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A B S T R A C T
Diabetes mellitus (DM), a prevalent metabolic disorder, has significant global health implications.
The advent of machine learning (ML) has revolutionized the ability to predict and manage diabetes
early, offering new avenues to mitigate its impact. This systematic review examined 53 articles on ML
applications for diabetes prediction, focusing on datasets, algorithms, training methods, and evaluation
metrics. Various datasets, such as the Singapore National Diabetic Retinopathy Screening Program,
REPLACE-BG, National Health and Nutrition Examination Survey (NHANES), and Pima Indians
Diabetes Database (PIDD), have been explored, highlighting their unique features and challenges,
such as class imbalance. This review assesses the performance of various ML algorithms, such as
Convolutional Neural Networks (CNN), Support Vector Machines (SVM), Logistic Regression, and
XGBoost, for the prediction of diabetes outcomes from multiple datasets. In addition, it explores
explainable AI (XAI) methods such as Grad-CAM, SHAP, and LIME, which improve the transparency
and clinical interpretability of AI models in assessing diabetes risk and detecting diabetic retinopathy.
Techniques such as cross-validation, data augmentation, and feature selection are discussed in terms
of their influence on the versatility and robustness of the model. Some evaluation techniques involving
k-fold cross-validation, external validation, and performance indicators such as accuracy, Area Under
Curve, sensitivity, and specificity are presented. The findings highlight the usefulness of ML in
addressing the challenges of diabetes prediction, the value of sourcing different data types, the
need to make models explainable, and the need to keep models clinically relevant. This study
highlights significant implications for healthcare professionals, policymakers, technology developers,
patients, and researchers, advocating interdisciplinary collaboration and ethical considerations when
implementing ML-based diabetes prediction models. By consolidating existing knowledge, this SLR
outlines future research directions aimed at improving diagnostic accuracy, patient care, and healthcare
efficiency through advanced ML applications. This comprehensive review contributes to the ongoing
efforts to utilize artificial intelligence technology for a better prediction of diabetes, ultimately aiming
to reduce the global burden of this widespread disease.

1. Introduction
Diabetes mellitus (DM) is a metabolic disorder charac-

terized by elevated blood glucose levels due to insufficient
insulin production by the pancreas or improper insulin uti-
lization by the body. Insulin, a crucial hormone secreted by
the pancreas, facilitates the movement of glucose from the
blood into cells, where it is converted into energy. It is also
essential for the metabolism of proteins and lipids. When
the body does not produce sufficient insulin or the cells do
not respond to it properly, glucose accumulates in the blood,
leading to diabetes.

Diabetes can lead to severe complications, including
heart disease, kidney failure, and nerve damage. The Interna-
tional Diabetes Federation projects that global diabetes cases

This work presents a comprehensive systematic literature review on
the application of artificial intelligence for diabetes prediction.
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will reach 700 million by 20451, highlighting the urgent need
for innovative treatments and predictive methods.

Traditional diabetes treatments focus on monitoring
blood glucose and HbA1c levels, which are reactive ap-
proaches for detecting the disease at an advanced stage.
Thus, the need to develop better models for early prediction
to improve the quality of life of patients cannot be overem-
phasized. Studies highlight the transformative impact of AI
in healthcare, particularly through ML and DL in disease
prediction and management [26]. These technologies effec-
tively capture large datasets, recognize patterns, and make
predictions previously deemed impossible. Since interest in
applying ML for predicting diabetes has been on the rise,
research in this field has received a boost. The accuracy of
the ML models developed to predict diabetes relies greatly
on the ML model and the type and amount of data used, such
as Electronic Health Records (EHRs), laboratory data, age,
gender, and other aspects of lifestyle [34]. The integration
of Continuous Glucose Monitoring (CGM) data with EHRs
has been more useful than the use of CGM data alone, es-
pecially in predicting health outcomes [55]. In addition, the
integration of genetic information and biomarkers provides
more information regarding the probability of developing
diabetes [27].

1The International Diabetes Federation. Accessed July 7, 2024. https:
//idf.org/about-diabetes/diabetes-facts-figures/
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The training of ML models for the prediction of dia-
betes includes different procedures and optimizations. Lo-
gistic regression, SVM, and random forest are widely used
algorithms in supervised learning because of their inter-
pretability and stability [37]. Other deep-learning models,
including CNNs and RNNs, have also been used in data
analysis to establish complex patterns [2]. Practices such
as transfer learning and ensemble approaches have become
more popular in efforts to improve the generalization and
predictive capabilities [87]. The effectiveness of ML models
in diagnosing diabetes, especially the accuracy of diagnosis,
must also be determined for the models to be practical. Some
of these assessment metrics include the accuracy, precision,
recall, F1 measure, and AUC-ROC [68]. Sensitivity, speci-
ficity, and MCC are also employed to measure the accuracy
of a model in identifying true positive and true negative
results [23].

Systematic literature reviews (SLRs) are useful for offer-
ing an integrated analysis of the literature for a given subject
area in the field of AI-based diabetes prediction. An SLR
allows researchers to determine trends, gaps, and patterns in
the use of AI for diabetes prediction so that techniques and
results can be compared to enhance the creation of better ML
models [16].

Through this SLR, specific details are highlighted on
the current developments in ML-based diabetes prediction
with respect to the datasets, training, and evaluation. These
dimensions were scrutinized by the authors to determine the
state of the art of research in the field, trends in the field, and
possible areas of research that might have not been explored
before. It is hoped that the results will help us find future
work and improve the precision and applicability of ML
models for diabetes prediction. This review addressed the
following three main questions:

• First, it discussed the basic data and their properties
utilized in the models for the prediction of diabetes
and effect of these properties on the predictive models.

• Second, it described conventional training approaches
and different ways to improve the accuracy of model
and its ability to generalize.

• Lastly, it examined the evaluation criteria for ML
models, especially on the commonly used metrics to
measure the performance of the model.

Overall, this review provides valuable insights into the
current use of ML in predicting diabetes, highlighting the
technical aspects of model development and the practical
implications for healthcare. By summarizing the current
research and identifying key trends and gaps, this review
contributes to ongoing efforts to leverage AI technology
to improve diabetes care, ultimately aiming to reduce the
global impact of this widespread disease and improve patient
outcomes.
Structure of the paper: Section 2 provides an in-depth
look at the anatomy of diabetes, reviewing previous re-
search and existing systematic literature reviews to set the

context for the current study. Section 3 details the step-
wise approach of research questions guiding the review, the
systematic review methodology, inclusion and exclusion cri-
teria, database search strategies, quality assessment, and data
extraction steps. Section 4 presents the findings from the
reviewed studies, analyzing datasets used, machine learning
algorithms, training strategies, and evaluation metrics. Fur-
thermore, it interprets the results obtained from SLR. Sec-
tion 5 discusses the limitations, potential biases, and gaps in
the literature also provides implications for the researchers
and stakeholders. Section 6 discusses the threats to validity
of the work conducted in this study and finally Section
7 concludes the key findings, reaffirming the potential of
machine learning in diabetes prediction and concluding with
thoughts on the future of ML in healthcare and its role in
improving diabetes prediction.

2. Background and Related Work
The main objective of this section is to equip us with

background knowledge of the problem, so that we can pro-
ceed with our research. This section is devoted to the data
methods, prediction models, and metrics used for diabetes
prediction, and to systematic literature reviews conducted in
the past regarding diabetes prediction.
2.1. Anatomy of Diabetes Mellitus

Diabetes mellitus (DM) is a metabolic disorder in which
the body is unable to regulate the levels of sugar or glucose
in the bloodstream, either due to inadequate insulin secretion
by the pancreas (type 1) or insulin resistance (type 2). There
are two main types of diabetes: Type 1 Diabetes Mellitus
(T1DM) and Type 2 Diabetes Mellitus (T2DM), with Type
2 diabetes comprising nearly 90% of all diabetes cases and
with a global prevalence of 537 million [19]. Diabetes is
a community health problem that has shown an alarming
increase over the last 20 years in many parts of the world.
DM is a multiorgan disease with numerous diabetic mi-
crovascular complications involving the retina, heart, brain,
kidneys, and nerves.

The role of medical personnel in the prevention, treat-
ment, and management of diabetes mellitus and its compli-
cations is well-established [6]. Exercise prescriptions and
education for rehabilitation management are effective for
participation and maintaining physical well-being, improv-
ing patient health, and improving health-related quality of
life [10]. Diabetes itself is not a high-mortality cause, but
it is a significant risk factor for other causes of death and
has a high disability burden. Diabetes is also a significant
risk factor for cardiovascular diseases, kidney diseases, and
blindness [13]. DM is categorized into three types according
to its etiology and clinical manifestations: type 1, type 2, and
gestational diabetes [31].

Diabetes Mellitus primarily involves the islets of Langer-
hans in the pancreas, from which glucose is secreted from
alpha cells and insulin from beta cells. Glucagon increases
blood glucose levels, and insulin reduces glucose levels.
T1DM (Insulin-Dependent) is a chronic metabolic disorder
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that causes 510% of diabetes mellitus [28]. It is characterized
by the autoimmune destruction of insulin-producing beta
cells in the islets of the pancreas, and the loss of function of
beta cells leads to absolute insulin deficiency. T1DM is most
commonly seen in children and adolescents but can affect
anyone at any age.

T2DM (Non-insulin dependent) comprises 90% of all
diabetes [31]. Reduction in the effect of insulin on T2DM is
called insulin resistance. Under normal conditions, insulin
is ineffective and, therefore, is initially countered by an in-
crease in insulin production to maintain glucose homeostasis
but later decreases to cause T2DM. T2DM is common in
adults aged 45 years or older [1]. It is now more prevalent in
children, adolescents, and younger adults as a result of rising
obesity, physical inactivity, and energy-dense diet.

Gestational Diabetes Mellitus (GDM) can occur at any
stage of pregnancy. Typically, it occurs in pregnant women
during the second and third trimesters. The American Dia-
betes Association (ADA) estimates that GDM occurs in 7%
of pregnancies. GDM patients and their offspring are at an
elevated risk of developing type 2 diabetes mellitus in the
future [83].
2.2. Related Work

In previous years, as evidence shows, several systematic
literature reviews emphasize the diagnosis of predicting type
2 diabetes and studies concerning those predictions. Many
articles from these journals and conferences are centered
on Machine Learning and Deep Learning techniques, which
are among the most relevant topics today. They aimed to
investigate similar datasets and concluded through the data
sets analysis that the amount of data used in those studies is
unstable.

The research conducted by Bidwai, P. et al. [12] sug-
gested a new review that aimed to eliminate the gaps left
by current reviews and help other researchers in selecting
the current results from the studies that they can use in pre-
dicting ML-based risk of Diabetic Retinopathy progression
and related diseases by synthesizing the current results from
these studies and putting in place the research challenges,
limitations, and gaps for the selection of efficient machine
learning techniques in the establishment of my model of
prediction. Furthermore, they pointed out six AI-related
technical discussions and approaches as these two crucial
points for the adopted strategy. For the SLR, data collection
was used to obtain suitable studies. They searched the IEEE
Xplore, PubMed, Springer Link, Google Scholar, and Sci-
ence Direct electronic databases for literature reviews pub-
lished between January 2017 and April 30, 2023. Thirteen
(13) studies appearing in the broad discussion were subse-
quently shortlisted based on their relevance to the reviewing
questions and the filters applied. While the literature review
revealed some significant research gaps to be considered in
future research that will improve the performance of Dia-
betic Retinopathy (DR) progression risk prediction models,
issues such as comparability and inclusion of diverse DR
populations are inattentive.

They also discussed different approaches to the problem
of diabetes prediction in general and the problem of selecting
and integrating necessary research articles for ML-based
diabetic prediction models. They discussed how the medical
data are nonlinear, non-normal, and correlation structured,
and how beneficial machine learning is in healthcare, es-
pecially in medical imaging. While their review was not
comprehensive in some of the areas of interest, especially
in early diagnosis and risk stratification, it provided re-
searchers with a source of reference. However, the current
systematic literature review (SLR) follows the PRISMA
guidelines much more closely to ensure a more exhaustive
and objective approach to analysis and provides a discussion
of the practical recommendations for further research that
would consider the intricacies of medical data for diabetes
prediction.

This may preclude older basic studies because ML-based
risk prediction of DR progression as shown in the study by
Usman et al. [81] is limited to papers published between
January 2017 and April 2023. Using only 13 studies and a
few databases may not have identified all relevant materials,
which can lead to selection bias. The authors did not exten-
sively discuss the comparability and inclusion of different
DR populations, which would influence the generalizability
of the findings. Our SLR alleviates these limitations by
focusing on a more extended period (from 2014–2023), cov-
ering more first-hand papers (53), and incorporating more
criteria such as algorithms, datasets, and validation methods.
This methodological approach increased the likelihood of
identifying relevant and inclusive studies. Thus, this study
provides a more comprehensive synthesis of the literature as
a foundation for future research on blood glucose prediction
and DR progression.

A systematic literature review performed by Wadghiri
et al. [83] aimed to review state-of-the-art methods for
predicting blood glucose using ensemble methods based
on eight criteria: types of algorithms, year of publication,
journal, database, types of ensembles, learners, combina-
tion methods, performance measures, validation methods,
overall performance, and accuracy. This systematic literature
review was performed to compare the primary studies on
digital libraries from to 2000-2020. Among the 32 primary
papers reviewed, eight review questions were chosen for
this study. The results indicated an increase in the use of
ensembles in recent years; overall, they were better than the
other single models. However, the process of formation of
the groups and performance criteria is not entirely flawless.
Here, some suggestions are provided regarding the design of
compelling ensembles for blood glucose level prediction.

Digital libraries may have missed some crucial studies.
The exclusion of some research and a small number of
evaluated primary papers may affect the comprehension and
bias of the selection process. However, the study approach
for measuring ensemble formation and performance has lim-
itations. This discovery is particularly relevant to blood glu-
cose prediction and may not be applicable to other contexts.
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Datasets and validation methods also affect the dependabil-
ity. Finally, the pace of technological progress may render
certain conclusions outdated and irrelevant. This study ad-
dresses these concerns by analysing various databases.

The review by Eijoseno, M.R et al. [84] was designed
to present diabetes in general, its prevalence, complications,
and opportunities for artificial intelligence in early diagnosis
and classification of diabetic retinopathy. The research also
focused on ML-based methods such as machine learning and
deep learning. New research areas including transfer learn-
ing using generative adversarial networks, domain adapta-
tion, multitask learning, and explainable artificial intelli-
gence in diabetic retinopathy were also considered. A list
of methods already in use, screening systems, performance
measurement, biomarkers in diabetic retinopathy, potential
issues, and challenges in ophthalmology. The future scope
is elaborated upon in the conclusion section. The review
may lack systemic rigor because it focuses on diabetes and
ML methods without using the Preferred Reporting Items
for Systematic reviews and meta-analyses (PRISMA). Only
a few powerful ML algorithms can be included, whereas
others are omitted. In addition, the assessment may not pro-
vide immediate practical suggestions while planning future
work. Our SLR is more rigorous and systematic, because it
conforms to the PRISMA framework. It also includes more
criteria and approaches and provides a more comprehen-
sive analysis and application recommendations for future
research on AI-based prediction.

A comprehensive review by Saxena et al. [74] presented
the current literature on machine learning for diagnosing
DM. This research dealt with the use of machine learning
models and datasets for the diagnosis of diabetes. The results
show how Random Forest can be used successfully and how
it is prevalent in this area of research. Prompt diagnosis of
diabetes is essential because it helps to control the disease
and avoid complications. Nevertheless, the fact that people
have no access to care and that there are cases that go
undiagnosed are also challenging. The analysis presented
problem areas such as data quality, sensitivity-specificity
trade-offs, incorrect readings, and missing data. The authors
further stated that future research must be expanded by en-
larging the training dataset, including additional parameters,
and addressing outlier handling methods to overcome these
challenges. Moreover, feature selection methods, the issues
of which are more critical, sensitivity, or specificity, should
be considered. Although this process has some problems,
machine learning can make diabetes detection easier and
improve medical care. Therefore, the present research gives
future researchers a chance to learn more about implement-
ing ML algorithms for diabetes diagnosis.

This review has listed the following drawbacks of ML
for DM diagnosis: Random Forest is practical and widely
used in this field, but the assessment identifies data quality
issues, the sensitivity-specificity curve, false readings, and
incomplete records. The study also suggests more signif-
icant training datasets, parameters, and better outlier han-
dling. This also implies improved feature selection and a

better understanding of the relationship between sensitiv-
ity and specificity. However, our SLR aims to overcome
these constraints by becoming more inclusive. It enforces
the PRISMA framework for systematic data gathering and
analysis, encompasses several machine-learning techniques
and considerations, and provides actionable research recom-
mendations. This comprehensive strategy improves ML for
diabetes diagnosis and resolves the emphasized issues.

