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Abstract

The prominence of Machine Learning (ML) systems led to the rise of Software Engineering for Artificial Intelligence
(SE4AI), which addresses the unique engineering challenges of these systems. Researchers in SE4AI engage with
three primary types of ML projects: those that apply ML techniques, those that develop new ML methodologies,
and those that provide support tools and libraries. Current classification schemas distinguish ML projects based on
their purpose and engineering quality, yet they miss a fine-grained classification of their nature and purpose. In
this paper, we propose a novel, tool-supported automated classification schema for ML projects, coined Machine
learning Automated Rule-based Classification Kit (MARK), that builds on top of the work by Gonzalez et al. to
refine the classification of applied ML projects into ‘ML-Model Consumers,’ ‘ML-Model Producers,’ and ‘ML-Model
Producers & Consumers.’ We evaluated MARK through two empirical studies. The first assessed its classification
accuracy across 4,603 ML projects from two datasets. The second analyzed repository metrics, such as community
engagement, activity, and structure, to demonstrate MARK’s potential in identifying trends and characteristics unique
to each project type. Our findings indicate high F1-scores for our classifier, particularly for ‘ML-Model Producer’
projects, though challenges remain for ‘ML-Model Consumer’ classification. Significant differences in repository
metrics among the classified projects highlight the usefulness of MARK, offering insights for researchers studying the
socio-technical dynamics of ML projects.

Keywords: ML-enabled systems, Software Engineering for Artificial Intelligence, Empirical Software Engineering.

1. Introduction

Machine Learning (ML) has become a cornerstone of modern technology, playing a crucial role in a wide range of
applications from healthcare to finance, and from autonomous driving to natural language processing [55, 61]. As the
adoption of ML continues to surge, both practitioners and researchers are increasingly involved in the development,
deployment, and analysis of ML systems [76, 60, 54, 50]. This rapidly growing field has catalyzed the emergence
of Software Engineering for Artificial Intelligence (SE4AI) as a significant research area, focusing on the unique
challenges and characteristics of engineering these complex systems [47].

In the realm of SE4AI, researchers primarily engage with three kinds of ML projects: (1) projects that apply ML
techniques to solve specific problems, (2) projects that develop ML methodologies and models, and (3) projects that
provide support tools and libraries to facilitate ML development. This tripartite categorization is crucial as it enables
researchers to tailor their studies according to the specific nature and objectives of the projects under investigation.

Unfortunately, classifying projects according to this framework poses several challenges. First, the interpretation
of project descriptions can be biased due to ambiguous or misleading information, which often lacks clarity or provides
incorrect details [68, 75]. Second, the boundaries between categories can overlap, as projects may simultaneously
apply ML techniques and develop methodologies, making it difficult to assign them to a single category. Third, the
diversity in application contexts and the lack of a standardized taxonomy for ML projects contribute to inconsistencies
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and challenges in accurately categorizing these projects [72]. These challenges can contribute to interpretation bias,
undermining the reliability of research findings and the development of best practices in the field. As a result, studies
may become less comparable and risk overlooking critical aspects of the projects under investigation.

To exemplify the challenges and potential bias due to project misclassification, let us consider the study recently
conducted by Calefato et al. [24], who aimed at assessing the support given by MLOps to the automation of ML
projects. To perform this study, the authors required projects using ML techniques to address real-world problems
so that they could assess the actual support provided by MLOps. As such, the authors identified 155 candidate ML
projects relying on a pattern-matching strategy proposed by Biswas et al. [22]—this verifies the existence of keywords
suggesting that the project exploits ML technologies. Upon conducting a follow-up manual inspection, Calefato et
al. [24] found out that 105 of the 155 were misclassified as ML projects but did not contain ML components; 49 were
ML projects defining libraries and/or producing new ML models, and only one was a genuine ML project useful for
their investigation. According to their manual investigation, the misclassification was primarily due to buzzwords
such as “Artificial Intelligence” or “Machine Learning” in the README file. On the one hand, the study shows
that misclassifying the nature of ML projects may lead to incorrect project sampling that significantly biases the
interpretation of the conclusions drawn. On the other hand, this example emphasizes the need for approaches that
may equip researchers with instruments to support the collection of ML projects based on their nature.

Some attempts to mitigate those classification issues have been proposed so far. Widyasari et al. [73] released
NICHE, i.e., a dataset of ML projects classified based on their engineering quality, distinguishing between “well-
engineered” and “non-well-engineered” systems. Gonzalez et al. [35] differentiated projects based on their purpose,
such as whether they offer solutions to specific problems or provide toolkits for developing ML solutions.

While these classification schemas help provide an initial framework to understand the nature and purpose of
ML projects, they would have only partially addressed the issues exemplified by Calefato et al. [24]. On the one
hand, the classification by Widyasari et al. [73] would focus solely on the engineering properties of candidate ML
projects. On the other hand, the classification by Gonzalez et al. [35] would mitigate the misclassification of non-ML
projects but fail to differentiate ML projects that apply ML techniques to solve real-world problems or develop new
ML technologies, thus lacking a granular classification of the ML projects. To illustrate the importance of granularity,
consider two repositories commonly labeled as ‘Applied AI and ML Projects’ under Gonzalez et al.’s classification
schema. The first, Person-Detection-and-Tracking [1], demonstrates a complete pipeline for detecting and tracking
individuals using computer vision techniques. This project involves training custom ML models, implementing object
detection algorithms, and fine-tuning parameters, qualifying it as a producer of machine learning models, i.e., a project
that uses ML libraries to create a custom ML solution. In contrast, the second repository, Onto2vec [2], applies
pre-trained models to generate vector representations of biological ontologies. Rather than creating new models, it
focuses on using existing ML models for knowledge representation and analysis, making it a consumer of existing
ML solutions. Both repositories fundamentally differ in goals and technical requirements, yet current classification
schemas might group them under the same broad category, ‘Applied AI and ML Projects.’ This lack of differentiation
may hinder their distinct purposes, complicating efforts to analyze project characteristics, compare methodologies,
and draw actionable insights tailored to specific project types.

To deal with such a granularity issue, this paper builds on top of the classification proposed by Gonzalez et al. [35],
proposing an automated heuristic-based mechanism, coined Machine learning Automated Rule-based Classification
Kit (MARK), to classify GitHub Python projects at a finer-grained level based on Python APIs analysis: ‘ML-Model
Producer,’ ‘ML-Model Consumer,’ and ‘ML-Model Producer & Consumer.’ Specifically, our mechanism is meant
to be combined with the automated classification instrument proposed by Gonzalez et al. [35]: while these authors
proposed a mechanism to distinguish between ‘ML-Libraries & Toolkit’ and ‘Applied Projects,’ our contribution
focuses on refining the classification of the applied projects to provide a more detailed understanding of their nature,
differentiating the way ML is used. This integrated classification procedure offers researchers a powerful tool to
enhance the precision and relevance of analyses in SE4AI.

The potential value of MARK can be illustrated by reconsidering the challenges encountered by Calefato et
al. [24]. Had MARK been available, it could have addressed the reported challenges by providing a more granu-
lar classification that distinguishes among ‘ML-Model Producer,’ ‘ML-Model Consumer,’ and ‘ML-Model Producer
& Consumer’ projects. This finer granularity would have allowed the researchers to filter out irrelevant repositories
more effectively and categorize the remaining projects according to their specific nature and purpose. Consequently,
Calefato et al. [24] could have improved construct validity by ensuring that their dataset better reflected the intended
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constructs of their study, i.e., real-world ML projects. Additionally, conclusion validity would have been strengthened,
as their findings would have been based on a more accurately classified and representative dataset, thereby reducing
biases introduced by manual corrections. Furthermore, MARK’s automated approach could have significantly reduced
the manual effort required to validate project classifications. Systematically distinguishing between different types of
ML projects would have eliminated the need to rely on error-prone manual sampling methods, allowing researchers
to focus on analyzing genuinely relevant projects. This improvement would save time and ensure greater consistency
in project selection, ultimately leading to more reliable research outcomes.

We validate our classification schema through two empirical studies. First, we assess the accuracy of our classifier
on 4,603 ML projects from two well-known datasets, NICHE [73] and the dataset provided by Gonzalez et al. [35].
Second, we characterize the classified Python projects using engagement and collaboration, activity, and structural
metrics. While the first empirical study focuses on showcasing the capabilities of MARK, the second study aims
to demonstrate the practical benefits of our classification schema for researchers. Specifically, if significant differ-
ences are observed between ‘ML-Model Producer,’ ‘ML-Model Consumer,’ and ‘ML-Model Producer & Consumer’
projects in terms of the analyzed metrics, it would validate the importance of distinguishing and classifying projects
based on their nature, thus highlighting the schema’s value in enhancing the accuracy and relevance of research
findings. The main findings of our work show that our classifier has high F1-scores, especially when classifying
‘ML-Model Producers.’ As for the classification of ‘ML-Model Consumers,’ we identify inherent challenges that may
foster further research on the matter. Perhaps more interestingly, we identify significant differences among the clas-
sified projects in terms of the repository metrics considered, which demonstrate the usefulness of classifying Python
ML projects according to their nature and purpose, other than providing initial insights into the socio-technical dy-
namics of ML projects. Particularly, projects belonging to the categories ‘ML-Model Producer & Consumer’ and
‘ML-Libraries & Toolkit’ exhibit notable differences in terms of various repository metrics, such as size, activity,
and the number of contributors, compared to projects in the ‘ML-Model Producer’ category. The findings suggest that
‘ML-Model Producer & Consumer’ and ‘ML-Libraries & Toolkit’ projects are often developed and maintained within
larger and more complex environments, which may reflect their broader scope and greater complexity. We conclude
our article by discussing the major implications of the study and the outlook for future research enabled by our work.

Structure of the paper. Section 2 discusses the related research and how current limitations motivate our work.
Section 3 introduces MARK, our approach to classify machine learning projects. Section 4 describes the research
questions driving our study. Section 5 presents MARK, detailing its design, validation, and limitations. Section 6
describes the research methods and presents the results of our second study, which characterizes ML projects using
repository metrics. In Section 7, we discuss the major implications of our work. Finally, Section 8 wraps up the paper
and discusses our future research directions in this area.

2. Related Work and Motivation

This section describes the previous related research papers, emphasizing how the current limitations motivate our
work. For the sake of completeness, we organized the discussion to highlight how our work advances the current state
of the art in the fields of SE4AI and automated classification of software projects.

2.1. Software Engineering for Artificial Intelligence

The work is motivated by and may contribute to addressing three main limitations in the current state of the art:
(1) Understanding the nature of ML projects, (2) Clarifying the terminology associated with them, and (3) Mitigating
the challenges of defining research studies focused on ML projects.

Previous research classified ML projects using different definitions and methods. In particular, Gonzalez et al. [35]
classified over 5,000 GitHub repositories into “Applied AI and ML” and “AI and ML tools” categories: the former
involves the use of Artificial Intelligence (AI) and ML techniques to solve specific, real-world problems, while the
latter provides tools, libraries, and frameworks to develop, deploy, and manage AI and ML models. Although this
high-level distinction offered an initial classification of ML projects, Rzig et al. [62] observed that over 30% of the
projects in the Gonzalez et al.’s dataset [35] consisted of toy projects and study guides, indicating the need for more
refined classifications. Compared to these previous papers, our work aims to provide a more detailed understanding
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of the nature and purpose of ML projects, differentiating among projects that primarily apply ML techniques, those
that contribute to advancing ML technology, and those that offer libraries and toolkits to implement ML techniques.

Widyasari et al. [73] recently published NICHE, i.e., a dataset containing 572 ML projects. Using various metrics,
the authors classified the projects as either “well-engineered” and “not well-engineered”. While this classification
represents a step toward understanding the engineering properties of ML projects, it does not provide insights into how
the ML models are used. Martı́nez-Fernández et al. [47] provided a more inclusive definition of ML projects, termed
“ML-enabled systems”, which are projects that use at least one ML component. The ML model in these systems can
vary significantly in its role: it may be relatively small and isolated, interacting with non-ML components, or it could
be the core functionality of the system, with minimal supporting non-ML code. Additionally, an ML-enabled system
typically includes components for training and monitoring models [52, 43, 39]. Compared to the work by Martı́nez-
Fernández et al. [47], our work can be seen as complementary. We aim to refine and extend their classification by
clarifying whether projects primarily apply existing ML techniques, contribute to developing new ML methodologies,
or offer instruments to support the development of ML techniques.

