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Abstract

Context. Machine Learning (ML) is widely used in critical domains like finance, healthcare,
and criminal justice, where unfair predictions can lead to harmful outcomes. Although bias
mitigation techniques have been developed by the Software Engineering (SE) community, their
practical adoption is limited due to complexity and integration issues. As a simpler alternative,
fairness-aware practices, namely conventional ML engineering techniques adapted to promote
fairness, e.g., MinMax Scaling, which normalizes feature values to prevent attributes linked to
sensitive groups from disproportionately influencing predictions, have recently been proposed,
yet their actual impact is still unexplored. Objective. Building on our prior work that explored
fairness-aware practices in different contexts, this paper extends the investigation through a large-
scale empirical study assessing their effectiveness across diverse ML tasks, sensitive attributes,
and datasets belonging to specific application domains. Methods. We conduct 5,940 exper-
iments, evaluating fairness-aware practices from two perspectives: contextual bias mitigation
and cost-effectiveness. Contextual evaluation examines fairness improvements across different
ML models, sensitive attributes, and datasets. Cost-effectiveness analysis considers the trade-off
between fairness gains and performance costs. Results. Findings reveal that the effectiveness
of fairness-aware practices depends on specific contexts’ datasets and configurations, while cost-
effectiveness analysis highlights those that best balance ethical gains and efficiency. Conclusion.
These insights guide practitioners in choosing fairness-enhancing practices with minimal perfor-
mance impact, supporting ethical ML development.
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1. Introduction

Artificial Intelligence (AI), with Machine Learning (ML) at its core, is rapidly integrating into
daily life, automating decision-making processes [49, 73, 85]. However, its widespread adoption
has raised ethical concerns regarding fairness, defined as an ML model’s ability to make unbiased
decisions without discriminating against specific groups [44]. Often, bias often arises from ML
algorithms’ reliance on historical data, leading to skewed representations [50, 54]. Typically, bias
is linked to sensitive attributes such as gender, race, or age [1, 29]; indeed improper handling of
these attributes can reinforce discrimination [21], as seen in documented ethical incidents like
Facebook’s discriminatory labeling of Black men and Amazon’s biased ranking of LGBTQIA+
books [9, 47, 65, 75]. These cases highlight the urgent need for fair ML software.

To address these concerns, the Software Engineering (SE) and AI research communities
have developed bias mitigation techniques, which operate at different ML development stages
to reduce bias. These techniques fall into three categories: pre-processing (modifying data be-
fore training), in-processing (adjusting learning algorithms during training), and post-processing
(modifying outputs after training) [32, 44]. Typically implemented in fairness toolkits [38], these
solutions have demonstrated effectiveness in empirical experiments [17, 33, 82]. However, fair-
ness is highly context dependent, i.e., the effectiveness of mitigation strategies often varies based
on the specific dataset, task, model, and sensitive attribute involved [25]. This variability may
notably impact practitioners, as it complicates the selection of interventions and limits the gen-
eralizability of findings. In addition, bias mitigation algorithms may affect the implementation
costs [22], other than degrading model performance and reducing user trust [43, 44]. Because of
the reasons above, fairness toolkits and bias mitigation algorithms remain underutilized [23, 38],
with developers either applying fairness measures inconsistently or avoiding them altogether.

To overcome these challenges, recent SE research [70] has proposed fairness-aware practices:
conventional ML engineering practices that are adapted to promote fairness without requiring
specialized toolkits. Examples include data balancing, which addresses class imbalances, and
mutation testing, which reveals fairness violations by evaluating prediction consistency under
slight input variations. As these practices build on techniques familiar to practitioners, they
might lower the barriers and make fairness enhancement more accessible. These practices are
organized across the six ML development stages defined by Burkov [10]: they range from early
stages like “Requirements Elicitation” and “Data Preparation” (e.g., Multi-objective Optimiza-
tion, Data Balancing) to later stages like “Model Maintenance & Evolution” (e.g., Model Out-
comes Analysis). While these practices have been deemed promising by practitioners [71], who
acknowledged their fairness benefits and low implementation effort. On the one hand, their ef-
fectiveness across diverse contexts, ML tasks, and sensitive attributes has not been investigated.
On the other hand, their ability to improve fairness without compromising model performance
remains unclear. Addressing these questions is crucial to assess the viability of fairness-aware
practices and to provide actionable guidance.

◎ Research Objective. Our objective is to empirically evaluate the extent to which
fairness-aware practices can increase ML fairness while not deteriorating performance
for datasets belonging to specific contexts, on different ML tasks, and considering various
sensitive attributes.

In a preliminary investigation on the matter [52], we evaluated fairness-aware practices from
two perspectives. First, we assessed their contextual impact, demonstrating that the effectiveness

2



of individual practices varies depending on the datasets and application domains in which they
are applied. Second, we conducted a cost-effectiveness analysis, providing trade-offs between
fairness improvements and performance degradation. However, the scope of that study was lim-
ited to a single ML task, and only one sensitive attribute. In this paper, we extend our previous
work by providing a more comprehensive investigation involving multiple ML tasks, models,
and sensitive attributes. Moreover, rather than assessing fairness-aware practices as aggregated
groups, we analyze the impact of each practice individually across diverse datasets belonging to
critical contexts. To support this evaluation, we select widely used datasets from prior fairness
research [17, 22, 25], each representative of different real-world application domains, i.e., Re-
cidivism Prediction [25], Economics [4], Marketing [45], Finance [31], and Crime [59]. For each
of these, we consider the ML tasks most associated with it in the literature, such as classification
with Random Forests or clustering with K-means. We then select a set of fairness-aware prac-
tices informed by practitioner insights regarding their fairness impact and adoption frequency
[71]. Finally, we conduct an extensive empirical evaluation involving 5,940 training runs across
combinations of datasets, practices, ML tasks, and sensitive attributes, measuring both fairness
and performance outcomes. Particularly, we adopt a group fairness [44] perspective, evaluating
disparities between groups rather than focusing on individual-level fairness [44].

Our results indicate that Mutation Testing improves fairness across classification tasks, par-
ticularly for the datasets of the Recidivism, Finance, and Crime domains. MinMax Scaling is the
most effective for clustering, especially in the Economics domain. Furthermore, Select Best and
MinMax Scaling generally provide a balance between fairness and performance. Regularization
and Mutation Testing shows promising results in balancing fairness improvements and predictive
accuracy, while Simple and Iterative Imputers contribute to fairness in specific cases.

To summarize, our research provides the following major contributions:

1. A comprehensive empirical study with 5940 experiments of fairness-aware practices with
different combinations of ML tasks, sensitive attributes, and datasets;

2. A dual-perspective analysis focusing on improvements of fairness and potential loss in
performance;

3. An online appendix providing all data and scripts to replicate and verify our study [51];
4. Practical, evidence-based suggestions for practitioners aiming to enhance fairness in real-

world ML systems through a tool that makes our findings actionable, available in our
online appendix [51].

2. Background and Related Work

This chapter presents the fundamental concepts that guide our study. First, we formalize key
notions such as individual and group fairness, clarify the role of sensitive attributes, and discuss
how biases are present in the machine learning (ML) pipeline. Then, we review the state of the
art in ML fairness, analyzing the frameworks, bias-mitigation algorithms, and the evaluations
that motivate our experimental design. This provides the necessary context to understand the
methodology and contributions presented in this study.

2.1. Terminology and Background

ML fairness seeks to ensure that predictions are unbiased with respect to individuals or
groups [74].
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Individual Fairness is the principle that any two similar individuals —according to specific
characteristics— should receive similar outcomes with respect to a given task [24].

Group Fairness refers to the principle that distinct groups—e.g., groups defined by de-
mographics or opportunities—should receive equal treatment, regardless of their characteristics
[44]. In this study, we focus on group fairness because it is widely adopted in empirical research
evaluating fairness-aware methods [50, 54], supported by widely-adopted fairness toolkits [44],
and well-aligned with the types of metrics and datasets selected in our work [25].

Additionally, fairness definitions vary based on which and how sensitive attributes are treated.
Sensitive (or protected) attributes are personal characteristics of groups or individuals that
may lead to discriminatory treatment or influence decision outcomes for specific tasks [44].
Typical examples include particular genders, ethnicities, ages, religions, disabilities, or sexual
orientations [44, 74]. For example, Fairness through unawareness excludes them from deci-
sions [16, 74, 83], while Fairness through awareness explicitly incorporates them to ensure
equitable outcomes [74, 81]. Fairness is now a critical concern in SE and AI, seen as a non-
functional requirement for AI-integrated systems [17, 27, 32, 54, 62]. Bias, i.e., systematic
distortion in data or models, can lead to unfair outcomes [44]. Persistent issues, like gender bias
in hiring [48] or racial bias in facial recognition [64], highlight the need for fairness-aware prac-
tices. Unfairness can arise throughout the ML pipeline, from biased data collection to feature
selection that embeds correlations with sensitive attributes [54, 62].

In previous research bias mitigation techniques were classified into pre-processing, in-
processing, and post-processing approaches.

Pre-processing methods reduce bias by adjusting training data before model learning. Ex-
amples include Fair-SMOTE, which generates synthetic samples [13], and reweighting tech-
niques that modify instance weights [35]. These approaches help address group underrepresen-
tation [64, 77] by improving population representation in training data. In-processing techniques
modify algorithms during training to mitigate bias. For instance, Zhang et al. [80] used adversar-
ial learning, while Chakraborty et al. [14] applied multi-objective optimization. These methods
help prevent reinforcing inequalities [48]. Post-processing methods adjust model outputs to
improve fairness without retraining. Tools like Themis [28] and Aequitas [67] are useful when
retraining is costly or impractical.

2.2. Related Works
Recent research has advanced quantitative evaluations for fairness improvement methods.

Hort et al. [33] introduced Fairea, a tool to benchmark bias mitigation methods. Chen et al. [18]
used Fairea in a large-scale study with seven algorithms, finding that mitigation methods can
reduce accuracy, with effectiveness varying. Zhang and Sun [82] adapted ML fairness methods
for multiple sensitive attributes. Chen et al. [17] benchmarked fairness improvements across
eight techniques, while Hort et al. [32] proposed a new approach to enhance both fairness and
accuracy. De Martino et al. [22] benchmarked bias mitigation algorithms and explored the
trade-offs among social sustainability, i.e., fairness, economic sustainability, and environmental
sustainability. Finally, Fabris et al. [25] performed an analysis of the algorithmic-fairness liter-
ature, screening papers and datasets, such as Adult, COMPAS, and German Credit. Their study
introduces fairness tasks, sensitive attributes, and best-practice recommendations. On this basis,
the authors propose practical guidelines for selecting datasets according to the domain and the
fairness notion under study. Le Quy et al. [37] extend this perspective with an empirical analy-
sis of the more commonly used tabular datasets. Mapping the dependencies between protected
attributes, quantifying the trade-off between predictive utility and fairness, and exposing specific
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biases of the datasets. Their findings underscore that robust fairness evaluation must consider
multiple application domains and sensitive attributes. With these results [37] and the guidelines
of Fabris et al. [25], we designed the dataset-selection strategy adopted in this study.

