
Toward a Smell-aware Bug Prediction Model
Fabio Palomba1, Marco Zanoni2, Francesca Arcelli Fontana2, Andrea De Lucia3, Rocco Oliveto4

1Delft University of Technology, The Netherlands, 2University of Milano-Bicocca, Italy
3University of Salerno, Italy, 4University of Molise, Italy

f.palomba@tudelft.nl, marco.zanoni@disco.unimib.it, arcelli@disco.unimib.it
adelucia@unisa.it, rocco.oliveto@unimol.it

Abstract—Code smells are symptoms of poor design and implementation choices. Previous studies empirically assessed the impact
of smells on code quality and clearly indicate their negative impact on maintainability, including a higher bug-proneness of components
affected by code smells. In this paper, we capture previous findings on bug-proneness to build a specialized bug prediction model for
smelly classes. Specifically, we evaluate the contribution of a measure of the severity of code smells (i.e., code smell intensity) by adding
it to existing bug prediction models based on both product and process metrics, and comparing the results of the new model against the
baseline models. Results indicate that the accuracy of a bug prediction model increases by adding the code smell intensity as predictor.
We also compare the results achieved by the proposed model with the ones of an alternative technique which considers metrics about
the history of code smells in files, finding that our model works generally better. However, we observed interesting complementarities
between the set of buggy and smelly classes correctly classified by the two models. By evaluating the actual information gain provided
by the intensity index with respect to the other metrics in the model, we found that the intensity index is a relevant feature for both
product and process metrics-based models. At the same time, the metric counting the average number of code smells in previous
versions of a class considered by the alternative model is also able to reduce the entropy of the model. On the basis of this result,
we devise and evaluate a smell-aware combined bug prediction model that included product, process, and smell-related features.
We demonstrate how such model classifies bug-prone code components with an F-Measure at least 13% higher than the existing
state-of-the-art models.

Index Terms—Code Smells, Bug Prediction, Empirical Study, Mining Software Repositories

F

1 INTRODUCTION

In the real-world scenario, software systems change
every day to be adapted to new requirements or to be
fixed with regard to discovered bugs [1]. The need of
meeting strict deadlines does not always allow devel-
opers to manage the complexity of such changes in an
effective way. Indeed, often the development activities
are performed in an undisciplined manner, and have
the effect to erode the original design of the system
by introducing technical debts [2]. This phenomenon is
widely known as software aging [3]. Some researchers
measured the phenomenon in terms of entropy [4], [5],
while others defined the so-called bad code smells (shortly
“code smells” or simply “smells”), i.e., recurring cases
of poor design choices occurring as a consequence of
aging, or when the software is not properly designed
from the beginning [6]. Long or complex classes (e.g.,
Blob), poorly structured code (e.g., Spaghetti Code), or long
Message Chains used to develop a certain feature are only
few examples of code smells that can possibly affect a
software system [6].

Besides approaches for the automatic identification of
code smells in source code [7], [8], [9], [10], [11], [12], the
research community devoted a lot of effort in studying
the code smell lifecycle as well as in providing evidence
of the negative effects of the presence of design flaws on
non-functional attributes of the source code.

On the one hand, empirical studies have been con-
ducted to understand when and why code smells appear
[13], what is their evolution and longevity in software
projects [14], [15], [16], [17], and to what extent they are
relevant for developers [18], [19]. On the other hand, sev-
eral studies showed the negative effects of code smells
on software understandability [20] and maintainability
[21], [22], [23], [24].

Recently, Khomh et al. [25] and Palomba et al. [26] have
also empirically demonstrated that classes affected by
design problems are more prone to contain bugs in the
future. Although this study showed the potential impor-
tance of code smells in the context of bug prediction,
these observations have been only partially explored by
the research community. A prior work by Taba et al.
[27] defined the first bug prediction model that includes
code smell information. In particular, they defined three
metrics, coined as antipattern metrics, based on the history
of code smells in files and able to quantify the average
number of antipatterns, the complexity of changes in-
volving antipatterns and their recurrence length. Then,
a bug prediction model exploiting antipattern measures
besides structural metrics was devised and evaluated,
showing that the performances of bug prediction models
can increase up to 12.5% when considering design flaws.

In our preliminary study [28], we conjectured that
taking into account the severity of a design problem affect-
ing a source code element in a bug prediction model can

1

2

contribute to the correct classification of the bugginess of
such a component. To verify this conjecture, we exploited
the intensity index defined by Arcelli Fontana et al.
[29] to build a bug prediction model that takes into
account the presence and the severity of design problems
affecting a code component. Specifically, we evaluated
the predictive power of the intensity index by adding
it in a bug prediction model based on structural quality
metrics [30], and comparing its accuracy against the one
achieved by the baseline model on six large Java open
source systems. We also quantified the gain provided
by the addition of the intensity index with respect to
the other structural metrics in the model, including the
ones used to compute the intensity. The results indicated
that the addition of the intensity index as predictor of
buggy components has a positive impact on the accuracy
of a bug prediction model based on structural quality
metrics. Moreover, the results show that the intensity
index is more important than other quality metrics for
the prediction of the bug-proneness of smelly classes.

On the basis of the positive results achieved so far,
in this paper we extend our previous analyses [28] to
further investigate the properties of the intensity index
in the context of bug prediction. In particular:

1) We extend the empirical validation of the smell
intensity-including (from now on, simply intensity-
including) bug prediction model by considering a set
of 45 releases of 14 software projects. This allows
to substantially increase the generalizability of the
achieved results.

2) Besides evaluating the contribution of the inten-
sity index in the context of a structural-based bug
prediction model [30], we extend our analysis to
consider three more baseline models, all of them
relying on process metrics. Specifically, we tested
the contribution of the intensity index in the Basic
Code Change Model devised by Hassan [5], the
Developer-based Model proposed by Ostrand et
al. [31], and the Developer Changes Based Model
defined by Di Nucci et al. [32], [33].

3) We perform an empirical comparison of the perfor-
mances achieved by our model and by the model
suggested by Taba et al. [27].

4) We devise and discuss the results of a smell-aware
bug prediction model, built by combining product,
process, and smell-related information.

5) We provide a comprehensive replication package
[34] including all the raw data and working data
sets of our study.

The results confirm that the addition of the inten-
sity index as predictor of buggy components generally
increases the performance of structural-based baseline
bug prediction models, but also highlight the importance
of considering the severity of code smells in process
metrics-based prediction models, where we observed
improvements up to 47% in terms of F-Measure. More-
over, the models exploiting the intensity index obtain

performances up to 16% higher than models built with
the addition of antipattern metrics [27]. However, we
observed interesting complementarities between the set
of buggy and smelly classes correctly classified by the two
models that pushed us to investigate the possibility of a
combined model including product, process, and smell-
related metrics. As a result, the smell-aware combined
model is able to provide a consistent boost in terms
of prediction accuracy (i.e., F-Measure) of +13% with
respect to the best performing model.

Structure of the paper. Section 2 discusses the related
literature on bug prediction models. Section 3 presents
the specialized bug prediction model for smelly classes.
In Section 4 we describe the design of the case study
aimed at evaluating the accuracy of the proposed model,
while Section 5 reports the results achieved. Section 6
discusses the threats to the validity of our empirical
study. Finally, Section 7 concludes the paper and outlines
directions for future work.

2 RELATED WORK

Although the main contribution of this paper spans
in the field of bug prediction, the work is built upon
previous knowledge in the field of bad code smell de-
tection and management. For this reason, in this Section
we provide an overview of the related literature in the
context of both bug prediction and code smells.

2.1 Related Literature on Bug Prediction
Allocating resources for testing all the parts of a large
software system is a cost-prohibitive task [35]. To alle-
viate this issue, the research community spent a lot of
effort in the definition of approaches for making testing
easier. Most of them try to identify the software code
components having a higher probability to be faulty
through the definition of prediction models, to allow
developers to focus on that components when testing
the system. Roughly speaking, a bug prediction model
is a supervised method where a set of independent
variables (the predictors) are used to predict the value of
a dependent variable (the bug-proneness of a class) using
a machine learning technique (e.g., Linear Regression
[36]). The model can be trained using a sufficiently large
amount of data available from the project under analysis,
i.e., within-project strategy, or using data coming from
other (similar) software projects, i.e., cross-project strategy.

Several factors can influence the performances of bug
prediction models. For instance, Ghotra et al. [37] found
that the accuracy of a bug prediction model can increase
or decrease up to 30% depending on the type of classifi-
cation applied, while Turhan et al. [38] showed that the
performances of cross-project models can be hindered by
data heterogeneity, paving the way to new local learn-
ing prediction models [39]. However, the key factor to
achieve good performances is represented by the choice
of the predictors used in the process of bug prediction

3

[40]. In this sense, the existing literature mainly propose
a distinction between the use of product metrics and
process metrics as indicators of the bug-proneness of a
code component.

The value of product metrics in bug prediction have
been widely explored, especially in the earlier papers in
the field. Basili et al. [41] proposed the use of the Object-
Oriented metric suite (i.e., CK metrics) [42] as indicators
of the presence of buggy components. They demon-
strated that 5 of them are actually useful in the context
of bug prediction. El Emam et al. [43] and Subramanyam
et al. [44] corroborate the results previously observed in
[41]. On the same line, Gyimothy et al. [45] reported a
more detailed analysis among the relationships between
code metrics and the bug-proneness of code components.
Their findings highlight that the Coupling Between Ob-
ject metric [42] is the best metric among the CK ones
in predicting defects. Ohisson et al. [46] conducted an
empirical study aimed at evaluating to what extent code
metrics are able to identify bug-prone modules. Their
model has been experimented on a system developed
at Ericsson and the results indicate the ability of code
metrics in detecting buggy modules. Nagappan and Ball
[47] exploited the use of static code analysis tools to
predict the bug density of Windows Server, showing that
it is possible to perform a coarse grained classification
between high and low quality components with an
accuracy of 83%. Nagappan et al. [48] also investigated
the use of metrics in the prediction of buggy components
across 5 Microsoft projects. Their main finding highlights
that while it is possible to successfully exploit complexity
metrics in bug prediction, there is no single metric that
could act as a universally best bug predictor (i.e., the
best predictor is project-dependent). Complexity metrics
in the context of bug prediction is also the focus of
the work by Zimmerman et al. [49], which reports a
positive correlation between code complexity and bugs.
Finally, Nikora et al. [50] showed that measurements of a
system’s structural evolution (e.g., number of executable
statements) can serve as predictors of the number of
bugs inserted into a system during its development.

On the other hand, process metrics have been consid-
ered in several modern approaches for defect predic-
tion. Khoshgoftaar et al. [51] assessed the role played
by debug churns (i.e., the number of lines of code
changed to fix bugs) in the identification of bug-prone
modules, while Graves et al. [52] experimented both
product and process metrics for bug prediction. Their
findings contradict in part what observed by other au-
thors, showing that product metrics are poor predictors
of bugs. D’Ambros et al. [53] performed an extensive
comparison of bug prediction approaches relying on
process and product metrics, showing that there is not a
technique that works better in all contexts. Hassan and
Holt [54] introduced the concept of entropy of changes as
a measure of the complexity of the development process.
Moser et al. [40] performed a comparative study between
the predictive power of product and process metrics.

Their study, performed on Eclipse, highlights the su-
periority of process metrics in predicting buggy code
components. Moser et al. [55] also performed a deeper
study on the bug prediction accuracy of process metrics,
reporting that the past number of bug-fixes performed on
a file (i.e., bug-proneness), and the number of changes
involving a file in a given period (i.e., change-proneness)
are the best predictors of buggy components. Bell et al.
[56] confirm that the change-proneness is the best bug
predictor. Hassan [5] exploits the entropy of changes to
build two bug prediction models which mainly differ
for the choice of the temporal interval where the bug
proneness of components is studied. The results of a
case study indicate that the proposed techniques have
higher prediction accuracy than models purely based
on the number of changes to code components. All the
predictors above do not consider how many develop-
ers apply changes to a component, neither how many
components they changed at the same time. Ostrand et
al. [31], [57] propose the use of the number of developers
who modified a code component in a given time period as
a bug-proneness predictor, demonstrating that products
and process metrics is poorly (positively) impacted by
also considering the developers’ information. Di Nucci et
al. [32], [33] exploited the role of structural and semantic
scattering of changes performed by a developer in bug
prediction. Their findings demonstrate the superiority of
the bug prediction model built using scattering metrics
with respect to other baseline models. Moreover, they
also show that the proposed metrics are orthogonal with
respect to other predictors.

Finally, there are two papers closely related to the
one proposed here. The first one is the study conducted
by Hall et al. [58], which found that some code smells
are correlated with the presence of faults only in some
circumstances, however the effect that these smells have
on faults is small. The second one is the paper by
Taba et al. [27], that reports the use of historical metrics
computed on classes affected by design flaws (called
antipattern metrics) as additional source of information
for predicting bugs. They found that such metrics can
increase the performances of bug prediction models up
to 12.5%. This is clearly the closest work to the one pre-
sented in this paper. Unlike that work, we propose the
use of a measure of intensity of code smells rather than
the computation of historical metrics on classes/methods
affected by smells. Section 4 reports a detailed compar-
ison between our technique and the one proposed by
Taba et al. [27].

2.2 Related Literature on Code Smells

Bad code smells have been introduced by Fowler to
define symptoms of the presence of poor design or
implementation choices applied during the development
of a software system [6]. They have been several times
the object of empirical studies aimed at investigating
their evolution and their effect on source code compre-

4

hension and maintenance, as well as their impact on non-
functional attributes of source code such as change- and
fault-proneness.

Tufano et al. [13], [59] conducted a large scale empirical
study aimed at investigating when and why code smells
are introduced. Their findings show that code smells
are generally introduced during the first commit of
the artifact affected by the smell, even though several
instances are introduced after several maintenance oper-
ations performed on an artifact over history. Moreover,
code smells are introduced because of operations aimed
at implementing new features or enhancing existing
ones, even if in some cases also refactoring can be the
cause of smell introduction.

Other studies on the evolution of design flaws demon-
strated that in most cases the number of smells in
software projects tends to increase over time, and that
very few code smells are removed from a project [15].
Moreover, most of the times developers are aware of the
presence of code smells, but they deliberately postpone
their removal [60] to avoid APIs modifications [14] or
simply because developers do not perceive them as
actual problems [18], [21]. Finally, a recent study [61]
found significant differences in the way code smells
detected using different sources of information evolve
over time: specifically, developers tend to maintain and
refactor more code smells identified using textual in-
formation, while design problems affected by structural
issues (e.g., too many dependencies between classes)
are more difficult to understand and, therefore, more
difficult to manage [61].

At the same time, several empirical studies showed
the negative effect of code smells on program compre-
hension [20], as well as the impact of the interaction of
more code smells on the reduction of the developers’
performance during maintenance tasks [22], [23].

More important in the context of this paper is the
work made by the research community to investigate the
influence of code smells on change- and fault-proneness.
Khomh et al. [24], [25] found that classes affected by
code smells tend to be significantly more change- [24]
and fault-prone [25] than classes not affected by design
problems. Palomba et al. [26] confirmed such findings on
a larger set of 13 code smell types, and also reported that
the removal of code smells might be not always ben-
eficial for improving source code maintainability. Also
Gatrell and Counsell [62] and by Li and Shatnawi [63]
confirmed the negative impact of code smells on fault-
proneness; in addition, they suggested that refactoring
a class, besides improving the architectural quality, re-
duces the probability of the class having errors in the
future [62], [63].

All the reasons mentioned above pushed researchers
in devising techniques for the detection of code smells in
the source code. Most of these approaches aim at iden-
tifying the key symptoms characterizing the presence of
specific code smells by using a set of thresholds based on
the measurement of structural metrics (e.g., if the Lines of

Code > α), and then conflating them in order to lead to
the final rule for detecting a smell [9], [12], [64], [65], [66],
[67], [68]. These detection techniques mainly differ in
the set of used structural metrics, which depends on the
type of code smells to detect, and how the identified key
symptoms are combined. Arcelli Fontana et al. [69] and
Aniche et al. [70] defined methods for discarding false
positive code smell instances or tailoring the thresholds
of code metrics, respectively.

In recent years, alternative sources of information have
been considered for code smell detection. Ratiu et al.
[17] propose to use the historical information of the
suspected flawed structure to increase the accuracy of
the automatic problem detection. Palomba et al. [11], [71]
showed how historical data can be successfully exploited
to identify smells that are intrinsically characterized by
their evolution across the program history – such as
Divergent Change, Parallel Inheritance, and Shotgun Surgery
– but also smells such as Blob and Feature Envy [11].

The use of Information Retrieval (IR) techniques [72]
has been also exploited in order to detect code smells
characterized by promiscuous responsibilities at differ-
ent levels of granularity, such as Long Method, Feature
Envy, Blob, Promiscuous Package, and Misplaced Class [10].

