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Abstract

Context. The development of machine learning (ML) systems in high-stakes domains has am-
plified concerns about fairness, prompting the creation of fairness toolkits offering metrics and
mitigation techniques. Open-source software (OSS) ecosystems, a critical driver of AI innova-
tion, present a unique opportunity to study the practical adoption of these toolkits. Objective.
This paper aims to empirically characterize the adoption of fairness toolkits in OSS ML projects
by investigating for what purposes they are used and how their usage evolves over time. Meth-
ods. We conducted a mining study on GitHub repositories related to real-world ML projects
that integrate fairness toolkits such as AIF360 and Fairlearn. Starting from 1, 096 candidate
repositories, we applied systematic filtering to identify a final dataset of 20 relevant ML projects
(comprising 5, 777 total commits). We analyzed toolkit usage by examining invoked APIs and
commit histories to uncover patterns of adoption and evolution. Results. Our findings reveal
that fairness toolkits are predominantly used for diagnostic purposes, with analytic components
integrated early in the project lifecycle and rarely modified thereafter. In contrast, mitigation
techniques are infrequently adopted, tend to appear later, and exhibit short, unstable lifespans.
Conclusion. Our results show that the adoption of fairness toolkits in OSS ML projects is limited
and often restricted to initial diagnostic phases, with active mitigation practices remaining rare.
These findings highlight the need for improved support to foster more sustained and effective
integration of fairness practices within open-source development.

Keywords: Software Engineering for Artificial Intelligence; Machine Learning Fairness
Engineering; Fairness Toolkits; Mining Software Repository Study.

1. Introduction

The development of machine learning (ML) systems demands particular attention to non-
functional requirements, which are often difficult to quantify but critically influence social sus-
tainability, i.e., the ability of technologies to promote equitable, inclusive, and long-term societal
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well-being [13, 33, 60]. Among these requirements, fairness has emerged as a particularly press-
ing concern, especially as ML systems are increasingly deployed in high-stakes domains such
as criminal justice, healthcare, finance, and education [34, 38, 39, 54]. In these settings, bi-
ased models risk reinforcing structural inequalities and disproportionately impacting historically
marginalized groups [40, 43]. Ensuring fairness, therefore, is not only a technical challenge but
also a necessary safeguard against the ethical and societal risks posed by algorithmic decision-
making. Unlike properties such as accuracy or latency, fairness is fundamentally an ethical
concept tied to legal norms, social values, and context-specific interpretations, which makes it
particularly difficult to operationalize within technical workflows [35].

In response to these challenges, both the artificial intelligence (AI) and software engineering
(SE) communities have developed a wide range of technical approaches aimed at measuring and
mitigating unfairness. These include analytical fairness metrics to assess bias [32] and various
bias mitigation techniques operating at different stages of the ML pipeline (e.g., pre-, in-, and
post-processing) [18, 27, 61]. While the technical effectiveness [10, 25] and practical adoption
challenges [15, 24, 31, 45] of these solutions have been increasingly studied, investigations have
largely centered on industrial or controlled settings. This leaves a gap in understanding how these
fairness interventions are utilized within the dynamic and decentralized context of open-source
software (OSS) development.

The practical relevance of fairness is further remarked by the significant efforts of practi-
tioners and tool vendors in creating analytical toolkits that implement the research approaches
proposed so far [31], with well-known examples like IBM’s AIF360 [4] and Microsoft’s Fair-
learn [5]. Yet, despite these substantial efforts, it remains important to ask whether they have
effectively translated into practical adoption. Preliminary research has investigated the adoption
of fairness toolkits by analyzing developers’ perspectives through qualitative methods, includ-
ing surveys and interviews conducted in structured industrial settings [15, 24, 31, 45]. While
these studies offer valuable insights into organizational barriers and usability challenges, they
primarily reflect contexts characterized by formalized processes, managerial oversight, and in-
stitutional support. In contrast, the adoption and use of fairness toolkits in open-source software
(OSS) development remains largely unexplored. This gap is particularly significant because OSS
is not just an alternative development environment, but also plays an important role in the
development of AI-enabled systems. Foundational machine learning libraries and frameworks
such as TensorFlow [16], PyTorch [28], and HuggingFace Transformers [58] are developed
and maintained within OSS communities. These ecosystems serve not only as technical infras-
tructure, but also as dynamic spaces for innovation and experimentation, where new AI tools and
practices, including fairness-enhancing techniques, can diffuse rapidly [6]. Indeed, open-source
ecosystems provide access to a wide and diverse set of AI-enabled systems, ranging from foun-
dational machine learning frameworks to applied solutions across multiple domains [12, 21]: as
a proof of that, the GitHub’s 2024 Octoverse report1 highlights that over 70,000 new public AI
projects were created in 2024 alone, marking a 98% year-over-year growth and bringing the total
to nearly 150,000 such projects. The critical contribution of OSS in accelerating AI innovation
makes it a particularly important context for analyzing the adoption of fairness toolkits. It offers a
concrete opportunity to assess whether the efforts of researchers and tool vendors have effectively
translated into practical impact. In addition, analyzing the adoption of fairness toolkits in OSS is
particularly compelling given the distinct characteristics of these communities. Unlike industrial

1GitHub’s 2024 Octoverse report: https://github.blog/news-insights/octoverse/octoverse-2024
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environments previously studied, OSS communities are shaped by decentralized governance,
voluntary contributions, and evolving workflows—factors that may pose distinct challenges for
integrating and sustaining fairness practices [19]. These dynamics may create unique challenges
for integrating fairness practices, raising important questions about the alignment between ex-
isting toolkit designs and the realities of community-driven development. Furthermore, OSS
ecosystems offer a concrete opportunity to assess the practical adoption of fairness toolkits by
mining publicly available software repositories, enabling empirical observation of how fairness-
related tools and practices are incorporated (or not) into real-world development workflows.

Building on these observations, this paper takes a first step toward empirically characterizing
the use of fairness toolkits in open-source ML projects. Specifically, we investigate for what
purposes these toolkits are adopted and how their use evolves over time. By doing so, we pro-
vide concrete evidence of how fairness is addressed in practice, offering insight into developers’
levels of awareness, prioritization, and engagement with fairness concerns. Our findings can
help identify common usage patterns and barriers to adoption, inform the design of more effec-
tive fairness-oriented tools, and establish a baseline for tracking progress toward responsible AI
development in open-source communities. Additionally, this work may raise awareness among
contributors and practitioners, highlighting areas where additional guidance or intervention is
needed. More specifically, the main objective of the study is:

◎ Research Objective. Our objective is to investigate the purpose and evolution of
fairness toolkits in open-source software development communities.

To achieve this objective, we conducted a mining study of GitHub repositories related to
the development of real-world ML projects that implement fairness toolkits. We began by sys-
tematically cataloging the fairness-related API identifiers, i.e., functions, classes, and methods,
offered by major toolkits like AIF360 [4] and Fairlearn [5]. Each identifier was manually clas-
sified based on whether it supports analytics (i.e., fairness measurement) or solutions (i.e., bias
mitigation techniques). We then searched for these API identifiers within GitHub repositories
by analyzing import statements, initially retrieving 1, 096 candidate repositories. Prior to anal-
ysis, we refined this set through manual filtering designed to isolate practical ML applications.
This process resulted in a final dataset of 20 relevant OSS projects (comprising a total of 5, 777
commits overall), representing the current state-of-the-art in detecting the adoption of these
fairness toolkits in applied open-source ML development.

To understand how these toolkits are employed in practice, we first investigated the purpose
behind their adoption by analyzing which types of toolkit endpoints are most frequently used and
by interpreting developers’ intentions as expressed in commit messages. Finally, we explored
longitudinal data from commit histories to trace the evolution of fairness toolkit usage in open-
source repositories. Our analysis reveals several key findings regarding the practical adoption of
fairness toolkits in open-source ML projects. First (RQ1 - Purpose), we observe an imbalance:
developers overwhelmingly utilize toolkit functionalities for analyzing or measuring fairness
(analytics), primarily invoking a narrow set of metric calculation APIs during initial setup or
experimentation phases. Conversely, the adoption of algorithmic solutions for bias mitigation
is rare, suggesting these techniques are not standard practice. Second (RQ2 - Evolution), these
two types of functionalities exhibit distinct evolutionary patterns. Analytic components, once
introduced (often early in the project), tend to persist for long periods with minimal modification,
following a set-and-forget model. Mitigation components, when they appear at all, are typically
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introduced much later, have significantly shorter lifespans, and are rarely modified, indicating
potentially experimental or short-term usage rather than sustained integration. These findings
suggest that while awareness of fairness measurement exists, the active practice of bias mitigation
and continuous fairness monitoring remains underdeveloped in the studied open-source contexts.