A systematic review of the literature on data-driven
algorithms and models was performed by Felizardo, V. et
al. [36] using accurate diabetic data to predict hypoglycemia.
The review process was intense and spanned five electronic
databases: ScienceDirect, IEEE Xplore, ACM Digital Li-
brary, SCOPUS, and PubMed, covering publications from
January 2014 to June 2020. This search yielded 63 studies
that were included in the analysis owing to their relevance.
This review showed that data models developed for predict-
ing blood glucose and hypoglycemia might have to balance
applicability and performance. This has resulted in the inte-
gration of other data sources or the use of different modeling
approaches. The study outcomes proved the current trends
and prompted further research on hypoglycemia prediction.
This systematic analysis of data-driven hypoglycemia pre-
diction comprised 63 articles from five databases from 2014
to 2020. Although comprehensive, the brief timespan may
omit recent developments. It may not pay much attention to
data variety and the combination of its distinct techniques to
focus on the applicability and performance of the model.

El Idrissi et al. [43] mapped and reviewed existing liter-
ature that explored the use of data mining (DM) predictive
techniques in diabetes self-management (DSM). In their
review, they preferred 38 papers published between the years
2000 and April 2017 to categorize and review the literature
on the application of DM techniques for DSM tasks, includ-
ing blood glucose level prediction, hypoglycemia detection,
and insulin dose estimation. The review established that
artificial neural networks were the most popular type of
predictive technique, followed by the auto-regressive type
of models, and support vector machines. Interestingly, in the
majority of investigations concerning T1DM, the most fre-
quent clinical issue was blood glucose prediction, which was
the target of more than 57% of the selected investigations.

The authors also highlighted some of the issues, includ-
ing the lack of model generalization as a result of patient-
specific data, high complexity involved in regulating blood
glucose levels, and variations in metrics used in the as-
sessment of results across studies. Nevertheless, the review
pointed out that DM techniques, such as ANNs and autore-
gressive models, could hold a significant future capacity for
enhancing DSM prediction accuracy and decision-making.
Nevertheless, the study called for more research on the use
of hybrid models and the extension of these techniques in
T2DM and gestational diabetes, as well as the need for a
more standardized experimental design in future research.

This study employs PRISMA for further rigour and cov-
erage. It includes research conducted from the foundational
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to the contemporary period, and covers 20142023. Com-
pared with evaluating the model performance, our evaluation
involves algorithms, datasets, validation, and challenges for
blood glucose prediction, which provides a more compre-
hensive and applicable perspective for this research.

These studies aim to provide an in-depth discussion on
diabetes mellitus and include discussions on the various
types of diabetes, the number of people affected by dia-
betes, and the different health complications associated with
diabetes. They emphasized the importance of systematic
reviews and ML-based strategies when studying the use of
ML and deep learning (DL) technologies for the effective
prediction and management of diabetes through the analysis
of the application of these technologies.

However, several limitations remain, including data-
quality issues, system interoperability challenges, and dis-
ease classification. These limitations underline the fact that
continuous innovation in this discipline is necessary. This
research emphasizes the importance of developing current
predictive models, exploring novel approaches to artificial
intelligence, and utilizing various data sources to enhance
the efficiency and accuracy of diabetes prediction tools.
To overcome these constraints, there is a need to improve
the quality of data, establish better approaches for system
integration, and improve classification algorithms to create
more effective and applicable artificial intelligence models
for diabetes prediction.

3. Research Approach
The predominant goal of this study is to achieve critical

systematic integration and provide a summary of the latest
published scientific literature on the application of machine
learning in predicting and managing diabetes. This review
analyzes emerging trends, identifies gaps, and summarizes
key takeaways in the rapidly evolving field of AI for dia-
betes prediction. This review aims to examine the predic-
tive models; additionally, it outlines the approaches used,
both the strengths and weaknesses, used datasets, training
and validation strategies, categorizes the effectiveness of
the current hypothesis, gives a critique, and considers the
areas to advance further research. To achieve this, the re-
view process must be arranged thoroughly according to the
PRISMA framework [63]. With the solemnity and complex-
ity of the procedure, PRISMA is considered a reference
for conducting systemic reviews, supporting hearings, and
ensuring clarity in the appraisal of scientific literature. It
provides a systematic technique that is evaluative regarding
literature selection, assessments, and syntheses. This makes
it an appropriate analytical tool that condenses vast research
findings into coherent conclusions.
3.1. Research Objectives and Research Questions

The research questions designed for the systematic lit-
erature review aim to answer how machine learning and
artificial intelligence are used for diabetes prediction and
establish a framework for the current state-of-the-art in the
field. This review aims to summarize and analyze previous

studies while identifying gaps where technological innova-
tions and new methodologies are needed. The main objective
is to conduct a systematic review of all possible areas of
the application of machine learning and artificial intelligence
technologies in diabetes prediction to create a framework for
understanding the limitations of what is technically feasible
and clinically applicable. The objectives of this study are as
follows:

Objective 1: To identify and synthesize the findings
on datasets with their characteristics utilized in dia-
betes prediction.

Objective 2: To examine the configurations and the
range of ML techniques used in diabetes prediction.

Objective 3: To analyze evaluation setups and per-
formance metrics used in ML models to predict dia-
betes.

Objective 4: To identify the limitations of current
research in diabetes prediction.

This study considers the type of data used in AI-based
diabetes prediction by analyzing the datasets highlighted in
the reviewed studies. This adds comprehensiveness to the
evaluation of AI models by considering the nature, quality,
and representativeness of data. We compared the method-
ologies of the primary consideration and the configuration of
the ML and DL algorithms recommended in this study. This
eliminates assumptions about the models and ensures that a
wide range of approaches are considered, thereby strength-
ening the methodological robustness of the study. When
assessing how different studies ensure the validity of their
models, this review provides insights into the reliability and
generalizability of AI-based diabetes prediction systems.
This objective enhances the rigor of the review by addressing
reproducibility and benchmarking. One of the integral steps
in constructing an SLR is identifying its limitations and
future directions, which are often overlooked. Evaluating the
current gaps in AI-based diabetes prediction studies allows
this review to not only synthesize past research but also
highlight opportunities for future advancements. Collec-
tively, these objectives methodically establish the procedural
foundation of the SLR, ensuring that the review remains
comprehensive and methodologically sound while offering
valuable insights into AI-based diabetes prediction.

RQ1. What datasets, including their characteristics,
have been utilized in research studies focused on
diabetes prediction?

This research question aims to discover and explain the
datasets that have been used in studies that have focused on
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diabetes prediction. Through this process, we can estimate
the size of the data, diversity, and representativeness of
the population, which are crucial for developing a robust
and applicable model for different populations. Additionally,
analyzing these datasets will also reveal any deficits in
data utilization that could be corrected in future studies,
thereby contributing to an improvement in the accuracy and
generalizability of diabetes diagnostic tools. Through this
study, we set data standards for diabetes prediction research
and thus provide a basis for other studies to build upon the
foundations of such data.

By addressing RQ1, we can meet Objective 1. This
study aimed to explore these datasets and their characteris-
tics for predicting diabetes. Understanding these elements
helps us assess current data standards and identify potential
gaps in data utilization.

RQ2. What are the configurations of ML approaches
used in diabetes prediction, including the indepen-
dent variables, classification types, ML algorithms,
and training strategies?

This extensive research topic aimed to investigate the pe-
culiarities of the application of artificial intelligence tools in
diabetes prediction. It seeks to understand the various com-
ponents that contribute to the development and optimization
of ML models in this context. This includes identifying
independent variables considered influential in predicting
diabetes, such as patient demographics, health metrics, and
genetic information. Additionally, it explores the classifica-
tion types used to differentiate between outcomes, such as
distinguishing between diabetes types or predicting disease
progression stages. The question also investigates the range
of AI algorithms, from traditional machine learning to ad-
vanced deep learning techniques, harnessed to analyze and
interpret complex datasets effectively. Finally, it examines
the training strategies implemented to enhance the model
performance, including methods for training data selection,
model validation, and techniques to prevent overfitting. Un-
derstanding these aspects provides a clear picture of the
current state of AI applications in diabetes prediction, and
identifies areas for potential improvement and innovation.
By examining the configurations of ML approaches, using
independent variables, and finding classification types, we
will be able to meet Objective 2.

RQ3. What are the various evaluation setups em-
ployed in the context of diabetes prediction, explicitly
focusing on the types of validation methods used
and the metrics applied to assess the effectiveness of
these models?

This research question seeks to explore and characterize
the evaluation frameworks used in the context of diabetes
prediction, emphasizing the methodologies applied for val-
idating predictive models and the metrics used to measure
their effectiveness. It aims to understand the diversity and

robustness of validation techniques, such as cross-validation,
bootstrapping, and external validation, to ensure the relia-
bility and generalizability of ML-driven prediction models.
In addition, this study analyzes the specific performance
metrics used to evaluate these models. These metrics include
accuracy, sensitivity, specificity, and AUC-ROC. By analyz-
ing these aspects, this research can identify best practices
and potential areas for enhancement in the assessment of
ML models, contributing to improved outcomes in diabetes
prediction. RQ3 plays a crucial role in fulfilling Objective 3
by providing detailed insights into the setup of ML models.
This includes independent variables, classification types,
ML algorithms, and training strategies, offering a compre-
hensive view of how ML tools are tailored to enhance the
predictive accuracy in diabetes care.

Therefore, this research examines datasets, ML methods,
and training schemes to understand the shortcomings of
existing diabetes prediction research, where shortcomings
in data quality and characteristics are highlighted. Others
include overfitting, computational burden, and interpretabil-
ity of the model. The investigation delineates the blind spots
of the current research and outlines further study directions
by fulfilling Objective-4, which will enhance the credibility
and generalizability of the diabetes prediction models.
3.2. Search Databases and Search Queries

When conducting a systematic literature review, partic-
ularly in fields involving advanced technologies, such as
ML in healthcare, selecting suitable databases for search is
crucial. The primary sources of literature were three major
databases: IEEE, PubMed, and ScienceDirect. Additionally,
a Google search was conducted to identify AI and medical
databases with substantial coverage of diabetes prediction.
The selection of IEEE, PubMed, and ScienceDirect as core
databases aligns with methodologies employed in previous
studies on AI and diabetes prediction. For instance, Gargeya
and Leng (2017) conducted a systematic review on AI for
diabetic retinopathy screening using PubMed and IEEE [39],
highlighting their relevance for technical and medical re-
search. Similarly, Sneha and Gangil (2019) utilized PubMed
and ScienceDirect to explore AI in diabetes management,
demonstrating their validity in capturing high-quality studies
within the medical domain [76]. These studies affirm the
appropriateness and acceptance of the selected databases
for review in this field. While this review primarily uti-
lizes IEEE, PubMed, and ScienceDirect, the exclusion of
databases such as Web of Science and Scopus may limit the
comprehensiveness of the literature search.

In the context of systematic literature reviews, a research
query definition specifies the exact terms, scope, and param-
eters of a search strategy used to gather relevant literature
on a given topic. This definition is crucial, as it directly
influences the quality, relevance, and comprehensiveness
of the collected literature. Defining a research query helps
to ensure that the review is systematic, reproducible, and
closely aligned with the research objectives. In line with
this approach, the study period begins in 2014, marking
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the emergence of deep learning in healthcare [18, 22, 78].
During this time, large-scale medical datasets, such as the
National Health and NHANES, Optumő EHR, and Eye-
PACS became increasingly available, provide essential data
to support the development of AI-driven healthcare models.
Additionally, advancements in computational power, partic-
ularly GPU-based AI training, have facilitated the practical
application of deep-learning techniques in diabetes predic-
tion. The notable increase in AI research publications since
2014 further validates this choice, ensuring that our review
covers the most relevant and impactful studies in this field
and we set the following strategy:

• Specific words and phrases were used in the database
search. These are usually derived from the main topics
of the research questions and are critical for retrieving
relevant literature. Keywords were carefully selected
to capture the various aspects of the investigated topic.

• For all those keywords, we searched for synonyms,
alternative spellings, and other names for the disease.

• We incorporated Boolean operators (“AND”, “OR”)
to formulate search queries.

This section provides a detailed description of the critical
databases with their search queries that were used for such
research, highlighting their specific relevance and benefits.

PubMed is the premier database for anyone researching
medical and healthcare topics. Managed by the National In-
stitutes of Health, PubMed provides access to more than 30
million citations of biomedical literature from MEDLINE,
life science journals, and online books. It is especially useful
for identifying peer-reviewed articles on medical studies,
clinical trials, and epidemiology.

Search Query for PubMed
(((((data*) OR (variable*)) AND ((diabetes*) OR (diabetes
insipidus) OR (diabetes mellitus) OR (polygenic disease) OR
(polygenic disorder)) AND ((AI) OR (artificial intelligence)
OR (ML) OR (machine learning) OR (deep learning)) AND
((predict*) OR (detect*) OR (identify*) OR (discover*) OR
(find*) OR (recogniz*) OR (determin*) OR (anticipat*) OR
(project*) OR (estimat*)) AND ((train*) OR (validat*) OR
(metric*) OR (evaluat*))))

The PubMed search query focuses on artificial intelli-
gence and machine learning in diabetes research, specifically
on data forms and variables. It includes terms for deep
learning, prediction, detection, identification, and estima-
tion of diabetes-related aspects. The query also included
terms on the methodologies used, ensuring comprehensive
discussions on the effectiveness of ML models in diabetes
prediction and management.

A critical resource for technology-focused research,
IEEE Xplore, provides access to content from the Institute
of Electrical and Electronics Engineers (IEEE) and the
Institute of Engineering and Technology (IET). It includes
over four million documents, including articles, conference

papers, and standards, essential for research involving tech-
nological applications in healthcare, such as AI and ML
algorithms, software, and system implementation.

The search query for IEEE Xplore includes various terms
related to diabetes from abstracts of papers, such as AI,
ML, machine learning, and deep learning, with the aim of
predicting, detecting, discovering, finding, recognizing, de-
termining, anticipating, projecting, evaluating, and training.

Elsevier owns the ScienceDirect and offers various sci-
entific and technical research covering the physical sciences,
engineering, life sciences, health sciences, social sciences,
and humanities. This database is valuable for comprehensive
searches in interdisciplinary fields that combine technology
and healthcare, and provides access to a vast library of
scientific articles, book chapters, and other resources.

Search Query for IEEE Xplore

(((("data" OR "dataset" OR "variable*") AND ("di-
abetes" OR "diabetes insipidus" OR "diabetes melli-
tus" OR "polygenic disease" OR "polygenic disorder")
AND ("artificial intelligence" OR "machine learning"
OR "deep learning" OR "ML" OR "DL") AND ("pre-
dict*" OR "detect*" OR "identif*" OR "discover*" OR
"find*" OR "recogni*" OR "anticipat*") AND ("training"
OR "validating" OR "validation" OR "matric*" OR "eval-
uate" OR "evaluating" OR "evaluation" OR "examine"
OR "examining" OR "examination"))))

By effectively using these databases, we can access the
most relevant and comprehensive information for systematic
reviews in ML applications for diabetes prediction. Each
database offers unique tools and collections that can signifi-
cantly enhance the depth and breadth of literature reviews.

Search Query for Science Direct

((data*) OR (variable*)) AND ((diabetes*) OR (diabetes
insipidus) OR (diabetes mellitus) OR (polygenic disease)
OR (polygenic disorder)) AND ((AI) OR (artificial in-
telligence) OR (ML) OR (machine learning) OR (deep
learning)) AND ((predict*) OR (detect*) OR (identif*)
OR (discover*) OR (find*) OR (recogniz*) OR (de-
tremin*) OR (anticipat*) OR (project*) OR (estimat*))
AND ((train*) OR (validat*) OR (metric*) OR (eval-
uat*)))))))

The Science Direct search query focuses on machine
learning (ML) in diabetes research, specifically predictive
and diagnostic models. It included keywords related to data
handling and variables, ensuring relevance to diabetes and
its genetic interactions. This query highlights innovative
methods, functional objectives, and methodological aspects,
providing insights into current trends, challenges, and ad-
vancements in the field.

Owing to the restriction of using only eight boolean
operators in the Science Direct database, we split the search
query into five subqueries to search all relevant articles.
Subsequently, we combined all the articles searched from
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other databases as well, filtered out unique articles and
removed duplicates.

