicating similar values within these
groups. GS (55%) and RW (69%) are statistically different, with the GS algorithm being the worst in this case.

In Statlog, the PR (72%) algorithm surpasses the F1 score of the Baseline (68%), and PR is statistically different
from other algorithms. The {MF, RW, Baseline}, {GS, MF}, and {GF, EG} groups show no statistical differences. GF
(57%) is the worst in this case.

In Compas, PR (68%) and MF(78%) algorithms, besides not being statistically different, surpass the F1 score
of the Baseline (66%), and there is no statistical difference in the group {Baseline, MF}. Also, the groups {RW,
Baseline}, and {GF, GS} are not statistically different, with GF (54%) and GS (56%) having the lowest values. Only
the EG algorithm, in this case, is statistically different.

4.3.3. Training Time Evaluation
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Figure 10: Impact of Fairness Algorithms on Training Time (seconds) with different datasets. The algorithms are Reweighing (RW), Meta Fair
Classifier (MF), Gerry Fair Classifier (GF), Exponentiated Gradient Reduction (EG), PrejudiceRemover (PR), Grid Search Reduction (GS). A
green dot • indicates a statistically significant improvement against the baseline, a red dot • indicates a deterioration instead. Finally, a gray dot •
indicates that there is no statistically significant difference with the baseline.

Figure 10 details the training time required for each dataset, indicating that EG and GS consistently require the
longest training times across all datasets, marking them as statistically distinct from other algorithms. This observation
aligns with the trends identified in RQ2. In the Adult dataset, the EG algorithm takes significantly longer to train (43
seconds) than the Baseline’s (2 seconds). The groups {GF, MF, PR} and {MF, Baseline, RW} do not show statistical
differences in training time, despite GF (0.44 sec), MF (0.45 sec), and PR (0.5 sec) being quicker than the others.

In Mep, the groups {MF, GF, PR} and {Baseline, RW} exhibit no statistical difference in training time, with MF
(0.18 sec), GF (0.19 sec), and PR (0.2sec) requiring less time than Baseline (0.48 sec). Even here, EG (36 sec) and
GS (5 sec) are the worst algorithms.
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For the Statlog dataset, the groups {GF, RW}, {RW, Baseline} and {MF, PR, GF} are not statistically different, with
MF (0.056 sec) and PR (0.047 sec) required less time than Baseline (0.075 sec). EG (15 sec) and GS (0.94 sec) are
outliers, again needing longer than the rest.

In Compas, the groups {GF, PR, MF} and {RW, Baseline} are not statistically different with GF (0.062 sec), PR
(0.065 sec), and MF (0.067 sec) that required less training time than Baseline (0.12 sec). The algorithms EG (4.5 sec)
and GS (1.5 sec), even in this case, required more training time than others.

4.3.4. Storage Weight Evaluation
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Figure 11: Impact of Fairness Algorithms on Storage Weight (KB) with different datasets. The algorithms are Reweighing (RW), Meta Fair
Classifier (MF), Gerry Fair Classifier (GF), Exponentiated Gradient Reduction (EG), PrejudiceRemover (PR), Grid Search Reduction (GS). A
green dot • indicates a statistically significant improvement against the baseline, a red dot • indicates a deterioration instead. Finally, a gray dot •
indicates that there is no statistically significant difference with the baseline.

The last metric considered for the RQ3 is storage weight, depicted in Figure 11. In the Adult dataset, no
statistical differences are shown in the groups {MF, PR, Baseline, RW}, {GF, Baseline} and {GS, EG}. The GS and
EG algorithms increase the model storage weight, respectively, over 98.000 and 200.000 KB, comparing them with
the Baseline, which is only 14.000 KB. On the other hand, MF (3.500 KB), GF (3.800 KB), and PR (4.000 KB),
even if there are no statistical differences with the Baseline, reduced the storage weight. In Mep, the groups {GF, PR,
Baseline, RW}, {MF, GF, PR, RW} and {GS, EG} showed no statistical differences. However, GS (37.000 KB) and
EG (54.000 KB) algorithms are the worst compared with others. Even in these case the algorithms MF (1.300 KB),
GF(1.300 KB), and PR (1.400 KB) reduced the storage weight, even though there were no statistical differences with
the Baseline. In the Statlog dataset, the group {GS, EG}, {PR, Baseline, GF, RW} and {MF, PR, Baseline, RW} are not
statistical difference. Even in this case, GS (3.200 KB) and EG (28.000 KB) have the worst values.

