
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

RECOVER: Toward Requirements Generation
from Stakeholders’ Conversations

Gianmario Voria , Francesco Casillo , Carmine Gravino , Gemma Catolino , Fabio Palomba

Abstract—Stakeholders’ conversations in requirements elicitation meetings hold valuable insights into system and client needs.
However, manually extracting requirements is time-consuming, labor-intensive, and prone to errors and biases. While current
state-of-the-art methods assist in summarizing stakeholder conversations and classifying requirements based on their nature, there is
a noticeable lack of approaches capable of both identifying requirements within these conversations and generating corresponding
system requirements. These approaches would assist requirement identification, reducing engineers’ workload, time, and effort. They
would also enhance accuracy and consistency in documentation, providing a reliable foundation for further analysis. To address this
gap, this paper introduces RECOVER (Requirements EliCitation frOm conVERsations), a novel conversational requirements
engineering approach that leverages natural language processing and large language models (LLMs) to support practitioners in
automatically extracting system requirements from stakeholder interactions by analyzing individual conversation turns. The approach is
evaluated using a mixed-method research design that combines statistical performance analysis with a user study involving
requirements engineers, targeting two levels of granularity. First, at the conversation turn level, the evaluation measures RECOVER’s
accuracy in identifying requirements-relevant dialogue and the quality of generated requirements in terms of correctness,
completeness, and actionability. Second, at the entire conversation level, the evaluation assesses the overall usefulness and
effectiveness of RECOVER in synthesizing comprehensive system requirements from full stakeholder discussions. Empirical
evaluation of RECOVER shows promising performance, with generated requirements demonstrating satisfactory correctness,
completeness, and actionability. The results also highlight the potential of automating requirements elicitation from conversations as an
aid that enhances efficiency while maintaining human oversight.

Index Terms—Conversational Requirements Engineering; Automated Software Engineering; Natural Language Processing.

✦

1 INTRODUCTION

Requirements Engineering revolves around the elicitation,
analysis, and specification of functional and non-functional
requirements that a software system must guarantee to
its users [1], [2]. Research has shown that key informa-
tion for eliciting requirements is often gathered through
conversations between requirements engineers and system
stakeholders [3]. These interactions typically occur during
interviews or moderated workshops, which are increasingly
employed to gain a clearer understanding of the features a
software system should incorporate [4].

Recent studies highlight that stakeholder conversations
aids in early detection of ambiguity and misconceptions in
requirements engineering [5], [6]. However, this process de-
mands significant cognitive effort and time [7], with agree-
ment taking from hours to weeks [8], [9]. Note-taking may
work for short exchanges, but longer discussions risk miss-
ing key details, reducing elicitation effectiveness [10]. Ad-
ditionally, reviewing recordings is tedious and error-prone
[7], particularly in critical systems like ML-enabled projects
and system-of-systems, where implicit requirements (e.g.,
fairness, privacy) may be overlooked [11], [12].

To address these challenges, Spijkman et al. [7] recently
proposed RECONSUM, an automated approach that lever-
ages natural language processing to (1) summarize conver-
sations and (2) detect requirements-relevant questions and

• Gianmario, Francesco, Carmine, Gemma, and Fabio are with the Software
Engineering (SeSa) Lab of the University of Salerno, Italy.
E-mails: {gvoria, fcasillo, gravino, gcatolino, fpalomba}@unisa.it

answers. By “requirements-relevant”, the authors referred
to exchanges that contain information potentially useful
for identifying system requirements, e.g., discussions about
user needs, specific system functionalities, constraints, or
technical specifications. According to the insights provided
by Spijkman et al. [7], RECONSUM reduces the effort re-
quired by requirements engineers in eliciting requirements
from conversations, streamlining the process by focusing on
the most pertinent information.

Recognizing the seminal advances made by RECON-
SUM, this paper performs a further step ahead by proposing
a three-step approach—coined RECOVER (Requirements
EliCitation frOm conVERsations)—that can assist require-
ments engineers in systematically identifying and structur-
ing system requirements from conversations. Rather tthan
summarizing the input conversations, RECOVER considers
the entire corpus of the conversation to individually classify
requirements-relevant conversation turns. It then processes
these turns to filter out noise and enhance them with con-
textual information. Next, RECOVER exploits the capabil-
ities of large language models (LLMs) to generate system
requirements corresponding to the identified requirements-
relevant conversation turns. Finally, the approach aggre-
gates the requirements generated for each relevant turn,
providing requirements engineers with the full set of system
requirements generated. While RECOVER leverages au-
tomation to support the elicitation process, it is not intended
as a fully autonomous system but rather as an aid that
enhances efficiency while maintaining human oversight.

We evaluate RECOVER through an empirical study

https://orcid.org/0009-0002-5394-8148
https://orcid.org/0000-0003-4869-8068
https://orcid.org/0000-0002-4394-9035
https://orcid.org/0000-0002-4689-3401
https://orcid.org/0000-0001-9337-5116

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

using the conversation dataset provided by Spijkman et
al. [7]. This study includes a statistical performance anal-
ysis and a user study with 23 experienced requirements
engineers, examining two granularity levels. At the indi-
vidual conversation turn level, we assess RECOVER’s ac-
curacy in classifying requirements-relevant turns, its ability
to generate system requirements matching those manually
produced by engineers, and the correctness, completeness,
and actionability of the generated requirements. At the
entire conversation level, we assess RECOVER’s overall
usefulness by examining whether focusing on individual
turns omits relevant requirements. This evaluation com-
pares RECOVER’s output against two baselines: one pro-
duced by requirements engineers and another generated by
ChatGPT, a large language model that does not preprocess
requirements-relevant conversation turns. The inclusion of
an LLM baseline aims at demonstrating the added value
of RECOVER’s targeted preprocessing capabilities with
respect to a more general approach that lacks the same level
of contextual understanding and specificity.

At the individual conversation turn granularity, RE-
COVER may classify requirements with a recall of 76%. In
addition, the requirements generated by RECOVER have
lower BLEU scores (Mean 5.39%) when considering precise
wording. At the same time, they can properly capture con-
tent and semantics from conversations, as outlined by ME-
TEOR scores (Mean 41.87%) and ROUGE (Mean 38.53%). Fi-
nally, requirements engineers found the approach valuable,
yet they still raised the need for post-process validations
conducted by experts to remove erroneous requirements
produced by hallucinations of LLMs.

At the entire conversation granularity, the high BLEU
(78.82%) and METEOR (39.09%) scores achieved by RE-
COVER when compared against the manual baseline indi-
cate its strong ability to generate requirements that are both
accurate and comprehensive, making it a reliable tool for
producing outputs closely aligned with expert standards.
In contrast, while ChatGPT’s higher ROUGE score (43.96%)
suggests it captures a broad range of content similar to the
manual baseline, its lower BLEU score highlights poten-
tial shortcomings in precision and comprehensiveness. This
comparison underscores that utilizing the full RECOVER
approach, rather than relying solely on a language model
prompt, yields better results.

To sum up, our paper provides three major contributions
to the field of requirements engineering:

1) A novel, automated approach to recover requirements
from stakeholders’ conversations, which is a valuable
tool for supporting practitioners during the require-
ments elicitation processes;

2) A mixed-method empirical assessment of the approach,
which measured the performance and overall quality of
RECOVER at two different levels of granularity;

3) A preliminary in-vivo evaluation of RECOVER on in-
dustrial elicitation transcripts to assess its performance
in realistic, noisy settings and its applicability across
different conversational contexts;

4) A publicly available replication packages [13], that re-
searchers may use to either replicate/reproduce our
results or build on top of them.

2 RELATED WORK AND CONTRIBUTION

Our work intersects multiple areas within Requirements
Engineering, focusing on using conversational artifacts for
requirement generation. Our approach, RECOVER, distin-
guishes itself by employing machine learning techniques
to identify potential requirements within conversation ex-
cerpts and leveraging large language models (LLMs) to
generate detailed requirements from requirements-relevant
conversation turns. Jones’s early work [14] highlighted the
challenges in managing software projects, emphasizing the
importance of clear and comprehensive requirements elici-
tation, which aligns with our goal to enhance and streamline
the requirements generation process.

Recent studies have explicitly focused on requirements
conversations, analyzing their characteristics. Ferrari et al.
[5], [15] examined ambiguity in requirements interviews
and incorporated voice and biofeedback into conversational
artifacts. Our approach differs by applying automated so-
lutions to analyze these conversations, offering a more
nuanced understanding and extraction of requirements. Al-
varez and Urza [8] explored stakeholder roles through inter-
view transcripts, providing insights into the complexities of
requirements discussions. Our research builds on their work
by automating the identification of pertinent information
in similar transcripts, thereby enhancing the efficiency and
accuracy of extracting requirements.

Pre-requirements specification traceability, initially high-
lighted by Gotel and Finkelstein [16] to differentiate pre- and
post-requirements, was further explored by Krause et al.
[17] through a qualitative analysis of 67 papers, identifying
its significance and challenges. Our methodology aligns
with this foundation, aiming to enhance requirements man-
agement using systematic analysis and machine learning to
trace requirements from early dialogues. However, while
RECOVER inherently maintains an implicit connection be-
tween elicited requirements and their source dialogues by
analyzing conversation turns, it does not explicitly sup-
port traceability. Instead, our approach conceptually aligns
with pre-requirements specification traceability by bridging
early-stage stakeholder discussions with structured require-
ments. Similarly, van der Aa et al. [18] developed an auto-
mated method for deriving declarative process models from
natural language, addressing challenges like synonyms and
phrase discrepancies. A recent review [19] highlights LLMs’
potential in software engineering, particularly in enhancing
requirement clarity and reducing interpretational uncer-
tainties. These insights are key to RECOVER, as its LLM
component addresses linguistic variations.

Studies by Kurtanović and Maalej [20] have provided
automated methods for classifying requirements in specifi-
cations. While their work focuses on distinguishing func-
tional from non-functional requirements in structured doc-
uments, our approach addresses a different but related
challenge—identifying whether a conversation turn con-
tains a requirement. Both tasks involve applying automated
classification techniques to textual requirements artifacts,
highlighting the broader and established role of machine
learning in requirements classification against newer tech-
nologies, such as LLMs. The proposed approach advances
these methodologies by employing sophisticated AI-driven

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

analysis to enhance the requirements generation process.

Finally, the work of Spijkman et al. [9], [21]–[23] offered
insights into requirements elicitation and documentation.
Through multiple studies, the authors examined the field
of conversational requirements engineering; they identified
the challenges associated with manually extracting valu-
able information from conversations, citing the process
as time-consuming and inefficient. Recognizing the need
for automation, they developed RECONSUM [7], an auto-
mated approach able to summarize requirement conversa-
tions and locate speaker turns—particularly questions—that
may eventually contain requirements-relevant information.
These studies align closely with the goals of RECOVER,
which also seeks to improve the efficiency and accuracy
of requirements elicitation and documentation by lever-
aging advanced machine learning and LLM technologies.
However, while RECOVER builds upon the core intuitions
of RECONSUM, it introduces multiple modifications. First,
whereas RECONSUM only identifies speaker turns where
requirements might be discussed, RECOVER extends this
process to fully elicit system requirements using an LLM
after the first two steps. Second, while RECONSUM as-
sumes that requirement-relevant information is best ex-
tracted from Q&A patterns, we found this approach lim-
iting, as it may overlook cases where stakeholders directly
assert requirements without a preceding question. To mit-
igate this potential cause of inaccuracy, we inverted the
original steps: instead of first identifying Q&A patterns and
then filtering for requirement-relevant turns, RECOVER
first classifies conversation turns to determine which contain
requirement-related information. Only then does it apply
the Q&A-based structuring to enhance context and facilitate
requirement generation. Additionally, unlike RECONSUM,
which relies on a predefined set of domain-specific terms
to determine requirement relevance, RECOVER employs a
machine learning-based classifier. This shift was required
due to the step inversion—since classification occurs before
Q&A tagging, relying on static term-based filtering would
have been insufficient to capture relevant turns.

² Summary and Contribution.

RECOVER advances RE research by leveraging ML
and LLMs to automate requirements extraction from
conversations, enhancing efficiency and accuracy in
elicitation. Our design integrates concepts from RE-
CONSUM [7], positioning RECOVER as a comple-
mentary work. While RECONSUM summarizes con-
versations to extract requirements-relevant information
primarily from Q&A structures, RECOVER aims to
fully automate requirements elicitation by consider-
ing each conversation turn as potentially containing
valuable information, supporting practitioners in the
actual elicitation of system requirements rather than
only suggesting potentially-relevant turns.

3 RECOVER: A NOVEL CONVERSATIONAL RE-
QUIREMENTS ENGINEERING APPROACH

In this section, we introduce RECOVER, a novel approach
to conversational requirements engineering designed to ex-
tract system requirements from unstructured stakeholder
conversations. As illustrated in Figure 1, RECOVER oper-
ates through three main steps: (1) ‘Classification’ of indi-
vidual conversation turns to identify requirements-relevant
content using shallow machine learning, (2) ‘Processing’ of
the selected turns to identify and filter Question-Answer
pairs [7], discarding invalid ones, and (3) ‘Automatic gen-
eration’ of system requirements from the processed con-
versation turns using a Large Language Model. RECOVER
is designed to process stakeholder conversations in a gen-
eralizable manner, provided they are structured as a list
of textual conversation turns. Unlike approaches that rely
on predefined speaker roles, RECOVER is setting-agnostic,
processing each conversation turn in isolation without ex-
plicitly considering the number or roles of the speakers. In
the context of our work, a conversation turn refers to a set
of contiguous utterances made by the same speaker before
another participant takes over [24].