To summarize, our research provides the following major contributions:

1. A mining study to gather empirical evidence of the purpose and evolution of fairness toolk-
its in OSS, highlighting the set-and-forget pattern for analytics versus the transient nature
of mitigation solutions;

2. A systematic classification of active ML projects on GitHub implementing ‘Analytics’ and
‘Solutions’ methods available in fairness toolkits to support future research on the adoption
of these instruments;

3. An online appendix providing all data and scripts to replicate and verify our study [8].

2. Background and Related Work

We first provide the background underpinning our research. We then discuss related work,
positioning and motivating our study within the broader context of existing research efforts.

Background. In decision-making contexts, fairness is commonly defined as the absence of
prejudice or favoritism toward individuals or groups based on inherent or acquired characteris-
tics [33, 49]. While fair decision-making is a cornerstone of society, human judgment is often
subject to cognitive biases that can lead to discriminatory outcomes [17, 37]. ML systems, when
developed without consideration for fairness, can replicate and even amplify existing societal
biases [7]. In fact, numerous real-world incidents have demonstrated the tangible consequences
of algorithmic bias [29, 36, 50, 55].

In response to these growing concerns, the SE research community, particularly within the
domain of Software Engineering for Artificial Intelligence (SE4AI), has developed and proposed
a set of metrics, automated techniques, and supporting tools to help practitioners measure and
manage fairness concerns throughout the software development lifecycle. These methods are
typically operationalized in fairness toolkits, which are frameworks and libraries developed by
open-source communities or organizations that incorporate a wide range of fairness-related func-
tionalities to support practitioners in developing more fair ML models [31]. Examples of these
toolkits are the well-known FairLearn [5], designed by Microsoft Research and now maintained
as a community-driven open-source project, and AIF360 [4], developed by IBM.

Fairness toolkits usually provide two different types of functionalities, which are (1) metrics
or visualization tools to analyze bias, and (2) algorithmic solutions to mitigate bias.

Verma et al. [52] pioneered the research on fairness measurement, dividing 20 fairness met-
rics into five groups based on the theoretical definitions. Majumder et al. [32] demonstrated
that many metrics are semantically similar, measuring the same aspect of the data. Furthermore,
they pointed out that most existing fairness criteria are mutually incompatible. They clustered
26 classification metrics into seven groups and four dataset metrics into three groups, with each
group measuring different things against another.

Algorithmic solutions are typically classified into three approaches: pre-processing, in-
processing, and post-processing. Pre-processing methods adjust training data to reduce bias be-
fore model training. An example is the Reweighting technique, provided by the AIF360 toolkit
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[4], that adjusts instance weights to enhance fairness [27]. In-processing techniques modify
learning algorithms to mitigate bias during training. For instance, Zhang et al. [61] used adver-
sarial learning to balance fairness during the training phase of the model, and it is implemented
in various toolkits such as Fairlearn [5]. Finally, post-processing methods operate by adjusting
model outputs to improve fairness without altering the training process. Toolkits such as Themis
[18] and Aequitas [51] provide access to these approaches.

Several empirical studies have investigated the effectiveness of bias mitigation techniques
provided by fairness toolkits. These works, such as those leveraging the Fairea benchmarking
framework [10, 25], have systematically evaluated mitigation strategies across different algo-
rithms and sensitive attributes [9, 13, 62]. While these investigations offer valuable insights—
highlighting, for instance, the trade-offs between fairness and accuracy—their scope has largely
been limited to controlled research environments. As a result, the real-world usage and adoption
of these techniques in software projects remains underexplored.

Related Work and Motivation. While prior work has thoroughly examined the misalign-
ment between fairness toolkits and practitioner needs, much of it has centered on perceived
usefulness, usability challenges, or organizational barriers, rather than on actual usage in the
wild. For instance, Lee and Singh [31] identified gaps between the functionality of open-source
fairness toolkits and the expectations of ML practitioners through interviews, focus groups, and
surveys. Similarly, Holstein et al.[24] and Deng et al.[15] explored industry-facing challenges
in developing fair ML systems, reporting limitations in toolkit usability and integration based on
surveys and observational studies. The main findings of these investigations highlight important
obstacles to fairness adoption. However, they rely primarily on self-reported experiences or con-
trolled engagements, which may not reflect how these toolkits are used, or whether they are used
at all, in real-world ML development workflows.

Beyond technical limitations, structural and organizational dynamics further complicate the
adoption of fairness practices. For example, Rakova et al. [45] examined how internal culture,
team structures, and leadership influence responsible ML practices. Likewise, Ayling et al. [2]
showed that fairness-related accountability mechanisms are typically inward-facing, with limited
transparency or external evaluation. Furthermore, Voria et al. [53] have analyzed why software
practitioners adopt fairness toolkits in the industry through technology acceptance theory, high-
lighting the key role of managerial interventions in fostering adoption.

Taken together, the discussed literature highlights that while fairness toolkits have attracted
substantial research attention, particularly regarding their design, benchmarking, and perceived
utility in formal organizational settings [31], their use in open-source ML development remains
largely unexplored. Prior studies have focused on industry environments, not considering the
unique dynamics of open-source communities, where development is decentralized, volunteer-
driven, and organically structured [19]. Given the central role of OSS in advancing ML inno-
vation [48], and the availability of publicly accessible repositories, this context offers a unique
opportunity to empirically assess whether fairness toolkits are being adopted and how well they
align with real-world development practices.

² Motivation and Contribution.

Despite the growing availability of fairness toolkits and industry-oriented evaluations, we
still lack empirical understanding of how these tools are adopted in open-source ML de-
velopment, an increasingly influential yet understudied domain. Our study addresses this
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gap by systematically mining open-source repositories to investigate the purposes for which
fairness toolkits are employed and how their usage evolves over time. In doing so, we aim
to provide evidence to support both toolkit designers and researchers in understanding how
fairness practices emerge and persist in decentralized, community-driven environments.

3. Research Design

The goal of this study is to empirically examine how fairness toolkits are adopted and used
in open-source machine learning development. The purpose is to shed light on whether, how,
and why fairness interventions make their way into real-world ML repositories beyond corporate
or academic environments, particularly within open-source communities. The study addresses
the perspective of both researchers, who design and evaluate fairness toolkits, and practitioners,
who contribute to and maintain open-source ML projects. By mapping actual usage patterns,
identifying common motivations, and highlighting gaps between intended design and practical
adoption, we aim to provide actionable insights that foster the adoption of fairness toolkits and
promote responsible ML practices.

Fairness toolkits have become a central proposal in responsible AI, offering developers prac-
tical means to audit and mitigate bias. Yet, beyond their theoretical appeal and the increasing
number of available libraries [31], it remains unclear how often and in what contexts these tools
are actually adopted. To understand the practical relevance and application of these toolkits
within open-source ML projects, it is crucial to uncover how they are used and for which pur-
pose. While many toolkits offer both diagnostic tools (e.g., bias metrics and visualizations) and
algorithmic solutions for mitigation [4, 5], it is unclear whether developers engage with these
toolkits only to assess fairness or to address unfairness actively.

Examining this distinction is critical for understanding the practical interest of developers in
the current landscape of ML development, complementing the findings of existing research in in-
dustrial settings [15]. Investigating usage patterns can help determine whether fairness concerns
are integrated throughout the ML workflow or if toolkit usage is limited to surface-level checks.
Furthermore, our objective is to shed light on the intention behind the adoption of fairness toolk-
its by developers, corroborating existing research [53] from an open-source perspective. Hence,
we defined our first research question.

RQ1 - Purpose

For which purpose are fairness toolkits used in open-source repositories?

Beyond the purpose of usage, it is important to examine how toolkit integration evolves over
time within open-source projects. Analyzing whether fairness-related components are persis-
tently maintained, updated, or only introduced temporarily provides insight into whether fairness
is treated as a sustained concern or a one-time evaluation. Assessing adaptation in response to
iterative development reflects engagement with fairness objectives. To evaluate this, we defined
our second research question.