Arcelli Fontana et al. [7], [73] suggested the use of
learning algorithms to discover code smells, pointing out
that a training set composed of one hundred instances
is sufficient to reach very high values of accuracy.

Kessentini et al. [74] formulated code smell detection
as an optimization problem, leading to the usage of
search algorithms to solve it [74], [75], [76], [77].

Finally, Morales et al. [78] proposed the use of de-
velopers’ context as a way for improving the practical
usefulness of code smell detectors, devising an approach
for automatic refactoring code smells.

3 A SPECIALIZED BUG PREDICTION MODEL
FOR SMELLY CLASSES

Previous work has proposed the use of structural qual-
ity metrics to predict the bug-proneness of code com-
ponents. The underlying idea behind these prediction
models is that the presence of bugs can be predicted by
analyzing the quality of source code. However, none of
them take into account the presence and the severity of
well-known indicators of design flaws, i.e., code smells,
affecting the source code. In this paper, we explicitly
consider this information. Indeed, we believe that a more
clear description and characterization of the severity of
design problems affecting a source code instance can
help a machine learner in distinguishing those compo-
nents having higher probability to be subject of bugs
in the future. To this aim, once the set of code compo-
nents affected by code smells have been detected, we
build a prediction model that, in addition to relying on
structural metrics, also includes the information about
the severity of design problems computed using the
intensity index defined by Arcelli Fontana et al. [29].

5

TABLE 1: Code Smell Detection Strategies (the complete names of the metrics are given in Table 2)

Code Smells Detection Strategies: LABEL(n) → LABEL has value n for that smell

God Class LOCNAMM ≥ HIGH(176) ∧ WMCNAMM ≥ MEAN(22) ∧ NOMNAMM ≥ HIGH(18) ∧ TCC ≤ LOW(0.33) ∧ ATFD ≥
MEAN(6)

Data Class WMCNAMM ≤ LOW(14) ∧ WOC ≤ LOW(0.33) ∧ NOAM ≥ MEAN(4) ∧ NOPA ≥ MEAN(3)

Brain Method (LOC ≥ HIGH(33) ∧ CYCLO ≥ HIGH(7) ∧ MAXNESTING ≥ HIGH(6)) ∨ (NOLV ≥ MEAN(6) ∧ ATLD ≥ MEAN(5))

Shotgun Surgery CC ≥ HIGH(5) ∧ CM ≥ HIGH(6) ∧ FANOUT ≥ LOW(3)

Dispersed Coupling CINT ≥ HIGH(8) ∧ CDISP ≥ HIGH(0.66)

Message Chains MaMCL ≥ MEAN(3) ∨ (NMCS ≥ MEAN(3) ∧ MeMCL ≥ LOW(2))

TABLE 2: Metrics used for Code Smells Detection

Short Name Long Name Definition

ATFD Access To Foreign Data The number of attributes from unrelated classes belonging to the system, accessed
directly or by invoking accessor methods.

ATLD Access To Local Data The number of attributes declared by the current classes accessed by the measured
method directly or by invoking accessor methods.

CC Changing Classes The number of classes in which the methods that call the measured method are defined
in.

CDISP Coupling Dispersion The number of classes in which the operations called from the measured operation are
defined, divided by CINT.

CINT Coupling Intensity The number of distinct operations called by the measured operation.
CM Changing Methods The number of distinct methods that call the meas-ured method.
CYCLO McCabe Cyclomatic Complexity The maximum number of linearly independent paths in a method. A path is linear if

there is no branch in the execution flow of the corresponding code.
FANOUT Number of called classes.
LOC Lines Of Code The number of lines of code of an operation or of a class, including blank lines and

comments.
LOCNAMM Lines of Code Without Accessor or

Mutator Methods
The number of lines of code of a class, including blank lines and comments and
excluding accessor and mutator methods and corresponding comments.

MaMCL Maximum Message Chain Length The maximum length of chained calls in a method.
MAXNESTING Maximum Nesting Level The maximum nesting level of control structures within an operation.
MeMCL Mean Message Chain Length The average length of chained calls in a method.
NMCS Number of Message Chain Statements The number of different chained calls in a method.
NOAM Number Of Accessor Methods The number of accessor (getter and setter) methods of a class.
NOLV Number Of Local Variables Number of local variables declared in a method. The method’s parameters are consid-

ered local variables.
NOMNAMM Number of Not Accessor or Mutator

Methods
The number of methods defined locally in a class, counting public as well as private
methods, exclud-ing accessor or mutator methods.

NOPA Number Of Public Attributes The number of public attributes of a class.
TCC Tight Class Cohesion The normalized ratio between the number of methods directly connected with other

methods through an instance variable and the total number of possible connections
between methods. A direct connection between two methods exists if both access the
same instance variable directly or indirectly through a method call. TCC takes its value
in the range [0,1].

WMCNAMM Weighted Methods Count of Not Ac-
cessor or Mutator Methods

The sum of complexity of the methods that are defined in the class, and are not accessor
or mutator methods. We compute the complexity with the Cyclomatic Complexity
metric (CYCLO).

WOC Weight Of Class The number of “functional” (i.e., non-abstract, non-accessor, non-mutator) public
methods divided by the total number of public members.

Specifically, the index is computed by JCodeOdor1, a code
smell detector which relies on detection strategies ap-
plied on metrics. The tool is able to detect, filter [79] and
prioritize [29] instances of six types of code smells [6],
[66]:

• God Class: A large class implementing different
responsibilities;

• Data Class: A class whose only purpose is holding
data;

• Brain Method: A large method that implements
more than one function;

1. tool available at http://essere.disco.unimib.it/wiki/jcodeodor

• Shotgun Surgery: A class where every change trig-
gers many little changes to several other classes;

• Dispersed Coupling: A class having too many rela-
tionships with other classes;

• Message Chains: A method containing a long chain
of method calls.

The intensity index is an estimation of the severity of
a code smell, and its value is defined as a real number
in the range [1,10]. In particular, given the set of classes
composing the software system that a developer wants
to evaluate, JCodeOdor adopts the following two steps to
compute the intensity of code smells:

1) In the first step the tool aims at detecting code

http://essere.disco.unimib.it/wiki/jcodeodor

6

smells in the system given as input, relying on
the detection strategies reported in Table 1. Each
detection strategy is a logical composition of pred-
icates, and each predicate is based on an operator
that compares a metric with a threshold [66], [80].
Our detection strategies are similar to those defined
by Lanza and Marinescu [66], which adopted the
metrics reported in Table 2 to detect the six code
smells described above. More specifically, Lanza
and Marinescu [66] observed that code smells often
exhibit (i) low cohesion and high coupling, (ii) high
complexity, and (iii) extensive access to the data
of foreign classes: for this reason, our approach
considers (i) cohesion (i.e., TCC) and coupling (i.e.,
CC, CDISP, CINT, CM, FANOUT), (ii) complexity
(i.e., CYCLO, MaMCL, MAXNESTING, MeMCL,
NMCS, WMCNAMM, WOC), and (iii) data access
(i.e., ATFD and ATLD) metrics. Furthermore, the
approach also computes size-related metrics such
as LOC, LOCNAMM, NOAM, NOLV, NOMNAMM,
and NOPA. To ease the comprehension of the detec-
tion approach, Table 2 reports the full metric names
and definitions, while Table 3 describes the rationale
behind the use of each predicate of the detection
strategies. Moreover, in Table 4 we provide data
on the distribution of the metrics used for code
smell detection on the dataset exploited in this paper
(more details on the systems and their selection are
provided in Section 4).
Following the detection rules, a code component is
detected as smelly if one of the logical propositions
shown in Table 1 is true, namely if the actual metrics
of the code component exceed the threshold values
composing a detection strategy. It is important to
note that the thresholds used by the tool have been
empirically calibrated on 74 systems of the Qualitas
Corpus dataset [81] and are derived from the sta-
tistical distribution of the metrics contained in the
dataset [82]. For metrics representing ratios defined
in the range [0,1] (e.g., the Tight Class Cohesion),
threshold values are fixed to 0.25, 0.33, 0.5, 0.66 and
0.75. For all other metrics, they are associated to
percentile values on the metric distribution [82]. For
sake of completeness, we report in Table 5 all the
threshold values associated to each of the detected
code smells. The thresholds are also mapped by the
tool onto a nominal value, i.e., VERY-LOW, LOW,
MEAN, HIGH, VERY-HIGH, to ease their interpre-
tation.

2) If a code component is detected as a code smell,
the actual value of a given metric used for the
detection will exceed the threshold value, and it
will correspond to a percentile value on the met-
ric distribution placed between the threshold and
the maximum observed value of the metric in the
system under analysis. The placement of the actual
metric value in that range represents the “exceeding
amount” of a metric with respect to the defined

threshold. Such “exceeding amounts” are then nor-
malized in the range [1,10] using a min-max nor-
malization process [83]: specifically, this is a feature
scaling technique where the values of a numeric
range are reduced to a scale between 1 and 10. To
compute z, i.e., the normalized value, the following
formula is applied:

z = [
x−min(x)

max(x)−min(x)
] · 10 (1)

where min and max are the minimum and maxi-
mum values observed in the distribution. This step
allows to have the “exceeding amount” of each
metric in the same scale. To have a unique value
representing the intensity of the code smell affecting
the class, the mean of the normalized “exceeding
amounts” is computed.

When considered as bug predictor, the intensity has
two relevant properties: (i) its value is derived from a
set of other metric values, and (ii) since it relies on the
statistical distribution of metrics, it can be seen as a non-
linear combination of their values.

We include the intensity index as an additional pre-
dictor of a structural and process metrics-based bug
prediction model. It is important to note that we cannot
use the intensity index as single predictor, since this
choice might lead to two important limitations. On the
one hand, we would take into account only the informa-
tion about the smelliness of classes, missing other pieces
of information useful when classifying buggy classes:
indeed, other metrics used by structural and process
metrics-based bug prediction models might provide im-
portant contributions in the classification [84]. Thus, in
case of a prediction model only based on the intensity
index, the additional information would be lost. On the
other hand, a model exploiting the information given
by the intensity index in isolation would have been not
enough accurate when classifying non-smelly classes. In
these cases, the intensity index is equal to zero, thus not
providing any detailed information that the prediction
model may use to learn the characteristics of non-smelly
classes. These observations are also supported by the
results achieved when testing the performances of the
prediction model built only using the intensity index on
the dataset used in the study, where we observed low
performances. Detailed results are reported in our online
appendix [34]. As a consequence, to build the proposed
bug prediction model we firstly split the training set
by considering smelly (as identified by the code smell
detector) and non-smelly classes. We then assign to smelly
classes an intensity index according to the evaluation
performed by JCodeOdor, while we set the intensity of
non-smelly classes to 0. In case a certain class is affected
by more than one smell, we assign to it the maximum
intensity computed by the tool: the rationale behind this
choice is that the most severe code smell affecting the
class is the one that impacts more the maintainability

7

TABLE 3: Code Smell Detection Rationale and Details

Clause Rationale

G
od

C
la

ss

LOCNAMM ≥ HIGH Too much code. We use LOCNAMM instead of LOC, because getter and setter methods are often generated by the
IDE. A class that has getter and setter methods, and a class that has not getter and setter methods, must have
the same “probability” to be detected as God Class.

WMCNAMM ≥ MEAN Too much work and complex. Each method has a minimum cyclomatic complexity of one, hence also getter and
setter add cyclomatic complexity to the class. We decide to use a complexity metric that exclude them from the
computation.

NOMNAMM ≥ HIGH Implements a high number of functionalities. We exclude getter and setter because we consider only the methods
that effectively implement functionality of the class.

TCC ≤ LOW Functionalities accomplish different tasks.
ATFD ≥ MEAN Uses many data from other classes.

D
at

a
C

la
ss

WMCNAMM ≤ LOW Methods are not complex. Each method has a minimum cyclomatic complexity of one, hence also getter and
setter add cyclomatic complexity to the class. We decide to use a complexity metric that exclude them from the
computation.

WOC ≤ LOW The class offers few functionalities. This metrics is computed as the number of functional (non-accessor) public
methods, divided by the total number of public methods. A low value for the WOC metric means that the class
offers few functionalities.

NOAM ≥ MEAN The class has many accessor methods.
NOPA ≥ MEAN The class has many public attributes.

Br
ai

n
M

et
ho

d LOC ≥ HIGH Too much code.
CYCLO ≥ HIGH High functional complexity
MAXNESTING ≥ HIGH High functional complexity. Difficult to understand.
NOLV ≥ MEAN Difficult to understand. More the number of local variable, more the method is difficult to understand.
ATLD ≥ MEAN Uses many of the data of the class. More the number of attributes of the class the method uses, more the method

is difficult to understand.

Sh
ot

.S
ur

g. CC ≥ HIGH Many classes call the method.
CM ≥ HIGH Many methods to change.
FANOUT ≥ LOW The method is subject to being changed. If a method interacts with other classes, it is not a trivial one. We use the

FANOUT metric to refer Shotgun Surgery only to those methods that are more subject to be changed. We exclude
for example most of the getter and setter methods.

D
is

.C
ou

p. CINT ≥ HIGH The method calls too many other methods. With CINT metric, we measure the number of distinct methods called
from the measured method.

CDISP ≥ HIGH Calls are dispersed in many classes. With CDISP metric, we measure the dispersion of called methods: the number
of classes in which the methods called from the measured method are defined in, divided by CINT.

M
es

s.
C

ha
in

MaMCL ≥ MEAN Maximum Message Chain Length. A Message Chains has a minimum length of two chained calls, because a single
call is trivial. We use the MaMCL metric to find out the methods that have at least one chained call with a length
greater than the mean.

NMCS ≥ MEAN Number of Message Chain Statements. There can be more Message Chain Statement: different chains of call. More
the number of Message Chain Statements, more the method is interesting respect to Message Chains code smell.

MeMCL ≥ LOW Mean of Message Chain Length. We would find out non-trivial Message Chains, so we need always to check against
the Message Chain Statement length.

of the class [85]. Finally, we build a prediction model
using as predictors the intensity index and a set of other
product/process metrics.

4 EMPIRICAL STUDY DEFINITION AND DESIGN

The goal of the empirical study is to evaluate the con-
tribution of the intensity index in prediction models
aimed at discovering bug-prone code components, with
the purpose of improving the allocation of resources
in the verification & validation activities focusing on
components having a higher bug-proneness. The quality
focus is on the prediction performances as compared to
the state-of-the-art approaches, while the perspective is of
researchers, who want to evaluate the effectiveness of
using information about code smells when identifying
bug-prone components. More specifically, the empirical
investigation aims at answering the following research
questions:

RQ1: To what extent does the intensity index con-
tribute to the prediction of bug-prone code compo-
nents?

RQ2: How the proposed specialized model works
when compared to a state-of-the-art model built
using antipattern metrics?

RQ3: What is the gain provided by the intensity
index to the bug prediction model when compared
to the other predictors?

RQ4: What are the performances of a combined
bug prediction model that includes smell-related
information?

The first research question (RQ1) aims at providing
information about the actual contribution given by the
intensity index within bug prediction models built using
different types of information, i.e., exploiting product
and process metrics. With RQ2 we are interested in
comparing our solution with the one proposed by Taba
et al. [27], who defined the so-called antipattern metrics

8

DATASET

CLEANED  
DATASET

1. DATASET SELECTION
AND CLEANING

Shepperd et al.
algorithm

PROMISE 
dataset

Cleaned
PROMISE 

dataset

2. PREDICTION MODEL
CONSTRUCTION

F1 F2 FNClass 1 d0
...

…
F1 F2 FN d0…

F1 F2 FN d0…

...

{basic predictors
buggy/ 

non-buggy

Class 2

Class N

...

int. Index
int. Index

int. Index

...

code smell 
intensity

Basic Predictor
Selection

Code Smell
Intensity

Computation

Machine
Learner

Selection

3. DATA ANALYSIS AND
METRICS

RQ1  
Performance

RQ2  
Comparison

RQ3  
Int. Index

Gain

RQ4  
Combined

Model

… 10-fold cross
validation

F-Measure  
AUC-ROC  
Brier score

Overlap Metrics

Scott-Knott
ESD Ranking

Feature Selection +
F-Measure, AUC-
ROC, Brier score

Fig. 1: Overview of the Empirical Study Design.

