
Noname manuscript No.
(will be inserted by the editor)

On the Diffuseness and the Impact on
Maintainability of Code Smells:
A Large Scale Empirical Investigation

Fabio Palomba · Gabriele Bavota ·
Massimiliano Di Penta · Fausto Fasano ·
Rocco Oliveto · Andrea De Lucia

Received: date / Accepted: date

Abstract Code smells are symptoms of poor design and implementation
choices that may hinder code comprehensibility and maintainability. Despite
the effort devoted by the research community in studying code smells, the ex-
tent to which code smells in software systems affect software maintainability
remains still unclear. In this paper we present a large scale empirical inves-
tigation on the diffuseness of code smells and their impact on code change-
and fault-proneness. The study was conducted across a total of 395 releases of
30 open source projects and considering 17,350 manually validated instances
of 13 different code smell kinds. The results show that smells characterized
by long and/or complex code (e.g., Complex Class) are highly diffused, and
that smelly classes have a higher change- and fault-proneness than smell-free
classes.

Keywords Code Smells · Empirical Studies · Mining Software Repositories

Fabio Palomba
Delft University of Technology, The Netherlands
E-mail: f.palomba@tudelft.nl

Gabriele Bavota
Università della Svizzera italiana (USI), Switzerland
E-mail: gabriele.bavota@usi.ch

Massimiliano Di Penta
University of Sannio, Italy
E-mail: dipenta@unisannio.it

Fausto Fasano, Rocco Oliveto
University of Molise, Italy
E-mail: fausto.fasano@unimol.it E-mail: rocco.oliveto@unimol.it

Andrea De Lucia
University of Salerno, Italy
E-mail: adelucia@unisa.it

2 Fabio Palomba et al.

1 Introduction

Bad code smells (also known as “code smells” or “smells”) were defined as
symptoms of poor design and implementation choices applied by programmers
during the development of a software project (Fowler, 1999). As a form of
technical debt (Cunningham, 1993), they could hinder the comprehensibility
and maintainability of software systems (Kruchten et al, 2012). An example
of code smell is the God Class, a large and complex class that centralizes the
behavior of a portion of a system and only uses other classes as data holders.
God Classes can rapidly grow out of control, making it harder and harder for
developers to understand them, to fix bugs, and to add new features.

The research community has been studying code smells from different per-
spectives. On the one side, researchers developed methods and tools to detect
code smells. Such tools exploit different types of approaches, including metrics-
based detection (Lanza and Marinescu, 2010; Moha et al, 2010; Marinescu,
2004; Munro, 2005), graph-based techniques (Tsantalis and Chatzigeorgiou,
2009), mining of code changes (Palomba et al, 2015a), textual analysis of
source code (Palomba et al, 2016b), or search-based optimization techniques
(Kessentini et al, 2010; Sahin et al, 2014). On the other side, researchers inves-
tigated how relevant code smells are for developers (Yamashita and Moonen,
2013; Palomba et al, 2014), when and why they are introduced (Tufano et al,
2015), how they evolve over time (Arcoverde et al, 2011; Chatzigeorgiou and
Manakos, 2010; Lozano et al, 2007; Ratiu et al, 2004; Tufano et al, 2017), and
whether they impact on software quality properties, such as program com-
prehensibility (Abbes et al, 2011), fault- and change-proneness (Khomh et al,
2012, 2009a; D’Ambros et al, 2010), and code maintainability (Yamashita and
Moonen, 2012, 2013; Deligiannis et al, 2004; Li and Shatnawi, 2007; Olbrich
et al, 2010; Sjoberg et al, 2013).

Similarly to some previous work (Khomh et al, 2012; Li and Shatnawi,
2007; Olbrich et al, 2010; Gatrell and Counsell, 2015) this paper investigates
the relationship existing between the occurrence of code smells in software
projects and software change- and fault-proneness. Specifically, while previous
work shows a significant correlation between smells and code change/fault-
proneness, the empirical evidence provided so far is still limited because of:

– Limited size of previous studies: the study by Khomh et al (2012)
was conducted on four open source systems, while the study by D’Ambros
et al (2010) was performed on seven systems. Furthermore, the studies by
Li and Shatnawi (2007), Olbrich et al (2010), and Gatrell and Counsell
(2015) were conducted considering the change history of only one software
project.

– Detected smells vs. manually validated smells: Previous work study-
ing the impact of code smells on change- and fault-proneness, including the
one by Khomh et al (2012), relied on data obtained from automatic smell
detectors. Although such smell detectors are often able to achieve a good
level of accuracy, it is still possible that their intrinsic imprecision affects
the results of the study.

On the Diffuseness and the Impact on Maintainability of Code Smells 3

– Lack of analysis of the magnitude of the observed phenomenon:
previous work indicated that some smells can be more harmful than others,
but the analysis did not take into account the magnitude of the observed
phenomenon. For example, even if a specific smell type may be considered
harmful when analyzing its impact on maintainability, this may not be
relevant in case the number of occurrences of such a smell type in software
projects is limited.

– Lack of analysis of the magnitude of the effect: Previous work in-
dicated that classes affected by code smells have more chances to exhibit
defects (or to undergo changes) than other classes. However, no study has
observed the magnitude of such changes and defects, i.e., no study ad-
dressed the question: How many defects would exhibit on average a class
affected by a code smell as compared to another class affected by a different
kind of smell, or not affected by any smell at all?

– Lack of within-artifact analysis: sometimes, a class has intrinsically a
very high change-proneness and/or fault-proneness, e.g., because it plays
a core role in the system or because it implements a very complex feature.
Hence, the class may be intrinsically “smelly”. Instead, there may be classes
that become smelly during their lifetime because of maintenance activities
(Tufano et al, 2017). Or else, classes where the smell was removed, possibly
because of refactoring activities (Bavota et al, 2015). For such classes, it
is of paramount importance to analyze the change- and fault-proneness of
the class during its evolution, in order to better relate the cause (presence
of smell) with the possible effect (change- or fault-proneness).

– Lack of a temporal relation analysis between smell presence and
fault introduction: While previous work correlated the presence of code
smells with high fault- and change-proneness, one may wonder whether the
artifact was smelly when the fault was introduced, or whether the fault was
introduced before the class became smelly.

To cope with the aforementioned issues, this paper aims at corroborating
previous empirical research on the impact of code smells by analyzing their
diffuseness and effect on change- and fault-proneness on a large set of software
projects. In the context of this paper, the “diffuseness” of a code smell type
(e.g., God Class) refers to the percentage of code components in a system
affected by at least one instance of the code smell type.

The study was conducted on a total of 395 releases of 30 open source
systems, and considered 13 different kinds of code smells. More specifically,
the study aims at investigating:

1. the diffuseness of code smells in open source systems. If the magnitude
of the phenomenon is small—i.e., code smells, or some specific kinds of
code smells, are poorly diffused—then studying their impact on the code
maintainability might not be worthwhile.

2. the impact of code smells on maintenance properties and specifically on
code change- and fault-proneness. We intend to investigate to what ex-
tent the previous findings reported by Khomh et al (2012) and D’Ambros

4 Fabio Palomba et al.

et al (2010)—obtained on a smaller set of software systems and based
on smell instances automatically identified using code smell detectors—are
confirmed on a larger set of 395 software releases and considering manually
validated smell instances.

To the best of our knowledge, this is to date the largest study investi-
gating the relationship between the presence of code smells and source code
change- and fault-proneness. In addition, and to cope with the other limita-
tions of previous studies mentioned above, this paper (i) relies on a set of
manually-validated code smells rather than just on the output of detection
tools, (ii) analyzes the fault proneness magnitude in terms of number of code
smell instances, (iii) performs an analysis of the evolution of classes in order
to investigate how the change/fault-proneness changes when the smell was re-
moved, and (iv) uses the SZZ algorithm (Sliwerski et al, 2005) to determine
whether an artifact was already smelly when a fault was induced. The dataset
used in this study is publicly available in our online appendix (Palomba et al,
2017).

Structure of the paper. Section 2 discusses the related literature about smell
detection and about studies on the effect of code smells. Section 3 describes the
design and planning of the empirical study. Section 4 presents and discusses
the results of the study, while the threats that could affect their validity are
discussed in Section 5. Finally, Section 6 concludes the paper, discussing the
main findings of the work.

2 Related work

The research community has been highly active in the definition of code smell
detection methods and tools, as well as in the investigation of the impact of
code smells on software maintenance properties. In this section we report the
literature related to (i) empirical studies aimed at understanding to what ex-
tent code smells are diffused in software systems and how they evolve over
time, (ii) the impact of code smells on change- and fault-proneness, and (iii)
user studies conducted in order to comprehend the phenomenon from a de-
veloper’s perspective. A complete overview of code smell detection techniques
can be found in related papers by Palomba et al (2015c) and Fernandes et al
(2016).

2.1 Diffuseness and Evolution of Code Smells

Chatzigeorgiou and Manakos (2010) analyzed the evolution of code smells.
Their results indicate that (i) the number of instances of code smells increases
during time; and (ii) developers are reluctant to perform refactoring operations
in order to remove them. Peters and Zaidman (2012) obtained similar results,
showing that developers are often aware of the presence of code smells in the

On the Diffuseness and the Impact on Maintainability of Code Smells 5

source code, but they do not invest time in performing refactoring activities
aimed at removing them. A partial explanation for this behavior is provided
by Arcoverde et al (2011), who studied the longevity of code smells showing
that they often survive for a long time in the source code. The authors point
to the will of avoiding changes to API as one of the main reason behind this
result (Arcoverde et al, 2011).

The evolution of code smells has also been studied by Olbrich et al (2009),
who analyzed the evolution of God Class and Shotgun Surgery, showing that
there are periods in which the number of smells increases and periods in which
this number decreases. They also show that the increase/decrease of the num-
ber of instances does not depend on the size of the system.

Vaucher et al (2009) conducted a study on the evolution of the God Class
smell, aimed at understanding whether they affect software systems for long
periods of time or, instead, are refactored while the system evolves. Their
goal was to define a method able to discriminate between God Class instances
that are introduced by design and God Class instances that are introduced
unintentionally. Recently, Tufano et al (2015) investigated when code smells
are introduced by developers, and the circumstances and reasons behind their
introduction. They showed that most of the times code artifacts are affected by
smells since their creation and that developers introduce them not only when
implementing new features or enhancing existing ones, but sometimes also
during refactoring. A similar study was also conducted on test smells (Tufano
et al, 2016). Furthermore, Tufano et al (2017) also found that almost 80% of
the code smells are never removed from software systems, and the main cause
for their removal is the removal of the smelly artifact, rather than refactoring
activities. In a closely related field, Bavota et al (2012) and Palomba et al
(2016a) provided evidence that test smells are also widely diffused in test code
and impact the maintainability of JUnit test classes.

Historical information, in general, and the evolution of code smells, in
particular, was also used in the past to identify components affected by code
smells. Ratiu et al (2004) proposed an approach to detect smells based on
evolutionary information of code components over their life-time. The aim is
to analyze the persistence of the problem and the effort spent to maintain
these components. Historical information has also been used by Lozano et al
(2007) to assess the impact of code smells on software maintenance. Gı̂rba et al
(2007) exploited formal concept analysis (FCA) to detect co-change patterns.
In other words, they identified code components that change in the same way
and at the same time. Palomba et al (2015b) use association rule discovery to
detect some code smell types, showing that the evolutionary-based approach
outperforms approaches based on static and dynamic analysis and could also
successfully complement them.

Our investigation about the diffuseness of code smells (RQ1) is closely
related to the empirical studies discussed above. However, our goal is to analyze
whether the results achieved in previous work hold on the set of software
systems used in this paper in order to (i) corroborate previous findings on a
much larger dataset (both in terms of number of software systems and code

6 Fabio Palomba et al.

smells), and (ii) understand the confidence level for the generalizability of the
results provided through the analysis of the impact of code smells on change-
and fault-proneness.