Based on the argumentation above, our research outlines that existing work does not enable a granular analysis
of ML projects. As illustrated in Section 1, this would notably impact the ability to differentiate between projects
with fundamentally distinct purposes, such as those producing custom ML models, e.g., the Person-Detection-and-
Tracking project [1], and those applying pre-trained models for domain-specific tasks, e.g., the Onto2vec project [2].
Without this granularity, important distinctions in project goals, engineering practices, or development characteristics
are lost, hindering targeted analyses and actionable insights.

 Limitation 1. The state of the art lacks sufficient granularity, making it difficult to distinguish among projects
that apply ML techniques, develop new ML methodologies, or provide supporting tools. This limitation hinders a
detailed understanding of ML projects’ objectives and contributions.

The terminology surrounding ML systems in real-world projects often lacks coherence. While terms like “ML-
enabled systems,” [47, 52, 71] “ML-infused systems,” [41] “ML systems,” [33, 44, 64] and “ML software,” [35]
provide a broad overview of such projects, their nature often overlooks the specific design and functionality of these
systems. This inconsistency creates challenges in delineating the responsibilities, tools, and processes involved in
producing, managing, and utilizing ML models. For example, Nahar et al. [52] highlighted this issue through in-
terviews with professionals, showing how the lack of standard terminology complicates discussions around artifact
responsibility, pipeline construction, model management, and other key areas of ML projects. As such, without clear
and consistent definitions, researchers and practitioners may struggle to draw precise comparisons across studies or
effectively communicate the roles and functionalities of ML systems. As a side contribution, our work has the poten-
tial to address this ambiguity by introducing a classification framework that distinguishes among projects that apply,
develop, or support ML methodologies, thereby offering a clearer understanding of roles and contributions within ML
projects, aiding in establishing a standardized terminology across the field.

 Limitation 2. The terminology for describing ML systems may hinder delineating roles and tools, impeding a
precise understanding of the design and functionality of ML systems.

Research involving GitHub entails significant effort due to the number of projects it stores [32, 40]. Researchers
typically start by mining data using tools like the GitHub API or GHTorrent, employing specific search strings [30].
However, the initial volume of retrieved repositories often exceeds the scope of the study [40, 37, 35]; therefore,
researchers must filter results using inclusion and exclusion criteria, removing irrelevant or problematic projects [40,
24, 62]. Errors in the filtering procedure may lead to biased outcomes or necessitate repeating data collection [37, 70].
Overly strict criteria can yield too little data, compromising generalizability or statistical significance [24, 21]. These
challenges are emphasized when it comes to ML projects. For example, a recent study by Pepe et al. [57] analyzed
Python projects to investigate Self-Admitted Technical Debt (SATD) in deep learning systems. Consequently, their
analysis targeted repositories implementing deep learning models, excluding projects that do not develop such mod-
els. Initially, the study collected a dataset of 160,365 repositories. However, after applying pre-processing steps to
exclude tutorials, code books, toy projects, and repositories not written in Python, the final dataset was narrowed to
100 projects. The time and effort required by Pepe et al. [57] to select a suitable analysis sample might have been
significantly reduced by directly targeting projects based on a more granular classification framework. For instance,
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a classification system distinguishing among ‘ML-Model Consumers,’ ‘ML-Model Producers,’ and ‘ML-Model Pro-
ducer & Consumer’ could have allowed the researchers to focus exclusively on repositories classified as the latter two
categories. This would have streamlined the sample selection process by filtering out irrelevant repositories, minimiz-
ing manual effort, and reducing the risk of biases. Indeed, depending on the scope of the analysis, researchers may
want to focus solely on (1) projects that apply ML techniques, e.g., to analyze trends in ML adoption, predict software
defects, (2) projects that develop ML techniques, e.g., to enhance model accuracy, investigate fairness, or (3) projects
that support the implementation of ML techniques, e.g., to study the usefulness of libraries and toolkits. Our work
addresses these challenges by providing a framework for classifying ML projects on GitHub to offer researchers a
more efficient way to filter and select relevant repositories for their studies.

 Limitation 3. Selecting ML projects from GitHub based on predefined criteria can be time-consuming and
error-prone, potentially leading to biased outcomes or insufficient data for analysis.

Based on these limitations, the goal of our work is refining the classification of ML projects, distinguishing
among ‘ML Libraries & Toolkits,’ ‘ML-Model Producers,’ ‘ML-Model Consumers,’ and ‘ML-Model Producers &
Consumers,’ whose union was defined as “ML Universe”. More specifically, we define these categories as follows:

ML Libraries & Toolkits: Resources aiding developers in constructing or enhancing ML workflow. ML libraries
are collections of pre-defined methods that allow developers to add ML functionalities to projects [45]. ML toolkits
are external utilities that facilitate developers in developing ML pipelines. The category includes only libraries
and tools that do not use or build ML models. An example project in this category is Fastai [29], which allows
developers to train deep learning models1 and make inferences2.Since our work seeks to refine the classification
schema originally proposed by Gonzalez et al. [35], instead of creating an entirely new framework, we chose not
to design new classification rules for this category. Instead, we deemed the original rules effective for accurately
distinguishing this specific type of project.

ML-Model Producers: Projects building ML models i.e., projects that invoke a training function. An example of
an ML-Model Producer is the TUe Robotics image recognition [65] project, which contains packages designed for
image recognition. The project allows training neural networks for recognition tasks e.g., face detection, pose esti-
mation, and color extraction using TensorFlow, OpenFace, and OpenPose frameworks. In the work by Gonzalez et
al. [35], these projects were categorized under the broad ‘Applied Project’ category, making them indistinguishable
from projects that merely utilize ML models. As such, our work aims at classifying them better.

ML-Model Consumers: Projects using ML models without building them. Such projects utilize external models
through APIs to execute specific tasks, such as invoking GPT APIs for text generation or processing tasks. An
example of ML-Model Consumer is the gpt2-discord-bot [10] project, which features a Discord bot leveraging
GPT-2 model. Similarly to the previous case, Gonzalez et al. [35] categorized these projects under the ‘Applied
Project’ category. Our work aims at classifying them according to their specific nature.

By definition, these categories are mutually exclusive apart from an exception. A project can simultaneously be an
‘ML-Model Producer’ and an ‘ML-Model Consumer.’ This situation may occur when a project builds an ML model
to carry out a certain function while using the built model to perform another task. In such cases, the project is
categorized as an ‘ML-Model Producers & Consumers.’

2.2. Automated Classification of Software Projects

Broadening the scope of the discussion, our work contributes to the research on the automated classification of
software projects. Previous researchers have primarily exploited machine learning solutions to classify projects ac-
cording to their characteristics. For instance, Ugurel et al. [69] and McMillan et al. [49] exploited Support Vector
Machine (SVM) and Latent Semantic Indexing (LSI), respectively, to categorize software projects according to their

1https://docs.fast.ai/learner.html#learner.fit
2https://docs.fast.ai/learner.html#learner.predict
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scope, distinguishing among games, communication, compilers, etc. Similarly, Tian et al. [67] applied LSI to au-
tonomously infer topics for software categorization. To train the machine learning algorithms exploited, these studies
extracted features from software repositories, including descriptions mined from README files or information de-
rived from the analysis of Application Programming Interfaces (APIs).

Two key observations emerge when comparing this research field with our work. First, like these previous studies,
we rely on APIs for classification, focusing on how projects exploit external services. Our work complements existing
research by providing further evidence that API-related information can assist project classification tasks. However,
our work differs in its objective: rather than classifying projects based on their scope, we aim to classify them accord-
ing to their usage of machine learning models. This introduces a novel application of API-related data, specifically
tailored to understanding how ML projects interact with and implement machine learning models. For instance, we
can characterize whether a project develops an ML pipeline rather than merely providing generic scope-based clas-
sifications, such as grouping repositories into categories such as games or communication tools. Contributing an
approach that classifies API-related data becomes particularly relevant in ML contexts, where the scope of a reposi-
tory is critical to understanding its design and functionality. Second, unlike previous approaches that used machine
learning techniques, our method relies on heuristics. Our primary goal was to develop a classification tool that is
not only accurate but also efficient, minimizing computational overhead and complexity. This heuristic-based ap-
proach allows for faster classification while maintaining high accuracy, particularly useful for large-scale analyses
where speed is critical, e.g., mining software repository research. Therefore, our contribution is novel in its focus—
classifying projects based on ML model usage—and its methodology, which prioritizes efficiency through heuristics
rather than machine learning. Finally, it is worth remarking that API-based heuristics have also been successfully
applied to a range of software engineering tasks, such as code quality assessment [25, 63], refactoring detection [46],
and software maintenance prediction [17, 20]. While these studies focus on leveraging APIs to support specific tasks
within a project, our work classifies entire projects based on their usage of APIs.

 Limitation 4. Existing API-based project classification methods do not specifically analyze how ML projects
utilize machine learning models, nor are they optimized for large-scale analysis.

ML-Model Producers 
& Consumers

Output

ML-Model ProducersML-Model Consumers

4

ML Libraries & Toolkit

Automating the Classification

1
Knowledge Base

ML libraries

Training APIs Inference APIs

 Filtering Dataset

ML Library &
Toolkit

0

Applied 
Project

Initial 
Dataset

2
Classification Rules

ML-Model Producer Rules

Rule #1 Rule #2

A file must contain at
least one ML library

A file must contain at
least one training API

Rule #1

A file must
contain at least
one ML library

A file must
contain at least
one inference

APIs

Rule #2 Rule #3 Rule #4

A file must not
contain

training APIs

Title file must
not include 
test-related

terms

ML-Model Consumer Rules

3
MARK

Python filesML Projects

Knowledge Base

Extract

Use

Rules

Apply

Figure 1: MARK: Overview of the Design.
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3. MARK: Machine learning Automated Rule-based Classification Kit

In this section, we introduce Machine learning Automated Rule-based Classification Kit (MARK), a novel
approach for the classification of machine learning projects. MARK is based on heuristics, built from a Knowledge
Base of APIs obtained on a filtered dataset. The following sections describe the design of the approach, while Figure 1
provides an overview of the major steps applied to design our approach.

3.1. Dataset Specification

Our work builds on the top of the study conducted by Gonzalez et al. [35], which introduced an automated clas-
sification procedure to distinguish between ‘ML-Libraries & Toolkit’ and ‘Applied Projects’ using natural language
processing. We aim to further refine the classification of projects within the ‘Applied Projects’ category. Conse-
quently, the input for our approach is represented by a dataset that has been previously classified as ‘Applied Projects.’
Currently, MARK focuses on categorizing applied projects containing components written in Python, given its success
as a valuable and widely used programming language with many available ML libraries [59]. The focus on Python
can be extended to include compatibility with other programming languages.

1
Information Gathering

Collect ML libraries and
frameworks

Discussion with experts
to validate the APIs

2
Knowledge Base Construction

3

Knowledge Base Refinement

Analyze APIs
documentation (e.g.,
training or inference)

Analyze method names
(e.g., "train", "predict")

Review usage examples
or code snippets.

Research papers ML
libraries and frameworksDataset of ML projects

Collect all import
statements

Select only ML libraries
and frameworks

Extract Training and
Inference API

(Knowledge Base)

Update the
Knowledge Base

Compare APIs with
known training or
inference methods

Figure 2: Overview of the Knowledge Base Construction and Refinement.