While many elicitation conversations follow a structured
question-answer pattern, we found that relying solely on
such structures could be limiting for requirement extrac-
tion. Therefore, RECOVER identifies requirements from
both individual conversation turns and structured Q&A
sequences. To ensure completeness, Step #2 of RECOVER
detects turns with a question-like structure and pairs them
with subsequent turns, assuming they contain correspond-
ing answers. This approach minimizes the risk of missing
relevant requirements, even at the cost of some redundancy.

Our approach only leverages an LLM in the third step:
while these models are promising, we decided against using
them for the early steps of RECOVER due to concerns
over consistency, accuracy, and study feasibility. First, LLMs
are inherently non-deterministic, meaning their outputs can
vary unpredictably, even for the same input. RECOVER
was designed as a structured, multi-step pipeline that builds
upon prior work [7] while addressing its limitations. The
potential lack of stability is problematic for identifying
requirement-relevant conversation turns (Step #1) and fil-
tering based on Q&A structures (Step #2), where consis-
tency is critical. Traditional ML models, in contrast, pro-
vide reliable, repeatable classifications once trained. Second,
we conducted a preliminary experimentation where we
established the feasibility of using LLMs for the first two
steps of our approach: the results showed that LLMs often
hallucinate, fabricating details or misidentifying conversa-
tional structures—a report of these analyses is available
in our online appendix [13]. This poses a significant risk
in requirements engineering, where extracting information
exactly as stated by stakeholders is essential. Errors in these
early steps may compromise the integrity of the entire
pipeline. In addition, incorporating LLMs in classification
and filtering would have significantly increased the com-
plexity of our study. Unlike structured ML models, LLMs
require careful prompt engineering and tuning, making
systematic evaluation difficult. Finally, recent research [25]
confirmed that LLMs have not been extensively applied

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

Step 1:
Classification

Step 2:
Processing

Step 3:
Automatic Generation

Conversation
Turns

Generated
Requirements

Word Embedding

Binary Classification

Turns Cleaning

Questions&Answer
Processing

Automatic
Requirements

Generation

Turns Containing
Requirements

Processed Turns

Fig. 1. An overview of the main steps performed by RECOVER.

to conversational requirements engineering, meaning their
effectiveness in these tasks remains largely unexplored.
Given our focus on developing and assessing RECOVER
as a structured approach, we opted for more controlled and
grounded methods in the first two steps, leveraging LLMs
only in Step #3, where their generative capabilities were
more appropriate. The following sections outline the key
design and implementation decisions behind our approach.

3.1 Step #1: Classification of Requirements-Relevant
Conversation Turns

Stakeholder conversations often reveal valuable informa-
tion, but they can also introduce ambiguity [5]. When
manually eliciting requirements from these conversations,
requirements engineers may become confused by ambigu-
ous or noisy data, increasing the effort needed to complete
the task. The first step of RECOVER aims at mitigating
these challenges by employing advanced natural language
processing techniques to automatically classify individual
conversation turns as requirements-relevant or not.

Step #1 Design. This step reduces noise in stakeholder
conversations by serving as a conversational filter that re-
fines dialogue turns. It begins by extracting and isolating
individual snippets from each conversation turn. Using
word-embedding techniques, the approach generates an N -
dimensional representation of each turn [26]. This represen-
tation enables the extraction of features from the text, which
natural language models can then use for classification. By
transforming the conversation into real-valued vectors, this
step prepares the data for subsequent analysis stages.

These transformed sentences are analyzed by a machine
learning (ML) model, which can binary-classify conversa-
tion turns as “requirements-relevant” or “non-requirements-
relevant”. Our approach is intended to support require-
ments engineers in the elicitation phase: we indeed envision
the output of the approach to be manually inspected by
an expert. As such, we prioritize minimizing missed re-
quirements over incorrectly including irrelevant turns, i.e.,
based on the expected use case of the approach, missing
requirements in conversation turns would be much worse
than having turns that do not contain requirements. Conse-
quently, a good ML algorithm employed in this step should
aim at optimizing recall over precision.

The output of this first step is represented by a list of
individual requirements-relevant conversation turns.

Step #1 Implementation. From an operational stand-
point, implementing the first step required identifying a
suitable dataset to train the requirements-relevant conver-
sation turns classifier. Since no existing dataset contains
information linking conversation turns to related system
requirements, we sourced data from existing natural lan-
guage tasks in the requirements engineering field. Among
the available datasets, the PURE dataset [27] is one of the
most widely used. It contains 79 publicly available natural
language requirements documents collected from the Web,
totaling 34,268 sentences. We used an annotated version of
this dataset from Ivanov et al. [28], which includes 7,745 sen-
tences from requirements specification documents labeled
as “requirement” or “not requirement”. By training on this
data, the model employed in Step #1 can predict whether
an individual conversation turn may contain a requirement.

To determine the optimal word embedding technique
and machine learning model to use, we conducted prelimi-
nary experimentation. For word embeddings, we tested five
different techniques: TF-IDF [29], BERT [30], WORD2VEC
[31], FASTTEXT [32], and GLOVE [33]. For the machine learn-
ing model, we experimented with 27 algorithms provided
by the Lazy Predict library.1 This Python library facilitates
model comparison without requiring manual parameter
tuning. Each machine learning algorithm was evaluated in
conjunction with each of the word embedding techniques
to identify the most effective combination for classifying
requirements-relevant conversation turns.

TABLE 1
Step #1: Configuration of requirements-relevant conversation turns

classifier coming from our preliminary experimentation.

SVC Hyperparameters
C 1
Gamma 100
Kernel RBF
FastText + SVC Evaluation Metrics
Precision 0.814539
Recall 0.865608
Accuracy 0.846090
F1-Score 0.839133

Each sentence was initially represented using one of
the embedding techniques. We employed ten-fold cross-
validation [34] to partition the dataset and evaluate each

1. Lazy Predict : https://github.com/shankarpandala/lazypredict

https://github.com/shankarpandala/lazypredict

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

algorithm’s performance using Lazy Predict. To efficiently
handle the computational demands of testing various com-
binations of word embeddings and machine learning tech-
niques, sentences were represented as fixed vectors of
100 tokens, irrespective of requirement size or embed-
ding method. This approach minimized computational time
while maintaining the integrity of the results. We assessed
the performance of 135 combinations of word embedding
and machine learning models using well-established metrics
such as F1-score and accuracy [35]. The analysis identified
the best model for each word embedding technique, which
was then subjected to hyperparameter tuning using the
GRIDSEARCHCV algorithm from SCIKIT-LEARN. This step
ensured the reliability of the LazyPredict results by per-
forming another round of cross-validation to validate and
consolidate the initial findings.

The complete results of this preliminary analysis are
available in our online appendix [13]. According to our
findings, the best balance between performance and effi-
ciency was achieved using FASTTEXT2, a library for efficient
learning of word representations, as the word embedding
technique, and SVC [36], Scikit-learn’s implementation of
the Support Vector Machine algorithm, as the classifier.
The hyperparameter configuration and evaluation metrics
for this combination are detailed in Table 1. This solu-
tion proved satisfactory due to its high recall performance.
However, while this suggests that a portion of potentially
requirement-relevant conversation turns is not identified,
this does not necessarily imply that these are lost. It is
important to clarify that the classification step does not
operate directly on fully formed requirements but rather on
conversation turns that may contain requirement-relevant
information. Since not all conversation turns potentially rel-
evant will necessarily lead to a concrete system requirement,
the missing turns represent a worst-case scenario rather than
an exact measure of missed requirements.

3.2 Step #2: Processing of Conversation Turns

The requirements-relevant conversation turns identified in
the first step may lack sufficient context, i.e., earlier refer-
ences that are necessary for clarity. The second step of RE-
COVER addresses this issue by cleaning the conversation
turns: it removes those that do not provide enough detail to
elicit requirements and refines those that do by enhancing
them with additional context and clarity.

Step #2 Design. The approach first analyzes the length of
the requirements-relevant conversation turns. If these turns
are shorter than a certain threshold, they are discarded. The
rationale behind this filtering is that excessively short turns
are unlikely to contain detailed or meaningful information
necessary for accurately capturing system requirements.
Short turns often lack specificity, making them less useful in
providing the comprehensive insights needed for require-
ments elicitation. By focusing on longer conversation turns,
the approach ensures that only those segments that are
more likely to contain substantial and relevant information
are considered, thereby attempting to enhance the overall
quality and relevance of the extracted requirements.

2. Available at: https://fasttext.cc/

Subsequently, the approach leverages the findings of
Spijkman et al. [7], who discovered that requirements in-
formation is often embedded within question-and-answer
exchanges in conversations. These interactions typically of-
fer sufficient context to clarify the scope and specifics of the
requirements being discussed. Building on this insight, our
approach identifies conversation turns containing questions
and merges them with the subsequent turns, assuming that
answers follow questions directly in stakeholder discus-
sions. This design choice was motivated by two key con-
siderations. First, ensuring traceability in conversational re-
quirements engineering remains an open challenge, making
it difficult to determine whether consecutive questions or
responses refer to the same requirement. Instead of group-
ing entire discussion segments, we opted for processing
question-answer pairs individually to avoid missing infor-
mation. Second, segmenting loosely structured discussions
would require advanced discourse analysis techniques, such
as dialogue act classification [37] or contextual dependency
tracking [38], which remain underexplored in this domain.
Given these challenges, our method balances completeness
and simplicity, ensuring relevant requirements are extracted
without excessive complexity. This refinement enriches the
requirements-relevant conversational turns by organizing
them into a question-and-answer format. As an output,
the approach provides a refined list requirements-relevant
conversation turns.

Step #2 Implementation. When implementing this ap-
proach, we filtered out conversation turns that were shorter
than seven words. We chose this threshold based on exper-
imental observations. Through testing different thresholds
in the empirical evaluation (see Section 4), we found that
a minimum length of seven words is generally needed to
capture complete thoughts or questions. This ensures that
the conversation turns we keep are more likely to contain
useful and actionable insights for requirements elicitation.

To refine the conversation turns, the approach iden-
tifies question-and-answer patterns using a dialogue acts
methodology. Specifically, we adopted the design by Spi-
jkman et al. in RECONSUM [7] and utilized the DialogTag
implementation,3 which employs a BERT [30] architecture
for classification. Our implementation labels speaker turns
as questions when DialogTag identifies them as either “ques-
tion” or “or-clause” sentence types. We then merge each
identified question with the subsequent turn, ensuring that
the context and continuity of the conversation are preserved.

3.3 Step #3: Generation of System Requirements
In the final step, the approach processes a refined list of con-
versation turns. Although the previous steps have removed
irrelevant conversation turns, those reaching this step may
still include some noise due to the unstructured nature of
stakeholder interactions, such as ambiguous phrasing or
incomplete thoughts. As such, the generation process must
be addressed by advanced techniques to effectively manage
and interpret the diverse content.

Step #3 Design. To tackle the final challenges and gen-
erate system requirements, RECOVER leverages a large

3. Available at: https://github.com/bhavitvyamalik/DialogTag.

https://fasttext.cc/
https://github.com/bhavitvyamalik/DialogTag

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

language model, aligning with current trends in software
engineering that utilize LLMs for various automated tasks,
such as code generation and explanation [39]. With these
models’ advanced text-generation capabilities, our approach
generates system requirements from conversation turns,
aiming to produce output that is accurate and contextu-
ally relevant. Upon completion, the approach aggregates
the requirements generated for each requirements-relevant
conversion turn, hence providing the requirements engineer
with a final list of system requirements.

Step #3 Implementation. RECOVER utilizes Llama 2
[40], a collection of pre-trained and fine-tuned generative
text models available in scales from seven billion to 70
billion parameters, as the core engine for the generation
process. The decision to use this LLM is based on two
key considerations: it is freely available and can be exe-
cuted locally. As such, it allowed us to keep control over
computational resources while maintaining the flexibility
to tailor the model to our specific needs. We selected the
seven-billion-parameter version of Llama 2. Our approach
applies the few-shot prompting technique [40], [41], which
involves providing examples in the prompt to guide the
model toward better performance. We designed a two-shot
prompt, i.e., with two examples, one positive and one neg-
ative. The former is an example of a requirements-relevant
conversation turn, while the latter shows an example of a
conversation turn containing no requirements. These serve
as a template for the desired format of the responses, using
boilerplate text rather than realistic examples.

This decision was made after extensive experimentation
with different prompt formulations. For brevity, we provide
a detailed report of these experiments, along with the ra-
tionale behind discarding each tested prompt, in our online
appendix [13]. To address the inherent variability of LLM
outputs, we executed each prompt at least 10 times on the
entire conversation, treating each run as an independent
evaluation to assess the consistency of the generated results.
While these 10 runs were executed to select the most suitable
prompt, the final implementation of our approach only
executes the prompt once. The primary criterion for select-
ing the final prompt was its ability to produce structured
and actionable system requirements that adhered to the
intended response format, as assessed in our evaluation (see
Section 4). The evaluation of LLM outputs for each prompt
was conducted manually, ensuring that the generated re-
quirements aligned with stakeholder discussions without
introducing speculative or inferred content.

Our final prompt explicitly requests system require-
ments, emphasizing functional aspects while avoiding spec-
ulative generation of non-functional requirements. In early
experiments, available in our online appendix [13], broader
prompts that encouraged the extraction of user, component,
or quality requirements led to inconsistent outputs. When
asked to generate user or component-level requirements,
the LLM often mixed high-level goals with detailed imple-
mentation assumptions, reducing the clarity of the extracted
requirements. Similarly, prompts requesting non-functional
requirements frequently resulted in hallucinated quality at-
tributes that were not discussed in the conversation. Given
our focus on extracting only explicitly stated requirements,

we constrained the prompt to system requirements, ensur-
ing alignment with engineering best practices and minimiz-
ing inference errors. For the sake of clarity, the prompt used
for the generation of system requirements is the following:

Prompt used in RECOVER

Given the following excerpt of a conversation, derive the
system requirements, if any.
Please answer only with the list of derived requirements as
output, as shown in the following examples.
Please do not consider the example excerpts provided in the
examples in your final answer.
—- Example 1: —-
Example excerpt: Excerpt of conversation containing system
requirements
Example output:
1. The system must have example feature X;
2. The system must have example feature Y;
—- Example 2: —-
Example excerpt: Excerpt of conversation that does not
contain system requirements
Example output:
None

Finally, the approach compiles the generated outputs
into a comprehensive list of system requirements.