2.2 Change- and Fault-proneness of Code Smells

The main goal of this paper is to analyze the change- and fault-proneness of
classes affected (and not) by code smells. Such a relationship has already been
investigated by previous research. In particular, Khomh et al (2009a) showed
that the presence of code smells increases the code change proneness. Also,
they showed that code components affected by code smells are more fault-
prone than non-smelly components (Khomh et al, 2012). Our work confirms
the results achieved by Khomh et al (2012) on a larger set of code smells
and software systems, an provides some complementary hints about the phe-
nomenon. In particular, other than studying the change- and fault-proneness
of smelly and non-smelly classes, we analyzed how such indicators vary when
the smells identified are removed. Also, we use the SZZ algorithm (Sliwer-
ski et al, 2005) to better investigate the temporal relationship between the
presence of code smells and fault introduction.

Gatrell and Counsell (2015) conducted an empirical study aimed at quan-
tifying the effect of refactoring on class change- and fault-proneness. In partic-
ular, they monitored a commercial C# system for twelve months identifying
the refactorings applied during the first four months. They examined the same
classes for the second four months in order to determine whether the refactor-
ing results in a decrease of change- and fault-proneness. They also compared
such classes with the classes of the system that were not refactored in the
same period. Results revealed that classes subject to refactoring have a lower
change- and fault-proneness. It is worth noting that Gatrell and Counsell did
not focus their attention on well known design problems (i.e., code smells)
but they analyzed if refactored classes regardless of the presence of a design
problem. Instead, our study investigates the actual impact of code smells on
change- and fault-proneness. Moreover, their study was conducted on a sin-
gle software system, while we analyzed 395 software releases of 30 software
systems.

Li and Shatnawi (2007) empirically evaluated the correlation between the
presence of code smells and the probability that the class contains errors. They
studied the post-release evolution process showing that many code smells are
positively correlated with class errors. Olbrich et al (2010) conducted a study
on the God Class and Brain Class code smells, reporting that these code smells
were changed less frequently and had a fewer number of defects than non-
smelly classes. D’Ambros et al (2010) also studied the correlation between
the Feature Envy and Shotgun Surgery smells and the defects in a system,
reporting no consistent correlation between them. In our empirical study, we
do not consider correlation between the presence of smells and the number of
defects, but we investigate the release history of software systems in order to

On the Diffuseness and the Impact on Maintainability of Code Smells 7

measure the actual change- and fault-proneness of classes affected (and not)
by design flaws.

Finally, Saboury et al (2017) conducted an empirical investigation on the
impact of code smells on the fault-proneness of JavaScript modules, confirming
the negative effect smells have on the maintainability of source code. Similarly
to our study, Saboury et al (2017) used of the SZZ algorithm to identify which
bugs were introduced after the introduction of the smells.

2.3 Code Smells and User Studies

Abbes et al (2011) studied the impact of two code smell types, i.e., Blob
and Spaghetti Code, on program comprehension. Their results show that the
presence of a code smell in a class does not have an important impact on
developers’ ability to comprehend the code. Instead, a combination of more
code smells affecting the same code components strongly decreases developers’
ability to deal with comprehension tasks.

The interaction between different smell instances affecting the same code
components was also been studied by Yamashita and Moonen (2013), who con-
firmed that developers experience more difficulties when working on classes
affected by more than one code smell. The same authors also analyzed the
impact of code smells on maintainability characteristics (Yamashita and Moo-
nen, 2012). They identified which maintainability factors are reflected by code
smells and which ones are not, basing their results on (i) expert-based main-
tainability assessments, and (ii) observations and interviews with professional
developers.

Sjoberg et al (2013) investigated the impact of twelve code smells on the
maintainability of software systems. In particular, the authors conducted a
study with six industrial developers involved in three maintenance tasks on
four Java systems. The amount of time spent by each developer in performing
the required tasks whas been measured through an Eclipse plug-in, while a re-
gression analysis whas been used to measure the maintenance effort on source
code files having specific properties, including the number of smells affecting
them. The achieved results show that smells do not always constitute a prob-
lem, and that often class size impacts maintainability more than the presence
of smells.

Deligiannis et al (2004) also performed a controlled experiment showing
that the presence of God Class smell negatively affects the maintainability of
source code. Also, the authors highlight an influence played by these smells in
the way developers apply the inheritance mechanism.

Recently, Palomba et al (2014) investigated how the developers perceive
code smells, showing that smells characterized by long and complex code are
those perceived more by developers as design problems. In this paper we pro-
vide a complementary contribution to the previous work by Palomba et al
(2014). Rather than looking at developers’ perception, this paper observes the
possible effect of smells in terms of change- and fault-proneness.

8 Fabio Palomba et al.

Table 1: Code smells considered in the context of the study

Name Description
Class Data Should Be Private (CDSBP) A class exposing its fields, violating the principle of data hiding.
Complex Class A class having at least one method having a high cyclomatic complex-

ity.
Feature Envy A method more interested in a class other than the one it actually is

in.
God Class A large class implementing different responsibilities and centralizing

most of the system processing.
Inappropriate Intimacy Two classes exhibiting a very high coupling between them.
Lazy Class A class having very small dimension, few methods and low complexity.
Long Method A method that is unduly long in terms of lines of code.
Long Parameter List (LPL) A method having a long list of parameters, some of which avoidable.
Message Chain A long chain of method invocations performed to implement a class

functionality.
Middle Man A class delegating to other classes most of the methods it implements.
Refused Bequest A class redefining most of the inherited methods, thus signaling a

wrong hierarchy.
Spaghetti Code A class implementing complex methods interacting between them,

with no parameters, using global variables.
Speculative Generality A class declared as abstract having very few children classes using its

methods.

3 Study Definition and Planning

The goal of this study is to analyze the diffuseness of 13 code smell types in
real software applications and to assess their impact on code change- and fault-
proneness. It is worth remarking that the term “diffuseness”, when associated
to a code smell type, refers to the percentage of code components in a system
affected by at least one instance of the smell type. Analyzing the diffuseness of
code smells is a preliminary analysis needed to better interpret their effect on
change- and fault-proneness. Indeed, some smells might be highly correlated
with fault-proneness but rarely diffused in software projects or vice versa. The
13 code smell types considered in this study are listed in Table 1 together with
a short description.

3.1 Research Questions and Planning

We formulated the following three research questions:

– RQ1: What is the diffuseness of code smells in software systems? This is a
preliminary research question aiming at assessing to what extent software
systems are affected by code smells.

– RQ2: To what extent do classes affected by code smells exhibit a different
level of change- and fault-proneness with respect to non-smelly classes?
Previous work (Khomh et al, 2012) found that classes affected by at least
one smell have a higher chance of being change- and fault-prone than non-
smelly classes. In this work we are interested in measuring the change- and
fault-proneness magnitude of such classes, in terms of number of changes
and of bug fixes.

– RQ3: To what extent do change- and fault-proneness of classes vary as a
consequence of code smell introduction and removal? This research question

On the Diffuseness and the Impact on Maintainability of Code Smells 9

Table 2: Systems involved in the study

System Description #Releases Classes Methods KLOCs
ArgoUML UML Modeling Tool 16 777-1,415 6,618-10,450 147-249
Ant Build System 22 83-813 769-8,540 20-204
aTunes Player and Audio Manager 31 141-655 1,175-5,109 20-106
Cassandra Database Management System 13 305-586 1,857-5,730 70-111
Derby Relational Database Management System 9 1,440-1,929 20,517-28,119 558-734
Eclipse Core Integrated Development Environment 29 744-1,181 9,006-18,234 167-441
Elastic Search RESTful Search and Analytics Engine 8 1,651-2,265 10,944-17,095 192-316
FreeMind Mind-mapping Tool 16 25-509 341-4,499 4-103
Hadoop Tool for Distributed Computing 9 129-278 1,089-2,595 23-57
HSQLDB HyperSQL Database Engine 17 54-444 876-8,808 26-260
Hbase Distributed Database System 8 160-699 1,523-8148 49-271
Hibernate Java Persistence Framework 11 5-5 15-18 0.4-0.5
Hive Data Warehouse Software Facilitates 8 407-1,115 3,725-9,572 64-204
Incubating Codebase 6 249-317 2,529-3,312 117-136
Ivy Dependency Manager 11 278-349 2,816-3,775 43-58
Lucene Search Manager 6 1,762-2,246 13,487-17,021 333-466
JEdit Text Editor 23 228-520 1,073-5,411 39-166
JHotDraw Java GUI Framework 16 159-679 1,473-6,687 18-135
JFreeChart Java Chart Library 23 86-775 703-8,746 15-231
JBoss Java Webserver 18 2,313-4,809 19,901-37,835 434-868
JVlt Vocabulary Learning Tool 15 164-221 1,358-1,714 18-29
jSL Java Service Launcher 15 5-10 26-43 0.5-1
Karaf Standalone Container 5 247-470 1,371-2,678 30-56
Nutch Web-search Software 7 183-259 1,131-1,937 33-51
Pig Large Dataset Analyzer 8 258-922 1,755-7,619 34-184
Qpid Messaging Tool 5 966-922 9,048-9,777 89-193
Sax XML Parser 6 19-38 119-374 3-11
Struts MVC Framework 7 619-1,002 4,059-7,506 69-152
Wicket Java Application Framework 9 794-825 6,693-6,900 174-179
Xerces XML Parser 16 162-736 1,790-7,342 62-201
Total - 395 5-4,809 15-37,835 0.4-868

investigates whether the change- and fault-proneness of a class increases
when a smell is introduced, and whether it decreases when the smell is
removed. Such an analysis is of paramount importance because a class may
be intrinsically change-prone (and also fault-prone) regardless of whether
it is affected by code smells.

To answer our research questions we mined 395 releases of 30 open source
systems searching for instances of the 13 code smells object of our study. Table
2 reports the analyzed systems, the number of releases considered for each of
them, and their size ranges in terms of number of classes, number of methods,
and KLOCs. The choice of the subject systems was driven by the will to con-
sider systems having different size (ranging from 0.4 to 868 KLOCs), belonging
to different application domains (modeling tools, parsers, IDEs, IR-engines,
etc.), developed by different open source communities (Apache, Eclipse, etc.),
and having different lifetime (from 1 to 19 years).

The need for analyzing smells in 395 project releases makes the manual
detection of the code smells prohibitively expensive. For this reason, we de-
veloped a simple tool to perform smell detection. The tool outputs a list of
candidate code components (i.e., classes or methods) potentially exhibiting a
smell. Then, we manually validated the candidate code smells suggested by
the tool. The validation was performed by two of the authors who individually
analyzed and classified as true or false positives all candidate code smells. Fi-
nally, they performed an open discussion to resolve possible conflicts and reach

10 Fabio Palomba et al.

Table 3: The rules used by our tool to detect candidate code smells

Name Description
CDSBP A class having at least one public field.
Complex Class A class having at least one method for which McCabe cyclomatic

complexity is higher than 10.
Feature Envy All methods having more calls with another class than the one they

are implemented in.
God Class All classes having (i) cohesion lower than the average of the system

AND (ii) LOCs > 500.
Inappropriate Intimacy All pairs of classes having a number of method’s calls between them

higher than the average number of calls between all pairs of classes.
Lazy Class All classes having LOCs lower than the first quartile of the distribution

of LOCs for all system’s classes.
Long Method All methods having LOCs higher than the average of the system.
LPL All methods having a number of parameters higher than the average

of the system.
Message Chain All chains of methods’ calls longer than three.
Middle Man All classes delegating more than half of the implemented methods.
Refused Bequest All classes overriding more than half of the methods inherited by a

superclass.
Spaghetti Code A class implementing at least two long methods interacting between

them through method calls or shared fields.
Speculative Generality A class declared as abstract having less than three children classes

using its methods.

a consensus on the detected code smells. To ensure high recall, our detection
tool uses very simple rules that overestimate the presence of code smells.