For the Compas dataset the GS (48.000 KB) and EG (14.000 KB) algorithms are the worst compared to others, and
they also are not statistically different. On the other hand, the groups {GF, PR, MF, RW} and {PR, MF, Baseline, RW}
are not statistically different. GF (3.400 KB) is the best algorithm, even if not statistically different from others. The
analysis of the economic metrics accuracy, f1 score, training time, storage weight showed that the algorithms used
have an impact and are not statistically significant to each other. Therefore, the null hypothesis is rejected HBi,B j,S ec

0 .
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¬ Answer to RQ3. Our investigation of RQ3 reveals the influence of the chosen algorithms on the economic
metrics evaluated. This finding underscores the dual potential of these techniques to improve or decrease model
quality. The Accuracy and F1 score of Prejudice Remover in Statlog and Compas is higher than the Baseline. On
the other hand, the other algorithms significantly reduced these metrics. Exponentiated Gradient Reduction and Grid
Search Reduction algorithms demonstrate higher training times across datasets, indicating increased computational
costs, and are statistically different. Additionally, these algorithms notably increase storage weight. Conversely,
some algorithms manage to slightly reduce storage weight, though not significantly compared to the Baseline.

5. Discussion and Implications

In the following section, we first discuss the main results of the study, attempting to provide insights into the added
value brought by our research to the current state of the art. Secondly, we provide the implications that our findings
have for researchers and practitioners.

5.1. Discussion of the Findings

At first, we discuss our findings in relation to the state of the art and the qualitative insights that may explain them.
On the relation with the state of the art. Our study builds on and extends the existing body of knowledge by ad-
dressing critical gaps and offering a broader perspective on the interplay between the three sustainability dimensions in
ML-enabled systems. First, regarding RQ1, our results corroborate previous findings that position fairness as a corner-
stone of social sustainability. While our results align with earlier work, two factors distinguish their significance. By
replicating and validating previous findings, our study enhances the ecological validity [70] of these insights, i.e., the
extent to which experimental results can be generalized to real-world applications. Moreover, our analysis positions
fairness as a foundational element for examining its interplay with other dimensions of sustainability, such as envi-
ronmental and economic. We believe that such an integrated perspective enables the exploration of trade-offs among
fairness, energy consumption, and resource efficiency, and our contribution leads to further investigation of these re-
lationships. Second, as for RQ2, our work addresses a knowledge gap by systematically examining the environmental
implications of bias mitigation algorithms. By operationalizing environmental sustainability through metrics such as
energy consumption and carbon emissions, we provide new insights into the ecological trade-offs introduced by these
algorithms. Our findings reveal that while certain algorithms, e.g., Exponentiated Gradient Reduction, significantly
improve fairness, they also exhibit substantial energy demands and higher carbon emissions. Conversely, computa-
tionally efficient algorithms, e.g., Meta Fair Classifier and Gerry Fair Classifier, demonstrate lower environmental
impacts, providing practitioners with actionable strategies to balance fairness with ecological responsibility. These
results contribute to a more holistic understanding of the sustainability of ML-enabled systems by emphasizing the
need to select fairness techniques carefully during the design process, aiming at finding a suitable solution considering
the trade-off between the sustainability aspects.

As for RQ3, our research expands the scope of fairness studies by framing the evaluation of bias mitigation algo-
rithms within the economic sustainability dimension. As reported earlier, previous work has predominantly assessed
these techniques through the lens of accuracy, not considering broader operational implications such as training time
and storage requirements. By incorporating these additional metrics, we offer a multi-faceted view of the economic
trade-offs associated with fairness-enhancing techniques. Our findings reveal that while certain bias mitigation algo-
rithms introduce computational overhead, such as Exponentiated Gradient Reduction and Prejudice Remover, they
also open avenues for balancing fairness with economic feasibility. Such a perspective enriches the current body of
knowledge, providing a framework to assess the practical and financial implications of implementing fairness tech-
niques in real-world settings.