Despite extensive research, fairness toolkits and bias mitigation techniques remain underused
in practice [23, 38]. This gap stems from context-dependent effectiveness, potential performance
trade-offs, implementation costs, and integration challenges. To address this, Voria et al.[70]
compiled a catalog of fairness-aware practices—standard ML engineering techniques adapted
to address bias—mapped to the six stages of the ML life-cycle[10], including Data Balancing,
Parameter Regularization, and Causal Validation. These are familiar to practitioners and com-
monly used in everyday workflows. Voria et al. [71] also surveyed practitioners on each practice’s
perceived effectiveness, usage frequency, and implementation effort.

However, their evaluation remains primarily qualitative, lacking empirical validation of fair-
ness impact across datasets of diverse application domains. Specifically, it does not assess effec-
tiveness across application domains, ML tasks, or sensitive attributes, nor examine trade-offs be-
tween fairness and performance. Building on our earlier work [52], which provided preliminary
insights into contextual effectiveness and cost-performance trade-offs, this paper offers a broader
empirical evaluation across multiple tasks, models, and sensitive attributes in real-world applica-
tion contexts. In this way, we explicitly integrate the methodological observations of the previous
studies [10, 70, 71] using them as a foundation for our final study. Indeed, acknowledging the
dataset- and task-dependence of ML fairness [26], our work goes beyond fixed dataset–model
evaluations [17, 22]. The scientific novelty of this study lies in its comprehensive, fine-grained
empirical assessment of individual fairness-aware practices, providing evidence-based insights
into their fairness impact and cost-effectiveness across varied settings.

² Our Contribution.

We extend prior research [52] by evaluating fairness-aware practices across tasks, contexts,
and sensitive attributes. We assess their effectiveness in mitigating bias, conduct a cost-
effective analysis to examine the performance-fairness trade-offs, and offer insights to select
suitable fairness strategies based on contextual information.

3. Research Design

The goal of this empirical study is to evaluate the effectiveness of fairness-aware practices in
mitigating bias across different datasets and with different tasks and sensitive attributes, following
and expanding the design of preliminary research [52]. Its purpose is to assess their impact and
associated performance trade-offs across different application scenarios. The study addresses the
perspective of both researchers — interested in performance implications under specific settings
— and practitioners — seeking guidance on integrating fairness practices into ML workflows.
To this end, we define two research questions.

First, we aimed to quantitatively assess the impact of fairness-aware practices on mitigating
bias on specific ML tasks. Building on prior qualitative work based on expert opinions [71],
as well as empirical studies evaluating different specific techniques [17, 22], we sought to of-
fer comprehensive with a systematic assessment to determine whether these practices improve
fairness across different tasks, sensitive attributes, and application domain. This evaluation was
performed in the context of our first research question:
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RQ1 - Fairness Evaluation

To what extent can fairness-aware practices mitigate bias when applied to different tasks,
contexts, and sensitive attributes?

Our second objective was to investigate the performance trade-offs associated with fairness-
aware practices, as it is a fundamental challenge in fairness research [22]. The results of the first
RQ guided our investigation, revealing which fairness-aware practices effectively mitigate bias.
However, improving fairness often comes at the cost of reduced model performance [17, 22],
raising a critical challenge for both researchers and practitioners. Understanding the trade-off
between fairness gains and performance loss is essential for making informed decisions about
adopting fairness-aware practices in real-world applications. Without this knowledge, practition-
ers risk applying techniques that enhance fairness but render models impractical for deployment.
Therefore, we needed to examine the extent to which fairness improvements come at the cost of
performance, allowing us to assess the feasibility of these practices on datasets across different
contexts, leading to the definition of our second research question:

RQ2 - Cost-Effectiveness Evaluation

What is the cost in terms of performance loss against fairness improvements given by the
application of the practices?

Figure 1 provides an overview of our research approach, illustrating the method used to ad-
dress these research questions. The process begins with the selection of datasets and related ML
tasks [25], and then the fairness-aware practices [71]. Afterward, we train models related to the
tasks without any practice. Once trained, these models are evaluated based on fairness by using
the sensitive attributes available in the datasets and performance metrics to get a comparison
baseline. Finally, we repeat the same process for each fairness-aware practice selected, applying
it before training the models. Our study follows the empirical research standards, adhering to the
guidelines of Wohlin et al. [76] and the ACM/SIGSOFT Empirical Standards [56],1 specifically
aligning with the “General Standard” due to the nature of our investigation.

3.1. Objects of the Study
The fairness-aware practices evaluated in this study [70] were selected based on a recent

expert survey [71], which assessed their fairness impact, usage frequency, and implementation
effort. We selected practices that presented a balanced mix of positive fairness impact, good
adoption in practice, and feasible integration into an automated evaluation pipeline. Many ex-
cluded practices, although potentially valuable, were not suited for scalable experimentation due
to their reliance on substantial human intervention or lack of mature tool support. For example,
practices in the ‘Requirements Engineering’ or ‘Software Testing’ categories require domain-
specific manual setup or infrastructures that are either not publicly available or not generalizable
across multiple learning tasks and datasets. The practices selected were well-suited for a detailed
quantitative evaluation across diverse datasets, tasks, and sensitive attributes. Below, we outline
each category, the selected practices, rationale, and implementation choices; Table 1 summarizes
this information.

1Available at: https://github.com/acmsigsoft/EmpiricalStandards.
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Figure 1: Overview of the Research Method Proposed for Our Study.

• Data Balancing mitigates bias in unbalanced datasets [68]. It is considered effective, with
medium-high fairness impact and low implementation effort [71]. Oversampling increases
the minority class frequency; we apply Simple Oversampling, which duplicates under-
represented samples but may risk overfitting. Undersampling reduces the dominant class
size [25, 68]; we use Simple Undersampling to achieve class balance by removing majority
class instances.

• Data Transformation aims to homogenize feature distributions [8]. Though it requires
medium-to-high effort, its fairness impact is significant [71]. Techniques include: Iterative
Imputer, which estimates missing values from other features; Select Best, which chooses
features based on statistical relevance; and Simple Imputer, which fills missing values with
the mean, median, or mode [8, 25, 46].

• Feature Standardization ensures all features contribute equally to the model [39]. It offers
medium-to-high fairness impact with low implementation effort [71]. We use MinMax
Scaling, which normalizes values to ensure uniform feature contributions [61].

• Parameter Regularization promotes fairness across subpopulations [57, 69]. Despite its
high implementation effort, it has strong fairness potential [71]. This practice introduces
constraints, such as penalties, to reduce prediction disparities and mitigate bias [25].

• Metamorphic/Mutation Testing assess prediction consistency under data variations [8].
Chosen for their fairness impact and low implementation effort [71], these techniques mod-
ify data to test model robustness [25]—e.g., adding random noise to verify if a classifier
preserves labels.
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Table 1: Fairness-Aware Practices Selected for Our Study.

Practice Category Practice Implementation Description

Data Balancing Oversampling
Undersampling

Increases the frequency of the minority class
Reduces samples from the dominant class

Data Transformation
Iterative Imputer

Select Best
Simple Imputer

Replaces missing values based on estimates from other features
Selects the most relevant features

Replaces missing values with mean, median, or mode

Feature Standardization MinMax Scaling Normalizes values to a specific range

Parameter Regularization Regularization Adds penalties to reduce prediction disparity

Metamorphic/Mutation Testing Input Variation Modifies input data (e.g., adding noise)

3.2. Subjects of the Study

Datasets Selection. To evaluate fairness-aware practices across domains, we selected widely
used datasets in fairness research and in the literature [25, 37]. Beyond popularity, our selec-
tion was also guided by the goal of ensuring diversity across key dimensions: application do-
main (e.g., healthcare, education, economics), learning tasks (e.g., classification, regression),
and sensitive attributes. These datasets offer variability in structure, target variables, and fairness
concerns, supporting a multifaceted evaluation. Moreover, each dataset reflects a distinct con-
text and includes sensitive attributes explicitly defined in the official documentation [25]. The
selected datasets are visible in Table 2.

• COMPAS dataset (Recidivism prediction): Contains 2013–2014 data used to estimate re-
cidivism risk. This justice-related dataset influences decisions that may perpetuate social
and racial inequalities. Sensitive attributes: Sex, Race [25, 37].

• Adult dataset (Economics): Based on U.S. census data, it predicts whether an individual
earns over $50,000, highlighting economic disparities. Sensitive attributes: Sex, Race
[25, 37].

• Bank Marketing dataset (Marketing): Includes data from a Portuguese bank’s 2008–2013
campaigns to predict deposit subscription, where biased targeting may arise. Sensitive
attributes: Marital status, Age [25, 37].

• German Credit dataset (Finance): Evaluates credit risk to determine loan eligibility, where
fairness is crucial for equitable access to financial services. Sensitive attributes: Gender
status, Age [25, 37].

• Communities and Crime dataset (Crime): Gathers data from 46 U.S. states to predict
violent crime rates, enabling analysis of indirect discrimination at the community level.
Sensitive attribute: Race [25, 37].

Tasks Selection. The selection of machine learning tasks for each dataset was guided by the
task–context ontology introduced by Fabris et al. [25], which systematically maps commonly
used datasets to fairness-related tasks. To maintain consistency with this ontology and ensure
reproducibility, we selected tasks that (i) had been previously implemented in the referenced
studies and (ii) could be instantiated with available public data and standard tooling. Moreover,
we prioritized tasks that appeared across multiple datasets, to preserve comparability and avoid
dataset-specific bias in the evaluation. Table 2 summarizes these tasks and their association with
the datasets.
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• Classification is an ML task aiming to treat similar individuals similarly [11, 24]. Fairness
is typically addressed by equalizing measures across subpopulations [11, 24, 25]. This
work considers: Random Forest, a tree-based method; Logistic Regression, which models
class probabilities via the logistic function; Extreme Gradient Boosting (XGBoost), an
iterative tree-based algorithm; Decision Tree, which splits data by feature values; and
Naı̈ve Bayes, a probabilistic classifier using Bayes’ theorem.

• Regression is essential in predictive modeling [5]. Individual fairness provides similar
predictions to similar individuals and distributing losses uniformly [5, 25]. We consider:
Decision Tree, which splits data to minimize error on a continuous target; and Linear
Regression, which models the relationship between variables using a linear equation.

• Clustering partitions data into homogeneous groups based on feature similarity [20]. Fair-
ness is defined by balanced subgroup distribution or average distance to cluster cen-
ters [20, 25]. We consider: K-means, minimizing intra-cluster variance; K-center, reducing
maximum point-centroid distance; and K-median, minimizing absolute differences.

While datasets such as Adult and COMPAS may appear similar in terms of features and sen-
sitive attributes, the number and type of tasks assigned to each were based on their documented
usage in prior fairness studies [18, 22]. For example, the Adult dataset is widely used across
a broad range of fairness tasks—particularly clustering and regression—making it a good can-
didate for multi-task evaluation. In contrast, although COMPAS appears in the ontology with
multiple tasks, many of them are either highly specialized (e.g., fairness in transfer learning) or
difficult to apply consistently across other datasets. Therefore, tasks were assigned to datasets
not only based on technical feasibility (e.g., clustering applicability), but also on relevance and
replicability according to Fabris et al.’s mapping [25].
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Table 2: Datasets representing each context of our study. For each dataset, we report the sensitive attributes and tasks
selected for our evaluation. Task assignment was guided by the ontology from Fabris et al. [25], considering prior use in
fairness studies, reproducibility, and technical feasibility across datasets.