The rules for the 13 smell types considered in the study are reported in
Table 3 and are inspired to the rule cards proposed by Moha et al (2010) in
DECOR. The metrics’ thresholds used to discriminate whether a class/method
is affected or not by a smell are lower than the thresholds used by Moha et al
(2010). Again, this was done in order to detect as many code smell instances
as possible. For example, in the case of the Complex Class smell we considered
as candidates all the classes having a cyclomatic complexity higher than 10.
Such a choice was driven by recent findings reported by Lopez and Habra
(2015), which found that “a threshold lower than 10 is not significant in Object-
Oriented programming when interpreting the complexity of a method”. As for
the other smells we relied on (i) simple filters, e.g., in the cases of CDSBP
(where we discarded from the manual validation all the classes having no
public attributes) and Feature Envy (we only considered the methods having
more relationships toward another class than with the class they are contained
in), (ii) the analysis of the metrics’ distribution (like in the cases of Lazy Class,
Inappropriate Intimacy, Long Method, and Long Parameter List), or (iii) very
conservative thresholds (e.g., a God Class should not have less than 500 LOCs).

We chose not to use existing detection tools (Marinescu, 2004; Khomh
et al, 2009b; Sahin et al, 2014; Tsantalis and Chatzigeorgiou, 2009; Moha
et al, 2010; Oliveto et al, 2010; Palomba et al, 2015a, 2016b) because (i) none
of them has ever been applied to detect all the studied code smells and (ii)
their detection rules are generally more restrictive to ensure a good compromise
between recall and precision and thus may miss some smell instances. To verify
this claim, we evaluated the behavior of three existing tools, i.e., DECOR

On the Diffuseness and the Impact on Maintainability of Code Smells 11

(Moha et al, 2010), JDeodorant (Tsantalis and Chatzigeorgiou, 2009), and
HIST (Palomba et al, 2015a) on one of the systems used in the empirical study,
i.e., Apache Cassandra 1.1. When considering the God Class smell none of the
available tools is able to identify all the eight actual smell instances we found
by manually analyzing the classes of this system. Indeed, DECOR identifies
only one of the actual instances, while JDeodorant and HIST detect three
of them. Therefore, the use of existing tools would have resulted in a less
comprehensive analysis. Of course, using rules that overestimate the presence
of code smells pays the higher recall with a lower precision with respect to
other tools. However, this is not a threat for our study, because the manual
validation of the instances detected by the tool aims at discarding the false
positives, while keeping the true positive smell instances. A detailed overview
of the results obtained by the tools on Apache Cassandra is available in our
online appendix (Palomba et al, 2017).

We used the collected data to answer our research questions. Concerning
RQ1 we verified what is the diffuseness of the considered code smells in the
analyzed systems. We also verified whether there is a correlation between sys-
tems’ characteristics (#Classes, #Methods, and KLOCs) and the presence of
code smells. To compute the correlation on each analyzed system release we
apply the Spearman rank correlation analysis (Student, 1921) between the
different characteristics of the system release and the presence of code smells.
Such an analysis measures the strength and direction of association between
two ranked variables, and ranges between -1 and 1, where 1 represents a perfect
positive linear relationship, -1 represents a perfect negative linear relationship,
and values in between indicate the degree of linear dependence between the
considered distributions. Cohen (1988) provided a set of guidelines for the
interpretation of the correlation coefficient. It is assumed that there is no cor-
relation when 0 ≤ ρ < 0.1, small correlation when 0.1 ≤ ρ < 0.3, medium
correlation when 0.3 ≤ ρ < 0.5, and strong correlation when 0.5 ≤ ρ ≤ 1.
Similar intervals also apply for negative correlations.

To answer RQ2 we mined the change history of the 30 systems subject of
our study. In particular, to compute the class change-proneness, we extracted
the change logs from their versioning systems in order to identify the set of
classes modified in each commit. Then, we computed the change-proneness of
a class Ci in a release rj as:

change proneness(Ci, rj) = #Changes(Ci)rj−1→rj

where #Changes(Ci)rj−1→rj
is the number of changes performed on Ci by

developers during the evolution of the system between the rj−1’s and the rj ’s
release dates.

As for the fault-proneness, we developed a mining tool to extract the bugs
fixed over the change history of the subject systems. All considered systems
exploit Bugzilla1 or Jira2 as issue tracker. Firstly, we identified bug fixing

1 http://www.bugzilla.org
2 https://www.atlassian.com/software/jira

http://www.bugzilla.org
https://www.atlassian.com/software/jira

12 Fabio Palomba et al.

commits by mining regular expressions containing issue IDs in the change log
of the versioning system, e.g.,“fixed issue #ID” or “issue ID”. Secondly, for
each issue ID related to a commit, we downloaded the corresponding issue re-
ports from their issue tracking system and extracted the following information
from them: (i) product name; (ii) issue type, i.e., whether an issue is a bug,
enhancement request, etc.; (iii) issue status, i.e., whether an issue was closed
or not; (iv) issue resolution, i.e., whether an issue was resolved by fixing it,
or whether it was a duplicate bug report, or a “works for me” case; (v) issue
opening date; (vi) issue closing date, if available.

Then, we checked each issue report to be correctly downloaded (e.g., the
issue ID identified from the versioning system commit note could be a false
positive). After that, we used the issue type field to classify the issue and
distinguish bug fixes from other issue types (e.g., enhancements). Finally, we
only considered bugs having Closed status and Fixed resolution. In this way, we
restricted our attention to (i) issues that were related to bugs, and (ii) issues
that were neither duplicate reports nor false alarms. Having bugs linked to the
commits fixing them allowed us to identify which classes were modified to fix
each bug. Thus, we computed the fault-proneness of a class Ci in a release rj
as the number of bug fixing activities involving the class in the period of time
between the rj−1 and the rj release dates.

Once extracted all the required information, we compare the distribution
of change- and fault-proneness of classes affected and not by code smells. In
particular, we present boxplots of change- and fault- proneness distributions of
the two sets of classes and we also compare them through the Mann-Whitney
statistical test (Conover, 1998). The latter is a non-parametric test used to
evaluate the null hypothesis stating that it is equally likely that a randomly
selected value from one sample will be less than or greater than a randomly
selected value from a second sample. The results are intended as statistically
significant at α = 0.05. We estimated the magnitude of the measured dif-
ferences by using the Cliff’s Delta (or d), a non-parametric effect size mea-
sure (Grissom and Kim, 2005) for ordinal data. We followed well-established
guidelines to interpret the effect size values: negligible for |d| < 0.10, small for
0.10 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474
(Grissom and Kim, 2005).

It is important to note that the analysis of the fault-proneness might be
biased by the fact that a bug might have been introduced before the intro-
duction of the code smell. This would lead to an overestimation of the actual
number of bug fixing activities performed on smelly classes in the time period
between the releases rj−1 and rj . For this reason, we also analyzed the fault-
proneness of smelly classes only considering bug fixing activities related to
bugs introduced after the smell introduction. More formally, we computed the
fault-proneness of a smelly class Ci in a release rj as the number of changes to
Ci aimed at fixing a bug introduced after the code smell introduction in the
period between rj−1 and rj .

On the Diffuseness and the Impact on Maintainability of Code Smells 13

To estimate the date in which a bug was likely introduced3, we exploited the
SZZ algorithm4 (Sliwerski et al, 2005), which is based on the annotation/blame
feature of versioning systems. In summary, given a bug-fix identified by the
bug ID, k, the approach works as follows:

1. For each file fi, i = 1 . . .mk involved in the bug-fix k (mk is the number of
files changed in the bug-fix k), and fixed in its revision rel-fixi,k, we extract
the file revision just before the bug fixing (rel-fixi,k − 1).

2. Starting from the revision rel-fixi,k − 1, for each source line in fi changed
to fix the bug k the blame feature of Git is used to identify the file revision
where the last change to that line occurred. In doing that, blank lines and
lines that only contain comments are identified using an island grammar
parser (Moonen, 2001). This produces, for each file fi, a set of ni,k fix-
inducing revisions rel-bugi,j,k, j = 1 . . . ni,k. Thus, more than one commit
can be indicated by the SZZ algorithm as responsible for inducing a bug.

By adopting the process described above we were able to approximate the
time periods in which each class was affected by one or more bugs. We excluded
from our analysis all the bugs occurring in a class Ci before it became smelly.
Note that we also excluded bug-introducing changes that were recorded after
the bug was reported, since they represent false positives.

It is worth noting that in the context of RQ2 we considered all the classes
of the analyzed systems: if a class was smelly in some releases and non-smelly
in other releases, it contributes to both sets of smelly and non-smelly classes.
Also, in this research question we did not discriminate the specific kind of
smell affecting a class (i.e., a class is considered smelly if it contains any kind
of code smell). A fine-grained analysis of the impact of the different smell
types on class change- and fault-proneness is presented in the next research
question.

In RQ3 we exploited the code smells’ oracle we built (i.e., the one reporting
the code smells affecting each class in each of the 395 considered releases) to
identify in which releases of each system a class was smelly or not smelly. Then,
we focused only on classes affected by at least one smell instance in at least
one of the analyzed software releases but not in all of them. In this way, we
could compare their change- and fault-proneness when they were affected and
not affected by smells. To effectively investigate the effect of smell removal
on maintainability, we considered each smell type in isolation, i.e., we took
into account only the classes affected by a single smell rather than considering
classes affected by more smells. For example, suppose that a class C was firstly
affected by the God Class smell between releases ri and ri+1. Then, the smell
was not detected between releases ri+1 and ri+2. Finally, the smell re-appeared
between releases ri+2 and ri+3. We compute the change-proneness of C when
it was smelly by summing up the change-proneness of C in the periods between

3 The right terminology is “when the bug induced the fix” because of the intrinsic lim-
itations of the SZZ algorithm, which cannot precisely identify whether a change actually
introduced the bug.

4 SZZ stays for the last name initials of the three algorithm’s authors.

14 Fabio Palomba et al.

ri and ri+1 and between ri+2 and ri+3. Similarly, we computed the change-
proneness of C when it was non-smelly by computing the change-proneness
of C in the period between ri+1 and ri+2. Following the same procedure, we
compare the fault-proneness of classes when they were affected and not by a
code smell. As done for RQ2, the comparison is performed by using boxplots
and statistical tests for significance (Mann-Whitney test) and effect size (Cliff’s
Delta).

4 Analysis of the Results

In this section we answer our three research questions.

4.1 Diffuseness of code smells (RQ1)

Fig. 1 shows the boxplot reporting (i) the absolute number of code smell
instances, (ii) the percentage of affected code components (i.e., percentage of
affected classes/methods5), and (iii) the code smell density (i.e., number of
code smells per KLOC) affecting the software systems considered in our study.
For sake of clarity, we aggregated the results considering all the systems as a
single dataset. Detailed results are reported in the appendix at the end of the
paper.

The boxplots highlight significant differences in the diffuseness of code
smells. The first thing that leaps to the eyes is that code smells like Feature
Envy, Message Chain, and Middle Man are poorly diffused in the analyzed
systems. For instance, across the 395 system releases the highest number of
Feature Envy instances in a single release (a Xerces release) is 17, leading to
a percentage of affected methods of only 2.3%. We found instances of Feature
Envy in 50% of the analyzed 395 releases.

The Message Chain smell is also poorly diffused. It affects 13% of the
analyzed releases and in the most affected release (a release of HSQLDB) only
four out of the 427 classes (0.9%) are instances of this smell. It is worth noting
that in previous work Message Chain resulted to be the smell having the
highest correlation with fault-proneness (Khomh et al, 2012). Therefore, the
observed results indicate that although the Message Chain smell is potentially
harmful its diffusion is fairly limited.

Finally, the last poorly diffused code smell is the Middle Man. Only 30%
of the 395 analyzed releases are affected by this smell type and the high-
est number of instances of this smell type in a single release (a release of
Cassandra) is eight. In particular, the classes affected by the Middle Man
in Cassandra 0.6 were 8 out of 261 (3%). In this case, all identified Middle
Man instances affect classes belonging to the org.apache.cassandra.utils

package, grouping together classes delegating most of their work to classes

5 Depending on the code smell granularity, we report the percentage of affected classes or
methods.

On the Diffuseness and the Impact on Maintainability of Code Smells 15

CDSBP CC FE II GC LC LM LPL MC MM RB SC SG

0
20

0
60

0
10

00

Number of code smell instances

CDSBP CC FE II GC LC LM LPL MC MM RB SC SG

0
2

4
6

8
10

Percentage of affected code components

CDSBP CC FE II GC LC LM LPL MC MM RB SC SG

0
20

40
60

Code smell density

Fig. 1: Absolute number, percentage, and density of code smell instances in
the analyzed systems.

in other packages. For example, the HintedHandOffManager class delegates
eleven out of the twelve methods it contains to the StorageService class
from the org.apache.cassandra.service package.