RQ2 - Evolution

How do fairness toolkits evolve in open-source repositories?
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Figure 1: An overview of our research method. The process consists of four main phases: Selecting Subjects, Selecting
Objects, Data Extraction, Data Analysis. Blue blocks denote automated processes, orange blocks represent manual
validation steps, and purple blocks indicate final data artifacts.

Figure 1 provides an overview of our research method. As shown, we first identified the
subjects of the study, namely existing fairness toolkits, through an automated search and manual
refinement. Subsequently, we selected the objects of analysis, i.e., real-world GitHub reposito-
ries that depend on these toolkits, applying a combination of dependency analysis and manual
filtering. The resulting dataset underwent a structured data extraction phase, where commit diffs
were parsed into abstract syntax trees (ASTs), fairness-related API calls were detected, and tem-
poral usage metrics (lifespans) were computed. These artefacts form the empirical basis for the
data analysis phase, through which we systematically address RQ1 (toolkit usage purpose) and
RQ2 (evolution over time). In Figure 1, blue blocks denote automated processes, orange blocks
highlight manual validation steps, and purple blocks represent intermediate or final outputs.

Our study follows empirical research standards, adhering to the guidelines of Wohlin et al.
[57] and ACM/SIGSOFT Empirical Standards [46],2 specifically aligned with “General Stan-
dard” and “Repository Mining Standard” due to the nature of our investigation.

3.1. Subjects and Objects of the Empirical Study

This section describes the process used to select the subjects and objects of our empirical
investigation. First, we describe the criteria and procedure used to identify a representative set of
fairness toolkits and their relevant APIs (the subject of usage analysis). Second, we outline the
process adopted to extract the GitHub repositories and filter them to obtain our final dataset of
ML projects (the object of the study) that expose APIs of these toolkits (Figure 1).

3.1.1. Selecting Fairness Toolkits
To investigate the adoption of fairness toolkits in open-source projects, our first step was

to identify a set of relevant toolkits for our mining approach. To achieve this, we leveraged
literature that explores the current landscape of open-source ML fairness toolkits [15, 31]. These
studies collectively survey and discuss several prominent toolkits, including AIF360, Fairlearn,
Aequitas, Themis-ML, FairML, Pymetrics Audit-AI, GoogleWhat-if tool, and scikit-fairness.

2Available at: https://github.com/acmsigsoft/EmpiricalStandards.
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However, to ensure that the selected toolkits were compatible with our mining approach and
suitable for analysis, we defined four inclusion criteria as shown in Table 1.

Table 1: The four inclusion criteria used to select fairness toolkits for our mining study.

Criterion Description Motivation

1. Python Implementation The toolkit must be primarily implemented in
Python.

Most of the ML open-source
projects are primarily written in
Python.

2. Programmatic API for
Workflow Integration

The toolkit must provide a reliable and
well-documented Application Programming
Interface (API)—including functions, classes, and
methods—specifically designed for developers to
import and call programmatically within their
Python scripts or notebooks.

Our study measures adoption by
detecting these specific code
interactions. This criterion
excludes tools primarily designed
for standalone, interactive
graphical user interfaces without a
primary focus on code-level
integration.

3. Fairness-Specific API The toolkit must provide a clearly identifiable set
of APIs dedicated to fairness tasks (measurement
or mitigation). Its usage, particularly through
import statements, should be reasonably
distinguishable from general-purpose ML
libraries during static analysis.

This criterion favors libraries with
distinct namespaces or modules
explicitly focused on fairness.

4. Open-Source
Availability

The toolkit’s source code must be publicly
accessible to allow for verification and broader
understanding.

Open-source projects can be
analyzed by reading without
copyright restrictions.

The systematic application of these criteria led to the exclusion of certain toolkits mentioned
in the literature. More particularly, we excluded the following:

• GoogleWhat-if Tool: this was excluded as it primarily functions as an interactive visual-
ization tool (often within TensorBoard) and does not offer a conventional programmatic
API for direct integration into typical ML code pipelines - it violates Criterion #2.

• scikit-fairness / scikit-lego: it was excluded because, while offering useful functionalities,
it acts more as an extension library for scikit-learn. Its API usage can be difficult to reliably
distinguish from standard scikit-learn calls via static analysis, potentially impacting the
accuracy of our mining results (it violates Criterion #3).

In contrast, all the other toolkits coming from the analysis of the related literature [15, 31]
satisfied our inclusion criteria. Hence, we included AIF360, Fairlearn, Aequitas, Themis-ML,
FairML, and Audit-AI. Furthermore, we realized that the literature approached in this stage did
not explicitly refer to the TensorFlow Model Remediation (TFMR) library,3 likely because it
gained visibility after the surveys were published (in 2022). Given TensorFlow’s central role in
the ML community, we conducted a targeted manual review of TFMR. Our analysis confirmed
that TFMR meets all technical inclusion criteria: it is Python-based, exposes a programmatic
API (tensorflow model remediation), focuses on fairness, and is open-source. To ensure
broader ecosystem coverage and account for emerging tools, we therefore included TFMR in our
final set of selected fairness toolkits, despite its absence from the initial literature review.

Table 2 reports the final set of toolkits selected for our study.

3https://www.tensorflow.org/responsible_ai/model_remediation?hl=en
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Table 2: The final set of fairness toolkits selected for our study after applying the inclusion criteria.

Toolkit Developer/Main Origin Key Features/Focus

AIF360 [4] IBM Research Comprehensive metrics, mitigation algorithms
(pre-, in-, post-processing).

Fairlearn [5] Microsoft Research Group fairness metrics, mitigation algorithms
(post-processing, reduction-based).

Themis-ML [3] Community/Research Focus on discrimination measurement (e.g.,
causality).

Aequitas [47] UChicago (DSaPP) Bias and fairness auditing, report generation,
practical use cases.

Audit-AI [44] Pymetrics Toolkit for auditing ML models, similar focus to
Aequitas.

FairML [1] Community/Research Emphasis on explainability for fairness, feature
importance for bias.

TensorFlow Model
Remediation [22]

Google Libraries for fairness in TensorFlow ecosystem.

3.1.2. Identifying & Categorizing Toolkits APIs
To empirically study the adoption and purpose of these toolkits, it was necessary to go beyond

the toolkit level to identify the specific APIs that developers import and invoke. These APIs
represent the units of analysis of our quantitative usage analysis. Consequently, compiling a
comprehensive list of API endpoints for each selected toolkit was a necessary prerequisite before
we could systematically develop and implement the automated procedure for detecting their
usage in GitHub repositories. This API identification was first conducted by two authors of this
paper, both of whom have more than five years of experience in software engineering and ML
development, and was later reviewed by all the other authors until a joint agreement was reached.
They conducted a thorough examination of the official documentation for each selected toolkit,
including user guides, tutorials, API references, and code examples.

The primary goal of this examination was to extract all identifiable API identifiers (such as
classes, methods, functions, and other callable objects) that developers can directly import and
invoke to perform fairness-related tasks. Furthermore, to enable a deeper analysis of how these
toolkits are used, each extracted API identifier was categorized based on its primary function.
More specifically, we established two mutually exclusive functional groups:

• Analytics identifiers: these APIs are designed to assess, measure, visualize, or diagnose
fairness and bias without actively modifying the underlying data, model training process,
or predictions. Their purpose is therefore limited to observation and diagnosis, primarily
satisfying the analytical needs of developers. Examples include functions to calculate
fairness metrics (e.g., demographic parity difference) or plot bias visualizations.

• Solutions identifiers: these APIs implement algorithms or techniques that actively inter-
vene to mitigate identified bias. Their purpose is therefore interventional, aiming to ad-
dress fairness concerns. From a practical perspective, this includes modifying the data
(pre-processing, e.g., Reweighing), altering the model learning process (in-processing,
e.g., ExponentiatedGradient), or adjusting the model’s outputs (post-processing, e.g., Cal-
ibratedEqOddsPostprocessing).
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This distinction between observation and diagnosis (Analytics) and active intervention and
mitigation (Solutions) encompasses the spectrum of functionalities offered by the fairness-related
APIs within the selected toolkits. An API either calculates or visualizes a fairness aspect or ac-
tively attempts to alter the system towards a fairer state. Therefore, each identified API identifier
was assigned to exactly one of these two categories.