In summary, our empirical study advances the state of the art by integrating fairness into a comprehensive sus-
tainability framework that spans its social, environmental, and economic dimensions. This integrated approach pro-
vides a holistic understanding of the trade-offs introduced by bias mitigation techniques, equipping practitioners and
researchers with the tools to make informed decisions that balance ethical, operational, and environmental considera-
tions in the design of sustainable and responsible ML-enabled systems.
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Bias Mitigation Algorithms Versus Sustainability: A Qualitative Perspective. While our work primarily pre-
sented a benchmark study with a quantitative focus, it might also provide qualitative insights into the potential reasons
underlying the observed results. Our findings suggest multiple considerations that highlight the complex interplay
between bias mitigation techniques, dataset characteristics, and the stochastic nature of ML processes, which open
avenues for further investigation. A first observation from our results is the variability in the performance of bias
mitigation algorithms across different datasets, particularly in terms of energy consumption and resource efficiency.
This suggests that the characteristics of the datasets themselves—such as feature dimensionality, group imbalances,
and overall complexity—can significantly impact determining the results of these algorithms. Specifically, datasets
with high dimensionality or imbalanced distributions between privileged and unprivileged groups may require addi-
tional computational resources for bias mitigation techniques to converge effectively. This observation is particularly
relevant to RQ1, as our results indicate that fairness outcomes are not solely determined by the algorithms but also
by the data properties that interact with algorithmic mechanisms. For example, in the Compas dataset, all three social
metrics used have higher values than the other datasets; this could be due to the number of features being lower than
the other datasets. In this respect, future research should explore these interactions to provide more tailored guidance
on selecting appropriate algorithms based on dataset characteristics.

Another perspective relates to the intrinsic computational characteristics of bias mitigation algorithms themselves.
Pre-processing methods such as Reweighing, which involve data manipulation that reduces the dataset size, tend to
exhibit lower computational overhead. Conversely, in-processing methods like Exponentiated Gradient Reduction,
which rely on iterative optimization steps to improve discrimination, result in higher energy consumption and longer
execution times. While these theoretical expectations provide a framework for anticipating the impact of bias miti-
gation algorithms on computational performance, our findings also suggest that empirical results may deviate from
these expectations due to variations in implementation efficiency, interactions with specific datasets, and differences in
model configurations. These insights emphasize the importance of our benchmark study, which uses quantitative mea-
surements under controlled conditions to capture the practical effects of bias mitigation algorithms. This perspective
is directly connected to RQ2, as it illustrates how algorithm-specific factors interact with sustainability metrics.

In addition, the stochastic nature of ML processes introduces further variability into sustainability metrics. Vari-
ations in random initialization, data splits, and probabilistic elements within the algorithms themselves can lead to
fluctuations in energy consumption and training time. These stochastic effects may also explain unexpected findings,
such as certain algorithms achieving lower resource consumption despite their inherent computational complexity.
Understanding how randomness influences sustainability outcomes is critical for improving the robustness and pre-
dictability of bias mitigation techniques in real-world applications. Future research could extend these insights by
examining how individual ML algorithms are affected by different bias mitigation strategies, enabling more responsi-
ble algorithm selection and promoting better sustainability practices.

Finally, our findings indicate that some bias mitigation algorithms may inadvertently regularize model behavior,
simplifying decision boundaries or reducing overfitting. For instance, algorithms such as Meta Fair Classifier or
Prejudice Remover might promote less complex models that require fewer computational resources, thereby reducing
energy consumption or training time. While this phenomenon is promising from a sustainability perspective, it raises
important questions about the trade-offs between simplicity and fairness. This aspect raises the critical issue of
whether such regularization aligns with the intended fairness objectives or results in unintended biases in other areas.
These considerations are particularly relevant in the context of RQ3, as they highlight the need to balance fairness
improvements with resource efficiency and operational feasibility.