Other code smells are instead quite diffused. For example, we found at
least one instance of Long Method in 84% of the analyzed releases (331 out
of 395). In particular, on average each of these 331 releases is affected by
44 Long Method instances with the peak of 212 in an Apache Derby release.
We manually analyzed that release (i.e., 10.1) to understand the reasons be-
hind the presence of so many Long Method instances. Most of the instances
are in the org.apache.derby.impl.sql.compile package, grouping together
classes implementing methods responsible for parsing code statements written
by using the SQL language. Such parsing methods are in general very com-

16 Fabio Palomba et al.

Table 4: Correlation between code smell instances and system size.

Code smell ρ with ρ with ρ with
#Classes #Methods LOCs

Class Data Should Be Private 0.72 0.82 0.82
Complex Class 0.49 0.71 0.73
Feature Envy -0.07 -0.02 0.01
God Class 0.50 0.76 0.82
Inappropriate Intimacy -0.02 0.02 0.08
Lazy Class 0.20 0.32 0.32
Long Method 0.47 0.72 0.79
Long Parameter List -0.12 -0.09 -0.05
Message Chain -0.10 -0.03 0.03
Middle Man 0.07 0.19 0.18
Refused Bequest 0.74 0.82 0.81
Spaghetti Code 0.69 0.74 0.75
Speculative Generality 0.85 0.78 0.77
In Italic the medium correlations, in bold the strong correlations

plex and long (on average, 259 LOC). For a similar reason, we found several
instances of Long Method in Eclipse Core. Indeed, it contains a high number
of classes implementing methods dealing with code parsing in the IDE. While
we cannot draw any clear conclusion based on the manual analysis of these two
systems, our feeling is that the inherent complexity of such parsing methods
makes it difficult for developers to (i) write the code in a more concise way
to avoid Long Method code smells, or (ii) remove the smell, for instance by
applying extract method refactoring.

Another quite diffused code smell is the Spaghetti Code, that affects 83%
of the analyzed releases (327 out of 395) with the highest number of instances
(54) found in a JBoss’s release. Other diffused code smells are Speculative
Generality (80% of affected releases), Class Data Should Be Private (77%),
Inappropriate Intimacy (71%), and God Class (65%).

Interestingly, the three smallest systems considered in our study (i.e.,
Hibernate, jSL, and Sax) do not present any instance of code smell in any
of the 31 analyzed releases. This result might indicate that in small systems
software developers are generally able to better keep under control the code
quality, thus avoiding the introduction of code smells. To further investigate
this point we computed the correlation between system size (in terms of #
Classes, #Methods, and LOCs) and the number of instances of each code
smell (see Table 4). As expected, some code smells have a positive correla-
tion with the size attributes, meaning that the larger the system the higher
the number of code smell instances in it. There are also several code smells
for which this correlation does not hold (i.e., Feature Envy, Inappropriate In-
timacy, Long Parameter List, Message Chain, and Middle Man). With the
exception of Long Parameter List, all these smells are related to “suspicious”
interactions between the classes of the system (e.g., the high coupling repre-
sented by the Inappropriate Intimacy smell). It is reasonable to assume that

On the Diffuseness and the Impact on Maintainability of Code Smells 17

Table 5: RQ1: Diffuseness of the studied code smells.

Code smell % affected avg. number max number
Diffuseness

releases of instances of instances
Long Method 84% 44 212 High
Spaghetti Code 83% 12 54 High
Speculative Generality 80% 11 65 High
Class Data Should Be Private 76% 12 65 High
Inappropriate Intimacy 71% 4 34 High
God Class 65% 5 26 Medium
Refused Bequest 58% 11 55 Medium
Complex Class 56% 9 35 Medium
Long Parameter List 47% 16 77 Medium
Feature Envy 50% 3 17 Low
Lazy Class 47% 5 21 Low
Middle Man 30% 2 8 Low
Message Chain 13% 2 4 Low

the interactions of such classes is independent from the system size and mainly
related to correct/wrong design decisions.

We also compute the code smell density as the number of smell instances
per KLOC in each of the 395 analyzed releases (see bottom part of Fig. 1). The
results confirm that the Long Method is the most diffused smell, having the
highest average density (i.e., 28 instances per KLOC). Also Refused Bequest
and Complex Class smells, i.e., the code smells having the highest percentage
of affected code components, are confirmed to be quite diffused in the studied
systems. All the other smells seem to have diffuseness trends similar to the
ones previously discussed.

Table 5 classifies the studied code smells on the basis of their diffuseness in
the releases subject of our study. The “% of affected releases” column reports
the percentage of analyzed releases in which we found at least one instance
of a specific smell type. For example, a smell like Long Method affects 84% of
releases, i.e., 395*0.84=332 releases.

Summary for RQ1. Most of the analyzed smells are quite diffused, es-
pecially the ones characterized by long and/or complex code (e.g., Long
Method, Complex Class). On the contrary, Feature Envy, Lazy Class, Mes-
sage Chain, and Middle Man are poorly diffused.

4.2 Change- and fault-proneness of classes affected/not affected by code
smells (RQ2)

Fig. 2 shows the boxplots of change-proneness for classes affected/not affected
by code smells. Our results confirm the findings reported by Khomh et al
(2012), showing that classes affected by code smells have a higher change-
proneness than other classes. Indeed, the median change-proneness for classes

18 Fabio Palomba et al.

● ●●● ●● ●●●● ●●● ●●●● ●● ●● ●● ●● ●●●●●● ●●

● ●●

sm
el

ly
cl

as
se

s
no

n−
sm

el
ly

cl
as

se
s

0 20 40 60 80

changes

Fig. 2: Change-proneness of classes affected and not by code smells

affected by code smells (32) is almost three times higher with respect to the me-
dian change-proneness of the other classes (12). As an example, the Eclipse

class IndexAllProject affected by the Long Method smell (in its method
execute) was modified 77 times during the time period between the release
8 (2.1.3) and 9 (3.0), while the median value of changes for classes not af-
fected by any code smell is 12. Moreover, during the change history of the
system the number of lines of code of the method execute of this class varied
between 671 and 968 due to the addition of several features. The results of
the Mann-Whitney and Cliff tests highlight a statistically significant differ-
ence in the change-proneness of classes affected and not affected by code smell
(p-value<0.001) with a large effect size (d=0.68).

Concerning the fault-proneness, the results also show important differences
between classes affected and not affected by code smells, even if such differences
are less marked than those observed for the change-proneness (see Fig. 3). The
median value of the number of bugs fixed on classes not affected by smells is
3 (third quartile=5), while the median for classes affected by code smells is
9 (third quartile=12). The results confirm what already observed by Khomh
et al (2012). The observed difference is statistically significant (p-value<0.001)
with a medium effect size (d=0.41).

When considering only the bugs induced after the smell introduction, the
results still confirm previous findings. Indeed, as shown in Fig. 4, smelly classes
still have a much higher fault-proneness with respect to non-smelly classes. In
particular, the median value of the number of bugs fixed in non-smelly classes
is 2 (third quartile=5), while it is 9 for smelly classes (third quartile=12). The
difference is statistically significant (p-value<0.001) with a large effect size
(d=0.82).

On the Diffuseness and the Impact on Maintainability of Code Smells 19

●● ● ●

sm
el

ly
cl

as
se

s
no

n−
sm

el
ly

cl
as

se
s

0 5 10 15 20 25 30 35

defects

Fig. 3: Fault-proneness of classes affected and not affected by code smells.

●● ● ●

sm
el

ly
cl

as
se

s
no

n−
sm

el
ly

cl
as

se
s

0 5 10 15 20 25 30 35

defects

Fig. 4: Fault-proneness of classes affected and not affected by code smells when
considering the bugs introduced after the smell introduction only.

This result can be explained by the findings reported in the work by Tufano
et al (2017), where the authors showed that most of the smells are introduced
during the very first commit involving the affected class (i.e., when the class
is added for the first time to the repository). As a consequence, most of the
bugs are introduced after the code smell appearance. This conclusion is also
supported by the fact that in our dataset only 21% of the bugs related to
smelly classes are introduced before the smell introduction.

While the analysis carried out until now clearly highlighted a trend in
terms of change- and fault- proneness of smelly and non-smelly classes, it is

20 Fabio Palomba et al.

Fig. 5: Change-proneness of classes affected by different number of code smells.

Fig. 6: Fault-proneness of classes affected by different number of code smells.

important to note that a smelly class could be affected by one or more smells.
For this reason, we performed an additional analysis to verify how change- and
fault-proneness of classes very when considering classes affected by zero, one,
two, and three code smells. In our dataset there are no classes affected by
more than three smells in the same system release. Moreover, if a class was
affected by two code smells in release rj−1 and by three code smells in release
rj , its change- (fault-) proneness between releases rj−1 and rj contributed to
the distribution representing the change- (fault-) proneness of classes affected
by two smells while its change- (fault-) proneness between releases rj and rj+1

contributed to the distribution representing the change- (fault-) proneness of
classes affected by three smells. Fig. 5 reports the change-proneness of the four
considered sets of classes, while Fig. 6 and Fig. 7 depict the results achieved
for fault-proneness.

In terms of change-proneness, the trend depicted in Fig. 5 shows that the
higher the number of smells affecting a class the higher its change-proneness. In
particular, the median number of changes goes from 12 for non-smelly classes,

On the Diffuseness and the Impact on Maintainability of Code Smells 21

Fig. 7: Fault-proneness of classes affected by different number of code smells
when considering only the bugs induced after the smell introduction.

Table 6: Change-proneness of classes affected by a different number of code
smells: Mann-Whitney test (adj. p-value) and Cliff’s Delta (d).

Test adj. p-value d
zero smells vs one smell <0.001 0.53 (Large)
zero smells vs two smells <0.001 0.80 (Large)
zero smells vs three smells <0.001 0.89 (Large)
one smell vs two smells <0.001 0.42 (Medium)
one smell vs three smells <0.001 0.84 (Large)
two smells vs three smells <0.001 0.72 (Large)

to 22 for classes affected by one smell (+83%), 32 for classes affected by two
smells (+167%), and up to 54 for classes affected by three smells (+350%).
Table 6 reports the results of the Mann-Whitney test and of the Cliff’s delta
obtained when comparing the change-proneness of these four categories of
classes. Since we performed multiple tests, we adjusted our p-values using the
Holm’s correction procedure (Holm, 1979). This procedure sorts the p-values
resulting from n tests in ascending order, multiplying the smallest by n, the
next by n− 1, and so on.

The achieved results show that (i) classes affected by a lower number of
code smells always exhibit a statistically significant lower change-proneness
than classes affected by a higher number of code smells and (ii) the effect
size is always large with the only exception of the comparison between classes
affected by one smell and classes affected by two smells, for which the effect
size is medium.

Similar observations can be made for what concerns the fault-proneness.
Fig. 6 depicts the boxplots reporting the fault-proneness of classes affected by
zero, one, two, and three code smells. When increasing the number of code
smells, the median fault-proneness of the classes grows from 3 for the non-
smelly classes up to 12 (+300%) for the classes affected by three code smells.

22 Fabio Palomba et al.

Table 7: Fault-proneness of classes affected by a different number of code
smells: Mann-Whitney test (adj. p-value) and Cliff’s Delta (d).

Test adj. p-value d
zero smells vs one smell <0.001 0.74 (Large)
zero smells vs two smells <0.001 0.74 (Large)
zero smells vs three smells <0.001 0.89 (Large)
one smell vs two smells <0.001 0.14 (Small)
one smell vs three smells <0.001 0.53 (Large)
two smells vs three smells <0.001 0.40 (Medium)

Table 8: Fault-proneness of classes affected by a different number of code
smells when considering only bugs induced after the smell introduction: Mann-
Whitney test (adj. p-value) and Cliff’s Delta (d).