TABLE 4: Distribution of Metrics used for Code Smells
Detection

Metric Min 1st quart. Median Mean 3rd quart. Max

ATFD 0 0 0 4 0 234
*ATLD 0 0 1 12 1 275
CC 0 0 0 0 8 293
CDISP 0 0 0 0.32 0.67 1
CINT 0 0 0 15 1 280
CM 0 0 0 5 1 497
CYCLO 0 1 1 1 2 415
FANOUT 0 0 0 5 1 280
LOC 0 15 44 51 113 6769
*LOCNAMM 0 3 5 41 15 6989
*MaMCL 0 0 0 3 0 5
MAXNESTING 0 0 0 2 3 9
*MeMCL 0 0 0 3 0 7
*NMCS 0 0 0 33 1 501
NOAM 0 0 1 9 2 79
NOLV 0 1 3 5 6 411
*NOMNAMM 0 0 0 11 0 274
NOPA 0 0 0 3 5 34
TCC 0 0 0.43 0.47 1 1
*WMCNAMM 0 2 6 8 14 3457
WOC 0 0.36 0.88 0.82 1 1

to improve the performances of bug prediction models.
RQ3 is concerned with a fine-grained analysis aimed
at measuring the actual gain provided by the addition
of the intensity metric within different bug prediction
models. Finally, RQ4 has the goal to assess the per-
formances of a smell-aware combined bug prediction
model built mixing together the features exploited by

TABLE 5: Default thresholds for all smells

Metric VERY-LOW LOW MEAN HIGH VERY-HIGH

G
od

C
la

ss LOCNAMM 26 38 78 176 393
WMCNAMM 11 14 22 41 81
NOMNAMM 7 9 13 21 30
TCC 0.25 0.33 0.5 0.66 0.75
ATFD 3 4 6 11 21

D
at

a
C

la
ss WMCNAMM 11 14 21 40 81

WOC 0.25 0.33 0.5 0.66 0.75
NOPA 1 2 3 5 12
NOAM 2 3 4 7 13

Br
ai

n
M

et
ho

d LOC 11 13 19 33 59
CYCLO 3 4 5 7 13
MAXNESTING3 4 5 6 7
NOLV 4 5 6 8 12
ATLD 3 4 5 6 11

Sh
ot

gu
n

Su
rg

er
y CC 2 3 4 5 10

CM 2 3 4 6 13
FANOUT 2 3 4 5 6

D
is

p.
C

ou
p. CINT 3 4 5 8 12

CDISP 0.25 0.33 0.5 0.66 0.75

M
es

sa
ge

C
ha

in
s MaMCL 2 3 3 4 7

MeMCL 2 2 3 4 5
NMCS 1 2 3 4 5

the experimented models. Figure 1 overviews the main
steps performed to conduct the empirical study, i.e.,
(i) dataset selection and cleaning, (ii) prediction model
building, and (iii) data analysis to answer our four
research questions. The following subsections detail each

9

TABLE 6: Software Projects in Our Dataset

System Releases Classes KLOCs % Buggy Cl. % Smelly Cl. EPV

Apache Ant 5 83-813 20-204 68-72 11-16 12-15
Apache Camel 4 315-571 70-108 30-38 9-14 16-21
Apache Forrest 3 112-628 18-193 37-39 11-13 14-17
Apache Ivy 1 349 58 29 12 14
JEdit 5 228-520 39-166 36-43 14-22 11-12
Apache Velocity 3 229-341 57-73 15-23 7-13 16-18
Apache Tomcat 1 858 301 6 4 15
Apache Lucene 3 338-2,246 103-466 59-63 10-22 11-18
Apache Pbeans 2 121-509 13-55 29-33 21-25 14-16
Apache POI 4 129-278 68-124 62-68 15-19 15-22
Apache Synapse 3 249-317 117-136 17-26 13-17 14-19

of these three steps.

4.1 Dataset Selection and Cleaning

The context of the study consists of 34 releases of 11 open
source software systems. Table 6 reports (i) the analyzed
software systems, (ii) the number of releases considered
for each of them, (iii) their size (min-max) in terms of
minimum and maximum number of classes and KLOCs
across the considered releases, (iv) the percentage (min-
max) of buggy files (identified as explained later), and
(iv) the percentage (min-max) of classes affected by de-
sign problems (detected as explained later). In addition,
we also report the number of events per variables (EPV),
i.e., the ratio between the number of occurrences of
the least frequently occurring class of the dependent
variable and the number of independent variables used
to train the model. The selection of the dataset was
driven by three main factors, as suggested by previous
work [86]: in the first place, we only focused on publicly
available datasets reporting a large set of bugs and
providing oracles for all the projects in the study. To
this aim, we started from the dataset by Jureczko et al.
[30] contained in the PROMISE repository [87] because
it provides a rich collection of 44 releases of 14 projects
for which 20 code metrics as well as bugs occurring in
each release are available. Furthermore, it is important to
note that the dataset contains systems having different
size and scope, allowing us to increase the validity of
our study [37], [88]. In the second place, we took into
account the findings by Mende et al. [89], who reported
that models trained using small datasets may produce
unstable performance estimates. To estimate how good
a bug prediction dataset is, Tantithamthavorn et al. [90]
suggested the use of the number of EPV. In particular,
datasets having EPVs lower than 10 are particularly
susceptible to unstable results. Thus, from the initial
dataset we removed an entire system (i.e., APACHE
XERCES) composed of 3 releases. Finally, to ensure data
robustness [91] we discarded 7 releases of two systems
(i.e., APACHE XALAN and APACHE LOG4J) having a rate
of buggy classes higher than 75%, leading to the final
dataset composed of 34 releases of 11 systems.

Once defined the context of our study, we performed
a data preprocessing phase. Specifically, as reported in
previous research [90], [92] bug prediction datasets may

contain noise and/or erroneous entries that possibly
negatively influence the results. To ensure the quality
of the data, we performed a data cleaning following the
algorithm proposed by Shepperd et al. [92]: it includes
a list of 13 corrections aimed at removing identical fea-
tures, features with conflicting values or missing values
etc.. This step lead to the definition of a cleaned dataset
where a total of 58 entries were removed from the
original one. It is worth remarking that the data and
scripts used in the study are publicly available in our
online appendix [34].

4.2 Prediction Model Construction
To answer our research questions, we needed to instanti-
ate the prediction model presented in Section 3 to define
(i) the basic predictors, (ii) the code smell detection
process, and (iii) the machine learning technique to use
for classifying buggy instances.

4.2.1 Basic Predictors
As for the software metrics to use as basic predictors in
the model, the related literature proposes several alter-
natives, with a main distinction between product metrics
(e.g., lines of code, code complexity, etc) and process
metrics (e.g., past changes and bug fixes performed on
a code component). To have a detailed overview of the
predictive power of the intensity index when applied
in different contexts, we decided to test its contribution
in prediction models using both product and process
metrics as basic predictors.

To this aim, we firstly set up a bug prediction model
composed of structural predictors, and in particular the
20 quality metrics exploited by Jureczko et al. [30]. The
model is characterized by a mix of size metrics (e.g.,
Lines of Code), coupling metrics (e.g., Coupling Between
Object Classes [42]), cohesion metrics (e.g., Lack of Co-
hesion of Methods [42]), and complexity metrics (e.g.,
McCabe Complexity [93]). In this case, the choice of the
baseline was guided by the will to investigate whether
the use of a single additional structural metric repre-
senting the intensity of code smells is able to add useful
information in a prediction model already characterized
by structural predictors, as well as by the set of code
metrics used for the computation of the intensity index.
It is important to note that this model might be affected
by multi-collinearity [94], which occurs when two or
more independent variables are highly correlated and
can be predicted one from the other. Recent work [95],
[96] showed that highly-correlated variables represent
a problem for bug prediction models since they can
create interferences to the analysis of the importance
of variables, thus possibly leading to a decreasing of
the prediction capabilities of the resulting model. We
assessed the model for the presence of multi-collinearity
in two different ways:
• Given the metrics composing each of the analyzed

systems, we computed the Spearman’s rank cor-
relation [97] between all possible pairs of metrics,

10

to determine whether there are pairs of strongly
correlated metrics (i.e., with a Spearman’s ρ > 0.8).
In particular, this is a non-parametric measure of the
statistical dependence between the ranking of two
variables. If two independent variables are highly
correlated, one of them should be removed from the
model;

• We used a stepwise variable removal procedure
based on the Companion Applied Regression (car)
R package2, and in particular based on the vif (vari-
ance inflation factors) function [94]. Basically, this
function provides an index for each independent
variable which measures how much the variance
of an estimated regression coefficient is increased
because of collinearity. The square root of the vari-
ance inflation factor indicates how much larger the
standard error is, compared with what it would be
if that variable were uncorrelated with the other
predictor variables in the model. Based on this
information, we could understand which metric
produced the largest standard error, thus allowing
the identification of the metric that was better to
drop from the model.

We also set up three baseline prediction models based
on process metrics. We used (i) the Basic Code Change
Model (BCCM) proposed by Hassan [5] which uses
the entropy of changes of a given time period to pre-
dict defects, (ii) the model based on the number of
developers that worked on a code component (DM)
in a specific time period [31], and (iii) the Developer
Changes Based Model (DCBM) [33] which considers
how scattered are the changes applied by developers that
worked on a code component in a given time window.
While a number of other process metrics as well as
prediction approaches relying on such metrics have been
defined in the literature [98], the selected models have
different characteristics that allowed us to evaluate the
contribution of the intensity index from several perspec-
tives, i.e., when the entropy of the development process
is considered or in case of different developer-related
measurements.

Note that all the process metrics-based prediction
models described above refer to a specific time period in
which these metrics have to be computed. In our case,
the information about entropy of changes, number of
developers, and scattering metrics that are related to the
specific release R of a software in our dataset refer to the
time window between the previous release R−1 and R.

To measure the extent to which the contribution of
the intensity index is useful for predicting bugs, we
experimented (i) the baseline models described above
and (ii) the same baseline models where the intensity
index is plugged as additional metric. For instance, we
test the model based on the 16 software metrics and
the model composed of the 16 software metrics plus
the intensity index. It is worth remarking that, for non-

2. http://cran.r-project.org/web/packages/car/index.html

smelly classes, the intensity value is set to 0. Applying
this procedure, we were able to control the effective
contribution of the index during the prediction of bugs.

4.2.2 Code Smell Detection

Regarding the code smell detection process, our study
was focused on the analysis of the code smells for which
an intensity index has been defined (see Section 3). The
related literature offers a large amount of code smell
detectors [99], however all such tools classify classes
strictly as being or not affected by a code smell, thus
not computing a degree of intensity of code smells.
At the same time, some other code smell prioritization
approaches have been proposed [67], [68], but unfortu-
nately they cannot handle all the code smells considered
in this study. As an example, the Bayesian technique
proposed by Khomh et al. [67] assigns a probability that
a certain class is affected by the God Class code smell,
while it has not been defined for other smell types.
For this reason, we relied on the detection performed
by JCodeOdor [29], because (i) it has been empirically
validated demonstrating good performances in detecting
code smells (see Section 6), and (ii) it detects all the
code smells considered in the empirical study. Finally, it
computes the value of the intensity index on the detected
code smells.

To build a bug prediction model that discriminates
actual smelly and non-smelly classes, we decided to dis-
card the false positive instances from the set of candidate
code smells given by the detection tool. To discard such
instances we compared the results of the tool against an
annotated set of code smell instances publicly available
[100]. Specifically, we set the intensity of a class equals
to 0 in case such a class represents a false positive with
respect to all the considered code smells. Once concluded
this process, we trained the prediction model taking into
account the actually smelly classes only. Note that to
ensure a fair comparison, we discarded false positive
classes from all the other experimented baselines, so that
all of them worked on the same dataset.

It is worth observing that the best solution would be
that of considering all the actual smell instances in a
software project (i.e., the golden set). However, the smell
instances which are not detected by JCodeOdor (i.e., false
negatives) do not exceed the structural metric thresholds
that allow the tool to detect and assign them an intensity
value. As a consequence, the intensity index assigned to
these instances would be equal to zero, and still have
no effect on the prediction model. While we can fix the
results of JCodeOdor in the case of false positives (by
setting the intensity index to zero), we cannot assign
an intensity index to false negatives. For this reason, we
discarded them from the training of the model. The effect
of including false positive and false negative instances
in the training of the model is discussed in Section 6.

11

4.2.3 Machine Learning Technique
The final step was the definition of the machine learning
classifier to use. We experimented several classifiers,
namely Multilayer Perceptron [101], ADTree [102], Naive
Bayes [103], Logistic Regression [104], Decision Table
Majority [105], and Simple Logistic [36]. It is worth
noting that most of the classifiers do not output a
boolean value indicating the presence/absence of a bug,
but rather a probability that a certain class is buggy
or not. While we are aware of the possible impact of
the cut-off selection on the performance of the classifier,
finding the ideal settings in the parameter space of a
single classification technique would be prohibitively
expensive [106]. For this reason, we decided to test
the different classification techniques using the default
setting, i.e., a class is buggy if the probability found by
the classifier is higher than 0.5, non-buggy otherwise.

We empirically compared the results achieved by the
prediction model on the software systems used in our
study (more details on the adopted procedure later in
this section). A complete comparison among the experi-
mented classifiers can be found in our online appendix
[34]. Over all the systems, the best results on the baseline
model were obtained using the Simple Logistic, confirm-
ing previous findings in the field [37], [53]. Thus, in this
paper we report the results of the models built with
this classifier. Simple Logistic uses a statistical technique
based on a probability model. Indeed, instead of simple
classification, the probability model gives the probability
of an instance belonging to each individual class (i.e.,
buggy or not), describing the relationship between a
categorical outcome (i.e., buggy or not) and one or more
predictors [36].

4.3 Data Analysis and Metrics
Once the model has been instantiated, we validated its
performance and answered our research questions as
explained in the following.

4.3.1 Validation Methodology
To assess the performance of the model we adopted
the 10-fold cross-validation strategy [107]. This strategy
randomly partitions the original set of data into 10 equal
sized subsets. Of the 10 subsets, one is retained as test
set, while the remaining 9 are used as training set. The
cross-validation is then repeated 10 times, allowing each
of the 10 subsets to be the test set exactly once [107]. We
used this test strategy since it allows all observations
to be used for both training and test purpose, but also
because it has been widely-used in the context of bug
prediction (e.g., see [31], [108], [109], [110]).

4.3.2 RQ1 - The contribution of the Intensity Index
To answer RQ1 we computed two widely-adopted met-
rics in bug prediction, namely precision and recall [72]:

precision =
TP

TP + FP
recall =

TP

TP + TN
(2)

where TP is the number of classes containing bugs
that are correctly classified as bug-prone; TN denotes
the number of bug-free classes classified as non bug-
prone classes; and FP measures the number of classes
for which a prediction model fails to identify bug-prone
classes by declaring bug-free classes as bug-prone. Along
with precision and recall we computed the F-Measure,
defined as the harmonic mean of precision and recall:

F -Measure = 2 ∗ precision ∗ recall
precision+ recall

(3)

Furthermore, we reported the Area Under the Curve
(AUC) obtained by the prediction model. The AUC
quantifies the overall ability of a prediction model to
discriminate between buggy and non-buggy classes. The
closer the AUC to 1, the higher the ability of the classifier
to discriminate classes affected and not by a bug. On
the other hand, the closer the AUC to 0.5, the lower the
accuracy of the classifier. In addition, we also computed
the Brier score [111], [112], a metric previously employed
to interpret the results of machine learning models in
software engineering [90], [113] that measures the dis-
tance between the probabilities predicted by a model and
the actual outcome. Formally, the Brier score is computed
as follow:

Brier-score =
1

N

N∑
i=1

(pc − oc) (4)

where pc is the probability predicted by the model on
a class c, oc is the actual outcome for class c, i.e., 0 if the
class is bug-free and 1 if it is buggy, and N is the total
number of classes in a dataset. Low Brier scores indicate
good classifier performances, while high scores indicate
low performances.

Besides the analysis of the performance of the spe-
cialized bug prediction model and its comparison with
the baseline model, we also investigated the behavior of
the experimented models in the classification of smelly
and non-smelly instances. Specifically, we computed the
percentage of smelly and non-smelly classes correctly
classified by each of the prediction models, to evaluate
whether the intensity-including model is actually able to
give a contribution in the classification of classes affected
by a code smell, or whether the addition of the intensity
index also affects the classification of smell-free classes.

In addition, we statistically compared the perfor-
mances achieved by the experimented prediction mod-
els. While the use of the Mann-Whitney test [114] is
widely spread in the literature [84], it is not recom-
mended when comparing the prediction capabilities of
more models over multiple datasets since the perfor-
mances of a machine learner can variate between a
dataset and another [37], [115]. For this reason, we com-
pared the AUC performance distribution of the models
using the Scott-Knott Effect Size Difference (ESD) test
[90], [91]. It represents an effect-size aware variant of the
original Scott-Knott test [116] that (i) uses hierarchical

12

cluster analysis to partition the set of treatment means
into statistically distinct groups, (ii) corrects the non-
normal distribution of an input dataset, and (iii) merges
any two statistically distinct groups that have a negli-
gible effect size into one group to avoid the generation
of trivial groups. To measure the effect size, the tests
uses the Cliff’s Delta (or d) [117]. In the context of our
study, we employed the ScottKnottESD implemen-
tation3 provided by Tantithamthavorn et al. [90]. The
rationale behind the usage of this test was that the Scott-
Knott ESD can be adopted to control dataset-specific per-
formances: indeed, it evaluates the performances of the
different prediction models on each dataset in isolation,
thus ranking the top models based on their performances
on each project. For this reason, we had 34 different
Scott-Knott ranks that we analyzed by measuring the
likelihood of a model to be in the top Scott-Knott ESD
rank, as done in previous work [90], [118], [119].