In conclusion, we acknowledge that future research should complement our findings with qualitative methods,
like case studies, interpretability analyses, or interviews with practitioners, to uncover the underlying causes of the
observed phenomena. The insights of these qualitative analyses would provide a more comprehensive understanding
of the nature of bias mitigation algorithms and the trade-offs between fairness and sustainability in bias mitigation
algorithms, possibly guiding the development of more effective and efficient approaches.

5.2. Implications of the Study

The results of our work have a number of practical implications for researchers, practitioners, and project man-
agers, which we elaborate in the following.
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Figure 12: Energy Consumption Vs. Cumulative Bias for each dataset. The algorithms are Reweighing (RW), Meta Fair Classifier (MF), Gerry Fair
Classifier (GF), Exponentiated Gradient Reduction (EG), PrejudiceRemover (PR), Grid Search Reduction (GS). The numerical values represent
cumulative bias (purple), where lower values are better, and energy consumption (green), where lower values are better.

On the need for trade-off analysis to deploy models in real scenarios. The deployment of machine learning sys-
tems with bias mitigation algorithms in real-world scenarios often requires practitioners to navigate complex trade-
offs among multiple non-functional requirements, such as fairness, energy efficiency, storage costs, and accuracy.
Our findings highlight that these trade-offs are not merely theoretical but manifest concretely in different algorithms’
performance across various sustainability dimensions. These observations highlight the importance of systematic
trade-off analyses during the development and deployment phases of ML models. Current research has studied the
balance between accuracy and fairness [24, 49], accuracy and energy efficiency [80] and, more recently, fairness
and efficiency [16]. However, our study expands this understanding by jointly studying the three dimensions of sus-
tainability and exploring interactions among additional non-functional requirements, such as storage weight, training
time, and carbon emissions.

To address these challenges, practitioners must prioritize trade-offs based on application-specific requirements.
For instance, in critical domains where fairness cannot be compromised, high-energy-consuming algorithms such as
Exponentiated Gradient Reduction might be justified. Conversely, for edge devices or IoT applications where energy
and storage constraints dominate, algorithms like Reweighing or Gerry Fair Classifier may provide a better balance
of fairness and resource efficiency. These considerations highlight the importance of designing adaptable systems that
can accommodate varying trade-off priorities depending on the deployment context.

Beyond the findings of this study, there is an urgent need for tools and frameworks that can assist practitioners in
understanding and optimizing these trade-offs—for example, visualizations that compare cumulative fairness metrics
with energy and storage requirements, as demonstrated in Figures 12 and 13, could help stakeholders make informed
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decisions. Moreover, future work should explore adaptive, context-aware algorithmic approaches that dynamically
adjust their behavior to balance multiple non-functional requirements under specific constraints.

« Implication 1. While researchers are starting investigating novel approaches to handle the trade-offs among
multiple non-functional requirements, our findings represent a call for further research actions aiming to quantify,
optimize, and visualize these trade-offs.

« Implication 2. Future research should focus on adaptive and context-aware bias mitigation algorithms capable of
dynamically balancing fairness and other sustainability metrics based on application-specific requirements. These
advancements could ensure that ML-enabled systems remain effective and efficient in diverse real-world scenarios.
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Figure 13: Cumulative Bias Vs. Storage Weight for each dataset. The algorithms are Reweighing (RW), Meta Fair Classifier (MF), Gerry Fair
Classifier (GF), Exponentiated Gradient Reduction (EG), PrejudiceRemover (PR), Grid Search Reduction (GS). The numerical values represent
cumulative bias (purple), where lower values are better, and storage weight (red), where lower values are better.