Search Query 1 for Science Direct

((diabet) OR (diabetes insipidus) OR (diabetes mellitus)
OR (polygenic disease) OR (polygenic disorder)) AND
((data) OR (variable))
Search Query 2 for Science Direct

((diabet) OR (diabetes insipidus) OR (diabetes mellitus)
OR (polygenic disease) OR (polygenic disorder)) AND
((AI) OR (artificial intelligence) OR (ML) OR (machine
learning) OR (deep learning))
Search Query 3 for Science Direct

((diabet) OR (diabetes insipidus) OR (diabetes mellitus)
OR (polygenic disease) OR (polygenic disorder)) AND
((predict) OR (detect) OR (identify) OR (discover) OR
(find))
Search Query 4 for Science Direct

((diabet) OR (diabetes insipidus) OR (diabetes melli-
tus) OR (polygenic disease) OR (polygenic disorder))
AND ((recognize) OR (determine) OR (anticipate) OR
(project) OR (estimate))
Search Query 5 for Science Direct

((diabet) OR (diabetes insipidus) OR (diabetes mellitus)
OR (polygenic disease) OR (polygenic disorder)) AND
((train) OR (validate) OR (metric) OR (evaluate))

By effectively using these databases and their search
queries, a comprehensive search strategy was crafted to
retrieve relevant literature, and we were able to access the
most relevant and comprehensive information for systematic
reviews of ML applications for diabetes prediction from
2014 to 2023.
3.3. Inclusion and Exclusion Criteria

The exclusion and inclusion criteria can facilitate the
selection of resources that address the research questions
in a systematic literature review. Within the framework
of our investigation, we determined and implemented the
"Inclusion/Exclusion" criteria that should be followed. For
the Exclusion Criteria during our research, we eliminated
the resources that satisfied the following constraints:

• Articles written in languages other than English.
• Short papers are defined as papers that consist of fewer

than seven pages.
• Workshop papers
• Papers that are duplicated.
• The full text of the papers that were not available for

reading.

• In subsequent years, conference papers were pub-
lished in journals.

For the Inclusion Criteria, all articles that applied ma-
chine learning methods to predict diabetes were included in
our study to further analyze and extract data for answering
the research questions and achieving the defined obectives.
3.4. Execution of Search Queries

Once we had the general framework for the SLR in hand,
we designed a thorough search strategy to cover all databases
and widen the scope of our search.
Step A. The search yielded many relevant articles from
three major databases. Consequently, the research data were
collected from 321 articles from IEEE Xplore, 728 papers
from PubMed, and 807 articles from Science Direct. These
diverse sources were useful in building a good pool for
the review, which will be useful in the development of the
database. The first search yielded 1,856 articles in all the
databases searched. For the records that were collected, the
process of deduplication was also performed to avoid hav-
ing the same record entered twice. Finally, after excluding
duplicate articles 336, there were 1520 articles underwent
the screening process.
Step B. Each manuscript was then subjected to exclusion
criteria in a stepwise manner. In this phase, all records
identified by the search process amounted to 1,520, and all
records were screened by title and abstract to determine
their suitability for the study. Of these, 1468 records were
screened because they were not relevant to the research
questions or did not meet the inclusion criteria. Of these, 53
were potentially relevant and were retrieved for a full-text
review based on the title and abstract.
Step C. The first author of the study systematically re-
viewed 53 manuscripts and strictly obeyed the inclusion
criteria. Thus, 37 studies were included in the analysis after
the full-text review of the articles and according to the data
quality, relevance of the studies, and purpose of this study.
Out of the total 37 studies, a total of 16 studies were removed
at this step; 11 studies were not related to the research
questions, and for five studies, the required information was
missing. The remaining 37 studies were considered to be
of high quality and more closely related to the systematic
review.
Step D. To make the process of identifying relevant articles
even more rigorous, the snowballing technique was used.
The citation searching method refers to the use of references
or citations from previous studies that have been included
in the current study and helps in identifying more related
studies that may have been retrieved from the database
search. There are two types of snowballing: forward snow-
balling, which entails identifying papers that have cited the
included papers; and backward snowballing, which involves
identifying papers cited in the included papers. Backward
snowballing was applied to ensure a systematic review of
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the reference lists of the 37 studies. Using this snowballing
method, other 16 related studies were found, and all of
them were included in the final review. These studies greatly
expanded the range of the literature and greatly reduced the
likelihood of missing pertinent research.
Step E. The last step is the process of incorporating the
studies. By the end of the study, 53 papers were analyzed
in the systematic review after the eligibility step, and the
snowballing technique was performed after obtaining 37
papers from the eligibility step and an additional 16 papers
from the snowballing technique. This approach ensured a
consistent and systematic method of selecting studies, as
shown in Figure 1, which provides a solid basis for answer-
ing the research questions and yielding useful knowledge.
A detailed summary of the 53 reviewed studies, includ-
ing dataset sources, machine learning algorithms, training
strategies, evaluation metrics, and key findings, is provided
in Supplementary Material (Table 1).

Figure 1: PRISMA flowchart of study identification, screening,
and inclusion process.

Step F. We progressed to the data extraction stage, which is
crucial for answering our study questions, by identifying the
exact datasets and their characteristics, training strategies,
evaluation approaches, metrics, and ML algorithms used in
the studies. The data collection process was simple, enabling
the primary author to handle the extraction independently.
However, assessing the possible constraints of these inves-
tigations is more difficult. This analysis required a thor-
ough and concentrated discussion, collaboratively carried
out by all authors of our work. They carefully analyzed the
sections of publications that addressed potential constraints
and threats to validity. They examined the features and
qualities of each ML technique employed to pinpoint further

constraints. All authors have experience in artificial intel-
ligence and machine learning, with years of expertise and
engagement in teaching academic courses. This significantly
improved the thoroughness and depth of the analysis in this
phase of the systematic literature evaluation.

Information obtained from the selected publications an-
swered the research questions. This section offers a concise
review of the most important findings of our investigation.
3.5. Quality assessment

Before moving on to the process of extracting the ma-
terial necessary to answer our research questions, we eval-
uated the quality and comprehensiveness of the collected
resources. Papers that did not provide sufficient details to be
utilized in our investigation were discarded. We devised a
checklist containing the following queries:
Q-1: Are there datasets used related to diabetes predic-

tion?
Q-2: Are Machine Learning techniques for diabetes pre-

diction clearly defined?
Q-3: Are there training and validation strategies used for

the models?
Q-4: Are there any metrics used to evaluate models for

diabetes prediction?
There are three possible responses to each question:

"Yes," "Partially," and "No." We assigned a numerical
value to each label in order to evaluate the quality and com-
prehensiveness of each source. For example, the label "Yes"
was assigned the value "1," "Partially" was assigned the
value "0.5," and "No" was assigned the value "0" The
overall quality score was determined by adding the scores
of the responses to the two questions, and the articles with a
quality score of at least one was accepted for publication.

Therefore, all 53 papers that underwent previous rounds
of evaluation also passed the quality assessment test. No
paper was omitted in this stage because all papers were found
to have reached the minimum quality score for the next stage
of analysis. This phase confirmed that the last set of studies
was both complete and of quality for the systematic review,
thus guaranteeing that the included studies would provide
meaningful insights and reliable information to the research
objectives.
3.6. Data Extraction

As a part of the research on ML models for diabetes
prediction, researchers carefully choose the datasets suitable
for training the models, emphasizing their relevance and
representativeness [41]. Classifiers usually selected to deal
with medical data interpretation issues have been developed
to cope with the specific difficulties of medical data clas-
sification. The training process of ML models often con-
sists of a detailed scheme that can include cross-validation
to ensure that the results are accurate and not overfitted.
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Table 1
Summary of Extracted Articles from Various Databases

Database Period Document
Type

Publication
Stage

Language Media Format Subject of Inter-
est

No. of Papers

IEEE Xplore 2014-23 Conference
Proceedings
and Journals

Final and
Published

ENG PDF Computer Sci-
ence/Engineering

321

PubMed 2014-23 Conference
Proceedings
and Journals

Final and
Published

ENG PDF Computer Sci-
ence/Engineering

728

ScienceDirect 2014-23 Conference
Proceedings
and Journals

Final and
Published

ENG PDF Computer Sci-
ence/Engineering

807

Total 1856

Table 2
Data Extraction Form

Dimension Attribute Description

Datasets Which datasets were chosen to train the models of ML?

Classification Types Which classification algorithms were selected for diabetes prediction?

Training Strategy What strategy was followed by the ML models for training?

Independent Variables Which independent variables were selected during the model training?

Validation What type of validations were performed for the evaluation of the ML model?

Evaluation Metrics Which metrics were considered for the evaluation of the ML model?

Validations were performed using test sets of specific data
to estimate the generalization of the model. Essential met-
rics, such as accuracy, sensitivity, specificity, and AUC,
measure the performance of the model [58]. The choice
of independent variables used in training is of paramount
importance, and could be demographic, biochemical, or
clinical factors related to the risk of diabetes. Nevertheless,
the research is confronted with restrictions, such as biased
datasets, variability of data quality, and generalization of the
results for other communities. These constraints highlight
the need for continuous research and overall improvement
of ML models in the medical domain. Once we determined
the specific group of sources to be considered, we retrieved
the information to answer our research questions. The first
step was to specify the data extraction displayed in Table 2.

We also sought to extract data from the datasets used
and the training and validations used to develop the tech-
nique. These facts could help to enhance the picture of the
chosen features of the papers. In addition to the fundamental
information on diabetes prediction topics discussed in the
article or the prediction techniques of ML, we also sought to
extract data from the datasets. In addition, the data extraction
sheet allowed us to extract "Limitation(s)" identified for the
reviewed research methodologies.

4. Results and Discussion
Before embarking on the analysis of findings from our

systematic literature review, it is prudent to anticipate a
systematic approach that allows for the accurate interpre-
tation and synthesis of the collected data. This preparatory
step requires careful classification of all collected articles
based on criteria, such as study design, methodological
approaches, ML applications, and effect measures. It is an
efficient method of organizing information, which not only
helps in the analysis process, but also increases the accuracy
and reliability of the results. Second, we explain the specific
methods applied in the qualitative and quantitative analyses,
enabling a meaningful comparison of results across multiple
studies. This will help us provide a comprehensive analysis
of the issues discussed in the review and address the research
questions and objectives established in the first stages of the
review. Figure 2 shows the fluctuating interest in diabetes
prediction research from 2014 to 2023. From 2014, there was
a surge in publications, peaking at 8 in 2017. The highest
number was in 2021, likely due to technological advance-
ments and the COVID-19 pandemic situation. However,
the decline in 2022 and 2023 suggests a need for further
research.

Journals play a vital role in disseminating research done
by people. In the context of diabetes prediction research from
2014 to 2023, the top five journals contributing significantly
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Figure 2: Distribution of Publication by Year

Figure 3: Top 5% Journals for Diabetes Prediction Research
(2014-23)

to diabetes prediction research were Diabetes Care, IEEE
Access and IEEE Transactions on Biomedical Engineering.
Scientific Reports and the Journal of Diabetes Science and
Technology closely followed, as shown in Figure 3, ac-
counting for 4% and 4%, respectively. This interdisciplinary
approach highlights the growing use of advanced compu-
tational methods and data analytics for the prediction of
diabetes.

From our study, it is clear that research on diabetes
prediction focuses on critical components such as diabetes,
model, data, and machine learning, as shown in Figure 4.
The highest frequency of these keywords highlights the
importance of data-driven models and machine-learning
techniques for enhancing prediction. This study emphasizes
the need for accurate predictions to mitigate the risks associ-
ated with diabetes, utilizing clinical insights and algorithmic
advancements.
4.1. RQ1: On the Datasets and Their

Characteristics
For diabetes prediction research, dataset selection is cru-

cial [40]. Data or datasets are the key inputs to the develop-
ment of any predictive model, and the quality of the data de-
fines the efficacy of the resulting model. Advanced datasets
include people with different demographics, diseases, and

Figure 4: Top 20 keywords used in the studies

geography, which provide extensive information for diabetes
control and prognosis. From the different datasets, one can
see that the way diabetes is researched and combined varies
in terms of methods and strategies. In response to the RQ1,
the current studies revealed that the employed data embrace
different populations and geographic areas, which offers a
comprehensive view of diabetes research from different per-
spectives. Both datasets require different features that repre-
sent the richness and complexity of diabetes management
and prediction. The different distributions of the datasets
used in the studies are shown in Figure ?? and Table 3.
Multiethnic and Population-Based Datasets: These datasets
provide diverse demographic and clinical data, enabling
models to generalize across different populations.
Singapore National Diabetic Retinopathy Screening Pro-
gram Dataset: The retinal images and health records of
a large multi-ethnic population in Singapore constitute an
excellent resource for diabetic retinopathy (DR) detection
since this dataset includes retina images. This dataset con-
tains graded DR severity levels and can be used to develop
deep learning models for the automated screening of DR.
Modeling should be performed on a wide range of DR
presentations via dataset diversity, which ensures that the
models are more applicable to real-world settings [80].
AusDiab Dataset: AusDiab is a large study involving over
11,000 people in Australia conducted as a cross-sectional
and longitudinal study; back of the newspaper ad. This
dataset contained both diabetes risk factors (fasting glucose,
HbA1c, obesity, and lifestyle) and lifestyle factors (work
status, exercise, alcohol consumption, smoking, diabetes
medications, and supplements). For example, it is important
to understand the impact of lifestyle factors on the devel-
opment of diabetes and its complications. Nevertheless, this
dataset has a limitation in the use of self-researched lifestyle
data that can lead to bias and inaccuracy in the analysis [73].
National Health and Nutrition Examination Survey: It was
collected by Centers for Disease Control and Prevention
Search in the U.S. is a nationally representative dataset
that includes demographics, laboratory results (including
HbA1c and fasting glucose), health history (including BMI,
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Table 3
Distribution of Datasets Used in the Literature

Dataset Sample Size Class Ratio
(Diabetic:Non-
Diabetic)

Missing Data % Geographic
Population

Challenges Faced

NHANES [18] 10,000 per cycle 1:9 10% (Lifestyle data) United States Class imbalance,
inconsistent data
collection

PIDD [65] 768 1:1.5 8% (Insulin) Indian
Population

Small sample size,
ethnic/gender bias,
limited generalizability

Optum® EHR [81] 95M+ records 1:7 20% (Lab results) United States Missing data, variations
in medical coding, lack
of standardization

EyePACS [54] 88,702 images 1:3 (DR severity) 5% (Labels) Global dataset
with ethnic
variations

Ethnic representation
gaps, dataset skewed
toward certain
populations

REPLACE-BG [4] 226 participants N/A (Type 1
diabetes only)

12% (BG data) United States Small dataset size,
limited to Type 1
diabetes patients

Aizawa Hospital
Study [85]

11,247 1:3.5 15% (Lab data) Japan Single-center data,
limited external validity

AusDiab [33] 11,247 1:8 25% (Self-reported) Australia Self-reported data bias,
missing lifestyle metrics

Singapore DR
Screening [80]

100,000+ 1:3.5 7% (Severity labels) Singapore Variability in screening
criteria, class imbalance

MESSIDOR [66] 1,200 images 1:2 (DR severity) 5% (Labels) France Small dataset size,
limited generalizability

Botnia
Prospective Study
[72]

4,389 1:2.8 10% (Follow-up data) Finland/Sweden Longitudinal costs,
attrition bias

KNHANES [48] 20,000 1:7 12% (Blood sugar levels) South Korea Variability in diagnostic
criteria, potential class
imbalance

Humedica [53] 32M+ records 1:6 25% (Biomarkers) United States EHR inconsistencies,
missing values in key
biomarkers

Practice Fusion
EHR [59]

1.2M records 1:5 30% (Clinical notes) United States Inconsistent
documentation,
unstructured clinical
notes

DPDS [56] 1,000+ cases 1:1.2 15% (Metabolic data) Multi-country
dataset

Limited to specific
clinical environments,
potential selection bias

Itabuna Diabetes
Campaign [79]

5,000+ 1:1.8 30% (Self-reported) Brazil Self-reported diabetes
status, lack of medical
validation

UWF-SLO Retinal
Dataset [57]

250,000+ images 1:1.5 (DR
severity)

8% (Image quality) Global dataset Image quality
variations, need for
advanced preprocessing

BARICAN Cohort
[52]

10,000+ 1:4 18% (Progression data) Barba-
dos/Caribbean

Limited regional
applicability, sample
diversity constraints

blood pressure, cholesterol), etc. It is most commonly used
to predict diabetes risk and to separately stratify patients
according to their metabolic health indicators [82, 48].