Dataset Sensitive Attributes Tasks

Compas Sex, Race
Classification - Random Forest

Classification - Logistic Regression
Classification - XGBoost

Adult Sex, Race

Classification - Random Forest
Classification - Logistic Regression

Classification - XGBoost
Clustering - K-mean
Clustering - K-center

Clustering - K-median

Bank Marketing Age, Marital

Classification - Random Forest
Clustering - K-mean
Clustering - K-center

Clustering - K-median

German Credit Age, Gender

Classification - Random Forest
Classification - Logistic Regression

Classification - XGBoost
Classification - Decision Tree

Communities and Crime Race

Classification - Decision Tree
Classification - Naı̈ve Bayesian

Classification - Logistic Regression
Regression - Linear Regression

Regression - Decision Tree

Metrics Selection. For each task, we selected both fairness and performance metrics at the
group level, following established literature [2, 42, 63]. In order to evaluate disparities between
different demographic groups. As shown in Table 3, we measured performance and fairness for
each of the three ML tasks selected, namely classification, clustering, and regression.

• To assess performance, we employed task-specific metrics [41, 53, 72]. For classification
models, we measured Accuracy, which quantifies the percentage of correctly classified in-
stances; Precision, which indicates the proportion of true positive predictions among all
predicted positives; Recall, which evaluates ability to identify all positive instances cor-
rectly; and F1-score, which represents the harmonic mean of Precision and Recall [72].
In clustering tasks, we used the Silhouette Coefficient, which captures both the cohesion
within clusters and their separation from one another [53]. For regression, we relied on
Mean Squared Error (MSE), which computes the average squared difference between pre-
dicted and actual values, and Median Absolute Deviation (MAD), which measures the me-
dian of absolute deviations from the predicted values [41].

• To assess fairness, we applied different metrics depending on the task [2, 42, 63]. All the
selected fairness metrics operate at the group level, as our evaluation specifically focuses
on measuring disparities between demographic groups. In classification, we evaluated
Average Absolute Odds Difference (AAOD), which quantifies disparities in true and false
positive rates between demographic groups; False Discovery Rate Difference (FDRD),
which assesses imbalances in false positive rates, revealing disparities in incorrect classi-
fications; and Disparate Impact (DI), which compares the proportion of positive outcomes
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between protected and non-protected groups [42]. Unlike the other metrics, DI is cen-
tered around one rather than zero. To ensure consistency across fairness measures, we
adjusted it by subtracting one, aligning its balance point with the other metrics without
altering its fundamental meaning. For clustering tasks, fairness was evaluated using Aver-
age Euclidean (AE) distance and Maximum Euclidean (ME) distance, which measure the
average and maximum distances between cluster centroids, respectively, as well as Aver-
age Wasserstein (AW) distance and Maximum Wasserstein (MW) distance, which provide
analogous measures based on the Wasserstein distance [2]. Finally, in regression tasks, we
assessed fairness using Independence, which verifies whether predictions are uncorrelated
with membership in a protected group; Separation, which considers both the protected
group and the target variable when evaluating fairness; and Sufficiency, which ensures that
the model’s predictions contain all necessary information to estimate the target value [63].

Table 3: Fairness and Performance metrics selected to evaluate each task.

Tasks Fairness Metrics Performance Metrics

Classification
Average Abs Odds Difference (AAOD)

False Discovery Rate Difference (FDRD)
Disparate Impact (DI)

Accuracy
Precision

Recall
F1-score

Clustering

Average Euclidean (AE) distance
Maximum Euclidean (ME) distance
Average Wasserstein (AW) distance

Maximum Wasserstein (MW) distance
Silhouette Coefficient

Regression
Separation
Sufficiency

Independence

Mean Squared Error (MSE)
Median Absolute Deviation (MAD)

3.3. Data Collection and Analysis
For both research questions, we conducted experiments using the selected tasks and datasets.

Each model of the selected task was trained independently for its respective dataset without
applying any fairness-aware practices. When multiple sensitive attributes were available in a
dataset, we conducted separate training runs for each attribute. Additionally, we only applied
fairness practices that were compatible with the specific task—for example, techniques that mod-
ify the target variable were not used in unsupervised tasks like clustering. Each training sessions
was repeated 20 times. This repeated training was based on methodological guidance for the
statistical analysis of results of non-deterministic algorithms in software engineering by Arcuri
and Briand [3]. Hence, we adopted a replication strategy that balances reliable estimation, suffi-
cient paired observations for non-parametric significance tests, and a computational budget that
is feasible across all configurations. This balance led us to perform 20 independent training runs
for configuration, as also done by other studies in the software engineering and fairness literature
[7]. In particular, for classification and regression tasks, we used 10-fold cross-validation [36],
averaging the results across the 10 evaluations for each of the 20 training runs. In contrast, clus-
tering training runs were conducted 20 times, each with varying numbers of clusters. We then
assessed fairness and performance levels to establish a baseline for both research questions.

Next, we retrained the same ML models, this time applying the fairness-aware practices indi-
vidually. Similar to the baseline experiments, each training run was repeated 20 times, allowing
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us to conduct a second round of evaluations for fairness and performance. In total, including
both the baseline and the additional experiments, we conducted 5940 experiments, expanding
from our initial set of 45 experiments [52].

RQ1 — Fairness Evaluation. To verify the significance of the obtained results, we adopted
an approach consistent with the preliminary study [52], applying the Shapiro-Wilk and Wilcoxon
signed-rank tests to assess fairness outcomes. These tests allowed us to determine that the dif-
ferences in metric distributions across repeated runs are statistically significant and observe that
they are unlikely to be due to random variation. Nonetheless, they do not in themselves indicate
improvements in fairness. Rather, fairness improvements are grounded in the observed reduc-
tions of group fairness disparities, as measured by metrics such as Demographic Parity Difference
and Equal Opportunity Difference. In other terms, statistical significance is used to support the
robustness of these improvements across multiple runs.

Specifically, the context of our first research question, the evaluation focused exclusively
on fairness metrics. The objective was to determine whether the application of fairness-aware
practices resulted in measurable improvements in fairness across each of the selected datasets.
Unlike the previous study [52], we broadened the scope of this evaluation, shifting the focus
towards individual practices. First, we increased the robustness of the experiments by repeating
each run 20 times for every task and sensitive attribute. This allowed us to apply statistical tests
to verify whether each practice led to a statistically significant increase in fairness compared to
the baseline across all the analyzed metrics. Hence, the application of the tests can confirm the
consistency and robustness of the statistical significance improvements across multiple training
runs, rather than their effectiveness in isolation.

We began by analyzing the normality of the data to select the most appropriate statistical
methods. The Shapiro-Wilk test [30] conducted with a significance level of α = 0.05, revealed
that not all datasets followed a normal distribution. As a result, we adopted non-parametric
methods. Specifically, we applied the Wilcoxon signed-rank test [78] to compare the baseline
with the experiments incorporating fairness-aware practices, testing the null hypothesis of no
significant difference. The use of the Wilcoxon test allowed us to compute p-values and directly
assess statistical significance. In addition to assessing statistical significance, we computed the
effect size to quantify the magnitude of the observed differences. We employed the Cliff’s Delta
test [40], which quantifies the degree of overlap between two distributions, offering an intuitive
interpretation of the probability that a randomly selected observation from one group will be
greater than a randomly selected observation from the other. This allowed us to evaluate not only
whether fairness-aware practices resulted in statistically significant improvements but also the
practical relevance of these improvements against the baseline.

RQ2 — Cost-Effective Evaluation. For the second research question, we followed the same
approach adopted in the first concerning the experiments, based on the methodologies of the
preliminary study [52]. After calculating the performance and fairness metrics, we conducted
a cost-effectiveness analysis [60]. This technique, used to quantify the relationship between the
cost and effectiveness of an intervention, was elaborated in the preliminary study. We evalu-
ated each fairness-aware practice applied during the training of the ML model with respect to
a specific sensitive attribute, assessing its effectiveness in improving fairness versus its cost in
terms of model performance loss. This approach allowed us to quantify and identify the most
efficient technique for balancing fairness and performance. For each experiment in which a
fairness-aware practice was applied, we calculated two fundamental measures: Cost, that is, the
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difference in performance between the baseline model (B) without practices and the model (I)
incorporating fairness-aware practices. Effectiveness that is, the difference in fairness metrics
between fairness-aware models (I) and baseline models (B).

With these two measures, we computed a cost-effectiveness (CE) ratio as follows:

Cost-effectiveness =
PerformanceB − PerformanceI

FairnessI − FairnessB

This metric allowed us to compare fairness-aware practices and identify the one that improves
fairness with the least negative impact on performance. The formula was designed with the un-
derstanding that smaller fairness metrics indicate better equity, while higher performance metrics
reflect greater model efficiency. For the Regression task, where MSE and MAD are error-based
metrics, we inverted the performance loss value to align with the other metrics.

A CE ratio close to zero indicates an ideal trade-off, where fairness improvements are
achieved with minimal performance loss. CE values greater than 1 indicate that fairness gains
come at a disproportionate performance cost, potentially undermining model utility. Conversely,
CE values less than -1 suggest performance improvements at the expense of fairness, which con-
flicts with ethical objectives. Therefore, practices with CE ratios between -1 and 1 suggest a
balanced relationship, where fairness gains are typically made without significantly sacrificing
performance, or even with gains in both fairness and performance. In particular, when both fair-
ness and performance improve (i.e., CE < 0 and the denominator is positive), the fairness-aware
practice yields a win–win outcome and is especially desirable. On the other hand, if both fairness
and performance worsen (i.e., CE > 0 and both differences are negative), the practice should be
reconsidered, as it may harm both model utility and ethical objectives.

We also note that the CE ratio should be interpreted with caution, especially when considered
in isolation. In practical applications, it is important to examine the individual fairness and
performance differences alongside the CE value, as this provides a more nuanced understanding
of how a given practice behaves in a specific context.

For each combination of dataset, task, sensitive attribute, and practice, we calculated the CE
for every performance and fairness metric across 20 experiments, capturing a comprehensive
view of trade-offs. We then aggregated these CE values to derive a single general CE ratio per
practice, representing its overall balance between fairness and performance.

4. Analysis of the Results

In this section, we present the results of the empirical study. All the data and scripts used
to collect results and answer our research questions are available in our online appendix [51].
The discussion of the results is organized around each dataset to improve readability and clar-
ity. However, since model-specific trends could provide additional insights into the effectiveness
of fairness-aware practices, we provide additional analyses for further reading in our online ap-
pendix [51].

4.1. RQ1 — Fairness Evaluation

To answer RQ1, we conducted a comprehensive experimental analysis. Each task was trained
on its corresponding dataset, and fairness metrics were computed with and without applying the
practices, considering sensitive attributes. To assess significance, we used the Wilcoxon signed-
rank test [78], and calculated Cliff’s Delta [40] to estimate effect size. Descriptive statistics

13



were also computed and are available, alongside full experimental data, including non-significant
results and all metrics, in our online appendix [51] for transparency and reproducibility.