Test adj. p-value d
zero smells vs one smell <0.001 0.75 (Large)
zero smells vs two smells <0.001 0.71 (Large)
zero smells vs three smells <0.001 0.95 (Large)
one smell vs two smells <0.001 0.19 (Small)
one smell vs three smells <0.001 0.61 (Large)
two smells vs three smells <0.001 0.43 (Medium)

The results of the statistical analysis reported in Table 7 confirm the signif-
icant difference in the fault-proneness of classes affected by a different number
of code smells, with a large effect size in most of the comparisons.

Previous findings are also confirmed when looking at the boxplots of Fig.
7, which refers to the analysis of the fault-proneness performed considering
only the bugs introduced after the smell introduction. Indeed, the higher the
number of code smells affecting a class the higher its fault-proneness. The
significant differences are also confirmed by the statistical tests reported in
Table 8.

Summary for RQ2. Our results confirm the findings by Khomh et al
(2012): Classes affected by code smells have a statistically significant higher
change- (large effect size) and fault- (medium effect size) proneness with
respect to classes not affected by code smells. Also, we observed a very
clear trend indicating that the higher the number of smells affecting a class
the higher its change- and fault-proneness.

4.3 Change- and fault-proneness of classes when code smells are introduced
and removed (RQ3)

For each considered code smell type, Fig. 8 shows a pair of boxplots reporting
the change-proneness of the same set of classes during the time period in which
they were affected (S in Fig. 8) and not affected (NS in Fig. 8) by that specific
code smell.

On the Diffuseness and the Impact on Maintainability of Code Smells 23

Fig. 8: Change-proneness of classes affected by a code smell (S) compared to
the change-proneness of the same classes during the time period in which they
were not affected by a code smell (NS).

In all pairs of boxplots a recurring pattern can be observed: when the classes
are affected by the code smell they generally have a higher change-proneness
than when they are not affected. This result holds for all code smells but
Middle Man (MM), Lazy Class (LC), Feature Envy (FE), and Class Data
Should Be Private (CDSBP).

For classes affected by a God Class (GC) smell we can observe an increase
of +283% of the change-proneness median value (46 vs 12). The case of the
Base64 class belonging to the Elastic Search system is particularly represen-

24 Fabio Palomba et al.

tative: when affected by the God Class smell, the developers modified it 87
times on average (the average is computed across the 5 releases in which this
class was smelly); instead, when the class was not affected by the code smell,
the developers modified it only 10 times on average (the class was not smelly
in 3 releases).

Similar results can be observed for the Complex Class (CC) smell: the
median change-proneness of classes is 55 in the time period in which they are
affected by this smell, while it is 34 when they are non-smelly. For example,
when the Scanner class of the Eclipse Core project was affected by this smell,
it was modified 95 times on average (across the 18 releases in which the class
was smelly), as opposed to the 27 changes observed on average across the 11
releases in which it was not smelly.

The discussion is quite similar for code smells related to errors in the
applications of Object Oriented principles. For example, for classes affected
by Refused Bequest (RB) the median change-proneness goes from 43 (in the
presence of the smell) down to 26 (in the absence of the smell). The case of the
class ScriptWriterBase of the HSQLDB project is particularly interesting.
On average this class was involved in 52 changes during the time period in
which it was affected by RB (13 releases), while the average number of changes
decreased to 9 during the time period in which it was not smelly (4 releases).

It is also interesting to understand why some code smells reduce the change-
proneness. For the Lazy Class smell this result is quite expected. Indeed, by
definition this smell arises when a class has small size, few methods, low com-
plexity, and it is used rarely from the other classes; in other words, as stated by
Fowler “the class isn’t doing enough to pay for itself” (Fowler, 1999). Remov-
ing this smell could mean increasing the usefulness of the class, for example
by implementing new features in it. This likely increases the class change-
proneness. Also, the removal of a Middle Man (a class delegating most of its
responsibilities) is expected to increase the change-proneness of classes, since
the non-smelly class will implement (without delegation) a set of responsi-
bilities that are likely to be maintained by developers, thus triggering new
changes.

Results of the fault-proneness are shown in Fig. 9. Here, the differences be-
tween the time periods the classes are affected and not by code smells are less
evident, but still present, especially for Refused Bequest (RB), Inappropriate
Intimacy (II), God Class (GC), and Feature Envy (FE). The most interesting
case is the FE, for which we observed that the fault-proneness increases by
a factor of 8 when this code smell affects the classes. A representative exam-
ple is represented by the method internalGetRowKeyAtOrBefore of the class
Memcache of the project Apache HBase. This method did not present faults
when it was not affected by any smell (i.e., the method was not affected by
smells in 4 releases of the system). However, when the method started to be
too coupled with the class HStoreKey, it was affected by up to 7 faults. The
reason for this growth is due to the increasing coupling of the method with
the class HStoreKey. Indeed, a HBase developer commented on the evolution

On the Diffuseness and the Impact on Maintainability of Code Smells 25

Fig. 9: Fault-proneness of classes affected by a code smell compared to the
fault-proneness of the same classes during the time period in which they were
not affected by a code smell.

of this method in the issue tracker6: “Here’s a go at it. The logic is much more
complicated, though it shouldn’t be too impossible to follow”.

For all other smells we did not observe any strong difference in the fault-
proneness of the classes when comparing the time periods during which they
were affected and not affected by code smells. While this result might seem

6 https://issues.apache.org/jira/browse/HBASE-514

26 Fabio Palomba et al.

Table 9: ORs of independent factors when building logistic model. Statistically
significant ORs are reported in bold face.

Dependent Variable Smell Presence Size Their Interaction
Change-proneness 4.46 1.7 8.41
Defect-proneness 1.74 0.93 2.11

a contradiction with respect to what observed in RQ2 and in the previous
study by Khomh et al (2012), our interpretation is that classes that were
fault-prone in the past will still continue to be fault-prone, even if a smell was
removed. Moreover, since a smell removal requires a change to the code, it
can have side effects like any other change, thus possibly affecting the fault-
proneness independently of the smell. This is also in agreement with previous
studies that used the past fault-proneness history of classes to predict their
future faults (Ostrand et al, 2005). In essence, there seems to be no direct
cause-effect relationships between the presence of code smells and the class
fault-proneness. Rather, those are two different negative phenomena that tend
to occur in some classes of a software project.

When analyzing only the bugs introduced after the smell appearance (Fig.
10), we can observe that also in this case the results are in line with those
reported above. Indeed, there are no relevant changes between the findings
achieved using or not such a filtering (based on the SZZ algorithm). As ex-
plained before, this is simply due to the fact that most of the code smells are
introduced during the first commit of a class in the repository (Tufano et al,
2017).

Finally, it is important to point out that our analyses might be influenced
by several confounding factors. For instance, it is likely that larger classes are
more likely to change over time and to be subject to bug-fix activities. To ver-
ify the influence of the size attribute on the results achieved in the context of
RQ2 and RQ3 we built logistic regression models (Hosmer Jr and Lemeshow,
2004) relating the two phenomena, i.e., change- and fault-proneness, with in-
dependent variables represented by the presence of a smell, the size of the
component, and their interaction. Table 9 reports the ORs achieved from such
an analysis. Statistically significant values, i.e., those for which the p-value
is lower than 0.05, are reported in bold face. From this analysis, we can no-
tice that the presence of code smells is significantly related to the increase of
change-proneness. The size of code components also affects change-proneness,
although at a lower extent, while the interaction of smell presence and size has
a strong impact on the change-proneness. In terms of fault-proneness, only the
interaction between the independent variables is statistically significant. This
confirms what we observed in RQ3: code smells are not necessarily the direct
cause of the class fault-proneness.

Moreover, to be sure that the results achieved in the context of RQ2 and
RQ3 were not simply due to a reflection of code size, we re-ran our analysis
by considering the change- and the fault-proneness of smelly and non-smelly
classes having different size. In particular:

On the Diffuseness and the Impact on Maintainability of Code Smells 27

Fig. 10: SZZ Analysis: Fault-proneness of classes affected by a code smell
compared to the fault-proneness of the same classes during the time period in
which they were not affected by a code smell.

1. we grouped together smelly classes with similar size by considering their
distribution in terms of size. Specifically, we compute the distribution of
the lines of code of classes affected by code smells. This first step results in
the construction of (i) the group composed by all the classes having a size
lower than the first quartile of the distribution of the size of the classes, i.e.,
small size; (ii) the group composed by all the smelly classes having a size

28 Fabio Palomba et al.

between the first and the third quartile of the distribution, i.e., medium
size; and (iii) the group composed by the smelly classes having a size larger
than the third quartile of the distribution of the size of the classes, i.e.,
large size;

2. we applied the same strategy for grouping small, medium, and large non-
smelly classes; and

3. we computed the change- and the fault-proneness for each class belonging
to the six groups, in order to investigate whether smelly-classes are more
change- and fault-prone regardless of their size.

The obtained results are consistent with those discussed above. The interested
reader can find them in our online appendix (Palomba et al, 2017).

Summary for RQ3. While the class change-proneness can benefit from
code smell removal, the presence of code smells in many cases is not neces-
sarily the direct cause of the class fault-proneness, but rather a co-occurring
phenomenon.

5 Threats to Validity

This section discusses the threats that might affect the validity of our study.
The main threats related to the relationship between theory and observa-

tion (construct validity) are due to imprecisions/errors in the measurements
we performed. Above all, we relied on a tool we built and made publicly avail-
able in our online appendix (Palomba et al, 2017) to detect candidate code
smell instances. Our tool exploits conservative detection rules aimed at en-
suring high recall at the expense of low precision. Then, two of the authors
manually validated the identified code smells to discard false positives. Still,
we cannot exclude the presence of false positives/negatives in our dataset.

We assessed the change- and fault-proneness of a class Ci in a release rj
as the number of changes and the number of bug fixes Ci was subject to in
the time period t between the rj and the rj+1 release dates. This implies that
the length of t could play a role in the change- and fault-proneness of classes
(i.e., the longer t the higher the class change- and fault-proneness). However,
it is worth noting that:

1. This holds for both smelly and non-smelly classes, thus reducing the bias
of t as a confounding factor.

2. To mitigate such a threat we completely re-run our analyses by considering
a normalized version of class change- and fault-proneness. In particular, we
computed the change-proneness of a class Ci in a release rj as:

change proneness(Ci, rj) =
#Changes(Ci)rj−1→rj

#Changes(rj−1 → rj)

where #Changes(Ci)rj−1→rj
is the number of changes performed to Ci by

developers during the evolution of the system between the rj−1’s and the

On the Diffuseness and the Impact on Maintainability of Code Smells 29

rj ’s release dates and #Changes(rj−1 → rj) is the total number of changes
performed on the whole system during the same time period. In a similar
way, we computed the fault-proneness of a class Ci in a release rj as:

fault proneness(Ci, rj) =
NOBF (Ci)rj−1→rj

NOBF (rj−1 → rj)

where NOBF (Ci)rj−1→rj
is the number of bug fixing activities performed

on Ci by developers between the rj−1’s and the rj ’s release dates and
NOBF (rj−1 → rj) is the total number of bugs fixed in the whole system
during the same time period.

The achieved results are reported in our online appendix (Palomba et al,
2017) and are consistent with those reported in Section 4.

In addition, we cannot exclude imprecisions in the measurement of the
fault-proneness of classes due to misclassification of issues (e.g., an enhance-
ment classified as a bug) in the issue-tracking systems (Antoniol et al, 2008).
At least, the systems we consider use an explicit classification of bugs, distin-
guishing them from other issues.

We relied on the SZZ algorithm (Sliwerski et al, 2005) to investigate whether
there is a temporal relationship between the occurrence of a code smell and
a bug induction. We are aware that such an algorithm only gives a rough ap-
proximation of the set of commits inducing a fix, because (i) the line-based
differencing of git has intrinsic limitations, and (ii) in some cases a bug can be
fixed without modifying the lines inducing it, e.g., by adding a workaround or
in general changing the control-flow elsewhere.

The main threats related to the relationship between the treatment and
the outcome (conclusion validity) might be represented by the analysis method
exploited in our study. We discussed our results by presenting descriptive
statistics and using proper non-parametric correlation tests (p-values were
properly adjusted when multiple comparisons were performed by applying the
Holms correction procedure previously described). In addition, the practical
relevance of the differences observed in terms of change- and fault-proneness
is highlighted by effect size measures.