4.3.3 RQ2 - Comparison between Intensity Index and
Antipattern Metrics
The goal of RQ2 is to compare the performances of
prediction models based on the intensity index with
the performances that is possible to achieve using other
existing metrics which take into account smell-related
information. To perform this comparison, we used the
antipattern metrics defined by Taba et al. [27], i.e., the
Average Number of Antipattern (ANA) in previous
buggy versions of a class, the Antipattern Complexity
Metric (ACM) computed using the entropy of changes
involving smelly classes, and the Antipattern Recurrence
Length (ARL) that measures the total number of releases
in which a class has been affected by a smell. To com-
pute the metrics, we first manually detected the public
releases of the software projects considered in the study.
Note that this step was required because our dataset
does not include all the releases of the software systems.

Secondly, we used our ChangeHistoryMiner tool
[13] to (i) download the source code of each release R
of a software project pi, (ii) detect code smell instances
present in R, and (iii) compute the antipattern metrics.
As done for the evaluation of the contribution of the
intensity index, also in this case we plugged the antipat-
tern metrics into the product- and process-based baseline
models.

We compared the performances of the resulting mod-
els with the ones achieved by the model built using the
intensity index using the same set of accuracy metrics
(i.e., precision, recall, F-Measure, AUC-ROC, and Brier
score). At the same time, we also statistically compared
the models using the Scott-Knott ESD test. Finally, we
also analyzed to what extent the two models are comple-
mentary in the classification of the bugginess of classes
affected by code smells. Specifically, let mint be the
model built plugging in the intensity index; let mant be
the model built by considering the antipattern metrics,

3. https://github.com/klainfo/ScottKnottESD

we computed the following overlap metrics on the set
of buggy and smelly instances of each system:

TPmint∩mant
=
|TPmint

∩ TPmant
|

|TPmint ∪ TPmant |
% (5)

TPmint\mant
=
|TPmint

\ TPmant
|

|TPmint ∪ TPmant |
% (6)

TPmant\mint
=
|TPmant

\ TPmint
|

|TPmant ∪ TPmint |
% (7)

where TPmint
represents the set of bug-prone classes

correctly classified by the prediction model mint, while
TPmant is the set of bug-prone classes correctly clas-
sified by the prediction model mant. The TPmint∩mant

metric measures the overlap between the sets of true
positives correctly identified by both models mint and
mant, TPmint\mant

measures the percentage of bug-prone
classes correctly classified by mint only and missed
by mant, and TPmant\mint

measures the percentage of
bug-prone classes correctly classified by mant only and
missed by mint.

4.3.4 RQ3 - Gain Provided by the Intensity Index
As for RQ3, we conducted a fine-grained investigation
aimed at measuring how important is the intensity index
with respect to the other features (i.e., product, process,
and antipattern metrics) composing the experimented
models. In particular, we used an information gain algo-
rithm [120] to quantify the gain provided by adding the
intensity index in each prediction model. Formally, let
M be a bug prediction model, let P = {p1, . . . , pn} be
the set of predictors composing M , an information gain
algorithm [120] applies the following formula to com-
pute a measure which defines the difference in entropy
from before to after the set M is split on an attribute p1:

InfoGain(M,pi) = H(M)−H(M |pi) (8)

where the function H(M) indicates the entropy of the
model that includes the predictor pi, while the function
H(M |pi) measures the entropy of the model that does
not include pi. Entropy is computed as follow:

H(M) = −
n∑

i=1

prob(pi) log2 prob(pi) (9)

In other words, the algorithm quantifies how much
uncertainty in M was reduced after splitting M on pre-
dictor p1. In the context of our work, we applied the Gain
Ratio Feature Evaluation algorithm [120] implemented in
the WEKA toolkit [121], which ranks p1, . . . , pn in de-
scending order based on the contribution provided by pi
to the decisions made by M . In particular, the output of
the algorithm is a ranked list in which the predictors hav-
ing the higher expected reduction in entropy are placed
on the top. Using this procedure, we evaluated the rele-
vance of the predictors in the prediction model, possibly

13

understanding whether the addition of the intensity
index gives a higher contribution with respect to the
structural metrics from which it is derived (i.e., metrics
used for the detection of the smells) or with respect the
other metrics contained in the models. During this step,
we also verified—through the evaluateAttribute
function of the WEKA implementation of the algorithm—
whether a certain predictor mainly contributes to the
identification of buggy or non-buggy classes, i.e., if there
exists a positive or negative relationship between the
predictor and the bug-proneness of classes. The algo-
rithm was applied on each system of the dataset and for
each set of predictors considered (i.e., based on structural
metrics [30], entropy of changes [5], number of developer
[56], scattering metrics [32], [33], and antipattern metrics
[27]), and for this reason we had to analyze 34 ranks for
each basic model. Therefore, as suggested by previous
work [122], [123], [124] we adopted again the Scott-Knott
ESD test [90], which in this case had the goal to find
statistically significant relevant features composing the
models.

4.3.5 RQ4 - Combining Basic Predictors and Smell-
related Metrics

Until now, we assessed the contribution of the intensity
index in prediction models based on different sets of
metrics without considering a combination of product
and process predictors. In RQ4 our goal is to find a com-
bined set of metrics that uses smell-related information
together with product and process metrics to achieve
better performances. To build the smell-aware combined
model, we defined the following process:
• The metrics belonging to the previously tested mod-

els, i.e., the 16 structural metrics [30], the entropy
of changes [5], the number of developers [31], the
scattering metrics [33], the antipattern metrics [27],
and the intensity index [29] are put all together in
a single dataset.

• To select the variables actually relevant to predict
bugs and avoid multicollinearity [94], we applied
the variable removal procedure based on the vif
function described for RQ1.

• Finally, we tested the performances of the com-
bined model using the same procedures and metrics
used in the context of RQ1, i.e., precision, recall, F-
measure, AUC-ROC, and Brier score. At the same
time, we statistically compared the performances of
the experimented models by means of Scott-Knott
ESD test.

5 ANALYSIS OF THE RESULTS

In the following we discuss the results, aiming at pro-
viding an answer to our research questions. To avoid
redundancies, we discuss the first two research questions
together.

5.1 The performances of the proposed model and its
comparison with the state-of-the-art

Before describing the results related to the addition of
the intensity index in the different prediction models
considered, it is worth reporting the output of the feature
selection process aimed at avoiding multi-collinearity by
removing irrelevant features from the structural model.
In particular, for each considered project we discovered
a recurrent pattern in the pairs of metrics highly corre-
lated:

1) Weighted Method per Class (WMC) and Response
for a Class (RFC);

2) Coupling Between Objects (CBO) and Afferent Cou-
plings (CA);

3) Lack of Cohesion of Methods (LCOM) and Lack of
Cohesion of Methods 3 (LCOM3);

4) Maximum Cyclomatic Complexity (MAX(CC)) and
Average Cyclomatic Complexity (AVG(CC));

According to the results achieved using the vif func-
tion [94], we removed the RFC, CA, LCOM, and
MAX(CC) metrics. Therefore, the resulting structural
model is composed of 16 metrics.

Figure 2 depicts the box plots reporting the distribu-
tions of F-Measure, AUC-ROC, and Brier score achieved
by the experimented models on the systems in our
datasets. For sake of readability, we decided to report
only the distribution of the harmonic mean of precision
and recall (i.e., F-Measure) rather than also reporting the
distributions of precision and recall. Detailed results for
these two metrics can be found in our online appendix
[34]. Figure 2 reports the performances of the (i) basic
prediction model (label “Basic”), (ii) intensity-including
prediction models (label “Int.”), and (iii) antipattern
metrics-including prediction models (label “Ant. Met-
rics”) built using different basic predictors, i.e., struc-
tural metrics in Figure 2a, entropy of changes in Figure
2b, number of developers in Figure 2c, and scattering
metrics in Figure 2d. Furthermore, Table 7 reports the
average percentages of smelly and non-smelly classes
correctly classified (with respect to bugginess) by each
of the analyzed models.

Looking at Figure 2, models based on entropy of
changes and scattering metrics tend to perform generally
better than models built using structural metrics. For
instance, DCBM (the model using the scattering met-
rics as predictors [33]) has a median F-Measure 12%
higher than the structural model (69% vs 57%), while the
improvement considering each dataset independently
varies between 1% and 32%. This result confirms previ-
ous findings on the superiority of process metrics in the
prediction of bugs [40], [55]. The only exception regards
the Developer Model (DM) which uses the number of
developers as predictor of the bugginess of a code com-
ponent. However, also in this case the result confirms
previous analyses conducted by Ostrand et al. [31] and
by Di Nucci et al. [33] about the limited usefulness of
this metric in bug prediction.

14

Fig. 2: Performances achieved by the experimented prediction models. Red dots indicate the mean of the
distributions

(a) Performances of Structural Metric-based Models. Basic refers to the model built only using structural
metrics, Int. refers to the model in which the intensity index is an additional predictor, Ant. Metrics refers
to the model where the antipattern metrics are included as additional predictors.

Basic Int. Ant. Metrics

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

F−Measure

●

●

Basic Int. Ant. Metrics

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

●

●

●

AUC−ROC

Basic Int. Ant. Metrics

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

Brier Coefficient

(b) Performances of Entropy-based Models. Basic refers to the model built only using the entropy of changes,
Int. refers to the model in which the intensity index is an additional predictor, Ant. Metrics refers to the model
where the antipattern metrics are included as additional predictors.

●

●

Basic Int. Ant. Metrics

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

F−Measure

●

●

Basic Int. Ant. Metrics

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

●

●

●

AUC−ROC

Basic Int. Ant. Metrics

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

Brier Coefficient

(c) Performances of DM-based Models. Basic refers to the model built only using the number of developers,
Int. refers to the model in which the intensity index is an additional predictor, Ant. Metrics refers to the
model where the antipattern metrics are included as additional predictors.

●

●

Basic Int. Ant. Metrics

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

F−Measure

●

●

●

Basic Int. Ant. Metrics

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

●

●

●

AUC−ROC

Basic Int. Ant. Metrics

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

Brier Coefficient

(d) Performances of DCBM-based Models. Basic refers to the model built only using scattering metrics, Int.
refers to the model in which the intensity index is an additional predictor, Ant. Metrics refers to the model
where the antipattern metrics are included as additional predictors.

●

●

●

Basic Int. Ant. Metrics

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

F−Measure

●

●

●

Basic Int. Ant. Metrics

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

●

●

●

AUC−ROC

Basic Int. Ant. Metrics

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

Brier Coefficient

15

TABLE 7: Percentage of Smelly and Non-Smelly Classes Correctly Classified by the Experimented Models

Basic Model Configuration % Cor. Class. Smelly Instances Cor. Class. Non-Smelly Instances

Structural Metrics [30]
Basic 45 66
Basic + Intensity 69 68
Basic + Ant. Metrics 48 66

BCCM [5]
Basic 42 55
Basic + Intensity 55 68
Basic + Ant. Metrics 49 56

DM [56]
Basic 31 41
Basic + Intensity 63 46
Basic + Ant. Metrics 42 43

DCBM [33]
Basic 53 87
Basic + Intensity 77 88
Basic + Ant. Metrics 64 85

TABLE 8: Comparison between ColorOptionPane and JEditMetalTheme (JEdit) in terms of Structural Metrics

Class W
M

C

D
IT

N
O

C

C
BO

C
E

N
PM

LC
O

M
3

LO
C

D
A

M

M
O

A

M
FA

C
A

M

IC C
BM

A
M

C

A
V

G
(C

C
)

In
te

ns
it

y

org.gjt.sp.jedit.options.ColorOptionPane 7 2 0 6 5 8 0.68 277 0.74 0 0.87 0.24 4 3 9 1 4.5
org.gjt.sp.jedit.gui.JEditMetalTheme 8 4 0 7 4 7 0.59 265 0.78 1 0.88 0.29 6 2 7 1 8.4

TABLE 9: The likelihood of each model appearing in the
top Scott-Knott ESD rank. A likelihood of 80% indicates
that a classification technique appears at the top-rank for
80% of the studied datasets.

Basic Model Configuration SK-ESD
Likelihood

Structural Metrics [30]
Basic 29
Basic + Intensity 85
Basic + Ant. Metrics 34

BCCM [5]
Basic 44
Basic + Intensity 69
Basic + Ant. Metrics 55

DM [56]
Basic 9
Basic + Intensity 52
Basic + Ant. Metrics 37

DCBM [33]
Basic 57
Basic + Intensity 86
Basic + Ant. Metrics 69

Turning to the role of the intensity index, we observed
that regardless of the set of basic predictors used by a
prediction model, the intensity of code smells provides
an additional useful information able to increase the
ability of the model in discovering bug-prone code com-
ponents. This is observable by looking at all the accuracy
indicators reported in Figure 2.

Contribution in Structural-based Models. The addition
of the intensity allows the model to reach a median F-
Measure of 59%, AUC-ROC of 76%, and a Brier Score
of 0.4, i.e., +4%, +3%, and -0.10 with respect to the basic
model, respectively. When compared to the antipattern
metrics-including model, the intensity-including one still
performs better (i.e., +8% in terms of median F-Measure,

+3% in terms of median AUC-ROC, and -0.06 in terms
of Brier score). When considering the improvement on
each dataset independently, the model that includes the
intensity index has an improvement ranging between 5%
and 17% in terms of F-Measure than the basic one.

Looking deeply into the results, we observed that the
box plots for the intensity-including model appear less
disperse than the basic one, meaning that the addition of
the intensity index makes the performances of the model
more stable. Furthermore, the entire distributions report
improved values with respect to the model that does
not include the intensity index. For instance, an inter-
esting example regards the JEdit 4.0 project, where
the basic model reached 81% of precision and 67% of
recall (F-Measure=73%). By adding the intensity index,
the model obtained 83% of precision and 75% of recall (F-
Measure=79%). Investigating more in depth the causes
behind the increment of the performances, we found
that the model including the intensity index was able to
correctly classify all the smell instances in the system (i.e.,
16% of the total classes). These results highlight how the
addition of a measure reporting the severity of a smell is
actually useful when predicting the bugginess of a code
smell.

It is also important to highlight that the structural
based intensity-including model also performs better
than the basic one when considering the Brier score:
from a practical point of view, this result means that the
predictions provided by the model relying on the inten-
sity index are closer to the actual outcome, thus being
more accurate when defining the bugginess of classes.
Analyzing the percentage of smelly and non-smelly classes
correctly classified by the specialized bug prediction

16

model instantiated on the basis of the structural model,
we can understand that the increment of the perfor-
mances is mainly due to a better classification of in-
stances composing the set of classes having design flaws
(+24%), while the non-smelly classes are treated generally
in the same way by both the models, even if also in
this case a slight increment is visible (+2%). An interest-
ing example regarding the previously mentioned JEdit
project is represented by the class ColorOptionPane
contained in the org.gjt.sp.jedit.options pack-
age. This class contains a Dispersed Coupling code smell
having an intensity index of 4.5. The basic model clas-
sifies this class as buggy, since its structural metrics are
considered by the model as indicators of the presence
of a bug. Conversely, the low level of intensity allows
the Basic + Intensity model to correctly mark this class
as non-buggy. On the other hand, an example of code
component correctly classified as buggy thank to the
use of the intensity index computed for the Message
Chains smell is the JEditMetalTheme class from the
org.gjt.sp.jedit.gui package. In this case, the Ba-
sic model misclassifies this class as non-buggy, while
the specialized model correctly classifies it as buggy.
It is important to note that the ColorOptionPane
and JEditMetalTheme classes have similar metrics
(as shown in Table 8), and the only predictor able to
distinguish them is the intensity index.