3.2. Definition of Knowledge Base

MARK leverages ML libraries and API definitions to classify ML projects. The Knowledge Base (KB) includes
training and inference libraries and APIs. The definition of the KB involved three main steps, presented in Figure 2.
As shown in the figure, the workflow began with conducting a preliminary information gathering phase (Step 1O in
Figure 2), whose aim was the identification of initial resources for extracting the KB. These initial resources included:
(1) relevant research papers, i.e., in our case, the paper by Nguyen et al. [53] from which we derived the initial
catalog of ML libraries and frameworks; and (2) state-of-the-art datasets of ML projects, i.e., in our case, those by
Rzig et al. [62] and Widyasari et al. [73], which we used to collect additional ML libraries and frameworks. From a
methodological standpoint, the first step was implemented through the following phases:

1. We collected relevant datasets and analyzed the literature to identify foundational or seed papers. We selected
the one by Nguyen et al. [53] as the most suitable for our scope. However, should the KB need to be updated
in the future, multiple papers, including ours, may be used as a starting point to snowball and find additional
relevant resources, ensuring that all current catalogs of ML libraries and frameworks are considered. The initial
catalog we considered [53] leveraged the most widely utilized Python libraries and frameworks—specifically,
the paper identified ten ML and Deep Learning (DL) libraries capable of training and making inferences with
ML models. Nonetheless, when analyzing the work by Nguyen et al. [53], we realized that it could not com-
prehensively capture the current set of ML libraries and frameworks, since it was published in 2019. As such,
we had to update this initial set, as described in the following phases. For future updates, however, the papers
identified in the first step may already include up-to-date catalogs of ML libraries and frameworks. If this is
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the case, a researcher interested in replicating our work may directly proceed to the second step of the KB
workflow, i.e., ‘Knowledge Base Construction.’

2. To update the KB, we proceeded with a manual, tool-supported mining exercise against datasets of ML projects.
Specifically, we developed a simple static analysis inspection tool to identify additional libraries and frameworks
within our dataset. The tool was designed to scan each Python file, extract all import statements, and organize
them into a formatted spreadsheet, deleting duplicates and streamlining subsequent analysis and classification.
Through this step, we collected all references to libraries import and from in 1,463 Python files, finding
2,487 unique library imports. These import statements were then manually analyzed by the first author to
determine whether they referenced libraries or served other purposes, e.g., importing local modules. Non-
library references were excluded during this filtering process. Afterward, for each identified library, the first
author manually compared it against the catalog provided by Nguyen et al. [53]. If the library was already
available within the Nguyen et al.’s catalog, it was filtered out to avoid redundancy. Conversely, if the library
was not present in their catalog, it was added to the set of libraries and frameworks considered in our study. As
a final step, for each newly identified library, the first author manually collected its name and linked it to the
corresponding official documentation or repository. This step enabled the cataloging of newly emerged libraries
and frameworks, each linked to an established reference source. This ensured that the information was accurate,
up-to-date, and reflective of the current state of the field, providing a reliable basis for subsequent analyses. The
output of this first step was a refined and expanded list of ML libraries and frameworks, comprising 83 libraries,
which served as the foundation for the second step of the workflow.

The second step, i.e., the ‘Knowledge Base Construction’ (Step 2O in Figure 2), began by examining the function-
ality of each library or framework to classify its APIs into categories such as training or inference:

1. The first author reviewed the official documentation for explicit descriptions of the API’s functionality. For
each library, he specifically searched for method APIs in its official documentation leveraging its website,
e.g., Gluon,3 or its GitHub repository, e.g., Anago.4 The rationale for this step is that official documentation
may indeed provide explicit descriptions of the API’s intended functionality, e.g., whether an API is explicitly
designed for tasks such as training models, performing inference, or supporting other ML-related operations.
This step helped establish a baseline understanding of the core purpose of the API under consideration.

2. The first author analyzed method names for predefined keywords (e.g., “train,” “predict”) aligned with com-
mon conventions in ML development. These keywords provided strong cues about the functionality of the
API. For example, methods named train model() are likely related to training tasks, while those named
predict output() may indicate inference operations. Identifying these patterns informed the subsequent
classification of the APIs.

3. The first author reviewed code examples or snippets to verify operational behavior and functionality. For exam-
ple, snippets that show the use of an API to fit models on training data or generate predictions can confirm its
classification. This step was particularly useful when the documentation lacked explicit descriptions.

4. Finally, the first author compared the API with similar, well-documented training or inference APIs to assess
functional similarity. For example, if an API demonstrates behavior analogous to TensorFlow’s fit() method,
it can be classified as a training API. This comparative approach added a layer of verification.

Based on the collected information, the first author categorized the 312 APIs from the 83 libraries as either ‘train-
ing’ or ‘inference’ APIs. This represented the initial version of the KB. Afterward, cross-checking with domain
experts was essential to validate the results and resolve any ambiguities. This led to the final step, i.e., the ‘Knowledge
Base Refinement’ (Step 3O in Figure 2). These experts may include co-authors of the study, as in our case, or external
collaborators with relevant domain knowledge. More specifically, the second and third authors of the paper jointly

3https://cv.gluon.ai/contents.html
4https://github.com/Hironsan/anago/tree/master

8

https://cv.gluon.ai/contents.html
https://github.com/Hironsan/anago/tree/master


validated the categories assigned to each of the 312 APIs by the first author, using three predefined categories: “dis-
agree,” “further discussion,” and “agree.” If both authors agreed, the API was accepted without further discussion.
In case of disagreement, a focus group meeting was held to decide whether to include the API as part of the KB.
Following the validation, we computed Cohen’s Kappa [27] to measure inter-rater agreement, which reached 0.90—
indicating a high level of agreement among the three inspectors involved in the KB refinement process. As a result
of the validation, 308 APIs were included in the KB, while four were excluded because they did not refer to training
or inference mechanisms. The last step outputs a refined set of ML libraries and frameworks, each accompanied by
classifying its APIs into categories such as training or inference.

3.3. Classification Rules

To build MARK we adopted a heuristic-based approach. The reason for this decision is twofold. First, heuristic
methods provide greater transparency and interpretability in the classification process, making it easier to understand
the rationale behind each decision. Second, given the nature of the problem and the relatively unexplored state of
the art, we prioritized evaluating the performance of heuristic-based solutions due to their simplicity and efficiency.
This was particularly important because our approach is designed to be scalable and suitable for large-scale analyses,
such as mining software repositories. Had the heuristic-based methods shown inadequate performance, we would
have considered more complex machine learning techniques, as recommended by prior research [34]. However,
exploring these advanced techniques remains part of our future research agenda. As for the classification criteria, it
is worth remarking that we were interested in defining classification rules that only discriminated among ‘ML-Model
Producers,’ ‘ML-Model Consumers,’ and ‘ML-Model Producers & Consumers,’ as the input of MARK is represented
by a dataset where ‘ML Libraries & Toolkits’ projects are already classified. The classification rules were then defined
according to the heuristics reported in the following:

ML-Model Producer: We examined API methods related to model training. A project was labeled as an ‘ML-
Model Producer’ if it contained an import statement for an ML producer library and an invocation of a related
training method. Let F be a file belonging to the project P, let L be the set of ML libraries, and let A be the set of
training APIs; we first defined the following two predicates:

containsMLLibrary(F, l) =

True if F contains l, with l ∈ L
False otherwise

containsTrainingAPI(F, a) =

True if F contains a, with a ∈ A
False otherwise

Starting from the definition of these predicates, we classify a project as ‘ML-Model Producer’ if it meets both the
following classification rules:

Rule #1: ∃ l ∈ L : containsMLLibrary(F, l) i.e., a file must contain at least one ML library;

Rule #2: ∃ a ∈ A : containsTrainingAPI(F, a) i.e., a file must contain at least one training API.

In other terms, if there exists at least one file F in the project such that F contains at least one ML library and at
least one training API, the project was labeled as an ‘ML-Model Producer’.

ML-Model Consumer: We searched for API methods associated with model inference. A project was classified
as an ‘ML-Model Consumer’ if the library and the inference methods were identified. In formal terms, let the
definitions of containsMLLibrary(F, l), containsTrainingAPI(F, a) be inherited from the ‘ML-Model Producer’
classification context, let I be the set of inference APIs, and T be the set of testing-related words (i.e., test, eval,
example, and validate) we define the following predicates:

containsInferenceAPI(F, i) =

True if file F contains i ∈ I
False otherwise
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containsTesting(F) =


True if filename F contains {test, eval,

example, validate}
False otherwise

From the predicates, we classify a project as ‘ML-Model Consumer’ if a file F in the project meets all the following
classification rules:

Rule #1: ∃ l ∈ L : containsMLLibrary(F, l) i.e., a file must contain at least one ML library;

Rule #2: ∃ i ∈ I : containsIn f erenceAPI(F, a) i.e., a file must contain at least one inference API.

However, ‘ML-Model Producers’ sometimes use the same methods as the ‘ML-Model Consumer’ to test their
models, which could increase the presence of false positives in our study due to possible misclassifications. To
mitigate possible threats to validity, we applied two additional criteria:

Rule #3: ∄ a ∈ A : containsTrainingAPI(F, a) i.e., a file must not contain training API.

Rule #4: containsTesting(F) = False i.e., the filename does not include sub-strings related to testing.

In other words, if there exists at least one file F in the project such that F contains at least one ML library, at least
one inference API, but the same file F does not contain a training API, and does not use the model only for testing,
the project was labeled as an ‘ML-Model Producer’.

It is important to remark that the two sets of criteria that allow us to classify projects respectively in ‘ML-Model
Producer’ and ‘ML-Model Consumer’ are not mutually exclusive. If a file F of a project P satisfies all the rules
for classification as an ‘ML-Model Producer,’ and another file F′ of the same project P satisfies all the rules for
classification as an ‘ML-Model Consumer,’ then the project P is classified as an ‘ML-Model Producer & Consumer.’
As an implication of the heuristics reported above, it is possible for MARK to classify an entire project as ‘ML-Model
Producer & Consumer,’ but not an individual file as both a producer and a consumer of ML models. This design
decision is not due to the impossibility of a file theoretically serving as both a producer and a consumer. Rather, it is
the result of a deliberate design decision in MARK to exclude this scenario. The heuristic rules were designed to assign
each file a single dominant role (producer or consumer) to address a critical challenge in identifying real inference
services within an ML project. Specifically, APIs that call a newly built model can serve two distinct purposes: actual
inference (using the model in production) or evaluation during the training phase (testing its performance). Our key
challenge was distinguishing between these two cases. To address this challenge, we assumed that a Python file
maintains a consistent goal. If a file includes training APIs and invokes inference APIs, we interpreted the latter
as being used for evaluation rather than production-level inference. This assumption was guided by the nature of
ML practices observed during our preliminary analyses and the trade-offs involved in ensuring the precision of our
approach. In the context of our empirical study, we analyzed the impact of the file consistency assumption on the
classification performance of our approach (see Section 5).

As the reader may observe, the classification rules look pretty straightforward. While the rules themselves may
seem simple, their design and implementation were anything but trivial. The true innovation lies in the systematic and
effective application of API-related information to classify entire software projects. This process was far from linear;
it required multiple iterations and refinements to ensure accuracy and robustness. As such, the technical novelty is not
merely in the classification itself, but in how we harnessed API data in a comprehensive, scalable manner, capable of
supporting large-scale analyses while maintaining a high level of precision.

3.4. Tool-Supported MARK Classification

To provide researchers with a readily-usable instrument, we implemented the classification rules into an auto-
mated instrument. This instrument, coined MARK, has two main functionalities: (i) cloning GitHub projects from a
predefined list and storing their files locally, and (ii) automatically classifying the cloned ML projects. Specifically,
the tool explores all Python files in a repository and applies the previously described rules to classify each project.
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4. Research Questions and Methodical Overview

To overcome the limitations of the state of the art described in the previous section, the goal of the study is to refine
the classification of ML projects, with the purpose of characterizing them better. The perspective is of researchers
interested in understanding the nature of ML projects and having a framework to more precisely and efficiently identify
study subjects based on the scope of their investigations.

Specifically, we have devised a two-stage investigation. In the first stage, we designed and evaluated a novel
API-based, heuristic tool to classify ML projects named Machine learning Automated Rule-based ClassificationKit
(MARK). As detailed in the following sections, MARK first collects existing datasets to acquire a knowledge base,
which is leveraged to automatically classify ML projects according to their nature, distinguishing between projects that
develop ML models i.e., ‘ML-Model Producers’ and projects that utilize ML techniques i.e., ‘ML-Model Consumer.’
This investigation addresses the following research question:

ü RQ1: How effectively can we classify ML projects according to their inherent nature and functionality?