For the sake of completeness, let us further elaborate on these matters by discussing the figures in detail, high-
lighting the trade-offs between the various metrics analyzed in this study. Figure 12 provides a visualization of the
trade-off between cumulative bias [7], calculated as the sum of the absolute values of the three social fairness metrics,
and energy consumption for all algorithms across the datasets. As shown in the figure, a high energy demand is as-
sociated with fairness improvements, particularly for Exponentiated Gradient Reduction, which achieves the highest
fairness improvements but consistently creates substantial energy costs. At the same time, Reweighing and Prejudice
Remover demonstrate a more balanced trade-off by delivering moderate fairness gains while consuming significantly
less energy. These insights are potentially interesting for practitioners operating in energy-constrained environments,
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Figure 14: Cumulative Bias Vs. Energy Consumption Vs. Accuracy for each dataset. The algorithms are Reweighing (RW), Meta Fair Classifier
(MF), Gerry Fair Classifier (GF), Exponentiated Gradient Reduction (EG), PrejudiceRemover (PR), Grid Search Reduction (GS). The numerical
values represent cumulative bias (purple), where lower values are better; energy consumption (green), where lower values are better; and accuracy
(blue), where higher values are better.

where energy efficiency must be weighed carefully against fairness objectives.
Figure 13 shows the relationship between cumulative bias and storage weight. The results indicate that algorithms

like Reweighing and Prejudice Remover maintain lower storage footprints while achieving significant fairness im-
provements. These characteristics make them highly suitable for resource-constrained deployments, such as IoT or
mobile applications. At the same time, algorithms like Exponentiated Gradient Reduction and Grid Search Reduction
demonstrate a trend of higher storage costs relative to their bias reduction capabilities, emphasizing the importance of
assessing average algorithmic behaviors when making deployment decisions in environments with strict storage con-
straints. This analysis highlights the importance of aligning algorithmic choices with resource-related non-functional
requirements in real-world scenarios.

Figure 14 provides a multi-dimensional perspective by illustrating the interplay among cumulative bias, energy
consumption, and accuracy. This analysis highlights the intricate trade-offs that practitioners must navigate. The
results highlight that no algorithm achieves optimal performance across all three dimensions simultaneously. Expo-
nentiated Gradient Reduction, for instance, delivers the highest fairness improvements but at the expense of accuracy
and energy efficiency. In contrast, Reweighing and Meta Fair Classifier provide a more balanced performance, making
them more appropriate for use cases that require a compromise between fairness, accuracy, and energy consumption.
This figure reinforces the importance of a holistic evaluation framework that considers multiple non-functional re-
quirements simultaneously, tailored to specific deployment contexts. As a consequence of this analysis, we may argue
that there is a need for decision-making tools that help practitioners navigate these trade-offs based on their specific
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operational constraints.

« Implication 3. Practitioners would need decision-support systems that prioritize deployment context when
selecting bias mitigation algorithms. These systems should integrate multi-objective optimization techniques to
evaluate trade-offs between fairness, energy consumption, storage efficiency, and accuracy dynamically. Such tools
could guide algorithm selection based on the operational constraints and goals of specific applications, such as IoT
deployments, energy-intensive systems, or high-stakes domains.

Implications for AI Engineering research. Recent research in Software Engineering for Artificial Intelligence has
introduced approaches designed to manage multiple protected attributes concurrently [19, 25, 65]. Despite this, pop-
ular bias mitigation toolkits like AIF360 and Fairlearn have yet to integrate these advancements, and this results in
a lack of experimentation of these solutions in studies like ours. Implementing these approaches in such toolkits
would enable developers to reduce model bias in their systems while providing researchers with opportunities to ex-
plore additional non-functional requirements. Moreover, multi-objective optimization in bias mitigation should go
beyond the traditional fairness-accuracy trade-off. By leveraging our findings and adopting our sustainability frame-
work, researchers should create solutions that consider other non-functional requirements to produce higher-quality
systems that align with business needs. Our study specifically addressed sustainability requirements, but extending
multi-objective optimization to include a broader range of requirements could help overcome existing limitations and
facilitate the creation of responsible and robust ML tools.