Table 4: RQ1 — Results for the COMPAS dataset on classification tasks. Values in the cells indicate the mean value for
each metric across the 20 experiments. Only fairness-aware practices with a statistically significant difference against the
baseline for at least one metric and sensitive attribute were reported. A Light Purple cell marks a significant difference.
The arrow-up (○) marks a shift toward greater fairness (delta ≤ −0.5) based on effect size.

COMPAS Dataset AAOD FDRD DI

Classification - Random Forest Sex Race Sex Race Sex Race

Iterative Imputer 0.121 0.152 ○ 0.057 ○ 0.099 0.311 0.514
Oversampling 0.120 0.162 0.062 0.090 ○ 0.299 0.524
Mutation Testing 0.123 0.072 ○ 0.048 ○ 0.035 ○ 0.160 ○ 0.105 ○

Regularization 0.209 0.250 0.043 ○ 0.045 ○ 0.488 0.985
Simple Imputer 0.125 0.153 0.057 ○ 0.097 0.322 0.522
MinMax Scaling 0.119 0.162 0.064 0.092 0.298 0.524
Select Best 0.113 0.157 0.085 0.097 0.278 ○ 0.498

Classification - Logistic Regression Sex Race Sex Race Sex Race

Undersampling 0.219 0.249 0.029 0.046 0.496 ○ 0.944 ○

Simple Imputer 0.221 0.245 0.032 0.046 0.519 0.996
Regularization 0.208 ○ 0.251 0.043 0.045 0.486 0.991
Ovesampling 0.218 0.248 0.027 0.046 0.494 ○ 0.942 ○

Mutation Testing 0.228 0.125 ○ 0.018 ○ 0.069 0.819 1.053
Select Best 0.212 ○ 0.256 0.023 ○ 0.037 ○ 0.496 ○ 1.012
MinMax Scaling 0.218 0.252 0.034 0.043 0.500 0.991
Iterative Imputer 0.222 0.246 0.030 0.046 0.520 0.999

Classification - XGBoost Sex Race Sex Race Sex Race

Oversampling 0.163 0.198 0.057 0.075 0.395 0.718
Simple Imputer 0.155 0.191 ○ 0.059 0.076 0.397 0.731
Regularization 0.207 0.250 0.043 ○ 0.044 ○ 0.485 0.987
Mutation Testing 0.124 ○ 0.095 ○ 0.059 0.041 ○ 0.168 ○ 0.148 ○

Select Best 0.154 0.204 0.046 0.075 0.388 0.764
Iterative Imputer 0.153 0.194 0.061 0.074 0.392 0.744
MinMax Scaling 0.159 0.199 0.055 0.074 0.395 0.732

Dataset for the Recidivism Context. We assessed the practices in this context through
the COMPAS dataset using three classification tasks, i.e., Random Forest, Logistic Regression,
and XGBoost. In particular, Table 4 shows the results of our statistical analysis, only reporting
practices for which the fairness score significantly changed for at least one metric and sensitive
attribute.

For the classification task using Random Forest, Mutation Testing emerged as the most ef-
fective approach, demonstrating significant fairness improvements across multiple metrics. It
showed positive shifts toward greater fairness for both Sex and Race attributes in FDRD met-
rics (0.048 and 0.035, respectively), and for Sex in DI (0.160). Regularization also performed
notably well, particularly in FDRD metrics for both Sex (0.043) and Race (0.045).

In Logistic Regression models, Select Best demonstrated the most consistent improvements.
It showed particular strength in FDRD for both Sex (0.023) and Race (0.037). Mutation Testing
also performed strongly, especially for FDRD Sex (0.018), with the most substantial fairness
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improvement across all techniques. Undersampling and Oversampling both showed significant
fairness improvements for DI metrics, with particularly strong results for Race (0.944 and 0.942,
respectively). XGBoost classification results revealed that Mutation Testing provided the most
consistent fairness improvements, with significant positive shifts. Regularization also performed
well across FDRD metrics for both Sex (0.043) and Race (0.044).

² Recidivism Context — COMPAS Dataset.

For this dataset, Mutation Testing consistently improves fairness across classifiers, espe-
cially by reducing discrimination across sensitive attributes. Regularization and Select
Best also show strong results, particularly with certain algorithms.

Table 5: RQ1 — Results for the Adult dataset on clustering tasks. Values in the cells indicate the mean value for each
metric across the 20 experiments. Only fairness-aware practices with a statistically significant difference against the
baseline for at least one metric and sensitive attribute were reported. A Light Purple cell marks a significant difference.
The arrow-up (○) marks a shift toward greater fairness (delta ≤ −0.5) based on effect size.

Adult Dataset AAOD FDRD DI

Classification - Random Forest Sex Race Sex Race Sex Race

Iterative Imputer 0.078 0.070 0.003 0.012 0.6878 0.574
Oversampling 0.094 0.078 0.004 0.010 0.683 0.558 ○

Mutation Testing 0.020 ○ 0.144 0.102 0.130 0.160 ○ 0.6717
Regularization 0.070 ○ 0.067 0.010 0.008 0.705 0.591
Undersampling 0.147 0.085 0.019 0.035 0.670 ○ 0.502 ○

MinMax Scaling 0.187 0.141 0.004 0.004 ○ 0.683 0.566
Select Best 0.077 0.065 0.048 0.041 0.660 ○ 0.535 ○

Classification - Logistic Regression Sex Race Sex Race Sex Race

Iterative Imputer 0.110 0.045 0.252 0.035 0.685 0.481
MinMax Scaling 0.190 0.120 0.006 ○ 0.010 ○ 0.853 0.708
Mutation Testing 0.102 ○ 0.350 0.095 ○ 0.075 0.084 ○ 1.351
Regularization 0.159 0.086 0.166 ○ 0.058 0.879 0.732
Undersampling 0.242 0.100 0.287 0.088 0.563 ○ 0.457 ○

Select Best 0.176 0.075 0.013 ○ 0.034 0.842 0.595
Oversampling 0.236 0.101 0.288 0.091 0.558 ○ 0.456 ○

Classification - XGBoost Sex Race Sex Race Sex Race

MinMax Scaling 0.188 0.145 0.003 ○ 0.009 0.673 0.561
Mutation Testing 0.021 ○ 0.124 0.116 0.156 0.181 ○ 0.594
Oversampling 0.151 0.100 0.012 0.011 0.700 0.556 ○

Undersampling 0.146 0.094 0.020 0.030 0.673 ○ 0.524
Select Best 0.067 ○ 0.074 0.006 ○ 0.009 0.675 0.588
Regularization 0.071 0.070 0.011 0.008 0.678 0.577

Dataset for the Economics Context. In this context, we evaluated the Adult dataset [4] us-
ing three classification tasks and three clustering tasks. Tables 5 and 6 present our comprehensive
results. For classification tasks, fairness-aware practices showed varied effectiveness. With Ran-
dom Forest, Mutation Testing yielded significant improvements for Sex in AAOD (0.020) and
DI (0.160). In Logistic Regression, MinMax Scaling was particularly effective for FDRD Sex
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Table 6: RQ1 — Results for the Adult dataset on clustering tasks. Values in the cells indicate the mean value for each
metric across the 20 experiments. Only fairness-aware practices with a statistically significant difference against the
baseline for at least one metric and sensitive attribute were reported. A Light Purple cell marks a significant difference.
The arrow-up (○) marks a shift toward greater fairness (delta ≤ −0.5) based on effect size.

Adult Dataset AE ME AW MW

Clustering - k-mean Sex Race Sex Race Sex Race Sex Race

MinMax Scaling 1.0744 ○ 0.4013 1.0847 ○ 0.4792 ○ 0 ○ 0.0123 ○ 0 ○ 0.0123 ○

Undersampling 6023 6928 43584 17716 0.1889 0.176 0.1889 0.176
Oversampling 7112 7614 59328 17642 0.1928 0.1567 0.1928 0.1567

Clustering - K-center Sex Race Sex Race Sex Race Sex Race

MinMax Scaling 1.188 ○ 0.462 ○ 1.331 ○ 0.659 ○ 0.065 ○ 0.081 ○ 0.065 ○ 0.081 ○

Undersampling 19288 9881 ○ 64080 16552 0.180 0.172 0.180 0.172
Oversampling 17876 18609 71572 31747 0.154 0.190 0.154 0.190

Clustering - K-median Sex Race Sex Race Sex Race Sex Race

MinMax Scaling 1.123 ○ 0.411 ○ 1.169 ○ 0.561 ○ 0.056 ○ 0.034 ○ 0.056 ○ 0.034 ○

Oversampling 2607 5921 17819 14732 0.192 0.148 ○ 0.192 0.148 ○

Undersampling 2428 6518 15278 24428 0.192 0.181 0.192 0.181

(0.006), and Mutation Testing showed notable gains in AAOD Sex (0.102), FDRD Sex (0.095),
and DI Sex (0.084). In XGBoost, both Select Best and MinMax Scaling performed well in FDRD
Sex (0.006 and 0.003), while Mutation Testing improved AAOD (0.021) and DI (0.181) for Sex.

In clustering tasks, only MinMax Scaling and sampling-based approaches (Undersampling,
Oversampling) showed effectiveness. MinMax Scaling displayed remarkable consistency across
K-means, K-center, and K-median, improving all fairness metrics.

The outstanding performance of MinMax Scaling in clustering is rooted in its technical prop-
erties [34, 84]. By scaling features to a uniform range, it prevents dominance by high-magnitude
features in distance calculations [79], which is crucial in clustering algorithms reliant on such
metrics. This mitigates bias from features correlated with sensitive attributes [19, 55].

² Economics Context — Adult Dataset.

For this dataset, the classification tasks demonstrated effectiveness, particularly with Mu-
tation Testing, Select Best, and Sampling strategies. Moreover, the clustering results sug-
gest that MinMax Scaling should be prioritized when addressing fairness concerns in un-
supervised learning contexts.

Dataset for the Marketing Context. This evaluation was performed using the Bank Mar-
keting dataset [45] dataset using one classification task and three clustering tasks, as illustrated
in Tables 7 and 8.

For classification tasks using Random Forest, several fairness-aware practices proved ef-
fective. MinMax Scaling notably improved FDRD for Age (0.004) and DI for Marital Status
(0.013). Sampling-based methods consistently benefited FDRD: Oversampling improved Age
(0.007) and Marital Status (0.008); Undersampling enhanced AAOD for Marital Status (0.014)
and FDRD for Marital Status (0.009). Select Best was particularly effective for FDRD Marital
Status (0.005), while Regularization improved FDRD Age (0.005) and DI Marital Status (0.016).
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Table 7: RQ1 — Results for the Bank dataset on classification tasks. Values in the cells indicate the mean value for
each metric across the 20 experiments. Only fairness-aware practices with a statistically significant difference against the
baseline for at least one metric and sensitive attribute were reported. A Light Purple cell marks a significant difference.
The arrow-up (○) marks a shift toward greater fairness (delta ≤ −0.5) based on effect size.