Once we had assessed the effectiveness of the automated classification mechanism, we performed a further step
ahead to showcase the usefulness of the classification. In particular, we analyzed the differences between the classi-
fied projects using repository metrics, i.e., community engagement, activity, and contributor collaboration. Such an
analysis does not aim to provide an exhaustive overview of the use of the classification but rather to provide insights
into how to leverage it to understand project dynamics and community involvement. Should there be differences, we
would have demonstrated the meaningfulness of classifying projects according to their nature and functionality, high-
lighting the potential benefits such classification may have for researchers interested in assessing the socio-technical
dynamics of ML projects. As such, we addressed the following research question:

ü RQ2: How does the classification of machine learning projects relate to repository metrics?

To report the results, we follow the guidelines by Wohlin et al. [74] and apply the “General Standard” recom-
mended by the ACM/SIGSOFT Empirical Standards.5

5. RQ1. Empirical Study: On the Performance of MARK

The goal of the first empirical study is to assess the performance of MARK in accurately classifying ML projects
as either ‘ML-Model Producer’ and ‘ML-Model Consumer,’ with the purpose of validating the reliability and effec-
tiveness of the classification schema. The perspective is of researchers and practitioners in the SE4AI field, who are
interested in ensuring that the classification tool can be effectively applied in real-world scenarios, providing a robust
foundation for further analysis and decision-making in ML project categorization.

5.1. Data Collection

Following our dataset specification defined in Section 3.1, we applied an extraction and filtering process to ensure
compatibility to our approach. We started our data collection using two popular datasets. The first is a dataset proposed
by Gonzalez et al. [35] and revised by Rzig et al. [62], which includes 4,031 ML projects. The second is NICHE [73],
a dataset containing 572 ML projects. Combining them, we started our study with 4,603 ML projects. Before using
these datasets, we applied a series of preprocessing steps to ensure consistency. Therefore, we integrated the two
datasets and executed the following steps:

1. Deletion of duplicate projects. We first removed duplicated projects: specifically, we found 117 duplicates, which
led to a set of 4,486 unique projects.

5https://github.com/acmsigsoft/EmpiricalStandards.

11

https://github.com/acmsigsoft/EmpiricalStandards


2. Removal of Toy Projects and Tutorials. We manually inspected the NICHE dataset to identify possible toy, empty,
or tutorial projects. Please consider that we cleaned only the NICHE dataset as the dataset by Gonzalez et al. [35]
has already been revised and cleaned by Rzig et al. [62]. More specifically, the first two authors analyzed the NICHE
projects by reading the descriptions of their main pages on GitHub and all websites linked to those pages. At the
end of this step, 48 projects were removed.

3. Collection of ML projects. We cloned projects from GitHub to verify their availability. We found that 92 projects
had migrated to other version control systems or closed their repositories. By executing this step, we successfully
collected 4,346 projects.

4. Selection of ML-Applied projects: This step aimed to distinguish all the considered projects between the two
categories proposed by Gonzalez et al. [35], i.e., ‘ML-Libraries’ and ‘Applied Projects.’ Since our approach focuses
on the second category, we extended this categorization to the second dataset to ensure consistency across all
analyzed projects. Specifically, we replicated the procedure described by Gonzalez et al. [35] and labeled each
repository in the NICHE dataset [73] as either “applied ML” or “ML libraries.” The first two authors manually
classified the projects using the same methodology as Rzig et al. [62], originally applied to the Gonzalez et al. [35]
dataset. Conflicts or unclassified projects were resolved through discussion, and to ensure reliability, the third
author validated the classifications. Any disagreements were addressed in an additional meeting to finalize the
categorization. As a result, 245 projects were classified as “ML libraries,” and 157 as “applied ML.”

Finally, we collected the set of applied ML projects. As a final result of the dataset extraction phase, we collected
3,005 ‘ML applied projects’ and 1,349 ‘ML-Libraries & Toolkits.’ To maximize the number of included projects, we
did not impose additional constraints on factors such as years of activity, number of stars, or other characteristics, as
these filters had already been applied [73, 35, 62].

Table 1: Statistical Metrics.

Metric Formula
Accuracy (T P + T N)/(T P + T N + FP + FN)
Precision (T P)/(T P + FP)
Recall (T P)/(T P + FN)
F1-Score (2 × T P)/(2 × T P + FP + FN)

5.2. Data Analysis

To answer RQ1, we aimed to understand how accurate MARK is in classifying projects through four well-known
statistic metrics [58] (see Table 1). To validate the MARK, we created an oracle to manually classify each project into
two categories: ‘ML-Model Producer’ or ‘ML-Model Consumer.’

These categories were chosen because our approach specifically targets them, building on the work of Gonzalez
et al. [35] and the ‘ML Library & Toolkit’ has been manually classified, making further validation unnecessary.

To validate our approach, we considered the set of projects that we labeled as “applied ML” i.e., we selected
3,005 projects. However, manually verifying the classification correctness requires high classification time to validate
all of them manually. Therefore, we selected a representative subset for classification. In particular, we employed
simple random sampling to produce unbiased samples from the dataset population [19, 66]. We utilized an online
sample size calculator to draw statistically significant conclusions and estimate the necessary sample size.6 This tool
enabled us to determine the appropriate number of samples to maintain a margin of error of 5% and a confidence level
of 95% and ensured that our sample size was sufficient to achieve reliable and valid results, thereby enhancing the
robustness of our validation process. The first and second authors independently manually classified the oracle. For
each project, they marked whether a project is an ‘ML-Model Producer,’ an ‘ML-Model Consumer,’ or both. The third

6https://www.qualtrics.com/blog/calculating-sample-size/
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Table 2: Confusion Matrix for ‘ML-Model Producer’

Predicted
Negative Positive

Actual Negative 91 1
Positive 13 236

Table 3: Confusion Matrix for ‘ML-Model Consumer’

Predicted
Negative Positive

Actual Negative 252 10
Positive 25 54

author reviewed and verified the classifications for objectivity to ensure the oracle’s validity and maintain unbiased
judgment. We considered a statistically significant sample of 341 randomly extracted projects.

Besides the analysis of the MARK classification as a whole, we also conducted a step-by-step methodology to
evaluate the contribution of each component of the approach. We began by assessing the impact of the knowledge base
on a baseline version of MARK, which includes only Rules #1 and #2 for the classification of ‘ML-Model Producer’
and ‘ML-Model Consumer.’ This involved the comparison between the performance metrics obtained when using
the original knowledge base from Nguyen et al. [53] with the enhanced knowledge base developed as part of our
study. Afterward, we investigated the effect of the heuristic rules on the classification performance of ‘ML-Model
Consumer,’ focusing on the role played by Rules #3 and #4. In this respect, it is worth remarking that we could not
investigate the effect of removing Rules #1 and #2 from the classification of ‘ML-Model Producer’ and ‘ML-Model
Consumer’: these rules are indeed the foundational heuristics for the classification of the projects. Rule #1 ensures that
files contain at least one ML library, while Rule #2 enforces the presence of at least one relevant API (training APIs
for producers and inference APIs for consumers). Without these rules, MARK would lack the fundamental criteria for
distinguishing between producer and consumer roles, making it impossible to perform any meaningful classification.
As such, Rules #1 and #2 are indispensable for the functioning of MARK and were locked in all configurations,
serving as the baseline upon which additional rules and refinements were evaluated. As a consequence of these
considerations, it is also worth remarking that we could not proceed with a finer-grained investigation of the heuristic
rules composing the ‘ML-Model Producer’ classification. This is because the classification relies solely on the two
foundational rules and does not involve any additional heuristics. This explains why our analysis focused exclusively
on the ‘ML-Model Consumer’ classification, namely on the case where the impact of the additional heuristic rules
could be meaningfully evaluated.

5.3. Analysis of the Results

In this section, we evaluate the performance of MARK in classifying ML projects. The evaluation is divided into
three parts. First, we analyzed how MARK identifies the categories ‘ML-Model Producer’ and ‘ML-Model Con-
sumer,’ discussing the misclassifications and their causes. This evaluation assessed MARK’s capability to distinguish
between these categories and identifies challenges and opportunities for improvement. Second, we conducted a con-
figuration analysis to examine the contribution of each component and classification rule in MARK. This analysis
helps determine which elements have the most significant impact on classification accuracy. Finally, we investigated
whether MARK can recognize a new category (i.e., ML-Model Producer & Consumer’) that combines the character-
istics of ML-Model Producer’ and ‘ML-Model Consumer.’ The rationale for this approach is that classifying a project
as both a producer and a consumer does not involve applying additional heuristics. Rather, it is a direct consequence
of the existing rules used to classify projects as either producers or consumers. In other words, if a project contains
files satisfying both sets of conditions rules, it is assigned to this dual-category. Consequently, misclassifications re-
ported for the two base categories inherently propagate to errors in this combined classification. By adopting this
reporting approach, we could first reveal the accuracy of the heuristics applied by our approach and then analyze how
its misclassifications would impact the accuracy of the combined classification.

5.3.1. Assessment of ‘ML-Model Producer’ and ‘ML-Model Consumer’ Classification
Table 2 shows the confusion matrix for ‘ML-Model Producers.’ The high number of true positives (236) and

negatives (91) indicates MARK effectively identifies projects producing ML models. It returned only a false positive,
demonstrating that the tool is unlikely to classify projects that do not produce any ML models as producers. However,
the 13 false negatives show that the approach occasionally misclassifies producer projects as non-producers. This
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Table 4: Statistical Metrics for ‘ML-Model Producers’ and
‘ML-Model Consumers’.

Metric ‘ML-Model Producers’ ‘ML-Model Consumers’
Accuracy 95.89 % 89.74 %
Precision 99.58 % 84.62 %
Recall 94.80 % 68.75 %
F1-Score 97.13 % 75.86 %

misclassification can occur due to projects using libraries that are not part of our APIs KB or building custom neural
networks [9, 11]. Overall, the matrix highlights the strong performance of MARK in identifying ML Model Producers,
which is critical for categorizing and analyzing these projects. Table 3 shows the confusion matrix for the ‘ML-Model
Consumer’ classification, highlighting a more challenging scenario. True negatives (252) and positives (54) indicate
that the approach correctly identifies many non-consumer and consumer projects. However, 25 false negatives and 10
false positives highlight the difficulty of distinguishing ‘ML-Model Consumers’ from other projects. The number of
false positives suggests that the approach sometimes confuses projects with features similar to those of consumers.
Additionally, the false negatives indicate cases where real consumer projects are not recognized. Several factors
contribute to these misclassifications. Some libraries allow for predictions by directly entering the variable into the
model without using specific inference APIs [6, 5]. The approach may miss projects using external libraries that are
not included in the initial set [3, 8]. Projects sometimes create custom APIs for inference, which are not included in
our KB. Our approach may incorrectly classify these as ‘ML-Model Consumers’ since it detects the inference method
but does not account for its actual usage context [13, 14, 4]. These issues highlight the need to refine our classification
criteria to improve the accuracy and recall for identifying ‘ML-Model Consumers.’

Table 4 shows the statistical metrics for the classification performance of ‘ML-Model Producer’ and ‘ML-Model
Consumer.’ For ‘ML-Model Producer,’ the approach shows an accuracy of 95.89%, precision of 99.58%, recall
of 94.80%, and an F1-Score of 97.13%. These high values indicate that the approach reliably identifies producer
projects with low misclassification. In contrast, the metrics for ‘ML-Model Consumer’ show lower performance, i.e.,
an accuracy of 89.74%, precision of 84.62%, recall of 68.75%, and the F1-Score of 75.86%. This result suggests that
the approach struggles more with identifying ‘ML-Model Consumer’ projects, particularly in terms of false negatives,
which impact the overall recall of the approach. In this respect, a first observation to make is concerned to the
relative importance that precision and recall have for the use case envisioned for MARK. We argue that the high
precision of MARK is sufficient to meet its primary objectives. Since MARK is primarily intended for research, its
high precision ensures that the projects it classifies are both reliable and accurate, which is crucial for the integrity of
subsequent analyses. By minimizing false positives, MARK enables researchers to study ML project characteristics
with greater confidence, reducing the risk of skewed results caused by misclassified instances. This precision is
particularly valuable in research contexts where data quality and trustworthiness are paramount, ensuring that the
findings can be confidently applied in practice. While the lower recall suggests that some projects may be missed,
this is likely less concerning in a research context where a complete dataset is often unnecessary, i.e., our approach
would still guarantee the selection of a significant and representative sample of projects for analysis. Although further
refinements could enhance recall, we believe that MARK already effectively supports its research-oriented goals.