Tool availability. All the code, data, and performed exper-
iments are available in our online appendix [13].

For the sake of clarity, Figure 2 illustrates a practical
instance of our framework, illustrating the process of ex-
tracting requirements from a conversation turn. This exam-
ple showcases a successful classification derived from the
empirical study discussed later in the paper. The conver-
sation analyzed is an example conversation provided by
Spijkman et al. [7]. Specifically, it highlights the outcomes
when configuring the framework with the components dis-
cussed in the previous section, i.e., (1) FASTTEXT as the word
embedding technique, (2) SVC for the binary classification
task, (3) LLAMA2 as the Language Model for the generation
of requirements, and (4) a few-shot prompt for guiding the
Language Model. As shown in Figure 2, the approach first
correctly identified two conversation turns as containing
requirements-relevant information while discarding the ir-
relevant one. Then, RECOVER recognized the first turn as a
question and linked it to the subsequent turn, which served
as its answer. Finally, with both the question and answer
providing context, the LLM in Step 3 generated a coherent
and accurate set of system requirements.

4 RESEARCH QUESTIONS AND METHODS

The goal of the study was to assess the extent to which
system requirements may be automatically extracted from
unstructured conversations between stakeholders using RE-
COVER, with the purpose of supporting requirements en-
gineers during the requirements elicitation phase. The per-
spective is of both researchers and practitioners. The former
are interested in assessing the feasibility of designing novel

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

Processed Conversation Turn

Conversation Turns

Step 3

Large Language
Model

The system must have a web-based interface for
team collaboration and reporting.

The system must have a mobile interface for
referees and fans to easily access and work with

the system.

No. No. I'll prefer that everything would be in the application of the
website. The referee and the fans will probably have the app uh

mobile applications so they can work with more easily.

Step 1

Word Embedding Classification

So of course there will be app notifications. Do we also need some
email notifications or some direct messages?

Step 2

Cleaning Q&A Processing

Sorry, sorry to interrupt.

Requirement-relevan Conversation Turns

No. No. I'll prefer that everything would be in the application of the
website. The referee and the fans will probably have the app uh

mobile applications so they can work with more easily.

So of course there will be app notifications. Do we also need some
email notifications or some direct messages?

So of course there will be app notifications. Do we also need some
email notifications or some direct messages?

No. No. I'll prefer that everything would be in the application of the
website. The referee and the fans will probably have the app uh

mobile applications so they can work with more easily.

Fig. 2. Running example of RECOVER.

instruments to assist practitioners during requirements elic-
itation. The latter are interested in verifying the capabilities
of an automated conversational requirements engineering
instrument to assess its potential usefulness in a real-world
scenario. To reach our goal, we designed a mixed-method
study, as reported in the following.

4.1 Research Questions and Context

We organized the evaluation of RECOVER around two
main research questions, covering two levels of granularity.
The former assesses our approach at the level of individual
conversation turns and aims at measuring the accuracy of
the steps performed by the approach. This involves eval-
uating how effectively RECOVER identifies requirements-
relevant conversation turns and generates accurate system
requirements from them. Hence, we asked:

RQ1 – Individual Conversation Turns Assessment

To what extent can the steps of RECOVER identify and
generate high-quality system requirements from stakehold-
ers’ conversations turns?

Addressing RQ1 involved conducting two main types of
empirical evaluations. First, a statistical analysis to evaluate
the accuracy of classifying requirements-relevant conversa-
tion turns from actual stakeholder documentation. Second,
an analysis of the generated requirements, which was con-

ducted through a user study, as this aspect required qualita-
tive evaluation by experts to assess the relevance and quality
of the outputs. For this reason, we split RQ1 according to the
specific target of the evaluation. We empirically evaluated
the classification to accomplish Step #1 of RECOVER as
part of the following sub-research question:

RQ1.1 – Requirements Classification

To what extent can RECOVER identify system require-
ments in stakeholders’ conversations turns?

Secondly, we evaluated the RECOVER’s ability to gen-
erate system requirements, hence covering Steps #2 and #3
of RECOVER, through the following sub-research question:

RQ1.2 – Requirements Generation

To what extent can RECOVER extract system require-
ments from stakeholders’ conversations turns similarly to
requirements engineering experts?

Besides evaluating how similarly RECOVER can per-
form compared to requirements engineers, we also assessed
the overall quality of the system requirements generated
by considering three key attributes: correctness, completeness,
and actionability. Correctness refers to the accuracy of the re-
quirements in reflecting the stakeholders’ intentions, ensur-
ing that they faithfully represent the information provided
in the conversation without distortion or misinterpretation.
This is a well-established criterion for assessing requirement
quality [42], [43] and is distinct from completeness: while
correctness evaluates whether the extracted requirements
accurately capture what was stated, completeness assesses
whether all relevant information has been included. Com-
pleteness evaluates whether all necessary requirements are
captured, ensuring that no critical aspects are overlooked.
This is a fundamental aspect of requirements engineering, as
missing requirements can lead to incomplete or inadequate
system implementations that fail to meet stakeholder needs
[8], [42]. Actionability assesses how well the extracted re-
quirements are structured to guide subsequent development
efforts effectively. Automated approaches may produce re-
quirements that lack specificity or clarity, potentially in-
creasing the effort required for refinement before integration
into the engineering process. Ensuring actionability helps
minimize ambiguity and makes the generated requirements
more practical for real-world use. This research question
covers Steps #2 and #3 of RECOVER, thus providing an
additional overview of the actual capability of the approach:

RQ1.3 – Perceived Quality of Requirements

What is the quality of the system requirements generated in
terms of correctness, completeness, and actionability?

The second research question assesses our approach at
the level of entire conversation. This assessment is cru-
cial for determining the overall completeness of the re-
quirements elicited by RECOVER. The approach aggre-
gates requirements generated through a turn-by-turn anal-
ysis, which poses the risk of missing interdependencies or

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Example
Conversation

RECOVER

Generated
Requirements

Classification

Processing

Generation

Evaluation of RECOVER

Questionnaires
Design

Participants
Selection

Questionnaires
Administration

Analysis of Results

RQ1.1

Manually Extracted
Requirements for

Single Turns
RQ1.2 RQ1.3

Focus Group

System Requirements
For the Entire
Conversation

Example
Conversation

Generation of
Requirements by LLM

LLM-Generated
Requirements

RQ2

Fig. 3. Overview of the research method proposed for our study.

broader requirements that emerge only when considering
the conversation as a whole. By focusing on the entire
conversation, we aim to measure the extent of this risk:

RQ2 – Entire Conversation Assessment

What is the quality of the whole set of requirements gener-
ated by RECOVER from a stakeholders’ conversation?

The context of the study is represented by one of the
stakeholder’s conversation4 used by Spijkman et al. [7] to
assess the performance of RECONSUM. This conversation
is a stakeholders’ dialogue transcript provided by Dalpiaz
et al. [44], consisting of 133 speaker turns. The discussion
revolves around the elicitation of requirements for a fictional
software system designed for the International Football As-
sociation (IFA), where stakeholders explore functionalities
to support teams, referees, and league managers in orga-
nizing and managing football leagues. The transcript orig-
inates from a controlled experiment explicitly conducted
for research in conversational requirements engineering,
ensuring that the discussion reflects realistic stakeholder
interactions rather than an artificially constructed dialogue.
Additionally, this conversation has been used in prior re-
search as a reference point [7], reinforcing its suitability as a
benchmark for assessing automated requirements extraction
approaches. With its structured nature and well-defined
scenario, the transcript provides a meaningful test case for
demonstrating the capability of RECOVER to process stake-
holder discussions and extract requirements effectively. Ta-
ble 2 summarizes the characteristics of the conversation.

TABLE 2
Characteristics of the conversation used to evaluate RECOVER.

Example Conversation
Domain Football
System’s Name International Football Association (IFA)
Total Turns 133
Duration 39 minutes and 40 seconds
Provenance Controlled Experiment [44]

As part of the empirical assessment, we used this conver-
sation as input for RECOVER to evaluate its performance
and address the research questions. Figure 3 overviews the

4. Available at: https://github.com/RELabUU/REConSum/tree/
main/data

research methods employed to address the objectives of
the study, while the remainder of the section details the
specific research methods applied to each research question.
In terms of reporting, we employed the guidelines by the
ACM/SIGSOFT Empirical Standards.5 Given the nature of
our study we followed the “General Standard”, and the
“Questionnaire Surveys” guidelines.

4.2 Research Methods for RQ1.1

To evaluate the capabilities of RECOVER’s Step #1 in iden-
tifying requirements-relevant conversation turns, we first
created an oracle consisting of a set of conversation turns
labeled as either requirements-relevant or not. The oracle
creation was performed by the first two authors of the
article, who independently analyzed the input conversation
[7]. Specifically, they individually reviewed the conversation
turns, using their expertise to determine whether each turn
contained requirements-relevant information. To mark a
conversation turn as requirements-relevant, they primarily
exploited key indicators such as the presence of stakeholder
needs, system functionalities, constraints, or explicit refer-
ences to design or implementation details. After completing
their independent assessments, they engaged in a discussion
to compare the labels assigned and resolve any discrepan-
cies that emerged from their individual evaluations.

The output of this process served as an oracle against
which RECOVER’s predictions were compared. Turns iden-
tified as containing requirements and correctly predicted by
the approach were marked as True Positives (TP). Conversely,
turns not containing requirements but incorrectly predicted
as containing them were marked as False Positives (FP).
Similarly, turns predicted as not containing requirements
were labeled as True Negatives (TN) if they were indeed
requirement-free, or False Negatives (FN) if they actually
contained requirements. We finally addressed RQ1.1 by
computing precision and recall of the predictions.

4.3 Research Methods for RQ1.2-RQ1.3

To evaluate the efficacy of the LLM component in RE-
COVER, we conducted surveys with experts in require-
ments engineering. We chose this survey-based approach
due to the absence of a predefined oracle that specifies the
actual requirements for each conversation turn identified in
the first step. Through the survey, we addressed both RQ1.2

5. Available at: https://github.com/acmsigsoft/EmpiricalStandards.

https://github.com/RELabUU/REConSum/tree/main/data
https://github.com/RELabUU/REConSum/tree/main/data
https://github.com/acmsigsoft/EmpiricalStandards

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

and RQ1.3. On the one hand, the insights gathered allowed
us to generate oracles for each conversation turn, allowing
us to evaluate our approach’s effectiveness compared to
human-generated requirements. On the other hand, the
survey had the goal to collect expert opinions on the quality
of the requirements generated by our approach, enabling a
more comprehensive assessment of its effectiveness.

Questionnaire Design. The questionnaire was struc-
tured as follows. First, participants were provided with an
informed consent form that detailed the purpose of the
study, the voluntary nature of their participation, and the
confidentiality of their responses. They were informed that
their expertise would be used to evaluate the performance of
RECOVER, and that their input would be anonymized and
used solely for research purposes. Participants were also
made aware that they could withdraw from the study at any
time without any repercussions. By proceeding, participants
acknowledged their understanding of these conditions and
consented to contribute their expertise to our research.

Next, the survey presented a series of conversation turns
and asked participants to elicit system requirements from
them in an open-ended format. After completing this task,
the survey displayed for each conversation turn a set of
system requirements that could be elicited from them—
these were generated by RECOVER, although this was not
disclosed to the participants. Participants were then asked
to evaluate the quality each individual set of requirements
extracted by RECOVER for the corresponding conversation
turns using a Likert scale ranging from 1 (poor quality)
to 5 (excellent quality), specifically assessing three quality
attributes such as:

• Correctness - The requirements accurately reflect the
stakeholders’ intentions, ensuring that they faithfully
represent the information discussed in the conversation
without distortion or misinterpretation. Additionally,
correct requirements adhere to established standards
in Requirements Engineering, such as the IEEE System
Requirements Specification standard [45]

• Completeness - The requirements capture all relevant in-
formation discussed in the conversation turn, ensuring
that no critical aspects are overlooked.

• Actionability - The requirements are clearly defined and
practical, meaning they can be readily used for follow-
up design or implementation purposes.

At the end of the questionnaire, participants were in-
formed that the proposed requirements had been generated
by an automated approach and were invited to share their
perceptions of the outcomes. They were asked to reflect
on the effectiveness of the automated process in generating
accurate, complete, and actionable requirements compared
to traditional, human-led elicitation methods. Additionally,
participants were encouraged to provide feedback on any
limitations or potential improvements they observed in the
automated approach, as well as their overall confidence in
using such a tool in real-world scenarios.

Before distributing the survey, we conducted a pilot
test with a researcher and software engineering practitioner
from our network. This pilot allowed us to refine the clarity
of several questions, such as reiterating the conversation

turns and providing clearer explanations of the terms cor-
rectness, completeness, and actionability.

Questionnaire Dissemination. The input conversation
consisted of 57 conversation turns. Including all these turns
in a single questionnaire would have been not only exces-
sively time-consuming but also likely to cause participant
fatigue, potentially compromising the quality of their re-
sponses. To mitigate these risks, we split the conversation
into five segments, each containing 10 to 12 conversation
turns, resulting in the creation of five distinct question-
naires. Afterwards, we recruited 20 professional require-
ments engineers from our contact network, i.e., we applied
a convenience sampling strategy [46] to reach practitioners
with experience in requirements elicitation and analysis
ranging between 5 and 10 years. Convenience sampling
was selected over other recruitment strategies, e.g., survey
dissemination over social networks [46], because of our will-
ingness to maintain control over the study’s participants,
aiming for a smaller yet more focused qualitative study.
This decision allowed us to work closely with experienced
practitioners in requirements elicitation and analysis, ensur-
ing a depth of insight and control that might have been
challenging with a larger, less targeted survey approach.
The participants were instructed on the tasks to accomplish
through email and were given 15 days to return the survey.