Bank Marketing Dataset AAOD FDRD DI

Classification - Random Forest Age Marital Age Marital Age Marital

Iterative Imputer 0.021 0.019 0.020 0.021 0.050 0.020
MinMax Scaling 0.019 0.020 0.004 ○ 0.013 0.011 0.013 ○

Mutation Testing 0.035 0.016 ○ 0.050 0.015 0.100 0.100
Oversampling 0.020 0.020 0.007 ○ 0.008 ○ 0.011 0.026
Undersampling 0.013 ○ 0.014 ○ 0.018 0.009 ○ 0.013 0.046
Regularization 0.021 0.021 0.005 ○ 0.013 0.032 0.016 ○

Select Best 0.021 0.022 0.009 ○ 0.005 ○ 0.036 0.031
Simple Imputer 0.023 0.021 0.031 0.019 0.032 0.024

Table 8: RQ1 — Results for the Bank dataset on clustering tasks. Values in the cells indicate the mean value for each
metric across the 20 experiments. Only fairness-aware practices with a statistically significant difference against the
baseline for at least one metric and sensitive attribute were reported. A Light Purple cell marks a significant difference.
The arrow-up (○) marks a shift toward greater fairness (delta ≤ −0.5) based on effect size.

Bank Marketing Dataset AE ME AW MW

Clustering - k-mean Age Marital Age Marital Age Marital Age Marital

MinMax Scaling 0.904 ○ 0.348 ○ 0.989 ○ 0.361 ○ 0.089 ○ 0.007 ○ 0.089 ○ 0.989 ○

Clustering - K-center Age Marital Age Marital Age Marital Age Marital

MinMax Scaling 0.985 ○ 0.384 ○ 1.395 ○ 0.536 ○ 0.151 0.036 ○ 0.151 0.036 ○

Oversampling 173.726 ○ 65.915 267.648 218.714 0.179 0.106 0.179 0.106
Undersampling - 56.890 - 110.410 - 0.1475 - 0.147

Clustering - K-median Age Marital Age Marital Age Marital Age Marital

Oversampling 357.980 7.808 631.949 24.427 0.141 0.01 0.141 0.01
MinMax Scaling 0.962 ○ 0.348 ○ 1.112 ○ 0.366 ○ 0.137 0.006 0.137 0.006
Undersampling - 64.069 - 295.403 - 0.108 - 0.108

In clustering tasks, MinMax Scaling showed strong effectiveness across all three algorithms (K-
means, K-centers, K-median) and fairness metrics.The notable effectiveness of MinMax Scaling
in clustering is due to its transformation of the feature space [34, 84]. Normalization is key to
reducing the influence of features correlated with sensitive attributes [19, 55, 79].

² Marketing Context — Bank Marketing Dataset.

The analysis of this dataset confirms that while several methods enhance fairness in clas-
sification, MinMax Scaling stands out in clustering for its consistent and comprehensive
fairness improvements across all algorithms and metrics.

Dataset for the Finance Context. We used the German Credit dataset [31] on four classifi-
cation tasks. As shown in Table 9, our experiments revealed several patterns in fairness improve-
ments.
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Table 9: RQ1 — Results for the German Credit dataset on classification tasks. Values in the cells indicate the mean
value for each metric across the 20 experiments. Only fairness-aware practices with a statistically significant difference
against the baseline for at least one metric and sensitive attribute were reported. A Light Purple cell marks a significant
difference. The arrow-up (○) marks a shift toward greater fairness (delta ≤ −0.5) based on effect size.

German Credit Dataset AAOD FDRD DI

Classification - Random Forest Age Gender Age Gender Age Gender

Select Best 0.118 0.117 0.054 0.099 0.487 0.456
Mutation Testing 0.036 ○ 0.034 ○ 0.029 0.0209 ○ 0.484 0.389 ○

Oversampling 0.111 0.124 0.031 0.102 0.447 0.316 ○

MinMax Scaling - - 0.04 0.017 ○ - 0.497

Classification - Logistic Regression Age Gender Age Gender Age Gender

Undersampling 0.137 0.148 0.02 0.082 0.415 ○ 0.312 ○

Oversampling 0.145 0.139 0.018 0.081 0.372 ○ 0.308 ○

Select Best 0.121 0.143 0.027 0.035 ○ - 0.790
Regularization 0.119 0.133 0.032 0.049 - 0.752
Mutation Testing 0.034 ○ 0.086 ○ 0.011 0.013 ○ 0.029 ○ 0.309 ○

Iterative Imputer 0.128 0.139 0.042 0.053 - 0.742
MinMax Scaling - - 0.012 0.015 ○ 0.706 0.807

Classification - XGBoost Age Gender Age Gender Age Gender

Mutation Testing 0.040 ○ 0.031 ○ 0.029 0.015 ○ 0.300 ○ 0.138 ○

Regularization 0.114 0.134 0.023 ○ 0.044 0.548 0.755
Undersampling 0.138 0.127 0.032 0.058 0.345 ○ 0.218 ○

MinMax Scaling - - 0.028 0.012 ○ - 0.406

Classification - Decision Tree Age Gender Age Gender Age Gender

Mutation Testing 0.039 ○ 0.043 ○ 0.010 ○ 0.010 ○ 0.023 ○ 0.048 ○

Regularization 0.111 0.136 0.029 0.045 0.520 0.768
Select Best 0.133 0.130 0.0411 0.068 0.311 0.269
Oversampling 0.141 0.125 0.043 0.093 0.436 0.217
Undersampling 0.141 0.139 0.035 0.062 0.201 0.138
MinMax Scaling - - 0.018 ○ 0.017 ○ 0.267 0.155

Mutation Testing was consistently effective across all classification algorithms. For Decision
Tree models, it delivered strong fairness improvements for both Age and Gender (AAOD Age:
0.039, AAOD Gender: 0.043, FDRD Age: 0.010, FDRD Gender: 0.010, DI Age: 0.023, DI
Gender: 0.048). A similar pattern was observed in XGBoost, with Mutation Testing.

In Random Forest models, Mutation Testing again performed well, improving AAOD for
Age (0.036) and Gender (0.034), FDRD Gender (0.0209), and DI Gender (0.389). Additionally,
a separate implementation of MinMax Scaling showed strong results in FDRD Gender (0.017). In
Logistic Regression, effective techniques were more varied: Mutation Testing maintained good
performance across most metrics (AAOD Age: 0.034, AAOD Gender: 0.086, FDRD Gender:
0.013, DI Age: 0.029, DI Gender: 0.309), while MinMax Scaling improved FDRD for both
Age (0.012) and Gender (0.015). Across all classification models, FDRD improvements were
achieved through multiple techniques. For the DI metric, sampling-based methods (Undersam-
pling and Oversampling) were particularly effective in Logistic Regression and XGBoost.
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² Finance Context — German Credit Dataset.

For this dataset, Mutation Testing offers the most consistent and comprehensive fairness
gains across classifiers and sensitive attributes. However, techniques like MinMax Scal-
ing (for FDRD) and sampling-based methods (for DI) demonstrate the value of tailoring
fairness strategies to specific concerns and algorithms.

Table 10: RQ1 — Results for the Crime dataset on classification tasks. Values in the cells indicate the mean value for
each metric across the 20 experiments. Only fairness-aware practices with a statistically significant difference against the
baseline for at least one metric and sensitive attribute were reported. A Light Purple cell marks a significant difference.
The arrow-up (○) marks a shift toward greater fairness (delta ≤ −0.5) based on effect size.

Communities and Crime Dataset AAOD FDRD DI

Classification - Decision Tree Race Race Race

Iterative Imputer 0.301 0.320 ○ 3.015
Select Best 0.349 0.319 3.157
Regularization 0.324 0.270 ○ 3.701
Undersampling 0.322 0.361 2.027 ○

Mutation Testing 0.189 ○ 0.029 ○ 0.224 ○

Oversampling 0.300 0.319 3.110
MinMax Scaling - 0.007 ○ 3.019

Classification - Naı̈ve Bayes Race Race Race

Select Best 0.231 0.159 ○ 6.076
Mutation Testing 0.231 ○ 0.017 ○ 0.223 ○

Regularization 0.372 0.232 ○ 3.536
MinMax Scaling - 0.006 ○ 3.420

Classification - Logistic Regression Race Race Race

Select Best 0.470 ○ 0.10 8.758
Iterative Imputer 0.365 0.110 5.909
Regularization 0.401 0.083 ○ 6.942
Undersampling 0.420 0.202 3.295 ○

Oversampling 0.401 0.200 3.376 ○

Mutation Testing 0.311 ○ 0.021 ○ 0.357 ○

MinMax Scaling - 0.012 ○ 5.91

Dataset for the Crime Context. We evaluated the Communities and Crime dataset [59]
using three classification tasks and two regression tasks. As illustrated in Tables 10 and 11, our
analysis revealed several notable patterns in fairness improvements across different algorithms
and mitigation techniques.

For classification tasks, Mutation Testing consistently delivered superior fairness improve-
ments across all three algorithms. In Decision Trees, it significantly improved all three metrics,
with notable results in FDRD (0.029) and DI (0.224). Similarly, in Naı̈ve Bayes, it achieved sub-
stantial gains in AAOD (0.231), FDRD (0.017), and DI (0.223). This trend continued in Logistic
Regression (AAOD: 0.311, FDRD: 0.021, DI: 0.357).

In regression tasks, Mutation Testing improved all metrics in both Linear Regression and
Decision Trees. In Linear Regression, it yielded optimal results for Separation (1.009), Suffi-
ciency (1.009), and Independence (1.003). This pattern held in Decision Tree regression as well
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Table 11: RQ1 — Results for the Crime dataset on regression tasks. Values in the cells indicate the mean value for
each metric across the 20 experiments. Only fairness-aware practices with a statistically significant difference against the
baseline for at least one metric and sensitive attribute were reported. A Light Purple cell marks a significant difference.
The arrow-up (○) marks a shift toward greater fairness (delta ≤ −0.5) based on effect size.

Communities and Crime Dataset Separation Sufficiency Independence

Regression - Linear Regression Race Race Race

Iterative Imputer 10.983 ○ 4.376 ○ 1.141
Undersampling 14.908 5.057 1.179
Simple Imputer 10.494 ○ 4.225 1.115
Select Best 17.034 8.553 1.001 ○

MinMax Scaling 10.737 ○ 4.343 1.104
Oversampling 15.947 5.485 1.120
Mutation Testing 1.009 ○ 1.009 ○ 1.003 ○

Regularization 12.781 ○ 5.124 1.098

Regression - Decision Tree Race Race Race

Select Best 1.385 ○ 1.142 ○ 1.147 ○

Regularization 3.197 1.762 1.518 ○

Undersampling 3.13 1.770 1.79
Mutation Testing 1.020 ○ 1.019 ○ 1.003 ○

Oversampling 2.393 1.456 1.756

(Separation: 1.020, Sufficiency: 1.019, Independence: 1.003). Select Best also performed well.

² Crime Context — Communities and Crime Dataset.

For this dataset, Mutation Testing yields the most consistent fairness improvements across
classification and regression. MinMax Scaling is particularly effective for classification
FDRD metrics, while Select Best shows strength in regression tasks.

² RQ1 — Summary of the Results.

Overall, Mutation Testing consistently delivers strong fairness improvements across Recidi-
vism, Finance, and Crime datasets in both classification and regression. In Economics,
MinMax Scaling is key for unsupervised learning and performs reliably in Bank Marketing
clustering. While these two methods excel across datasets, Select Best and sampling also
show promise in specific scenarios, highlighting the need for context and dataset-specific
fairness strategies across diverse ML tasks.