In any case, to better understand the causes of the classification errors made by MARK, the first three authors
conducted a joint manual analysis of the misclassified instances. The goal of this collaborative effort was to evaluate
the approach’s errors, identify specific areas where the heuristic-based method may need refinement, and summarize
the main causes of misclassification along with their relative frequency. Table 5 reports the causes of misclassification
broken down by classification (‘ML-Model Producers’ and ‘ML-Model Consumers’) and further divided into false
positives and false negatives. This division highlights how each cause specifically affects the respective classifications.

For ‘ML-Model Producers,’ the ‘Custom Solution’ category was the most common source of misclassification,
with eight false negatives (2.35%). This suggests that projects implementing bespoke solutions for model training
without relying on commonly recognized ML APIs pose a challenge to our classification approach. These custom
implementations often lack standard markers, making them harder to detect using heuristic-based methods. Other
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Table 5: Causes of Misclassification and their Frequency.

Reason Misclassification ML-Model Producer ML-Model Consumer
False Positive False Negative False Positive False Negative

Custom Solution 0 8 (2.35%) 1 (0.29%) 15 (4.40%)
Keyword for API not exclusive for Inference 0 1 (0.29%) 3 (0.88%) 3 (0.88%)
Testing and Evaluation 0 0 7 (2.04%) 0
Do not use ML API 0 3 (0.88%) 0 2 (0.59%)
Library not included in our work 0 1 (0.29%) 0 2 (0.59%)
Both training and inference in the same file 0 0 0 2 (0.59%)
Training Keyword not used for training 0 0 0 1 (0.29%)
Not Machine Learning 1 (0.29%) 0 0 0
Total 1 (0.29%) 13 (3.81%) 10 (2.93%) 25 (7.3%)

sources of false negatives were ‘Do not use ML API,’ with three false negatives (0.88%), and ‘Library not included
in our work’ with one false negative (0.29%). A single false positive (0.29%) was recorded in the ‘Not Machine
Learning’ category. Overall, the classification of ‘ML-Model Producer’ projects led to a single false positive (0.29%)
and 13 false negatives (3.81%), for a total of 14 (4.10%) misclassification cases.

For ‘ML-Model Consumers,’ the most frequent misclassification was in the ‘Custom Solution’ category, where
projects implemented their methods instead of using the standard APIs, with 15 false negatives (4.40%) and one false
positive (0.29%). Testing and Evaluation have five false positives (2.04%), where projects were misclassified as they
used files solely for testing and evaluating models rather than consuming them. Keyword for API not exclusive for
Inference have three false negatives (0.88%) and three false positives (0.88%) where keywords typically associated
with inference were also used for other tasks, leading to misclassification, while Do not use ML API 2 false negatives
(0.59%). Additional false negatives were found in Both training and inference in the same file (2 cases, 0.59%) Library
not included in our work (1 case, 0.29%), and Training Keyword not used for training (1 case, 0.29%). Altogether,
the classification of ‘ML-Model Consumer’ projects led to 10 false positives (2.93%) and 25 false negatives (7.3%),
for a total of 35 (10.23%) misclassification cases.

These results reveal that the majority of misclassifications were linked to the ‘Custom Solution’ category for
both ‘ML-Model Consumers’ and ‘ML-Model Consumers,’ with a higher number of cases observed in ‘ML-Model
Consumers’ (35) compared to ‘ML-Model Consumers’ (14). The rare instances where MARK misclassified projects
highlight specific edge cases that challenge the current heuristic-based approach. These findings highlight the op-
portunity for further refinements of our approach, including the integration of additional libraries and heuristics to
effectively address these unique challenges and enhance the overall robustness of the classification process.

5.3.2. MARK Configurations
When it turns to the impact of each component on MARK, the results are reported in Table 6. The table presents

the performance metrics—accuracy, precision, recall, and F1-score—under different configurations of MARK. In
each section of the table, i.e., “MARK ‘ML-Model Producers’ Configuration: Knowledge Base’,’ “MARK ‘ML-
Model Consumers’ Configuration: Knowledge Base,’ and “MARK ‘ML-Model Consumers’ Configuration: Rules’
the first row represents the baseline configuration against which subsequent configurations are compared, allowing us
to measure the incremental impact of each modification.

First, considering the impact of the knowledge base, we observed slight improvements in the performance met-
rics for both the classification of ‘ML-Model Producers’ and ‘ML-Model Consumers.’ Specifically, the enhanced
knowledge base developed in this study, compared to the original knowledge base from Nguyen et al. [53], resulted
in marginal increases across accuracy, precision, recall, and F1-score. For instance, in the case of ‘ML-Model Con-
sumers,’ recall improved by +1.20%, precision remained stable with a minor increase of +0.01%, and the F1-score
rose by +0.64%. Similarly, for ‘ML-Model Producers,’ we observed comparable trends, with slight yet consistent
improvements in classification performance.
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Table 6: Statistical Metrics for ‘ML-Model Producers’ and ‘ML-Model Consumers’ with different Knowledge Base and Rules (R)
configurations of MARK. The symbol µ indicates essential rules for classification.

Knowledge Base R#1 R#2 R#3 R#4 Accuracy (%) Precision (%) Recall (%) F1-Score (%)
MARK ‘ML-Model Producers’ Configuration: Knowledge Base

Nguyen et al. µ µ - - 95.01 99.57 93.60 96.49
Our dataset (MARK) µ µ - - 95.89 (+0.88) 99.58 (+0.01) 94.80 (+1.20) 97.13 (+0.64)

MARK ‘ML-Model Consumers’ Configuration: Knowledge Base
Nguyen et al. µ µ é é 74.78 47.89 85.00 61.26
Our dataset µ µ é é 75.66 (+0.88) 48.99 (+1.11) 91.25 (+6.25) 63.76 (+2.50)

MARK ‘ML-Model Consumers’ Configuration: Rules
Our dataset µ µ é é 75.66 48.99 91.25 63.76
Our dataset µ µ Ë é 86.80 (+11.14) 71.60 (+22.61) 72.50 (-18.75) 72.05 (+8.29)
Our dataset µ µ é Ë 76.54 (+0.88) 50.00 (+1.01) 88.75 (-2.50) 63.96 (+0.20)

Our dataset (MARK) µ µ Ë Ë 89.74 (+14.08) 84.62 (+35.63) 68.75 (-22.50) 75.86 (+12.10)

First, the results indicate that the enhanced knowledge base provided a more comprehensive and updated rep-
resentation of relevant ML libraries and APIs, which reduced misclassifications. The improved recall demonstrates
that the enhanced knowledge base enabled MARK to identify a slightly higher number of true positive classifications
for producers and consumers. This improvement can be attributed to the inclusion of more recent and diverse ML
components absent in the original knowledge base, thereby justifying the effort invested in creating the enhanced
version. Although the scale of the observed improvements may be considered modest at first sight, these findings
remain significant for two main reasons. First, the enhancements highlight the importance of periodically updating
the knowledge base to capture the evolving landscape of ML tools and practices. Second, even incremental improve-
ments in recall and F1-score enhance the overall robustness of the classification process, which is particularly valuable
in scenarios where identifying as many relevant projects as possible is crucial. As such, these results highlight the
practical value of the enhanced knowledge base in maintaining and extending MARK ’s long-term utility. At the same
time, the relatively minor scale of these improvements can be attributed to the fact that the foundational rules (Rules
#1 and #2) already capture the most common and well-established ML libraries and APIs. As a result, the original
knowledge base may have already addressed a significant portion of the classification needs. On the one hand, this
highlights the value of the previous efforts by Nguyen et al. [53], as their knowledge base effectively captured essential
elements of the ML ecosystem that are still relevant nowadays. On the other hand, this result provides insights into
the long-term maintainability of the knowledge base. Our findings show that updating the knowledge base nearly five
years after its initial inception led to only slight improvements in classification performance. This suggests that the
most well-established ML libraries and APIs remain relevant over extended periods, with relatively few new additions
being widely adopted. This observation implies that frequent updates to the knowledge base may not be necessary,
as its foundational content continues to support effective classification. Consequently, our enhanced knowledge base
emerges as a relatively long-lasting contribution that researchers can rely on without needing constant revisions.

In conclusion, these results provide additional value to the enhanced knowledge base, as they suggest it can serve as
a stable and scalable resource for future studies. By requiring only periodic updates to incorporate major developments
or new trends in ML libraries, our enhanced knowledge base offers researchers a reliable tool for analyzing ML
projects while minimizing the maintenance overhead. Moreover, its longevity enhances its practical utility for a wide
range of applications, further solidifying its relevance in the evolving field of ML project classification.

When it turns to the impact of the classification rules used to classify ‘ML-Model Consumers,’ the results sug-
gest that the inclusion of Rules #3 and #4 provide incremental stability to the classification capabilities of our ap-
proach. Specifically, the MARK version without Rule #3 achieves high recall (91.25%) but suffers from low precision
(48.99%), indicating a significant number of false positives in the classification. The introduction of Rule #3 sub-
stantially improves precision to 71.60% (+22.61%) while reducing recall to 72.50% (-18.75%). These results suggest
the validity of our assumption that files containing both training and inference APIs are more likely to leverage the
latter for evaluation purposes rather than genuine inference. By excluding such files from the consumer classification,
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Rule #3 effectively reduces misclassifications, particularly those resulting from overlapping producer-consumer char-
acteristics. This trade-off between precision and recall reflects the heuristic’s emphasis on minimizing false positives,
which aligns with MARK’s primary goal of ensuring the reliability and trustworthiness of its classifications. While
recall decreases, the overall improvement in F1-score (+8.29%) demonstrates that Rule #3 achieves a better balance
between the two metrics, reinforcing its role in enhancing the robustness of the classification process.

As for Rule #4, this is the rule that may have the most significant impact on false negatives, as its primary function
is to exclude files that contain terms indicative of testing or evaluation (e.g., “test,” “eval,” or “validate”) from being
classified as consumers. While this exclusion reduces false positives by ensuring that testing-related files are not
mistakenly identified as consumer files, it can inadvertently lead to false negatives in cases where such files genuinely
serve inference purposes but happen to include these terms in their filenames. When analyzing the results shown in
Table 6, we observe that Rule #4 slightly improves precision compared to the version of MARK that includes only
Rules #1 and #2 (50%, +1.01%) but marginally decreases recall (88.75%, -2.50%). Despite these modest changes, the
application of Rule #4 results in an improved F1-score (63.96%, +0.20%), indicating a slightly better balance between
precision and recall. This suggests that Rule #4, while not drastically altering overall performance, plays a dual role:
it reduces false positives by excluding files primarily dedicated to testing or evaluation but also slightly increases false
negatives compared to the MARK version solely including Rules #1 and #2.