To ensure inter-rater reliability for this classification task, the first two authors of this paper,
who both have extensive experience in fairness engineering and had previously engaged with the
use of the analyzed toolkits, worked in close collaboration. They jointly examined the docu-
mentation and code examples for each extracted API to determine its primary intended purpose.
Ambiguous cases regarding functionality or classification were discussed immediately to reach
a consensus. After this initial collaborative phase, the preliminary categorization was presented
and discussed during five one-hour meetings with all the remaining authors. We decided to set
a maximum time limit of one hour for these sessions in order to mitigate potential biases due
to fatigue, loss of attention, or variations in concentration. In these sessions, each contested
or unclear case was collectively reviewed, and the rationale followed by the two primary anno-
tators was examined, refined when needed, and formally confirmed by the entire author team.
The resulting comprehensive list of classified API identifiers provided the ground truth for the
subsequent automated search and is available in the online appendix [8].

3.1.3. Selecting and Filtering Repositories: Defining the Objects of Study
After cataloging all fairness-related functionalities provided by the toolkits, we developed

an automated procedure to systematically search GitHub repositories that potentially use these
toolkits. Using the GitHub REST API, we conducted targeted searches within Python source
files (.py) and Jupyter notebooks (.ipynb) for import statements referencing the components
of the identified toolkit. The analysis excluded commented code and verified the actual presence
of import statements in active source code to minimize false positives.

This phase was conducted in March 2025 and yielded an initial dataset of 1, 096 candi-
date repositories. However, preliminary inspection revealed significant heterogeneity, with many
repositories unrelated to practical ML development (e.g., educational materials, replication pack-
ages, and small experiments). Analyzing this entire set could bias findings about the actual
adoption of fairness toolkits by practitioners in sustained development contexts. Therefore, to
ensure our analysis accurately targets relevant practices and to mitigate this potential threat, we
performed a manual classification of all 1, 096 repositories.

The objective was to categorize repositories based on their primary function and purpose,
allowing us to isolate those representing our main objects of study: ‘ML Project’, defined as
repositories focused on the practical application or development of a specific ML model. To
this end, two authors independently classified each repository by applying the categorization
scheme detailed in Table 3. The classification was based on the inspection of multiple artifacts
of the repositories, including README files, directory structures, code comments, and example
usages, to determine whether a repository corresponded to an ‘ML Project’ or belonged to other
types such as ‘Fairness Tool’, ‘ML Tool’, ‘ML Toy Project’, ‘Academic/Educational Repository’,
or ‘Replication Package of a Research Article’. Any classification discrepancies were resolved
through discussion and double-checking.

The manual classification revealed that the vast majority of repositories fall into categories
unrelated to direct application in ML development. Specifically, 25.1% are replication packages
(i.e., projects reproducing experiments) and 23.6% are academic repositories (containing course
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Table 3: The categorization scheme applied during the manual classification.

Category Description

Fairness Tool Toolkits, libraries, frameworks, or platforms that implement fairness techniques
(mitigation, measurement, auditing, etc.)

ML Tool General-purpose tools for developing, training, or managing AI models. Includes
libraries, frameworks, toolkits, or management systems

ML Project Repositories focused on the practical application or development of a specific AI
model

ML Toy Project Small-scale, experimental, or personal projects, often for learning or testing specific
functionalities

Academic/Educational Code for demos, tutorials, or university experiments not directly linked to a
published paper

Replication Package Code created for the reproduction of experiments from scientific papers
Fork of Fairness Tool Forks of known fairness toolkits
Unclassified Repositories with missing/non-English READMEs or whose purpose could not be

determined
Other Repositories not clearly fitting into the preceding categories

materials, tutorials, etc.). These two categories alone account for nearly half of the dataset, high-
lighting the strong presence of fairness toolkits primarily in research and educational contexts,
rather than in applied ML projects. Other categories include repositories implementing fairness
tools themselves (10.5%), general-purpose ML tools (7.7%), and ML toy projects (2.3%), with a
small fraction being forks of fairness toolkits (1.4%) (detailed in Figure 2).

As such, only 31 repositories (2.8% of the initial 1, 096) were classified as potentially meet-
ing the criteria for ‘ML Project’. To ensure the quality and relevance of this subset for analyzing
practical adoption, we performed a final filtering and deduplication process on these 31 candi-
dates, which consisted of the following actions: As such, only 31 repositories (2.8% of the initial
1, 096) were classified as potentially meeting the criteria for ‘ML Project’. To ensure the quality
and relevance of this subset for analyzing practical adoption, we performed a final filtering and
deduplication process, consisting of the following actions:

• We excluded direct forks of projects already selected (6 forks of kserve/kserve), as they
do not represent independent adoption efforts.

• We removed repositories containing largely identical code to another project already in-
cluded (one instance: Stock-CloseCast) to avoid redundancy in the analysis.

• In cases where a single project used multiple toolkits, we corrected the dataset to count the
repository only once (this happened in one case: Healthcare PoC), hence preserving an
accurate project-level granularity.

• We excluded repositories where toolkit imports appeared only in non-executable docu-
mentation or illustrative code snippets (2 instances: AI-Driven-Anomaly-Detection-for-
Mitigating-Quantum-Computing-Attacks and Optimizing-Patient-Selection-for-Primary-
Prevention-ICD-Implantation), as they did not reflect practical usage.

After applying these filtering steps, we obtained the final dataset comprising 20 distinct ‘ML
Project’ repositories. This subset (Table 4) forms the core focus of our subsequent investigation
into the purpose and evolution of fairness toolkit usage. All data pertaining to the classification
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replication package: 275 (25.1%)
academic: 258 (23.6%)
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fairness tool: 115 (10.5%)
other: 95 (8.7%)
ml tool: 84 (7.7%)
ml project: 31 (2.8%)
ml toy project: 25 (2.3%)
fork fairness toolkit: 15 (1.4%)

Figure 2: Distribution of the 1, 096 candidate repositories across the categories defined in Table 3.

and filtering stages are available in our online appendix [8]. Table 4 provides details for each
repository included in this final dataset.

Looking at Table 4, the final set of 20 ML projects exhibits heterogeneity across vari-
ous dimensions. Project popularity varies dramatically, from highly starred repositories like
kserve/kserve (over 4, 000 stars) to many with zero or few stars. Similarly, development activity,
proxied by the number of commits, ranges from established projects with over 1, 700 commits
(kserve/kserve) to projects with very limited commit histories (e.g., fewer than 10 commits for
Healthcare PoC, AirQualityPM25, and content-recommendation). This diversity reflects the
inclusion of projects at different stages of maturity and levels of community engagement, all
selected according to our manual classification criteria (Section 3.1.3). While some reposito-
ries exhibit limited historical activity, their inclusion still provides valuable insights into fairness
toolkit adoption across different stages of project maturity. Analyzing projects at early develop-
ment phases allows us to observe whether and how fairness considerations are integrated from
the outset, and whether adoption patterns differ compared to more established projects. Early-
stage or smaller-scale projects may rely on fairness toolkits differently, for instance, focusing
more on experimentation or initial diagnostics rather than long-term bias mitigation. Including a
diverse set of projects ensures that our analysis captures a broader range of adoption behaviors,
avoiding a bias toward only mature, highly active repositories. The subsequent analysis (Section
3.3) investigates how fairness toolkits are used across this heterogeneous landscape.

Beyond the analysis of the 20 ML Projects presented in this paper, our manual classification
of the initial 1, 096 candidate repositories represents a contribution in itself. This comprehensive
dataset, categorizing repositories according to the scheme in Table 3 (e.g., ML Project, Aca-
demic/Educational, Replication Package, Fairness Tool), provides a resource for the research
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Table 4: The final dataset of 20 ML Projects selected for in-depth analysis, with their key metadata and application
context.