Threats to internal validity concern factors that could influence our obser-
vations. The fact that code smells disappear, may or may not be related to
refactoring activities occurred between the observed releases. In other words,
other changes might have produced such effects. We are aware that we cannot
claim a direct cause-effect relation between the presence of code smells and
fault- and change-proneness of classes, which can be influenced by several other
factors. In particular, our observations may be influenced by the different de-
velopment phases encountered over the change history as well as by developer-
related factors (e.g., experience and workload). Also, we acknowledge that such
measures could simply reflect the “importance” of classes in the analyzed sys-
tems and in particular their central role in the software evolution process. For
example, we expect classes controlling the business logic of a system to also be
the ones more frequently modified by developers (high change-proneness) and

30 Fabio Palomba et al.

then possibly subject to the introduction of bugs (high fault-proneness). It is
possible that such classes are also the ones more frequently affected by code
smells, thus implying high change- and fault-proneness of smelly classes. An
in-depth analysis of how such factors influence change- and fault-proneness of
classes is part of our future agenda.

Finally, regarding the generalization of our findings (external validity) to
the best of our knowledge this is the largest study—in terms of number of soft-
ware releases (395), and considered code smell types (13)—on the diffuseness
of code smells and their impact on maintainability properties. However, we are
aware that we limited our attention only to Java systems, due to limitations
of the infrastructure we used (e.g., the code smell detection tool only works on
Java code). Further studies aiming at replicating our work on systems written
in other programming languages are desirable. Moreover, we focused on open-
source systems only, and we cannot speculate about how the results would be
different when analyzing industrial systems. Replications of the study in the
context of industrial systems may be worthwhile in order to corroborate our
findings.

6 Discussion and Conclusion

This paper reported a large study conducted on 395 releases of 30 Java open
source projects, aimed at understanding the diffuseness of code smells in Java
open source projects and their relation with source code change- and fault-
proneness. The study considered 17,350 instances of 13 different code smell
types, firstly detected using a metric-based approach and then manually vali-
dated.

The results highlighted the following findings:

– Diffuseness of smells. The most diffused smells are the one related to size
and complexity such as Long Method, Spaghetti Code, and to some extent
Complex Class or God Class. This seems to suggests that a simple metric-
based monitoring of code quality could already give enough indications
about the presence of poor design decisions or in general of poor code
quality. Smells not related to size like Message Chains and Lazy Class
are less diffused, although there are also cases of such smells with high
diffuseness, see for example Class Data Should Be Private and Speculative
Generality.

– Relation with change- and fault-proneness. Generally speaking, our
results confirm the results of the previous study by Khomh et al (2012),
i.e., classes affected by code smells tend to be more change- and fault-prone
than others, and that this is even more evident when classes are affected by
multiple smells. At the same time, if we analyze the fault-proneness results
for specific types of smells, we can also notice that high fault-proneness is
particularly evident for smells such as Message Chain that are not highly
diffused.

On the Diffuseness and the Impact on Maintainability of Code Smells 31

Table 10: Summary of the results achieved

Code Smell Diffuseness Removal Effect Removal Effect
on Change-Proneness on Fault-Proneness

Inappropriate Intimacy High High Medium
Long Method High High Limited
Spaghetti Code High High Limited
Speculative Generality High High Limited
God Class Medium High Limited
Complex Class Medium High Limited
Refused Bequest Medium High Limited
Message Chain Low Medium Limited
Feature Envy Low Limited Medium
CDSBP High Limited Limited
LPL Medium Limited Limited
Lazy Class Low Limited Limited
Middle Man Low Limited Limited

– Effect of smell removal on change- and fault-proneness. Removing
code smells is beneficial most of the times for the code change-proneness.
On the other side, we found no substantial differences between the fault-
proneness of classes in the periods when they were affected by smells and
when they were not (e.g., before the smell introduction, or after the smell
removal). This partially contrast the results of previous studies (Khomh
et al, 2012) and seems to indicate that the smell is not the direct cause
of fault-proneness but rather a co-occurring phenomenon in some parts of
the system that are intrinsically fault-prone for various reasons. This also
confirms the principle that a class exhibiting faults in the past is still likely
to exhibit faults in the future (Ostrand et al, 2005).

Our findings clearly show that code smells should be carefully monitored by
programmers, since all of them are related to maintainability aspects such as
change- and fault-proneness. Table 10 shows a summary of our findings, where
we ranked the code smells based on the effect of their removal on change- and
fault-proneness. Looking at the table we can see that the removal of seven
highly diffused smells, i.e., Inappropriate Intimacy, Long Method, Spaghetti
Code, Speculative Generality, God Class, Complex Class, and Refused Bequest
provide a high benefit in terms of change-proneness: thus, on the one hand
practitioners should carefully monitor these smells and plan refactoring ac-
tions to improve the overall maintainability of the code; on the other hand,
researchers should focus on the construction of automatic tools able to identify
and remove these smells.

The removal of other smells seems to be less relevant from a practical per-
spective, since it does not substantially help in improving the maintainability
of the source code. Our results also suggest that developers might use code
smell detectors as a way to locate portions of source code that need more
testing activities.

As for our future research agenda, we will focus on the definition of recom-
menders able to alert developers about the presence of potential problematic
classes based on their (evolution of) change- and fault-proneness and rank
them based on the potential benefits provided by their removal. Moreover,

32 Fabio Palomba et al.

we plan to further analyze other factors influencing the change- and fault-
proneness of classes.

References

Abbes M, Khomh F, Gueheneuc YG, Antoniol G (2011) An empirical study
of the impact of two antipatterns, blob and spaghetti code, on program
comprehension. In: Proceedings of the 2011 15th European Conference on
Software Maintenance and Reengineering, IEEE Computer Society, CSMR
’11, pp 181–190

Antoniol G, Ayari K, Di Penta M, Khomh F, Guéhéneuc YG (2008) Is it a bug
or an enhancement?: a text-based approach to classify change requests. In:
Proceedings of the 2008 conference of the Centre for Advanced Studies on
Collaborative Research (CASCON 2008), October 27-30, 2008, Richmond
Hill, Ontario, Canada, p 23

Arcoverde R, Garcia A, Figueiredo E (2011) Understanding the longevity of
code smells: preliminary results of an explanatory survey. In: Proceedings
of the International Workshop on Refactoring Tools, ACM, pp 33–36

Bavota G, Qusef A, Oliveto R, De Lucia A, Binkley D (2012) An empirical
analysis of the distribution of unit test smells and their impact on software
maintenance. In: 28th IEEE International Conference on Software Mainte-
nance, ICSM 2012, Trento, Italy, September 23-28, 2012, pp 56–65

Bavota G, De Lucia A, Di Penta M, Oliveto R, Palomba F (2015) An exper-
imental investigation on the innate relationship between quality and refac-
toring. Journal of Systems and Software 107:1–14

Chatzigeorgiou A, Manakos A (2010) Investigating the evolution of bad smells
in object-oriented code. In: Proceedings of the 2010 Seventh International
Conference on the Quality of Information and Communications Technology,
IEEE Computer Society, QUATIC ’10, pp 106–115

Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn.
Lawrence Earlbaum Associates

Conover WJ (1998) Practical Nonparametric Statistics, 3rd edn. Wiley
Cunningham W (1993) The WyCash portfolio management system. OOPS

Messenger 4(2):29–30, DOI 10.1145/157710.157715
D’Ambros M, Bacchelli A, Lanza M (2010) On the impact of design flaws

on software defects. In: Proceedings of the 10th International Conference
on Quality Software, QSIC 2010, Zhangjiajie, China, 14-15 July 2010, pp
23–31

Deligiannis I, Stamelos I, Angelis L, Roumeliotis M, Shepperd M (2004) A
controlled experiment investigation of an object-oriented design heuristic
for maintainability. Journal of Systems and Software 72(2):129 – 143

Fernandes E, Oliveira J, Vale G, Paiva T, Figueiredo E (2016) A review-
based comparative study of bad smell detection tools. In: Proceedings of
the 20th International Conference on Evaluation and Assessment in Software
Engineering, ACM, New York, NY, USA, EASE ’16, pp 18:1–18:12, DOI

On the Diffuseness and the Impact on Maintainability of Code Smells 33

10.1145/2915970.2915984, URL http://doi.acm.org/10.1145/2915970.

2915984

Fowler M (1999) Refactoring: improving the design of existing code. Addison-
Wesley

Gatrell M, Counsell S (2015) The effect of refactoring on change and fault-
proneness in commercial c# software. Science of Computer Programming
102(0):44 – 56

Gı̂rba T, Ducasse S, Kuhn A, Marinescu R, Daniel R (2007) Using concept
analysis to detect co-change patterns. In: Ninth International Workshop on
Principles of Software Evolution: In Conjunction with the 6th ESEC/FSE
Joint Meeting, ACM, IWPSE ’07, pp 83–89

Grissom RJ, Kim JJ (2005) Effect sizes for research: A broad practical ap-
proach, 2nd edn. Lawrence Earlbaum Associates

Holm S (1979) A simple sequentially rejective Bonferroni test procedure. Scan-
dinavian Journal on Statistics 6:65–70

Hosmer Jr DW, Lemeshow S (2004) Applied logistic regression. John Wiley &
Sons

Kessentini M, Vaucher S, Sahraoui H (2010) Deviance from perfection is a bet-
ter criterion than closeness to evil when identifying risky code. In: Proceed-
ings of the IEEE/ACM International Conference on Automated Software
Engineering, ACM, ASE ’10, pp 113–122

Khomh F, Di Penta M, Guéhéneuc YG (2009a) An exploratory study of the
impact of code smells on software change-proneness. In: 16th Working Con-
ference on Reverse Engineering, WCRE 2009, 13-16 October 2009, Lille,
France, IEEE Computer Society, pp 75–84

Khomh F, Vaucher S, Guéhéneuc YG, Sahraoui H (2009b) A bayesian ap-
proach for the detection of code and design smells. In: Proceedings of the
9th International Conference on Quality Software, IEEE CS Press, Hong
Kong, China, pp 305–314

Khomh F, Di Penta M, Guéhéneuc YG, Antoniol G (2012) An exploratory
study of the impact of antipatterns on class change- and fault-proneness.
Empirical Software Engineering 17(3):243–275

Kruchten P, Nord RL, Ozkaya I (2012) Technical debt: From metaphor to
theory and practice. IEEE Software 29(6):18–21, DOI 10.1109/MS.2012.167

Lanza M, Marinescu R (2010) Object-Oriented Metrics in Practice: Using Soft-
ware Metrics to Characterize, Evaluate, and Improve the Design of Object-
Oriented Systems. Springer

Li W, Shatnawi R (2007) An empirical study of the bad smells and class error
probability in the post-release object-oriented system evolution. Journal of
Systems and Software pp 1120–1128

Lopez M, Habra N (2015) Relevance of the cyclomatic complexity threshold for
the java programming language. Software Measurement European Forum

Lozano A, Wermelinger M, Nuseibeh B (2007) Assessing the impact of bad
smells using historical information. In: Ninth international workshop on
Principles of software evolution: in conjunction with the 6th ESEC/FSE
joint meeting, ACM, New York, NY, USA, IWPSE ’07, pp 31–34

http://doi.acm.org/10.1145/2915970.2915984
http://doi.acm.org/10.1145/2915970.2915984

34 Fabio Palomba et al.

Marinescu R (2004) Detection strategies: Metrics-based rules for detecting
design flaws. In: 20th International Conference on Software Maintenance
(ICSM 2004), 11-17 September 2004, Chicago, IL, USA, IEEE Computer
Society, pp 350–359

Moha N, Guéhéneuc YG, Duchien L, Meur AFL (2010) Decor: A method for
the specification and detection of code and design smells. IEEE Transactions
on Software Engineering 36(1):20–36

Moonen L (2001) Generating robust parsers using island grammars. In:
Proceedings of the Eighth Working Conference on Reverse Engineering,
WCRE’01, Stuttgart, Germany, October 2-5, 2001, p 13

Munro MJ (2005) Product metrics for automatic identification of “bad smell”
design problems in java source-code. In: Proceedings of the 11th Interna-
tional Software Metrics Symposium, IEEE Computer Society Press