Korean National Health and Nutrition Examination Survey:
The Korean National Health and Nutrition Examination Sur-
vey (KNHANES) is similar to NHANES, but the available
data in it includes biometrics, lifestyle, and clinical data
including HbA1c, fasting glucose, and insulin. In particular,
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it is a useful predictor of diabetes risk in East Asian popu-
lations, where genetic and lifestyle factors may differ from
those in the West [79].
Advanced Monitoring and Glycemic Control Datasets:
Continuous glucose monitoring (CGM) and glycemic con-
trol are the datasets of focus, which allow real-time manage-
ment of diabetes.
REPLACE-BG Dataset: This dataset, which is designed to
compare CGM with blood glucose testing (BGT) provides
glycemic indices, insulin therapy data as well as glucose
time in range (TIR). Additionally, it is utilized to opti-
mize blood sugar control and hypoglycemic blood event
predictors, making it a valuable asset for AI-based diabetes
management systems [42].
The Diabetes Prediction Data Set (DPDS): It contains over
1000 points and is used very often for diabetes classification
using machine learning. The dataset possesses critical fea-
tures, such as age, BMI, blood sugar level, and demographic
indicators, which makes it an important dataset for diabetes
risk prediction. Nevertheless, it does not generalize well
to the general population because the data are collected in
specific clinical settings [8].
Imaging-Based Datasets for Diabetic Retinopathy (DR):
The datasets in this work consist of retinal images and are
typically used for training deep learning models to detect and
classify DR.
EyePACS Database: Diabetic patients color fundus images:
over 22,000 images with DR severity marked. It is exten-
sively used in deep-learning-based screening models, par-
ticularly for training CNNs [14, 39].
Messidor Dataset: A retinal fundus imaging dataset with
1,200 images collected from three ophthalmology clinics
in France. Used for benchmarking DR classification mod-
els, MESSIDOR provides gold-standard labeled images for
training and validating AI models in ophthalmology [22, 45].
Kaggle Diabetic Retinopathy Dataset: A dataset contain-
ing 35,000+ retinal images sourced from the Kaggle DR
Challenge. It provided high-quality DR annotations across
multiple severity grades. It is widely used in convolutional
neural network (CNN) training for DR detection [29, 9].
Ultra-widefield Scanning Laser Ophthalmoscopy (UWF-
SLO) Dataset: Retinal images dataset of 9,392 retinal images
with retinal longitudinal tracking data for 10 years globally.
It has been applied to the evaluation of AI-based DR progres-
sion models and to increase diagnostic accuracy [57, 79].
Electronic Health Record (EHR) Datasets: Longitudinal
studies and predictive modelling are possible with EHR
datasets due to data from comprehensive patient records.
Optumő EHR Dataset: It is a longitudinal dataset that con-
tains millions of de-identified patient records from U.S.
hospitals. It covers demographics, laboratory results, medi-
cations, and clinical visit data, and is optimal for determining

when diabetes will begin, how well treatment works, and
what future complications are expected [81].
Humedica Database: This dataset contains 24,331 patient
records published from 2007 to 2012. It monitors the tran-
sition from normoglycemia to prediabetes to diabetes for
use in AI-informed risk prediction and management models
[48].
Practice Fusion EHR Dataset: This dataset also makes
use of a de-identified EHR dataset of 9,948 patients from
20092011 for longitudinal studies of diabetes onset predic-
tion and comorbidity analysis [59, 21].
Community-Based and Low-Cost Screening Initiatives:
These datasets consider community health and low-cost
screening solutions for such communities.
Itabuna Diabetes Campaign Dataset: This dataset of 824
diabetic patient records and their associated fundus images is
derived from a community-based DR screening initiative in
Brazil. Thus, it is employed to design low-cost DR detection
solutions that are mobile-friendly [56].
Surgical and Longitudinal Outcome Studies: These are
datasets that follow the long-term consequences of interven-
tions like bariatric surgery on diabetes outcomes.
BARICAN Cohort: The post-bariatric surgery type 2 dia-
betes patient dataset is longitudinal and underwent follow-
up for 18 months. This can provide insight into glucose
metabolism, weight loss trajectories, and long-term diabetes
remission [52].
Aizawa Hospital Dataset: Data for this study included 2,105
adults with prediabetes recruited at Matsumoto, Japan who
were followed for over 2 years in the Aizawa Hospital Study.
This dataset studies changes in medical history, laboratory
results, and the course of diabetes to understand early indi-
cators and causes of diabetes onset. Nevertheless, the limited
generalizability of the results is because they rely on a single
hospital study population [85].
Botina Prospective Study Dataset: In Botnia Prospective
Study (Finland, Sweden), insulin response and glucose dura-
tion are focused on in this for extended follow-up. Studying
the genetic and metabolic factors that determine diabetes
onset using this particular dataset is of great value. Never-
theless, the longitudinal nature of this dataset makes it chal-
lenging for follow-up resources and increases study costs,
which may not be feasible for large-scale subsequent studies
[57].
Widely Used Benchmark Datasets: These datasets are
widely used for benchmarking and ML model evaluation.
Pima Indians Diabetes Database (PIDD): PIDD is one of
most frequently used datasets for diabetes prediction with
768 records of female patients: Glucose levels, Insulin, BMI
and Diabetes Pedigree Function although some may argue
that the labels are not correct. This is a benchmark for
classification algorithms [69, 70, 49].
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Summary of RQ1

Several data enhance diabetes prediction but have draw-
backs, such as quality, data acquisition, demography,
and privacy. A substantial number of datasets fail to
contain follow-up data and do not use uniform parameters
for diabetes. It is necessary to improve the mechanism
for creating prediction models using integrated data and
more refined algorithms.

4.2. RQ2: On the Configurations of ML
Algorithms in Diabetes Prediction

The application of ML techniques has enhanced the pre-
diction of diabetes and reliability of predictions. Owing to
their exposure to different datasets, ML systems can handle
large amounts of data, discover complex and sophisticated
patterns, and enhance the accuracy of the outcomes. These
algorithms involve independent variables and training strate-
gies. Training processes allow for tweaking and verifying the
ML models, while other factors outside the training process,
such as the demographic data of the patients and the medical
statistics, provide input data. Diabetes can also be predicted
with the help of machine learning algorithms to analyze
large datasets and patterns that are not statistically signifi-
cant. The common ML algorithms used for prediction/classi-
fication purposes are Decision Tree Classifier, Naive Bayes,
Linear Regression, Logistic Regression, K-Nearest Neigh-
bor, CNN, SVM, and XGBoost are suitable for organizing
various sorts of data and providing accurate predictions or
classifications [51]. These algorithms employ complex data
inputs, such as medical images or physiological readings, to
enhance diabetes diagnosis and care.

Diabetes prediction models require independent vari-
ables as the inputs for the algorithm training, some of these
variables include age, gender, blood glucose levels, and reti-
nal images. The accuracy of diabetes prediction is influenced
by independent variables [15]. Choosing appropriate and
full variables is useful for creating predictions using ML
algorithms. Training methods are essential for enhancing
ML models. Cross-validation, data augmentation, hyperpa-
rameter tuning, and feature selection improve models and
avoid overfitting. Cross-validation was used to validate the
model on different data subsets to increase its reliability.
The augmentation of the data enhances the generalization of
the model because the training data contain variations in the
new dataset. Feature selection helps in removing irrelevant
features, thereby reducing noise in the data and improving
overall performance of the models. It simplifies the model by
eliminating redundant variables, which also enhances com-
putational efficiency. Additionally, it contributes to better
generalization and interpretability, especially in clinical ap-
plications where understanding feature importance is more
important.

4.2.1. The Role of Independent Variables and
Training Techniques in Diabetic Prediction
Using ML Algorithms

Some studies aimed at the diagnosis of diseases such
as diabetic retinopathy, possibly glaucoma, and AMD, in
which retinal imaging was the main independent factor. The
type of ML algorithm that has been mainly employed for
these tasks is the CNN, which is used for image analysis
and classification. The training plan relies on providing
numerous retinal images to the deep-learning system. For
instance, research based on the Singapore National Dia-
betic Retinopathy Screening Program and other multi-ethnic
population-based studies further optimized their classifiers
with large databases of retinal images to achieve high levels
of classification accuracy for such diseases [80, 85, 24, 73].

In the REPLACE-BG studies, the principal independent
variables were various glycemic indices, such as mean blood
glucose level and time in range. Classification is often per-
formed using SVM because it is efficient for small sample
sizes and avoids the problem of over-learning. The training
strategy included data partitioning into the training and test
sets and feature selection by recursive feature elimination.
This method allows for the appropriate utilization of features
that enhance the model performance [42].

A wide range of demographic and health-related pre-
dictors were included in the present study, and data were
obtained from the NHANES dataset. Most of the statistical
tests applied were logistic regressions. In the classification,
emphasis was placed on biomarkers that could help to distin-
guish between prediabetes and DM. The training strategies
employed comprised five-fold cross-validation to prevent
overtraining of the models; large demographic and health
data could then be used to accurately predict diabetes risk
[82, 39].

The dataset concerning the Itabuna Diabetes Campaign
involved determining the DR severity from fundus images
using deep CNNs, such as PhelcomNet. The training process
also involved some augmentation, where the images were
rotated and brightness was changed to obtain the best results.
These studies were expected to enhance the diagnostic abil-
ities of CNNs on a large dataset of fundus images [13, 75].

The features that were detected when working with stud-
ies that employed the Optumő EHR Dataset; XGBoost, were
commonly utilized because of its capacity to accommodate
big data. The training activities included feature selection
and hyperparameter tuning using five-fold cross-validation.
This approach helped deal with the large EHR data that
resulted in the prediction of diabetes and related diseases
[53, 64, 70, 78, 11, 8].

The EyePACS mainly consisted of fundus images, and
the CNN was used for diagnosing and categorizing DR.
Training practices included data augmentation and cross-
validation, which allowed the model to recognize different
DR stages across the population [14].

Studies based on data from ELSA-Brasil used random
forest algorithms because they are designed to work with
high dimensions and also give the probability of variable
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importance. The training included parameter optimization
and selection of the most appropriate variables with the help
of wrapper methods and demographic and clinical factors to
predict diabetes risk [20].

In the Botnia Prospective Study, regularized least-squares
regression was used to predict the risk of type 2 diabetes. The
training strategy used in this study increased the model gen-
eralization and predictive accuracy, including multivariate
logistic regression and repeated nested cross-validation [52].
The models were validated with the VA Puget Sound Health
Care System dataset in terms of sensitivity and specificity
to DR detection with FDA (Food and Drug Administration
(FDA)-approved models. The training strategy was to use
models trained on other datasets and tested on this dataset
without retraining to prove the transferability and robustness
of the ML algorithms [24, 38].

Based on the NHANES data of Korea, prediabetes was
predicted based on fasting plasma glucose levels. The ma-
chine learning approaches, ANN and SVM, first applied the
grid search and then used 10-fold cross-validation to fit the
models and correctly recognize the prediabetes within the
population [79].

Consequently, based on the visual analysis depicted in
Figure 5, we are provided with a rather obvious realization
that the age variable is used as the independent variable
in the vast majority of studies to a significant extent. In
the process of diabetes forecasting, there are some factors
that include, but are not limited to, body mass index, blood
pressure, glucose level, cholesterol level, insulin level, fam-
ily history of diabetes, physical activity, and diet patterns.
Moreover, some researchers have pointed out that in the
training procedure, researchers must pay attention to and
choose independent variables to improve the accuracy of the
forecast. Some of the sub-indices that are grouped under the
other category depicted in Figure 5 include: environmental
factors, social factors, pharmaceutical use and the likes.

Figure 5: Distribution of Independent Variables Across Studies

4.2.2. Classification Types and Corresponding ML
Algorithms for Diabetes Prediction

CNNs are mainly applied for image analysis in exper-
iments, and the most common types of images used are
retinal images for diagnosing diabetic retinopathy, suspected
glaucoma, and AMD. Training was performed using a large
number of retinal images, which provided high-accuracy
models [80, 85, 24, 73].

In analyzing glycemic metrics, Support Vector Machines
(SVMs) were used to analyze small data points with the
added advantage of avoiding overfitting. Filtering is the most
commonly used technique for adjusting the feature list and
extracting the best set of features to be applied in model [42].

The motivation for applying logistic regression to the
NHANES dataset is based on the previous application of the
method in research on factors such as BMI percentiles and
family history of diabetes and hypertension. The five-fold
cross-validation process is a common training methodology
to obtain high model stability [82, 39].

Deep CNNs were applied in the Itabuna Diabetes Cam-
paign dataset to classify DR severity, including data aug-
mentation to increase the transferability of the model [56,
14].

Specifically, XGBoost has often been adopted in re-
search with the Optumő EHR dataset, which is characterized
by high performance and data compatibility. The training
methods used were feature selection pre-processing and five-
fold cross-validation [53, 64, 70, 78, 11, 8, 5].

In studies that employed ELSA-Brasil data, random for-
est algorithms were incorporated. These algorithms were
selected based on their capacity to work with a large number
of predictors and provide a quantitative evaluation of the
importance of the variables [20].

In the Botnia Prospective Study, least-squares regression
analysis was used to determine the risk of type 2 diabetes
related to the metabolomic profiles. The training method-
ologies employed were multivariate logistic regression and
repeated nested cross-validation [52, 79, 8].

For the HRV signals obtained from ECG, CNN-LSTM-
SVM Hybrid Models were utilized in the research, as com-
ponent algorithms complement each other, improving the
predictive potential. [69, 75, 77, 25, 59, 50, 45, 38, 30, 20,
9, 76, 60, 67].

The deep learning model Inception-V3, which is ideal
for image data, was applied in a study that analyzed OCT
measurements of diabetic patients [29].

Demographic, clinical, and lifestyle factors were used
and employed with Bayesian networks because this approach
is suitable for representing probabilistic dependencies be-
tween variables [62, 7, 3, 79, 57, 46, 44, 32, 22, 86, 35, 61].

Traditional ML and deep learning algorithms are applied
in half of the studies on diabetes prediction, thus proving
that they play equal and significant roles. Logistic regression
and decision trees are basic approaches to machine learning,
whereas CNN is suitable for big data. Ensemble Learning,
which utilizes more models to enhance performance, consti-
tutes 6% of the approaches. Evolutionary Computing is less
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Figure 6: Percentage of ML Algorithms used for Diabetes
Prediction

than 2%, and Bayesian Inference is less than 2%, indicat-
ing that several methods are used to enhance the accuracy
and complexity of diabetes prediction. Figure 6 shows how
ML algorithms were used in diabetes prediction, that is,
the proportion of studies that used each of these methods
in a systematic literature review (SLR). This shows the
most important approaches adopted in the analyzed studies,
namely basic ML algorithms (such as Logistic Regression,
SVM) and deep learning models (such as CNNs, LSTMs,
and XGBoost). It mostly shows commonly used methods,
but conveys insights into the evolution of AI in diabetes
prediction. The future is to develop more complicated AI
models that take advantage of both deep-learning techniques
and hybrid AI models. Ensemble learning, evolutionary
algorithms, and Bayesian inference methods are less com-
monly used in literature. However, their presence suggests
ongoing interest in diversifying the minds of AI. It also
supports the focus of this study on the advancement of AI
by showing methodological trends in diabetes prediction
and the growing role of deep learning, hybrid models, and
explainable AI (XAI) in predictive healthcare.

Owing to clinical interpretability and trust in AI-driven
decisions, Explainable AI (XAI) methods are increasingly
being integrated into diabetes predictions [58]. In CNN-
based diabetic retinopathy image detection, gradient-weighted
Class Activation Mapping (Grad-CAM) is commonly used
to identify image regions that affect model predictions,
thereby assisting their clinical validation [36]. SHAP and
LIME were also used to identify the most potent biomarkers
for diabetes risk prediction using tree-based models, in-
cluding XGBoost and Random Forest [39]. Random Forest
models with feature importance scores have been used in
studies such as the ELSA-Brasil cohort to determine the
association between clinical or demographic factors and
the onset of diabetes [18]. CNN-based diabetic retinopa-
thy models augmented with saliency maps and occlusion
sensitivity analysis also serve as the gold standard, cor-
roborating the reliability of the model in detecting early
stage diabetic retinopathy [35]. Despite these advances have
been achieved, the utilization of XAI has been minimal,
particularly beyond CNN architectures in deep learning.

Future research should focus on the development of hybrid
models that augment the readability and availability of AI
powered healthcare systems.
4.2.3. Comparative Analysis of Machine Learning and

Deep Learning Algorithms in Diabetes
Prediction

Studies of diabetes prediction applications using ML
algorithms and deep learning have revealed both strengths
and limitations. Models such as Logistic Regression and
Support Vector Machines (SVM) demonstrate interpretabil-
ity features, which make them optimal choices for structured
tabular data [15, 17]. Logistic Regression achieves mod-
erate performance with an accuracy of 80%–85% and an
AUC of 0.80–0.85, whereas SVM performs slightly better
with an accuracy of 85%–90% and an AUC of 0.85–0.90.
However, these models experience difficulties in identifying
intricate patterns in medical imaging and in analyzing high-
dimensional datasets.