Repository #Stars #Commits First Commit Last Commit #LOC Context

Denbergvanthijs/HCML 0 63 2023-06-08 2023-07-03 1,617 Finance
HaeghJulie/PBL-HGO 0 268 2022-12-27 2023-06-05 9,828 Healthcare
MLOPS-IE7374-Fall2024-G9/mlops-project 1 756 2024-09-19 2024-12-10 9,504 Energy Forecasting
hiaac-finance/credit pipeline 0 245 2023-06-13 2025-02-05 7,418 Finance
IE7374-
MachineLearningOperations/StockPricePrediction

2 169 2024-10-17 2024-12-10 7,998 Finance

madhurima-vanga/Amazon-Customer-Sentiment-
Analyser

0 113 2024-09-30 2024-12-17 3,859 E-commerce

KARSarma/Air-Quality 2 603 2024-09-30 2024-12-09 2,513,466 Environmental
mrudulaacharya/Parkinson-s-Prediction 2 414 2024-10-31 2024-12-09 4,604 Healthcare
Seun-Ajayi/Tourmaline 0 44 2022-09-03 2023-11-01 726 Demographic
alecpanattoni/MissingnessFairnessAnalysis 0 58 2023-01-08 2023-03-15 1,295 Analysis
AyoubMaimmadi/Audieyes 0 147 2024-02-25 2024-05-27 9,445 Healthcare
rajpandeygithub/Automated-BiLingual-Complaint-
System

1 354 2024-09-30 2024-12-09 6,851 Finance

kserve/kserve 4,099 1,771 2019-03-27 2025-04-23 217,505 MLOps Platform
theyorubayesian/cliffhanger 1 43 2021-06-09 2021-11-24 604 Demographic
charutapaliwal/Healthcare PoC 0 3 2024-10-06 2024-10-06 1,544 Healthcare
kanagalasrilakshmi/AirQualityPM25 0 8 2024-12-01 2024-12-01 6,369 Environmental
Surjeet2110/content-recommendation 0 7 2024-07-13 2024-07-13 290 Social
Venkata1106/Stock Price Prediction MLOPS 0 95 2024-11-28 2024-12-09 5,126 Finance
Pranavbp525/PersonalTrainerAI 0 288 2025-01-28 2025-04-24 24,357 Healthcare
KodeJaiSurya/Vibify 2 328 2024-09-28 2024-12-10 2,710 Entertainment

community. It enables further investigations into various facets of fairness toolkit adoption and
usage across different segments of the open-source ecosystem, potentially focusing on contexts
beyond applied ML development, such as educational trends or the structure of replication stud-
ies. The complete classified dataset is available in our online appendix [8] to facilitate such
replication and extension studies.

3.2. Data Extraction

After selecting the ML project repositories, we systematically analyzed their use of fairness
toolkits. Our analysis focused exclusively on the default branch of each repository—typically
main or master—as configured on GitHub, to ensure we captured the primary line of develop-
ment. We adopted an automated, static code analysis approach that examined both the complete
commit history and the most recent state of each default branch. To trace the evolution of toolkit
usage over time, we analyzed every commit involving changes to Python source files (.py) or
Jupyter Notebooks (.ipynb), the most common formats in ML development [20, 42, 56]. For
each of these changes, we applied code parsing techniques to detect the introduction, removal,
or modification of calls to the previously identified fairness-related components.

For the parsing step, we built on top of similar previous work [11, 23]. In-depth, for .py files,
we parsed the Python source code into its corresponding Abstract Syntax Tree (AST) structure.
This tree representation enables a precise analysis of the code’s syntax, distinguishing function
and method calls from other language elements, such as variables or comments. We traversed
the AST, identifying nodes that represent function or method invocations (i.e. call nodes).
For .ipynb, the process first involved programmatically extracting the executable Python code
contained within the notebook’s cells. This extracted code was then parsed into an AST, and the
same call detection logic used for .py files was applied.
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To detect the introduction or removal of toolkit calls, this AST-based approach compared the
code structure before and after each commit. The comparison of AST between an interval of
commits is not something new; indeed, it is used especially to identify refactoring operations
[59]. Specifically, by comparing the ASTs generated from the pre- and post-commit versions of
a modified file, we identified call nodes representing function or method invocations that were
either removed (present only in the pre-commit AST) or added (present only in the post-commit
AST). We then checked if the name of the function or method being invoked in these added or
removed calls matched any identifier present in our pre-compiled list of fairness toolkit APIs.
In other terms, this differential AST analysis ensures that we capture actual invocation changes
rather than mere mentions in comments or strings.

Our AST traversal logic was designed to capture two common invocation patterns: direct
function or class instantiations (e.g., AdversarialDebiasing()) and attribute-based method
calls (e.g., metrics.ratio(), where ratio is the detected identifier). However, we clarify
that our static analysis captures only explicit API references and does not resolve aliases or
dynamic invocations. For instance, an invocation like AD() after an import statement from
aif360 import AdversarialDebiasing as AD would not be detected. This conservative
design choice prioritizes precision over recall, ensuring that all detected calls are unambiguously
attributable to a known fairness toolkit API. While this approach might under-report the absolute
number of usages, it provides a reliable and precise lower bound on toolkit adoption.

For each instance of a fairness identifier involved in such a detected within a historical com-
mit, we extracted a structured set of metadata, including: commit information (identifier, date),
details of the modified file (path), the specific fairness identifier involved, its functional classifi-
cation (‘Analytics’ or ‘Solutions’) and library of origin, and the type of change observed (e.g.,
‘Call Added’ or ‘Call Removed’). Commits that modified files containing fairness API calls
without altering the set of detected fairness invocations were not recorded as distinct change
events for the purpose of this API usage tracing. In addition to this structural data, which reflects
the widespread use of commit messages for understanding software evolution, we extracted the
associated commit message for every commit identified as relevant in this phase (i.e., a commit
that introduces or modifies the usage of a fairness identifier).

While the commit history analysis tracks changes over time (RQ2), it does not provide a
complete inventory of all fairness toolkit usages present in the final version of the code. To
obtain this comprehensive snapshot of the current integration state (RQ1), we conducted a ded-
icated analysis of the latest commit (snapshot) of each repository. This involved parsing all .py
and .ipynb files within the project’s final state to identify all current usages of fairness iden-
tifiers, recording: the path of the file containing the usage, the specific identifier detected, its
classification (‘Analytics’ or ‘Solutions’), and the library of origin.

The combined output of these two analyses—the evolutionary track from commit history and
the final state inventory of the latest snapshot—constitutes the raw dataset, which contains point-
in-time occurrences and the evolution of fairness toolkit usage within the selected projects. This
dataset was subsequently used for the Data Analysis phase, described in Section 3.3.

3.3. Data Analysis

To address our two research questions, we analyzed the data extracted from the identified
open-source ML repositories (Table 4). This phase involved examining both the current state
of fairness toolkit integration and the motivations behind their usage over time. We employed a
mixed-methods approach combining quantitative analysis of identifier usage with qualitative ex-
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amination of commit messages. All the code used to perform the analyses and the data collected
are available in our online appendix [8].

RQ1 — Purpose. To address RQ1, we first performed a quantitative analysis of the latest
code snapshot. We focused on the distribution and frequency of API calls classified as ‘Analytics’
versus ‘Solutions’ across the 20 ML projects and the different toolkit libraries. This allowed us to
characterize the primary purpose (measurement versus mitigation) of fairness toolkit integration
in the current state of these projects. To gain deeper insights into the developers’ intentions be-
hind integrating or modifying these fairness features, we complementarily analyzed the relevant
commit messages using Topic Modeling. Following a text preprocessing stage designed to clean,
standardize, and focus the messages on meaningful terms (removing noise such as stopwords and
programming keywords) as indicated by Kozanidis et al. [30], we proceeded with the analysis
of commit messages. Then, we applied the Latent Dirichlet Allocation (LDA) algorithm [26].
We optimized the LDA model’s parameters to maximize the coherence of the identified topics,
employing a genetic algorithm-based variant known as LDA-GA [41].

The interpretation of the resulting topics involved a qualitative analysis process conducted
independently by first two authors of the paper. They examined the top representative keywords
generated by the LDA model for each identified topic to discern their semantic focus. Based
primarily on these keywords, the authors collaboratively assigned a concise and meaningful the-
matic label that summarizes the core concept or activity represented (e.g., ‘Model Update’, ‘Ini-
tial Setup’). Any initial disagreements between the two annotators were resolved through discus-
sion to reach a shared consensus. Finally, the resulting topic labels were reviewed and validated
by the remaining authors to confirm their coherence and consistency. This keyword-driven inter-
pretation helped us uncover recurring themes and gain insights into the developers’ rationale for
integrating or modifying fairness-related code.