When studying the Structural Model which includes
the antipattern metrics defined by Taba et al. [27], we
observed that it achieves performances similar to the
basic model when considering the F-Measure. At the
same time, the addition of the antipattern metrics pro-
vide benefits with respect to the Brier score, with an
improvement of 0.04. We also found cases where the
antipattern metrics allow the prediction model to be up
to 10% more precise in the predictions. Thus, we can
confirm what has been found in the previous empirical
validation conducted by Taba et al. [27]. For example,
the precision achieved by the Basic + Ant. Metrics model
on the Apache Camel 1.4 project is 54%, while its
recall reached 13% (F-Measure=20%). In this case, the
value of precision is exactly 10% higher than the one
of the basic model. We manually analyzed this specific
case in order to understand the reasons behind this
result. Surprisingly, we observed that in this project the
code smell instances tend to frequently co-occur with
buggy classes. As a result, several buggy classes contain
more code smells. By definition, the antipattern metrics
have the goal to measure the quantity, the complexity or
the recurrence length of code smells. Since in Apache
Camel 1.4 the quantity of code smells contained by
a class is a particularly relevant feature, this aspect
gave the possibility to the antipattern metrics to better
characterize the bug-prone components. Note that in
this project the Basic + Intensity model still outperforms
the other baseline models (F-Measure=42%). However,
we observed that in this particular situation the main
contribution of the intensity index was given to the

TABLE 10: Overlap analysis between the model includ-
ing the intensity index and the model including the
antipattern metrics.

Basic Model Int. ∩ Int. \ Ant. \
Ant.% Ant.% Int.%

Structural Metrics [30] 39 34 27
BCCM [5] 45 38 17
DM [56] 54 38 8
DCBM [33] 42 37 21

classification of non-smelly classes (the percentage of
correctly classified non-smelly instances is 16% higher
than the basic model), while the smelly classes have been
classified better by the Basic + Ant. Metrics model (the
percentage of correctly classified smelly instances is 4%
higher than our model).

This result is particularly interesting because, while
the Basic + Ant. Metrics model always achieved lower
performance than the Basic + Intensity model (consider-
ing the median of the distributions, -8% of F-Measure,
-3% of AUC-ROC, and +0.06 of Brier score), it is re-
markable that in some cases the antipattern metrics can
provide useful and complementary information with
respect to the intensity index, paving the way to the
possibility to obtain still better performances by consid-
ering both the intensity and the antipattern metrics. The
claim is supported by the analysis of the overlap metrics
computed on the set of buggy and smelly classes correctly
classified by the two models, shown in Table 10. While
39% of the instances are correctly classified by both the
models, a consistent portion of instances are classified
only by our model (34%) or by the model using the
antipattern metrics (27%). From a practical perspective,
this means that the smell-related information taken into
account by the Basic + Intensity and Basic + Ant. Metrics
models are orthogonal and complement each other.

The observations made above were also confirmed
from a statistical point of view. Indeed, as shown in Table
9 the intensity-including prediction model consistently
appeared in the top Scott-Knott ESD rank in terms of
AUC-ROC, meaning that its performance was statisti-
cally higher than the baselines in most of the cases (29
projects out of 34).

Contribution in Process-based Models. When includ-
ing the intensity index, all the experimented predic-
tion models improved their performance with respect
to the basic models. Moreover, we found interesting
complementarities between the intensity-including and
antipattern metrics-including models even though our
solution tends to perform better than the one by Taba et
al. [27].

Further analyzing the results, we observed that the use
of the intensity index as additional feature can increase
the number of correctly classified instances, resulting in
a lower Brier score than the basic model. This is a quite
expected result, since the addition of the intensity index

17

adds an orthogonal source of information with respect
to the process metrics. It is particularly evident in the
case of the DM model, where the median F-Measure
increased of 22% when the intensity is plugged-in. In
the other cases, the addition of the intensity results in
a median F-Measure 10% higher in the BCCM model
and 6% higher in the case of the DCBM model, with
an individual dataset improvement ranging between 2%
and 17%, and 1% to 9%, respectively. Moreover, it is
important to note that the models including the smell
intensity are able to assist in both the prediction of smelly
and non-smelly classes. For instance, the percentage of
non-smelly instances correctly classified by the BCCM
+ Intensity model is 13% higher with respect to the
baseline. This means that the information about the
quality of the source code is effectively used by the
prediction model to better discriminate bug-prone code
components.

An aspect to highlight is that in the cases when
the prediction accuracy of the baseline process-based
models are low, the intensity can increase the quality
of the predictions up to 47%. This is the case of Apache
Velocity 1.4 project, where the BCCM model reaches
33% of accuracy in the predictions. By adding the in-
tensity index, the prediction model increases its per-
formances to 80% (+47%), demonstrating that a better
characterization of the classes having design problems
can help in obtaining more accurate predictions. It is
also interesting to analyze the results on the percentage
of smelly classes correctly classified. On the Apache
Velocity 1.4 project, the baseline model correctly
classifies half of the smelly classes, while the model
considering the intensity is able to capture 100% of the
buggy and smelly classes.

Another interesting observation can be made analyz-
ing the results obtained on the DCBM model. Although
the performances of such model are quite high (median
F-Measure=70%, AUC-ROC=67%, Brier score=0.44), also
in this case the addition of the intensity index is able
to refine the predictions of the baseline model, ensur-
ing slightly higher performances. This is mainly due
to the better results obtained in the classification of
smelly classes (overall, +24% of correctly classified smelly
instances). Thus, we can claim that even in cases where
the performances of the baseline models are high, the
intensity index still helps in improving them.

Finally, when considering the model including the
antipattern metrics we learnt that it has lower perfor-
mances than the model including the intensity index.
However, it is important to point out that the Basic + Ant.
Metrics model still produces more accurate predictions
than the basic models. More importantly, as in the case of
the structural model we observed a strong complemen-
tarity between the set of buggy and smelly classes correctly
classified by our model and by the Basic + Ant. Metrics
(see Table 10). This aspect confirms that also in the
prediction models based on process metrics the addition
of smell-related metrics is always convenient, and that

TABLE 11: Gain Provided by Each Metric To The Predic-
tion Model based on Structural Metrics.

Metric Mean St. Dev. Class SK-ESD
Likelihood

CBO 0.41 0.23 buggy 67
LCOM3 0.34 0.25 non-buggy 74
WMC 0.33 0.05 buggy 61
Intensity 0.32 0.16 non-buggy 53
DAM 0.25 0.06 buggy 48
DIT 0.22 0.05 non-buggy 45
Average Number of Antipatterns 0.21 0.09 buggy 44
AMC 0.15 0.11 non-buggy 31
LOC 0.15 0.07 buggy 25
MFA 0.14 0.02 buggy 23
IC 0.11 0.03 non-buggy 17
CBM 0.09 0.04 non-buggy 14
Antipattern Complexity Metric 0.07 0.02 buggy 9
AVG(CC) 0.05 0.05 buggy 5
CE 0.04 0.02 buggy 5
CAM 0.03 0.02 non-buggy 3
Antipattern Recurrence Length 0.03 0.02 buggy 2
MOA 0.02 0.01 non-buggy 2
NOC 0.01 0.02 non-buggy 2
NPM 0.01 0.01 buggy 2

better performances might be achieved by considering a
combination of the intensity and the antipattern metrics.

The statistical analyses confirmed the findings dis-
cussed above (see Table 9). Indeed, the likelihood to be
ranked at the top by the Scott-Knott ESD test is always
higher for the models including the intensity index. At
the same time, the antipattern metrics-including models
were confirmed to provide statistically better perfor-
mances than the basic ones in most cases.

Summary for RQ1. The addition of the intensity
index as predictor of buggy components generally
increases the performance of the baseline bug predic-
tion models over all the analyzed projects in terms
of F-Measure, AUC-ROC, and Brier score. We also
observed cases in which the prediction accuracy in-
creases up to 47% with respect to the performance
achieved by models not considering the intensity
metric. Our findings are also statistically significant.

Summary for RQ2. Even if the prediction mod-
els including the antipattern metrics slightly outper-
form the basic models, we experienced that they
have lower performances than the proposed intensity-
including models. However, we observed an interest-
ing complementarity between the set of buggy and
smelly classes correctly classified by the intensity-
including and by the antipattern metrics-including mod-
els, which highlights the possibility to obtain still
higher performances through a combination of smell-
related information.

5.2 The gain provided by the intensity index and by
the other predictors
While in the previous analyses we investigated the per-
formances of bug prediction models with and without
the addition of smell-related information, in this stage

18

TABLE 12: Gain Provided by Each Metric To The BCCM
Prediction Model.

Metric Mean St. Dev. Class SK-ESD
Likelihood

Entropy of Changes 0.84 0.08 non-buggy 92
Intensity 0.44 0.11 buggy 77
Average Number of Antipatterns 0.29 0.13 buggy 56
Antipattern Complexity Metric 0.07 0.03 non-buggy 18
Antipattern Recurrence Length 0.03 0.06 non-buggy 11

TABLE 13: Gain Provided by Each Metric To The DM
Prediction Model.

Metric Mean St. Dev. Class SK-ESD
Likelihood

Developers 0.75 0.14 non-buggy 85
Intensity 0.39 0.15 buggy 61
Average Number of Antipatterns 0.34 0.13 buggy 56
Antipattern Complexity Metric 0.12 0.36 buggy 14
Antipattern Recurrence Length 0.07 0.03 non-buggy 8

we are interested in understanding how important are
the predictors composing the different models analyzed
in this study, with the aim to evaluate the predictive
power of the intensity index and of the other predictors.

Table 11 shows the results achieved when applying
the Gain Ratio Feature Evaluation algorithm [120] on the
set of predictors investigated in the structural metrics-
based bug prediction model, while Tables 12, 13, and 14
report the contribution given by the predictors studied
when considering the BCCM, DM, and DCBM models.
The results have been aggregated to provide a clearer
visualization. Specifically, we report the ranking of the
predictors based on their importance for the model,
together with the values of the mean and the standard
deviation (computed by considering the results obtained
on the single systems) of the expected reduction in
entropy caused by partitioning the prediction model ac-
cording to a given predictor. In addition, we also provide
(i) the class to which a certain predictor contributes the
most (i.e., if a predictor helps more in the prediction of
buggy or non-buggy classes) and (ii) the likelihood of
the predictor to be in the top-rank by the Scott-Knott
ESD test, i.e., the percentage of times a predictor was
statistically superior than the others.

Gain Provided to Structural-based Models. The results
show that the Coupling Between Objects (CBO) is the
metric having the highest predictive power, confirming
the findings by Gyimóthy et al. [45]. In particular, we
found CBO at the top of the ranked list on 28 out of the
total 34 systems analyzed, with an average reduction of

TABLE 14: Gain Provided by Each Metric To The DCBM
Prediction Model.

Metric Mean St. Dev. Class SK-ESD
Likelihood

Structural Scattering 0.67 0.22 buggy 93
Semantic Scattering 0.54 0.26 non-buggy 85
Intensity 0.33 0.15 buggy 48
Average Number of Antipatterns 0.25 0.11 buggy 41
Antipattern Complexity Metric 0.10 0.04 buggy 22
Antipattern Recurrence Length 0.06 0.09 non-buggy 11

entropy of 0.41 and a standard deviation of 0.23 (i.e., we
found one case where the expected reduction of entropy
reaches 0.64, which means it is a very strong predictor).
Interestingly, CBO provides a higher predictive power
with respect to the correct assessment of buggy classes,
meaning that the coupling between classes is an impor-
tant factor characterizing classes affected by bugs. The
Scott-Knott ESD test statistically confirmed the impor-
tance of the predictor, since the information gain given
by the metric was statistically higher than other metrics
in 67% of the cases. While CBO is the most relevant
predictor for buggy classes, the Lack of Cohesion of
Methods (LCOM3) was the most important with respect
to non-buggy classes. According to the Scott-Knott ESD
test, the metric appeared statistically more powerful than
the other metrics in 74% of the datasets. To quantify
the benefit of this predictor to the resulting model, we
observed that on average the information gain provided
by the metric was 0.34 with a standard deviation of 0.25.
The Weighted Method per Class (WMC) also resulted to
be a relevant metric for predicting buggy classes, looking
both to the information gain and Scott-Knott ESD results.
Indeed, it allowed an information gain equals to 0.33
(standard deviation of 0.05) and was at the top of the
Scott-Knott ESD rank in 61% of the datasets.

Thus, in general we can observe that metrics related to
coupling, cohesion, and complexity are highly important
in the prediction of bugs. Just behind these metrics, the
intensity index is the feature providing the highest gain
in terms of reduction of entropy. We observed that the
contribution given by the metric is valuable on all the ob-
ject projects (minimum gain=0.16, maximum gain=0.48),
confirming that its addition can effectively increase the
accuracy of a structural prediction model. This is a quite
surprising result, since our goal is not the addition of the
most relevant predictor, but rather the introduction of a
measure able to complement the information used by a
prediction model by quantifying in a single value the
severity of design problems affecting a class. A possible
reason behind the result come from the fact that in the
context of a structural-based bug prediction model the
intensity works better in the classification of non-buggy
classes: likely, this is because the degree of smelliness
of a code component allows the model to balance the
structural metric values of classes, as in the case shown
in Table 8. Looking at the results of the statistical test, we
observed that the intensity index is ranked on the top by
the Scott-Knott ESD in 53% of the cases, thus confirming
the high predictive power of the metric.

It is interesting to discuss the result achieved on the
Apache Lucene 2.4 project, where the intensity met-
ric is evaluated as the most important by the Gain Ratio
Feature Evaluation algorithm, which quantifies as 0.47 the
gain of the metric in reducing the entropy of the predic-
tion model. Looking at the ranking, we observed that the
single quality metrics from which the intensity index is
computed (i.e., metrics used for the smell detection) are
placed by the algorithm to the bottom of the ranked list

19

(e.g., in this case, LCOM3 is only partially relevant and
it provides a small gain of 0.09). In other words, the
single metrics do not reduce in the same measure the
entropy with respect to the case in which such metrics
are condensed in a single value representing the intensity
of a code smell. As an example, the intensity index
contributes in reducing the entropy of the prediction
model 25% more than the LOC metric, and 6% more than
WMC metric. It is worth noting that, as a consequence,
the ability of the specialized bug prediction model to
correctly classify smelly instances on Apache Lucene
2.4 increases of 22%. Another interesting observation
can be made by looking more in depth into the results of
Apache Velocity 1.4. Also in this case, the metrics
used for the detection of smells are partially relevant
for the prediction model when considered individually
(e.g., CBO=0.27), while the intensity measure is instead
considered as a very useful predictor (gain=0.46). Here
the performance provided by the intensity-including bug
prediction model are 25% better than the baseline model
and this is due to the fact that the specialized model is
able to correctly classify all the smelly instances in the
system.

As for the antipattern metrics, we observed that the
ANA (i.e., Average Number of Antipatterns) metric has
a good ranking (mean gain=0.21) while the other two
metrics, i.e., Antipattern Complexity Metric (ACM) and An-
tipattern Recurrence Length (ARL), only provide a partial
contribution in the reduction of entropy of the model.
Also in this case, the Scott-Knott ESD test statistically
confirmed the findings: indeed, ANA was a top predictor
in 44% of the datasets, as opposed to ACM and ARL
metrics which appeared as statistically more powerful
than other metrics only in 9% and 2% of the cases,
respectively. It is important to note that the information
gain analysis highlighted that ANA performed better in
the classification of buggy classes, suggesting that it is
somehow complementary with respect to the intensity
index in the context of product-based bug prediction
models. This result still indicates that taking into account
the quantity of code smells in a class represents a useful
source of information for improving the performances of
bug prediction models.

Gain Provided to Process-based Models. Concerning
the process metric-based models considered in this study,
the results are similar. Indeed, Table 12 highlights how
the intensity index has a mean information gain of 0.44
and it is ranked, overall, just behind the entropy of
changes, that is the core metric of the BCCM model,
while the ANA metric is much more important than the
other antipattern metrics (+0.22 and +0.26 with respect
to ACM and ARL, respectively). It is worth noting
that in this case both the intensity index and ANA
provided contributions in the identification of buggy
classes, while the entropy of changes mainly helped in
the characterization of non-buggy instances: thus, the
results indicate that taking into account other factors

such as the quality of source code actually provide
an important contributions for prediction. The results
discussed so far were confirmed statistically: indeed, the
statistical ranking provided by the Scott-Knott ESD test
is similar to the one produced by the information gain
algorithm.

When considering the DM and DCBM models (see
Tables 13 and 14) the results follow the same pattern:
the intensity index is placed behind the core metrics of
the models but before the antipattern metrics. Also in
this case, the Scott-Knott ESD test statistically confirmed
the findings.

As general observation, it is interesting to notice that
the mean information gains of the intensity index and
of the metric counting the number of antipatterns are
generally higher in the process metrics-based models
than in the structural metrics-based model. These metrics
are computed by considering static properties of the
source code and, therefore, are more relevant in the
context of prediction models based on historical metrics
because they add an orthogonal source of information.