This procedure resulted in four participants for each
survey, meaning that each set of conversation turns was
evaluated by four different practitioners. This was a critical
aspect of our study, as different requirements engineers
might interpret the same turn in varied ways. By having
multiple experts assess the same turns, we were able to
capture a wider range of interpretations, ensuring that the
variability in expert judgment was thoroughly considered in
our analysis. All in all, the four different manually elicited
sets of requirements for each conversation turn were used to
address RQ1.2. Additionally, we collected 228 evaluations—
four for each of the 57 turns—on the quality attributes
discussed in RQ1.3. Finally, to further enrich our discussion
and gain insights into the implications of our work, we
collected 20 expert opinions on the potential of RECOVER.

All the questionnaires and the answers, alongside a re-
port describing the participants’ demographic, are available
in our online appendix [13].

Data Analysis. As for RQ1.2, we performed a quanti-
tative evaluation using BLEU (Bilingual Evaluation Under-
study) [47], ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) [48], and METEOR (Metric for Evaluation of
Translation with Explicit Ordering) [49] scores to compare
the generated requirements with the oracles—those gener-
ated by experts. These evaluation metrics are well-known
and commonly used to assess the similarity between gen-
erated and reference text, providing values indicating the
closeness of the machine-generated output to professional
human-produced requirements. The BLEU score primarily
emphasizes precision, evaluating the extent to which the
generated text contains phrases present in the reference
text. In contrast, ROUGE prioritizes recall by assessing
how well the generated content covers the reference text.
METEOR, instead, provides a more balanced evaluation by
considering both precision and recall, thus offering a com-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

So I would like the system to be able to uh facilitate the definition of such policy and
then based on that policy to assign the referee to the games, it might be also that the

system will enable the referees to install their preferences.

Conversation Turn

Requirements Elicited by Experts (Oracle Sets for This Turn)

- The system must facilitate the definition of such policy and then based on that
policy to assign the referee to the game
- The system must enable the referees to install their preferences based on
specific decisions (indicated by the expert)

- The system must allow referees to provide some preferences and constraints
in partecipation to matches

- The system must allow referees to install their preferences
- The system must consider referees' preferences when proposing a scheduling

- The systems must allow to referees to insert their availability to referee the
matches
- The systems must allow to facilitate definition for referee policy

O1

O2

O3

O4

- The system must allow users to define and save policy for assigning referees
to games
- The system must take into account user preferences, such as vacation
schedules, when assigning referees to games

Requirements Elicited by RECOVER

Compare individually each requirement in
Oracle sets (O1, O2, O3, O4) against each
requirement generated by RECOVER (R)

R

BLEU, ROUGE and
METEOR

Fig. 4. Example of the pairwise comparisons performed to answer RQ1.

prehensive analysis of the alignment between the generated
text and the reference material. For each conversation turn
included in our questionnaire, we obtained four distinct
sets of requirements, each reflecting a different expert’s
perspective. These sets served as independent oracles for
evaluating RECOVER’s performance. Unlike a merged ref-
erence set, we retained each expert-provided set separately.
Given that RECOVER and the experts might articulate
requirements in different but equivalent ways, we did not
assume a strict one-to-one correspondence between indi-
vidual requirements. Instead, each requirement extracted
by RECOVER was compared against all requirements in
the corresponding expert-provided oracle. This approach
ensures that variations in phrasing do not artificially lower
the similarity scores while still capturing how well RE-
COVER’s output reflects the intended requirements. Rather
than selecting a single “corresponding” requirement from
the oracle, we performed pairwise comparisons against all
expert-provided requirements, computing similarity scores
for each pair. These multiple similarity values—one for
each comparison—were then averaged to produce a final
similarity score for the candidate requirements. This aggre-
gated score was used in our evaluation metrics to reflect
the overall alignment between RECOVER’s output and
each expert’s oracle. Figure 4 shows an example of this
process: for each of the four oracles provided by experts, we
compute the three metrics to assess the similarity between
each requirement of the oracle against each requirement
generated by RECOVER for the same conversation turn.

As for RQ1.3, we analyzed the responses from the ques-
tionnaire, focusing on participants’ opinions regarding the
three quality aspects considered, i.e., correctness, complete-
ness, and actionability. These aspects were rated on a Likert
scale in the questionnaire. The responses were aggregated
and summarized using frequency plots, which allowed us
to visually represent the distribution of participants’ rat-
ings across the different quality attributes. This approach
allowed us to identify how consistently the generated re-

quirements were perceived by participants in terms of cor-
rectness, completeness, and actionability.

4.4 Research Methods for RQ2

To evaluate the completeness and overall quality of RE-
COVER in extracting requirements from entire stakeholder
conversations, we employed a similar approach to that
used for the previous research questions. Specifically, we
constructed an oracle based on the input conversation and
compared RECOVER’s output against this oracle. Addi-
tionally, we compared the capabilities of our approach with
a baseline LLM to assess the effectiveness of the various
steps within RECOVER. This comparison aimed to deter-
mine the extent to which the structured, multi-step pro-
cess of RECOVER provides tangible benefits over a more
straightforward LLM-driven approach.

Oracle Construction. In the context of RQ1.2, we en-
gaged requirements engineers to elicit an oracle of require-
ments from the input conversation. However, the require-
ments were extracted based solely on the specific conversa-
tion turns provided to the engineers, without considering
the broader context of the entire conversation. This ap-
proach, while useful for evaluating RECOVER on the gran-
ularity of individual turns, may not capture the full scope
and interconnectedness of the requirements that emerge
when considering the entire conversation. Therefore, it was
essential to assess how RECOVER performs when analyz-
ing the conversation as a whole, ensuring that the approach
can effectively integrate and synthesize information from
multiple turns to generate comprehensive requirements.

For this reason, we opted for the construction of a new
oracle. To this aim, we involved three requirements engi-
neering experts with professional experience ranging from
7 to 25 years. These experts currently work in industry and
bring extensive practical knowledge of requirements elici-
tation and analysis. They were recruited from our contact
network via email. We individually provided each expert
with the input conversation and an Excel sheet structured
into two columns: (1) the first, titled ‘Conversation refer-
ence’, was for indicating the specific parts of the conversa-
tion that informed the requirement; (2) the second column,
titled ‘Requirement’, was for articulating the corresponding
requirement in natural language. We did not impose a
specific template for the experts to use when expressing the
requirements, opting instead to give them the freedom to
articulate the requirements in their preferred format. The
experts were given 15 days to complete the task and return
the filled Excel sheet via email.

After reviewing the three Excel sheets, we noticed that
each expert approached the task differently. One expert
generated a highly granular list, mapping nearly every
sentence in the conversation to a requirement, resulting
in 104 requirements. In contrast, the other two experts
produced 36 and 17 requirements, respectively, as they
often combined related points in the conversation or judged
more sentences as not containing a requirement. Based on
these observations, we organized a panel with the experts
to consolidate their individual lists into a single, agreed-
upon set of requirements. To guide the discussion and
facilitate consensus, we employed the well-known Delphi

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

method [50], which involves iterative rounds of anonymous
feedback and discussion. This method allowed the experts
to refine their assessments and converge on a final set of
requirements through a structured process of evaluation
and revision. In our case, the process lasted two rounds.
In the first, the experts discussed their initial lists and,
through iterative feedback, reduced the combined set to 40
requirements. In the second round, further refinement and
discussion led to a final set of 28 consolidated requirements.

These 28 system requirements formed the oracle through
which we addressed RQ2. When comparing this oracle with
the one built through the turn-by-turn elicitation process, we
found that the oracles were mostly similar. This similarity
suggests that the turn-by-turn approach used by RECOVER
represents a viable solution for automating the requirements
elicitation process. However, we also noted significant dif-
ferences, particularly in the depth of contextual integration
and the capacity to capture comprehensive requirements
spanning multiple conversation turns. For instance, one of
the requirements on which the experts agreed was:

“The system must allow any user (also not registered
to the platform) to see and download information about
events posted, ensuring public access is read-only and
including data export formats.”

In this regard, this information was not directly captured
by RECOVER, as it spanned over multiple conversation
turns. Instead, the automated approach generated three
separate requirements, i.e., (1) the system must allow users
to view information about events posted; (2) the system
must enable users to download information about events
posted; and (3) the system must ensure that public access
to event information is read-only and includes support
for data export formats. While related, these requirements
missed the contextual cohesion that experts used to form a
single requirement, other than additional possible pieces of
information enclosed within the conversation, e.g., that all
users, including those not registered to the platform, should
have access to the features above.

These differences could impact the overall performance
of the approach, justifying the need for further investigation
in RQ2. The whole oracle construction process, along with
the lists of requirements, are in our online appendix [13].

Baseline Selection. As a second step to address RQ2, we
selected an LLM-driven baseline to assess the added value
of RECOVER’s structured, multi-step approach compared
to a direct application of a large language model. Among
available options, we chose ChatGPT [51], powered by GPT-
4 [52], due to its strong performance and widespread use
in software and requirements engineering [19]. GPT-4 was
used only in RQ2, which evaluates RECOVER’s end-to-end
ability to generate system requirements. This allowed us to
test whether prompting an LLM with the entire conversa-
tion could match the results of our structured pipeline. In
contrast, RQ1 focuses on evaluating each step of the pipeline
separately, and applying GPT-4 to each subtask would have
required substantial additional experimentation, beyond the
scope of this study.

From an operational standpoint, the alternative list of
requirements was generated by prompting ChatGPT to ex-
tract system requirements from the provided conversation.

The prompt instructed ChatGPT to carefully analyze the
entire conversation, which was supplied as an external
file, and identify key requirements based on the dialogue
between stakeholders. We deliberately chose not to employ
any prompt engineering techniques for two reasons: (1) to
assess whether RECOVER could outperform a basic base-
line, representing the lower bound of LLM performance—
if RECOVER failed to outperform this baseline, then ad-
vanced prompt engineering would be unnecessary at this
stage, as the inadequacy of our approach would already be
established; (2) optimizing a prompt engineering technique
would have required a separate experimental setup, which
was beyond the scope of our study.

Data Analysis. With the requirements extracted by RE-
COVER and the baseline in hand, we compared them
against those in the expert-generated oracle. We used the
same evaluation metrics as in RQ1.2, specifically BLEU [47],
ROUGE [48], and METEOR [49]. Additionally, we included
two further metrics: Brevity Penalty (BP) and Length Ratio
(LR), both defined within the context of BLEU [47]. The
inclusion of BP and LR is justified because we are com-
paring entire corpora of text, i.e., full lists of requirements,
rather than individual requirements for each conversation
turn. More specifically, in RQ1.2, the metrics were computed
through pairwise comparisons of each requirement gener-
ated by RECOVER for a specific conversation turn with all
the requirements in the set of requirements of the corre-
sponding oracle. However, in RQ2, we shifted to a corpus-
level evaluation, assessing the entire set of requirements as
a whole rather than evaluating each requirement individu-
ally. The reason for this shift is twofold. First, the sizes of
the lists to compare were different—135 requirements from
RECOVER, 31 from ChatGPT, and 28 from their mutual
agreement—and a requirement-by-requirement evaluation
could lead to misleading results, as it would not account
for the varying levels of granularity across the lists. Com-
paring mismatched numbers of requirements could skew
the analysis, giving an inaccurate representation of each
approach’s effectiveness. Second, the goal of the evaluation
was to capture how closely the entire set of requirements
generated by our approach matched the oracle, making a
corpus-level evaluation more appropriate. As such, BP and
LR are particularly valuable as they provide insights into
the conciseness and overall length of the generated require-
ments lists: BP assesses verbosity relative to the oracle, while
LR indicates their proportional length.

5 ANALYSIS OF THE RESULTS

The following sections discuss the results that addressed the
two main research questions of the study.

5.1 RQ1 - Individual Conversation Turns Assessment
Our first research question assessed RECOVER’s capabil-
ities in correctly identifying and generating high-quality
system requirements from stakeholders’ conversations.

5.1.1 RQ1.1 - Requirements Classification
Table 3 overviews the results for RQ1.1. More specifically,
the results provide an assessment of RECOVER’s perfor-
mance in classifying conversation turns as either containing

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

requirements (Req) or not containing requirements (Non-
Req). The analysis covered 133 conversation turns, with
RECOVER predicting 62 of them as requirements-relevant
and 71 as non-requirements-relevant.

TABLE 3
Results achieved for RQ1.1 (Req = Containing Requirements, NonReq

= Non Containing Requirements).

Count
Total Turns 133
Predicted as Req 62
Predicted as NonReq 71
Evaluation
True Positive = 39 True Negative = 59
False Positive = 23 False Negative = 12
Precision 0.6290322581
Recall 0.7647058824

The evaluation of the model’s predictions reveals that
RECOVER correctly identified 39 turns as containing re-
quirements (True Positives) and 59 turns as not contain-
ing requirements (True Negatives). This indicates that the
model was fairly accurate in identifying both relevant and
irrelevant turns. However, there were 23 instances where
the model incorrectly identified a turn as requirements-
relevant (False Positives) and 12 instances where it failed
to recognize a turn that actually contained a requirement
(False Negatives). These errors highlight areas where the
model could benefit from further refinement, particularly
in reducing the number of false positives. For instance, we
may envision the experimentation of more advanced filter-
ing mechanisms that leverage semantic analysis to better
differentiate between turns that truly contain requirements
and those that do not.