Deep learning algorithms such as Convolutional Neural
Networks (CNN) are used for pattern detection and feature
extraction, making them ideal for medical image diagnosis
including diabetic retinopathy screening [39, 9, 25]. As
summarized in Table 4, CNNs achieve very high accuracy
(95%–98%) and AUC (0.95–0.98), outperforming traditional
ML models in tasks involving medical imaging. Despite
their superior performance, deep learning models require
large datasets and robust computing resources, which reduce
their operational feasibility in healthcare delivery environ-
ments with minimal resources [76, 77]. For example, Recur-
rent Neural Networks (RNN/LSTM), which are effective for
sequential data, such as glucose monitoring, are computa-
tionally expensive and difficult to interpret, as noted in Table
4.

Future studies should focus on hybrid systems that in-
tegrate ML approaches with deep learning methods, lever-
aging transfer learning features to enhance explainable AI
capabilities and improve clinical practice adoption [59, 67,
38]. Hybrid systems combine the interpretability of ML
with the pattern recognition capabilities of DL, achieving
high accuracy (90%–95%) and AUC (0.90–0.95). However,
they face challenges, such as complex implementation and
high development costs. The comparative analysis in Table
4 provides a detailed overview of the strengths, limitations,
and suitability of these algorithms, offering valuable insights
for future research.

Summary of RQ2

Considering the data type and their appropriateness for
certain tasks, the algorithms used for diabetes prediction
included CNN, SVM, and XGBoost. Cross-validation,
data augmentation, and feature selection help to increase
the convergence of predictive models, which can also
demonstrate the versatility of the different machine learn-
ing frameworks in altering the variables, algorithms, and
training paradigms for diabetes prediction research.
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Table 4
Comparative Analysis of Machine Learning and Deep Learning Algorithms in Diabetes Prediction

Algorithm Performance
Metrics

Strengths Limitations Suitability Challenges Faced

Logistic
Regression

Accuracy: 80%85%,
AUC: 0.800.85, Sensi-
tivity/Specificity:
Moderate

Highly
interpretable,
Efficient for
structured data

Struggles with complex
patterns in medical
imaging, Limited in
high-dimensional
datasets

Ideal for
structured data
(e.g., patient
demographics, lab
results)

Limited to simple
patterns, requires
feature engineering

Support Vector
Machines
(SVM)

Accuracy: 85%90%,
AUC: 0.850.90, Sensi-
tivity/Specificity:
High

Effective for
structured data,
Interpretable

Computationally
intensive, Limited for
complex patterns

Small to medium
datasets,
Structured data

Scalability issues,
Requires careful
tuning

Random Forest Accuracy: 85%90%,
AUC: 0.850.90, Sensi-
tivity/Specificity:
High

Handles
high-dimensional
data, Robust to
overfitting

Less interpretable,
Computationally
expensive

Structured data
with many
features (e.g.,
EHR data)

Memory-intensive,
Limited
interpretability

Convolutional
Neural
Networks
(CNN)

Accuracy: 95%98%,
AUC: 0.950.98, Sensi-
tivity/Specificity:
Very High

Superior in
pattern
detection, Ideal
for medical
imaging

Requires large datasets,
Demands robust
computing

Medical imaging
tasks (e.g., retinal
scans, OCT
images)

Resource-intensive,
Limited
interpretability

Recurrent
Neural
Networks
(RNN/LSTM)

Accuracy: 90%95%,
AUC: 0.900.95, Sensi-
tivity/Specificity:
High

Effective for
sequential data
(e.g., time-series
data)

Computationally
expensive, Requires
large datasets

Time-series data
(e.g., glucose
monitoring)

Difficult to interpret,
High training costs

Hybrid Systems Accuracy: 90%95%,
AUC: 0.900.95, Sensi-
tivity/Specificity:
High

Combines ML
interpretability
and DL pattern
recognition

Complex
implementation,
Requires careful tuning

Tasks requiring
structured data
and complex
patterns

Integration
challenges, High
development costs

4.3. RQ3: On the Evaluation Techniques and
Metrics

The evaluation setups are important, especially in the
diagnosis of diabetes using ML algorithms. It is important
to have evaluation sets to ensure that the models are accurate
and practical in real-life situations. These provide a robust
approach for comparing ML models; thus, it is easier to
identify the most appropriate techniques and increase the
reliability and efficiency of the models. The primary finding
of this study is that the configurations of ML model eval-
uations affect the reliability and robustness of the models.
Overfitting checks whether the model runs properly on other
data and describes its advantages and limitations. Scholars
can determine which diabetes prediction models can be
selected based on available evaluation methods.

As seen in the literature on diabetes prediction, there are
different approaches for measuring performance. One such
method is cross-validation, which is helpful in enhancing
the assessment of the model by checking its performance on
different partitions of data. This approach makes the model
more reliable and accurate when tested on different datasets,
thereby providing more reliable evaluations [42, 82].

Validation tests the model on data other than training
data. In the validation process, it is important to observe
the generalization of the model to new data. In the Op-
tumő EHR dataset, the model was externally validated by

comparing the prediction with the scores of new images
from the screening program, as well as ten other datasets
with different populations [48]. Bootstrap sampling involves
taking a random number of samples from the dataset, using
this sample many times to train the model, and obtaining
an empirical distribution of the performance measures to
analyze model variability.

It is essential to know the types of assessment criteria be-
cause they help to quantify the performance of ML models.
These include accuracy, Area Under the Curve (AUC), sen-
sitivity, specificity, precision, and F1 score, which provide
a detailed performance view of the models. These metrics
assist in determining models that not only forecast diabetes
with high accuracy but also approach the issue of false
positive and false negative cases, which are costly in practice
[82, 42].

The methods used in the evaluation setup in diabetes
prediction research are elaborated to ensure that the per-
formance of the models is tested comprehensively using
different approaches and measures.
Validation Methods: At high reliability, the data sets are
divided into portions and the most common technique used
is the k-fold cross validation. This technique divides the
dataset into k portions and constructs a model k times.
The validation dataset was one of the k portions, whereas
the training dataset contained the remaining portions of the
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dataset. For instance, the authors of the research conducted
on the REPLACE-BG dataset applied 10- fold cross valida-
tion to check the efficiency of the SVM model and to avoid
obtaining performance indicators that would not reflect the
performance of the model [42]. Similarly, research that used
NHANES data used five-fold cross-validation to verify the
overall accuracy of the logistic regression model; however,
this method requires more training data [82]. This method is
vital in preventing overfitting, whereby the model provides
excellent results on the training data but poor results on the
test data, providing a better evaluation of the model.
External validation was performed using a different dataset
than that used to train the models to infer the generality of
the models. It is helpful to evaluate the model in conditions
closer to the real world, because cross-validation does not
show all aspects of performance. For instance, in a study
that relied on the Optumő EHR dataset, external validation
was conducted by comparing the predictions with the scores
assigned to new images from the screening program and
10 datasets comprising other populations [48]. This type of
validation means that the model is applicable for making
predictions under different populations and conditions, or in
other words, in different clinical settings.
Bootstrap sampling has been adopted in some studies to
assess the extent of fluctuations in model performance mark-
ers. In this method, a dataset is applied such that it sam-
ples randomly and successively with replacement, and feeds
these samples to the model until the empirical distribution
of the performance measure is obtained. Similarly, a study
that was conducted on the Optumő EHR dataset to iden-
tify genetic variants associated with diabetic ketoacidosis
(DKA) also used 1000 bootstrap samples to calculate the
95% confidence interval for all the aforementioned perfor-
mance parameters, thus confirming the authenticity of the
statistical measures used in the study [48]. This technique
enables analysts to identify various levels of variability in
the model and the stability of the model in the sampling
distribution.
Evaluation Metrics: Precision is one of the most broad
and the most often used measures in the analysis of in-
vestigations to describe the proportion of the actual pos-
itives and actual negatives regarding the total number of
the investigated cases. For instance, while validating logistic
regression models, the measure used was the accuracy rate
obtained in NHANES-based studies [82]. Other studies also
considered accuracy as the criterion for the performance of
their models, with specific distribution percentages for each
[42, 48, 24, 20, 7, 78, 3, 57, 45, 38].
The AUC is relevant when comparing binary classifiers,
as it offers information on the ability of the classifier to
distinguish between the two classes. It measures the per-
centage or rate at which it is appropriate to categorize the
positive and negative samples. The AUCs obtained were
high, indicating the adequate diagnostic capability of the
models for DR using the EyePACS dataset. This metric
allows a comparison of the true positive rate (sensitivity)

with the false positive rate and obtains a general performance
figure [82, 14, 62, 79, 52, 64, 29, 70].
The sensitivity, true positive rate, specificity, and true neg-
ative rate indicate the capability of the model to identify
positive and negative cases, respectively. Sensitivity mea-
sures the true positive rate, and specificity provides the
ability to identify actual negative cases. For example, a
study conducted on data collected from the Itabuna Diabetes
Campaign indicated that the sensitivity of the screening
model was 97%. To detect more than mild DR, the model
had a sensitivity of 8% and a specificity of 61%. 4% in
detecting severe cases, suggesting that the proposed model
is capable of raising awareness of severe cases of DR,
while simultaneously pointing out the features that require
improvement [80, 56, 53, 85, 17, 69, 73, 49, 25, 59, 46, 30].
In the case of dealing with data mining in imbalanced
datasets, some of the measures that are considered to be
crucial include precision, which is the total number of cor-
rect predictions of the positive observation over the total
number of positive observations in the dataset, and F1 score,
which is a weighted average of both precision and recall.
The evaluation of the SVM model in the study with the
REPLACE-BG dataset incorporated these measures, where
not only true positives were correctly identified, but the
proper precision and recall of the model was also achieved.
[42, 39, 62, 75, 77, 44, 21, 5, 47, 35, 61]. These are good
metrics, particularly when it is necessary to avoid the posi-
tion where the model provides both high false positive and
false negative values.
The diagnostic accuracy measures are the Positive Predictive
Value (PPV) and Negative Predictive Value (NPV), which
reveal the proportion of actual positives and actual negatives
out of all the cases predicted to be positive or negative. The
study that used the data from the VA Puget Sound Health
Care System with the purpose of comparing the effective-
ness of the screening algorithms developed with the help
of AI and PPV and NPV results in a better understanding
of the efficiency of the models in actual health care centers
[24]. These metrics are useful when a model is applied in
a clinical context in which false-positive and false-negative
results can have consequences.
In Figure 7, the evaluation metrics in the diabetes predic-
tion models are distributed, which makes methodological
choices. The most common metric is the accuracy, which is
a general metric. However, it does not address the problem
of class imbalance, which is an important feature in diabetes
prediction. Sensitivity and specificity are prominent because
balanced classification is the focus, and AUC is used to
assess discriminative ability.
Precision and F1-score, which focus on true-positive detec-
tion, are generally less frequently reported as metrics. While
PPV and NPV are important from a clinical point of view,
their utility is almost less used, favoring broad accuracy
over case reliability. These trends highlight the necessity of
considering several performance indicators for the holistic
validation of AI-driven diabetes prediction.
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Figure 7: Percentage of Studies Using Specific Evaluation
Metrics

In Figure 8, the evaluation metrics in the diabetes pre-
diction models are distributed, which makes methodological
choices. The most common metric is the accuracy, which is
a general metric. However, it does not address the problem
of class imbalance, which is an important feature in diabetes
prediction. Sensitivity and specificity are prominent because
balanced classification is the focus, and AUC is used to
assess discriminative ability. Precision and F1-score, which
focus on true-positive detection, are generally less frequently
reported as metrics. While PPV and NPV are important from
a clinical point of view, their utility is almost less used,
favoring broad accuracy over case reliability. These trends
highlight the necessity of considering several performance
indicators for the holistic validation of AI-driven diabetes
prediction.

Summary of RQ3

This systematic review validated the methods and metrics
used to predict diabetes using machine learning across
the spectrum. To enhance the model reliability, cross-
validation, external validation, and bootstrap were used,
whereas to check the model effectiveness, performance
evaluation metrics such as accuracy, AUC, sensitivity,
specificity, precision, and F1 measure were employed.

4.4. Discussion
Drawing from the studies analyzed with the SLR, this

study identifies the important elements that define the pro-
cess of developing accurate predictive models for diabetes.
The discussion covers the choice of datasets and their qual-
ity, the chosen machine-learning algorithms and training
paradigms, and the evaluation scenarios and measures used
in the assessment of the performance of the model. In this
review, the strengths and limitations of different approaches
are discussed based on many publications, focusing on the
issues of diversity and standardization of datasets, feature
selection and preprocessing, and evaluation methods. Thus,
this study seeks to provide an understanding of the status
of diabetes prediction research and define the directions for

its future enhancement to create more precise, accurate, and
universally applicable predictive models.
Dataset Utilization and Insights: While addressing RQ1,
it was necessary to initially analyze different datasets that
are commonly employed in the studies aiming at diabetes
prediction. As indicated, the reviewed studies used different
datasets, from a longitudinal study, such as Aizawa Hospital,
to large population-based studies, such as AusDiab. These
datasets are valuable sources of information on diabetes
and its prediction, as the nature and variety of this disease
indicate. Nevertheless, problems such as variable quality of
data and irregular approaches to its collection point to issues
of weak data standardization. Combining datasets obtained
from different regions or populations can help avoid creating
models that do not work in different populations and under
different clinical conditions.
Dataset Selection and Quality: Our SLR shows the great
variety of datasets used in diabetes prediction studies prov-
ing the value of diversification and dataset samples. The
characteristics and challenges of each dataset were different.
For example, the NHANES has a large and racially/ethni-
cally diverse sample, with extensive demographic, clinical,
and lifestyle data. However, problems such as class imbal-
ance, where one class has many samples and the other has
few, become a problem for the model performance and its
ability to generalize. However, diabetes prediction remains
a challenging task in the presence of a class imbalance, espe-
cially when the number of non-diabetic cases is much greater
than that of diabetic cases. To address this issue, various
data- and algorithm-level solutions have been proposed to
generalize the model and reduce model bias.
In most cases, the synthetic minority oversampling tech-
nique (SMOTE) is employed to produce synthetic diabetic
cases, thereby enhancing the sensitivity while reducing the
downside impact on specificity. With this technique seem-
ingly learning from a more balanced distribution, the likeli-
hood of bias towards the majority class was reduced.
At the algorithm level, class weighting in loss functions,
such as weighted cross-entropy, is used to penalize the
misclassification of underrepresented cases with diabetes.
The models achieved more balanced predictions with higher
penalties for the misclassification of diabetes. Furthermore,
Focal loss, a type of cross-entropy loss, has been used in deep
learning models, particularly CNN-based diabetic retinopa-
thy detection. Consequently, Focal Loss learns dynamically
to reduce the weight of hard diabetic classes for the improved
exploration of difficult cases, thus providing more robust
predictions and smaller false negatives, which are crucial
factors in clinical applications.
Together, these strategies affect the model performance in
terms of maintaining sensitivity while decreasing false neg-
atives; thus, diabetic cases were accurately identified. Ad-
ditional data augmentation, adaptive loss functions (i.e.,
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learned loss function), and ensemble learning added to over-
come class imbalance in diabetes prediction models are
future research horizons.
Data Quality and Consistency: It is more important for
the quality of the datasets that go into the building of
these models and for their consistency. Probable sources of
bias include differences in data collection techniques and
dissimilarities in the definitions of diabetes used in different
studies. Some of these problems can be avoided when data
collection protocols are standardized. For instance, a cross-
sectional study of the patient database of Aizawa Hospital,
Japan, and a large population-based cross-sectional AusDiab
study showed that the methods of data collection may differ.
This limitation is compounded by the fact that many of the
studies available do not provide follow-up data, thus limiting
the possibility of assessing the long-term value of predic-
tive models. In addition, issues related to heterogeneity in
the diagnosis and assessment of diabetes-related variables,
including fasting glucose levels, HbA1c thresholds, and
diagnostic criteria, also make it challenging to synthesize
evidence from different studies.
Standardization and Integration: It is crucial to note the
attempts to establish international guidelines for the collec-
tion of data and reports concerning diabetes. To increase
the reliability of the prediction models, it is necessary to
unify the methods of data collection and combine different
datasets. This approach can assist in addressing current
drawbacks such as inconsistencies in demographic and clin-
ical variables that can influence the results of the model.
Combining datasets from different regions and population
groups may offer a broader understanding of diabetes, and
thus enable the creation of models that are viable in different
populations and clinical situations. In addition, the combi-
nation of EHRs, genetic information, and CGM data with
clinical and demographic data can improve the accuracy and
comprehensiveness of the model.
Machine Learning Algorithms and Training: The RQ2was on the approach used in the machine learning algorithms
in predicting diabetes as well as the training approaches with
independent variables. The studies showed how algorithms
such as CNNs, SVMs, and XGBoost perform with different
data types and different types of predictions. This shows that
independent variables and training strategies, such as cross-
validation and data augmentation, are critical to improving
the performance of the model. However, the choice of fea-
tures and training methods influences their effectiveness and
transferability. The use of these ML algorithms in different
studies proves their efficiency in providing accurate predic-
tions in different clinical areas.
Algorithm Selection: The SLR reveals several ML algo-
rithms utilized in diabetes prediction; they are CNNs, SVMs,
Logistic Regression, and XGBoost. Each has advantages
and is used for different data and prediction problems. For
instance, CNNs are efficient in analyzing retinal images for
DR, whereas SVM are employed for analyzing glycemic