« Implication 4. Our work emphasizes the need to integrate existing bias mitigation approaches from the lit-
erature—particularly those capable of addressing multiple protected attributes simultaneously—into widely used
tools. Furthermore, there is a pressing need for new approaches that can effectively handle multiple non-functional
requirements, striking a balance between them without compromising any single requirement.

From a broader perspective, the results of our research may improve standards and guidelines designed to manage
the non-functional requirements of ML-enabled systems. In particular, our findings have the potential to serve as
valuable resources that support and augment existing or developing standards such as ISO/IEC 25059 and ISO/IEC
20226.6. These standards, which are currently emerging in the field, aim to establish a clear and comprehensive
set of criteria for assessing the quality of software systems. By integrating our findings, it is conceivable that these
standards could be further enriched, providing a more robust and practical guide for operators and developers who
need to handle non-functional requirements specific to ML-enabled systems. For example, adding guidelines for
systematically evaluating trade-offs between energy consumption and accuracy could guide developers in creating
more sustainable ML-enabled systems. This integration could facilitate a more systematic and standardized approach
to ensuring that these systems are functional but also lightweight, unbiased, and accurate. Moreover, our results
have implications at multiple levels. Beyond technical optimizations, they inform policy and strategic decisions
within organizations, suggesting a framework for integrating non-functional requirements into the regular standards
development workflow. This holistic approach can help institutions create more robust and practical guidelines for
developing ML-enabled systems.

« Implication 5. Our RQs provide insights that may be useful in extending and supplementing emerging regu-
latory standards by describing relevant non-functional requirements and offering better criteria for evaluating the
trade-offs of ML-enabled systems. Moreover, our results highlight current research gaps for further study of non-
functional requirements of ML-enabled systems, suggesting that these requirements should be integrated into the
development process. This work encourages deeper investigation into how non-functional factors influence system
design and performance, potentially defining new directions for future research.

6The ISO/IEC 25059 standard: https://iso25000.com/index.php/en/iso-25000-standards/iso-25059 and ISO/IEC 20226 stan-
dard: https://www.iso.org/standard/86177.html
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6. Threats to Validity

Some design decisions might have introduced threats to the validity of our study. The following sections discuss
these potential limitations and how we addressed them.

6.1. Construct Validity

The first threat in this category concerns the reliability of the subjects selected for the study. We relied on well-
known datasets employed by previous researchers in the field [59, 7, 49, 24, 19]. Their use allowed us to perform an
accurate comparison with the results achieved in literature (RQ1), other than advancing the current body of knowledge
with additional insights into the impact of bias mitigation algorithms on sustainability properties of ML-enabled
systems (RQ2 and RQ3). In addition, the datasets selected spanned across different application domains, allowing us
to provide a larger sustainability analysis of the models experimented.

Similarly, our study features a set of machine learning models exploited by previous researchers [8, 79, 19, 86, 78]:
this allowed us to contrast our findings with previous ones. As for the dependent and independent variables, we relied
on the implementation provided by state-of-the-art toolkits and libraries such as AI Fairness 360 toolkit [6], Code-
Carbon, and Scikit-learn. More in general, we followed the guidelines by Wohlin et al. [83] and the ACM/SIGSOFT
Empirical Standards to reduce the risk that our explanation of operational constructs would be inadequate.

6.2. Internal Validity

When addressing internal validity concerns, we considered factors that may have potentially influenced the out-
comes of the study. The real-time energy consumption and performance metrics computed in the context of RQ2
were subject to variables like background processes, which could significantly affect measurements. We sought to
minimize these effects by enabling airplane mode and terminating non-essential processes, though fully controlling
operating system workloads and background operations is complex.

This variability introduces an element of uncertainty in our results, which is a common issue in similar studies
(e.g., [38, 85]). To enhance stability, we adhered to established protocols by implementing a warm-up execution
and one-minute pause between each task execution, aligning with strategies from previous research [38, 67, 29].
Still, in terms of RQ2, we are aware that the CodeCarbon’s energy consumption is slightly lower than the actual
consumption. This limitation may have led to a slight underestimation of our findings. While we required to use
CodeCarbon because of the lack of dedicated hardware to make measurements with physical devices, future studies
might assess the impact of software and hardware measurement on our findings [85]. Further aspect to discuss is the
sustainability metrics selected in the study. Each dimension considered in the study, i.e., social, environmental, and
economic, encompasses a large number of metrics: incorporating all of them would have been challenging because of
(i) the unavailability of automated measurement instruments or (ii) the decrease of explainability that our study would
have obtained, as analyzing all of them would have made data harder to be analyzed and explained.