Despite a precision of around 63%, the recall of the
approach, at 77%, demonstrates the model’s effectiveness in
identifying most of the relevant information, even though
some relevant turns were still missed. As anticipated in Sec-
tion 3.1, in our case we aim at favoring recall over precision:
in a real-case scenario, the output of the approach is sup-
posed to be manually reviewed by an expert; thus, it is far
more important to capture as many relevant requirements
as possible, even if it means including some irrelevant ones.
Therefore, the higher recall rate suggests that RECOVER
is effectively minimizing the risk of overlooking essential
requirements, which aligns with the intended use case and
makes the results satisfactory. Further refinement of the
classification algorithm or the incorporation of additional
contextual information would still be worth to improve the
recall of the approach, e.g., implementing methods to dy-
namically adjust the sensitivity of the classifier based on the
conversation’s context might further reduce the likelihood
of missing critical requirements.

¤ Key findings of RQ1.1.

The classifier employed in Step #1 of RECOVER pro-
vides valuable support in identifying requirements in
real stakeholders’ conversations, with a precision of 63%
and, more importantly, a recall of 77%.

5.1.2 RQ1.2 - Requirements Generation

Initially, the model classified 62 turns as containing re-
quirements. Interestingly, RECOVER primarily extracted
functional requirements, which accounted for 88% of the
total requirements generated by the approach. However, in
12% of the total extracted requirements, RECOVER was
also able to identify non-functional requirements when they
were explicitly discussed by stakeholders. This is given by
the design of the prompt employed in Step #3: RECOVER
was designed to extract system features explicitly discussed
in conversations, avoiding the inference of non-functional
requirements to prevent hallucinations. For example, our
approach successfully identified NFRs like system scala-
bility when discussed but did not infer them otherwise,
confirming that its ability to capture NFRs depends on
stakeholder input rather than model-driven assumptions.
For the sake of brevity, we included an analysis of the NFRs
elicited in our online appendix [13].

A manual inspection revealed that 5 of these were
misidentified, as they consisted of generic or filler utterances
(e.g., ’All right, okay.’ or ’Okay. Okay. Um.’). These turns
were excluded from further evaluation, leaving 57 turns for
expert review. Among these, 6 turns were determined by all
experts to contain no requirements, contrary to RECOVER’s
prediction. As a result, a total of 51 conversation turns were
recognized as containing requirement-relevant information
by both RECOVER and at least one expert.

After accounting for these inaccuracies, the remaining
51 turns (84% of the original 62) were validated by the
experts, who successfully elicited requirements from them.
This finding reinforces our results for RQ1.1, highlighting
the model’s general effectiveness while also identifying
areas for improvement. We categorized the remaining 51
turns into four groups based on the number of experts
who were able to recognize in them potential requirements.
Particularly, participants’ recognition of requirements was
distributed as follows:

• 31 out of 51 turns (60.78%) were identified as
requirements-relevant by all four participants (Group
with 4 answers).

• 10 out of 51 turns (19.61%) were identified as
requirements-relevant by three participants (Group
with 3 answers).

• 7 out of 51 turns (13.73%) were identified as
requirements-relevant by two participants (Group with
2 answers).

• 3 out of 51 turns (5.88%) were identified as
requirements-relevant by only one participant (Group
with 1 answer).

TABLE 4
Results achieved for RQ1.2 in %.

BLEU ROUGE METEOR

Group with Min Mean Max Min Mean Max Min Mean Max

1 answer 14.8 14.8 14.8 32.66 32.66 32.66 46.71 46.71 46.71
2 answers 4.63 9.81 14.99 27 39.37 51.75 30.28 43.96 57.63
3 answers 1.87 4.09 6.46 24.97 36.37 49.44 27.91 40.22 54.36
4 answers 1.91 3.91 7.18 28.37 39.6 53.92 29.41 41.46 57.98

Average 3.03 5.39 8.56 27.77 38.53 51.49 30.25 41.87 56.56

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

60.78%
(31) ❖

19.61%
(10) ✱

13.73%
(7) ⌾

5.88%
(3) ▲

 BLEU
▪Min ▪Mean ▪Max

▲ Group with 1 answer | ⌾ Group with 2 answers | ✱ Group with 3 answers | ❖ Group with 4 answers

10%

20%

30%

40%

50%

60%

0%

ROUGE
▪Min ▪Mean ▪Max

 METEOR
▪Min ▪Mean ▪Max

Fig. 5. Results distribution in the different groups.

We then used the widely accepted metrics such as
BLEU [47], ROUGE [48], and METEOR [49] to quantita-
tively evaluate the performance of RECOVER in alignment
with expert opinions. Table 4 reports the performance of
RECOVER across different groups.

The BLEU scores are relatively consistent within each
group, as evidenced by the minimal variance between the
Min, Mean, and Max values. This suggests a stable per-
formance in precision-oriented evaluation. However, the
BLEU scores decline: as the number of participant-provided
answers used for comparison increases, the scores tend to
be lower. This trend might indicate the system’s troubles
in maintaining precision with more complex or varied in-
put data, highlighting a potential area for improvement in
handling diverse or nuanced content.

The ROUGE scores, focused on recall, are higher across
all groups than BLEU scores, suggesting that the system is
more effective in capturing the overall content of the ref-
erence material. An interesting observation is a progressive
increase in ROUGE scores from “1 answer” to “4 answers”,
which might imply better performance in encompassing the
key elements of the reference text with more diverse inputs.

METEOR scores, which balance both precision and re-
call, are consistently the highest among the three metrics.
This indicates a strong overall alignment with the reference
texts, considering both exact word matches and semantic
similarity. The METEOR scores are also consistent with the
number of answers, contrary to the BLEU and ROUGE
scores diverging between groups. This pattern suggests that
RECOVER performs better in a comprehensive evalua-
tion scenario, particularly regarding semantic understand-
ing and paraphrasing. The average scores across all groups
show that METEOR outperforms both BLEU and ROUGE,
reinforcing that a more balanced evaluation metric can
accurately represent the RECOVER’s capabilities.

As shown in Figure 5, the pattern of increasing ROUGE
and the consistent METEOR scores with the number of
answers, contrasted with the decreasing trend of BLEU
scores, underscores the importance of using multiple met-
rics for a well-rounded evaluation. It highlights the system’s
strengths in overall content capture and semantic under-
standing while pinpointing imprecision in exact wording.
As such, the results underscore language processing tasks’

Correctness Completeness Actionability
0

20

40

60

80

5 - Totally Agree
4 - Partially Agree
3 - Neither agree nor disagree
2 - Partially Disagree
1 - Totally Disagree

Fig. 6. Questionnaire’s answers: quality of the generated requirements.

complexity and multifaceted nature. All in all, while RE-
COVER shows promising capabilities in overall content
understanding and semantic alignment, there is still room
for improvement in matching the exact wording, especially
in scenarios featuring more varied or complex inputs.

¤ Key findings of RQ1.2.

The LLM employed in Step #3 of RECOVER offers
valuable assistance in generating requirements from real
stakeholders’ conversations, with a BLEU Mean score of
5.39%, a ROUGE Mean score of 38.53%, and a METEOR
Mean score of 41.87%

5.1.3 RQ1.3 - Perceived Quality

To answer RQ1.3, we analyzed the experts’ responses to our
questionnaires. Participants rated the three quality indica-
tors, i.e., (1) correctness, (2) completeness, and (3) action-
ability, on a Likert scale from 1 (poor quality) to 5 (excellent
quality). Figure 6 shows the distribution of the answers.

Considering total and partial agreement, 72% of partic-
ipants found correct the generated requirements, 64% be-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

lieved that the requirements were completely encapsulating
what was discussed in the conversation turn, and 66%
considered the requirements as actionable. Only 15%, 21%,
and 20% partially or totally disagreed with the generated
requirements’ correctness, completeness, and actionability,
respectively. In the first place, these results indicate a gen-
erally positive reception of the requirements generated by
RECOVER. The high agreement on the correctness of the
requirements (72%) reflects a broad consensus on their
accuracy and alignment with the intended meaning of the
conversation turns. Additionally, the majority of partici-
pants (64%) agreed on the completeness of the requirements,
suggesting that the approach is effective in capturing a
substantial portion of the requirements discussed in stake-
holder conversations. Similarly, the strong agreement on
actionability (66%) indicates that most participants found
the generated requirements to be practical and ready for
implementation, further reinforcing the effectiveness.

In the second place, the relatively low percentages of
disagreement indicate that, while a minority of participants
identified some issues with the generated requirements,
these concerns were not widespread. In this sense, the issues
related to correctness, completeness, and actionability could
likely be addressed by requirements engineers during their
review of the output generated by our approach. The mini-
mal occurrence of these issues suggests that RECOVER can
still reduce the time and effort required to extract require-
ments from stakeholder conversations, allowing engineers
to focus on fine-tuning and validating the results rather
than starting from scratch. Based on these considerations,
we may argue that our approach is able to produce require-
ments that are accurate, comprehensive, and actionable,
though there remains room for improvement.

In the second place, the relatively low percentages of
disagreement indicate that, while a minority of participants
identified some issues with the generated requirements,
these concerns were not widespread. In this sense, the issues
related to correctness, completeness, and actionability could
likely be addressed by requirements engineers during their
review of the output generated by our approach. However,
ensuring completeness requires more than just reviewing
RECOVER’s output, as it also involves verifying that no
critical information has been overlooked in the original
stakeholder conversation, since some requirement-relevant
conversation turns may not be identified. To address this,
requirements engineers play a dual role: (1) refining and
validating RECOVER’s output to ensure correctness, com-
pleteness, and actionability, and (2) cross-checking the orig-
inal conversation to confirm that all essential information
has been captured. This aligns with the iterative nature
of requirements elicitation, where multiple refinements and
discussions help mitigate the risk of overlooking key infor-
mation. However, the minimal occurrence of these issues
suggests that RECOVER can still reduce the time and
effort required to extract requirements from stakeholder
conversations, allowing engineers to focus on fine-tuning
and validating the results rather than starting from scratch.
By explicitly reinforcing the necessity of human oversight,
we align RECOVER’s intended role as a support tool rather
than a fully autonomous requirement extraction system.
Based on these considerations, we may argue that our

approach is able to produce requirements that are accurate,
comprehensive, and actionable, though there remains room
for improvement. In this respect, our participants provided
insights into the key issues that may lead to further refine-
ment of the approach. More specifically:
Level of Detail. Sometimes, the requirements are too spe-
cific, and it seems RECOVER hallucinates aspects of the
conversation turn, e.g., it generates several times the same
requirement or is not able to understand the actor of the
requirement. In other cases, the requirements were too gen-
eral, or perhaps no requirements should be elicited.
Missing Context. In general, it is hard to get the whole
context by only analyzing a single conversation excerpt.
RECOVER seems to be lacking the ability to detail actors
and context-related aspects of requirements, yet we think
the nature of the task emphasizes this issue.

The analysis of the final section of the questionnaire
revealed some key insights worth highlighting. These ques-
tions explored participants’ perceptions of using an auto-
mated approach for eliciting requirements from conversa-
tions. Since participants were initially unaware that the
requirements presented were generated by an automated
tool, the first question asked whether they still stood by
their previous assessments of the quality of the generated
requirements. Interestingly, 100% of participants confirmed
their original evaluations, reinforcing the initial positive
assessment of the requirements generated by our approach.

The second question, which provided more interesting
insights, asked whether participants would consider adopt-
ing the automated approach that produced these require-
ments in their own work. In response, 65% of participants
said Yes, 10% said No, and 25% were undecided. Those
who were unsure expressed concerns about the maturity
of the approach, noting that they would currently use it
only as a supportive tool rather than a primary method.
These concerns are reasonable and perfectly align with the
intended goal of our work. The purpose of RECOVER is
indeed not to replace the role of requirements engineers
but to serve as an aid in the elicitation process, enhancing
efficiency and reducing manual effort.

Finally, in the last question, we asked participants if they
would use RECOVER to save time and effort. While some
participants argued that the quality of the output is not yet
sufficient to justify the trade-off with time and effort savings,
80% still answered Yes, indicating a strong willingness to
integrate the tool into their workflows, provided that the
output meets certain quality thresholds.

¤ Key findings of RQ1.3.

Most participants (72%) found the generated require-
ments correct, 64% reported that they completely en-
capsulated what the conversation turn analyzed dis-
cussed, and 66% considered the requirements as action-
able. Hence, we claim that requirements generated by
RECOVER are of good quality, considering experts’
opinions. We also highlight additional potential im-
provements that may further enhance the usefulness of
the approach, ensuring that it continues to evolve in
alignment with the needs of requirements engineers.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

5.2 RQ2 - Entire Conversation Assessment

Table 5 presents the results of our evaluation of RECOVER
at the level of entire conversations, comparing its perfor-
mance with that of ChatGPT. The findings show that RE-
COVER achieved the highest BLEU (78.82%) and METEOR
(39.09%) scores when compared to the oracle, indicating a
high degree of precision (BLEU) and a strong alignment
with the reference requirements in terms of content, word-
ing, and structure, despite some variations in exact phras-
ing (METEOR). In contrast, ChatGPT recorded the highest
ROUGE score (43.96%), suggesting that it captured the most
content similar to the oracle, as evidenced by a higher n-
gram overlap. However, ChatGPT’s lower BLEU score of
49.36% and significantly lower BP (0.76) and LR (0.78) scores
indicate that its generated requirements were shorter and
less comprehensive compared to the oracle. These lower
BP and LR scores suggest that, while ChatGPT effectively
captures a broad range of content (as reflected in its high
ROUGE score), it falls short in matching the exact length and
depth of the oracle’s requirements, potentially sacrificing
detail and completeness.

These results suggest that RECOVER is more effective
at generating detailed and accurate requirements that align
closely with the reference standard, making it a more reli-
able approach for capturing the full scope and context of
stakeholder conversations. As such, we could confirm that
the multi-step approach employed by our approach sup-
ports the generation of higher-quality requirements com-
pared to the simple use of a large language model.