indices and demographic data. Despite the presence of more
complex models, logistic regression continues to be used
because of its simplicity and ease of interpreting results
while analyzing structured clinical and demographic data.
XGBoost is preferred owing to its demonstrated superiority
with tabular datasets and flexibility in handling missing
values and feature interactions.
Feature Selection and Data Preprocessing: The selec-
tion of independent variables is appropriate when develop-
ing these models. The required inputs were demographic
data, clinical measurements, and medical images of patients.
Some of the critical techniques in the development of any
model include feature selection and data pre-processing.
Some of these are the choice of features for CNNs for
retinal image analysis and training techniques for SVMs for
glycemic indices. Feature selection techniques such as Re-
cursive Feature Elimination and Wrapper methods guarantee
that only the variables that are most beneficial to the model
are used, thereby decreasing the noise level. Other prepa-
rations that may help enhance work on the project include
data scaling, handling of missing values, and converting
categorical data to numerical data.
Training Strategies: Training strategies like cross-validation
and data augmentation and feature selection are important
for increasing the model reliability. The complexity and
accuracy, as well as the independence of the data, were
checked using methods such as k-fold cross-validation to
avoid overfitting. Data augmentation, especially in image-
based investigations, enhances the performance of the model
because of variations in the dataset. For instance, the varia-
tion in retinal images by rotation and changing the brightness
of the images can improve the generalization of the model.
Pre-processing needs involve feature selection techniques
that help identify the best variables to be used in the model
to eliminate noisy ones. Bagging and boosting are other
techniques that are also used to enhance the performance
of models by using multiple models and obtaining one final
result that is more accurate than the individual models.
Applications and Use Cases: The same ML algorithms
have been applied in many research studies implying their
efficiency and usefulness. For example, CNNs have been
applied in the identification of diabetic retinopathy from
retinal images, SVM in the analysis of ECG data for Diabetic
and Non-Diabetic Heart Rate Variability and XGBoost to
large-scale EHR data for diabetes onset and complication
prediction. The above applications prove that with the execu-
tion of ML algorithms, predictions are accurate and reliable
in different clinical practices. Further, incorporation of ML
models with clinical decision support systems (CDSS) may
help clinicians make better and timely decisions that may
help to improve the quality of life of a patient and decrease
the impact of complications due to diabetes.
Evaluation Setups and Metrics: As derived from RQ3,
which aimed at identifying the evaluation setups employed
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Table 5
Key Findings from RQ2: On the Trainings Strategies, Independent Variables and ML Algorithms

Studies Independent
Variables

Training Strategies ML Algorithms

[80, 85, 24, 73] Retinal images Cross-validation CNN
[42] Glycemic Indices Recursive feature elimination,

training/testing split
SVM

[82, 39] Demographic and
health-related
variables

Five-fold Cross-validation Logistic Regression

[13, 75] Fundus Images Data Augmentation CNN (PhelcomNet)
[53, 64, 70, 78, 11, 8, 5, 71, 47] EHR data Feature selection, five-fold

cross-validation
XGBoost

[14] Fundus images Data augmentation, cross-
validation

CNN

[20] Demographic and
clinical features

Parameter tuning, wrapper
approaches

Random Forest

[52] Metabolomics pro-
files

Multivariate logistic regres-
sion, cross-validation

Regularized Least
Squares Regression

[24, 38] Retinal images Testing on new dataset with-
out retraining

Various FDA-
approved models

[79] Glucose Levels Grid search, 10-fold cross-
validation

ANN, SVM

[69, 75, 77, 25, 59, 50, 45, 38, 30, 21, 9, 76, 60, 67] HRV signals from
ECG

- Hybrid Models(CNN-
LSTM-SVM)

[29] OCT
measurements

- Inception-V3

[62, 7, 3, 79, 57, 46, 44, 32, 22, 86, 35, 61] Demographic,
clinical, lifestyle
factors

- Bayesian Network

in the assessment of the machine learning models for di-
abetes prediction, including the kinds of validation em-
ployed and the measures used to measure the performance
of the models. The studies used other techniques to as-
sess the validity and portability of the model, including k-
fold cross-validation, external validation, and bootstrap sam-
pling. Measures such as accuracy, AUC, sensitivity, speci-
ficity, precision, and F1 score offered satisfactory measures
of model performance, and thus underlined their value in
clinical use. These evaluation setups and metrics ensure that
models are not only valid in providing a range of clinical
applications but also in terms of delivering rich and com-
prehensive information concerning model performance, thus
helping to distinguish the most suitable predictive models.
Key findings related to RQ3 are presented in Table 6, which
further provides a detailed information about the evaluation
setups and metrics used in the literature.
Deciding Evaluation Methods: The evaluation setups that
are incorporated in the diabetes prediction research are
aimed at achieving the ML model validity and reliability.
Cross validation, external validation, and bootstrap sampling
are techniques that offer strong guidelines for the perfor-
mance of the model. They assist in detecting overfitting,
guaranteeing the generalization of models, and providing
information about their advantages and limitations. For
example, k-fold cross validation, where the set of collected

data is split into k sets, where one is used for validation data
and the other k-1 are used as training data, offers a more
comprehensive result of the model.
Selecting Key Metrics: To assess the performance of the
model, the evaluation measures of accuracy, Area Under the
Curve (AUC), sensitivity, specificity, precision, and F1 score
are essential. These metrics provide detailed information on
how well a model identifies diabetes, reduces false-positive
and false-negative rates, and works in practice. For instance,
accuracy quantifies the number of true results (both true pos-
itives and true negatives) per total analyzed cases, whereas
AUC provides information on the ability of the model to
classify classes. Sensitivity and specificity: These are critical
metrics for analyzing the capacity of a model to diagnose
positive and negative cases. Accuracy is not recommended
for imbalanced datasets because it tends to favor the majority
class, whereas Precision and F1 score, which take into
account both precision and recall, are recommended for use
with imbalanced datasets.
Ensuring Reliability: The validity of the models can be
confirmed through the use of datasets other than the ones
used in training as a way of testing if the models devel-
oped will work well on new data. For instance, the study
conducted using the Optumő EHR dataset was externally
validated by comparing model predictions to the scores
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Table 6
Key Findings from RQ3: Evaluation Techniques and Metrics

Studies Evaluation
Setups

Evaluation Metrics

[42, 82, 48] 10 fold Cross
Validation,
External
Validation

Accuracy, Precision, Recall,
F1 Score

[24] External
validation

PPV, NPV

[20, 7, 78, 3, 57, 45, 38, 11, 76, 71] 5-fold cross valida-
tion

Accuracy

[14, 62, 79, 52, 64, 29, 70, 77, 8, 86] Cross Validation AUC
[80, 56, 53, 85, 17, 69, 73, 49, 25, 59, 46, 30] Cross Validation Sensitivity, Specificity
[39, 75, 44, 21, 5, 47, 35, 61] Cross-validation Precision, Recall, F1 Score
[24] External

Validation
PPV, NPV

of professional graders of new images from the screen-
ing programs, as well as other diverse population groups.
Bootstrap sampling, which trains the model multiple times
with random samples drawn with replacements from the
dataset, provides an empirical measure of the variability
of the performance measures. These evaluation setups help
ensure that the models developed are more reliable, valid,
and transportable to a broad spectrum of clinical practice. In
addition, the interpretability and explainability of the models
are essential, especially in a clinical environment, where
the ability to understand the decision-making process of the
system will increase acceptance by practitioners.
Advances in AI for Diabetes Prediction: Emerging tech-
nologies, especially in the domain of ML and DL, have
enriched the idea of diabetes prediction in the recent past.
These include the accuracy of diagnosis, features extracted
from the data, and the ability to analyze data in real time
for early diagnosis, risk evaluation, and management. Data
pre-processing is an important step that directly affects the
performance of the model. Techniques such as Principal
Component Analysis (PCA) and Recursive Feature Elimi-
nation (RFE) are used to minimize computational intensity
while optimizing significant biomarkers [76]. This will help
in handling class imbalance, and techniques such as the
synthetic minority oversampling technique (SMOTE) will
be employed to enhance the generalization of the models
[15]. Some of these methods include contrast enhancement
to adjust the image contrast before feeding the data into the
deep learning model and GANs to generate many new image
datasets to enhance the capability of the deep learning model
in feature extraction [39]. Deep learning techniques exhibit
better performance than standard ML methods in the case
of diabetes-related tasks. CNNs are widely used in Diabetic
Retinopathy (DR) because of their efficiency in identify-
ing diabetic retinopathy with high accuracy in analyzing
retinal images [9]. There is also an enhancement of target
lesions in these models by focusing on the attention mecha-
nisms. Therefore, Recurrent Neural Networks (RNNs) and

Long Short-Term Memory (LSTM) networks are suitable
for working with continuous glycogen measurements and for
calculating real-time risk assessments, as is the case with
CGM [78]. The potential of AI in this field remains wide as
it has been used for diabetes risk appraisal and control. For
example, the current tools approved by the Food and Drug
Administration include Google DeepMind and IDx-DR, and
employ CNNs for DR screening [38]. Moreover, it is efficient
in predicting diabetes onset several years prior to diagnosis
[61]. AI in wearable and mobile health technologies has also
been applied to glucose monitoring and data sharing using
transfer learning to forecast risks [25].
In the future, the issue of Explainable AI (XAI) will re-
main important for clinical implementation because it ad-
dresses how the models make decisions. Another promising
approach is federated learning, which allows obtaining a
model updated on a server without uploading the patient
data. Moreover, applying multimodal AI models that use ge-
nomic, imaging, and lifestyle data will provide a framework
for the enhanced precision of diabetes prediction, and hence,
provide a better treatment option.

The discussion also focuses on the selection of datasets,
the choice of machine learning algorithms, and the evalua-
tion frameworks in the creation of reliable diabetes predic-
tion models. Hence, despite the progress made in the field,
solving problems regarding data quality, consistency, and
privacy is crucial for future development. Here, interdisci-
plinary cooperation and compliance with the standardized
procedure of data collection and the use of sophisticated
algorithms will allow the potential of machine learning to be
realized and contribute to the efficient treatment of diabetes.
The use of multiple sources of data, appropriate selection
of features, and better training and validation paradigms
will improve the robustness and transferability of predictive
models and thus contribute to the betterment of lives as well
as the field of diabetes prediction. Nevertheless, what are the
main limitations that have been found in this SLR, and how
can future studies deal with these issues to enhance diabetes
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prediction models? This question will be discussed in the
next section to identify the current limitations of diabetes
prediction and future directions for the improvement of the
models.

5. Research Limitations and Implications
Diabetes prediction using artificial intelligence, specif-

ically machine learning (ML), has presented a method of
early diagnosis and effective control of the disease. Our
study identified some issues, such as data quality, feature
selection, model complexity, and ethical implications, which
make it difficult to achieve in the healthcare domain. Solving
these problems is vital for building stable and accurate ML
models that can be incorporated into clinical settings. In this
section, we discuss the limitations and their consequences
for researchers and stakeholders and outline the steps to
enhance the field and diabetes prognosis and management.
Data Quality and Standardization Issues: The datasets
used to build the AI-based diabetes prediction models were
reliable and consistent. Some frequently used databases in-
clude NHANES, PIDD, Optumő EHR, EyePACS, MIMIC-
III, KNHANES, REPLACE-BG, Humedica, Practice Fusion
EHR, and the Itabuna Diabetes Campaign Dataset, which
have issues of missing data, data collection methods, and
variability in definitions. These differences arise from the
differences in the diagnostic approach, training strategy,
and evaluation technique, which have implications for the
accuracy and transferability of the model.
Demographic and Ethnic Bias: As the name suggests, the
Pima Indians Diabetes Database (PIDD) is a database of
adult females of Pima Indian origin belonging to one demo-
graphic population and, therefore, not generalizable to other
populations. Consequently, the modeling risk hypothesis
arising from this dataset may not perform optimally with
other ethnic groups or male patient data, and can lead to
poor accuracy when healthcare is predicated on the findings
of the model in diverse healthcare facilities. The EYEPACS
used for diabetic retinopathy classification images has a
significant concern regarding ethnic bias, as some ethnic
groups retain a high representation, while others have a low
representation. This leads to performance disparity because
CNN-based models trained on this dataset cannot accurately
classify retinal images from such populations. Thus, such
models cannot be applied in diverse clinical settings and are
not generalizable.
Class Imbalance: NHANES has more subjects not screened
for diabetes, causing low sensitivity and misclassification of
the screened diabetic subjects. There are class imbalance
problems for a sizeable portion of female Indian patients
with PIDD. Early and advanced diabetes cases are not well
distributed in Optumő EHR, which hinders the prediction
of disease progression. CNN-based models for constructing
different risk factors from datasets such as EyePACS and the
Kaggle Diabetic Retinopathy dataset are relatively ineffec-
tive for the detection of severe cases owing to the imbalance

in DR severity levels. The MIMIC III and Humedica datasets
were skewed toward type 2 diabetes, decreasing the model
accuracy for Type 1 prediction.
Missing and Inconsistent Data: It is important to note that
the data in the Optumő EHR sample type are missing some
records, and the medical codes are not uniform. Some basic
aspects, such as HbA1c levels, BMI, and blood pressure,
may not be available at certain times, and this requires the
use of imputation techniques that introduce artificial bias
that affects the results generated by AI models of a particular
disease.
Retrospective vs. Prospective Data Limitations: Many AI
models rely on retrospective datasets such as NHANES, Op-
tumő EHR, and MIMIC-III, which contain historical patient
records. These datasets provide large-scale information, but
lack longitudinal follow-up, making it difficult to assess dis-
ease progression or predict long-term outcomes. Conversely,
prospective studies, such as the Botnia Prospective Study,
offer real-time data collection but suffer from smaller sample
sizes, longer collection periods, and high resource demands,
limiting their feasibility for large-scale predictive modeling.
The choice of retrospective versus prospective data signif-
icantly impacts model generalizability, where retrospective
models may struggle with real-world applications, whereas
prospective models risk overfitting owing to limited data
availability.
These dataset limitations compromise model fairness, ro-
bustness, and clinical applicability, requiring targeted inter-
ventions, such as bias-correction techniques, multi-source
data integration, external validation, and hybrid modeling
approaches, to ensure that AI-driven diabetes prediction
models perform reliably across diverse populations.
+ Better quality and variety of data, consistent methods
of data gathering, and balancing classes in the models
are important for improving the machine learning models
dependability and credibility. This is why healthcare organi-
zations and policymakers should ensure the development of
large databases with ethnic, demographic and geographical
characteristics of minorities; this would increase the rele-
vance of the models used.

Feature Engineering and Selection: Diabetes prediction
models generally involve feature engineering and selection
since they use demographic and clinical aspects such as age,
BMI, blood glucose level, and others. However, the disease
is complex, and long-term models that do not include genetic
and lifestyle factors are very simplified. Feature selection is
always a problem; researchers usually choose features that
are either redundant or irrelevant, which is bad for the model.
+ Researchers should use genetic and other related fac-
tors as well as lifestyle and behavior data in their research
and should use dimensionality reduction and feature impor-
tance analysis. Clinicians were the main targets involved in
the process of model creation and refinement to achieve ac-
curacy and validity. Therefore, stakeholders should promote
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programs that increase the number of data assets and select
better features for predictions.