RQ2 — Evolution. To address RQ2, we analyzed the longitudinal data derived from the
commit history. For each detected usage event (addition or removal) of a specific fairness identi-
fier invocation within a repository, we calculated its usage lifespan. This lifespan represents the
time elapsed between the commit where the invocation was first added and the commit where it
was last observed as removed (i.e., no longer detected in the post-commit AST compared to the
pre-commit AST). If an invocation, once added, was never detected as removed throughout the
analyzed history, its lifespan extended to the date of the last analyzed commit. Additionally, we
counted the number of intermediate commits that modified the file containing the specific iden-
tifier invocation during its calculated lifespan, regardless of whether the modification affected
the fairness API call itself. Performing this analysis separately for ‘Analytics’ and ‘Solutions’
identifiers allowed us to compare their evolutionary dynamics. By examining the distributions
of these lifespans and intermediate commit counts, we assessed usage persistence (long-term vs.
transient) and the level of development activity for the integration.

Furthermore, to visualize the overall temporal presence and activity per toolkit library, we
generated timeline charts. Each chart displays horizontal bars per library, spanning from the
earliest first usage date to the latest last usage date observed for any identifier of the library across
all projects. Overlaid on these bars are markers indicating the timestamps of the intermediate
commits that modified files containing APIs from that library.

4. Analysis of the Results

This section presents the results of our study for each of the two defined research questions.
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Table 5: Frequency of fairness module invocations in the final code snapshot of the 20 ML Projects, sorted by count.

Module Count Type

fairlearn.metrics 50 Analytics
aif360.sklearn.metrics 27 Analytics
aif360.metrics 7 Analytics
src.aequitas.group 4 Analytics
themis ml.metrics 4 Analytics
aif360.sklearn.inprocessing 3 Solutions
src.aequitas.bias 3 Analytics
aif360.sklearn.postprocessing 2 Solutions
src.aequitas.fairness 2 Analytics
src.aequitas.plotting 2 Analytics
aif360.algorithms.postprocessing 1 Solutions
fairlearn.postprocessing 1 Solutions

4.1. RQ1 — Purpose

To understand why developers rely on fairness toolkits, we combined a static analysis of the
latest code snapshot with a semantic evaluation of commit histories. First, our analysis of the
latest snapshot reveals a pronounced disparity in how these toolkits are used: among the 106
fairness API invocations identified across the 20 ML projects, 99 (93.4%) target analytics com-
ponents, such as computing metrics or visualizing bias issues, while only 7 calls (6.6%) invoke
bias mitigation algorithms. In other words, developers overwhelmingly use fairness toolkits to
measure or expose bias, rather than to correct it.

This pattern is reinforced when we examine the distribution of API calls at the module level.
Two metric modules dominate usage: fairlearn.metrics from FairLearn [5] accounts for 50
calls and aif360.sklearn.metrics from AIF360 [4] for 27 (detailed in Table 5). Combined,
these two modules alone account for 77 invocations, representing 72.6% of all 106 fairness API
calls identified in our dataset. By contrast, modules that implement mitigation strategies are
rarely used. For example, aif360.sklearn.inprocessing from AIF360 [4] appears only
three times, and all other solution modules are referenced once or twice at most. Hence, we
conclude that the current use of fairness toolkits is mainly diagnostic rather than interventional.

To better understand developers’ intent when introducing or modifying fairness-related code,
we focused on the 128 commits identified through our historical analysis (Section 3.2) that
specifically introduced, removed, or otherwise altered the usage of fairness toolkit APIs. We
analyzed the messages of these commits using topic modeling (LDA-GA) [41]. Unlike manual
coding based on a predefined codebook, LDA-GA is an unsupervised algorithm that discovers
latent thematic structures (topics) from the textual data by identifying co-occurring patterns of
words. While the model surfaced 17 latent topics, four emerged as clearly dominant, collec-
tively accounting for 76% of the commit messages, as shown in Figure 3. These topics represent
common usage patterns:

• ‘Update model/feature’ (35 commits): fairness checks are preserved or adjusted as part
of broader model or pipeline updates. For example, a commit with the message “Update
#Feature selection and model predictions” falls under this theme.

• ‘Add file/upload’ (32): toolkits are introduced at the setup stage, often in notebooks, de-
16



Figure 3: Distribution of the 128 commit messages across the 17 latent topics identified by LDA-GA.

pendency files, or CI scripts. A representative commit message for this topic is simply
“Add files via upload”.

• ‘Bias detection added’ (16): metric calls are added to audit models for fairness issues.
Commit messages such as “added bias detection code” and “Add support for bias detec-
tion using AIF360”.

• ‘Change experiment fairness’ (14): fairness metrics are used in comparative experiments
or ablation studies. A commit with the message “changes on experiments, to run only a
subset of fairness models” illustrates this usage pattern.

Together, these findings suggest that fairness tools are primarily employed to support model
development and experimentation activities. Linguistic cues from the commit messages fur-
ther support this interpretation: terms explicitly referencing mitigation efforts (e.g., “debias”,
“reweight”, “repair”) appear in fewer than 5% of the commit logs.

� Answer to RQ1.

In open-source ML projects, fairness toolkits serve almost exclusively as analytic dashboards:
developers import a narrow set of metric APIs and invoke them when setting up, experimenting
with, or modifying a model, while bias-mitigation algorithms remain largely untouched in
everyday practice.

4.2. RQ2 — Evolution
Analyzing the commit history allowed us to investigate the evolution of fairness toolkit usage

over time, revealing how different types of fairness interventions are integrated and maintained
within the lifecycle of open-source ML projects. Our findings point to two contrasting evolution-
ary profiles for analytic and mitigation functionalities, suggesting different levels of integration
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Figure 6: Boxplot comparison of usage lifespans for Analytic and Solution modules.

maturity and developer engagement. These evolutionary dynamics also align with our findings
for RQ1, where the focus on analytic APIs in the code snapshot reflects the persistent usage of
measurement tools, contrasting with the rarity of mitigation API calls, which corresponds to their
often short-lived integration observed here.

Analytics live long and quiet. Core metrics (fairlearn.metrics,
aif360.sklearn.metrics) are introduced early—often with the first commit of a project—
and remain active for 3–4 years (median ≈ 620 days, Figure 6). Figure 4 shows no red dots
(indicating modifications), meaning the import statement often survives unchanged throughout
the observation period. When a modification occurs, it is typically a minor update, potentially in
a notebook (n ≤ 4 modification commits per library). Removals are rare: only two analytic iden-
tifiers disappear during our observation window. This persistence suggests that once integrated,
fairness measurement becomes a stable, albeit passive, component of the development workflow,
possibly fulfilling reporting or basic auditing needs without requiring frequent adjustments. The
minimal churn might indicate either stable requirements regarding fairness metrics or perhaps a
lack of deeper engagement with evolving fairness definitions or toolkit capabilities.

Solutions are late, short-lived, and almost immutable. Mitigation packages appear one to
two years after the corresponding metric modules and were found in only four projects. Their
median lifetime is 140 days, and they are virtually untouched after the initial import (Figure
5 shows at most one red dot per bar). Two solution identifiers were removed after less than a
month. The contrast with analytics is quantified in Figure 6: analytic lifetimes are an order of
magnitude longer (IQR ≈ 350–900 days) than solution lifetimes (IQR ≈ 50–180 days). This pat-
tern suggests that bias mitigation is not yet a mature or integrated practice in these open-source
projects. The late introduction, short lifespan, and near-absence of post-import modifications for
mitigation APIs sharply contrast with the profile of analytic APIs. This suggests that active mit-
igation is often explored experimentally or temporarily, rather than being adopted as a sustained
practice, potentially due to challenges like technical complexity or performance trade-offs.

� Answer to RQ2.
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In open-source ML projects, fairness toolkits follow a set-and-forget pattern: metric APIs (An-
alytics) are added early and persist with minimal churn, indicating stable integration for mea-
surement purposes. Mitigation algorithms (Solutions), conversely, appear late, are often short-
lived, and rarely modified, suggesting experimental usage rather than sustained deployment.
Consequently, continuous fairness monitoring seems limited to passive measurement, lacking
active, evolving debiasing practices within the observed project lifecycles.