4.2. RQ2 — Cost-Effective Evaluation
For RQ2, we evaluated the models’ performance using a cost-effectiveness (CE) analysis

to identify practices that improve fairness with the least negative impact on performance. For
each task, we consider the average CE ratio for every combination of performance and fairness
metrics, calculated across different practices, sensitive attributes, and datasets.

Undersampling. The analysis of the results obtained with the practice of Undersampling,
visible in Table 12, highlights a significant variability in CE values, influenced by the dataset, the
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model used, and the sensitive attribute considered. In some cases, such as Logistic Regression
on COMPAS with the Race attribute (CE = 0.042), it had minimal impact on performance,
suggesting a good trade-off between fairness and accuracy. However, in other scenarios, the loss
in performance outweighed the gains in fairness, as seen with XGBoost on Adult for the Sex
attribute (CE = -45.841). On the other hand, led to simultaneous improvements in both fairness
and performance, such as Logistic Regression on COMPAS for the Sex attribute (CE = 4.262).
Compared to Oversampling, which also showed mixed results, Undersampling, in all practices,
generally demonstrated fewer extreme performance drops, making it a more stable approach in
certain application domains.

Table 12: RQ2 — Results for the Undersampling practice. The table reports, for different combinations of tasks, datasets,
and sensitive attributes, the average cost-effectiveness ratio across the 20 experiments.

Undersampling

Task Dataset (Context) Sensitive Attribute Cost-Effectiveness

Classification - Logistic Regression Recidivism Prediction (COMPAS Dataset) Sex 4.262
Classification - Logistic Regression Recidivism Prediction (COMPAS Dataset) Race 0.042
Classification - Random Forest Economics (Adult Dataset) Sex -7.842
Classification - Random Forest Economics (Adult Dataset) Race -2.784
Classification - XGBoost Economics (Adult Dataset) Sex -45.841
Classification - Logistic Regression Economics (Adult Dataset) Sex -0.204
Classification - Random Forest Marketing (Bank Marketing Dataset) Age 3.549
Classification - Random Forest Marketing (Bank Marketing Dataset) Marital 2.516
Classification - Decision Tree Crime (Communities and Crime Dataset) Race 0.163
Classification - Logistic Regression Crime (Communities and Crime Dataset) Race 0.248
Classification - XGBoost Finance (German Credit Dataset) Age -2.311
Classification - XGBoost Finance (German Credit Dataset) Gender -2.710
Classification - Logistic Regression Finance (German Credit Dataset) Age 0.311
Classification - Logistic Regression Finance (German Credit Dataset) Gender -14.655

Clustering - K-center Economics (Adult Dataset) Race -2.910

Oversampling. The analysis of Oversampling showed mixed results, with significant vari-
ability depending on the dataset, model, and sensitive attribute. In some cases, it balanced fair-
ness and performance, such as Random Forest on COMPAS for Race (CE = 2.199) and German
Credit for Gender (CE = 2.494). However, other cases saw severe performance drops, particu-
larly XGBoost on Adult for Race (CE = -158.781) and K-median clustering on Adult for Race
(CE = -50.889). While some models, like Logistic Regression on COMPAS for Race (CE =
0.574), showed minor improvements. Notably, all results highlight the need for careful evalua-
tion before applying Oversampling, as exhibited by a wider range of CE values, indicating higher
risk in terms of loss of performance but also greater potential fairness benefits in selected cases.

Iterative Imputer. The Iterative Imputer exhibited a high cost in terms of performance loss,
with the obtained results reported in Table 14. For example, Random Forest on COMPAS for the
Race attribute recorded a CE of -27.131, indicating a significant negative impact. However, not
all results were negative: Decision Tree on Crime for the Race attribute (CE = 1.469) showed
fairness benefits without excessively compromising performance. Moreover, Linear Regression
on the Crime dataset for the Race attribute presented a CE of -0.268, suggesting it may be less
detrimental to performance. This method can lead to significant fairness improvements, but it
tends, in general, to introduce more drastic performance losses.
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Table 13: RQ2 — Results for the Oversampling practice. The table reports, for different combinations of tasks, datasets,
and sensitive attributes, the average cost-effectiveness ratio across the 20 experiments.

Oversampling

Task Dataset (Context) Sensitive Attribute Cost-Effectiveness

Classification - Random Forest Recidivism (COMPAS Dataset) Race 2.199
Classification - Logistic Regression Recidivism (COMPAS Dataset) Sex -4.074
Classification - Logistic Regression Recidivism (COMPAS Dataset) Race -0.574
Classification - Random Forest Economics (Adult Dataset) Race 1.463
Classification - Logistic Regression Economics (Adult Dataset) Race -0.930
Classification - Logistic Regression Economics (Adult Dataset) Sex -0.215
Classification - XGBoost Economics (Adult Dataset) Race -158.781
Classification - Random Forest Marketing (Bank Marketing Dataset) Age -0.431
Classification - Random Forest Marketing (Bank Marketing Dataset) Mrital 0.482
Classification - Random Forest Finance (German Credit Dataset) Gender 2.494
Classification - Logistic Regression Finance (German Credit Dataset) Age -0.008
Classification - Logistic Regression Finance (German Credit Dataset) Gender -0.228
Classification - Logistic Regression Crime (Communities and Crime Dataset) Race 0.107

Clustering - K-median Economics (Adult Dataset) Race -50.889
Clustering - K-center Marketing (Bank Marketing Dataset) Age -0.760

Table 14: RQ2 — Results for the Iterative Imputer practice. The table reports, for different combinations of tasks,
datasets, and sensitive attributes, the average cost-effectiveness ratio across the 20 experiments.

Iterative Imputer

Task Dataset (Context) Sensitive Attribute Cost-Effectiveness

Classification - Random Forest Recidivism (COMPAS Dataset) Race -27.131
Classification - Random Forest Recidivism (COMPAS Dataset) Sex -3.338
Classification - Decision Tree Crime (Communities and Crime Dataset) Race 1.469

Regression - Linear Regression Crime (Communities and Crime Dataset) Race -0.268

Simple Imputer. The Simple Imputer showed variable results, as represented in Table 15. In
some cases, it significantly improved fairness, such as with Random Forest on COMPAS for the
Sex attribute (CE = 10.474). This suggests that the imputation strategy effectively mitigated bias
without overly compromising performance. On the other hand, its impact was more limited when
applied to XGBoost on COMPAS for the Race attribute, which yielded a CE of 2.229. Generally
led to more positive CE values, making it a preferable imputation strategy in application domains
where minimizing performance loss is crucial.

Table 15: RQ2 — Results for the Simple Imputer practice. The table reports, for different combinations of tasks, datasets,
and sensitive attributes, the average cost-effectiveness ratio across the 20 experiments.

Simple Imputer

Task Dataset (Context) Sensitive Attribute Cost-Effectiveness

Classification - Random Forest Recidivism Prediction (COMPAS Dataset) Sex 10.474
Classification - XGBoost Recidivism Prediction (COMPAS Dataset) Race 2.229

Regression - Linear Regression Crime (Communities and Crime Dataset) Race 0.008
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Select Best. The Select Best technique generally yielded better results than other practices, as
can be observed in Table 16. Many experiments reported CE values that provide a good trade-off
between fairness and performance. For instance, Linear Regression on Crime for Race (CE = -
0.741) and Logistic Regression on German Credit for Gender (CE = 3.190) demonstrated fairness
improvements with minimal performance loss. Similarly, Random Forest on Bank Marketing
for Marital (CE = 2.558) showed positive fairness outcomes. While some models experienced
performance drops, such as XGBoost on Adult for Sex and Logistic Regression on COMPAS for
Race. Overall, Select Best stands out as one of the more effective techniques, yielding positive
fairness outcomes with fewer performance losses.

Table 16: RQ2 — Results for the Select Best practice. The table reports, for different combinations of tasks, datasets,
and sensitive attributes, the average cost-effectiveness ratio across the 20 experiments.

Select Best

Task Dataset (Context) Sensitive Attribute Cost-Effectiveness

Classification - Random Forest Recidivism (COMPAS Dataset) Sex -3.884
Classification - Logistic Regression Recidivism (COMPAS Dataset) Sex -12.091
Classification - Logistic Regression Recidivism (COMPAS Dataset) Race -5.009
Classification - Random Forest Economics (Adult Dataset) Race -0.283
Classification - Random Forest Economics (Adult Dataset) Sex -24.700
Classification - XGBoost Economics (Adult Dataset) Sex -101.155
Classification - Logistic Regression Economics (Adult Dataset) Sex -0.768
Classification - Random Forest Marketing (Bank Marketing Dataset) Age -1.145
Classification - Random Forest Marketing (Bank Marketing Dataset) Marital 2.558
Classification - Logistic Regression Finance (German Credit Dataset) Gender 3.190
Classification - Naı̈ve Bayes Crime (Communities and Crime Dataset) Race -1.282
Classification - Logistic Regression Crime (Communities and Crime Dataset) Race -3.282

Regression - Linear Regression Crime (Communities and Crime Dataset) Race -0.741

MinMax Scaling. The application of MinMax Scaling showed more balanced CE values
compared to other practices, as visible in Table 17. For Adult, most values were positive, such
as XGBoost on Sex (CE = 2.916) and Random Forest on Race (CE = 0.730). However, some
algorithms had negative impacts, such as Logistic Regression on Race (-0.946). In the financial
dataset, the technique produced some highly positive values, such as Decision Tree on Age (CE
= 25.943), indicating an improvement in fairness with some performance loss. For Crime, the
results were more contained, with Logistic Regression (CE = 0.083) showing a balanced com-
promise. Compared to other techniques, MinMax Scaling exhibited a more consistent balance
between fairness improvements and performance retention.

Regularization. The analysis of Regularization produced highly variable CE values, as ob-
served in Table 18, indicating that its impact on fairness and performance strongly depends on
the dataset and model. Some models showed significant fairness gains, such as Naı̈ve Bayes
on Crime for Race (CE = 31.642) and Logistic Regression on COMPAS for Sex (CE = 4.262).
Similarly, Random Forest on Adult for Sex (CE = 5.980) improved fairness with minimal per-
formance cost. However, other cases experienced sharp performance declines, as XGBoost on
COMPAS for Sex and Random Forest on Marketing for Age. Overall, Regularization appears
effective in improving fairness but requires careful analysis.

Mutation Testing. The analysis of Mutation Testing showed significant trade-offs between
fairness and performance, as seen in Table 19, with several CE values close to zero, indicating
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Table 17: RQ2 — Results for the MinMax Scaling practice. The table reports, for different combinations of tasks,
datasets, and sensitive attributes, the average cost-effectiveness ratio across the 20 experiments.