Model Complexity and Interpretability: The complexity
of the models also poses a problem in the prediction of
diabetes. Large neural networks are precise; however, they
are overparameterized and overfit the training data. These
models are often “black boxes”, which make it difficult to
explain the cause of a decision to a patient or another health
care worker. This lack of transparency is a drawback in terms
of adoption and patient management. As diabetes prediction
and as well as diabetic retinopathy detection rely on AI-
based models, it is important to focus more on Explainable
AI techniques for clinical transparency and trust. Methods
such as Grad-CAM, SHAP, and LIME have been success-
fully incorporated into CNN-based- and tree-based models.
As diabetes prediction as well as diabetic retinopathy de-
tection rely on AI-based models, it is important to focus
more on Explainable AI (XAI) techniques for clinical trans-
parency and trust. Methods such as Grad-CAM, SHAP,
and LIME have been successfully incorporated into CNN-
based and tree-based models; however, their adoption is
limited to other styles of deep-learning models that do not
consist of CNNs. As part of future research, to fill this gap,
hybrid AI frameworks that integrate leading deep learning
models with more interpretability methods should be cre-
ated. In addition to the reliability of AI-driven diagnostics,
the integration of multimodal interpretability, attention, and
attribute attribution methods can be beneficial. Furthermore,
cooperation between AI researchers and clinicians is of key
importance in defining standardized XAI guidelines so that
model explanations correspond to reality in clinical practice
and regulations.
Ultimately, XAI techniques should be expanded to diabetes
prediction and other healthcare domains to foster trust, en-
courage adoption, and lead to models based on AI being used
effectively in clinical decision-making.
+ Models of moderate complexity should be easier to
interpret and that explainability should then be applied as
an intervention. If efficient models cannot be used, more
complex models should be used in the predictions. Clinicians
should consider using usability models to enhance the imple-
mentation of clinical practice. Training and other resource
supplies to healthcare personnel need to be encouraged.

Training and Validation Limitations: Different meth-
ods are used for better model performance, such as cross-
validation, data augmentation, and hyperparameter tuning.
However, these techniques also have certain disadvantages.
Validation confirms the model performance on a specific
dataset but does not ensure its generalizability. However,
models can be adapted to new datasets and new datasets
can be accommodated by the models. Furthermore, deep
learning models rely on sizeable datasets, and when there are
inadequate training samples, these overfits are impractical
for real-life applications.

+ Data-augmentation and cross-validation should be
employed by researchers to boost the model performances.
Standard procedures for training and validation should be
set by all stakeholders to minimize the variations between
the different studies and applications. It is suggested that
principles and best practices for ML models can increase
their dependence and make outcomes more similar and
comparable; in this case, institutions should collaborate for
better research in this regard.

Lack of Standardized Evaluation Metrics: Different ap-
proaches adopt the use of measures, including accuracy,
area under the curve, sensitivity, and specificity; therefore,
there is no proper way of comparing modes. Some models
are aimed at high accuracy, which is not appropriate for
imbalanced datasets, while others tend to focus on different
aspects of precision-recall curves, which also leads to incon-
sistencies in the results.
+ The used evaluation metrics should include accuracy,
AUC, sensitivity, specificity, and clinically oriented perfor-
mance. Stakeholders should ensure that standard evaluation
tools are used to serve clients and meet the market standards.
A criterion for the improvement of predictive models based
on statistical results and clinical relevance was developed.
This will improve the credibility of the ML models since
openness will be promoted.

Computational and Resource Constraints: Complex deep
learning models such as CNNs require substantial computa-
tional power, making them impractical for resource-limited
clinical settings. Federated learning and model compression
techniques have been proposed as solutions, but they remain
underexplored in diabetes prediction research.
+ Researchers have to design a model for health care
provision, irrespective of the available resources. Efforts
must be made to compute assets by key players, and stan-
dardization of the same must be made. Governments should
allocate resources for technology and training distributions
to reduce the disparity of healthcare quality.

Ethical and Legal Considerations: There are ethical and
legal issues that come with ML models in diabetes prediction
such as bias in the training data and measures such as Health
Insurance Portability and Accountability Act (HIPAA) and
General Data Protection Regulation (GDPR) that limit data
access. These problems can aggravate health disparities,
restrict data protection and security, and impede data sharing
and model building.
+ The models that have been developed require high
reliability, and the ethical norms such as HIPAA and GDPR
contribute to it. This guarantees appropriate use of data
making statistical models more precise and helps to elimi-
nate discrimination and unfair practices in the sphere which
in its turn will benefit society and provide equal treatment
for patients.

Lack of Collaboration on Diabetes Prediction Efforts:
Collaboration in the diabetes prediction hamper the data
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accessibility for constructing a model, its testing, moral
analysis, and its practical use in real-world settings, which
slows down research, development, and patient outcomes
and benefits, while there is a requirement for diverse and
non-bias data.
+Clinicians and stakeholders should engage researchers
in creating communication channels for new models in or-
der to improve performance and fit the demands of the
healthcare sectors. Involvement of stakeholders helps in pro-
ducing clinically meaningful, technologically realistic, and
ethically sound models that enhance patients experience.
Addressing these limitations requires future studies to stan-
dardize the dataset selection, implement external validation
strategies, and develop more interpretable AI models to
ensure real-world applicability.

6. Threats to validity
Like any other systematic literature review (SLR), the

present study has some limitations that could have poten-
tially affected the validity of the observed results. This sec-
tion presents these limitations and measures taken to manage
them.
Literature Selection: The study might have limited its
effectiveness due to the exclusion of studies from sources
beyond IEEE, PubMed, and ScienceDirect without adding
the Web of Science and Scopus databases. The restricted
search databases might have reduced both the amount of
research materials included and the general review thor-
oughness. One of the crucial issues in conducting a sys-
tematic literature review is how to find sufficient papers
to provide a general understanding of the state of the art
of a given research area. In this regard, the present study
formulated a comprehensive search question with no tem-
poral restrictions to acquire as many papers as possible
concerning the application of machine learning for diabetes
prediction. Although this approach is time consuming, it
is used to achieve exhaustiveness. It is important to note
that synonyms and alternative spellings of the terms com-
monly used in the literature to define the search query
were identified. Furthermore, we searched for these search
terms among the systematic literature reviews on diabetes
prediction to determine if there are other suitable terms.
To further enhance data collection in the research area, a
backward snowballing session was conducted on the papers
obtained after the exclusion/inclusion criteria were applied.
To ensure credibility, all processes to arrive at the choice
of the primary studies were cross-checked by at least one of
the authors. The implementation of these actions allows us to
gain confidence in the comprehensiveness of the selection of
literature sources. To ensure that all steps and intermediary
results of the analyses reported here can be verified and
independently replicated, all of them are presented in the
online appendix.
Literature Analysis and Synthesis: Following the selec-
tion process, the following exclusion criteria were used to

remove papers that could not make a significant contribution
in the summarization of the state of the art about the defined
research questions. We did not restrict the list of primary
studies to articles that met the inclusion criteria but also
performed an extra quality check to confirm their relevance.
To ensure that no resources that do not meet the objectives
of the study are included, this manual assessment posed an
additional layer to the process.
More broadly, the literature synthesis was performed accord-
ing to the results of manual analyses, which are known to
be prone to human factors. In this regard, two observations
are necessary. First, the two main authors were involved
in the process, which reduced the subjectivity and possible
mistakes. Second, a third author was consistently involved,
and he provided input on how to perform the different phases
of the systematic literature review whenever necessary.
These combined efforts go a long way toward reducing the
threats to validity and provide a thorough and comprehensive
review of the current state of affairs regarding the use of
machine learning techniques in the prediction of diabetes.

7. Conclusion
This systematic review demonstrated the future progress

and productivity of ML in the diagnosis and manage-
ment of diabetes, a major global health concern. In this
way, while comparing 53 studies, this review offers an
overview of the datasets, ML algorithms, training methods,
independent variables, and evaluation metrics used in dia-
betes prediction. Some of these datasets include the Sin-
gapore National Diabetic Retinopathy Screening Program,
REPLACE-BG, National Health and Nutrition Examination
Survey (NHANES), the Pima Indians Diabetes Database
(PIDD), Optumő EHR, EyePACS, MESSIDOR, Kaggle Di-
abetic Retinopathy Dataset, KNHANES, and the Humedica
database, which come with their peculiarities, some of which
are class imbalance. This review highlights the positive
impact of several ML algorithms, such as CNN, SVM, Lo-
gistic Regression, and XGBoost, in diagnosing diabetes. The
interpretability of AI-driven diabetes prediction and diabetic
retinopathy detection models depends largely on explainable
AI (XAI) methods for clearing up their functionality. The
increasing use of Grad-CAM, SHAP, and LIME techniques
provides medical professionals with more insights into the
decision-making process of machine learning models with
enhanced clinical reliability and transparency levels. The
restricted use of XAI methods for CNN networks requires
researchers to conduct additional studies to achieve inter-
pretability across all types of machine learning applications.
Other attributes that are often used as independent variables
include age, body mass index, blood glucose concentrations,
genetic polymorphisms, and lifestyle, which are instrumen-
tal in building forecasting models. In addition, this review
provides insights into methods such as cross-validation,
data augmentation, and feature selection, which improve
the flexibility and stability of the models. Therefore, it
is crucial to use assessment indicators such as accuracy,

Pir Bakhsh et al.: Preprint submitted to Elsevier Page 25 of 28



Advances in Artificial Intelligence for Diabetes Prediction: Insights from a Systematic Literature Review

AUC, sensitivity, and specificity to provide a comprehensive
assessment of the model. In the future, it will be necessary to
overcome the current weaknesses to enhance the utilization
of ML for diabetic prediction. Future studies should focus on
the quality and variability of data, methods of handling class
imbalance, interpretability of the model, and computational
complexity. Multi-center studies involving various popula-
tion groups and standardizing the metrics for the evaluation
and validation of the models are the few important steps that
need to be taken. If these challenges are addressed, ML has
the potential to enhance the accuracy of diagnosis, health of
patients, and effectiveness of the healthcare system, thereby
lowering the global impact of diabetes. In light of these
findings, this review calls for the integration of ethicists and
other stakeholders in formulating recommendation policies
involving the application of ML-based diabetes prediction
models aimed at enhancing the quality of life of people
globally, through the use of AI technology in the delivery
of healthcare services. The findings and recommendations
of this review are useful in the current drive towards the use
of AI and ML in combating one of the biggest challenges to
health in the modern world.

Declaration of Competing Interests
The authors declare no conflicts of interest.

Acknowledgements
The authors would like to express their sincere gratitude

to the Department of Informatics, University of Salerno, for
providing the research environment and institutional support
necessary for this work. We also thank our colleagues for
their constructive feedback and discussions that significantly
contributed to the improvement of this study. Special thanks
to the reviewers for their valuable comments and suggestions
that helped refine the quality of this manuscript.

Funding
This work has been partially supported by the European

Union through the Italian Ministry of University and Re-
search, Project PNRR "D3-4Health: Digital Driven Diag-
nostics, prognostics and therapeutics for sustainable Health
care". PNC 0000001. CUP B53C22006090001

References
[1] Ahmad, E., Lim, S., Lamptey, R., Webb, D.R., Davies, M.J., 2022.

Type 2 diabetes. The Lancet 400, 1803–1820.
[2] Ahmed, S.F., Alam, M.S.B., Hassan, M., Rozbu, M.R., Ishtiak,

T., Rafa, N., Mofijur, M., Shawkat Ali, A., Gandomi, A.H., 2023.
Deep learning modelling techniques: current progress, applications,
advantages, and challenges. Artificial Intelligence Review 56,
13521–13617.

[3] Al-Tarawneh, M., Muheilan, M., Al Tarawneh, Z., 2021. Hand
movement-based diabetes detection using machine learning tech-
niques. International Journal on Engineering Applications (IREA)
9, 234–242.

[4] Aleppo, G., Ruedy, K.J., Riddlesworth, T.D., Kruger, D.F., Peters,
A.L., Hirsch, I., Bergenstal, R.M., Toschi, E., Ahmann, A.J., Shah,
V.N., et al., 2017. Replace-bg: a randomized trial comparing con-
tinuous glucose monitoring with and without routine blood glucose
monitoring in adults with well-controlled type 1 diabetes. Diabetes
care 40, 538–545.

[5] Almutairi, E.S., Abbod, M.F., 2023. Machine learning methods for
diabetes prevalence classification in saudi arabia. Modelling 4, 37–55.

[6] Alsaigh, A., Almalki, F.A.M., Alnefaie, M.A.M., et al., 2022. The
role of physical therapists in fighting the type 2 diabetes epidemic
patients attending primary healthcare centers in makkah city, saudi
arabia in 2022. Annals of the Romanian Society for Cell Biology 26,
3135–3148.

[7] Anderson, J.P., Parikh, J.R., Shenfeld, D.K., Ivanov, V., Marks, C.,
Church, B.W., Laramie, J.M., Mardekian, J., Piper, B.A., Willke,
R.J., et al., 2016. Reverse engineering and evaluation of prediction
models for progression to type 2 diabetes: an application of machine
learning using electronic health records. Journal of diabetes science
and technology 10, 6–18.

[8] Anggraeni, Z., Wibawa, H.A., 2019. Detection of the emergence
of exudate on the image of retina using extreme learning machine
method, in: 2019 3rd International Conference on Informatics and
Computational Sciences (ICICoS), IEEE. pp. 1–6.

[9] Arcadu, F., Benmansour, F., Maunz, A., Michon, J., Haskova, Z.,
McClintock, D., Adamis, A.P., Willis, J.R., Prunotto, M., 2019. Deep
learning predicts oct measures of diabetic macular thickening from
color fundus photographs. Investigative ophthalmology & visual
science 60, 852–857.

[10] Association, A.D., 2003. Physical activity/exercise and diabetes
mellitus. Diabetes care 26, s73–s77.

[11] Bhuvaneswari, G., Manikandan, G., 2018. A novel machine learning
framework for diagnosing the type 2 diabetics using temporal fuzzy
ant miner decision tree classifier with temporal weighted genetic
algorithm. Computing 100, 759–772.

[12] Bidwai, P., Gite, S., Pahuja, K., Kotecha, K., 2022. A systematic
literature review on diabetic retinopathy using an artificial intelligence
approach. Big Data and Cognitive Computing 6, 152.

[13] Bloom, D.E., Canning, D., Fink, G., 2009. Program on the global
demography of aging. Harvard University. Oct .

[14] Buccheri, E., Dell’Aquila, D., Russo, M., 2021. Artificial intelligence
in health data analysis: the darwinian evolution theory suggests an
extremely simple and zero-cost large-scale screening tool for predi-
abetes and type 2 diabetes. Diabetes Research and Clinical Practice
174, 108722.

[15] Butt, U.M., Letchmunan, S., Ali, M., Hassan, F.H., Baqir, A., Sherazi,
H.H.R., 2021. Machine learning based diabetes classification and pre-
diction for healthcare applications. Journal of healthcare engineering
2021, 9930985.

[16] Cabrera, D., Cabrera, L.L., 2023. The steps to doing a systems
literature review (slr). Journal of Systems Thinking Preprints .

[17] Casanova, R., Saldana, S., Simpson, S.L., Lacy, M.E., Subauste, A.R.,
Blackshear, C., Wagenknecht, L., Bertoni, A.G., 2016. Prediction of
incident diabetes in the jackson heart study using high-dimensional
machine learning. PloS one 11, e0163942.

[18] Centers for Disease Control and Prevention, 2023. National Diabetes
Statistics Report. Technical Report. CDC.

[19] Chatterjee, S., Khunti, K., Davies, M.J., 2017. Type 2 diabetes. The
lancet 389, 2239–2251.

[20] Chen, H., Tan, C., Lin, Z., Wu, T., 2014. The diagnostics of diabetes
mellitus based on ensemble modeling and hair/urine element level
analysis. Computers in biology and medicine 50, 70–75.

[21] Chen, W., Chen, S., Zhang, H., Wu, T., 2017. A hybrid prediction
model for type 2 diabetes using k-means and decision tree, in: 2017
8th IEEE international conference on software engineering and ser-
vice science (ICSESS), IEEE. pp. 386–390.

[22] Chetoui, M., Akhloufi, M.A., Kardouchi, M., 2018. Diabetic retinopa-
thy detection using machine learning and texture features, in: 2018
IEEE Canadian conference on electrical & computer engineering
(CCECE), IEEE. pp. 1–4.

Pir Bakhsh et al.: Preprint submitted to Elsevier Page 26 of 28



Advances in Artificial Intelligence for Diabetes Prediction: Insights from a Systematic Literature Review

[23] Chicco, D., Starovoitov, V., Jurman, G., 2021. The benefits of
the matthews correlation coefficient (mcc) over the diagnostic odds
ratio (dor) in binary classification assessment. Ieee Access 9,
47112–47124.

[24] Choi, S.B., Kim, W.J., Yoo, T.K., Park, J.S., Chung, J.W., Lee, Y.h.,
Kang, E.S., Kim, D.W., 2014. Screening for prediabetes using
machine learning models. Computational and mathematical methods
in medicine 2014, 618976.