5. Discussion and Take-Away Messages

The results of our study reported a number of findings that are worth noting and that lead to
actionable implications for researchers and practitioners.

5.1. On the Adoption of Fairness Toolkits

First and foremost, our findings reveal that fairness toolkits are rarely adopted in open-
source ML projects. Even when fairness toolkits are adopted, our analysis shows that mitigation
efforts tend to occur late in the development timeline and are often short-lived. This pattern sug-
gests that fairness interventions are frequently treated as optional additions rather than
integral components of ML workflows. This trend was evident already during the preliminary
dataset construction phase, where only a very small percentage of repositories showed active use
of fairness functionalities. This limited adoption represents a key result of our study, suggesting
two non-exclusive interpretations: first, that practitioners may lack awareness of the availability
and relevance of fairness toolkits; second, that significant practical barriers to adoption persist,
including usability challenges, poor integration with existing development workflows, and per-
ceived overhead. Regardless of the underlying cause, the data point to a clear gap between the
development of fairness-enhancing technologies and their real-world uptake. This finding
aligns with prior research that has identified similar challenges in the adoption of fairness toolkits
within industrial contexts, where organizational barriers, usability issues, and misalignment with
practitioner needs were reported as key obstacles [15, 24, 31, 45].

The disparity between the adoption of analytic and mitigation components could be explained
by several factors. First, mitigation techniques are inherently more intrusive than diagnostic met-
rics. They actively alter the ML pipeline—by modifying data (pre-processing), the learning al-
gorithm (in-processing), or model predictions (post-processing)—which can negatively impact
model performance (e.g., accuracy) or introduce unintended side effects. Second, there may be
a poor fit with the practitioners’ existing technology stack and workflows. The need to integrate
a new, specialized library may conflict with established development processes, especially if it
requires significant changes to the language, framework, or infrastructure. Finally, practitioners
might prefer implementing custom fairness checks using general-purpose tools they are already
familiar with, rather than adopting a dedicated fairness toolkit. This approach could offer them
more control and better integration, even if it means forgoing the standardized, specialized func-
tionalities offered by fairness toolkits.

These findings represent a call to action for researchers and toolkit designers. Researchers
may want to investigate further the socio-technical factors influencing fairness adoption, going
beyond purely technical evaluations of fairness metrics or mitigation algorithms. In particular,
future work could explore how fairness concerns emerge (or fail to emerge) during different
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phases of ML project development, what organizational or community dynamics support sus-
tained fairness practices, and how developer workflows could be better aligned with fairness
goals. Longitudinal field studies, developer interviews, and mixed-method investigations could
shed light on the real-world socio-technical frictions that current tools fail to address.

Toolkit designers may want to prioritize Human-Computer Interaction principles to improve
usability and integration. This includes simplifying API designs (e.g., providing one-line dec-
orators for fairness enforcement), offering easy-to-adopt default configurations for common use
cases, embedding fairness checks into familiar development environments such as Jupyter note-
books or IDEs, and providing ready-to-use integrations with CI/CD pipelines. In other terms,
toolkits should not be isolated libraries requiring extra effort, but rather should be presented as
lightweight, low-friction extensions of the developer’s existing workflow. By combining both
technical effectiveness and socio-technical integration, future fairness toolkits can move from
being optional add-ons to becoming standard practice in responsible ML development.

� Take-Away Message 1. Researchers should investigate socio-technical barriers to fair-
ness adoption, while toolkit designers should focus on improving usability, integration, and
developer experience to embed fairness practices into standard ML workflows.

5.2. Bridging the Transparency and Relevance Gap in Fairness Adoption

As a follow-up discussion point, our study reveals not only the scarcity of fairness toolkit
adoption within open-source ML development, but also a striking lack of transparency even
when fairness functionalities are present. Out of the initial 1,096 repositories, only 2.8%
involved fairness toolkit imports within ML projects, narrowing to 20 unique projects after fil-
tering. While toolkit usage appears more common in academic and replication settings, its in-
tegration into practical, applied ML development remains exceptional. More concerningly, our
analysis of commit messages (RQ1) showed that fairness-related actions were rarely accom-
panied by explanatory notes. Commit messages typically referenced model updates or initial
setup, but seldom documented the rationale for choosing specific fairness metrics, thresholds,
or mitigation strategies. This opacity hinders future contributors, reviewers, or even the origi-
nal developers from understanding whether fairness was genuinely considered or how fairness
interventions were evaluated. This dual challenge, i.e., minimal adoption combined with poor
documentation, highlights a critical misalignment between academic approaches to fairness en-
gineering and real-world practitioner behavior. While research has produced a wealth of fairness
metrics and mitigation techniques, these innovations are often perceived as peripheral and lack
the transparency necessary for collective learning and accountability.

Addressing this disconnect requires action at multiple levels. OSS developers and commu-
nities should not only consider adopting fairness toolkits but also actively document fairness-
related decisions within codebases—through commit messages, code comments, and project
documentation. Toolkit designers could facilitate this process by integrating structured documen-
tation templates, automatic fairness reporting tools, or visual dashboards directly into toolkits.
Meanwhile, researchers should investigate why fairness remains a peripheral concern in prac-
tice, and work to realign fairness tooling efforts with developers’ real constraints, workflows,
and priorities—again, this requires a socio-technical connotation of the problem.
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� Take-Away Message 2. Developers and OSS communities should improve the trans-
parency of fairness-related practices by documenting fairness decisions, rationales, and mit-
igation actions within project artefacts. Researchers should investigate the socio-technical
barriers behind limited fairness adoption and work toward aligning fairness tooling with
practitioners’ workflows, priorities, and needs.

5.3. Toward Continuous Fairness Monitoring and Mitigation

Our findings reveal that fairness analytics APIs tend to be introduced early in a project’s
lifecycle and remain integrated with minimal modification. At the same time, bias mitigation
efforts are rare and often short-lived. This set-and-forget pattern raises significant concerns:
while developers recognize the value of diagnostic fairness measurements, they frequently treat
fairness as a static property validated once, rather than as a dynamic quality requiring on-
going maintenance. In dynamic environments, fairness is susceptible to decay or drift over time,
caused by changing data distributions, evolving societal contexts, model updates, or regulatory
shifts [14]. Relying solely on initial fairness checks creates a false sense of security, potentially
allowing harmful biases to re-emerge unnoticed during a system’s lifecycle.

Our results call for a paradigm shift from static fairness checks to continuous fairness
monitoring and mitigation. Practitioners should complement initial fairness evaluations with
mechanisms for ongoing tracking of fairness metrics, integrating fairness monitoring into contin-
uous integration/continuous deployment workflows. Automated alerts, fairness dashboards, and
retraining triggers could help detect and address fairness decay early, minimizing manual over-
head and promoting sustainable fairness maintenance. Researchers and tool designers, in turn,
should develop practical solutions that operationalize continuous fairness monitoring. This could
include libraries that automatically log fairness metrics over time, visualize fairness trends, and
generate pull requests when fairness regressions are detected. Integrating such capabilities into
popular MLOps platforms like GitHubActions, Jenkins, or Azure Pipelineswould make fairness
monitoring a seamless extension of standard DevOps practices. In other terms, by embedding
fairness into operational workflows, developers can move beyond one-off fairness validations
and adopt a more resilient, long-term approach to fairness in ML systems.

� Take-Away Message 3. Practitioners should move from static fairness checks to con-
tinuous fairness monitoring, embedding fairness evaluations into CI/CD workflows. Re-
searchers and toolkit designers should develop automated tools for tracking fairness met-
rics over time, visualizing fairness trends, and triggering remediation actions when fairness
degradation is detected.

6. Threats to Validity

This section discusses potential threats to the validity of our empirical study and the strategies
implemented to mitigate them.

Internal Validity. These threats refer to how well the results can be attributed to the inter-
ventions or variables studied rather than other factors or confounding variables.