MinMax Scaling

Task Dataset (Context) Sensitive Attribute Cost-Effectiveness

Classification - Random Forest Economics (Adult Dataset) Race 0.730
Classification - XGBoost Economics (Adult Dataset) Sex 2.916
Classification - Logistic Regression Economics (Adult Dataset) Race -0.946
Classification - Logistic Regression Economics (Adult Dataset) Sex -0.719
Classification - Random Forest Marketing (Bank Marketing Dataset) Age 0.0791
Classification - Random Forest Marketing (Bank Marketing Dataset) Marital 1.673
Classification - Random Forest Finance (German Credit Dataset) Gender 0.132
Classification - Logistic Regression Finance (German Credit Dataset) Gender -0.064
Classification - XGBoost Finance (German Credit Dataset) Gender 0.057
Classification - Decision Tree Finance (German Credit Dataset) Age 25.943
Classification - Decision Tree Finance (German Credit Dataset) Gender 0.428
Classification - Decision Tree Crime (Communities and Crime Dataset) Race -0.712
Classification - Naı̈ve Bayes Crime (Communities and Crime Dataset) Race -0.918
Classification - Logistic Regression Crime (Communities and Crime Dataset) Race 0.083

Regression - Linear Regression Crime (Communities and Crime Dataset) Race 0.042

Clustering - k-mean Economics (Adult Dataset) Race 0.616
Clustering - k-mean Economics (Adult Dataset) Sex 0.770
Clustering - K-median Economics (Adult Dataset) Race 0.247
Clustering - K-median Economics (Adult Dataset) Sex 0.192
Clustering - K-center Economics (Adult Dataset) Race 0.764
Clustering - K-center Economics (Adult Dataset) Sex 0.913
Clustering - k-mean Marketing (Bank Marketing Dataset) Age 1.035
Clustering - k-mean Marketing (Bank Marketing Dataset) Marital 0.312
Clustering - K-median Marketing (Bank Marketing Dataset) Age 1.405
Clustering - K-median Marketing (Bank Marketing Dataset) Marital 0.067
Clustering - K-center Marketing (Bank Marketing Dataset) Age 0.574
Clustering - K-center Marketing (Bank Marketing Dataset) Marital 0.452

minimal performance loss while achieving fairness improvements. For example, Logistic Re-
gression on COMPAS for Sex (CE = 0.412) and Random Forest on Finance for Gender (CE
= 0.002) showed positive fairness effects without significantly harming performance. Similarly,
XGBoost on Finance for Age (CE = 0.369) demonstrated a slight improvement in fairness. How-
ever, some cases exhibited performance deterioration, such as Random Forest on COMPAS for
Sex (CE = -2.137) and Decision Tree on Economics for Race (CE = -0.709). Despite these
outliers, Mutation Testing generally led to more balanced results in all cases.

² RQ2 — Summary of the Results.

The analysis highlights various techniques to improve fairness while minimizing perfor-
mance loss, though their effectiveness varies across models and datasets. Select Best and
MinMax Scaling emerged as generally reliable methods, often achieving a favorable trade-
off. Regularization and Mutation Testing also showed promise, with many cases balancing
fairness improvements and performance. Finally, Simple Imputers and Iterative Imputers
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Table 18: RQ2 — Results for the Regularization practice. The table reports, for different combinations of tasks, datasets,
and sensitive attributes, the average cost-effectiveness ratio across the 20 experiments.

Regularization

Task Dataset (Context) Sensitive Attribute Cost-Effectiveness

Classification - Random Forest Recidivism Prediction (COMPAS Dataset) Sex -18.00
Classification - Random Forest Recidivism Prediction (COMPAS Dataset) Race 1.404
Classification - Logistic Regression Recidivism Prediction (COMPAS Dataset) Sex 4.262
Classification - XGBoost Recidivism Prediction (COMPAS Dataset) Sex -29.259
Classification - XGBoost Recidivism Prediction (COMPAS Dataset) Race 1.423
Classification - Random Forest Economics (Adult Dataset) Sex 5.980
Classification - Logistic Regression Economics (Adult Dataset) Sex 0.214
Classification - Random Forest Marketing (Bank Marketing Dataset) Age 0.260
Classification - Random Forest Marketing (Bank Marketing Dataset) Age -3.562
Classification - Decision Tree Crime (Communities and Crime Dataset) Race 0.163
Classification - Naı̈ve Bayes Crime (Communities and Crime Dataset) Race 31.642
Classification - Logistic Regression Crime (Communities and Crime Dataset) Race 0.248

Regression - Linear Regression Economics (Adult Dataset) Race -0.818
Regression - Decision Tree Economics (Adult Dataset) Race 0.406

demonstrated fairness benefits in specific scenarios.

5. Discussion and Implications

Our findings provide multiple practical implications for practitioners (�) and researchers
(), which we discuss in this section.

5.1. On the Importance of Data Preparation
A key finding is the varied effectiveness of Sampling practices across scenarios. While Un-

dersampling and Oversampling improved fairness in terms of Disparate Impact in datasets like
Adult and models like Logistic Regression, they were less effective in Clustering tasks, where
Scaling worked better. Dataset characteristics also mattered: sampling improved fairness in
COMPAS and Adult but had limited impact on German Credit, suggesting class imbalance plays
a larger role in some cases. These results align with prior work linking ML bias to dataset
properties [13, 50, 54]. Undersampling showed more consistent results than Oversampling,
which yielded a broader range of outcomes. While Oversampling led to fairness gains in some
cases—e.g., Random Forest on COMPAS and German Credit—it also caused notable perfor-
mance drops in others, such as XGBoost. These findings highlight the potential of Oversampling,
but also the need for cautious application to avoid instability in performance [13].

� The original data distribution, especially class imbalance, strongly affects fairness. Prac-
titioners should evaluate imbalances and apply suitable balancing techniques for each task.

Imputation practices showed a trade-off between fairness and accuracy. The Iterative Imputer
improved fairness in some cases but often reduced performance—especially with Random Forest
on COMPAS—due to increased data variability. In contrast, with Decision Trees, it improved
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Table 19: RQ2 — Results for the Mutation Testing practice. The table reports, for different combinations of tasks,
datasets, and sensitive attributes, the average cost-effectiveness ratio across the 20 experiments.

Mutation Testing

Task Dataset (Context) Sensitive Attribute Cost-Effectiveness

Classification - Random Forest Recidivism Prediction (COMPAS Dataset) Sex -2.137
Classification - Random Forest Recidivism Prediction (COMPAS Dataset) Race 0.085
Classification - Logistic Regression Recidivism Prediction (COMPAS Dataset) Sex 0.412
Classification - Logistic Regression Recidivism Prediction (COMPAS Dataset) Race -1.699
Classification - XGBoost Recidivism Prediction (COMPAS Dataset) Sex -0.733
Classification - XGBoost Recidivism Prediction (COMPAS Dataset) Race -0.015
Classification - Random Forest Economics (Adult Dataset) Sex 0.001
Classification - Logistic Regression Economics (Adult Dataset) Sex 0.576
Classification - Logistic Regression Economics (Adult Dataset) Race -0.173
Classification - XGBoost Economics (Adult Dataset) Sex 0.003
Classification - Random Forest Marketing (Bank Marketing Dataset) Marital -0.120
Classification - Random Forest Finance (German Credit Dataset) Gender 0.002
Classification - Random Forest Finance (German Credit Dataset) Age 0.092
Classification - Logistic Regression Finance (German Credit Dataset) Age -0.184
Classification - Logistic Regression Finance (German Credit Dataset) Gender 0.0009
Classification - Decision Tree Finance (German Credit Dataset) Age 0.021
Classification - Decision Tree Finance (German Credit Dataset) Gender 0.001
Classification - XGBoost Finance (German Credit Dataset) Age 0.369
Classification - XGBoost Finance (German Credit Dataset) Gender -0.006
Classification - Decision Tree Crime (Communities and Crime Dataset) Race -0.022
Classification - Naı̈ve Bayes Crime (Communities and Crime Dataset) Race -0.141
Classification - Logistic Regression Crime (Communities and Crime Dataset) Race -0.004

Regression - Linear Regression Economics (Adult Dataset) Race 0.274
Regression - Decision Tree Economics (Adult Dataset) Race 0.709

fairness with minimal accuracy loss, highlighting the model’s role. The Simple Imputer offered
a more balanced outcome, improving fairness while maintaining performance, underscoring the
value of simpler approaches and careful data integrity analysis [12, 58].

 The impact of imputation on fairness and stability is highly model-dependent. Re-
searchers should study how imputation interacts with model architectures, as simpler meth-
ods can sometimes outperform more complex ones.

5.2. Fairness-Aware Improvements are Algorithm-Specific
In our analysis, the role of specific characteristics in the learning algorithms proved to be

important. Indeed, the Feature Selection practices, such as Select Best, proved particularly ef-
fective for linear models like Logistic Regression, often improving fairness while maintaining
acceptable accuracy levels. In contrast, this same technique led to the loss of performance in
classification models such as XGBoost, demonstrating that its success is highly dependent on the
dataset and model structure. These findings emphasize the need for alignment between fairness
interventions and different algorithms because well-matched techniques can lead to improve-
ments in both fairness and performance [6, 13, 50].
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To deepen this analysis, we conducted a series of model-focused evaluations. First, we
grouped all experimental results by model and visualized the average effect size (Cliff’s Delta) of
each fairness-aware practice. This analysis revealed that certain practices—such as Select Best
and Undersampling—consistently achieved moderate-to-large fairness improvements in models
like Decision Trees and Logistic Regression. In contrast, practices such as Regularization and
Iterative Imputation exhibited more inconsistent results, sometimes offering gains and at other
times showing negligible or negative impact. These results confirm that mitigation strategies
interact differently with the inductive biases and optimization dynamics of each algorithm.

Next, we analyzed the consistency of each practice across datasets. For every model-
practice combination, we measured how often a statistically significant fairness improvement
was observed across all datasets. We found that practices like Undersampling and Select Best
were not only effective in average effect size but also demonstrated high cross-dataset con-
sistency—especially when applied to tree-based models. This reinforces the idea that some
model–practice pairings generalize better than others and may be preferred in real-world ap-
plications where robustness is critical.

One of the most striking findings was the exceptional impact of MinMax Scaling in cluster-
ing tasks. Across all Clustering algorithms and in datasets, this method consistently improved
fairness, whereas other practices failed to yield comparable results. This suggests that fairness
concerns are often related to disparities in feature magnitudes, which MinMax Scaling effectively
mitigates. While its effects in Classification were not as pronounced, they still demonstrated
positive contributions, particularly in Financial datasets. MinMax Scaling’s effectiveness in both
Clustering and Classification further supports the notion that different learning models require
distinct fairness interventions [6, 13].

 Researchers should focus on developing fairness interventions that dynamically adjust
based on model architecture and data. The observed differences highlight the need for a
deeper understanding of how fairness-aware practices interact with model learning dynam-
ics.

Regularization practices exhibited highly variable effects, underscoring the need for context-
aware interventions. While effective in improving fairness for models like Naı̈ve Bayes
on Crime, and Random Forest, Logistic Regression, and XGBoost on COMPAS, its impact
was minimal across other datasets and algorithms, often accompanied by significant accuracy
losses—highlighting model complexity as a key factor in fairness optimization [54].

Among all tested practices, Mutation Testing emerged as one of the most consistently ef-
fective interventions. By perturbing data, it addresses discriminatory patterns that influence
predictions. It showed reliable fairness improvements across Random Forest, Logistic Regres-
sion, XGBoost, and Decision Tree models, enhancing metrics such as AAOD, FDRD, and DI
simultaneously. Notably, it was especially impactful for datasets like COMPAS and German
Credit, where historical biases are deeply embedded. Furthermore, Mutation Testing demon-
strated greater stability than most techniques, often improving fairness without substantial per-
formance loss—making it a promising approach for fairness-aware learning [66].