Finally, assessing the final version of MARK, which includes both Rules #3 and #4 alongside Rules #1 and #2 for
the classification of ‘ML-Model Consumers,’ we observed significant improvements in precision (84.62%, an increase
of +35.63%) but also a notable reduction in recall (68.75%, a decrease of -22.50%) compared to the version of MARK
that excludes Rules #3 and #4. This finding leads to two important conclusions that ultimately justify the design
decisions to implement our approach. First, including all rules results in the best possible balance between precision
and recall, as demonstrated by the highest F1-score (75.86%) achieved among all evaluated configurations. This
suggests that the combined application of Rules #3 and #4 provides a robust framework for accurately distinguishing
‘ML-Model Consumers’ by addressing false positives and false negatives holistically. Second, and more critically, the
final version of MARK prioritizes maximizing precision, aligning with its intended design goal. As discussed earlier
in this section, MARK is designed to support researchers in selecting a subset of ML projects for further analysis,
particularly in scenarios where ensuring the correctness of the classification is paramount. High precision ensures
that the identified consumer projects are highly reliable, minimizing the risk of including irrelevant or misclassified
projects. By achieving a precision of 84.62%, the final version of MARK effectively minimizes misclassifications,
which is crucial for studies requiring high-quality curated datasets. Although the notable decrease in recall indicates
that some relevant consumer files are not identified, we deem this trade-off acceptable in the context of MARK’s
primary objectives. The ability to confidently classify projects as consumers outweighs the need to capture every
relevant file, particularly when a representative sample is sufficient for most research applications.

5.3.3. Assessment of ‘ML-Model Producer & Consumer’ Classification
After collecting the results of the performance classification in individual projects, we evaluated the ability of

MARK to assess its effectiveness in finding ‘ML-Model Producer & Consumer’ projects. This category combines
elements that characterize a project as a ‘ML-Model Producer’ and a ‘ML-Model Consumer.’ Table 7 shows the
confusion matrix for detecting this category. Moreover, Table 8 summarizes the performance of our approach in
detecting this category. Combining the information provided by the confusion matrix and the overall performance
metrics, some considerations emerge. An accuracy of 90.62% demonstrates the strong overall reliability of the tool in
identifying this category. The precision of 83.93% indicates that most positive classifications are correct, showing that
the tool effectively identifies relevant projects while maintaining a low false positive rate. According to the confusion
matrix, nine instances were misclassified as part of the ‘ML-Model Producer & Consumer’ category. Additionally,
the recall of 67.14% reflects the tool’s ability to identify a significant portion of actual ‘ML-Model Producer &
Consumer’ projects, with 47 true positives and 23 false negatives. The recall score is strictly limited by applying the
rules to detect ‘ML-Model Consumer’ (i.e., Rule #3 and Rule #4), as also denoted by similar scores. However, the F1-
Score of 74.60% shows a balance between precision and recall, highlighting the tool’s ability to identify ‘ML-Model
Producer & Consumer’ while offering opportunities for continued improvements. In summary, the performance of
MARK in classifying ‘ML-Model Producer & Consumer’ is closely related to the tool’s ability to accurately detect
individual categories of ‘ML-Model Producer’ and ‘ML-Model Consumer.’ In fact, the results for the new category
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Table 7: Confusion Matrix for ‘ML-Model Producer &
Consumer’

Predicted
Negative Positive

Actual Negative 262 9
Positive 23 47

Table 8: Performance Metrics for ‘ML-Model Producer &
Consumer’

Metric ML-Model Producers &
Consumers

Accuracy 90.62 %
Precision 83.93 %

Recall 67.14 %
F1-Score 74.60 %

are well-aligned with the detection performance of the individual categories, reflecting the underlying consistency
and effectiveness of the classification approach across individual and combined project categories. Therefore, the
room for improvement observed in the detection of single categories is directly related to the misclassification of
these projects in the ‘ML-Model Producer & Consumer’ category. Enhancing the precision and recall for the ‘ML-
Model Producer’ and ‘ML-Model Consumer’ projects will naturally lead to improvements in the classification of the
combined ‘ML-Model Producer & Consumer’ category.

 Answer to RQ1. MARK could identify ‘ML-Model Producer’ with a precision of 99.89% and a recall 94.80%.
However, the performance is slightly lower for the ‘ML-Model Consumer’ classification, which shows a precision
of 84.62% and a recall of 68.75 %. Moreover, our approach can also classify the ‘ML-Model Producer & Consumer’
category with 83.93% of precision and 67.14% of recall. Challenges in the classification process arise from custom
implementations, non-standard APIs, and testing-related terms, which may contribute to misclassifications. Despite
these limitations, the high precision aligns with MARK’s primary goal of providing reliable classifications for
research purposes. The detailed analysis highlights opportunities for refinement, including the expansion of the
knowledge base and improved heuristics to address edge cases. Overall, MARK effectively supports its intended
research-oriented use case, ensuring accurate and representative datasets for further analysis.

5.4. Threats to Validity

This subsection describes the main threats that can affect our first empirical study.

Construct Validity. We recognize that some libraries and methods may have been overlooked. However, our KB is
based on the current state-of-the-art, specifically identifying manual inspection strategies for analyzing documentation
and discovering inference and training methods. To mitigate this possible threat, we adopted a systematic approach to
catalog libraries and methods and involved two or more inspectors to ensure the correctness and completeness of the
identified APIs and methods. We conducted a review process between the first three authors for all decisions, with
agreements and meeting sessions to ensure their inclusion. A total of 30 hours per author was required to perform
these activities. To confirm the validity of these methods and ensure the competence of the classification activities,
we describe the authors’ experience. The first two authors are Ph.D. students with a major in ML and SE4AI and four
years of experience in ML model development, while the third author is a postdoc with six years of experience in ML
and SE4AI. The process is fully documented in the online appendix (“Pipeline” file).

Of course, we are aware that the KB may evolve with introducing new APIs and methods, which could potentially
impact the applicability of MARK. Three considerations are relevant in this regard. First, this is a challenge inherent
to all API-based approaches [49, 67, 69]. Second, while an outdated KB might reduce recall by missing newer APIs
or methods, it does not directly compromise precision. Consequently, we are confident that even with some degree of
obsolescence, our approach would continue to deliver reliable classifications, making MARK a dependable tool for
research applications where precision is crucial. Third, our fine-grained analysis in Section 5.3.1 highlighted that the
enhanced KB provided marginal but consistent improvements in precision and recall. These findings demonstrate the
importance of periodic updates to maintain the relevance of the tool while underscoring that the foundational content of
the KB effectively captures the core characteristics of ML projects. Thus, while regular updates are advisable, frequent
revisions are not strictly necessary, ensuring MARK remains a long-lasting and practical resource for researchers.
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Furthermore, our approach to classifying ‘ML-Model Producer,’ ‘ML-Model Consumer,’ and ‘ML-Model Pro-
ducer & Consumer’ was defined following a heuristic-based approach. This decision was driven by our design goals
of achieving simplicity, efficiency, and transparency in classification, particularly given the need to handle large-scale
data, as is often required in mining software repositories. Nonetheless, our results revealed that heuristics may oc-
casionally fail to identify edge cases, such as projects implementing highly customized APIs or combining training
and inference in non-standard ways. This limitation highlights the inherent trade-offs of a heuristic-based approach:
increasing precision by focus on well-defined patterns often comes at the cost of reduced recall, as valid instances that
deviate from these patterns are excluded. In this regard, we conducted additional analyses on the causes of misclassi-
fications, along with investigating the impact of each heuristic on the overall performance of the proposed approach.
These analyses revealed that the heuristics performed robustly for standard cases but struggled with cases that devi-
ated from common patterns. These findings suggest that MARK could be further improved by integrating advanced
natural language processing models capable of understanding the semantic context of API usage. This integration
could help identify semantic patterns and reduce the likelihood of edge-case misclassifications. Additionally, incor-
porating a feedback loop to iteratively refine the KB and rules based on observed misclassifications could improve the
robustness and adaptability of the tool over time. Such hybrid approaches, which combine heuristics with AI-based
techniques, offer a promising direction to address the limitations observed in our current approach.

The last threat to construct validity concerns the implementation of our tool and its adherence to the identified
detection rules. To ensure the tool’s correctness, we defined test cases and conducted code review activities. Addi-
tionally, we assessed MARK performance by studying the contribution of each component to the resulting perfor-
mance. Our evaluation of various configurations showed that while modifications to certain rules and the knowledge
base enhanced precision, they occasionally diminished recall by omitting valid instances. This trade-off highlights
the difficulty of balancing generalizability and specificity, emphasizing the need for iterative refinement of the rules
and knowledge base to enhance MARK reliability across diverse design scenarios. For verifiability, we released the
source code and all the material necessary to build it.

Conclusion Validity. In the context of RQ1, we assessed the performance of the classifier based on the sample size.
However, if, on the one hand, we selected a statistically significant sampling to conduct the empirical experiment, on
the other hand, we cannot guarantee that the performances observed in the sample can be generalized to the entire ML
project population. To calculate the performance of our tool, we built an oracle by manually labeling the statistically
significant sampling in ‘ML-Model Producer’ and ‘ML-Model Consumer.’ Finally, to assess the tool’s capabilities, we
exploited well-established performance metrics [58]. Furthermore, we manually go deeper into the misclassifications
of projects by manually analyzing projects and including the missed APIs and related methods. In addition, we
completed our quantitative analysis with qualitative insights.

External Validity. We identified two main external validations. The first concern is the programming language used to
investigate ML projects i.e., Python. We are conscious that other programming languages can be used in ML contexts;
however, we focused on Python due to its widespread adoption by practitioners worldwide. Additionally, many of
the datasets released in the literature in ML contexts refer Python projects. The second is related to performance
generalizability. In this case, this threat is related to the quality of the dataset used. To mitigate this possible threat,
we selected two well-known ML datasets i.e., NICHE [73] and the Gonzalez’s dataset et al. [35] and applied pre-
processing strategies to remove possible toy projects, tutorials, and so on.

6. RQ2. Empirical Study: On the Usefulness of MARK

The goal of the study was to understand the socio-technical characteristics of ML projects classified according to
our schema, with the purpose of gaining insights into how the differences among these projects validate the usefulness
of our classification. The perspective is of researchers who are interested in exploring the distinct patterns, challenges,
and opportunities that emerge from different types of ML projects, ultimately aiming to refine best practices and
improve the effectiveness of tools and methodologies in the SE4AI domain.
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Table 9: Distribution of Projects by Category.

Category Description # Projects
ML Libraries & Toolkits Projects that provide tools to develop ML

solutions.
1,349

ML-Model Producers Projects that invoke a training function. 1,359
ML-Model Consumers Projects using ML models without build-

ing them.
56

ML-Model Producers & Consumers Projects that simultaneously produce and
utilize ML models within the same context.

493

6.1. Data Collection

The first research question evaluated MARK’s ability to distinguish between ‘ML-Model Producers’ and ‘ML-
Model Consumers’. This evaluation was essential to validate the core functionality of MARK in correctly categorizing
projects using machine learning models. However, the second empirical study expanded the scope to include all four
project classes: ‘ML-Model Producers,’ ‘ML-Model Consumers,’ ‘ML-Model Producers & Consumers’ and ‘ML
Libraries & Toolkits’. This broader analysis enabled us to evaluate the overall effectiveness of integrating MARK
with the original classification by Gonzalez et al. [35] as a research tool. It also allowed us to explore and compare the
significant differences across all project categories, further demonstrating the utility of this combined classification
approach. To achieve this goal, we essentially simulated a researcher’s activities when conducting an empirical study
comparing the characteristics of different ML projects. We began by using the datasets employed in RQ1, specifically
(1) the dataset initially proposed by Gonzalez et al. [35] and later refined by Rzig et al. [62], and (2) NICHE [73].
From these datasets, we applied MARK to classify projects labeled as ‘Applied ML’ while retaining those labeled as
‘ML Libraries & Toolkits’ as a separate category. Using MARK, we further identified projects related to ‘ML-Model
Producers’ and ‘ML-Model Consumers’. Subsequently, we added a step to identify projects classified in both ‘ML-
Model Producers’ and ‘ML-Model Consumers,’ categorizing them as ‘ML-Model Producers & Consumers’. The final
set of projects classified by MARK is in Table 9, which shows the distribution of projects among the four categories.

Afterwards, we computed repository metrics, following previous works [16, 51, 31]. These metrics described
projects along multiple dimensions, characterizing the socio-technical dynamics arising in those communities. We
collected data from these categorized ML projects using the GitHub API [12]. Table 10 details the metrics collected.