22



The selection of the 20 ML projects, although based on a systematic classification process
(Section 3.1.3), might represent a potential threat. Projects were chosen based on the detectable
usage of specific fairness toolkits. Although this was necessary for the purpose of the study,
characteristics specific to these 20 projects (e.g., maturity, domain, and development practices
beyond the use of the fairness toolkit) could potentially confound the observed results regarding
the toolkit’s purpose (RQ1) and evolution (RQ2). We mitigate this by analyzing a diverse set of
projects in various domains (Table 4), but we recognize that unobserved project-specific factors
may influence our findings. When analyzing the evolution (RQ2), external events or internal
project shifts (e.g., changes in team composition, major refactorings, shifts in project goals) that
occur concurrently with changes in fairness toolkit usage may influence persistence or removal
patterns. Our analysis focuses on the observable lifespan and modification history, but does not
control for all potential concurrent events that may explain the change in usage.

External Validity. External validity refers to the extent to which our findings can be gener-
alized beyond the specific research context. Our findings are intrinsically dependent on the set of
fairness toolkits selected for analysis (Table 2). While we aimed for a representative set based on
literature and technical criteria [15, 31] (Section 3.1.1), the exclusion of other toolkits (e.g., those
without programmatic APIs or non-Python based) means our results regarding adoption patterns
may not generalize to the entire fairness toolkit landscape. The specific functionalities and us-
ability of the included toolkits likely influence their adoption and usage patterns. In addition,
the study focused on Python-based ML projects hosted on GitHub, identified via specific import
statements. Findings may not generalize to: (i) projects using different programming languages
or ML frameworks; (ii) projects hosted on other platforms; (iii) projects that address fairness
without using the specific toolkits we searched for (e.g., through custom implementations).

Finally, we acknowledge that the final dataset of 20 ML projects represents a small sam-
ple of the OSS ecosystem, which inherently limits the external validity and generalizability of
our findings. Although this small number is a finding in itself—reflecting the rarity of practical
toolkit adoption—the patterns observed within this group may not be representative of all OSS
ML projects that use fairness toolkits. To mitigate this threat and foster a cumulative scientific
process, we have made all of our research artifacts, including the list of 1,096 classified repos-
itories, the final dataset of 20 projects, and all analysis scripts, publicly available in our online
appendix [8]. This transparency not only ensures the replicability of our study but also facilitates
future research. Other researchers can build upon our work by expanding the dataset with more
projects, toolkits, or platforms, thereby systematically testing and extending the generalizability
of our initial findings.

Construct Validity. These threats relate to the potential discrepancies between the theoreti-
cal framework and the actual observations. The accuracy of our study relies on the correct iden-
tification and classification (‘Analytics’ vs ‘Solutions’) of fairness toolkit APIs (Section 3.1.2).
While performed carefully by two authors examining documentation, potential misclassifications
or overlooking relevant APIs could impact the results for RQ1 and RQ2. We provide the list of
classified APIs in the online appendix [8] for transparency.

Our automated data extraction (Section 3.2) uses differential AST analysis to detect API ad-
ditions/removals. While robust against simple text mentions, this method might: miss usages
invoked indirectly (e.g., through complex wrappers or dynamic calls), and fail on unparseable
code, although this is typically rare on default branches. We mitigate this by focusing on di-
rect Call nodes in the AST. An empirical evaluation of the precision and recall of our detection
method was not performed. Defining a reliable ground truth for such an evaluation would require
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extensive manual inspection of a large sample of code to identify all possible fairness invocations,
including aliased and dynamic ones, which is beyond the scope of this exploratory study. Fu-
ture work could address this by combining static and dynamic analysis to enable a quantitative
precision/recall assessment.

The interpretation of topics for RQ1 relies on LDA-GA and subsequent manual labeling by
two authors. While LDA-GA [26, 41] helps find coherent topics and a consensus was reached,
topic modeling inherently involves a degree of subjectivity in interpreting the meaning behind
keyword clusters and assigning thematic labels. The identified themes represent dominant pat-
terns but might not capture all nuances of developer intent.

Calculating lifespan based on the first addition and last removal (or last commit analyzed)
provides a proxy for persistence. Still, it does not capture the intensity or nature of usage during
that period. A toolkit might persist for years but be invoked only rarely. The count of intermediate
modification commits provides some insight into activity, but is still an approximation.

Conclusion Validity. Conclusion validity relates to the reliability of our conclusions. The
conclusions drawn in this study rely significantly on descriptive statistics (counts and percent-
ages) and visualizations to identify and characterize usage patterns, reflecting the exploratory
nature of our investigation into this understudied area. While inferential statistical tests were
not extensively employed (except for LDA parameter optimization [41]), the observed magni-
tudes of differences (e.g., between ‘Analytics’ and ‘Solutions’ usage, or their lifespans) provide
strong indicative evidence for the reported findings. However, readers should interpret claims
of dominance or trends based on the presented descriptive evidence, acknowledging that formal
statistical significance testing for all comparisons was outside the scope of this exploratory work
and represents an avenue for future research.

7. Conclusion and Future Work

This paper analyzed the adoption and usage patterns of fairness toolkits within open-source
ML projects. Through a mining study of open-source GitHub repositories that analyze API calls
and commit histories, we investigated the purpose behind the integration of fairness toolkits and
their evolution. We identified and categorized fairness APIs, analyzing their frequency, func-
tion (analytics vs. mitigation), and persistence. Compared to their prevalence in academic or
organizational contexts, fairness toolkits are poorly adopted in OSS, and their usage overwhelm-
ingly favors diagnostic analytics over active bias mitigation solutions. Furthermore, the evolution
reveals a set-and-forget pattern: analytic tools persist long-term with minimal change, while mit-
igation tools appear late, are short-lived, and rarely undergo modification, suggesting a primarily
experimental use, and indicating potential disconnect between the available tools and practical
development workflows, or underlying challenges in integrating mitigation effectively.

The insights gained set the foundation for our future research agenda. First, we plan to ex-
pand the scope of our mining study to include repositories from different platforms (e.g., GitLab,
Bitbucket) and additional programming languages, to assess the generalizability of the observed
patterns. Second, investigating the relationship between specific project characteristics (e.g.,
size, domain, team structure, contribution patterns) and the adoption (or non-adoption) of fair-
ness toolkits could reveal crucial contextual factors and barriers. Furthermore, a natural extension
of this work would be to investigate the impact and effectiveness of the observed mitigation prac-
tices. This could involve a more fine-grained, execution-based analysis to examine the causal
link between the introduction of a mitigation API and subsequent changes in fairness metric val-
ues within the projects’ evolution. Finally, developing techniques to infer fairness considerations
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directly from code changes and project artifacts, complementing explicit toolkit usage and po-
tentially identifying custom fairness implementations, represents a promising avenue to gain a
more holistic view of fairness practices in OSS. This also includes improving our detection tech-
niques through, for instance, alias resolution and dynamic analysis to enhance coverage without
compromising precision.
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tac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. 2019. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771 (2019).

[59] Hyrum K Wright, Daniel Jasper, Manuel Klimek, Chandler Carruth, and Zhanyong Wan. 2013. Large-scale au-
tomated refactoring using ClangMR. In 2013 IEEE International Conference on Software Maintenance. IEEE,
548–551.

[60] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang,
Fiona Aga, Jinshi Huang, Charles Bai, et al. 2022. Sustainable ai: Environmental implications, challenges and
opportunities. Proceedings of Machine Learning and Systems 4 (2022), 795–813.

[61] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. [n. d.]. Mitigating unwanted biases with adversarial
learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society.

[62] Mengdi Zhang and Jun Sun. 2022. Adaptive Fairness Improvement Based on Causality Analysis. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for Computing Machinery, New York, NY,
USA, 6–17. https://doi.org/10.1145/3540250.3549103

28

https://www.nytimes.com/2021/09/03/technology/facebook-ai-race-primates.html
https://www.nytimes.com/2021/09/03/technology/facebook-ai-race-primates.html
https://doi.org/10.1145/3540250.3549103

	Introduction
	Background and Related Work
	Research Design
	Subjects and Objects of the Empirical Study
	Selecting Fairness Toolkits
	Identifying & Categorizing Toolkits APIs
	Selecting and Filtering Repositories: Defining the Objects of Study

	Data Extraction
	Data Analysis

	Analysis of the Results
	RQ1 — Purpose
	RQ2 — Evolution

	Discussion and Take-Away Messages
	On the Adoption of Fairness Toolkits
	Bridging the Transparency and Relevance Gap in Fairness Adoption
	Toward Continuous Fairness Monitoring and Mitigation

	Threats to Validity
	Conclusion and Future Work