To further understand the differences between RE-
COVER and the baseline, we compared the outputs of
both approaches using the evaluation metrics. The results
showed moderate performance across the board, with per-
fect Brevity Penalty (BP = 1) and Length Ratio (LR = 1)
scores, indicating that the generated requirements were
well-balanced in terms of conciseness and length. This
suggests that the comprehensive steps within RECOVER
applied to individual conversation turns do not result in any
significant loss of information compared to using ChatGPT
on the entire conversation.

TABLE 5
Results achieved for RQ2 in %.

BLEU ROUGE METEOR BP LR

RECOVER vs Oracle 78.82 ∠ 37.20 39.09 ∠ 0.92 0.93
ChatGPT vs Oracle 49.36 43.96 ∠ 35.34 0.76 0.78

RECOVER vs ChatGPT 57.83 37.83 32.76 1 1
RECOVER vs Expert 1 37.24 48.18 39.92 1 1
RECOVER vs Expert 2 92.34 28.61 40.22 1 1
RECOVER vs Expert 3 30.11 26.13 28.57 0.92 0.93

To better understand how the different styles and granu-
larities used by requirements engineers in eliciting require-
ments from the input conversation impacted the perfor-
mance of RECOVER, we conducted an additional analysis,
which involved comparing the output of our approach
against the individual lists of requirements provided by
each engineer before the application of the Delphi method.

When comparing RECOVER with Expert 1, the ap-
proach demonstrated high ROUGE (48.18%) and METEOR
(39.92%) scores, indicating strong content similarity and

alignment with Expert #1’s elicited requirements. This sug-
gests that RECOVER was particularly effective in capturing
the breadth of content identified by Expert #1 and maintain-
ing a close semantic relationship with the expert’s phrasing.
The comparison with Expert #2 yielded exceptionally high
BLEU (92.34%) and METEOR (40.22%) scores, suggesting
that RECOVER closely mirrored the precision and recall
of Expert #2’s requirements. These scores indicate that RE-
COVER was able to reproduce Expert #2’s requirements
with minimal deviation in wording and content, reflecting
a high degree of accuracy and detail in the requirements
generated by the tool. However, the results were different
when compared to Expert #3. RECOVER displayed lower
scores across all metrics, suggesting less similarity and
alignment with Expert #3’s elicited requirements. This dis-
crepancy may be attributed to differences in the granularity
and style used by Expert #3, which RECOVER might not
have captured as effectively as it did with the other experts.
These observations suggest that the overall performance of
our approach is not necessarily influenced by the number
of requirements to be elicited. If the number were the deter-
mining factor, we would have expected to see significant
differences in the comparison with Expert #1, who pro-
vided the largest number of requirements (104). However,
the major differences in performance were observed when
comparing RECOVER with Expert #3, who provided the
fewest requirements (17). This suggests that the level of
granularity, with Expert #3 adopting a more abstract and
concise approach, may have influenced the overall similar-
ity, as RECOVER may have struggled to fully capture the
broader, less detailed requirements. These findings reinforce
the inherent subjectivity in requirements elicitation, where
differences in interpretation, assumptions, and granularity
naturally lead to variation among experts. To further inves-
tigate this phenomenon, we performed a manual analysis of
the lists of requirements generated by RECOVER and by
the three experts, where we found cases in which also the
experts elicited different and contrasting requirements for
the same aspect of the system. For instance, concerning the
management of teams’ budgets, Expert #3 thought that the
system should guarantee access to budget data to both ad-
ministrative and managerial people from within the teams,
while Expert #2 only considered implementing a budgeting
portal for ”teams” in general. However, Expert #1 elicited
different requirements, in which he wrote that the system
should allow the IFA administration—the owners of the
system—to manage budget data. RECOVER, in contrast,
elicited requirements that indicated that both the teams
and the IFA administration should be allowed to manage
the budget. Rather than reflecting a flaw in RECOVER,
these differences highlight the challenge of defining a sin-
gle ground truth in requirements extraction. As a conse-
quence, further refinements could focus on enhancing the
approach’s ability to adapt to the specific style and level
of detail employed by each requirements engineer, ensuring
that RECOVER effectively supports varying methodologies
and granularity in requirements elicitation.

Additionally, a manual evaluation of the lists of re-
quirements revealed that while the requirements captured
by both experts and RECOVER generally encapsulated
the same aspects of the conversation, there were notable

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

TABLE 6
Results of our “in-vivo” evaluation on three industrial meetings conversation transcripts. Step 1 - Negative values refer to the conversation turns
classified as not requirement-relevant by RECOVER. Steps 1 and 2 - Positive refers to the conversation turn positively classified as requirement
relevant after their processing in Step 2. Finally, Step 3 refers to metrics computed by analyzing the requirements generated for each turn. The

metrics are the same used to answer RQ1.3 and the value reported is the average of all conversation turns.

Step #1 - Negative Steps #1 and #2 - Positive Step #3
% of TN % of FN System Technical Management Unrelated Correct Complete Actionable

C1 - 271 valid turns 83.85 16.15 44 (40%) 38 60 12 4.30 4.25 4
C2 - 143 valid turns 91.94 8.06 28 (34%) 20 24 9 3.46 3.75 3.5
C3 - 165 valid turns 93.81 6.19 5 (7%) 34 20 9 3.8 4 4.4

differences in their structure and organization. The experts
tended to organize their requirements around user roles and
associated functionalities, addressing various aspects such
as user interaction within the system. These requirements
were detailed and segmented into specific sections based
on the actors involved, providing a clear outline of user re-
sponsibilities and interactions. In contrast, the requirements
generated by RECOVER were structured more around spe-
cific features and processes rather than user roles. The list
was segmented by functional areas, with a strong emphasis
on financial aspects and less focus on user experience. The
structure was more modular, centering on discrete func-
tionalities within the system. For example, consider the fol-
lowing requirement elicited by Expert #1: “The system must
allow the IFA representative to schedule and reschedule games,
with an interface for scheduling and ensuring notifications for
changes.” As shown, the requirement explicitly refers to the
user who must be supported. On the contrary, RECOVER
expressed the same requirement in terms of the features the
system should provide. In particular: “The system must have
a scheduling portal to manage team schedules and events.”

Overall, the requirements produced by the experts were
more detailed, which was expected. However, we observed
that most of the experts’ requirements could be mapped
onto subsets of those generated by RECOVER. In some
instances, the requirements generated by our automated ap-
proach were repetitive, reflecting slight variations stemming
from different conversation turns, while the experts were
able to consolidate similar information into more cohesive,
well-formed single requirements. In any case, our results
show that RECOVER is capable of capturing a broad range
of relevant information from stakeholder conversations, ef-
fectively generating requirements that align closely with
experts. Despite some redundancy, the approach provides
a solid foundation for requirements elicitation, possibly
reducing the manual effort required by experts while still al-
lowing them to refine and consolidate the output as needed.

¤ Key findings of RQ2.

The BLEU (78.82%) and METEOR (39.09%) scores in-
dicate that RECOVER is highly effective at generating
precise and comprehensive requirements. While Chat-
GPT’s higher ROUGE score (43.96%) suggests it captures
a broad range of content, its lower BLEU (49.36%) and
BP/LR values (0.76 and 0.78) point to issues with pre-
cision and completeness. This comparison underscores
RECOVER as a more reliable tool for producing require-
ments that closely align with oracle’s standards.

6 FURTHER ANALYSES AND IMPLICATIONS

The results discussed in Section 5 demonstrate RECOVER’s
effectiveness in identifying and generating system re-
quirements from stakeholders’ conversations. Despite these
promising findings, we acknowledge a potential threat to
the transferability of the results. The evaluation was con-
ducted using a single conversation transcript obtained from
a controlled experiment specifically designed for conversa-
tional requirements engineering research [44]. At the time
of our study, this was the only publicly available dataset
to support an end-to-end evaluation of our approach. This
setup, while methodologically rigorous, reflects what may
be considered an “in-vitro” setting. In response to this po-
tential limitation, we designed a complementary “in-vivo”
experiment based on independent stakeholder conversation
transcripts drawn from a different, industrial elicitation
scenario. This addition aims to assess the consistency of
RECOVER’s behavior in a more naturalistic and noisy set-
ting, mitigating concerns regarding the transferability of our
findings to varied conversational contexts. As a consequence
of the considerations above, this section is structured as
follows. In the first part, we report the in-vivo evaluation
of RECOVER, discussing the results and comparing them
with those of the original evaluation. In the second part, we
present the broader implications of our findings.

6.1 RECOVER: An In-Vivo Evaluation

To conduct our in-vivo evaluation, we applied RE-
COVER to additional transcripts derived from real-world
industrial meetings, as collected in prior work on require-
ments elicitation from natural language conversations [53].
These conversations were recorded during regular stand-
up meetings and teleconferences at a U.S.-based software
company, where the first author of that study acted as
an intern. The dataset comprises 27 anonymized conversa-
tions extracted from 9 meetings, spanning approximately 24
hours of recorded audio. While originally collected in the
context of user story analysis, the conversations naturally
reflect a broad spectrum of team interactions across the
development lifecycle - which is expected, given their origin
in routine stand-up meetings involving developers, project
managers, and other stakeholders. This diversity makes the
dataset particularly valuable, as it captures realistic and
varied communication scenarios. At the same time, it calls
for a careful selection of conversations most aligned with the
focus of RECOVER, ensuring that the evaluation remains
coherent with the tool’s intended support for requirements

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

elicitation.6 Specifically, from the dataset we retained three
conversations based on their completeness, clarity, and topi-
cal coherence - these are referred to as Conversation C1, C2,
and C3 for confidentiality reasons. These were among the
most self-contained discussions, making them suitable for
a meaningful end-to-end assessment with RECOVER. The
remaining conversations were not retained as they primarily
took place during later stages of the development and were
predominantly focused on technical updates or managerial
coordination (e.g., agile procedures, story point estimation,
task scheduling). As such, they could not meaningfully
support the evaluation of RECOVER in requirements elici-
tation, the primary scenario it is designed to assist.

As an additional consideration, it is important to note
that the nature of these conversations differs significantly
from the one used in our main evaluation. Whereas our
primary study focused on an initial stakeholder meeting, hence
representing an early-stage requirements elicitation, these
additional transcripts reflect ongoing development contexts.
Despite this mismatch, we considered them valuable for
three reasons. First, they offer insight into how RECOVER
might perform when applied to ongoing development con-
texts, where requirements often evolve or emerge implicitly.
Second, the conversations span different types of software
systems, including web platforms and cyber-physical sys-
tems, thus providing a testbed for evaluating generalization
across domains. Third, their relatively noisy and unstruc-
tured nature enables a more rigorous examination of Step
#1 of our pipeline, which aims to filter out non-functional
turns and focus on requirement-relevant content.

For each of the three conversations (C1, C2, and C3), we
performed an initial cleaning to remove sentences that were
non processable, i.e., those containing placeholder annota-
tions used by the original authors to indicate unintelligible
speech or content deemed irrelevant to the study context.
After this cleaning, the total numbers of valid turns for
each conversation were respectively 271, 143, and 165, as
shown in Table 6. Then, we executed RECOVER on each
cleaned transcript and tracked its behavior across all three
processing steps. Specifically, we recorded: (1) the turns dis-
carded after Step #1, having been classified as not containing
requirement-relevant information; (2) the turns retained af-
ter Step #1 and further processed by Step #2, which maps
utterances to specific requirements-related concepts; and (3)
the final list of requirements automatically generated from
each retained turn in Step #3.

Table 6 reports the results of our analysis. To validate
the effectiveness of RECOVER’s initial filtering (Step #1),
we manually inspected the discarded turns to estimate
the proportion of false negatives, i.e., requirement-relevant
turns that were incorrectly filtered out (column “% of FN”
in Table 6). This verification was conducted independently
by two of the authors and resolved through discussion,
following the same protocol adopted in our main evalu-
ation, to mitigate subjectivity in judgment. Overall, RE-
COVER demonstrated a strong ability to correctly discard
non-relevant content, with the percentage of true nega-

6. The data were shared with us for research purposes, yet the
original recordings and transcripts cannot be made publicly available
due to privacy constraints and the sensitive nature of the discussions.

tives (column “% of TN”) ranging from approximately 84%
to 94%. The observed false negative rates were relatively
low (between 6% and 16%) and are largely influenced
by the conversational context: as previously noted, these
transcripts include discussions not strictly tied to system
functionalities. This further reinforces the value of Step #1
in managing noisy, real-world inputs. This is especially true
when considering Conversation C3, where only 7% of turns
were related to system functionalities: also in this case, the
false negative rate is below 7%, indicating robust filtering
even in challenging conditions.

To further investigate the nature of the turns retained
after Step #1 and processed by Step #2, we then conducted a
manual annotation to categorize their content. As outlined
earlier, this step targets turns that were considered poten-
tially requirement-relevant and thus passed through the sec-
ond stage of RECOVER, which maps utterances to specific
requirements-related concepts. To mitigate subjectivity, the
annotation was carried out independently by two of the
authors and conform through discussion. Specifically, each
turn was classified into one of four categories: ‘System’ re-
lated, i.e., turns discussing system functionalities that could
inform requirement elicitation; ‘Technical’, covering imple-
mentation or architectural details discussed by developers;
‘Management’, involving planning, scheduling, or coordi-
nation; and ‘Unrelated’, referring to conversational content
not pertinent to the system or project. The distribution of
these labels is reported in Table 6 (column “Steps #1 and #2
- Positive”). The results confirm that only a small fraction of
the retained turns directly relate to system functionalities:
for instance, just 7% in Conversation C3. This finding aligns
with our earlier observation that most conversations in
this dataset reflect later-stage project discussions. It is also
consistent with prior analyses by Rodeghero et al. [53],
who reported that only 5.5% of the turns in their dataset
were relevant for the elicitation of functional requirements.
These outcomes further underscore the importance of Step
#1 in filtering noise and reinforce the value of targeted
approaches like RECOVER in extracting requirements-
relevant content from broader project discussions.