Olbrich S, Cruzes DS, Basili V, Zazworka N (2009) The evolution and impact
of code smells: A case study of two open source systems. In: Proceedings of
the 2009 3rd International Symposium on Empirical Software Engineering
and Measurement, ESEM ’09, pp 390–400

Olbrich SM, Cruzes D, Sjøberg DIK (2010) Are all code smells harmful? A
study of god classes and brain classes in the evolution of three open source
systems. In: 26th IEEE International Conference on Software Maintenance
(ICSM 2010), September 12-18, 2010, Timisoara, Romania, pp 1–10

Oliveto R, Khomh F, Antoniol G, Guéhéneuc YG (2010) Numerical signatures
of antipatterns: An approach based on b-splines. In: Capilla R, Ferenc R,
Dueas JC (eds) Proceedings of the 14th Conference on Software Maintenance
and Reengineering, IEEE Computer Society Press

Ostrand TJ, Weyuker EJ, Bell RM (2005) Predicting the location and number
of faults in large software systems. IEEE Trans Software Eng 31(4):340–355

Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A (2014) Do they
really smell bad? a study on developers’ perception of bad code smells.
In: In Proceedings of the 30th IEEE International Conference on Software
Maintenance and Evolution (ICSME’14), Victoria, Canada, pp 101–110

Palomba F, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D, De Lucia A
(2015a) Mining version histories for detecting code smells. Software En-
gineering, IEEE Transactions on 41(5):462–489, DOI 10.1109/TSE.2014.
2372760

Palomba F, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D, De Lu-
cia A (2015b) Mining version histories for detecting code smells. IEEE
Trans Software Eng 41(5):462–489, DOI 10.1109/TSE.2014.2372760, URL
http://dx.doi.org/10.1109/TSE.2014.2372760

Palomba F, De Lucia A, Bavota G, Oliveto R (2015c) Anti-pattern detection:
Methods, challenges, and open issues. Advances in Computers 95:201–238,
DOI 10.1016/B978-0-12-800160-8.00004-8

Palomba F, Di Nucci D, Panichella A, Oliveto R, De Lucia A (2016a) On the
diffusion of test smells in automatically generated test code: An empirical
study. In: Proceedings of the 9th International Workshop on Search-based
Software Testing, SBST 2016

http://dx.doi.org/10.1109/TSE.2014.2372760

On the Diffuseness and the Impact on Maintainability of Code Smells 35

Palomba F, Panichella A, Lucia AD, Oliveto R, Zaidman A (2016b) A
textual-based technique for smell detection. In: 2016 IEEE 24th Inter-
national Conference on Program Comprehension (ICPC), pp 1–10, DOI
10.1109/ICPC.2016.7503704

Palomba F, Bavota G, Oliveto R, Fasano F, Di Penta M, De Lucia A (2017)
Bad code smells study - online appendix. URL https://dibt.unimol.it/

fpalomba/reports/badSmell-analysis/index.html

Peters R, Zaidman A (2012) Evaluating the lifespan of code smells using soft-
ware repository mining. In: 16th European Conference on Software Main-
tenance and Reengineering, CSMR 2012, Szeged, Hungary, March 27-30,
2012, pp 411–416

Ratiu D, Ducasse S, Gı̂rba T, Marinescu R (2004) Using history information
to improve design flaws detection. In: 8th European Conference on Software
Maintenance and Reengineering (CSMR 2004), 24-26 March 2004, Tampere,
Finland, Proceeding, IEEE Computer Society, pp 223–232

Saboury A, Musavi P, Khomh F, Antoniol G (2017) An empirical study of code
smells in javascript projects. In: 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp 294–305,
DOI 10.1109/SANER.2017.7884630

Sahin D, Kessentini M, Bechikh S, Deb K (2014) Code-smell detection as
a bilevel problem. ACM Trans Softw Eng Methodol 24(1):6:1–6:44, DOI
10.1145/2675067, URL http://doi.acm.org/10.1145/2675067

Sjoberg D, Yamashita A, Anda B, Mockus A, Dyba T (2013) Quantifying
the effect of code smells on maintenance effort. Software Engineering, IEEE
Transactions on 39(8):1144–1156, DOI 10.1109/TSE.2012.89

Sliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes?
In: Proceedings of the 2005 International Workshop on Mining Software
Repositories, MSR 2005, ACM

Student (1921) An experimental determination of the probable error of dr
spearman’s correlation coefficients. Biometrika 13(2/3):263–282, URL http:

//www.jstor.org/stable/2331754

Tsantalis N, Chatzigeorgiou A (2009) Identification of move method refactor-
ing opportunities. IEEE Transactions on Software Engineering 35(3):347–
367

Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, Poshy-
vanyk D (2015) When and why your code starts to smell bad. In: 37th
IEEE/ACM International Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 1, pp 403–414

Tufano M, Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshy-
vanyk D (2016) An empirical investigation into the nature of test smells.
In: Proceedings of the 31st IEEE/ACM International Conference on Au-
tomated Software Engineering, ACM, New York, NY, USA, ASE 2016, pp
4–15

Tufano M, Palomba F, Bavota G, Oliveto R, Penta MD, Lucia AD, Poshyvanyk
D (2017) When and why your code starts to smell bad (and whether the
smells go away). IEEE Transactions on Software Engineering PP(99):1–1,

https://dibt.unimol.it/fpalomba/reports/badSmell-analysis/index.html
https://dibt.unimol.it/fpalomba/reports/badSmell-analysis/index.html
http://doi.acm.org/10.1145/2675067
http://www.jstor.org/stable/2331754
http://www.jstor.org/stable/2331754

36 Fabio Palomba et al.

DOI 10.1109/TSE.2017.2653105
Vaucher S, Khomh F, Moha N, Gueheneuc YG (2009) Tracking design smells:

Lessons from a study of god classes. In: Proceedings of the 2009 16th Work-
ing Conference on Reverse Engineering (WCRE’09), pp 145–158

Yamashita AF, Moonen L (2012) Do code smells reflect important maintain-
ability aspects? In: 28th IEEE International Conference on Software Main-
tenance, ICSM 2012, Trento, Italy, September 23-28, 2012, pp 306–315

Yamashita AF, Moonen L (2013) Exploring the impact of inter-smell relations
on software maintainability: an empirical study. In: 35th International Con-
ference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013, pp 682–691

Appendix

Table 11 shows the diffuseness of the analyzed code smells in the subject
systems.

On the Diffuseness and the Impact on Maintainability of Code Smells 37

T
ab

le
11

:
C

o
d

e
sm

el
l

d
iff

u
se

n
es

s
in

th
e

su
b

je
ct

sy
st

em
s:

m
in

-m
a
x

in
st

a
n

ce
s

in
th

e
sy

st
em

s’
re

le
a
se

s.

S
y
st

em
C

D
S

B
P

C
o
m

p
le

x
F

ea
tu

re
G

o
d

In
a
p

p
ro

p
ri

a
te

L
a
zy

L
o
n

g
L

P
L

M
es

sa
g
e

M
id

d
le

R
ef

u
se

d
S

p
a
g
h

et
ti

S
p

ec
u

la
ti

v
e

C
la

ss
E

n
v
y

C
la

ss
In

ti
m

a
cy

C
la

ss
M

et
h

o
d

C
h

a
in

M
a
n

B
eq

u
es

t
C

o
d

e
G

en
er

a
li
ty

A
rg

o
U

M
L

5
-1

9
(0

.6
-1

.3
)

4
-1

0
(0

.5
-0

.7
)

1
-2

(0
.1

-0
.1

)
2
-6

(0
.2

-0
.4

)
0
-8

(0
.0

-0
.5

)
0
-0

(0
.0

-0
.0

)
1
8
-3

0
(2

.3
-2

.1
)

0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
1
-2

(0
.1

-0
.1

)
0
-4

(0
.0

-0
.3

)
1
4
-2

1
(1

.8
-1

.5
)

1
2
-2

9
(1

.5
-2

.0
)

A
n
t

1
-7

(1
.2

-0
.9

)
0
-4

(0
.0

-0
.5

)
0
-6

(0
.0

-0
.9

)
0
-6

(0
.0

-0
.7

)
2
-2

2
(2

.4
-2

.7
)

0
-0

(0
.0

-0
.0

)
6
-3

8
(7

.2
-4

.6
)

0
-1

7
(0

.0
-2

.0
)

0
-3

(0
.0

-0
.4

)
0
-2

(0
.0

-0
.2

)
0
-1

4
(0

.0
-1

.7
)

4
-3

0
(5

.0
-3

.7
)

1
-4

(1
.2

-0
.5

)
a
T

u
n

es
3
-1

2
(2

.0
-1

.8
)

0
-1

(0
.0

-0
.2

)
0
-6

(0
.0

-0
.9

)
0
-1

(0
.0

-0
.2

)
0
-8

(0
.0

-1
.2

)
1
-9

(0
.7

-1
.4

)
6
-3

1
(4

.3
-3

.2
)

0
-1

1
(0

.0
-1

.7
)

0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
1
-8

(0
.7

-1
.3

)
6
-2

1
(4

.3
-3

.4
)

0
-1

0
(0

.0
-1

.6
)

C
a
ss

a
n

d
ra

5
-1

4
(1

.6
-2

.4
)

0
-4

(0
.0

-0
.6

)
0
-2

(0
.0

-0
.3

)
0
-2

(0
.0

-0
.4

)
2
-2

4
(0

.0
-4

.0
)

0
-1

(0
.0

-0
.2

)
3
-2

2
(1

.0
-4

.0
)

0
-1

6
(0

.0
-2

.7
)

0
-2

(0
.0

-0
.3

)
2
-8

(0
.7

-1
.4

)
0
-2

(0
.0

-0
.3

)
0
-6

(0
.0

-0
.9

)
0
-1

6
(0

.0
-2

.9
)

D
er

b
y

2
0
-4

0
(1

.3
-1

.0
)

2
1
-2

5
(1

.5
-1

.3
)

1
-1

(0
.6

-0
.5

)
2
0
-2

6
(1

.3
-1

.4
)

0
-0

(0
.0

-0
.0

)
1
-1

(0
.4

-0
.5

)
1
7
6
-2

1
2

(0
.8

-0
.8

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
2
-2

(0
.1

-0
.1

)
1
0
-1

9
(0

.7
-0

.9
)

1
2
-1

6
(0

.8
-0

.8
)

1
9
-2

6
(1

.3
-1

.4
)

E
cl

ip
se

C
o
re

1
5
-3

2
(2

.1
-2

.7
)

8
-3

5
(1

.1
-2

.9
)

0
-6

(0
.0

-0
.5

)
3
-1

5
(0

.4
-1

.3
)

0
-1

6
(0

.0
-1

.4
)

2
-1

7
(0

.2
-1

.4
)

3
6
-1

8
0

(4
.8

-1
5
.2

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
2
-2

(0
.3

-0
.2

)
7
-3

1
(0

.9
-2

.6
)

1
2
-2

5
(1

.6
-2

.1
)

4
-1

5
(0

.5
-1

.8
)

E
la

st
ic

S
ea

rc
h

3
-5

(0
.2

-0
.2

)
0
-5

(0
.0

-0
.2

)
0
-0

(0
.0

-0
.0

)
1
-3

(0
.1

-0
.1

)
4
-4

(0
.2

-0
.1

)
4
-7

(0
.2

-0
.3

)
1
1
-2

7
(0

.7
-1

.9
)

0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-3

(0
.0

-0
.1

)
3
-8

(0
.2

-0
.4

)
3
-9

(0
.2

-0
.4

)
F

re
eM

in
d

0
-5

(0
.0

-0
.9

)
0
-6

(0
.0

-1
.2

)
0
-1

(0
.0

-0
.2

)
0
-2

(0
.0

-0
.4

)
0
-6

(0
.0

-0
.7

)
0
-3

(0
.0

-0
.6

)
0
-1

3
(0

.0
-2

.6
)