To overcome this limitation, we defined nine metrics covering each dimension. As for social sustainability, we
used three equity metrics that have been significantly adopted in the literature [24, 25]. As for environmental sus-
tainability, we chose two metrics used in green software engineering research [85, 38]. Finally, as for economic
sustainability, we employed the most widely used metrics [24, 25], complementing them with training time and stor-
age weight, which are essential features when having to release a model in physical environments [17].

6.3. Conclusion Validity

Concerning threats regarding the relationship between treatment and study outcomes, we defined a number of
working hypotheses that could have been tested by statistical tests. We applied the Shapiro-Wilk test for each subject
{model, independent variable} on each dependent variable, and most of these tests produced values below the signifi-
cance level of α = 0.05 [72], which increased our confidence in the validity of the reported results. Additionally, we
performed a visual assessment of normality using quantile-quantile (Q-Q) graphs. To deal with potential threats due
to the experiment execution environment, for each study subject we performed 30 experiments for each combination
of subject and treatment, for a total of 840 experiments to answer our RQs. Additionally, we used the Friedman test
to verify the assumptions necessary for the Nemenyi post-hoc test [63, 46]. If the Friedman test yielded a signifi-
cance level below α = 0.05, we then applied the Nemenyi post-hoc test to assess the statistical significance between
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independent variables. In this respect, it is important to remark that we accounted for the risk of introducing Type
I errors (false positives) arising from multiple comparisons. We specifically applied the Holm-Bonferroni correction
[47], which is a statistical approach that ensures that the family-wise error rate (FWER) is controlled, reducing the
likelihood of spurious results. We have released a publicly available replication package [30] that can be exploited by
researchers to reproduce our experiments and build on our results.

6.4. External Validity
When considering generalizability and transferability of our findings, we exploited five datasets frequently em-

ployed in related research [59, 7, 49, 24, 19]. While these datasets are well-established, they may have inherent
limitations, such as potential biases or unrepresentative samples, which could skew our results [34, 24]. Our primary
focus on ‘Sex’, ‘Race’, and ‘Age’ as protected attributes was dictated by their prevalence in fairness studies. How-
ever, this choice might limit the applicability of our findings to other protected attributes or the number of protected
attributes. Our study featured a range of bias algorithms, yet this selection was not exhaustive. The inclusion of a
more diverse array of algorithms might provide a broader perspective and potentially alter the findings - as such, our
future research agenda includes a larger analysis of bias mitigation algorithms.

Regarding machine learning models, we opted for well-established models in fairness literature [85, 24]. As for
machine learners, we kept default hyperparameters for traditional ML algorithms like SVM, LR, RF, and XGB to
maintain consistency with previous works [24, 26]. For the bias mitigation algorithms proposed by AIF360 we also
used the same parameters for all datasets, while for the MetaFairClassifier and GerryFairClassifier algorithms we
had problems with the default parameters and entered the same values for all datasets. More details are within the
replication package [30]

7. Conclusion

In this paper, we assessed the impact of six bias mitigation algorithms on social, environmental, and economic
sustainability. Our findings reveal the potential trade-off between the fairness of different protected attributes and
other non-functional requirements and the need to consider these attributes when developing ML pipelines in real-
world environments. The conclusions of our work represent the input of our future research agenda, which first aims at
further analyzing the impact of bias mitigation algorithms on sustainability. In addition, we aim at assessing additional
trade-offs that practitioners should pay attention to when developing ML-enabled systems. Perhaps more importantly,
our future work will aim at extending this article by including a qualitative investigation into the likely causes behind
the quantitative results identified in this work.
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