On the light of these results, we can conclude that the
intensity index provides a strong information gain to all
the bug prediction models considered in the study. At
the same time, we experienced that also the ANA metric
has a good predictive power. This confirms somehow
what we found when evaluating the overlap between the
intensity-including and the antipattern metrics-including
models: indeed, the high predictive power of such pre-
dictors suggest that their combination might provide fur-
ther improvements to the basic bug prediction models.

Summary for RQ3. The intensity index has a higher
predictive power with respect to the individual met-
rics from which it is derived. On all the projects of
the study, we found that the intensity metric is one
of the most important predictors of the model. As a
consequence, the gain provided by the intensity index
to the baseline prediction model is highly relevant.
Moreover, we found that the metric able to quantify
the number of code smells in a class has a good pre-
dictive power, confirming that better performances in
the prediction of bugs can be achieved by considering
both the intensity and the antipattern metrics.

5.3 The performances of the combined smell-aware
bug prediction model

The results achieved in the previous research questions
highlight the possibility to build a combined bug pre-
diction model that takes into account smell-related in-
formation besides the product and process metrics. With
this research question (RQ4), we aim at evaluating the
performances of such prediction model. As explained in
Section 4, we performed a feature selection procedure to
discard irrelevant features. From the initial set composed

20

●

●

●

Basic Basic + ANA Basic + ANA + Int. DBCM + Int.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

F−Measure

●

Basic Basic + ANA Basic + ANA + Int. DBCM + Int.

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

●

●

●

●

AUC−ROC

● ●

Basic Basic + ANA Basic + ANA + Int. DBCM + Int.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

Brier Coefficient

Fig. 3: Performances of the Smell-Aware Bug Prediction Model.

TABLE 15: The likelihood of combined models appearing
in the top Scott-Knott ESD rank. A likelihood of 80%
indicates that a classification technique appears at the
top-rank for 80% of the studied datasets.

Basic Model Configuration SK-ESD
Likelihood

Combined Basic 86
Combined Basic + ANA 86
Combined Basic + ANA + Intensity 94
DCBM [33] Basic + Intensity 47

of 24 product, process, and smell-related metrics, this
procedure found ten highly correlated variables:

1) Average Cyclomatic Complexity (AVG(CC)) and
Weighted Method per Class (WMC);

2) Number of Children (NOC) and Depth of Inheri-
tance Tree (DIT);

3) Efferent Coupling (CE) and Coupling Between Ob-
jects (CBO);

4) Number of Public Methods (NPM) and Measure of
Functional Abstraction (MFA);

5) Cohesion Among Methods of Class (CAM) and Lack
of Cohesion of Methods 3 (LCOM3);

6) Measure of Aggregation (MOA) and Data Access
Metric (DAM);

7) Inheritance Coupling (IC) and Depth of Inheritance
Tree (DIT);

8) Number of Developers and Structural Scattering;
9) Antipattern Complexity Metric (ACM) and Entropy

of Changes;
10) Antipattern Recurrence Length (ARL) and Entropy

of Changes;
According to the results of the vif function, we dis-

carded seven structural metrics, i.e., AVG(CC), NOC, CE,
NPM, CAM, MOA, IC, one process metric, i.e., Number
of Developers, and two smell-related metrics, i.e., ACM
and ARL. Therefore, the resulting model contains the
following 14 metrics: nine structural metrics, i.e., CBO,
WMC, LCOM3, DAM, DIT, AMC, LOC, MFA, CBM,
three process metrics, i.e., entropy of changes, structural
and semantic scattering, and two smell-related infor-

mation, i.e., the intensity index and ANA. It is worth
noting that the features selected in this stage perfectly
correspond to the most powerful predictors identified in
RQ3.

Figure 3 depicts the box plots reporting the distribu-
tions of F-Measure, AUC-ROC, and Brier score related to
the smell-aware combined bug prediction model (label
“Basic + ANA + Int.”). To facilitate the comparison with
the models exploited in the context of RQ1 and RQ2,
the figure also reports the performances of the best
prediction model resulting in the previous analyses, i.e.,
the DBCM + Int. model (label “DBCM + Int.” in Figure
3). Moreover, to evaluate to what extent the smell-related
information are actually needed in the context of a model
mixing product and process metrics, we also report the
performances achieved by the combined model built
without using the smell-related metrics (label “Basic”).
Finally, we also report the performances of the model
built including only the ANA metric as additional pre-
dictor in the model mixing together product and process
metrics (label “Basic + ANA” in Figure 3): this helped
us in understanding the contribution given by adding
the intensity index in a model already considering a
combination of product, process, and smell-related in-
formation.

In the first place, the results highlight that the ad-
dition of smell-related information always boosts the
performances of a combined model built using product
and process metrics. Indeed, both the Basic + ANA and
Basic + ANA + Int. provide improved performances than
the Basic combined model considering all the evaluation
metrics. Furthermore, it is important to note that also in
this case the intensity index gives an important contribu-
tion in the prediction of buggy prone classes, i.e., Basic +
ANA + Int. is the model achieving the best results: the F-
Measure improvement varies between 2% and 14% when
compared to the Basic one, while it ranges between 2%
and 11% when compared with the Basic + ANA model.
The evaluation of the other metrics, i.e., AUC-ROC and
Brier score, confirm the findings indicating that the
addition of the intensity index consistently contributes
in boosting the performances of the other experimented

21

TABLE 16: Percentage of Smelly and Non-Smelly Classes Correctly Classified by the Combined Models

Basic Model Configuration % Cor. Class. Smelly Instances Cor. Class. Non-Smelly Instances

Combined Basic 81 90
Combined Basic + ANA 84 90
Combined Basic + ANA + Intensity 93 91
DCBM [33] Basic + Intensity 77 88

models.
Moreover, it is worth noting that the combined model

also achieves higher performances with respect to the
DBCM + Int. model when considering both the eval-
uation metrics and the percentage of smelly and non-
smelly instances correctly classified (shown in Table 16).
In particular, the model significantly outperforms the
other in terms of median F-Measure (+13%), AUC-ROC
(+12%), and Brier score (-0.27).

As expected, the results are statistically significant (see
Table 15), as the devised Basic + ANA + Int. appeared in
top Scott-Knott ESD rank in 94% of the cases, overcom-
ing the other models built using a combination of metrics
and the one relying on scattering plus the intensity
metrics. When considering buggy and smelly instances,
it is worth observing that the addition of the intensity
index allows the combined model to correctly classify a
larger number of such instances than (i) the Basic + ANA
one (+9%), (ii) the Basic one (+12%), and (iii) the DBCM
+ Int. one (+16%). At the same time, it slightly improves
also the classification of non-smelly classes (+1% with
respect to the other combined models).

On the one hand, the reason behind the strong im-
provement obtained by the combined models is that
the combination of predictors having different nature
provides an improvement of the performances of the
models exploiting single types of predictors, as pointed
out by D’Ambros et al. [53]. On the other hand, it is
important to remark that, as demonstrated by the first
three research questions, the addition of smell-related
information helps in characterizing both the classes af-
fected by code smells and those components not affected
by any design flaw.

An interesting example regards the project Apache
POI 2.5.1. In this case, by mixing product and process
metrics only the resulting precision is 76%, while the
recall reaches 84% (F-Measure=80%). Even though the
performances are higher than the one achieved by the
DBCM + Int. model (+8% of precision, +5% of recall), at
the same time they are strongly lower than the ones ob-
tained by the combined model which takes into account
the smell metrics. Indeed, the latter model achieves 100%
of precision and recall (+24% of precision and 16% of
recall) since it is able to perfectly characterize both smelly
and non-smelly classes.

In conclusion, we can claim that bug prediction mod-
els taking into consideration the presence of design
problems are able to perform much better than the other
models.

TABLE 17: Performance of JCodeOdor on the software
projects object of the empirical study

Code Smell Precision Recall F-Measure # TP # FP # FN

God Class 77% 85% 81% 85 25 15
Data Class 79% 86% 83% 83 22 13
Brain Method 73% 77% 75% 79 29 23
Shotgun Surgery 70% 84% 77% 76 32 14
Dispersed Coupling 82% 85% 84% 87 19 15
Message Chains 78% 86% 82% 87 24 14
Overall 76% 84% 80% 496 154 94

Summary for RQ4. As expected, combined models
perform better than prediction models relying on
single types of predictors. However, the contribution
of smell-related information are valuable also when
product and process metrics are used together. At the
same time, the addition of the intensity index in a
combined model built using product, process, and the
ANA metric is still valuable and consistently boosts
the performances of the prediction model.

6 THREATS TO VALIDITY

Threats to construct validity are related to the relationship
between theory and observation. Above all, we relied on
JCodeOdor [29] for detecting code smells.

The intensity index computed by the tool derives
by a set of code metrics characterizing cohesion, cou-
pling, complexity, size, and data access of classes. A
first problem threatening our observations might be
the redundancy of such metrics [125]. To verify the
validity of the intensity computation, we assessed multi-
collinearity between metrics using the same procedure
as the one adopted in the context of RQ1 and RQ4, i.e.,
we computed the Spearman’s rank correlation between
all possible pairs of metrics and then we exploited a
stepwise variable removal using the vif function. As a
result, we found all the Spearman’s correlation values
to be lower than 0.6, thus indicating weak correlations
between them. Moreover, the vif function did not report
the need to remove variables. Thus, we can claim that
the intensity computation is not threatened by multi-
collinearity between the variables it is derived from.
Complete results of this analysis are available in our
online appendix [34].

Still, our observations might have been threatened
by the presence of a high number of code smell co-
occurrences in our dataset [23]. In these cases, we built

22

smell-aware bug prediction models using the maximum
intensity computed by JCodeOdor: while the maximum
value likely highlights the code smell that impact more
the maintainability of the class, the co-occurrence of
other code smells might hide information that are not
captured by our model. To measure the extent to which
this phenomenon happened in our study, we computed
the percentage of classes in our dataset affected by more
smells: as a result, we found that only a small portion
of classes, on average 8% of the project classes, contains
more than one smell: thus, we can claim that the problem
of co-occurrence is quite limited in our case.

We have validated the code smell detector perfor-
mance on the software projects analyzed in this paper.
Table 17 reports precision, recall, and F-Measure values
obtained by considering the instances of all the projects
as a single dataset (i.e., overall). A detailed analysis of
the performance of the detector for each project can
be found in our online appendix [34]. We can observe
that the performance of the detector ranges between
75% and 84% in terms of F-Measure. Despite the quite
high precision and recall (i.e., overall, 76% and 84%,
respectively), the tool still identifies 154 false positives
and 94 false negatives among the 45 systems considered.
To make the set of code smells as close as possible to
the golden set, in our study we fixed the output of the
tool by (i) setting to zero the intensity index of the false
positive instances, and (ii) discarding the false negatives,
for which we could not assign an intensity value. As
such manual adjustments are not always feasible, we
evaluated the effect of including false positives and
false negatives in the construction of the bug prediction
model.

In the first place, we re-run the analyses described in
Section 4 and validate the performances of the models
including the false positive instances using the same
metrics used to assess the performances of the other pre-
diction models (i.e., precision, recall, F-Measure, AUC-
ROC, and Brier score). As a result, we observed that
these models always perform better than the baselines
that do not include any smell-related information, while
their performances are slightly lower (2% in terms of me-
dian F-Measure) than the ones of the prediction models
built discarding the false positive instances.

Secondly, we evaluated what is the impact of including
false negative instances. Since their intensity index is
equal to zero, they have been considered as non-smelly
classes. The results showed that the intensity-including
models still produce more accurate results than the basic
models, by boosting their median F-Measure of 5%. At
the same time, there is a decrement of 4% in terms
of F-Measure with respect to the performances of the
prediction models built discarding false negatives.

Finally, we considered the case where both false pos-
itives and false negatives are included in the prediction
model. We observed that the Basic + Intensity models
have a median F-Measure 5% lower than the models
where the false positive and false negative instances

TABLE 18: Code Smells treated by Existing Prioritization
Approaches

Tool G
od

C
la

ss

D
at

a
C

la
ss

Br
ai

n
M

et
ho

d

Sh
ot

gu
n

Su
rg

er
y

D
is

pe
rs

ed
C

ou
pl

in
g

M
es

sa
ge

C
ha

in
s

Arcelli Fontana et al. [29] X X X X X X
Arcoverde et al. [126] X
Khomh et al. [67] X
Marinescu [127] X X X
Oliveto et al. [68] X
Tsantalis et al. [128] X
Vidal et al. [129] X X X X X

have been filtered out. However, they are still better
than basic models (median F-Measure=+4%). Thus, we
concluded that a fully automatic code smell detection process
still improves the performance of the baseline bug prediction
model.

It is important to remark that the selection of the code
smell detector might have influenced the results. How-
ever, among all the detectors proposed in literature [99]
JCodeOdor is the only one suitable for our purpose since it
is the only one able to compute an intensity index for the
code smells considered in the study. More specifically,
most of the previous approaches do not rank code smells
based on their severity but classify code components us-
ing a boolean value reporting the presence/absence of a
smell [9], [10], [11], [12], [130]; on the other hand, Table 18
reports the code smell prioritization techniques defined
in literature and whether they defined an intensity index
for the code smells considered in our study. As it is
possible to observe, most of them [67], [68], [126], [128]
are only able to treat the God Class smell, not defining
an intensity index for the other code smells. At the same
time, the tool proposed by Vidal et al. [129] is able to deal
with five of the considered smells, however it does not
treat the Message Chains one. Conversely, the tool by
Arcelli Fontana et al. [29] detects and prioritize all the
code smells in our study. Moreover, it is also worth to
note that the performances of the employed detector are
quite high and the presence of false positives does not
have an extreme negative impact on the bug prediction
capabilities: from a practical point of view, this means
that the use of a more accurate code smell detection
tool computing an intensity index can only improve the
results achieved in this study.

Another threat to construct validity regards the anno-
tated set of bugs and code smells used in the empirical
study. As for bugs, we rely on the publicly available
oracles in the PROMISE repository [87]: to ensure qual-

23

ity and robustness of data we performed (i) a careful
selection of projects considering only the ones having
a percentage of buggy classes lower than 75% and EPV
ratios higher than 10, as suggested in previous work [90],
[91], and (ii) a preliminary data preprocessing following
the guidelines provided by Shepperd et al. [92] in order
to remove noisy data. For code smells, we rely on the
oracles publicly available in [100], previously used in
[10], [11], [13], [18], [131]. However, we cannot exclude
that the oracle we used misses some bugs or smells, or
else include some false positives.

Threats to conclusion validity concern the relation be-
tween the treatment and the outcome. To evaluate the
experimented bug prediction models we employed a
number of metrics, i.e., precision, recall, F-Measure,
AUC-ROC, and Brier score, able to provide an overview
of their performances under different perspectives, thus
allowing us to better report pros and cons of using the
intensity index as additional predictor. We also assessed
the model for the presence of multi-collinearity through
the use of proper statistical methods such as the Spear-
man’s rank correlation [97], removing irrelevant features
using the variance inflation factors function [94]. Moreover,
we analyzed to what extent the intensity index is impor-
tant with respect to the other metrics by analyzing the
gain provided by the addition of the severity measure
in the model.

In the context of RQ3, we measured the contribution
of the intensity index in bug prediction model perfor-
mances by exploiting the Gain Ratio Feature Evaluation al-
gorithm [120]. While the usage of other procedures (e.g.,
the Wrapper approach [132]) might have lead to different
results, it is important to note that this algorithm was
the most suitable for our study since it allowed us to
quantify the exact entropy reduction achieved using the
intensity index.

Still in this category there is a possible threat related
to the validation methodology exploited. As shown by
Tantithamthavorn et al. [90], ten-fold cross validation
might provide unstable results in cases when the number
of events per variables (EPV) is lower than 10. For this
reason, we limited our analyses to software projects
having a number of EPV higher than 10.

Finally, threats to external validity concern the general-
ization of results. We analyzed a large set of 34 releases
of 11 software systems coming from different application
domains and with different characteristics (size, number
of classes, etc.). Note that we had to focus our analyses on
the only systems for which an oracle reporting the set of
actual bugs was available. Another threat in this category
regards the choice of the baseline models. However, we
evaluated the contribution of the smell-related informa-
tion in the context of bug prediction models widely used
in the past [33], [53] that take into account predictors of
different nature, i.e., product and process metrics.

7 CONCLUSION AND FUTURE WORK

Bug prediction models help developers in the analysis
and testing of the source code components more likely
containing defects. While a lot of work has been done for
the definition of product or process metrics having high
predictive power, the research community only partially
explored the role of code smells in the process of bug
prediction.