0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-1

(0
.0

-0
.1

)
0
-3

(0
.0

-0
.6

)
0
-9

(0
.0

-1
.9

)
0
-2

(0
.0

-0
.4

)
H

a
d

o
o
p

0
-3

(0
.0

-0
.1

)
0
-2

(0
.0

-0
.1

)
0
-4

(0
.0

-0
.1

)
0
-2

(0
.0

-0
.1

)
2
-1

0
(1

.6
-0

.1
)

3
-9

(2
.3

-0
.1

)
5
-1

7
(3

.8
-0

.1
)

0
-1

2
(0

.0
-0

.1
)

0
-0

(0
.0

-0
.1

)
0
-1

(0
.0

-0
.1

)
0
-0

(0
.0

-0
.1

)
6
-7

(4
.6

-0
.1

)
3
-5

(2
.5

-0
.1

)
H

S
Q

L
D

B
0
-7

(0
.0

-1
.5

)
0
-5

(0
.0

-1
.1

)
0
-3

(0
.0

-0
.7

)
0
-1

1
(0

.0
-1

.5
)

8
-2

4
(1

4
.8

-5
.4

)
0
-9

(0
.0

-2
.1

)
1
0
-1

2
4

(1
.4

-1
4
.1

)
0
-1

3
(0

.0
-2

.9
)

0
-4

(0
.0

-0
.9

)
0
-0

(0
.0

-0
.0

)
0
-1

3
(0

.0
-0

.2
.8

)
2
-2

9
(3

.7
-6

.5
)

0
-3

(0
.0

-0
.7

)
H

b
a
se

5
-1

6
(3

.1
-2

.3
)

2
-7

(1
.2

-1
.0

)
1
-9

(0
.7

-1
.3

)
1
-8

(0
.7

-1
.1

)
2
-1

4
(1

.2
-2

.0
)

2
-2

1
(1

.4
-3

.1
)

1
2
-4

2
(7

.5
-6

.4
)

3
-4

5
(1

.9
-6

.5
)

0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-2

2
(0

.0
-3

.2
)

3
-5

(1
.8

-0
.7

)
2
-1

0
(1

.3
-1

.4
)

H
ib

er
n

a
te

0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
H

iv
e

3
-7

(0
.7

-0
.6

)
1
-3

(0
.1

-0
.3

)
4
-1

1
(0

.9
-0

.9
)

0
-2

(0
.0

-0
.2

)
0
-8

(0
.0

-0
.7

)
1
-1

(0
.1

-0
.1

)
1
1
-8

3
(2

.7
-7

.4
)

1
4
-7

7
(3

.4
-6

.9
)

0
-1

(0
.0

-0
.1

)
0
-1

(0
.0

-0
.1

)
4
-6

(0
.9

-0
.5

)
2
-4

(0
.5

-0
.4

)
6
-3

1
(1

.5
-2

.8
)

In
cu

b
a
ti

n
g

1
2
-1

6
(4

.8
-5

.0
)

6
-6

(2
.5

-1
.9

)
3
-1

0
(1

.1
-3

.1
)

6
-6

(2
.8

-1
.7

)
1
2
-3

0
(4

.8
-9

.5
)

1
-4

(0
.4

-1
.3

)
8
9
-1

1
0

(3
.5

-3
.5

)
2
7
-3

5
(1

0
.8

-1
1
.1

)
0
-0

(0
.0

-0
.0

)
0
-1

(0
.0

-0
.3

)
1
0
-1

7
(4

.0
-5

.3
)

6
-8

(2
.4

-2
.5

)
6
-8

(2
.3

-2
.5

)
Iv

y
1
-1

(0
.4

-0
.3

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-2

(0
.0

-0
.6

)
0
-6

(0
.0

-1
.7

)
0
-0

(0
.0

-0
.0

)
2
-2

2
(0

.7
-6

.3
)

1
3
-2

1
(4

.6
-6

.0
)

0
-0

(0
.0

-0
.0

)
1
-1

(0
.3

-0
.3

)
0
-0

(0
.0

-0
.0

)
1
-4

(0
.4

-1
.2

)
4
-5

(1
.4

-1
.4

)
L

u
ce

n
e

3
9
-4

7
(2

.2
-2

.0
)

3
-5

(0
.2

-0
.2

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
8
-1

4
(0

.5
-0

.6
)

0
-1

0
(0

.0
-0

.5
)

6
1
-7

4
(3

.5
-3

.2
)

0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
7
-9

(0
.4

-0
.4

)
1
0
-1

6
(0

.6
-0

.7
)

2
9
-3

8
(1

.6
-1

.7
)

J
E

d
it

0
-7

(0
.0

-1
.3

)
4
-2

1
(1

.8
-4

.0
)

0
-2

(0
.0

-0
.4

)
0
-6

(0
.0

-1
.2

)
0
-8

(0
.0

-1
.5

)
0
-0

(0
.0

-0
.0

)
8
-3

3
(3

.5
-6

.4
)

0
-9

(0
.0

-1
.7

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-3

(0
.0

-0
.6

)
3
-1

8
(1

.3
-3

.5
)

4
-1

4
(1

.8
-2

.7
)

J
H

o
tD

ra
w

0
-0

(0
.0

-0
.0

)
0
-4

(0
.0

-0
.6

)
0
-0

(0
.0

-0
.0

)
0
-2

(0
.0

-0
.3

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
J
F

re
eC

h
a
rt

0
-9

(0
.0

-1
.2

)
0
-3

(0
.0

-0
.4

)
0
-0

(0
.0

-0
.0

)
0
-9

(0
.0

-1
.4

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
2
-6

3
(2

.3
-8

.1
)

8
-6

7
(9

.3
-8

.6
)

0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
1
-3

(1
.1

-0
.4

)
2
-5

(2
.3

-0
.6

)
J
B

o
ss

1
8
-6

5
(0

.8
-1

.4
)

9
-2

3
(0

.4
-0

.5
)

0
-1

(0
.0

-0
.1

)
1
-1

6
(0

.1
-0

.4
)

0
-4

(0
.0

-0
.1

)
0
-6

(0
.1

-0
.0

)
4
5
-1

3
5

(1
.9

-2
.8

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-3

(0
.0

-0
.1

)
2
4
-5

5
(1

.0
-1

.1
)

2
3
-5

4
(1

.0
-1

.1
)

2
3
-6

5
(1

.0
-1

.4
)

J
V

lt
0
-2

(0
.0

-0
.9

)
0
-0

(0
.0

-0
.0

)
0
-4

(0
.0

-1
.8

)
0
-1

(0
.0

-0
.0

)
2
-4

(1
.2

-0
.5

)
1
-5

(0
.7

-2
.2

)
5
-7

(3
.0

-3
.1

)
0
-2

(0
.0

-0
.9

)
0
-0

(0
.0

-0
.0

)
0
-1

(0
.0

-0
.5

)
1
-3

(0
.7

-1
.4

)
3
-4

(1
.8

-1
.8

)
1
-3

(0
.7

-1
.3

)
jS

L
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
K

a
ra

f
0
-2

(0
.0

-0
.4

)
0
-0

(0
.0

-0
.0

)
1
-1

(0
.4

-0
.2

)
0
-2

(0
.0

-0
.3

)
0
-2

(0
.0

-0
.3

)
0
-0

(0
.0

-0
.0

)
1
-5

(0
.5

-1
.1

)
0
-2

(0
.0

-0
.3

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
5
-9

(2
.0

-1
.9

)
2
-2

(2
.1

-0
.4

)
N

u
tc

h
3
-1

2
(1

.6
-4

.6
)

0
-0

(0
.0

-0
.0

)
1
-5

(0
.5

-1
.9

)
0
-0

(0
.0

-0
.0

)
4
-1

2
(2

.1
-4

.9
)

1
-9

(0
.6

-3
.5

)
7
-1

7
(3

.8
-6

.6
)

0
-1

6
(0

.0
-6

.1
)

0
-0

(0
.0

-0
.0

)
0
-6

(0
.0

-6
.3

)
0
-2

(0
.0

-0
.7

)
0
-4

(0
.0

-1
.5

)
0
-3

(0
.0

-1
.2

)
P

ig
3
-5

(1
.2

-0
.5

)
0
-7

(0
.0

-0
.8

)
0
-1

(0
.0

-0
.1

2
)

0
-3

(0
.0

-0
.3

)
4
-1

0
(1

.6
-1

.1
)

0
-1

(0
.0

-0
.1

)
0
-4

3
(0

.0
-4

.7
)

0
-3

(0
.0

-0
.3

)
0
-1

(0
.0

-0
.1

)
0
-2

(0
.0

-0
.2

)
0
-1

3
(0

.0
-1

.4
)

0
-7

(0
.0

-0
.8

)
4
-2

0
(1

.7
-2

.2
)

Q
p

id
1
1
-1

8
(1

.1
-1

.9
)

4
-1

0
(0

.4
-1

.0
)

0
-2

(0
.0

-0
.2

)
4
-6

(0
.6

-0
.7

)
4
-1

0
(0

.4
-1

.1
)

0
-1

(0
.0

-0
.1

)
2
1
-3

3
(2

.1
-3

.6
)

2
2
-3

9
(2

.2
-4

.2
)

0
-1

(0
.0

-0
.1

)
0
-1

(0
.0

-0
.1

)
1
-8

(0
.1

-0
.9

)
3
-8

(0
.4

-0
.8

)
3
2
-3

8
(3

.3
-4

.1
)

S
a
x

0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
S

tr
u

ts
7
-1

2
(1

.1
-1

.1
)

0
-4

(0
.0

-0
.4

)
0
-1

(0
.0

-0
.1

)
0
-2

(0
.0

-0
.3

)
6
-1

2
(0

.9
-1

.0
)

0
-0

(0
.0

-0
.0

)
3
-1

4
(0

.5
-1

.4
)

0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
1
-2

(0
.2

-0
.2

)
3
-9

(0
.5

-0
.9

)
0
-6

(0
.0

-0
.6

)
W

ic
k
et

0
-0

(0
.0

-0
.0

)
2
-2

(0
.3

-0
.2

)
0
-0

(0
.0

-0
.0

)
4
-4

(0
.5

-0
.5

)
4
-6

(0
.5

-0
.7

)
0
-0

(0
.0

-0
.0

)
4
-4

(0
.5

-0
.5

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
0
-0

(0
.0

-0
.0

)
3
-7

(0
.4

-0
.8

)
1
1
-1

1
(1

.4
-1

.3
)

1
8
-1

8
(2

.7
-2

.2
)

X
er

ce
s

1
0
-4

2
(6

.0
-5

.7
)

4
-1

0
(2

.4
-1

.4
)

0
-1

7
(0

.0
-2

.3
)

5
-1

1
(3

.0
-1

.5
)

2
-3

4
(1

.2
-4

.6
)

0
-4

(0
.0

-0
.5

)
4
8
-1

2
3

(2
.7

-6
.9

)
4
-2

9
(2

.5
-4

.0
)

2
-3

(1
.3

-0
.4

)
0
-0

(0
.0

-0
.0

)
0
-1

5
(0

.0
-2

.0
)

4
-9

(2
.4

-1
.3

)
2
-1

1
(1

.2
-1

.5
)

O
v
e
r
a
ll

0
-6

5
(0

.0
-5

.0
)

0
-3

5
(0

.0
-4

.0
)

0
-1

7
(0

.0
-3

.1
)

0
-2

6
(0

.0
-1

.7
)

0
-3

4
(0

.0
-9

.5
)

0
-2

1
(0

.0
-3

.5
)

0
-2

1
2

(0
.0
-1

5
.2
)

0
-7

7
(0

.0
-1

1
.0
)

0
-4

(0
.0
-0

.9
)

0
-8

(0
.0
-6

.3
)

0
-5

5
(0

.0
-3

.2
)

0
-5

4
(0

.0
-6

.5
)

0
-6

5
(0

.0
-4

.1
)

	Introduction
	Related work
	Diffuseness and Evolution of Code Smells
	Change- and Fault-proneness of Code Smells
	Code Smells and User Studies

	Study Definition and Planning
	Research Questions and Planning

	Analysis of the Results
	Diffuseness of code smells (RQ1)
	Change- and fault-proneness of classes affected/not affected by code smells (RQ2)
	Change- and fault-proneness of classes when code smells are introduced and removed (RQ3)

	Threats to Validity
	Discussion and Conclusion