Finally, building on the turns identified as System re-
lated in the previous step, we evaluated the quality of the
system requirements generated by RECOVER in Step #3.
For each requirement elicited from these turns, we manually
assessed its quality using the same criteria adopted for
RQ1.3: Correctness, Completeness, and Actionability, each rated
on a Likert scale from 1 (poor) to 5 (excellent). The evalu-
ation was independently conducted by two of the authors
and reconciled through discussion. The results, shown in
Table 6 (column “Step #3”) provide further insights into
RECOVER’s behavior in real-world conditions. Conversa-
tion C1, which had the highest number and proportion of
turns related to system functionalities (40% of the positives),
yielded the strongest outcomes, with all quality indicators
rated 4 or above. This confirms that when suitable content
is available, RECOVER is capable of extracting high-quality
requirements. In Conversation C2, the scores were slightly
lower - ranging from 3.46 to 3.75 - which may be attributed
to the smaller number of functional turns and a higher
proportion of ambiguous or mixed-content utterances. Nev-
ertheless, the extracted requirements still demonstrated

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

acceptable quality. Interestingly, despite Conversation C3
having the fewest functional turns (only 7%), the average
quality ratings remained relatively high (between 3.8 and
4.4), suggesting that RECOVER can still produce valuable
outputs even from limited and fragmented input.

We acknowledge this in-vivo evaluation is preliminary;
nevertheless, the analysis reinforces RECOVER’s robust-
ness across every stage—from filtering irrelevant content
to generating coherent, actionable requirements—and indi-
cates its promise for real-world development contexts.

6.2 Broader Discussion and Implications
The evaluation of RECOVER reveals several strengths

and areas for improvement in automating the extraction of
system requirements from stakeholder conversations. A key
strength is its high recall rate (77%), effectively capturing
most relevant requirements and minimizing the risk of
missing critical information, making it a valuable support
tool for human experts who can further refine the output.
Additionally, RECOVER demonstrates strong performance
in generating precise and comprehensive requirements, as
evidenced by its high BLEU and METEOR scores compared
to expert-generated oracles.

However, it is important to clarify that recall in this
context refers to the identification of requirement-relevant
conversation turns rather than fully formed requirements.
This means that while a portion of relevant turns were not
identified, it does not necessarily equate to actual require-
ments being lost. Not all turns flagged as relevant by experts
would have led to concrete system requirements, making
this a worst-case estimate rather than an exact measure
of missed content. Moreover, requirements elicitation is an
iterative process, allowing engineers to revisit and refine
extracted information, which further mitigates the impact
of potential omissions. Nonetheless, assessing whether this
level of recall is sufficient in practice would require further
empirical investigations across different domains. Our in-
vivo evaluation offers preliminary support for this, showing
that RECOVER performs reliably across its pipeline even
when applied to noisy, real-world conversations from indus-
trial meetings. Despite differences in context, the tool con-
sistently identified system-functional content and generated
actionable requirements, suggesting potential for broader
applicability beyond controlled settings.

The approach also faces challenges. RECOVER’s em-
phasis on recall over precision introduces trade-offs, as cap-
turing a broader set of potential requirements increases the
risk of extracting irrelevant information. Striking the right
balance between maximizing recall and minimizing noise
remains a key challenge for practical adoption. Additionally,
while RECOVER outperforms the baseline, it sometimes
struggles with maintaining context, leading to repetitive or
overly granular requirements that lack the cohesion of those
produced by experts. Future refinements should focus on
improving contextual understanding and better adapting to
different requirements engineering styles to enhance usabil-
ity and effectiveness.

� Take Away Message #1.

RECOVER shows promising results in eliciting ac-
tual requirements, effectively capturing the majority
of relevant information. However, there is room for
improvement in managing context and reducing the
inclusion of irrelevant requirements.

The emphasis on RECOVER’s understanding of the
application domain and the importance of clearly defined
business objectives signifies the pivotal role of domain ex-
pertise. Employing our approach in the preliminary phase
for objective definition underscores a potential collaboration
between human expertise and automated tools.

While participants noted advantages such as the genera-
tion of more specific and less ambiguous requirements, our
study does not directly demonstrate that RECOVER reduces
time and effort in requirements extraction. Although ana-
lysts qualitatively assessed the completeness and usefulness
of RECOVER’s output, verifying automatically generated
requirements may not necessarily require less effort than
extracting them manually. Despite this, our results show
that RECOVER may serve as a valuable supporting tool
for practitioners, particularly in the early phases of require-
ment elicitation. The in-vivo evaluation reinforces this by
showing that the modular structure of RECOVER helps
manage noisy or fragmented input, increasing robustness
in real-world settings and supporting practical human-in-
the-loop use. Therefore, while our findings suggest potential
benefits, further research is needed to quantify the impact of
RECOVER on efficiency and effort in real-world settings.

� Take Away Message #2.

The reported benefits of the approach emphasize the
potential advantages of LLMs in improving both the
efficiency and quality of the requirements engineering
process, provided they are carefully customized.

The concern about generating irrelevant requirements
underscores the need for a careful approach when integrat-
ing AI into the field of requirement engineering.

We believe our work lays the foundation for future re-
search in conversational requirements engineering. Starting
from conversations allows practitioners to uncover key sys-
tem aspects early on, helping to address quality attributes
like ethics, privacy, and fairness. Better understanding how
requirements are discussed can lead to higher-quality solu-
tions, particularly in security and ML-enabled systems.

7 THREATS TO VALIDITY

Although our study highlights that RECOVER may rep-
resent a valuable tool for requirements engineers, we are
aware of the threats and limitations that must be discussed.

Threats to Internal Validity. To address RQ1.1, we
evaluated the ability of Step #1 of RECOVER to identify
requirements-relevant conversation turns. Because of the
lack of data in the field, we had to perform such an assess-
ment by hand. Indeed, we recognize that there is a threat
caused by potential biases or wrong labeling. However, to
mitigate such an issue, the authors of this paper evaluated

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

the conversation in different rounds and each separately,
discussing the final results by combining each one’s opinion.

Moreover, for RQ1.2, we evaluated the similarity of the
requirements generated by RECOVER for each conversa-
tion turn against an oracle. The same approach was applied
to answer RQ2, but in this case, the evaluation was based
on an oracle derived from the entire conversation. These
oracles were collected by surveying professional require-
ments engineers within our contact network. While we
acknowledge potential subjectivity in the elicitation process,
two key aspects give us confidence in the reliability of the
oracles. First, the expertise of the professionals involved: all
participants had substantial experience in requirements en-
gineering, with backgrounds ranging from several years to
decades in the field. Second, the rigorous research methods
employed to synthesize the information gathered from these
experts, such as the Delphi method used in RQ2, ensured a
well-rounded and consensus-driven set of requirements.

Finally, RECOVER does not handle conflicting require-
ments, as it extracts requirements from individual conver-
sation turns without analyzing the discussion holistically.
Since conflict resolution requires human judgment [54], au-
tomating it without full context could lead to inaccurate de-
cisions. Similarly, RECOVER lacks a traceability mechanism,
which could help link extracted requirements to their orig-
inal discussion but remains a challenge in conversational
requirements engineering. Given these complexities, we de-
signed RECOVER to assist rather than replace requirements
engineers, though adding conflict detection and traceability
is a promising future direction.

Threats to Construct Validity. We developed a proto-
type implementation of the RECOVER framework by ex-
perimenting with diverse machine-learning algorithms for
Step #1, examining 135 combinations of ML algorithms and
word-embedding techniques. Although advanced deep-
learning models might have provided additional insights
into our approach’s capabilities, we prioritized examining
simpler models due to their lower computational costs and
increased interpretability. The good classification perfor-
mance achieved by these simpler models has supported our
confidence in our design choices. Acknowledging the poten-
tial value of exploring more complex models, we performed
a preliminary analysis using GPT-4 to perform this task.
While the LLM demonstrated a general ability to recognize
feature-related discussions, we observed a critical issue: it
often fabricated details, such as timestamps, or inconsis-
tently split conversation turns. These hallucinations made
it unsuitable for RECOVER’s structured approach, which
required precise identification of requirement-relevant turns
without distorting the original conversation. As part of our
future work, we plan to further experiment with LLMs and
prompt engineering to potentially improve our approach by
incorporating more recent technology.

For Step #2, we implemented Question&Answer tagging
using DialogTag, based on the design of previous works [7].
Additionally, we made the simplifying assumption that each
identified question was immediately followed by its corre-
sponding answer in the next turn. While this assumption
streamlines our approach, we acknowledge the potential
limitations it introduces. To experiment with more powerful

techniques, we performed a preliminary evaluation of GPT-
4 also for this step of RECOVER. We prompted GPT to
detect question-answer pairs and determine whether they
contained requirement-related content. Similar to Step #1,
GPT struggled with consistency, frequently misidentifying
Q&A relationships or incorrectly discarding relevant infor-
mation. Our future work will aim at enhancing this step
by incorporating conversation disentanglement techniques
[55] to better handle more complex dialogue structures and
experimenting with LLMs and prompt engineering.

Additional threats arise from using a Large Language
Model in Step #3. We chose Llama2 as the primary engine
for the generation process, but further experimentation with
other LLMs is necessary to explore potential improvements.
To minimize the risk of hallucinations, we carefully crafted
our prompts to be formal and precise [56]. Furthermore,
we tested several different prompts, which are available in
our online appendix [13], and each was executed at least 10
times to ensure the reliability of the results. Despite our care-
ful prompt design, the decision to explicitly request system
requirements while excluding non-functional requirements
introduces a potential threat. Specifically, this choice may
limit the ability of RECOVER to capture quality-related
concerns unless they are explicitly mentioned in the con-
versation. While this design minimizes hallucinations and
ensures that extracted requirements are grounded in stake-
holder discussions, it may overlook implicit requirements
that stakeholders assume rather than state explicitly.

Threats to Conclusion Validity. To mitigate potential
threats of drawing conclusions from a questionnaire, we
carefully designed it to minimize ambiguity and the poten-
tial for response biases. Moreover, we performed a pilot test
to ensure the understandability and correctness of the ques-
tions. To avoid potential biases regarding using LLMs in SE
tasks, we did not mention that the requirements shown were
artificially generated until the very end of the questionnaire.
Finally, we acknowledge that our work draws conclusions
about the efficacy of the ML model employed in Step 1 by
only considering trivial metrics such as precision and recall.
Although we experimented with many different solutions,
we know that further experimentation would be needed.

Threats to External Validity. A potential threat to the
generalizability of our findings lies in the use of a single
stakeholder conversation for the primary evaluation of RE-
COVER. Although this transcript originates from a con-
trolled experiment specifically designed for conversational
requirements engineering research and has been adopted in
prior work as a reference benchmark [44], its scope remains
limited to a single elicitation setting. Given that stakeholder
conversations can vary widely across domains, team roles,
and project phases, this may not fully reflect the diversity of
real-world requirements engineering practices. To mitigate
this limitation, we complemented the primary evaluation
with an in-vivo analysis involving three additional con-
versations drawn from industrial development meetings.
Although these conversations were not originally focused
on early-stage elicitation, they exposed RECOVER to a
broader range of communication scenarios, system types,
and conversational structures. The results confirmed the
pipeline’s robustness even in less structured, later-stage

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

contexts, offering preliminary evidence of the approach’s
adaptability to real-world conditions. Nonetheless, future
work will extend this evaluation further by incorporating a
wider and more representative set of stakeholder conversa-
tions to strengthen external validity.

8 CONCLUSION

We proposed RECOVER, an approach designed to assist
requirements engineers in generating system requirements
from stakeholders’ conversations. Our findings indicate that
while RECOVER can reduce elicitation effort, it still benefits
from human oversight for validation and refinement.

Future work will include broader experimentation with
RECOVER, including larger-scale qualitative and industrial
evaluations involving conversations from diverse contexts.
We also aim to extend the approach by integrating further
steps in the RE process, such as automatically generating
user stories while ensuring mechanisms for human val-
idation to maintain accuracy and reliability, and tailored
prompting strategies to extract non-functional and user-
centric requirements while minimizing hallucination risks.
Additionally, we plan to explore traceability and conflict
resolution techniques to better identify related or overlap-
ping conversation turns. Finally, we will investigate fine-
tuning and retrieval-augmented generation (RAG) to fur-
ther improve the precision and contextual awareness of
the generated requirements. These enhancements represent
promising directions for advancing RECOVER.

ACKNOWLEDGMENTS

We acknowledge the support of the European Union -
NextGenerationEU through the Italian Ministry of Uni-
versity and Research, Project PRIN 2022 PNRR “FRINGE:
context-aware FaiRness engineerING in complex software
systEms” (grant n. P2022553SL, CUP: D53D23017340001).
We thank the Associate Editor who handled our manuscript
for their invaluable support, and the anonymous reviewers
for their thoughtful feedback and constructive suggestions.

REFERENCES
[1] B. Bruegge and A. H. Dutoit, “Object-oriented software engineer-

ing,” Using UML, 1999.
[2] D. Zowghi and C. Coulin, “Requirements elicitation: A survey

of techniques, approaches, and tools,” Engineering and managing
software requirements, pp. 19–46, 2005.

[3] A. Davis, O. Dieste, A. Hickey, N. Juristo, and A. M. Moreno,
“Effectiveness of requirements elicitation techniques: Empirical re-
sults derived from a systematic review,” in 14th IEEE International
Requirements Engineering Conference (RE’06). IEEE, 2006.

[4] S. Wagner, D. M. Fernández, M. Felderer, A. Vetrò, M. Kalinowski,
R. Wieringa, D. Pfahl, T. Conte, M.-T. Christiansson, D. Greer et al.,
“Status quo in requirements engineering: A theory and a global
family of surveys,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 28, no. 2, pp. 1–48, 2019.