In this paper, we evaluated to what extent the addition
of the intensity index (i.e., a metric that quantifies the
severity of code smells) [29] in existing state-of-the-art
bug prediction models is useful to increase the perfor-
mances of the baseline models. Specifically, we firstly set
up four baseline prediction models, i.e., a model based
on a set of structural metrics [30], the BCCM model pro-
posed by Hassan [5], the DM model defined by Ostrand
et al. [31], and the DCBM model proposed by Di Nucci
et al. [33]. Then, we compared the performances of such
models with and without the addition of the intensity
index, in order to control the actual contribution of the
severity of code smells. Moreover, we also compared the
models mentioned above with the same baseline models
built by adding the antipattern metrics defined by Taba
et al. [27] instead of the intensity index.

The results indicated how the addition of the inten-
sity index as predictor of buggy components generally
increases the performance of the baseline bug prediction
models, reaching an improvement of 7%, 10%, 21%, 8%
of the F-Measure in the cases where the basic predictors
are the structural metrics, the entropy of changes, the
number of developers, and the scattering metrics, re-
spectively. When compared with the models built using
the antipattern metrics, we observed that the models
including the intensity index obtain an accuracy up to
16% higher. More notably, we observed interesting com-
plementarities between the set of buggy and smelly classes
correctly classified by the two different configuration of
models.

In the second step of our analyses, we quantified the
actual gain provided by the intensity index with respect
to the other metrics composing the models, confirming
the high predictive power of the intensity index over
all the baseline models. We also noticed how the ANA
metric (i.e., Average Number of Antipatterns) has a good
predictive power if compared to the other antipattern
metrics.

Based on these results, we built a smell-aware predic-
tion model which combines product, process, and smell-
related information. The performances of this new model
outperform the ones of all the other experimented mod-
els, confirming once again the usefulness of considering
code smells in bug prediction.

According to our experiments, the intensity always
positively contributes to state-of-the-art prediction mod-
els, even when they already have high performances.
In particular, the intensity index helps discriminating
bug-prone code elements affected by code smells in bug

24

prediction models based on product metrics, process
metrics, and a combination of the two. Our results also
suggest that the intensity of code smells is helpful in
all these cases, and cannot be replaced by a simple
indicator of the presence or absence of a code smell.
More importantly, the presence of a limited number of
false positive smell instances identified by the code smell
detector does not impact the accuracy and the practical
applicability of the proposed smell-aware bug prediction
model.

As for future work, we firstly plan to further analyze
how the intensity index impacts the performances of bug
prediction models, by performing a fine-grained analysis
into the role of each smell type independently on the pre-
diction power. Furthermore, since our study has focused
on global bug prediction, future effort will be devoted to
the analysis of the contribution of smell-related informa-
tion in the context of local-learning bug prediction models
[39]. Finally, our future research agenda includes the
definition of new factors influencing the performances
of prediction models.

REFERENCES
[1] M. M. Lehman and L. A. Belady, Software Evolution - Processes of

Software Change. Academic Press London, 1985.
[2] W. Cunningham, “The WyCash portfolio management system,”

OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1993.
[3] D. L. Parnas, “Software aging,” in Proceedings of the 16th Inter-

national Conference on Software Engineering, Sorrento, Italy, May
16-21, 1994., 1994, pp. 279–287.

[4] W. Harrison, “An entropy-based measure of software complex-
ity,” IEEE Trans. Softw. Eng., vol. 18, no. 11, pp. 1025–1029, Nov.
1992. [Online]. Available: http://dx.doi.org/10.1109/32.177371

[5] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Software Engineering, 2009. ICSE 2009. IEEE 31st
International Conference on, May 2009, pp. 78–88.

[6] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley, 1999.

[7] F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mantyla, “Code
smell detection: Towards a machine learning-based approach,”
in Software Maintenance (ICSM), 2013 29th IEEE International
Conference on, Sept 2013, pp. 396–399.

[8] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lu-
cia, “Methodbook: Recommending move method refactorings
via relational topic models,” IEEE Transactions on Software En-
gineering, vol. 40, no. 7, pp. 671–694, July 2014.

[9] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur,
“Decor: A method for the specification and detection of code
and design smells,” IEEE Transactions on Software Engineering,
vol. 36, no. 1, pp. 20–36, 2010.

[10] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lu-
cia, “A textual-based technique for smell detection,” in Proceed-
ings of the 24th International Conference on Program Comprehension
(ICPC 2016). Austin, USA: IEEE, 2016, p. to appear.

[11] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk,
and A. De Lucia, “Mining version histories for detecting code
smells,” IEEE Transactions on Software Engineering, vol. 41, no. 5,
pp. 462–489, May 2015.

[12] N. Tsantalis and A. Chatzigeorgiou, “Identification of move
method refactoring opportunities,” IEEE Transactions on Software
Engineering, vol. 35, no. 3, pp. 347–367, 2009.

[13] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta,
A. De Lucia, and D. Poshyvanyk, “When and why your code
starts to smell bad (and whether the smells go away),” IEEE
Transactions on Software Engineering, p. to appear., 2017.

[14] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the
longevity of code smells: preliminary results of an explanatory
survey,” in Proceedings of the International Workshop on Refactoring
Tools. ACM, 2011, pp. 33–36.

[15] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution
of bad smells in object-oriented code,” in Int’l Conf. Quality of
Information and Communications Technology (QUATIC). IEEE,
2010, pp. 106–115.

[16] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Assessing the
impact of bad smells using historical information,” in Proceedings
of the International workshop on Principles of Software Evolution
(IWPSE). ACM, 2007, pp. 31–34.

[17] D. Ratiu, S. Ducasse, T. Gîrba, and R. Marinescu, “Using history
information to improve design flaws detection,” in Proceedings of
the European Conference on Software Maintenance and Reengineering
(CSMR). IEEE, 2004, pp. 223–232.

[18] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia,
“Do they really smell bad? a study on developers’ perception of
bad code smells,” in Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2014, pp.
101–110.

[19] A. F. Yamashita and L. Moonen, “Do developers care about
code smells? an exploratory survey,” in Proceedings of the Working
Conference on Reverse Engineering (WCRE). IEEE, 2013, pp. 242–
251.

[20] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An
empirical study of the impact of two antipatterns, Blob and
Spaghetti Code, on program comprehension,” in 15th European
Conference on Software Maintenance and Reengineering, CSMR 2011,
1-4 March 2011, Oldenburg, Germany. IEEE Computer Society,
2011, pp. 181–190.

[21] D. I. K. Sjøberg, A. F. Yamashita, B. C. D. Anda, A. Mockus, and
T. Dybå, “Quantifying the effect of code smells on maintenance
effort,” IEEE Trans. Software Eng., vol. 39, no. 8, pp. 1144–1156,
2013.

[22] A. F. Yamashita and L. Moonen, “Do code smells reflect impor-
tant maintainability aspects?” in Proceedings of the International
Conference on Software Maintenance (ICSM). IEEE, 2012, pp. 306–
315.

[23] A. Yamashita and L. Moonen, “Exploring the impact of inter-
smell relations on software maintainability: An empirical study,”
in Proceedings of the International Conference on Software Engineer-
ing (ICSE). IEEE, 2013, pp. 682–691.

[24] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory
study of the impact of code smells on software change-
proneness,” in Proceedings of the Working Conference on Reverse
Engineering (WCRE). IEEE, 2009, pp. 75–84.

[25] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change-
and fault-proneness,” Empirical Software Engineering, vol. 17,
no. 3, pp. 243–275, 2012.

[26] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “On the diffuseness and the impact on maintain-
ability of code smells: A large scale empirical study,” Empirical
Software Engineering, p. to appear, 2017.

[27] S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan,
“Predicting bugs using antipatterns,” in Proceedings of the 2013
IEEE International Conference on Software Maintenance, ser. ICSM
’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.
270–279. [Online]. Available: http://dx.doi.org/10.1109/ICSM.
2013.38

[28] F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia, and
R. Oliveto, “Smells like teen spirit: Improving bug prediction
performance using the intensity of code smells,” in Proceedings
of the 32nd International Conference on Software Maintenance and
Evolution (ICSME 2016). Raleigh, USA: IEEE, 2016, p. to appear.

[29] F. Arcelli Fontana, V. Ferme, M. Zanoni, and R. Roveda, “To-
wards a prioritization of code debt: A code smell intensity
index,” in Proceedings of the Seventh International Workshop on
Managing Technical Debt (MTD 2015). Bremen, Germany: IEEE,
Oct. 2015, pp. 16–24, in conjunction with ICSME 2015.

[30] M. Jureczko and L. Madeyski, “Towards identifying software
project clusters with regard to defect prediction,” in Proceedings
of the 6th International Conference on Predictive Models in
Software Engineering, ser. PROMISE ’10. New York, NY,
USA: ACM, 2010, pp. 9:1–9:10. [Online]. Available: http:
//doi.acm.org/10.1145/1868328.1868342

[31] R. Bell, T. Ostrand, and E. Weyuker, “The limited impact of indi-
vidual developer data on software defect prediction,” Empirical
Software Engineering, vol. 18, no. 3, pp. 478–505, 2013. [Online].
Available: http://dx.doi.org/10.1007/s10664-011-9178-4

http://dx.doi.org/10.1109/32.177371
http://dx.doi.org/10.1109/ICSM.2013.38
http://dx.doi.org/10.1109/ICSM.2013.38
http://doi.acm.org/10.1145/1868328.1868342
http://doi.acm.org/10.1145/1868328.1868342
http://dx.doi.org/10.1007/s10664-011-9178-4

25

[32] D. Di Nucci, F. Palomba, S. Siravo, G. Bavota, R. Oliveto, and
A. De Lucia, “On the role of developer’s scattered changes in
bug prediction,” in Software Maintenance and Evolution (ICSME),
2015 IEEE International Conference on. IEEE, 2015, pp. 241–250.

[33] D. D. Nucci, F. Palomba, G. D. Rosa, G. Bavota, R. Oliveto,
and A. D. Lucia, “A developer centered bug prediction model,”
Transactions on Software Engineering, p. to appear., 2017.

[34] F. Palomba, M. Zanoni, F. A. Fontana, A. D. Lucia, and R. Oliveto,
“Toward a Smell-aware Bug Prediction Model,” Tech. Rep., 1
2017. [Online]. Available: http://tinyurl.com/hzusyds

[35] W. Harrison, “Using software metrics to allocate testing
resources,” J. Manage. Inf. Syst., vol. 4, no. 4, pp. 93–105, Apr.
1988. [Online]. Available: http://dx.doi.org/10.1080/07421222.
1988.11517810

[36] C.-Y. J. Peng, K. L. Lee, and G. M. Ingersoll, “An introduction
to logistic regression analysis and reporting,” The Journal of
Educational Research, vol. 96, no. 1, pp. 3–14, 2002.

[37] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the im-
pact of classification techniques on the performance of defect
prediction models,” in Proceedings of the International Conference
on Software Engineering. IEEE, 2015, pp. 789–800.

[38] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the
relative value of cross-company and within-company data for
defect prediction,” Empirical Software Engineering, vol. 14, no. 5,
pp. 540–578, 2009.

[39] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, and
D. Cok, “Local vs. global models for effort estimation and
defect prediction,” in Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 343–351. [Online]. Available: http://dx.doi.org/10.1109/
ASE.2011.6100072

[40] W. P. Raimund Moser and G. Succi, “A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction,” in International Conference on Software
Engineering (ICSE), ser. ICSE ’08, 2008, pp. 181–190.

[41] V. Basili, L. Briand, and W. Melo, “A validation of object-oriented
design metrics as quality indicators,” Software Engineering, IEEE
Transactions on, vol. 22, no. 10, pp. 751–761, Oct 1996.

[42] S. Chidamber and C. Kemerer, “A metrics suite for object ori-
ented design,” Software Engineering, IEEE Transactions on, vol. 20,
no. 6, pp. 476–493, Jun 1994.

[43] W. M. Khaled El Emam and J. C. Machado, “The prediction of
faulty classes using object-oriented design metrics,” Journal of
Systems and Software, vol. 56, no. 1, pp. 63–75, 2001.

[44] R. Subramanyam and M. S. Krishnan, “Empirical analysis of
ck metrics for object-oriented design complexity: Implications
for software defects,” Software Engineering, IEEE Transactions on,
vol. 29, no. 4, pp. 297–310, 2003.

[45] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of
object-oriented metrics on open source software for fault pre-
diction,” IEEE Transactions on Software Engineering (TSE), vol. 31,
no. 10, pp. 897–910, 2005.

[46] N. Ohlsson and H. Alberg, “Predicting fault-prone software
modules in telephone switchess,” Software Engineering, IEEE
Transactions on, vol. 22, no. 12, pp. 886–894, 1996.

[47] N. Nagappan and T. Ball, “Static analysis tools as early
indicators of pre-release defect density,” in Proceedings of the
27th International Conference on Software Engineering, ser. ICSE
’05. New York, NY, USA: ACM, 2005, pp. 580–586. [Online].
Available: http://doi.acm.org/10.1145/1062455.1062558

[48] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” in Proceedings of the 28th International
Conference on Software Engineering, ser. ICSE ’06. New York,
NY, USA: ACM, 2006, pp. 452–461. [Online]. Available:
http://doi.acm.org/10.1145/1134285.1134349

[49] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects
for eclipse,” in Proceedings of the Third International Workshop
on Predictor Models in Software Engineering, ser. PROMISE ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 9–.
[Online]. Available: http://dx.doi.org/10.1109/PROMISE.2007.
10

[50] A. P. Nikora and J. C. Munson, “Developing fault predictors
for evolving software systems,” in Proceedings of the 9th IEEE
International Symposium on Software Metrics. IEEE CS Press, 2003,
pp. 338–349.

[51] A. N. Taghi M. Khoshgoftaar, Nishith Goel and J. McMullan,
“Detection of software modules with high debug code churn in
a very large legacy system,” in Software Reliability Engineering.
IEEE, 1996, pp. 364–371.

[52] J. S. M. Todd L. Graves, Alan F. Karr and H. P. Siy, “Predicting
fault incidence using software change history,” Software Engineer-
ing, IEEE Transactions on, vol. 26, no. 7, pp. 653–661, 2000.

[53] M. DAmbros, M. Lanza, and R. Robbes, “Evaluating defect pre-
diction approaches: a benchmark and an extensive comparison,”
Empirical Software Engineering, vol. 17, no. 4, pp. 531–577, 2012.

[54] A. E. Hassan and R. C. Holt, “Studying the chaos of code
development,” in Proceedings of the 10th Working Conference on
Reverse Engineering, 2003.

[55] R. Moser, W. Pedrycz, and G. Succi, “Analysis of the reliability
of a subset of change metrics for defect prediction,” in
Proceedings of the Second ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ser. ESEM
’08. New York, NY, USA: ACM, 2008, pp. 309–311. [Online].
Available: http://doi.acm.org/10.1145/1414004.1414063

[56] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “Does
measuring code change improve fault prediction?” in Proceedings
of the 7th International Conference on Predictive Models in
Software Engineering, ser. Promise ’11. New York, NY,
USA: ACM, 2011, pp. 2:1–2:8. [Online]. Available: http:
//doi.acm.org/10.1145/2020390.2020392

[57] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Programmer-based
fault prediction,” in Proceedings of the 6th International Conference
on Predictive Models in Software Engineering, ser. PROMISE ’10.
New York, NY, USA: ACM, 2010, pp. 19:1–19:10. [Online].
Available: http://doi.acm.org/10.1145/1868328.1868357

[58] T. Hall, M. Zhang, D. Bowes, and Y. Sun, “Some code smells
have a significant but small effect on faults,” ACM Trans. Softw.
Eng. Methodol., vol. 23, no. 4, pp. 33:1–33:39, Sep. 2014. [Online].
Available: http://doi.acm.org/10.1145/2629648

[59] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta,
A. De Lucia, and D. Poshyvanyk, “When and why your code
starts to smell bad,” in Proceedings of the 37th International Con-
ference on Software Engineering-Volume 1. IEEE Press, 2015, pp.
403–414.

[60] R. Peters and A. Zaidman, “Evaluating the lifespan of code
smells using software repository mining,” in Proceedings of the
European Conference on Software Maintenance and ReEngineering
(CSMR). IEEE, 2012, pp. 411–416.

[61] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lu-
cia, “The scent of a smell: An extensive comparison between tex-
tual and structural smells,” Transactions on Software Engineering,
2017.

[62] M. Gatrell and S. Counsell, “The effect of refactoring on
change and fault-proneness in commercial c# software,”
Science of Computer Programming, vol. 102, no. 0, pp. 44 –
56, 2015. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167642314005711

[63] W. Li and R. Shatnawi, “An empirical study of the bad smells
and class error probability in the post-release object-oriented
system evolution,” Journal of Systems and Software, pp. 1120–1128,
2007.

[64] R. Marinescu, “Detection strategies: Metrics-based rules for de-
tecting design flaws,” in Proceedings of the International Conference
on Software Maintenance (ICSM), 2004, pp. 350–359.