� Practitioners should carefully select fairness interventions based on the specific machine
learning task and model characteristics. Techniques like Mutation Testing and MinMax
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Scaling often improve fairness, but their effectiveness varies. Therefore, it should be inte-
grated into the model selection and evaluation process rather than applied as a one-size-fits-
all solution.

5.3. Differences in Sensitive Features

As an additional aspect, fairness practices vary by sensitive attribute. In COMPAS and Adult,
gains were greater for Gender than Race, while in German Credit, improvements were more
balanced across Age and Gender. Certain metric-attribute pairs, e.g., FDRD for Gender or DI for
Race, consistently performed better. Strong fairness gains for Race in Communities and Crime
highlight dataset-specific biases. These findings align with prior work [17, 22] and stress the
need for attribute- and dataset-specific interventions.

Fairness intervention effectiveness depends on the sensitive attribute, requiring careful strat-
egy selection. � Practitioners should identify the most bias-prone attributes in their data,
while  Researchers should explore how metrics interact with these attributes to design
targeted, context-aware solutions.

5.4. Toward a Context-Specific Fairness-Aware Recommender

Significant differences across datasets show that fairness in machine learning is not a one-
size-fits-all issue but a complex challenge shaped by technical and social factors. Interventions
depend on the model, dataset, sensitive attributes, and societal influences like data biases and his-
torical inequalities. Future research should develop adaptive frameworks that tailor interventions
to specific datasets within specific contexts, balancing performance with social expectations and
addressing the complexity of fairness metrics.

To support this, we propose a preliminary framework to guide the selection of bias-mitigation
strategies. It offers a structured view of the fairness-aware practices we evaluated, along with
their fairness and performance metrics. Powered by a dataset covering various ML application
domains, tasks, and sensitive attributes (see Section 3), and built on our experimental results
(Section 4), the tool allows users to specify their domain and receive tailored suggestions.

Recommendations are presented as Best Practices and Worst Practices, alongside a graphical
visualization to support data-driven decisions. By grounding suggestions in empirical evidence,
the tool assists practitioners and lays the groundwork for expanding fairness-aware recommen-
dation systems. An executable version is available in the online appendix [51].

The proposed tool bridges research and practice. � For practitioners, it offers guidance
on selecting fairness-aware methods suited to specific ML application domains.  For re-
searchers, it facilitates interpretation of results and supports exploration of interventions
across settings. By combining empirical evidence with user-driven recommendations, this
tool provides the basis for the development of fairness-aware recommender systems.
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6. Threats to Validity

This section discusses potential threats to the validity of our empirical study and the strategies
implemented to mitigate them.

Internal Validity. Internal validity concerns whether our results genuinely reflect the factors
under study. One of the principal threats in this regard is the specific implementation choices
made when applying fairness-aware practices. To counter this, we conducted a thorough exam-
ination of existing definitions of fairness-aware practices [70] and ensured that our implemen-
tation decisions were based on the original design of the cataloged practices. The selection of
fairness metrics and performance measures can introduce biases in the evaluation process, as dif-
ferent metrics may lead to varying interpretations of fairness and trade-offs in performance. To
mitigate this risk, we adopted a diverse set of metrics [2, 15, 17, 42, 53, 63, 72], aligned with pre-
vious research [52]. Furthermore, also reliance on a limited number of ML models could impact
the results. To address this, we compared multiple models, including Random Forest, Logistic
Regression, K-means, K-center, and Decision Tree [25]. Nonetheless, we acknowledge that alter-
native implementation choices could produce different results, influencing both the fairness and
performance outcomes. An additional threat concerns the exclusion of certain practices due to
their limited tool support or high implementation complexity. Although our selection prioritized
scalability and reproducibility, we recognize that some excluded practices might yield different
outcomes. Their evaluation remains an important direction for our future research agenda.

External Validity. External validity pertains to the generalizability of our findings beyond
the study’s specific setup. To enhance generalizability, we selected diverse datasets covering dif-
ferent application domains [25] and that are frequently utilized in fairness-related investigations
[17, 22, 42], various ML tasks (classification, clustering, anomaly detection, and regression) [25],
and different protected attributes. Nonetheless, our experimentation may not cover all possible
contexts, and could studies are needed to validate the broader applicability of our findings. To
support replication and further research, all data and scripts are publicly accessible through our
online appendix [51].

Construct Validity. Construct validity reflects how well the study’s measurements align
with the constructs being evaluated. One potential threat is the selection of datasets to represent
different contexts. To address this, we selected widely used datasets [25] that are pertinent to
our focus on fairness-performance trade-offs [13, 17, 22, 42]. Another crucial consideration is
the choice of fairness metrics and performance metrics. In particular, our selection is based on
different metrics for each specific ML task, which are well-established within the literature and
serve as robust measures of fairness [2, 15, 17, 42, 53, 63, 72]. Additionally, the choice of ML
models could influence the results. To ensure reliability, we employed different models that are
common in fairness research [17, 25].

Conclusion Validity. Conclusion validity refers to the reliability of the inferences we draw.
One major threat is the use of statistical tests to determine the significance of fairness improve-
ments. Specifically, our study uses the Wilcoxon signed-rank test [78] to assess statistical sig-
nificance. This test assumes certain data distribution characteristics, and any violation of these
assumptions could compromise the reliability of our results. To address this issue, we evaluated
the data distribution using the Shapiro-Wilk test [30] to check for normality, ensuring we selected
the most appropriate test for reliable conclusions.
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7. Conclusion and Future Work

We extend prior work by empirically evaluating fairness-aware ML practices across high-
stakes domains, examining their effectiveness across tasks, datasets, and sensitive attributes. Re-
sults show that impact varies: some practices significantly improve fairness in certain settings
but not others, highlighting the need for context-specific approaches. Through cost-effectiveness
analysis, we highlight trade-offs between fairness gains and performance loss, offering actionable
recommendations to help practitioners balance both. These findings lay the foundation for future
work, including broader experiments across more fairness-aware practices and datasets, and the
design of tools to support the application of fairness-aware practices in diverse ML scenarios.
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[30] Elizabeth González-Estrada and Waldenia Cosmes. 2019. Shapiro–Wilk test for skew normal distributions based
on data transformations. Journal of Statistical Computation and Simulation 89, 17 (2019), 3258–3272.

[31] Hans Hofmann. 1994. Statlog (German Credit Data). UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5NC77.

[32] Max Hort, Zhenpeng Chen, Jie M Zhang, Mark Harman, and Federica Sarro. [n. d.]. Bias mitigation for machine
learning classifiers: A comprehensive survey. ACM Journal on Responsible Computing 1, 2 ([n. d.]).

[33] Max Hort, Jie M. Zhang, Federica Sarro, and Mark Harman. 2021. Fairea: A Model Behaviour Mutation Approach
to Benchmarking Bias Mitigation Methods. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 994–1006. https://doi.org/10.1145/

3468264.3468565

[34] A. K. Jain, M. N. Murty, and P. J. Flynn. 1999. Data clustering: a review. ACM Comput. Surv. 31, 3 (Sept. 1999),
264–323. https://doi.org/10.1145/331499.331504

[35] Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for classification without discrimination.
Knowledge and information systems (2012).

[36] Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In
Ijcai, Vol. 14. Montreal, Canada, 1137–1145.

[37] Tai Le Quy, Arjun Roy, Vasileios Iosifidis, Wenbin Zhang, and Eirini Ntoutsi. 2022. A survey on datasets for
fairness-aware machine learning. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 12, 3
(2022), e1452.

[38] Michelle Seng Ah Lee and Jat Singh. 2021. The Landscape and Gaps in Open Source Fairness Toolkits. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21).
Association for Computing Machinery, New York, NY, USA, Article 699, 13 pages. https://doi.org/10.

1145/3411764.3445261

[39] P. Ma, S. Wang, and J. Liu. 2020. Metamorphic testing and certified mitigation of fairness violations in NLP
models, Bessiere C. (Ed.). IJCAI International Joint Conference on Artificial Intelligence 2021-January (2020),
458–465. cited By 31.

[40] Guillermo Macbeth, Eugenia Razumiejczyk, and Rubén Daniel Ledesma. 2011. Cliff’s Delta Calculator: A non-
parametric effect size program for two groups of observations. Universitas Psychologica 10, 2 (2011), 545–555.

[41] Yasir Mahmood, Nazri Kama, Azri Azmi, Ahmad Salman Khan, and Mazlan Ali. 2021. Software effort estima-
tion accuracy prediction of machine learning techniques: A systematic performance evaluation. Software Prac.
Experience 52 (06 2021). https://doi.org/10.1002/spe.3009

[42] Suvodeep Majumder, Joymallya Chakraborty, Gina R Bai, Kathryn T Stolee, and Tim Menzies. [n. d.]. Fair
enough: Searching for sufficient measures of fairness. ACM Transactions on Software Engineering and Methodol-
ogy ([n. d.]).

[43] Silverio Martı́nez-Fernández, Justus Bogner, Xavier Franch, Marc Oriol, Julien Siebert, Adam Trendowicz,

32

https://doi.org/10.1145/3531146.3533113
https://doi.org/10.1145/3531146.3533113
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1007/s10618-022-00854-z
https://doi.org/10.1007/s10618-022-00854-z
https://doi.org/10.1007/s10664-023-10402-y
https://doi.org/10.1007/s10664-023-10402-y
https://doi.org/10.1145/3468264.3468565
https://doi.org/10.1145/3468264.3468565
https://doi.org/10.1145/331499.331504
https://doi.org/10.1145/3411764.3445261
https://doi.org/10.1145/3411764.3445261
https://doi.org/10.1002/spe.3009


Anna Maria Vollmer, and Stefan Wagner. 2022. Software engineering for AI-based systems: a survey. ACM
Transactions on Software Engineering and Methodology (TOSEM) 31, 2 (2022), 1–59.

[44] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. 2021. A survey on bias
and fairness in machine learning. ACM Computing Surveys (CSUR) 54, 6 (2021), 1–35.

[45] Sérgio Moro, Paulo Cortez, and Paulo Rita. 2014. A data-driven approach to predict the success of bank telemar-
keting. Decision Support Systems 62 (2014), 22–31.

[46] Fatemeh Nargesian, Abolfazl Asudeh, and H. V. Jagadish. 2022. Responsible Data Integration: Next-generation
Challenges. In Proceedings of the 2022 International Conference on Management of Data (Philadelphia, PA, USA)
(SIGMOD ’22). Association for Computing Machinery, New York, NY, USA, 2458–2464. https://doi.org/

10.1145/3514221.3522567

[47] ABC News. 2009. Amazon restores rankings for gay-themed books. https://abcnews.go.com/Technology/

story?id=7343222&page=1

[48] BBC News. 2018. Google AI project taken down after ethics outcry. https://www.bbc.com/news/

technology-45809919 Accessed: 2025-03-10.
[49] Jianjun Ni, Yinan Chen, Yan Chen, Jinxiu Zhu, Deena Ali, and Weidong Cao. 2020. A survey on theories and

applications for self-driving cars based on deep learning methods. Applied Sciences 10, 8 (2020), 2749.
[50] Tiago P Pagano, Rafael B Loureiro, Fernanda VN Lisboa, Rodrigo M Peixoto, Guilherme AS Guimarães, Gus-
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