Firstly, we focused on engagement and collaboration metrics, including the number of stars and number of
forks, which highlight user interaction levels. We also collected the number of contributors to gain insights into the
collaborative nature of the projects and the extent of community engagement. Moreover, our data collection covered
activity metrics, essential for evaluating each repository’s activity rate and development efforts. Specifically, we
gathered data on the number of commits and the activity rate, measured by the frequency of commits over time.
Lastly, we included structural metrics to assess the overall complexity and maturity of the projects. We measured
each repository’s size regarding lines of code (LOC), which helps gauge the project’s scale and potential maintenance
demands. Additionally, we considered the project age, providing context on the project’s maturity.

As already discussed in Section 4, it is worth remarking that this analysis is not intended to offer an exhaustive
overview of the classification’s applications but rather to provide insights into how it can be leveraged by researchers.
The focus on project dynamics and community engagement stems from the availability of well-established metrics
and tools for their measurement. Identifying any differences would validate the value of classifying projects based
on their nature and functionality, thereby underscoring the potential benefits for researchers interested in studying the
characteristics of projects within the ML Universe.

6.2. Data Analysis

The collected metrics were then used to evaluate whether a specific metric can be distinctly associated with a sin-
gle ML category. Therefore, starting from the analyzed ML projects, we aimed to statistically analyze the differences
between the categories.
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Table 10: Metrics selected for analyzing community engagement, activity, and collaboration aspects of ML projects.

Metric Categories
Engagement and Collaboration Metrics Number of Forks: The number of times the repository has been forked by other users.

Number of Stars: The number of stars the repository has received from users.
Number of Contributors: The number of contributors to the repository.

Activity Metrics Number of Commits: The number of commits of the repository.
Activity Rate: The rate of activity measured as the frequency of commits over time.

Structural Metrics Project Age: The amount of time passed since the creation date of the project.
Size: The size of the repository expressed in lines of code (LOC).

Specifically, considering Table 10, let X = {#Forks, #S tars, #Contributors, #Commits, ActivityRate, Pro jectAge, S ize}
the set of metrics, we formulated the following null hypotheses for each of the proposed metrics:

H0: For each x ∈ X, there is no statistically significant difference in terms of x between ‘ML-Model Producers,’
‘ML-Model Consumers,’ ‘ML-Model Producers & Consumers,’ and ‘ML Libraries & Toolkits.’

This leads to the following alternative hypothesis, stating that for each dependent variable, a statistically relevant
difference can be observed between categories:

Ha: For each x ∈ X, there is a statistically significant difference in terms of x between ‘ML-Model Producers,’
‘ML-Model Consumers,’ ‘ML-Model Producers & Consumers,’ and ‘ML Libraries & Toolkits.’

Before conducting any statistical tests, we first assessed the normality of our data to determine the appropriate sta-
tistical methods. We began by evaluating the properties of each distribution using the Shapiro-Wilk test [36] with a
significance level of α = 0.05, applied to each project category. This test helped us assess whether the data followed
a normal distribution. If the data had been normally distributed, we would have employed parametric tests such as
ANOVA. However, since the Shapiro-Wilk test revealed that the data did not conform to a normal distribution, we
opted for non-parametric tests better suited to our data’s characteristics. Specifically, we applied the Kruskal-Wallis H
Test [28], a non-parametric method, to compare the medians across the four groups. This test is robust to the assump-
tions of normality homogeneity and provides an initial assessment of significant differences between the groups. Upon
detecting significant differences using the Kruskal-Wallis H Test, we conducted pairwise Mann-Whitney U tests [48]
with Holm-Bonferroni correction [38] to control for Type I errors. These pairwise comparisons allowed us to identify
which specific ML project categories exhibit statistically significant differences from each other.

6.3. Analysis of the Results

Before analyzing the outcomes of the repository metrics analysis, we examined the prevalence of ML libraries
in the project categories. Figure 3 shows the top 10 ML Libraries used respectively in ‘ML-Model Producers’ and
‘ML-Model Consumers.’ Common outcomes between ML project categories show the usage of common libraries,
which is hugely different from other libraries. Specifically, “tensorflow” is the most used library for both the ML
projects categories, 811 ‘ML-Model Producers’ and 271 in ‘ML-Model Consumers’ projects. This discrepancy be-
tween the most used libraries and others highlights the tendency of ML practitioners to use the most popular libraries,
underrating the potentiality of other solutions. This phenomenon might be due “popularity bias” [15]. On the one
hand, the main differences highlight the use of “sklearn” library in ‘ML-Model Producer’ projects aimed specifically
at producing ML models. On the other hand, “keras” library is more used than “sklearn” in‘ML-Model Consumer’
projects. Finally, other libraries that allow the training and use of different kind of ML models are highlighted in this
analysis, such as “gym” library with 40 references in ‘ML-Model Producer’ projects and “transformers” library, with
27 references in ‘ML-Model Producer’ projects and nine in ‘ML-Model Consumer’ Projects.

Hypothesis Testing. Several outcomes are enlighted when analyzing the community engagement, activity, and col-
laboration metrics. Table 11 shows the results of the Kruskal-Wallis H test applied for all the metrics. Additionally,
results of Mann-Whitney U test post-hoc analysis are reported to identify statistically significant differences between
ML project categories. Observing the results of the Friedman Test, all the metrics report a p-value lower than 0.005,
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(a) Top 10 ML Libraries used in ‘ML-Model Producers’ projects.
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(b) Top 10 ML Libraries used in ‘ML-Model Consumers’ projects.

Figure 3: Comparison of the top 10 ML libraries used by ‘ML-Model Producers’ and ‘ML-Model Consumers’.

leading to the rejection of our formulated null hypotheses and concluding that there are significant differences be-
tween the three categories. The number of stars showed significant differences in several groups, such as {MP, LT}
(p < 0.001) and {MPC, MP} (p < 0.001). In contrast, the difference between {MP, MC} (1) and {MPC, LT} (1) were
not statistically significant. For the size, significant differences were observed in groups {MPC, MP} (p < 0.001),
{MPC, MC} (p = 0.03), and {MPC, LT} (p < 0.001). However, groups such as {MC, LT} (p = 1) and {MP, MC}
(p = 1) indicated there are no statistical differences. The number of forks followed a similar pattern, with significant
differences between {MP, LT} (p < 0.001) and {MPC, MP} (p < 0.001). Nonetheless, the differences between {MP,
MC} (p = 0.74) and {MPC, LT} (p = 0.40) and other groups were not statistically different. The number of commits
exhibited significant differences in most groups such as {MP, LT} (p < 0.001) and {MPC, MP} (p < 0.001). However,
the group {MP, MC} (p = 0.87) does not show significant statistical variations. For project age, significant differences
were found in {MP, LT} (p < 0.001) and {MPC, LT} (p < 0.001). In contrast, the other groups, such as {MPC, MP}
(p = 1) and {MPC, MC} (p = 1) demonstrated no statistical differences. The activity rate showed notable differences
in most of the groups, such as {MP, LT} (p < 0.001) and {MPC, MP} (p < 0.001). However, the group {MP, MC}
(p = 0.82), revealed no significant variation. Finally, the number of contributors exhibited significant differences in
almost all groups, such as {MP, LT} (p < 0.001) and {MPC, MP} (p < 0.001). At the same time, there are no statistical
differences in the group {MPC, MC} (p = 0.82). As a main outcome of the tests, the classification identified project
categories with many characteristics for each group, each category of which could be associated with a repository met-
ric. While many metrics displayed statistically significant differences across the groups, several comparisons revealed
little or no variation, highlighting the diversity of certain project characteristics.

Table 11: Kruskal-Wallis H and Mann-Whitney U tests. Number(#), ML-Model Producer (MP), ML-Model Consumer (MC),
ML-Library & Toolkit (LT), ML-Model Producers & Consumers (MPC).

Categories Community engagement Metrics Activity Metrics Collaboration Metrics
Tests # Stars Size # Forks # Commits Project Age Activity Rate Contributors
Kruskal-Wallis <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Mann-Whitney {MP, MC} 1 1 0.74 0.87 1 0.82 0.008
Mann-Whitney {MP, LT} <0.001 0.07 <0.001 <0.001 <0.001 <0.001 <0.001
Mann-Whitney {MC, LT} 0.02 1 0.1 <0.001 0.1 <0.001 0.003
Mann-Whitney {MPC, MP} <0.001 <0.001 <0.001 <0.001 1 <0.001 <0.001
Mann-Whitney {MPC, MC} 0.02 0.03 0.03 <0.001 1 0.001 0.82
Mann-Whitney {MPC, LT} 1 <0.001 0.4 <0.001 <0.001 <0.001 <0.001

Statistical Analysis. To understand category differences, we observed their distribution, represented in Figure 4. MP
and MC appear to have lower metric values than the two categories. Specifically, examining the distribution of stars
across each ML project category, MP projects show fewer stars, with a median value of 93, compared to LT projects
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Figure 4: Distribution of the categories of ML projects among the selected metrics. The categories are ML-Model Producer (MP),
ML-Model Consumer (MC), ML-Library & Toolkit (LT), ML-Model Producers & Consumers (MPC).

(210) and MPC projects (205). This difference was previously found to be statistically significant. In contrast, MC
projects have a similar star distribution to MP, with a median value of 92. Overall, LT and MPC categories showed
higher star counts compared to MP and MC. Statistically significant differences were also observed in project size,
measured by LOC. MPC projects exhibited the largest size, with a median LOC of 17,811. LT projects followed with
a median LOC of 9,369, notably higher than MP (median: 6,252) and MC (median: 6,645.5). Regarding the number
of forks, MPC projects had the highest median value of 57. LT projects reported a slightly lower median of 48 forks.
Meanwhile, the MP and MC categories showed fewer forks, with median values of 27 and 30.5, respectively. LT
projects also reported the highest number of commits, with a median value of 253.5. In contrast, MPC projects had
a lower median of 132 commits, while MP and MC categories displayed notably lower values, with medians of 57
and 53.5, respectively. The differences between MP and MC in this aspect are relatively small. A similar trend was
observed for activity rate and the number of contributors, where LT and MPC projects generally outperformed MP
and MC projects. Finally, regarding project age (measured as days since the starting date), LT projects reported the
highest median value of 2,534 days. However, the differences between categories are minor, as the distributions are
quite similar.

 Answer to RQ2. Significant differences emerge across the project categories. Projects in the ‘ML-Model Pro-
ducers & Consumers’ and ‘ML Library & Toolkit’ categories are characterized by larger environments, with higher
median values for stars, size (LOC), forks, and commits. In contrast, ‘ML-Model Producers’ projects are notably
smaller and exhibit distinct differences, particularly in their lower median values across most metrics.

6.4. Threats to Validity
Given the nature of the projects analyzed, threats need to be considered during their characterization.

Internal Validity. One primary concern is the presence of confounding variables. Factors such as developer skill level
could influence the selected metrics. We aimed to encompass metrics from various dimensions, ensuring a compre-
hensive analysis. The differences between the analyzed projects provide a valuable starting point for understanding
the unique characteristics of ML projects.
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Construct Validity. Regarding the definition of metrics used in the study, we acknowledge that metrics like the number
of stars, forks, and commits are proxies for project quality and engagement. While these metrics might not fully
capture a project’s true impact or usability, they offer a practical and widely accepted method for evaluating project
popularity and activity. For instance, the number of stars indicates a project’s popularity [23], and the number of forks
reflects the community’s interest in contributing to the project [26]. Although these metrics might reflect surface-level
popularity rather than deep engagement or technical excellence, they still provide valuable indicators of a project’s
visibility and activity.

Conclusion Validity. Many parametric tests are not applicable given the nature of our data distribution, which vio-
lates assumptions such as data independence between groups. Therefore, we applied the Kruskal-Wallis H Test [28]
and Mann-Whitney U tests [48] with Holm-Bonferroni correction [38] to control for Type I errors. These tests are
suitable for our data structure and ensure the robustness of our statistical analysis, providing reliable insights into the
differences and relationships within ML-project categories.

7. Discussion and Implications

Our study highlights several implications for the SE4AI community, quantifying and shedding light on SE re-
searchers’ challenges and opportunities.