[65] M. J. Munro, “Product metrics for automatic identification of
“bad smell" design problems in java source-code,” in Proceedings
of the International Software Metrics Symposium (METRICS). IEEE,
September 2005, p. 15.

[66] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice:
Using Software Metrics to Characterize, Evaluate, and Improve the
Design of Object-Oriented Systems. Springer, 2006.

[67] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A
bayesian approach for the detection of code and design smells,”
in Proceedings of the International Conference on Quality Software
(QSIC). Hong Kong, China: IEEE, 2009, pp. 305–314.

[68] R. Oliveto, F. Khomh, G. Antoniol, and Y.-G. Guéhéneuc, “Nu-
merical signatures of antipatterns: An approach based on B-
splines,” in Proceedings of the European Conference on Software
Maintenance and Reengineering (CSMR). IEEE, 2010, pp. 248–251.

[69] F. A. Fontana, J. Dietrich, B. Walter, A. Yamashita, and M. Zanoni,
“Antipattern and code smell false positives: Preliminary con-
ceptualization and classification,” in 2016 IEEE 23rd Interna-

http://tinyurl.com/hzusyds
http://dx.doi.org/10.1080/07421222.1988.11517810
http://dx.doi.org/10.1080/07421222.1988.11517810
http://dx.doi.org/10.1109/ASE.2011.6100072
http://dx.doi.org/10.1109/ASE.2011.6100072
http://doi.acm.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1134285.1134349
http://dx.doi.org/10.1109/PROMISE.2007.10
http://dx.doi.org/10.1109/PROMISE.2007.10
http://doi.acm.org/10.1145/1414004.1414063
http://doi.acm.org/10.1145/2020390.2020392
http://doi.acm.org/10.1145/2020390.2020392
http://doi.acm.org/10.1145/1868328.1868357
http://doi.acm.org/10.1145/2629648
http://www.sciencedirect.com/science/article/pii/S0167642314005711
http://www.sciencedirect.com/science/article/pii/S0167642314005711

26

tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1, March 2016, pp. 609–613.

[70] M. Aniche, C. Treude, A. Zaidman, A. van Deursen, and
M. Gerosa, “Satt: Tailoring code metric thresholds for different
software architectures,” in 2016 IEEE 16th IEEE International
Working Conference on Source Code Analysis and Manipulation
(SCAM), 2016, p. to appear.

[71] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “Detecting bad smells in source code using
change history information,” in Automated software engineering
(ASE), 2013 IEEE/ACM 28th international conference on. IEEE,
2013, pp. 268–278.

[72] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[73] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino,
“Comparing and experimenting machine learning techniques
for code smell detection,” Empirical Software Engineering,
vol. 21, no. 3, pp. 1143–1191, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s10664-015-9378-4

[74] M. Kessentini, S. Vaucher, and H. Sahraoui, “Deviance from
perfection is a better criterion than closeness to evil when iden-
tifying risky code,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’10. ACM,
2010, pp. 113–122.

[75] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and
A. Ouni, “A cooperative parallel search-based software engi-
neering approach for code-smells detection,” IEEE Transactions
on Software Engineering, vol. 40, no. 9, pp. 841–861, Sept 2014.

[76] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh, and
S. Ben Chikha, “Competitive coevolutionary code-smells detec-
tion,” in Search Based Software Engineering, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013, vol. 8084,
pp. 50–65.

[77] D. Sahin, M. Kessentini, S. Bechikh, and K. Deb, “Code-smell
detection as a bilevel problem,” ACM Trans. Softw. Eng. Methodol.,
vol. 24, no. 1, pp. 6:1–6:44, Oct. 2014.

[78] R. Morales, Z. Soh, F. Khomh, G. Antoniol, and F. Chicano,
“On the use of developers’ context for automatic refactoring
of software anti-patterns,” Journal of Systems and Software (JSS),
2016.

[79] F. Arcelli Fontana, V. Ferme, and M. Zanoni, “Poster: Filtering
code smells detection results,” in Proceedings of the 37th Inter-
national Conference on Software Engineering (ICSE 2015), vol. 2.
Florence, Italy: IEEE, May 2015, pp. 803–804.

[80] F. Palomba, A. D. Lucia, G. Bavota, and R. Oliveto, “Anti-pattern
detection: Methods, challenges, and open issues,” Advances in
Computers, vol. 95, pp. 201–238, 2015.

[81] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “The qualitas corpus: A curated collec-
tion of java code for empirical studies,” in Proc. 17th Asia Pacific
Software Eng. Conf. Sydney, Australia: IEEE, December 2010, pp.
336–345.

[82] F. Arcelli Fontana, V. Ferme, M. Zanoni, and A. Yamashita, “Au-
tomatic metric thresholds derivation for code smell detection,”
in Proceedings of the 6th International Workshop on Emerging Trends
in Software Metrics (WETSoM 2015). Florence, Italy: IEEE, May
2015, pp. 44–53, co-located with ICSE 2015.

[83] S. Theodoridis and K. Koutroumbas, “Pattern recognition,” IEEE
Transactions on Neural Networks, vol. 19, no. 2, pp. 376–376, 2008.

[84] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic literature review on fault prediction performance in
software engineering,” IEEE Transactions on Software Engineering,
vol. 38, no. 6, pp. 1276–1304, Nov 2012.

[85] F. A. Fontana and M. Zanoni, “Code smell severity classification
using machine learning techniques,” Knowledge-Based Systems,
vol. 128, pp. 43–58, 2017.

[86] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An
empirical study of the impact of modern code review practices
on software quality,” Empirical Software Engineering, vol. 21, no. 5,
pp. 2146–2189, 2016.

[87] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall,
F. Peters, and B. Turhan. (2012, June) The promise repository
of empirical software engineering data. [Online]. Available:
http://promisedata.googlecode.com

[88] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general soft-
ware defect-proneness prediction framework,” IEEE Transactions
on Software Engineering, vol. 37, no. 3, pp. 356–370, May 2011.

[89] T. Mende, “Replication of defect prediction studies:
Problems, pitfalls and recommendations,” in Proceedings
of the 6th International Conference on Predictive Models
in Software Engineering, ser. PROMISE ’10. New York,
NY, USA: ACM, 2010, pp. 5:1–5:10. [Online]. Available:
http://doi.acm.org/10.1145/1868328.1868336

[90] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto, “An empirical comparison of model validation
techniques for defect prediction models,” IEEE Trans. Softw.
Eng., vol. 43, no. 1, pp. 1–18, Jan. 2017. [Online]. Available:
https://doi.org/10.1109/TSE.2016.2584050

[91] ——, “Automated parameter optimization of classification
techniques for defect prediction models,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE
’16. New York, NY, USA: ACM, 2016, pp. 321–332. [Online].
Available: http://doi.acm.org/10.1145/2884781.2884857

[92] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality:
Some comments on the nasa software defect datasets,” Software
Engineering, IEEE Transactions on, vol. 39, no. 9, pp. 1208–1215,
Sept 2013.

[93] T. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, vol. SE-2, no. 4, pp. 308–320, Dec 1976.

[94] R. M. O’brien, “A caution regarding rules of thumb for
variance inflation factors,” Quality & Quantity, vol. 41, no. 5, pp.
673–690, 2007. [Online]. Available: http://dx.doi.org/10.1007/
s11135-006-9018-6

[95] M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The
use of machine learning in software defect prediction,” IEEE
Transactions on Software Engineering, vol. 40, no. 6, pp. 603–616,
June 2014.

[96] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Mat-
sumoto, “Comments on researcher bias: The use of machine
learning in software defect prediction,” IEEE Transactions on
Software Engineering, vol. 42, no. 11, pp. 1092–1094, Nov 2016.

[97] C. Spearman, “The proof and measurement of association be-
tween two things,” The American Journal of Psychology, vol. 100,
no. 3, pp. 441–471, 1987.

[98] F. Rahman and P. Devanbu, “How, and why, process
metrics are better,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 432–441. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486846

[99] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, “A
review-based comparative study of bad smell detection tools,”
in Proceedings of the 20th International Conference on Evaluation
and Assessment in Software Engineering, ser. EASE ’16. New
York, NY, USA: ACM, 2016, pp. 18:1–18:12. [Online]. Available:
http://doi.acm.org/10.1145/2915970.2915984

[100] F. Palomba, D. D. Nucci, M. Tufano, G. Bavota, R. Oliveto,
D. Poshyvanyk, and A. De Lucia, “Landfill: An open dataset of
code smells with public evaluation,” in Proceedings of the Working
Conference on Mining Software Repositories (MSR). IEEE, 2015, pp.
482–485.

[101] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms. Spartan Books, 1961.

[102] L. M. Y. Freund, “The alternating decision tree learning algo-
rithm,” in Proceeding of the Sixteenth International Conference on
Machine Learning, 1999, pp. 124–133.

[103] G. H. John and P. Langley, “Estimating continuous distributions
in bayesian classifiers,” in Eleventh Conference on Uncertainty in
Artificial Intelligence. San Mateo: Morgan Kaufmann, 1995, pp.
338–345.

[104] S. le Cessie and J. van Houwelingen, “Ridge estimators in logistic
regression,” Applied Statistics, vol. 41, no. 1, pp. 191–201, 1992.

[105] R. Kohavi, “The power of decision tables,” in 8th European
Conference on Machine Learning. Springer, 1995, pp. 174–189.

[106] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb.
2012. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2188385.2188395

[107] P. A. Devijver and J. Kittler, Pattern Recognition: A Statistical
Approach, 1982.

[108] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf,
“Bugs as deviant behavior: A general approach to inferring
errors in systems code,” SIGOPS Oper. Syst. Rev., vol. 35, no. 5,
pp. 57–72, Oct. 2001. [Online]. Available: http://doi.acm.org/
10.1145/502059.502041

http://dx.doi.org/10.1007/s10664-015-9378-4
http://promisedata.googlecode.com
http://doi.acm.org/10.1145/1868328.1868336
https://doi.org/10.1109/TSE.2016.2584050
http://doi.acm.org/10.1145/2884781.2884857
http://dx.doi.org/10.1007/s11135-006-9018-6
http://dx.doi.org/10.1007/s11135-006-9018-6
http://dl.acm.org/citation.cfm?id=2486788.2486846
http://doi.acm.org/10.1145/2915970.2915984
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://doi.acm.org/10.1145/502059.502041
http://doi.acm.org/10.1145/502059.502041

27

[109] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G.
Guéhéneuc, “Is it a bug or an enhancement?: a text-based
approach to classify change requests,” in Proceedings of the 2008
conference of the Centre for Advanced Studies on Collaborative Re-
search, October 27-30, 2008, Richmond Hill, Ontario, Canada. IBM,
2008, p. 23.

[110] E. J. W. J. Sunghun Kim and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Transactions on Software Engi-
neering (TSE), vol. 34, no. 2, pp. 181–196, 2008.

[111] G. W. Brier, “Verification of Forecasts expressed in terms of
probability,” Monthly Weather Review, vol. 78, no. 1, pp. 1–3, Jan.
1950.

[112] K. Rufibach, “Use of Brier score to assess binary predictions,”
Journal of Clinical Epidemiology, vol. 63, no. 8, pp. 938–939, 2010.

[113] D. A. da Costa, S. McIntosh, U. Kulesza, and A. E. Hassan, “The
impact of switching to a rapid release cycle on the integration
delay of addressed issues - an empirical study of the mozilla
firefox project,” in 2016 IEEE/ACM 13th Working Conference on
Mining Software Repositories (MSR), May 2016, pp. 374–385.

[114] J. Cohen, Statistical power analysis for the behavioral sciences,
2nd ed. Lawrence Earlbaum Associates, 1988.

[115] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine learning research, vol. 7, no. Jan, pp.
1–30, 2006.

[116] A. J. Scott and M. Knott, “A cluster analysis method for grouping
means in the analysis of variance,” Biometrics, vol. 30, pp. 507–
512, 1974.

[117] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach, 2nd ed. Lawrence Earlbaum Associates, 2005.

[118] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “The
impact of using regression models to build defect classifiers,” in
Proceedings of the 14th International Conference on Mining Software
Repositories, ser. MSR ’17. Piscataway, NJ, USA: IEEE Press, 2017,
pp. 135–145.

[119] B. Ghotra, S. Mcintosh, and A. E. Hassan, “A large-scale study of
the impact of feature selection techniques on defect classification
models,” in Proceedings of the 14th International Conference on
Mining Software Repositories, ser. MSR ’17. Piscataway, NJ,
USA: IEEE Press, 2017, pp. 146–157. [Online]. Available:
https://doi.org/10.1109/MSR.2017.18

[120] J. R. Quinlan, “Induction of decision trees,” Mach. Learn.,
vol. 1, no. 1, pp. 81–106, Mar. 1986. [Online]. Available:
http://dx.doi.org/10.1023/A:1022643204877

[121] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: An

update,” SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, Nov.
2009. [Online]. Available: http://doi.acm.org/10.1145/1656274.
1656278

[122] S. Kabinna, W. Shang, C.-P. Bezemer, and A. E. Hassan, “Exam-
ining the stability of logging statements,” in Software Analysis,
Evolution, and Reengineering (SANER), 2016 IEEE 23rd Interna-
tional Conference on, vol. 1. IEEE, 2016, pp. 326–337.

[123] H. Li, W. Shang, Y. Zou, and A. E. Hassan, “Towards just-in-time
suggestions for log changes,” Empirical Software Engineering, pp.
1–35, 2016.

[124] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and
K. Matsumoto, “The impact of mislabelling on the performance
and interpretation of defect prediction models,” in Software Engi-
neering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference
on, vol. 1. IEEE, 2015, pp. 812–823.

[125] J. Jiarpakdee, C. Tantithamthavorn, A. Ihara, and K. Matsumoto,
“A study of redundant metrics in defect prediction datasets,” in
2016 IEEE International Symposium on Software Reliability Engineer-
ing Workshops (ISSREW), Oct 2016, pp. 51–52.

[126] R. Arcoverde, E. Guimarães, I. Macía, A. Garcia, and Y. Cai,
“Prioritization of code anomalies based on architecture sen-
sitiveness,” in Software Engineering (SBES), 2013 27th Brazilian
Symposium on. IEEE, 2013, pp. 69–78.

[127] R. Marinescu, “Assessing technical debt by identifying design
flaws in software systems,” IBM Journal of Research and Develop-
ment, vol. 56, no. 5, pp. 9–1, 2012.

[128] N. Tsantalis and A. Chatzigeorgiou, “Ranking refactoring sug-
gestions based on historical volatility,” in Software Maintenance
and Reengineering (CSMR), 2011 15th European Conference on.
IEEE, 2011, pp. 25–34.

[129] S. A. Vidal, C. Marcos, and J. A. Díaz-Pace, “An approach
to prioritize code smells for refactoring,” Automated Software
Engineering, vol. 23, no. 3, pp. 501–532, Sep 2016. [Online].
Available: https://doi.org/10.1007/s10515-014-0175-x

[130] N. Tsantalis and A. Chatzigeorgiou, “Identification of extract
method refactoring opportunities for the decomposition of meth-
ods,” J. Syst. Softw., vol. 84, no. 10, pp. 1757–1782, Oct. 2011.

[131] F. Palomba, “Textual analysis for code smell detection,” in
Proceedings of the International Conference on Software Engineering
(ICSE) - Volume 2. IEEE, 2015, pp. 769–771.

[132] R. Kohavi and G. H. John, “Wrappers for feature subset
selection,” Artif. Intell., vol. 97, no. 1-2, pp. 273–324, Dec. 1997.
[Online]. Available: http://dx.doi.org/10.1016/S0004-3702(97)
00043-X

https://doi.org/10.1109/MSR.2017.18
http://dx.doi.org/10.1023/A:1022643204877
http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
https://doi.org/10.1007/s10515-014-0175-x
http://dx.doi.org/10.1016/S0004-3702(97)00043-X
http://dx.doi.org/10.1016/S0004-3702(97)00043-X

	Introduction
	Related Work
	Related Literature on Bug Prediction
	Related Literature on Code Smells

	A Specialized Bug Prediction Model for Smelly Classes
	Empirical Study Definition and Design
	Dataset Selection and Cleaning
	Prediction Model Construction
	Basic Predictors
	Code Smell Detection
	Machine Learning Technique

	Data Analysis and Metrics
	Validation Methodology
	RQ1 - The contribution of the Intensity Index
	RQ2 - Comparison between Intensity Index and Antipattern Metrics
	RQ3 - Gain Provided by the Intensity Index
	RQ4 - Combining Basic Predictors and Smell-related Metrics

	Analysis of the Results
	The performances of the proposed model and its comparison with the state-of-the-art
	The gain provided by the intensity index and by the other predictors
	The performances of the combined smell-aware bug prediction model

	Threats to Validity
	Conclusion and Future Work
	References