[25] Chowdary, P.B.K., Kumar, R.U., 2021. An effective approach for
detecting diabetes using deep learning techniques based on convo-
lutional lstm networks. International Journal of Advanced Computer
Science and Applications 12, 519–525.

[26] Contreras, I., Vehi, J., 2018. Artificial intelligence for diabetes
management and decision support: literature review. Journal of
medical Internet research 20, e10775.

[27] Costanzo, M.C., von Grotthuss, M., Massung, J., Jang, D., Caulkins,
L., Koesterer, R., Gilbert, C., Welch, R.P., Kudtarkar, P., Hoang, Q.,
et al., 2023. The type 2 diabetes knowledge portal: An open access
genetic resource dedicated to type 2 diabetes and related traits. Cell
metabolism 35, 695–710.

[28] Daneman, D., 2006. Type 1 diabetes. The Lancet 367, 847–858.
[29] Debédat, J., Sokolovska, N., Coupaye, M., Panunzi, S., Chakaroun,

R., Genser, L., de Turenne, G., Bouillot, J.L., Poitou, C., Oppert, J.M.,
et al., 2018. Long-term relapse of type 2 diabetes after roux-en-y
gastric bypass: prediction and clinical relevance. Diabetes Care 41,
2086–2095.

[30] Deberneh, H.M., Kim, I., 2021. Prediction of type 2 diabetes based on
machine learning algorithm. International journal of environmental
research and public health 18, 3317.

[31] DeFronzo, R.A., Ferrannini, E., Groop, L., Henry, R.R., Herman,
W.H., Holst, J.J., Hu, F.B., Kahn, C.R., Raz, I., Shulman, G.I., et al.,
2015. Type 2 diabetes mellitus. Nature reviews Disease primers 1,
1–22.

[32] Dinh, A., Miertschin, S., Young, A., Mohanty, S.D., 2019. A data-
driven approach to predicting diabetes and cardiovascular disease
with machine learning. BMC medical informatics and decision
making 19, 1–15.

[33] Dunstan, D.W., Zimmet, P.Z., Welborn, T.A., Cameron, A.J., Shaw,
J., De Courten, M., Jolley, D., McCarty, D.J., Committee, A.S.,
et al., 2002. The australian diabetes, obesity and lifestyle study
(ausdiab)methods and response rates. Diabetes research and clinical
practice 57, 119–129.

[34] Ehrenstein, V., Kharrazi, H., Lehmann, H., Taylor, C.O., 2019. Ob-
taining data from electronic health records, in: Tools and technolo-
gies for registry interoperability, registries for evaluating patient out-
comes: A users guide, 3rd edition, Addendum 2 [Internet]. Agency
for Healthcare Research and Quality (US).

[35] Fazakis, N., Kocsis, O., Dritsas, E., Alexiou, S., Fakotakis, N., Mous-
takas, K., 2021. Machine learning tools for long-term type 2 diabetes
risk prediction. ieee Access 9, 103737–103757.

[36] Felizardo, V., Garcia, N.M., Pombo, N., Megdiche, I., 2021. Data-
based algorithms and models using diabetics real data for blood
glucose and hypoglycaemia prediction–a systematic literature review.
Artificial Intelligence in Medicine 118, 102120.

[37] Fregoso-Aparicio, L., Noguez, J., Montesinos, L., García-García,
J.A., 2021. Machine learning and deep learning predictive models
for type 2 diabetes: a systematic review. Diabetology & metabolic
syndrome 13, 148.

[38] Gadekallu, T.R., Khare, N., Bhattacharya, S., Singh, S., Maddikunta,
P.K.R., Ra, I.H., Alazab, M., 2020. Early detection of diabetic
retinopathy using pca-firefly based deep learning model. Electronics
9, 274.

[39] Gargeya, R., Leng, T., 2017. Automated identification of diabetic
retinopathy using deep learning. Ophthalmology 124, 962–969.

[40] Ghadikolaei, H.S., Ghauch, H., Fischione, C., Skoglund, M., 2019.
Learning and data selection in big datasets, in: International Confer-
ence on Machine Learning, PMLR. pp. 2191–2200.

[41] Hall, M.A., 1999. Correlation-based feature selection for machine
learning. Ph.D. thesis. The University of Waikato.

[42] Herrero, P., Reddy, M., Georgiou, P., Oliver, N.S., 2022. Identifying
continuous glucose monitoring data using machine learning. Diabetes
Technology & Therapeutics 24, 403–408.

[43] Idrissi, T.E., Idri, A., Bakkoury, Z., 2019. Systematic map and review
of predictive techniques in diabetes self-management. International
Journal of Information Management 46, 263–277.

[44] Jahangir, M., Afzal, H., Ahmed, M., Khurshid, K., Nawaz, R., 2017.
An expert system for diabetes prediction using auto tuned multi-layer
perceptron, in: 2017 Intelligent systems conference (IntelliSys), IEEE.
pp. 722–728.

[45] Karkuzhali, S., Manimegalai, D., 2019. Distinguising proof of dia-
betic retinopathy detection by hybrid approaches in two dimensional
retinal fundus images. Journal of medical systems 43, 1–12.

[46] Karthikeyan, S., Sanjay, K.P., Madhusudan, R., Sundaramoorthy, S.,
Namboori, P.K., 2019. Detection of multi-class retinal diseases using
artificial intelligence: an expeditious learning using deep cnn with
minimal data. Biomedical & Pharmacology Journal 12, 1577.

[47] Khan, M.Z., Mangayarkarasi, R., Vanmathi, C., Angulakshmi, M.,
2022. Bio-inspired pso for improving neural based diabetes prediction
system. Journal of ICT Standardization 10, 179–199.

[48] Kim, J., Kim, J., Kwak, M., Bajaj, M., 2018. Genetic prediction
of type 2 diabetes using deep neural network. Clinical genetics 93,
822–829.

[49] Kotfila, C., Uzuner, Ö., 2015. A systematic comparison of feature
space effects on disease classifier performance for phenotype iden-
tification of five diseases. Journal of biomedical informatics 58,
S92–S102.

[50] Lai, H., Huang, H., Keshavjee, K., Guergachi, A., Gao, X., 2019.
Predictive models for diabetes mellitus using machine learning tech-
niques. BMC endocrine disorders 19, 1–9.

[51] Larabi-Marie-Sainte, S., Aburahmah, L., Almohaini, R., Saba, T.,
2019. Current techniques for diabetes prediction: review and case
study. Applied Sciences 9, 4604.

[52] Lee, A.Y., Yanagihara, R.T., Lee, C.S., Blazes, M., Jung, H.C., Chee,
Y.E., Gencarella, M.D., Gee, H., Maa, A.Y., Cockerham, G.C., et al.,
2021. Multicenter, head-to-head, real-world validation study of
seven automated artificial intelligence diabetic retinopathy screening
systems. Diabetes care 44, 1168–1175.

[53] Li, L., Lee, C.C., Zhou, F.L., Molony, C., Doder, Z., Zalmover, E.,
Sharma, K., Juhaeri, J., Wu, C., 2021. Performance assessment of
different machine learning approaches in predicting diabetic ketoaci-
dosis in adults with type 1 diabetes using electronic health records
data. Pharmacoepidemiology and drug safety 30, 610–618.

[54] Li, X., Jiang, Y., Zhang, J., Li, M., Luo, H., Yin, S., 2022. Lesion-
attention pyramid network for diabetic retinopathy grading. Artificial
intelligence in medicine 126, 102259.

[55] Liu, K., Li, L., Ma, Y., Jiang, J., Liu, Z., Ye, Z., Liu, S., Pu, C., Chen,
C., Wan, Y., et al., 2023. Machine learning models for blood glucose
level prediction in patients with diabetes mellitus: Systematic review
and network meta-analysis. JMIR Medical Informatics 11, e47833.

[56] Malerbi, F.K., Andrade, R.E., Morales, P.H., Stuchi, J.A., Lencione,
D., de Paulo, J.V., Carvalho, M.P., Nunes, F.S., Rocha, R.M., Ferraz,
D.A., et al., 2022. Diabetic retinopathy screening using artificial
intelligence and handheld smartphone-based retinal camera. Journal
of diabetes science and technology 16, 716–723.

[57] Moreno, E.M., Lujan, M.J.A., Rusinol, M.T., Fernandez, P.J., Man-
rique, P.N., Trivino, C.A., Miquel, M.P., Rodriguez, M.A., Burguil-
los, M.J.G., 2016. Type 2 diabetes screening test by means of a
pulse oximeter. IEEE Transactions on Biomedical Engineering 64,
341–351.

[58] Naidu, G., Zuva, T., Sibanda, E.M., 2023. A review of evaluation
metrics in machine learning algorithms, in: Computer Science On-
line Conference, Springer. pp. 15–25.

[59] Nguyen, B.P., Pham, H.N., Tran, H., Nghiem, N., Nguyen, Q.H., Do,
T.T., Tran, C.T., Simpson, C.R., 2019. Predicting the onset of type 2
diabetes using wide and deep learning with electronic health records.
Computer methods and programs in biomedicine 182, 105055.

Pir Bakhsh et al.: Preprint submitted to Elsevier Page 27 of 28



Advances in Artificial Intelligence for Diabetes Prediction: Insights from a Systematic Literature Review

[60] Nijalingappa, P., Sandeep, B., 2015. Machine learning approach
for the identification of diabetes retinopathy and its stages, in: 2015
International conference on applied and theoretical computing and
communication technology (iCATccT), IEEE. pp. 653–658.

[61] Nuankaew, P., Chaising, S., Temdee, P., 2021. Average weighted
objective distance-based method for type 2 diabetes prediction. IEEE
Access 9, 137015–137028.

[62] Olivera, A.R., Roesler, V., Iochpe, C., Schmidt, M.I., Vigo, Á.,
Barreto, S.M., Duncan, B.B., 2017. Comparison of machine-learning
algorithms to build a predictive model for detecting undiagnosed
diabetes-elsa-brasil: accuracy study. Sao Paulo Medical Journal 135,
234–246.

[63] Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann,
T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan,
S.E., et al., 2021. The prisma 2020 statement: an updated guideline
for reporting systematic reviews. bmj 372.

[64] Peddinti, G., Cobb, J., Yengo, L., Froguel, P., Kravić, J., Balkau,
B., Tuomi, T., Aittokallio, T., Groop, L., 2017. Early metabolic
markers identify potential targets for the prevention of type 2 diabetes.
Diabetologia 60, 1740–1750.

[65] Pima Indians Diabetes Database, 2023. Pima indians diabetes dataset
(pidd) documentation. Available: https://www.kaggle.com/datasets/
uciml/pima-indians-diabetes-database.

[66] Pires, R., Avila, S., Wainer, J., Valle, E., Abramoff, M.D., Rocha,
A., 2019. A data-driven approach to referable diabetic retinopathy
detection. Artificial intelligence in medicine 96, 93–106.

[67] Pustozerov, E.A., Tkachuk, A.S., Vasukova, E.A., Anopova, A.D.,
Kokina, M.A., Gorelova, I.V., Pervunina, T.M., Grineva, E.N.,
Popova, P.V., 2020. Machine learning approach for postprandial blood
glucose prediction in gestational diabetes mellitus. Ieee Access 8,
219308–219321.

[68] Qin, Y., Wu, J., Xiao, W., Wang, K., Huang, A., Liu, B., Yu, J.,
Li, C., Yu, F., Ren, Z., 2022. Machine learning models for data-
driven prediction of diabetes by lifestyle type. International journal
of environmental research and public health 19, 15027.

[69] Qiu, H., Yu, H.Y., Wang, L.Y., Yao, Q., Wu, S.N., Yin, C., Fu, B.,
Zhu, X.J., Zhang, Y.L., Xing, Y., et al., 2017. Electronic health record
driven prediction for gestational diabetes mellitus in early pregnancy.
Scientific reports 7, 16417.

[70] Ramezankhani, A., Pournik, O., Shahrabi, J., Azizi, F., Hadaegh, F.,
Khalili, D., 2016. The impact of oversampling with smote on the
performance of 3 classifiers in prediction of type 2 diabetes. Medical
decision making 36, 137–144.

[71] Samant, P., Agarwal, R., 2019. Analysis of computational techniques
for diabetes diagnosis using the combination of iris-based features and
physiological parameters. Neural Computing and Applications 31,
8441–8453.

[72] Sambo, F., Facchinetti, A., Hakaste, L., Kravic, J., Di Camillo, B.,
Fico, G., Tuomilehto, J., Groop, L., Gabriel, R., Tiinamaija, T., et al.,
2015. A bayesian network for probabilistic reasoning and imputation
of missing risk factors in type 2 diabetes, in: Artificial Intelligence
in Medicine: 15th Conference on Artificial Intelligence in Medicine,
AIME 2015, Pavia, Italy, June 17-20, 2015. Proceedings 15, Springer.
pp. 172–176.

[73] Sangi, M., Win, K.T., Shirvani, F., Namazi-Rad, M.R., Shukla, N.,
2015. Applying a novel combination of techniques to develop a
predictive model for diabetes complications. PLoS One 10, e0121569.

[74] Saxena, R., Sharma, S.K., Gupta, M., Sampada, G., 2022. [retracted]
a comprehensive review of various diabetic prediction models: A
literature survey. Journal of Healthcare Engineering 2022, 8100697.

[75] Seiglie, J., Platt, J., Cromer, S.J., Bunda, B., Foulkes, A.S., Bassett,
I.V., Hsu, J., Meigs, J.B., Leong, A., Putman, M.S., et al., 2020. Dia-
betes as a risk factor for poor early outcomes in patients hospitalized
with covid-19. Diabetes care 43, 2938–2944.

[76] Sneha, N., Gangil, T., 2019. Analysis of diabetes mellitus for early
prediction using optimal features selection. Journal of Big data 6,
1–19.

[77] Swapna, G., Kp, S., Vinayakumar, R., 2018a. Automated detection
of diabetes using cnn and cnn-lstm network and heart rate signals.
Procedia computer science 132, 1253–1262.

[78] Swapna, G., Vinayakumar, R., Soman, K., 2018b. Diabetes detection
using deep learning algorithms. ICT express 4, 243–246.

[79] Tang, F., Luenam, P., Ran, A.R., Quadeer, A.A., Raman, R., Sen,
P., Khan, R., Giridhar, A., Haridas, S., Iglicki, M., et al., 2021.
Detection of diabetic retinopathy from ultra-widefield scanning laser
ophthalmoscope images: a multicenter deep learning analysis. Oph-
thalmology Retina 5, 1097–1106.

[80] Ting, D.S.W., Cheung, C.Y.L., Lim, G., Tan, G.S.W., Quang, N.D.,
Gan, A., Hamzah, H., Garcia-Franco, R., San Yeo, I.Y., Lee, S.Y.,
et al., 2017. Development and validation of a deep learning system
for diabetic retinopathy and related eye diseases using retinal images
from multiethnic populations with diabetes. Jama 318, 2211–2223.

[81] Usman, T.M., Saheed, Y.K., Nsang, A., Ajibesin, A., Rakshit, S.,
2023. A systematic literature review of machine learning based risk
prediction models for diabetic retinopathy progression. Artificial
intelligence in medicine 143, 102617.

[82] Vangeepuram, N., Liu, B., Chiu, P.h., Wang, L., Pandey, G., 2021.
Predicting youth diabetes risk using nhanes data and machine learn-
ing. Scientific reports 11, 11212.

[83] Wadghiri, M.Z., Idri, A., El Idrissi, T., Hakkoum, H., 2022. Ensemble
blood glucose prediction in diabetes mellitus: A review. Computers
in Biology and Medicine 147, 105674.

[84] Wijoseno, M.R., Permanasari, A.E., Pratama, A.R., 2023. Ma-
chine learning diabetes diagnosis literature review, in: 2023 10th
International Conference on Information Technology, Computer, and
Electrical Engineering (ICITACEE), IEEE. pp. 304–308.

[85] Yokota, N., Miyakoshi, T., Sato, Y., Nakasone, Y., Yamashita, K.,
Imai, T., Hirabayashi, K., Koike, H., Yamauchi, K., Aizawa, T., 2017.
Predictive models for conversion of prediabetes to diabetes. Journal
of Diabetes and its Complications 31, 1266–1271.

[86] Zhao, C., Yu, C., 2015. Rapid model identification for online
subcutaneous glucose concentration prediction for new subjects with
type i diabetes. IEEE Transactions on Biomedical Engineering 62,
1333–1344.

[87] Zhao, Z., Alzubaidi, L., Zhang, J., Duan, Y., Gu, Y., 2023. A
comparison review of transfer learning and self-supervised learning:
Definitions, applications, advantages and limitations. Expert Systems
with Applications , 122807.

Pir Bakhsh et al.: Preprint submitted to Elsevier Page 28 of 28

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