On the Value of MARK. RQ1 shows that an automated classification is feasible and may reach good performance
already with a heuristic approach, hence representing a valuable addition to the current state of the art [35, 73]. The
automation of ML project classification addresses several key challenges in the field of SE4AI. One of the most critical
issues is the substantial time and effort required for manual classification, especially when dealing with large datasets.
Manual classification is a resource-intensive process that demands specialized domain knowledge and attention to
detail, which increases the risk of errors and inconsistencies. These misclassifications can hinder the accuracy of
subsequent analyses and limit the ability to draw meaningful conclusions from the data [24, 62]. By automating the
classification process, our approach mitigates these challenges and enhances the quality and reliability of research
outcomes. From a practical perspective, this automation empowers SE4AI researchers to conduct more precise and
context-aware analyses of ML projects. For instance, by distinguishing among ‘ML-Model Producer,’ ‘ML-Model
Consumer,’ and ‘ML-Model Producer and Consumer,’ our classification framework allows researchers to tailor their
studies to specific types of ML projects, leading to more relevant and actionable insights. For example, those focused
on developing ML models might prioritize ‘ML-Model Producers,’ those interested in applying and integrating pre-
trained models could concentrate on ‘ML-Model Consumers.’ In contrast, those aiming at exploring the full lifecycle
of ML pipelines may focus on may focus on ‘ML-Model Producer and Consumer.’ This represents a key transversal
aspect that can significantly benefit the research community. By enabling comparative studies that analyze differences
in how various types of ML projects operate—whether in their development processes, model deployment strategies,
or maintenance practices—researchers can uncover critical insights that were previously overlooked. By accurately
selecting and focusing on the right project samples, researchers can drive the creation of tailored best practices, tools,
and methodologies specifically designed to meet the unique needs of each project type. This, in turn, will contribute
to developing more effective and efficient ML systems across the board.

 Implication #1. Our classification approach has the potential to expand the scope of research in the field of
SE4AI, possibly enabling new avenues of inquiry, such as more targeted studies on ML project types, refined tool
development, and the creation of best practices tailored to specific project characteristics.

On the Challenges of Classifying ML Projects. Building on the findings of RQ1, we argue that there are still some
challenges for properly classifying ML projects. This is especially true in the case of ‘ML-Model Consumer’. Specif-
ically, our study highlights the need to refine and expand the detection mechanism to cover a wider range of projects,
finally improving its recall. In this respect, two considerations must be pointed out. Our assessment of various config-
urations of MARK revealed the intricate trade-offs between precision and recall. For example, Rule #3 significantly
improved precision by minimizing false positives but reduced recall by excluding valid instances. This trade-off high-
lights the challenge of achieving a balance between these metrics. Nonetheless, the high precision achieved by the
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final configuration of MARK is a significant asset for SE4AI research. Precision often holds greater importance in this
domain than recall, as it ensures that the projects identified are reliable and accurate. By minimizing false positives,
our classification provides a trustworthy foundation for subsequent research, enhancing the quality and reliability of
findings and ensuring that the results can be confidently applied in practice. Similarly, our findings suggest that the
final configuration of MARK strikes the best compromise between precision and recall while achieving the highest
precision among all evaluated configurations. This optimal balance ensures that the approach aligns with its primary
objective: providing a dependable tool for research that minimizes noise and misclassification, thereby enhancing the
quality of downstream analyses. While improving recall remains a goal for future work, the current precision-focused
approach may already effectively support research requiring high-quality datasets, where inclusivity is less critical
than reliability.

At the same time, our analyses identified some limitations that warrant further research. In particular, a significant
challenge lies in accurately distinguishing between projects that consume ML models and those that include simi-
lar functionalities for testing or auxiliary purposes. This issue often arises because current heuristics may not fully
capture the contextual usage of APIs within the codebase. Two potential improvements can be considered to address
this. First, adopting a contextual analysis approach: instead of relying solely on API calls, incorporating a deeper
analysis of the files within the project—examining their purpose, interactions, and overall context—could signifi-
cantly enhance classification accuracy. Second, leveraging advanced AI-based solutions, e.g., NLP techniques, could
improve the analysis of comments, documentation, and code artifacts, thereby improving the accuracy of project clas-
sification. For instance, natural language processing techniques, such as pre-trained models like BERT or fine-tuned
large language models, could be employed to disambiguate whether a file containing both producer and consumer
APIs is used for evaluation or inference, hence contributing to increasing the overall classification accuracy of our ap-
proach. Similarly, prompt engineering could enable large language models to classify ML projects more effectively by
leveraging context-aware insights from file descriptions. While promising, these approaches may require significant
computational resources and further experimentation to assess their scalability and practicality.

 Implication #2. Further research is required to address the inherent challenges of classifying ML projects.
Possible solutions involve contextual analysis and AI-based solutions to differentiate ‘ML-Model Consumers’
from ‘ML-Model Producers’.

On the Use of the Classification in the Wild. When it turns to our second research question, we could first conclude
that projects within the ‘ML-Library & Toolkit,’ ‘ML-Model Producers,’ ‘ML-Model Consumers,’ and ‘ML-Model
Producers & Consumers’ categories exhibit significant differences in terms of repository metrics.

From a conceptual standpoint, the differences observed confirm the usefulness of the proposed classification and
the overall significance of considering the nature of ML projects when performing empirical studies. Building on
previous insights, the results underscore that differentiating ML projects is crucial for accurately investigating the
structure, organization, and team dynamics of these projects. Similarly, our findings highlight the importance of
tailored approaches when studying or developing tools for these projects. While our aim was not to exhaustively
analyze all differences among project types, it is reasonable to expect that significant variations could also be observed
in other areas, such as collaboration patterns, code quality metrics, or scalability concerns. As such, our findings
represent a call to researchers in the field to explore these differences further, deepening our understanding of the
unique challenges and opportunities presented by each type of ML project.

From a practical standpoint, our findings provide valuable insights into the socio-technical dynamics of ML
projects, highlighting the distinct requirements and characteristics of different project categories. For instance, high
levels of community engagement often correlate with strong support networks, essential for fostering innovation and
sustaining project momentum. Similarly, activity levels within a project indicate its vitality and responsiveness to
emerging developments, while patterns of contributor collaboration reflect the project’s inclusivity and openness to
diverse perspectives. The observed differences suggest varying maturity levels, impacting stability, reliability, and
feature set comprehensiveness. Specifically, the analysis shows that different ML project categories have varying
socio-technical requirements. ‘ML-Library & Toolkit’ projects tend to have more commits and slightly more contrib-
utors, indicating a higher level of collaboration and a potentially more complex development process. These projects
may benefit from robust communication and coordination tools to manage contributions effectively alongside more
stringent quality assurance processes to maintain the integrity and performance of integrated models. Additionally,
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‘ML-Model Producers & Consumers’ tend to exhibit higher lines of code and forks, reflecting their dual-purpose
nature and the inherent complexity of combining model development with the deployment and distribution. The
larger line of code suggests intricate pipelines and diverse functionalities, while the higher number of forks highlights
their widespread use and adaptation by the community. These projects require technical expertise and collaborative
practices to manage the full lifecycle of ML pipelines effectively. Conversely, ‘ML-Model Producer’ projects, with
fewer contributors, may prioritize the depth of expertise and specialized skills in model development. In these cases,
quality assurance may focus more on the accuracy and reliability of the models rather than broader collaborative pro-
cesses. This differentiation is crucial for researchers when prioritizing efforts, as newer projects might be ideal for
cutting-edge research. In comparison, older projects could be more suited for stable, long-term deployments.

The findings of our study may be instrumental for researchers in social software engineering, who are interested in
understanding community dynamics and collaboration patterns, as well as for those working on software maintenance
and evolution, who are focused on project longevity, stability, and the impact of maturity on software quality. In
addition, given that socio-technical dynamics play a crucial role in shaping software quality [42, 56], the differences
observed in our study suggest that these dynamics likely extend to the technical domain, potentially influencing the
quality assurance practices employed across different ML projects. As such, our findings may stimulate additional
research on the process and product quality of these systems.

 Implication #3. The differences observed in socio-technical dynamics are likely to influence other research
domains, extending beyond the scope of our study. Our findings carry significant implications for researchers
in areas like social software engineering, software maintenance and evolution, and software quality, providing
them with valuable insights into the distinct characteristics of ML projects. These insights can be leveraged to
understand better and address the unique challenges associated with these projects.

On Our Classification and Beyond. Our classification builds on existing knowledge of training and inference APIs,
aiming not to be a static resource but an evolving effort that requires ongoing research and updates. The periodic
updates and refinements of our knowledge base are fundamental for maintaining its relevance and usefulness over
time. Our results show that even incremental updates to the KB can lead to modest but meaningful improvements in
recall and F1-score, emphasizing the importance of periodically capturing the evolving landscape of ML tools and
practices. This effort helps ensure that our classification remains robust and reflective of the current state of the field.
We may keep the classification mechanism relevant and comprehensive by incorporating the latest advancements
in ML APIs and analyzing emerging libraries that support cutting-edge models. Moreover, by making our study
materials publicly available, we hope to foster collaboration within the research community. As periodic updates do
not require substantial changes to the foundational rules and can focus on incremental refinements, this collaborative
effort may ensure that MARK remains a scalable and long-lasting contribution to SE4AI research.

At the same time, we foresee future efforts extending our classification beyond the characterization of the cur-
rently supported classes of projects, i.e., ‘ML-Model Producers,’ ‘ML-Model Consumers,’ and ‘ML-Model Producers
and Consumers.’ Although we did not systematically analyze the projects within each category, initial observations
suggest differences that could lead to more refined classifications. Specifically, within ‘ML-Model Producers’ we
identified variations in ML model architectures, ranging from traditional models like Decision Trees to more com-
plex architectures such as CNNs. For instance, the Model-Zoo project [7] offers a variety of ML models, which the
software engineering community could study to explore additional project categories and examine the differences in
performance or non-functional requirements among different models. On the contrary, projects within ‘ML-Model
Consumer’ tend to be more task-oriented, such as those focused on computer vision, audio, and NLP, which could be
further studied in terms of their integration with other software components or their operation in more heterogeneous
environments. Furthermore, our results show the massive adoption of libraries such as TensorFlow, Keras, Sklearn,
and Torch for ML projects. This outcome suggests that studies that do not consider this set of libraries and frame-
works can accidentally exclude a large number of ML projects, decreasing the generalizability of their results for
researchers and practitioners. In addition, qualitative and quantitative studies could be leveraged to refine our classi-
fication further by exploring the underlying motivations for adopting certain popular libraries and frameworks over
others. Qualitative approaches, e.g., surveys and interviews, could provide insights into developer preferences and
decision-making processes. Meanwhile, quantitative methods, e.g., mining software repositories, could analyze usage
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patterns and performance metrics across different projects. These studies could uncover trends and best practices,
leading to context-aware classifications of the sub-types of projects within each category.

 Implication #4. Our classification approach is the preliminary step for defining continuous evolving activities
to identify and classify ML projects, enlarging opportunities for SE4AI research.

8. Conclusion

This study introduces the Machine learning Automated Rule-based Classification Kit (MARK), a novel ap-
proach designed to classify Python ML projects, distinguishing between ‘ML-Model Producer,’ ‘ML-Model Con-
sumer,’ and ‘ML-Model Producer & Consumer.’ Through empirical evaluation on 3,005 ML projects, MARK has
shown a high F1-score, particularly for ‘ML-Model Producer’ classifications, while some limitations should be still
addressed for the classification of ‘ML-Model Consumers.’ To sum up the contribution of this work, we provided:

1. MARK, a tool-supported classification approach able to categorize PythonML projects;

2. A comprehensive knowledge base that can be utilized and expanded by researchers for further studies;

3. An empirical investigation into the effectiveness and potential usefulness of the proposed classification reveals
that (1) MARK is accurate in most cases and (2) the classification made leads to the identification of significant
differences among the classified ML projects;

4. An online replication package [18], to ensure the verifiability and reproducibility of our results.

As part of our future research agenda, we plan to explore the different socio-technical dynamics arising in ML
projects of different natures. In addition, we plan to extend MARK knowledge base and improve its classification
accuracy by exploring alternative methods, e.g., machine learning.
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