[5] A. Ferrari, P. Spoletini, and S. Gnesi, “Ambiguity and tacit knowl-
edge in requirements elicitation interviews,” Requirements Engi-
neering, vol. 21, no. 3, pp. 333–355, 2016.

[6] A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, R. Bates, D. Jurafsky,
P. Taylor, R. Martin, C. V. Ess-Dykema, and M. Meteer, “Dialogue
act modeling for automatic tagging and recognition of conversa-
tional speech,” Computational linguistics, vol. 26, no. 3, 2000.

[7] T. Spijkman, X. de Bondt, F. Dalpiaz, and S. Brinkkemper, Summa-
rization of Elicitation Conversations to Locate Requirements-Relevant
Information. Berlin, Heidelberg: Springer-Verlag, 2023, p. 122–139.
[Online]. Available: https://doi.org/10.1007/978-3-031-29786-1 9

[8] R. Alvarez and J. Urla, “Tell me a good story: Using narrative
analysis to examine information requirements interviews during
an erp implementation,” ACM SIGMIS Database, vol. 33, 2002.

[9] T. Spijkman, F. Dalpiaz, and S. Brinkkemper, “Requirements elic-
itation via fit-gap analysis: A view through the grounded theory
lens,” in Proc. of CAiSE. Springer, 2021, pp. 363–380.

[10] P. Spoletini, A. Ferrari, M. Bano, D. Zowghi, and S. Gnesi, “In-
terview review: An empirical study on detecting ambiguities in
requirements elicitation interviews,” in Requirements Engineering:
Foundation for Software Quality: 24th International Working Confer-
ence, REFSQ 2018, Utrecht, The Netherlands, March 19-22, 2018,
Proceedings 24. Springer, 2018, pp. 101–118.

[11] P. F. Katina, C. B. Keating, and R. M. Jaradat, “System require-
ments engineering in complex situations,” Requirements engineer-
ing, vol. 19, pp. 45–62, 2014.

[12] N. Nahar, S. Zhou, G. Lewis, and C. Kästner, “Collaboration
challenges in building ml-enabled systems: Communication, doc-
umentation, engineering, and process,” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 413–425.

[13] G. Voria, F. Casillo, C. Gravino, G. Catolino, and F. Palomba,
“Online appendix.” [Online]. Available: https://figshare.com/s/
46661b70336a46d66ac8

[14] C. Jones, “Software project management practices: Failure versus
success,” J. Defense Soft w. Eng., vol. 17, pp. 5–9, 2004.

[15] A. Ferrari, T. Huichapa, P. Spoletini, N. Novielli, D. Fucci, and
D. Girardi, “Using voice and biofeedback to predict user engage-
ment during requirements interviews,” arXiv:2104.02410, 2021.

[16] O. Gotel and A. C. W. Finkelstein, “An analysis of the re-
quirements traceability problem,” Proceedings of IEEE International
Conference on Requirements Engineering, pp. 94–101, 1994. [Online].
Available: https://api.semanticscholar.org/CorpusID:5870868

[17] J. Krause, A. A. Kaufmann, and D. Riehle, “The code
system of a systematic literature review on pre-requirements
specification traceability,” 2020. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:236866536

[18] H. van der Aa, C. Di Ciccio, H. Leopold, and H. A. Reijers,
“Extracting declarative process models from natural language,”
in CAiSE, 2019, pp. 365–382.

[19] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software
engineering: A systematic literature review,” 2024. [Online].
Available: https://arxiv.org/abs/2308.10620

[20] Z. Kurtanović and W. Maalej, “Automatically classifying func-
tional and non-functional requirements using supervised machine
learning,” in Proc. of IEEE RE, 2017, pp. 490–495.

[21] T. Spijkman, F. Dalpiaz, and S. Brinkkemper, “Back to the roots:
Linking user stories to requirements elicitation conversations,” in
Proc. of IEEE RE, 2022.

[22] T. Spijkman, S. Brinkkemper, F. Dalpiaz, A.-F. Hemmer, and
R. van de Bospoort, “Specification of requirements and software
architecture for the customisation of enterprise software,” in Proc.
of RE Workshops, 2019, pp. 64–73.

[23] T. Spijkman, S. Molenaar, F. Dalpiaz, and S. Brinkkemper, “Align-
ment and granularity of requirements and architecture in agile
development: A functional perspective,” Information and Software
Technology, vol. 133, p. 106535, 2021.

[24] A. Hepburn and G. B. Bolden, The Conversation Analytic Approach
to Transcription. John Wiley & Sons, Ltd, 2012, ch. 4, pp. 57–76.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/9781118325001.ch4

[25] H. Cheng, J. H. Husen, Y. Lu, T. Racharak, N. Yoshioka,
N. Ubayashi, and H. Washizaki, “Generative ai for requirements
engineering: A systematic literature review,” 2025. [Online].
Available: https://arxiv.org/abs/2409.06741

[26] O. Levy, Y. Goldberg, and I. Dagan, “Improving distributional sim-
ilarity with lessons learned from word embeddings,” Transactions
of the association for computational linguistics, vol. 3, 2015.

[27] A. Ferrari, G. O. Spagnolo, and S. Gnesi, “Pure: A dataset of
public requirements documents,” in 2017 IEEE 25th International
Requirements Engineering Conference (RE), 2017, pp. 502–505.

[28] V. Ivanov, A. Sadovykh, A. Naumchev, A. Bagnato, and
K. Yakovlev, “Extracting software requirements from unstructured
documents,” 2022.

[29] C. J. van Rijsbergen, “Information retrieval,” in ACM SIGSPATIAL
International Workshop on Advances in Geographic Information Sys-
tems, 1979.

https://doi.org/10.1007/978-3-031-29786-1_9
https://figshare.com/s/46661b70336a46d66ac8
https://figshare.com/s/46661b70336a46d66ac8
https://api.semanticscholar.org/CorpusID:5870868
https://api.semanticscholar.org/CorpusID:236866536
https://api.semanticscholar.org/CorpusID:236866536
https://arxiv.org/abs/2308.10620
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118325001.ch4
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118325001.ch4
https://arxiv.org/abs/2409.06741

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

[30] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” 2019.

[31] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” 2013.

[32] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enrich-
ing word vectors with subword information,” arXiv preprint
arXiv:1607.04606, 2016.

[33] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors
for word representation,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, Oct.
2014, pp. 1532–1543. [Online]. Available: https://aclanthology.
org/D14-1162

[34] R. Kohavi et al., “A study of cross-validation and bootstrap for
accuracy estimation and model selection,” in Ijcai, vol. 14, no. 2.
Montreal, Canada, 1995, pp. 1137–1145.

[35] P. Domingos, “A few useful things to know about machine
learning,” Commun. ACM, vol. 55, no. 10, p. 78–87, oct 2012.
[Online]. Available: https://doi.org/10.1145/2347736.2347755

[36] C. J. Burges, “A tutorial on support vector machines for pattern
recognition,” Data mining and knowledge discovery, vol. 2, no. 2, pp.
121–167, 1998.

[37] N. Reithinger and M. Klesen, “Dialogue act classification using
language models.” in EuroSpeech. Citeseer, 1997, pp. 2235–2238.

[38] Y. Zhang, F. Meng, P. Li, P. Jian, and J. Zhou, “Context tracking
network: Graph-based context modeling for implicit discourse re-
lation recognition,” in Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2021, pp. 1592–1599.

[39] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta,
S. Yoo, and J. M. Zhang, “Large language models for software
engineering: Survey and open problems,” 2023.

[40] H. Touvron and e. al., “Llama 2: Open foundation and fine-tuned
chat models,” 2023.

[41] T. B. Brown and e. al., “Language models are few-shot learners,”
2020.

[42] D. Zowghi and V. Gervasi, “The three cs of requirements: Con-
sistency, completeness, and correctness,” Proceedings of 8th Interna-
tional Workshop on Requirements Engineering: Foundation for Software
Quality, (REFSQ’02), 04 2003.

[43] J. Mund, D. Mendez Fernandez, H. Femmer, and J. Eckhardt,
“Does quality of requirements specifications matter? combined
results of two empirical studies,” in 2015 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), 2015, pp. 1–10.

[44] F. Dalpiaz, P. Gieske, and A. Sturm, “On deriving conceptual
models from user requirements: An empirical study,” Information
and Software Technology, vol. 131, p. 106484, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0950584920302263

[45] “Ieee recommended practice for software requirements specifica-
tions,” IEEE Std 830-1998, pp. 1–40, 1998.

[46] O. C. Robinson, “Sampling in interview-based qualitative re-
search: A theoretical and practical guide,” Qualitative research in
psychology, vol. 11, no. 1, pp. 25–41, 2014.

[47] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method
for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting of the Association for Computational Linguis-
tics (ACL), 2002, pp. 311–318.

[48] C.-Y. Lin, “ROUGE: A package for automatic evaluation of
summaries,” in Text Summarization Branches Out. Barcelona,
Spain: Association for Computational Linguistics, Jul. 2004, pp.
74–81. [Online]. Available: https://aclanthology.org/W04-1013

[49] S. Banerjee and A. Lavie, “METEOR: An automatic metric for MT
evaluation with improved correlation with human judgments,” in
Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Summarization, J. Goldstein,
A. Lavie, C.-Y. Lin, and C. Voss, Eds. Ann Arbor, Michigan:
Association for Computational Linguistics, Jun. 2005, pp. 65–72.
[Online]. Available: https://aclanthology.org/W05-0909

[50] N. Dalkey and O. Helmer, “An experimental application
of the delphi method to the use of experts,” Management
Science, vol. 9, no. 3, pp. 458–467, 1963. [Online]. Available:
https://doi.org/10.1287/mnsc.9.3.458

[51] OpenAI, “Chatgpt,” 2024. [Online]. Available: https://openai.
com/chatgpt

[52] ——, “Gpt-4 technical report,” 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:257532815

[53] P. Rodeghero, S. Jiang, A. Armaly, and C. McMillan, “Detecting
user story information in developer-client conversations to gen-
erate extractive summaries,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), 2017, pp. 49–59.

[54] A. Van Lamsweerde, R. Darimont, and E. Letier, “Managing con-
flicts in goal-driven requirements engineering,” IEEE transactions
on Software engineering, vol. 24, no. 11, pp. 908–926, 1998.

[55] M. Elsner and E. Charniak, “You talking to me? a corpus and
algorithm for conversation disentanglement,” in Proceedings of
ACL-08: HLT, 2008, pp. 834–842.

[56] V. Rawte, P. Priya, S. M. T. I. Tonmoy, S. M. M. Zaman, A. Sheth,
and A. Das, “Exploring the relationship between llm hallucina-
tions and prompt linguistic nuances: Readability, formality, and
concreteness,” 2023.

AUTHORS’ BIOGRAPHIES

Gianmario Voria is a Ph.D. Student at the Uni-
versity of Salerno (Italy). His research covers
software engineering for AI, with a particular
focus on ethics and fairness, human and social
aspects of software engineering, and empirical
software engineering.

Francesco Casillo holds a Ph.D. in Computer
Science from the University of Salerno, where
he focused on Natural Language Processing
techniques for the detection of non-functional re-
quirements, including privacy, security, and fair-
ness. His research spans requirements engi-
neering and software maintenance, with a focus
on the application of large language models. He
has presented his work at leading international
venues in software engineering.

Carmine Gravino is a Full Professor at
the University of Salerno, and co-director of
the SQM/Web Engineering Lab. His research
in Software Engineering spans visual model-
ing, machine learning-based prediction, search-
based techniques, and software maintenance.
More recently, he has focused on engineering
educational metaverses and addressing non-
functional requirements such as privacy and se-
curity. He has authored over 100 publications in
international venues.

Gemma Catolino is an Assistant Professor at
the Software Engineering (SeSa) Lab (within the
Department of Computer Science) of the Univer-
sity of Salerno. Her research covers social soft-
ware engineering, software maintenance and
evolution, code quality, and empirical software
engineering. She has co-chaired several work-
shops and conferences, served as co-general
chair for MobileSoft 2024, and serves on leading
SE committees and editorial boards.

Fabio Palomba is an Associate Professor of
Computer Science at the University of Salerno
(Italy). His research covers software mainte-
nance, code quality, and empirical software en-
gineering. He received the 2023 IEEE/TCSE
Rising Star Award and multiple recognitions for
papers and reviewing. He has co-chaired ICPC
2021 and SANER 2024, and serves on leading
SE committees and editorial boards.

https://aclanthology.org/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.1145/2347736.2347755
https://www.sciencedirect.com/science/article/pii/S0950584920302263
https://www.sciencedirect.com/science/article/pii/S0950584920302263
https://aclanthology.org/W04-1013
https://aclanthology.org/W05-0909
https://doi.org/10.1287/mnsc.9.3.458
https://openai.com/chatgpt
https://openai.com/chatgpt
https://api.semanticscholar.org/CorpusID:257532815

	Introduction
	Related Work and Contribution
	RECOVER: A Novel Conversational Requirements Engineering Approach
	Step #1: Classification of Requirements-Relevant Conversation Turns
	Step #2: Processing of Conversation Turns
	Step #3: Generation of System Requirements

	Research Questions and Methods
	Research Questions and Context
	Research Methods for RQ1.1
	Research Methods for RQ1.2-RQ1.3
	Research Methods for RQ2

	Analysis of the Results
	RQ1 - Individual Conversation Turns Assessment
	RQ1.1 - Requirements Classification
	RQ1.2 - Requirements Generation
	RQ1.3 - Perceived Quality

	RQ2 - Entire Conversation Assessment

	Further Analyses and Implications
	RECOVER: An In-Vivo Evaluation
	Broader Discussion and Implications

	Threats to Validity
	Conclusion
	References
	Biographies
	Gianmario Voria
	Francesco Casillo
	Carmine Gravino
	Gemma Catolino
	Fabio Palomba

